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ABSTRACT

In this paper, we propose a new paradigm to carry out the
registration task with a dense deformation field derived from
the optical flow model and the active contour method. The
proposed framework merges different tasks such as segmen-
tation, regularization, incorporation of prior knowledge and
registration into a single framework. The active contour
model is at the core of our framework even if it is used in
a different way than the standard approaches. Indeed, active
contours are a well-known technique for image segmenta-
tion. This technique consists in finding the curve which min-
imizes an energy functional designed to be minimal when the
curve has reached the object contours. That way, we get ac-
curate and smooth segmentation results. So far, the active
contour model has been used to segment objects lying in im-
ages from boundary-based, region-based or shape-based in-
formation. Our registration technique will profit of all these
families of active contours to determine a dense deforma-
tion field defined on the whole image. A well-suited applica-
tion of our model is the atlas registration in medical imaging
which consists in automatically delineating anatomical struc-
tures. We present results on 2D synthetic images to show the
performances of our non rigid deformation field based on a
natural registration term. We also present registration results
on real 3D medical data with a large space occupying tumor
substantially deforming surrounding structures, which con-
stitutes a high challenging problem.

1. INTRODUCTION

Atlas-based segmentation of medical images has become a
standard paradigm for exploiting prior anatomical knowl-
edge in image segmentation (see [1] and [2] for reviews).
In the majority of approaches proposed so far to register an
atlas to a patient image, the objective of the transformation
is to optimize some global intensity-based correspondence
measure like gray-level differences or mutual information.
The main limitation of these methods is that they often lead
to a compromise between the accuracy of the resulting seg-
mentation and the smoothness of its contours. When at some
places contours are not accurate enough, a widely used so-
lution is to allow globally or locally more elasticity to the
deformation in order to obtain more local deformation (see
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for instance [3], [4], [5]) with the risk of increasing the ir-
regularity of the deformation field and thus of the contours.
Moreover, this does not assure that the sought level of pre-
cision will be obtained. To cope with this problem, more
local constraints have to be included in the atlas registration
process. These constraints should permit the registration on
relevant structures, to impose the smoothness of the contours
and to introduce more prior knowledge such as the intensity
distribution or the admissible shapes of the objects selected
to drive the registration. Among the different techniques pro-
posed so far in image analysis, the active contour framework
seems to be particularly well appropriated to define and im-
plement such constraints even if it was initially designed for
image segmentation.

Hence, we propose in this paper a formulation adapting
the active contours segmentation framework to atlas regis-
tration. This formalism is derived from the combination of
the general level set-based segmentation with the optical flow
model. This is not the first attempt of using level set functions
in non rigid registration. For example, Paragios et al. pro-
poses in [6] to use the level set function representation in the
registration of 2D geometric shapes. To this end, they deter-
mine global transformations and a local deformation field in
a narrow band around the shape to be registerd. We consider
in this paper a different approach, borrowed from atlas-based
segmentation in medical imaging ([1], [2]), because a dense
deformation field will be determined on the whole image to
register the two images. Hence, the registration objective is
to get a point to point correspondence between both images
and not between shape contours like in [6]. In [7], Leow
et al. also proposes to use level set methods to register sul-
cal curves on cortical surface 2D maps. In their work, they
need to use two level set functions to represent the curves
of interest. Their evolution equation is thus very specific to
curve registration and was only tested on 2D images. In [8],
Vemuri et al. propose a registration algorithm based on the
level sets of the given images. The registration model pre-
sented in this paper borrows the idea of level sets registration
of Vemuri at al. but the fundamental and essential difference
lies on the registered images. Indeed, the authors of [8] ap-
ply the level sets registration on the gray-level intensities of
the images to be registered whereas we apply the level sets
registration on the level set functions of Osher and Sethian
[10] in order to use the numerous segmentation models de-
veloped in the level set framework. The paper is organized
as follow. Firstly, the general evolution equation for level
sets-based registration based on the optical flow model is pre-
sented. Then we present a natural speed term directly derived
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from this new framework. Results will show that this simple
speed term is able to model a large range of deformations
in medical imaging. In a preliminary work [11] we have al-
ready introduced this term to model one type of deformation.
We show in this paper that it was actually a particular solu-
tion of the general formulation of level set-based registration
presented here.

2. METHOD

2.1 Active contour in the level set framework
In the active contour framework, two types of methods have
been defined depending of the considered curve parametriza-
tion.

