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Running title: Autophagy in neuronal apoptosis  

Abstract  

Neuronal autophagy is enhanced in many neurological conditions, such as cerebral ischemia 

and traumatic brain injury, but its role in the associated neuronal death is controversial, 

especially under conditions of apoptosis. We therefore investigated the role of autophagy in 

the apoptosis of primary cortical neurons treated with the widely used and potent pro-

apoptotic agent, staurosporine (STS). Even before apoptosis, STS enhanced autophagic flux, 

as shown by increases in autophagosomal (LC3-II level, LC3 punctate labeling) and 

lysosomal (cathepsin D, LAMP1, acid phosphatase, β-hexasominidase) markers. Inhibition 

of autophagy by 3-methyladenine, or by lentivirally-delivered shRNAs against Atg5 and 

Atg7, strongly reduced the STS-induced activation of caspase-3 and nuclear translocation of 

AIF, and gave partial protection against neuronal death. Pan-caspase inhibition with Q-VD-

OPH likewise protected partially against neuronal death, but failed to affect autophagy. 

Combined inhibition of both autophagy and caspases gave strong synergistic 

neuroprotection. The autophagy contributing to apoptosis was Beclin1-independent, as 

shown by the fact that Beclin1 knockdown failed to reduce it but efficiently reduced 

rapamycin-induced autophagy. Moreover the Beclin1 knockdown sensitized neurons to STS-

induced apoptosis, indicating a cytoprotective role of Beclin1 in cortical neurons. Caspase-3 

activation and pyknosis induced by two other pro-apoptotic stimuli, MK801 and etoposide, 

were likewise found to be associated with Beclin1-independent autophagy and reduced by 

the knockdown of Atg7 but not Beclin1. In conclusion, Beclin1-independent autophagy is an 

important contributor to both the caspase-dependent and –independent components of 
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neuronal apoptosis and may be considered as an important therapeutic target in neural 

conditions involving apoptosis.  
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Introduction  

Enhanced autophagy has been implicated in various neurological conditions including 

cerebral ischemia and head injury,1,2 but its role is controversial, and there is evidence that it 

can promote either cell survival or cell death according to the situation.3,4 

Early arguments for a death-promoting role focused on morphological descriptions of dying 

cells during development, when autolysosomes can fill the cytoplasm and digest nuclear 

DNA.5 Subsequent evidence in favor of this interpretation came from numerous reports that 

“autophagic cell death” (i.e. cell death manifesting intense autophagy) can be prevented by 

pharmacological prevention of autophagy6-8 or by knockdown of autophagy genes.9-12 On the 

basis of such evidence, most researchers accept that autophagy is a major mediator of cell 

death in a wide range of important situations,13 including normal development and 

metamorphosis5,14, AIDS15, cerebral ischemia1,2 and cancer therapy.16 There is nevertheless 

controversy, and some opponents of this view minimize the role of autophagy in cell death.17  

Nevertheless, a major remaining question is whether autophagy does so by a separate 

death effector mechanism independent of apoptosis, or whether it is a trigger for the latter or 

dependent upon it. There is evidence that both alternatives may be true depending on the 

situations.13 In support of an independent death mechanism, autophagy has been shown in 

some cases to promote caspase-independent cell death9,10,18 and an alternative death pathway 

in cells incompetent for apoptosis.11,12 On the other hand, there is evidence that autophagic 

pathways can modulate caspase-mediated apoptosis.2,19-21 Furthermore, it is now well 

demonstrated that autophagy and apoptosis can share common regulators.4,13,22 

 It is therefore important to clarify the relationship between autophagy and apoptosis 

as a prelude to neuroprotection by interfering with autophagy.1,2,20,23,24 We therefore here 
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investigate the role of autophagy in neuronal apoptosis caused by classical apoptotic stimuli, 

especially the protein kinase inhibitor staurosporine.25,26  
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 Results 

A strong autophagosomal increase precedes STS-induced apoptosis in cortical neurons 

Staurosporine (STS), a classical apoptotic stimulus that has been previously widely 

characterized to induce apoptosis in several different cell types including primary neuronal 

cultures,25-27 was used to promote apoptosis in primary cultures of cortical neurons. In the 

present experiments, 1μM STS induced neuronal death as demonstrated by a progressive 

increase in the number of pyknotic nuclei from 6h of STS treatment (Fig. 1a) or in lactate 

dehydrogenase (LDH) release into the medium (Suppl. fig. 1a). As expected, STS gradually 

but strongly increased caspase-3 activation as shown by immunoblotting for cleaved caspase-

3 (Fig. 1b, Suppl. fig. 1b), and also for α-fodrin, which showed an increase in the 120kDa 

caspase-dependent cleavage fragment from 6h of STS (Suppl. fig. 1c). Moreover the 

145/150kDa calpain-dependent cleavage fragment of α-fodrin likewise increased, indicating 

progressive calpain activation (Suppl. fig. 1c). 

