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Abstract

Introduction Eddy currents induced by switching of mag-
netic field gradients can lead to distortions in short echo-time
spectroscopy or diffusion weighted imaging. In small bore
magnets, such as human head-only systems, minimization
of eddy current effects is more demanding because of the
proximity of the gradient coil to conducting structures.
Methods In the present study, the eddy current behavior
achievable on a recently installed 7 tesla—68 cm bore head-
only magnet was characterized.

Results Residual effects after compensation were shown to
be on the same order of magnitude as those measured on two
whole body systems (3 and 4.7 T), while using two to three
fold increased gradient slewrates.
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Introduction

Switching of magnetic field gradients induces, via time vari-
ation of the magnetic field, eddy currents (EC) in the various
conducting structures of the magnet. In turn, these currents
are the origin of field variations that may persist up to sev-
eral seconds after the primary gradient has been switched off.
A large part of these field variations can be described by a
gradient present in the same direction as the primary gradi-
ent and a By-field shift. Reduction of eddy current effects is
especially important for short echo-time spectroscopy [1] or
diffusion-weighted imaging (DWI), where strong field-gra-
dients are rapidly switched and when, as in the case of DWI,
particularly sensitive readout methods, such as echo planar
imaging (EPI), are commonly used [2].

Reduction of eddy currents can be achieved by active
shielding of the gradient coil and by magnet design, e.g.
increasing the magnet bore size with respect to the gradient
coil dimension [3]. Residual gradients from eddy currents
are suppressed by applying correction (or preemphasis-)
currents in the respective gradient coil. Spatially homoge-
neous field-shifts have traditionally been minimized using a
Bp-shim coil and, more recently, by matching the demod-
ulation frequency of the scanner to the shifted By-field
(information obtained from manufacturer). In small bore
systems, proximity of conducting structures (such as the
heat shield) to the gradient coil can lead to large eddy cur-
rent effects when compared to whole body magnets, plac-
ing thereby higher demands on magnet and gradient coil
design. We have recently installed an actively shielded 7
tesla scanner with a bore size of 68 cm, equipped with
an actively shielded head gradient coil. The aim of this
study was to determine to what extend eddy current fields
can be minimized on such a system using the vendor-sup-
plied hardware and careful adjustment of the preemphasis
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compensation parameters using a localized method as
described by Terpstra et al. [4].

Materials and methods

The study was carried out on an actively shielded 7T mag-
net (Magnex Scientific, Oxford, United Kingdom) with a
room temperature bore of 68 cm diameter. The system design
allowed for a cryostat length of only 2.2 m. The 2 tesla limit
of the main magnetic field remains within the cryostat and
the 5 Gauss line within a distance of 4.5 m (radial) to about
6.5 m (axial) from the isocenter. The head gradient coil inte-
grated into the system is a recent design [5] allowing for
maximum gradient strengths of 80 mT/m switched at slew-
rates of up to 700 mT/(m * ms) with second order shim fields
up to 14 mT/m?. In this study, eddy currents from a gradi-
ent switched at 333 mT/(m * ms), i.e., at about 48% of the
maximum slewrate, were characterized.

Eddy current measurements and adjustment of new
preemphasis parameters were performed in the magnet
isocenter using an oil-filled spherical phantom (Siemens,
Erlangen, Germany). A head volume coil resonator (InVivo,
Orlando, USA) was used for rf- transmission and recep-
tion. The sequence used for eddy current measurement is
described in detail by Terpstra et al. [4]. Briefly, at a var-
iable delay t after the end of a user defined test-gradient,
a bar (side length 2 cm) was selected within the phantom
using a STEAM sequence (TE = 10 ms, TR = 6.1 or 6.2 s,
TM = 15s). Signal was acquired in the presence of a read gra-
dient, providing a representation of the sample profile along
the bar after Fourier transform (FT). The direction of the
test-gradient coincided with the readout direction. Therefore,
eddy currents, caused by the test-gradient modify the phase
distribution along this profile. A complex division of two
acquisitions performed once with and once without applica-
tion of the test-gradient retains only eddy current effects as
a consequence of the test-gradient. Fitting of the phase evo-
lution along the profile to Oth and 1st order (offset and linear
evolution in space) was used to calculate Bg-shift and eddy
current gradient, respectively, present at a delay t after the
end of the test-gradient. Higher order field variations were
found negligible relative to the Oth and 1st order terms.

Eddy current gradient and By-shifts were measured at 36
different time delays ranging from 1 ms to 3 s after the end
of a 10.2-mT/m test-gradient of 2s duration. This test- gra-
dient amplitude corresponds to about 13% of the strength
maximal available on the system. According to our experi-
ence with the method used here, EC correction optimized for
such a gradient strength leads to an acceptable compensation
for the range of gradient configurations employed by many
methods. Because of the long duration of the test-gradient,
eddy currents induced by its rising edge were considered neg-
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ligible at the time of application of the first tf pulse of the
STEAM coherence generation. After complex division, zero-
filling and FT, the resulting phase evolution was unwrapped
and fitted in an area of £2.4 cm at the isocenter to determine
eddy current gradient and Bg-shift.