The first type called snake methods [9] proposes to para-
meterize the contours by a linear combination of basis func-
tions (e. g. splines, wavelets, ...) as follows:

C(x) =
k

∑
i=o

pibi(x), (1)

where C(x) is the parameterized curve at image point x, pi are
the control points, bi the basis functions and k the number of
basis function. The evolution of snake contours is given by
the displacement vectors of its control points, namely:

∂C(x)
∂ t

= β−→N , (2)

where β is the velocity of the flow (or speed term) and ~N is
the unit normal to the curve C.

The second type called level set methods [10] proposes to
parameterize the contours with a signed distance map (level
set function) as:

ϕ(x) =

{ 0 x ∈C
−d(x) x ∈Ωint
+d(x) x ∈ [Ω−Ωint ],

(3)

where ϕ(x) is the level set function at image point x, d is
the distance to the closest contour, Ωint is the image area in-
side the contour and [Ω−Ωint ] is the image area outside the
contour.

The level set function can be seen as the map of the ar-
rived times of an evolutive curve C(t):

ϕ(C(t), t) = 0. (4)

By deriving (4) with the chain rule and by combining
the result with (2), we obtain the active contour evolution
equation corresponding to the level set representation:

δϕ
δC︸︷︷︸
∇ϕ

∂C
∂ t︸︷︷︸
β−→N

+
∂ϕ
∂ t

= 0⇒ ∂ϕ
∂ t

= β‖∇ϕ‖. (5)

Note that the unit normal vector ~N is here defined for each
isophote, i.e. curve with the same intensity:

−→
N =− ∇ϕ

‖∇ϕ‖ . (6)

The main advantage of the level set representation com-
pared to the snake one is its non parametric nature.

Due to its implicit representation and global contour de-
scription, we consider that the level set function representa-
tion is a good support to estimate a deformation field defined
on the whole image domain.

2.2 Deformation field derived from the optical flow and
the level set approach
The dense deformation field we need in registration is ex-
tracted by tracking the level set function motion. For that,
we use the optical flow method. We choose this voxel-based
technique, well-known in image analysis, because it suits
well the non parametric nature of the level set representation
(for a detailed survey of optical flow methods, see Barron et
al. [12]).

The optical flow method is based on the assumption that
the brightness of the moving image, here the level set func-
tion ϕ(x, t), stays constant for little displacements and a short
period of time:

ϕ(x, t) = ϕ(x+~u, t +dt)⇒ dϕ(x, t)
dt

= 0 (7)

where ~u is the deformation vector field.
The optical flow constraint (7) can thus be rewritten as:

5ϕ(x, t)
∂~u
∂ t

+
∂ϕ(x, t)

∂ t
= 0. (8)

From (8) we get the evolution equation of the vector flow:

∂~u
∂ t

=− ϕt

‖5ϕ(x, t)‖
5ϕ(x, t)
‖5ϕ(x, t)‖ , (9)

where ϕt represents the variation of the level set function ac-
cording to the desired application such as segmentation, reg-
istration, regularization, ...

2.3 General formulation of level set-based registration
The vector flow equation (9) obtained by applying the op-
tical flow assumption on level set functions and the general
formulation of the level set-based framework (5) are as fol-
lows:

{
∂~u
∂ t =− ϕt

‖5ϕ(x,t)‖
5ϕ(x,t)
‖5ϕ(x,t)‖ (a)

ϕt = β‖∇ϕ(x, t)‖ (b).
(10)

By combining these two equations (replace ϕt of (10(a))
by (10(b))), we obtain the following formulation generalizing
the active contours framework to image registration:

∂~u
∂ t

=−β
5ϕ(x, t)
‖5ϕ(x, t)‖ . (11)

In this new framework, the deformation field is the im-
portant variable and not anymore the contour as in the stan-
dard active contour framework. However, our registration
model keeps the same advantages of level set-based segmen-
tation in term of accuracy, prior knowledge and regulariza-
tion constraints for the same computation cost. In fact, all
the evolution terms designed for the segmentation can be re-
used for image registration. The new level set-based regis-
tration framework involves now to develop new terms based
on two images, the moving and the fixed images. The next
section presents an evolution term specially designed for this
purpose.



2.4 A natural registration term
The active contour evolution stops when it reaches the de-
sired object contours, i.e. ϕ(x, t) = ϕT (x), where ϕ(x, t) is
the active contour and ϕT (x) is the target contours. Thus,
a natural speed term would be ϕT (x)−ϕ(x, t). Hence, the
equation (11) becomes:

∂~u
∂ t

=−(ϕT (x)−ϕ(x, t))
5ϕ(x, t)
‖5ϕ(x, t)‖ (12)

with ϕ(x,0) = ϕS(x), where ϕS(x) is the source contours.
Besides, the current level set function ϕ(x, t) is related to

the original level set function ϕS(x) by the extracted defor-
mation field ~u in the following way:

ϕ(x, t) = ϕS(x−~u). (13)

Note that the level set function carried over by the current
deformation field, the property of signed distance function
will be violated as soon as the registration starts and thus
causes numerical inaccuracy. In order to avoid this, the level
set function ϕ(x, t) has to be re-initialized at each iteration.
The total deformation field at each iteration is discretized as
follows:

~u(t +1) =~u(t)+
∂~u(t)

∂ t
. (14)

where ~u(t) is the deformation field at time t.
Fig. 1 shows an illustration example. Fig. 1(a) and 1(b)

respectively show a binary source and target images repre-
senting a sad and a happy face. The objective is to reg-
ister the sad face to the happy face. 1(c) and 1(d) are the
level set functions corresponding to these images. Fig. 1(f)
shows the direction of the vector flow estimated by the nor-
malized gradient of ϕ(x, t). Fig. 1(e) shows the magnitude
of the displacement estimated by the difference between the
two signed distance map ϕT (x) and ϕ(x, t). The white ar-
eas correspond to extension motions, black areas to contrac-
tion motions and gray uniform areas to areas without motion.
The extracted deformation field is globally quite smooth (see
Fig. 1(g)). This is due to the fact that the displacement gener-
ated by the contours is perpendicular to the contour following
the direction of the gradient (see Fig. 1(f)). Therefore, dis-
continuities appear on the skeleton of the image where two
fronts reach themselves. Inspired by the optical flow regu-
larization, a Gaussian filtering is applied on the deformation
field at the end of each iteration. This permits to remove
discontinuities while propagating the correction to the whole
image (see Fig. 1(h)). The Gaussian filtering necessitates to
set a parameter σ . This parameter permits to limit the maxi-
mal elasticity of the deformation.

Therefore, the equation 14 becomes:

~u(t +1) = (~u(t)+
∂~u(t)

∂ t
)◦G(σ). (15)

We would like to make clear here that future work in-
clude to replace this gaussian filtering-based regularization
by adding a mean curvature regularization term in the evolu-
tion equation.

3. RESULTS

3.1 Synthetic images
Our natural registration term is first evaluated to recover
non rigid deformations between 2D synthetic binary images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Deformation field extraction process on 2D syn-
thetic data: (a) and (b) are the source and target binary im-
ages, (c) and (d) are their corresponding level set functions,
(e) is the difference between the target level set function and
the moving level set function (magnitude of the displace-
ment), (f) is the normalized gradient computed on the mov-
ing level set function (direction of the displacement), (g) is
the grid deformation without gaussian regularization, and (h)
the grid deformation with a gaussian regularization.

(a) (b) (c) (d)

Figure 2: Deformation field extracted from different type of
objects. Row (1): Initial difference. Row (2): Final differ-
ence. Row (3): Deformed regular grid. Row (4): Test image.
Row (5): Deformed test image.

Each column of Fig. 2 presents the results obtained on mono-



component objects, multi-components objects and on the de-
formation of a point to a disc. This last experiment represents
a new contribution. So far, one level set function was always
used to represent closed contours and not points. Here the
point is in fact represented by a normal distance map (not
signed). At each column, row 1 shows initial differences be-
tween the source and the target images (common sections are
shown in white, regions that do not correspond are shown in
gray). Row 2 shows these differences after having deformed
the source image with the extracted non rigid transformation.
Row 3 shows the transformation applied to a regular grid.
Row 4 shows the modulo distance map of the source image
(object contours are enhanced in white). Row 5 shows the
test image of row 4 deformed with the computed transforma-
tion. The few gray regions of row 2 shows the accuracy of
contour matching on 2D images. For the second case con-
cerning face expressions, we note a difference on the nose.
This registration was only based on the features defined by
the eyes and the mouth. Thus, the nose of the source im-
age has just followed the computed transformation. The de-
formed grid and the test image of rows 3 and 5 help in visu-
alizing the regularity of the computed transformations. For
the point matching experiment, the grid well show the dif-
ferences in the deformation when the point is placed in the
center of the disc or on a extremity. In the first case, the
deformation induced is radial with the same intensity in all
direction. For the second case, the deformation is also radial
but strongest at the opposite extremity of the disc and fades
more we move away from this position. These synthetic ex-
amples can be related to particular applications in medical
image registration. The first one corresponds to the registra-
tion of closed structures, the face matching experiment illus-
trates the estimation of non visible objects position from the
local registration of visible objects and the point matching
could model a tumor growth in an atlas. The next section
presents preliminary results on real data for these three ap-
plications.