Interestingly, along with the induction of caspase-3 and calpains, STS-treated neurons 

showed raised levels of autophagosomal marker LC3-II. LC3-II detected by immunoblotting 

was increased as early as 30min after STS exposure, reaching the maximum value at about 

12h and decreasing by 24h, suggesting a substantial increase in autophagosome formation 

after STS treatment (Fig. 1b, Suppl. fig. 1b). Together, the pattern of cleaved caspase-3 and 

LC3-II expressions indicates that autophagosome enhancement (30min-12h) is followed by a 

progressive activation of caspase-3 (1h-24h). Additionally, an increase in autophagosome 

formation over the time was demonstrated by time-lapse imaging  in neurons overexpressing 

Sapphire-LC3 (Suppl. fig. 1d) or by counting the number of LC3-positive dots per mm2 and 
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per neuron following immunolabeling against LC3 (Fig. 1c). Both results show a strong and 

gradual increase in LC3 positive vesicular structures as early as 3h after STS. 

 

Lysosomal activation and autophagic flux are induced in STS-induced neuronal 

apoptosis 

To demonstrate that STS-induced autophagosome increase was caused by activation of the 

autophagy/lysosomal pathway and was not a result of impaired downstream autophagosome 

fusion and degradation by lysosomes, we investigated the effect of STS on lysosomal 

activity. An enzymatic assay for acid phosphatase (AP) was performed on protein extracts of 

cortical neurons treated with STS for different times (Fig. 2a). AP activity was moderately 

increased after 3h and 6h of STS compared to the basal activity of control neurons, but then 

returned to control levels at 12h and 24h. But in contrast to this minor change in the total AP 

activity, we found by AP histochemistry a most striking change in the distribution of the 

activity, which appeared in a greater number of large puncta in the 6h STS-treated neurons, 

as shown in figure 2b. In fact, the percentage of small puncta (≤0.3μm2) per neuron was not 

affected, but there was a switch from intermediate- (>0.3 and ≤0.9μm2) to large- (>0.9 μm2) 

size puncta in STS-treated neurons, reflecting putatively the creation of autolysosomes by the 

fusion of autophagosomes with lysosomes. Cytochemical staining for another lysosomal 

enzyme, β-N-acetylhexosaminidase (AcHex), was also performed and clearly showed a 

strong increase in AcHex activity in larger puncta following 6h of STS compared to control 

neurons (Fig. 2c). Immunocytochemical staining for two lysosomal markers, lysosomal-

associated membrane protein 1 (Lamp1) and the lysosomal protease cathepsin D, confirmed 

the enlargement of lysosomes 6h after STS exposure (Suppl. fig. 1e). Double 
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immunolabeling for Lamp1 and LC3 showed LC3-positive puncta (autophagosomes) and 

enlarged lysosomes within the same neurons (Suppl. fig 1f). 

We investigated then the expression of p62/SQSTM1, a long-lived protein known to 

be selectively degraded by autophagy.28 Addition of STS induced a progressive and strong 

reduction in p62/SQSTM1 suggesting an increase in the whole process of autophagy (Fig. 

2d). To further confirm that the STS-induced autophagosome increase was due to autophagy 

induction and not impaired autophagosome-lysosome fusion, we used bafilomycin A1 

(BA1), a vacuolar type H+-ATPase inhibitor that prevents lysosome acidification and 

autophagosome-lysosomal fusion. Treatment for 12h with BA1 (300nM), at which 

concentration autophagosome-lysosomal fusion is completely blocked, led as expected to a 

substantial accumulation of autophagosomes (LC3-II level) and of p62/SQSTM1 (Fig. 2e). 

Importantly, when this 12h BA1 treatment was combined for the last 6h with STS this 

resulted in a greater increase in the LC3-II level than with BA1 or STS alone and in the 

prevention of p62 degradation normally induced by STS (Fig. 2e). To evaluate whether the 

increase in autophagosome formation induced by STS also led to maturation into 

autolysosomes, we used an RFP-GFP-LC3 DNA construct in order to discriminate between 

early and late autophagosomes (Fig. 2f). Following STS treatment, besides confirming a 

global increase in the total number of autophagosomes, STS increased both the number of 

early autophagosomes (GFP+ RFP+ LC3-positive dots) and the number of late 

autophagosomes (GFP- RFP+ LC3-positive dots) demonstrating that the maturation of 

autophagosomes into autolysosomes is also increased upon STS treatment. Taken together, 

these results confirm that STS-induces de novo formation of autophagosomes and enhanced 

autophagic flux. 
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Activation of lysosomes and caspase-3 in the same neuron 

Double immunolabeling for Lamp1 and cleaved caspase-3 revealed that neurons displaying 

condensed chromatin were always positive for cleaved caspase-3 and that some of them were 

also characterized by enhanced Lamp1 labeling 12h after STS treatment (Suppl. fig. 1g). 

Since neurons with non-condensed chromatin also often presented strong Lamp1 staining but 

were negative for cleaved caspase-3, and since some with condensed chromatin were only 

very weakly positive for Lamp1, these observations confirm our Western blot results (Fig. 