In a first step, measurements were performed with the
eddy current compensation disabled (correction amplitudes
and time constants were set to zero). These measurements
were then used to determine new parameters for the sys-
tem’s preemphasis unit. The temporal decay of eddy current
gradient and By-shift values after the end of the test-gra-
dient were fitted to a sum of exponentially decaying func-
tions (ZlNzl Aje™! /% where N , number of exponentials; A;,
amplitude of one of the N exponentially decaying compo-
nents fitted to either the eddy current gradient or the Bg-shift
evolution; 7;, decay time constant). The number of exponen-
tials (V) was successively increased until a fit residual near or
below 2 Hz/cm for the gradient and near or below 2 Hz for the
By-shift at all times was obtained. Adjacent decay time con-
stants were chosen at least three-fold different (ziy1/7; > 3)
wherever possible (exception: y-axis, (Tsiow/Tmedium > 2.6).

The time constants determined as described previously
were entered directly into preemphasis unit of the scanner.
The amplitudes of the exponential decays were determined
iteratively as described by Terpstra et al. [4] i.e., no further
calibration of the preemphasis unit was performed. In this
process, the amplitude corresponding to the time constant
7 (i = 1,2 or 3) was adjusted by minimizing eddy current
effects occurring at times longer than 5 x t;_; after the end
of the test-gradient. Adjustments started with the amplitude
corresponding to the longest time constant. Measurements
of Bg-shift and residual gradients were repeated after the
adjustment had been performed on all axes.

To examine the influence of residual eddy currents on
peakshapes in a spectroscopy experiment, a water signal was
acquired at an echo- time of 9.5ms from a 2 x 2 x 2 cm’
volume (TR = 4 s, bandwidth = 1 kHz, 4 scans) using a
spherical, well- shimmed water phantom. Furthermore, in
vivo acquisitions were performed with an echo-time of 6 ms
on a volume of 2 x 2 x 2cm? situated in the occipital lobe
of a human subject [6] (TR = 4 s, bandwidth = 4 kHz,
64 scans). All spectroscopy acquisitions used the SPECIAL
sequence [1] preceded by st and 2nd order shimming with
FASTMAP [7]. In vivo, a home-built, unshielded, quadrature
surface coil was used for signal transmission and reception.
Water was suppressed using VAPOR [8]. Postprocessing
of in vivo acquisitions consisted of two-times zero-filling,
2Hz Gaussian weighting of the FID, Fourier transform and
zero order phase correction. Human study conditions were
approved by the local ethics committee.

For further comparison, Bg-shifts and eddy current gra-
dients were measured on a 3T whole body scanner (Trio
a Tim system, Siemens, Erlangen, Germany) with the pulse
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sequence and similar experimental setup as described previ-
ously while keeping the standard preemphasis settings (i.e.,
no further adjustments performed). The test-gradient as pro-
duced by the body gradient coil, was switched at 170 mT/(m
* ms), which was the maximum slewrate available.

Results

The decays of Bp-shift and eddy current gradient on the
uncompensated 7T system showed multi-exponential behav-
ior on all axes (Fig. 1). Fit of these decays with two or three
exponentially decaying functions was sufficient to achieve
maximum (measured) residuals below 1 Hz/cm for the eddy
current gradient and below 6 Hz for the By-shift at all times
on all axes. As an example, eddy current fields produced by a
z-axis test-gradient are illustrated in Fig. 1a (gradient) and b
(Bo-shift). On this axis (z), before compensation, eddy cur-
rents led to a gradient of up to 47 Hz/cm (1% of the preceding
test-gradient) and a Bg-shift of up to 160 Hz. Compensation
reduced these effects about 50-fold to a maximal residual
gradient of 1 Hz/cm (0.02% of the applied test-gradient) and
a maximal Bg-shift <3Hz. Results for x, y and z-axis are
summarized in Table 1. In summary, compensating with a
sum of two to three exponentials was sufficient to reduce
eddy current effects on average 30-fold.

Quality of the eddy current compensation was evaluated
by observing the lineshape of a locally acquired water sig-
nal at an echo-time of 9.5ms. Linewidth after FASTMAP
shimming was below 1 Hz. Only minimal alterations of the
peak-shape were present (Fig. 2) and remain below 2% of
the peak amplitude within 41 Hz around the peak center.

Spectra acquired in vivo were thus devoid of any eddy
current effects resulting in a high spectral resolution as evi-
denced by the myo-Inositol multiplet structure near 3.6 ppm
and by the clean baseline between choline (3.2 ppm) and cre-
atine (3.0 ppm; Fig. 3). Average linewidth of the metabolite
signals in this spectrum was about 8 Hz (LC model analysis
[9]). The amplitude of the remaining water signal in the spec-
trum was strongly reduced to below the NAA peak height and
without further correction, the baseline was flat.