3.2 Real data

The real application concerns the registration of an atlas on
a brain presenting a large-space occupying tumor. Such reg-
istration is challenging because: (1) the lesion does not ex-
ist in the atlas, (2) large deformations have to be recovered.
However we decide to use this case for our prelimary results
on real data because we can model two types of deforma-
tions: surface matching and tumor growth by matching a
point (seed) to a volume (segmented tumor). First, the atlas
was registered to the volume of interest with a twelve degrees
of freedom transformation using a mutual-information based
technique (implemented with the ITK registration toolbox) in
order to compensate the global differences of position. The
patient image used in this study has been retrieved from the
Surgical Planning Laboratory (SPL) of the Harvard Medical
School & NSG Brain Tumor Database [14]. The digital atlas
also comes from the SPL [13].

The features used for the registration can be classified
in two categories: 1. Features to limit the propagation of
the deformation: head and brain contours. 2. Features to
catch the most of the deformation due to the pathology: lat-
eral ventricles and tumor. Two different segmentation tech-
niques are used to segment these features: level set methods
for contrasted structures (head and ventricles) and mathemat-

ical morphology to extract the brain. The level set-based reg-
istration is then performed on the binary images generated
by these segmentations.

With this technique, to obtain a correct radial tumor
growth, the seed has to be the only object placed inside the
tumor area of the patient. As the lateral ventricles overlap
this area, they are registered in a second step. So, we have
to perform a hierarchical registration process with two lay-
ers (first layer: head, brain and tumor, second layer: lateral
ventricles) following the approach proposed by Houhou et al.
[15].

Fig. 3 shows the difference of position between the
source and target binary images used during the registra-
tion process for the sagittal view (raw 1) and the axial view
(raw 2). Columns 1 and 2 show respectively the initial and
final position. We note some gray part in the final differ-
ence. These misregistrations are due to the fact that we use a
voxel-wise distance maps algorithm to compute the 3D level
set functions. More accuracy could be get with sub-voxel
distance maps. Another reason comes from the use of a
Gaussian filter for the regularization. At each filtering we
lost accuracy to get a smoother deformation field. We are
currently improving this by using the mean curvature-based
regularization term coming from the active contours frame-
work.

The objective of atlas registration is to automatically seg-
ment the patient image. The raw 3 of Fig. 3 shows how
two other structures of the atlas, the cerebellum and the cau-
date nucleus (white contours), follow the deformation inter-
polated from the features registration (gray contours). The
column (a) shows the atlas contours superposed to the pa-
tient image. The column (b) shows these contours deformed
by the computed transformation.

Fig. 4 shows the effect of the tumor growth on the sur-
rounding structures of the atlas. Panel (a) shows the atlas.
Panel (b) shows the atlas just after the tumor growing (after
the registration of layer 1). Panel (c) shows the patient image.
Contours of the tumor and lateral ventricles have been drawn
on the patient image and copy on the other panels to show
how the structures follow the deformation generated by the
tumor growing. We note that the deformation generated by
the tumor growth already gives to the lateral ventricles and
the corpus callosum a shape similar to the patient’s struc-
tures.

With this experiment, we wanted to show the effect of the
natural registration term only. The limitations of this term
are that it necessitates the segmentation of the patient im-
age. Thus we propose to use it when the targeting structures
are easy to segment (for example bones in CT images) or to
add constrain on manually segmented objects. The results of
this term strongly depends of the quality of segmentation of
the patient. So this distance-based term should be used with
other evolution terms like boundary or region based. Thus
eventual segmentation errors could be compensate. Concern-
ing the tumor growth, the generated deformation is related to
the position of the seed. Thus, the seed was placed in the at-
las following the knowledge of an expert about the real origin
of the tumor.

4. CONCLUSION

In this paper, we present a general formulation adapting the
active contour framework to atlas registration. It permits to



(a) (b)

Figure 3: Geometrical feature-based atlas registration. Row
1: Axial view. Row 2: Sagittal view. Column (a): Initial
differences. Column (b): Final differences. Row 3: Atlas
based segmentation of a brain image with large tumor. Col-
umn (a): Initial atlas contours on patient image. Column (b):
Deformed atlas contours.

(a) (b) (c)

Figure 4: Tumor growing. (a) Atlas. (b) Atlas deformed. (c)
Patient image.

perform a segmentation and registration task in one step, that
suit particularly well the atlas registration methods. This new
framework implies developing evolution term based on the
source and target images. One term based on distance map
for geometrical features matching was shown here. We show
that it can model different types of deformations present in
medical images. Future work include showing the effect
of the classical evolution terms designed for active contour

segmentation in the registration (curvature-based, boundary-
based and region-based). Concerning the atlas registration on
brain with large tumor, the future results obtained with our
level set-based registration will be compared with the model
of tumor growth previously proposed by our lab [16].
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