1b, Suppl. fig. 1b) suggesting that enhanced autophagy precedes caspase-dependent 

apoptosis and that Lamp1 staining dissipates as apoptosis progresses.  

 

Mitophagy is not involved in STS-induced neuronal apoptosis 

Since, in some conditions, autophagy can inhibit apoptosis by removing dysfunctional 

mitochondria or aggravate it by an excessive destruction of mitochondria, we tested if STS 

induced mitophagy. We examined whether the mitochondrial marker mtHSP70 colocalized 

with autophagosome/lysosome markers. Double-immunofluorescent analysis revealed very 

few colocalizations of mtHSP70, either with autophagosomes (dots of LC3 staining) or with 

the lysosomal marker cathepsin B (Suppl. fig. 2a, b). 

 

Pharmacological inhibition of autophagy and caspases are both protective but more 

efficient when combined 

To further investigate the role of enhanced autophagy in STS-induced neuron death, we 

investigated the effects of 3-methyladenine (3-MA), a widely used autophagy inhibitor, and 
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of a broad spectrum caspase inhibitor, Q-VD-OPH. Pre-treatment with 3-MA (10mM) 

resulted in a significant neuronal protection as measured by counts of pyknotic nuclei (Fig. 

3a) or by the LDH release assay (Suppl. fig. 3a) 12h after exposure to STS. Pre-treatment 

with Q-VD-OPH (25µM) resulted in a better protection than with 3-MA, and combination of 

both inhibitors was more efficient than either alone since neuronal death was almost totally 

prevented (Fig. 3a, Suppl. fig. 3a).  

Pre-treatment with Q-VD-OPH completely prevented caspase-3 activation as shown 

by immunoblot for cleaved caspase-3 (Fig. 3b) and for caspase-dependent α-fodrin cleavage 

(Suppl. fig. 3d), without any effect on the LC3-II level (Suppl. fig. 3c) or on calpain 

activation (Suppl. fig. 3d). In addition to decreasing autophagy (Suppl. fig. 3b), 3-MA 

treatment significantly reduced caspase-3 activation (shown by decreases in both cleaved 

caspase-3 (Fig. 3b) and caspase-3-mediated α-fodrin cleavage (Suppl. fig. 3d)), as well as 

calpain activation (shown by the reduction in calpain-mediated α-fodrin cleavage (Suppl. fig. 

3d)). We evaluated also the effect of 3-MA on caspase-independent apoptosis by 

investigating apoptosis inducing factor (AIF) translocation to the nucleus after STS 

treatment. 3-MA strongly reduced the AIF translocation normally induced 6h after STS 

treatment (Fig. 4d) whereas Q-VD-OPH as no effect on it (not shown). The strong 

neuroprotective effect of 3-MA and Q-VD-OPH in combination was reflected in a robust 

decrease in both apoptosis (caspases and AIF) and calpains (Fig. 3b, Suppl. fig. 3d). 

 

Knockdown of Atg5 or Atg7 reduces STS-induced neuronal apoptosis and is strongly 

protective when combined with caspases inhibition 
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In view of the possible non-specific effects of 3-MA in addition to the inhibition of 

autophagy, we performed a knockdown of different autophagy genes with lentiviral vectors 

encoding short hairpin RNAs (shRNAs): Atg5, Atg7 and Beclin1/Atg6.  

 Atg5 knockdown was confirmed by Q-RT-PCR, which showed that Atg5 mRNA 

expression in shRNA-Atg5 transduced neurons was inhibited by 55% (Fig. 4a). 

Downregulation of Atg5 decreased autophagosome formation in response to STS treatment 

as shown by a decrease in punctate Sapphire-LC3 (Fig. 4b) and by a reduction of about 30% 

in LC3-II level after STS exposure (Fig. 4c). Atg5 knockdown resulted also in decreased 

activation of caspase-3, as shown in Western blots by reduced immunoreactivity of both 

cleaved caspase-3 (Fig. 4d) and caspase-specific α-fodrin fragment (Suppl. fig. 4a). 

Downregulation of Atg5 decreased significantly the number of pyknotic nuclei (Fig. 4e) or 

release of LDH (Suppl. Fig. 4d) than control-infected neurons 12h after STS treatment, 

implying a higher survival rate. Moreover, pre-treatment of cultures with Q-VD-OPH had a 

strong protective effect when combined with Atg5 knockdown, reducing both the percentage 

of pyknotic neurons (Fig. 4e) and the release of LDH (Suppl. Fig. 4d). This synergistic 

neuroprotective effect indicates that caspase-independent autophagy-related mechanisms are 

involved in the execution of STS-induced neuron death. Similar results were obtained with 

the combination of two Atg7 shRNAs which gave a very strong inhibition of Atg7 expression 

as shown by Q-RT-PCR (Fig. 5a) or by Western blot (Fig. 5b). Neurons transduced with 