On the 3T whole body scanner using standard preem-
phasis settings, residual eddy current gradients remained
below 1 Hz/cm (x-axis: 0.4 Hz/cm, y-axis: 0.5 Hz/cm, z-axis:
0.9Hz/cm) and Bg-shifts below 9Hz (x-axis: 4 Hz, y-axis:
1 Hz, z-axis: 9 Hz) at all measured delays following the test-
gradient.

Discussion and conclusion

The present study shows that on a 7T scanner with 68-cm
bore, eddy current effects can be minimized below a
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Fig. 1 Evolution of gradient (a) and By field-shift (b) following
the application of a z-axis test-gradient of 10.2mT/m amplitude and
333 mT/(m*ms) slewrate. Shown are the values measured on the uncom-
pensated system and after compensation using two time constants.
Before compensation, eddy currents produced a gradient up to 47 Hz/cm
(1% of the amplitude of the preceding test-gradient) and a Bo-shift up
to 160 Hz. Compensation reduced the gradient to near 1 Hz/cm and the
By-shift below 3 Hz at all times

By-shift of 6 Hz and below a residual gradient of 1Hz/cm
following a 10.2-mT/m test-gradient commuted at a slewrate
of 333 mT/(m * ms). The residual By-shift measured in the
experiment remained slightly above predictions from the fit.
Deviations may be caused by some compensation parameters
entered iteratively into the preemphasis unit not representing
exactly the amplitudes calculated (A;) from the fit. Never-
theless, Bo-shifts and residual eddy current gradients remain
almost negligible and are in size comparable to or even below
values measured on a clinical 3 tesla whole body imager using
standard preemphasis settings. Earlier measurements from a
4T whole body system, where a maximal Bo-shift of 19 Hz
and a residual gradient near 3 Hz/cm [4] (corrected for the
test-gradient amplitude used (13.2 mT/m)) were determined,
further confirm this performance. While eddy currents on
the 7T were comparable in size to those measured on the
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Table 1 Time constants used
for compensation of gradient

Time constants (ms)

Maximum before Maximum after

and Bo-shifts caused by compensation compensation
eddy-currents. Maximum values Slow Medium Fast
of eddy current gradients and .
By-shifts before and after Gradient
compensation are indicated X-axis 270 43 — 30 (Hz/cm) 1 (Hz/cm)
y-axis 576 214 67 21 (Hz/cm) 1 (Hz/cm)
z-axis 458 120 — 47 (Hz/cm) 1 (Hz/cm)
Bo-shift
x-axis 586 182 — 156 (Hz) 6 (Hz)
y-axis 1121 318 104 86 (Hz) 3 (Hz)
z-axis 713 212 — 160 (Hz) 3 (Hz)
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Fig. 2 Water signal acquired from a 2 x 2 x 2 cm? volume in a phan-
tom at an echo-time of 9.5ms using the SPECIAL [1] sequence. The
frequency width at half max of the peak was below 1 Hz. Signal defor-
mations caused by eddy currents remain below 2% of the peak amplitude
within 1 Hz around the peak center

whole body magnets, the slewrate used (333 mT/(m % ms))
was nearly two to three times faster (3T: 170mT / (m*ms),
4T: 100mT/(m * ms)).

Uncompensated, decaying behavior of eddy currents was
well described by not more than three exponentially decay-
ing functions. This rather low complexity allows for highly
efficient eddy current compensation by at least a factor of
20. Low eddy currents effects demonstrated on the 7T sys-
tem imply that such short bore magnets can be used with
little compromise on the performance with respect to eddy
currents. Minimal line distortions caused by eddy currents
could only be detected on a very well-shimmed signal (<1 Hz,
Fig. 2), and remained thus below average linewidths usu-
ally observed in vivo (8-9 Hz). Acquiring the in vivo spectra
with a different coil (surface coil) than used for preempha-
sis adjustment (volume coil) did not lead to reduced spec-
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Fig. 3 Spectrum acquired at an echo-time of 6ms from the occipi-
tal lobe of a healthy volunteer, using the SPECIAL sequence [6]. The
average linewidth of the metabolite signals was about 8 Hz. Postpro-
cessing consisted of two-times zero-filling, 2 Hz Gaussian weighting of
the FID, Fourier transform and Oth order phase correction. The spec-
trum is devoid of any distortions due to eddy currents and high spectral
resolution is evidenced by the myo-Inositol multiplet structure near
3.6 ppm and by the clean baseline between choline (3.2 ppm) and crea-
tine (3.0 ppm)

tral quality. Eddy currents that might be present in conduct-
ing structures of the volume or surface coil can therefore be
assumed to be negligible. Localized spectra can be acquired
in vivo at very short echo times (6 ms) devoid of any visible
deformations from eddy currents. It should be noted that, to
achieve a similar spectral quality on a very small bore animal
magnet, demands on residual eddy current gradients are less
stringent (i.e., larger residual gradients can be accepted), as,
in general, acquisitions are performed on smaller volumes
than in humans [4].
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We conclude that eddy current effects remaining on the 7T
system after compensation are not performance limiting for
many in-vivo applications. In terms of eddy current behavior,
the 7T/68-cm system can therefore be considered an inter-
esting alternative to the installation of a whole body scanner.
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