Atg7 shRNAs showed not only a strongly decreased STS-induced autophagosome formation 

as demonstrated by a decrease in Sapphire-LC3 positive dots (Fig. 5c) and in LC3-II level 

(around 58%) by immunoblots (Fig. 5d), but also inhibition of caspase-3 (Fig. 5e and Suppl. 

fig. 4b) and calpain (Suppl. fig. 4b). Cell death quantification demonstrated strong reduced 
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toxicity in Atg7 knockdown neurons as shown by decrease in pyknotic nuclei 12h after STS 

(Fig. 5f) and by measurement of LDH-release (Suppl. Fig. 4e). Moreover knockdown of 

Atg5 or Atg7 strongly prevented STS-induced intra-nuclear AIF accumulation as shown in 

figure 6. These results suggest that autophagy plays a role upstream of apoptosis.  

To confirm a death promoting role of excessive autophagy following STS, we 

investigated whether the upregulation of Atg7 gave opposite results to Atg7 downregulation 

(Fig. 7). Neurons transduced with Atg7-myc lentiviral vector, which strongly overexpressed 

Atg7 (Fig. 7a), displayed enhanced autophagosome formation as shown by an increase in 

LC3 positive puncta following immunolabeling (Fig. 7b) or by LC3-II level in Western blot 

analysis (Fig. 7c). Moreover, this effect was enhanced in the presence of STS and Atg7 

upregulation sensitized the neurons to STS-induced apoptosis since both the level of cleaved 

caspase-3 (Fig. 7c) and the number of pyknotic nuclei (Fig. 7e) were markedly increased; 

even in the absence of STS there was a moderate induction of apoptosis when Atg7 was 

overexpressed (Fig. 7c,e). The sensitization to STS induced by Atg7 overexpression could be 

prevented by the addition of 3-MA or by Atg5 knockdown (Suppl. Fig. 6). 

Taken together, the data from the Atg5 and Atg7 knockdown experiments are similar 

to those obtained with the pharmacological inhibition of autophagy, and demonstrate an 

involvement of autophagy in the mediation of STS-induced neuronal apoptosis through both 

caspase-dependent and independent pathways.  

 

Autophagy enhanced in STS-induced neuronal apoptosis is Beclin1-independent but 

Beclin1 knockdown sensitizes neurons to caspase-dependent apoptosis 
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It has been shown that Beclin1 can be involved in autophagic cell death following some 

stimuli.12,29 Surprisingly, strong downregulation of Beclin1 (by 75%) (Fig. 8a) did not affect 

STS-induced autophagosome formation (Fig 8b, c), whereas it strongly inhibited 

autophagosome formation induced by rapamycin (Fig. 8d) as expected30 or in basal 

conditions (Suppl. Fig 7c). These results indicate that while Beclin1 is involved in the 

regulation of the mammalian Target of Rapamycin (m-TOR) dependent autophagic pathway 

in neurons, STS-induced autophagy is Beclin1-independent.  

We observed that Beclin1 knockdown was accompanied by a strong activation of 

caspase-3 (compare to the control infected neurons) in the presence and even in the absence 

of STS (Fig. 8e and Suppl. fig. 4c), thus sensitizing neurons to death (increase in pyknotic 

nuclei and LDH-release (Fig. 8f and Suppl. fig. 4f)). Q-VD-OPH treatment very efficiently 

reduced STS-induced toxicity in neurons transduced with Beclin1 shRNA (Fig. 8f). 

Downregulation of Beclin1 in STS-treated neurons also caused a 2.6-fold stronger activation 

of calpain compared to control-infected neurons, as shown by an increase in calpain-

dependent cleavage of α-fodrin (Suppl. fig. 4c). 

Overexpression of Beclin1 did not result in any significant effects on the STS-induced 

apoptosis and autophagy (neurotoxicity, LC3-II accumulation, caspase and calpain 

activation) (Suppl. fig. 5) confirming that Beclin1 is not involved in STS-induced neuronal 

death.  

 

Similar role of Beclin1-independent autophagy in apoptosis caused by other stimuli 

To evaluate whether our results can be generalized beyond apoptosis induced by STS, we 

investigated the role of autophagy in neuronal death due to two other frequently used 
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apoptotic stimuli, MK801 (40µM) and etoposide (10 µM).31-33 Both stimuli led not only to an 

increase in cleaved caspase-3, but also in LC3-II level (Fig. 9a, b) and LC3-positive puncta 

(Suppl. Fig. 8a, b) suggesting an induction of autophagy, which was moreover independent 

of Beclin1 (Suppl. Fig. 8c, d) but Atg7-dependent. Atg7 downregulation prevented the 

increases in both LC3-II and cleaved caspase-3 following 48h of treatment with MK801 (Fig. 

9c) or etoposide (Fig. 9d) and provided neuroprotection as shown by a reduction in the 

numbers pyknotic nuclei (Fig. 9e, f). In contrast, Beclin1 downregulation, increased the 

activation of caspase-3 following treatment with MK801 or etoposide and increased the 

numbers of pyknotic nuclei (Suppl. Fig. 8c, d).  

The latter results indicate that the autophagic control of apoptosis occurs with other 

apoptotic stimulations than STS, and may be considered an important contributor to the 

neuronal apoptotic response. 
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Discussion  

The present study shows that, following apoptotic stimulation in cortical neurons, autophagy 

is strongly enhanced and involved in mediating both the caspase-dependent and -independent 

components of the apoptosis. Moreover this induced autophagy is dependent on autophagy 

genes Atg5 and Atg7 but is Beclin1-independent, suggesting that a selective and 

noncanonical pathway of autophagy contributes to neuronal apoptosis. 

 

Staurosporine induces autophagy prior to caspase activation 

Our observations on caspase-3 and AIF release and protection by caspase-inhibition agree 

with previous studies on STS-treated on cortical neurons.25,26 Only a few studies have 

reported STS-induced autophagy in unmodified cells34,35 especially in cortical neurons,36 but 

in specific conditions, such as in fibroblast mutants incompetent for apoptosis, STS has been 

reported to cause autophagic cell death that is blocked by 3-MA or by knockdown of Atg5 or 

Beclin1.11 Also, in cell lines exposed to a caspase inhibitor, STS promoted a rapid activation 

of autophagy prior to apoptosis.37 In the present study we showed not only an early increase 

in autophagosome formation following STS exposure of cortical neurons but also an 

activation of the lysosomal pathway, thereby demonstrating an increase in autophagic flux. 

Moreover autophagy, lysosomal activation (acid phosphatase, β-hexasominidase, cathepsin 

D) and apoptosis occurred in the same neurons, although enhanced autophagic and lysosomal 

features appeared earlier than caspase-3 activation, suggesting that autophagy might be 

involved in triggering apoptosis.  

 

Induced autophagy contributes to neuronal apoptosis 
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To test this possibility we needed to inhibit autophagy. The only available pharmacological 

inhibitors of autophagy are PI3-K inhibitors, of which the most frequently used for studies of 

autophagy is 3-MA, although wortmannin and LY294002 are also used.6,7,11 These inhibitors 

reduce autophagy by virtue of their action on class III PI3-K, but they also affect the other 

classes of PI3-K including class I, which activates the powerfully anti-apoptotic and anti-

autophagic Akt pathway. Therefore, even if these pharmacological inhibitors were rigorously 

specific for PI3-Ks, which is not the case,38 they would still not be specific inhibitors of 

autophagy. In the present study we used 3-MA, which is in many cases a very effective 

inhibitor of autophagy, but not always because, by virtue of its inhibition of class I PI3-K, it 

can even promote autophagy, especially after long exposure.39 This may help to explain why 

the autophagy inhibition by 3-MA was only partial in the present experiments, but the 

Beclin1-independence of the autophagy may also be relevant, because class III PI3-K 

interacts with Beclin1 and the role of class III PI3-K in Beclin1-independent autophagy is 

currently unclear. In view of these limitations of 3-MA as an autophagy inhibitor, it is 

important that our shRNA-mediated downregulation of Atg5 and Atg7 gave similar results to 

pharmacological inhibition with 3-MA. All these three ways of inhibiting autophagy 

decreased neuronal apoptotic features and death, and they all strongly enhanced the 

protection in neurons exposed to Q-VD-OPH. 

It is now clear that autophagy and apoptosis share several common effectors such as 

PUMA/Bax,40 FLIP proteins41 or Atg4D.42 Enhanced autophagy can prevent43 or 

activate8,19,44 apoptosis depending on the conditions. Two studies showed that Atg5 could 

promote apoptosis induction independently of its role in autophagy. Atg5 interacted with 

Fas-associated protein with death domain and stimulated caspase-dependent cell death in 
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HeLa cells treated with IFNγ.45 Moreover, in response to several apoptotic stimuli Atg5 has 

been shown to be cleaved by calpain, following which a cleavage fragment translocates from 

the cytosol to mitochondria triggering cytochrome c release and caspase activation.21 In the 

present study, however, calpain-mediated effects seem not to be the cause of caspase 

activation because treatment with the calpain inhibitor ALLN increased caspase-3 activation 

rather than reducing it (data not shown). We cannot strictly rule out contributions from other 

autophagy-independent mechanisms, but the similar reductions of apoptotic features obtained 

with three different means of autophagy inhibition, 3-MA treatment and Atg7 knockdown as 

well as Atg5 knockdown, suggest that the autophagic pathway was involved. Furthermore, 

we have also shown that overexpression of Atg7 leads to increased autophagy and apoptosis 

even in the absence of an apoptotic agent. Moreover blockade of autophagy by Atg5 

knockdown prevents this sensitization induced by Atg7 overexpression, demonstrating that 

the pro-death effects of Atg7 overexpression are mainly autophagy-dependent.  

Although most of our experiments involved STS-induced autophagy, we tested other 

apoptotic stimulations to confirm the generality of the phenomena. Using MK801 and 

etoposide we again demonstrated the efficacy of Atg7 knockdown for reducing caspase-3 

activation and nuclei pyknosis. Thus, our conclusions are relevant to other apoptotic 

stimulations than STS, suggesting that autophagy, or autophagic signalling, is an important 

inducer of neuronal apoptosis in multiple situations.  

 

The autophagy-apoptosis link does not depend on Beclin1 

Another important link between apoptosis and autophagy is the interaction between Bcl2 and 

Beclin1, because Bcl2 is both anti-apoptotic and anti-autophagic. Beclin1 was first identified 
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as a protein binding to Bcl2 through its BH3 domain. In basal conditions Beclin1 is 

sequestered by Bcl2 and under stress conditions Beclin1 is released and induces autophagy.46 

However, although Bcl2 has a strong anti-autophagic effect, overexpression of Beclin1 did 

not affect apoptosis47 as observed also in the present study. Thus, although Beclin1 might 

theoretically be pro-apoptotic by sequestering Bcl2 and thereby counteracting its anti-

apoptotic action, it is apparently not sufficiently abundant to actually do so in the present 

experiments. Furthermore, our results concerning Beclin1 downregulation are the very 

opposite of what might be predicted from its sequestering of Bcl2, because the 

downregulation strongly induced neuronal apoptosis in basal conditions as well as sensitizing 

neurons to STS-induced apoptosis. Our observations thus suggest an essential role of Beclin 

1 for neuronal survival in basal and STS conditions, and similar results with Beclin1 

downregulation have been suggested previously in different models.43,48  

 Some recent observations on the death of differentiated neural precursor cells 

resemble ours to the extent that the cell death was reduced by the knockdown of Atg7 but not 

Beclin1.49 However, the experimental model was very different from ours, involving 

treatment with chloroquine or bafilomycin A1, both of which reduce autophagic flux, either 

by inhibiting lysosomal functions (chloroquine) or by blocking the fusion of autophagosomes 

to lysosomes (bafilomycin A1). This contrasts with our experiments in which STS induced 

an increase in autophagic flux in cortical neurons including an enhanced lysosomal 

degradative activity, so the relationship between the two experimental situations is unclear. 

 

Induced-autophagy in neuronal apoptosis is Beclin1-independent 
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Beclin1 is an important autophagy regulator playing several different roles along the 

autophagic process. Beclin1 can act in the induction step prior to autophagy,49,50 in 

autophagosome formation51 and in autophagosome maturation.50 Our experiments with 

Beclin1 knockdown showed that, although a ~75% reduction in Beclin1 protein efficiently 

reduced rapamycin-induced autophagy, it did not affect autophagosome formation after 

exposure to STS, indicating that STS triggers a Beclin1-independent autophagy in dying 

cortical neurons. We have similar evidence for Beclin1-independent autophagy following 

MK801 and etoposide treatments, supporting the generality of the phenomenon. Beclin1-

independent autophagy has been reported in only a few previous cases. In SH-SY5Y cells 

exposure to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) provoked autophagy and 

cell death that were insensitive to PI3-K inhibition or Beclin1 knockdown.52,53 Likewise, 

autophagy that is insensitive to knockdown of Beclin1 or of its binding partner hVps34 (i.e. 

class III PI3-K) is involved in the caspase-independent death of cancer cells induced by 

resveratrol,54 in the hydrogen peroxide induced death of GSH-depleted RAW 264.7 cells,55 in 

the obatoclax-induced death of various cancer cells56 and in HeLa cells treated with an 

inhibitor of the the BH3-binding groove of Bcl-XL/Bcl-2.57 

Increased expression of Beclin1 has sometimes been considered a marker of 

enhanced autophagy in neurons in various neurodegenerative conditions including closed 

head injury, traumatic brain injury, spinal cord injury and focal cerebral ischemia.58-60 The 

existence of Beclin1-independent autophagic mechanisms emphasizes the limitations of 

Beclin1 as an autophagy marker. 

The reason for the lack of effect of Beclin1 knockdown on autophagy and neuronal 

death is unknown, but a contributing factor may be the disactivation of Beclin1 by caspase-
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mediated cleavage, which occurs in cell lines exposed to various apoptotic stimuli including 

STS.61 We do in fact have evidence that Beclin1 was cleaved in our neurons exposed to STS 

for 12h and that this cleavage was caspase-dependent (Suppl. Fig. 9). The amount of full-

length Beclin1 was only moderately decreased, however, so Beclin1 depletion would only 

partially explain the lack of effect of Beclin1 knockdown, and would not at all explain their 

sensitization to STS-induced apoptosis.  

 

In conclusion, our study highlights the importance of checking for autophagy 

involvement when apoptosis is induced. It shows with three different apoptotic stimuli that 

Beclin1-independent Atg5/Atg7-dependent autophagy (or at least autophagic signalling) is an 

important inducer of both the caspase-dependent and –independent components of neuronal 

apoptosis. The long term prospect of being able to inhibit both components by inhibiting only 

one selective pathway of autophagy opens new avenues for clinically useful neuroprotection.  
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Materials and Methods 

Lentiviral vectors and virus production. CDNAs encoding full-length rat Atg7 (GenBankTM 

NM_001012097) and Beclin-1 (GenBankTM NM_053739) with C-terminal Myc-tag was 

created using PCR with specific primers (Atg7: nucleotides 16-35 (forward), 2092-2112 

(reverse); Beclin-1: nucleotides 225-243 (forward), 1549-1570 (reverse)) to which the myc-

tag encoding sequence was added. Resultant cDNAs and rat MAP LC3B (GenBankTM 

NM_022867) cDNA fused to the C-terminus of Sapphire fluorescent protein cDNA (a 

generous gift of Dr. Shibata and Prof. Uchiyama) were cloned into a self-inactivating 

lentiviral transfer vector under the control of mouse phosphoglycerate kinase 1 (PGK) 

promoter (SIN-W-PGK)61 using the pENTR/D-TOPO cloning Kit (Invitrogen, Carlsbad, CA, 

USA) and the LR recombination reaction (Gateway system, Invitrogen).  shRNAs specific 

for rat genes from TRC (the RNAi consortium) library in pLKO lentiviral vectors were used 

as follows: TRCN0000099431 for ATG5 (GenBankTM NM_001014250.1), 

TRCN0000033552 for Beclin1 (GenBankTM NM_053739.2), and a combination of  

TRCN0000092163 and TRCN0000092166 for ATG7 (GenBankTM NM_001012097) 

(Openbiosystems). Self-inactivating lentiviral vectors were produced as described 

previously.63  

 

Primary cortical neuronal cultures. All experiments were performed in accordance with the 

Swiss Law for the protection of animals and were approved by the Vaud Cantonal Veterinary 

Office. Primary neuronal cultures were prepared from the cortices of 2-day-old Sprague-

Dawley rats (from Janvier, France) and maintained as described previously.64 For 

biochemical analyses and LDH release measurement, neurons were plated at a density of 
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6x105 cells/dish (35mm poly-D-lysine precoated dishes, BD Biosciences, 356467). For 

immunocytochemistry, neurons were plated at a density of 1.5x104 cells/well of 24 well 

plates (or 9.6x104 cells/well for lentiviral infection experiments) on 12mm coverslips coated 

with 0.01% poly-L-lysine (Sigma, P4832). Cells were maintained at 37°C with a 5% CO2-

containing atmosphere for 12 days, and half of the media was changed every 3-4 days.  

For lentiviral-mediated protein expression and knockdown, cultures were infected on 

day in vitro (DIV) 7 using 50ng of p24/ml culture medium for each vector, and half the 

medium was replaced on DIV 11.  Empty vectors were used as an infection control. Control 

infection did not cause any strong effect on LDH release, or on the expression of autophagy 

marker LC3-II, or cell death markers (cleaved caspase-3 or calpain or caspase-3 specific α-

fodrin cleavage fragments) compared to non-infected neurons after staurosporine treatment 

(Supplementary table 1).  

 

Pharmacological treatment. At DIV 11-12 primary cortical neurons were exposed to 1µM 

staurosporine (STS) (Sigma-Aldrich, S4400) or 0.1% DMSO (Sigma-Aldrich, 154938) in 

complete culture medium for indicated times. Where specified, cells were pre-treated for 1h 

prior to STS application with 25µM of the pan-caspase inhibitor Q-VD-OPH (Quinoline-Val-

Asp(ome)-Ch2-O-phenoxy; MP Biomedicals, 030PH10903) or 10mM of the autophagy 

inhibitor 3-methyladenine (3-MA) (Sigma-Aldrich, M9281). Bafilomycin A1 (Enzo Life 

Sciences, ALX-380-030-M001) was applied for 6h prior to STS. For the other treatments, 

primary cortical neurons were incubated with 10µg/ml rapamycin (Sigma, R0395) for 24h, 

with 40µM MK801 (Sigma-Aldrich, M107) or 10µM etoposide (Sigma-Aldrich, E1383) for 

24h and 48h. 
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Immunoblotting. Protein samples were harvested in lysis buffer (20 mmol/L HEPES, pH 7.4, 

10 mmol/L NaCl, 3 mmol/L MgCl2, 2.5 mmol/L EGTA, 0.1 mmol/L dithiothreitol, 

50 mmol/L NaF, 1 mmol/L Na3VO4, 1% Triton X-100 (reagents from Sigma-Aldrich), and a 

protease inhibitor cocktail (Roche, 11873580001)). Lysates were sonicated and protein 

concentration was determined using a Bradford assay. Proteins (20-40μg) were separated by 

SDS-PAGE on a 10% or 14% polyacrylamide gel, and analyzed by immunoblotting. The 

following primary antibodies were used for protein immunodetection: anti APG7 (sc-33211, 

1/1000) rabbit polyclonal, anti-Beclin1 (sc-11427, 1/1000) and anti-α-tubulin (sc-8035, 

1/5000) mouse monoclonal antibodies from Santa Cruz Biotechnology (Santa Cruz, CA, 

USA); anti-LC3 (ab48394, 1/3000) rabbit polyclonal antibody from Abcam (Cambridge, 

UK); anti-active caspase-3 (#9661, 1/1000) and anti-AIF (#4642, 1/1000) rabbit polyclonal 

antibodies from Cell Signalling Technology (Danvers, MA, USA); anti p62/SQSTM1 

(P0067, 1/1000) rabbit polyclonal antibody from Sigma-Aldrich and anti-fodrin (#FG6090, 

1/3000) mouse monoclonal antibody from Biomol (Enzo Life Sciences, Lausen, 

Switzerland). After incubation with primary antibody, the following secondary antibodies 

were applied: polyclonal goat anti-mouse or goat anti-rabbit IgG conjugated with IRDye 680 

(LI-COR, B70920-02) or IRDye 800 (LI-COR, 926-32210). Protein bands were visualized 

using the Odyssey Infrared Imaging System (LI-COR). Odyssey v1.2 software (LI-COR) 

was used for densitometric analysis. OD values were normalized with respect to tubulin and 

expressed as a percentage of values obtained for non-infected neurons treated with 0.1% 

DMSO (100%). All data were expressed as mean ± SEM. Data were analyzed statistically by 
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one-way ANOVA followed by Student’s t-test (two-tailed, two-sample, and unequal 

variance). 

 

Immunocytochemistry. Primary cortical neurons cultured on glass coverslips were fixed with 

4% paraformaldehyde in PBS (pH 7.4) for 15min on ice, and incubated for blocking and 

permeabilization in PBS with 10% donkey serum and 0.1% Triton X-100 for 1h. Cells were 

incubated with primary antibodies diluted in 5% of donkey serum, 0.1% Triton X-100 in PBS 

overnight at 4°C. The following primary antibodies were used: anti-mtHSP70 (ma3-028, 

1/100) mouse monoclonal antibody from ABR (Affinity Bioreagents, Golden, CO, USA); 

anti-cathepsin B (#06-480, 1/200) and anti-cathepsin D (#06-467, 1/200) rabbit polyclonal 

antibody from Upstate Biotechnology (Lake Placid, NY); anti-NeuN (#MAB377, 1/500) 

mouse monoclonal antibody from Chemicon, (Temecula, CA, USA); anti-GFP (#AB3080, 

1/500) rabbit polyclonal antibody and anti-AIF rabbit polyclonal antibody (#AB16501; 

1/200) from Millipore (Billerica, MA, USA). Anti-LC3 was a generous gift from Prof. Yasuo 

Uchiyama (Tokyo, Japan). Alexa Fluor 488 donkey-anti-rabbit (Invitrogen, A21206) and 

Alexa Fluor 594 donkey-anti-mouse (Invitrogen, A21203) secondary antibodies, diluted in 

PBS with 1% of donkey serum (1/1000), were applied for 2h at room temperature. Coverslips 

were mounted with FluoroSave (Calbiochem, 345-789-20) and analyzed with either Leica 

SP5 AOBS or Zeiss LSM 510 Meta confocal laser-scanning microscopes. Images were then 

processed by with Adobe Photoshop 5.0.  

 

Plasmid transfection. Cells on 12mm coverslips were transfected using Lipofectamine 2000 

(Invitrogen, 11668-019) as described previously.65  
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Time-lapse microscopy. Cortical neurons were plated onto poly-L-lysine-coated glass 

coverslips that had previously been attached with hot vaseline/wax (50:50) to 35mm plastic 

culture dishes in which holes 15mm in diameter had been machine drilled.64 On DIV 12, 

dishes were placed on the stage of a Nikon TE300 microscope. Temperature was maintained 

at 37°C and CO2 at 5% using a microscope incubator system (Solent Scientific Limited, UK). 

Selected neurons were imaged with a 40x objective at 5 min intervals. Images were captured 

with an Orca-ER cooled CCD camera (Hamamatsu). All peripherals were controlled with 

Metamorph software (Universal Imaging). Images were processed with either Adobe 

Photoshop or Metamorph.  

 

Cytochemistry for lysosomal enzymes. DIV 12 cortical neurons plated on coverslips were 

washed and fixed at different times after STS treatment in 2% glutaraldehyde and 1% 

paraformaldehyde diluted in cacodylate buffer (0.1M, pH 7.4), washed three times in 0.1M 

cacodylate buffer (pH 7.3) and stained as previously described.2 For acid phosphatase 

histochemistry coverslips were incubated for 2h at 37°C in 0.01M Na-β-glycerophosphate 

and 8µM lead nitrate in sodium acetate buffer (50mM, pH 5), rinsed in distilled water and 

immersed in ammonium sulphide (0.5%) for 30s, rinsed again and mounted with FluoroSave. 

Controls were performed using sodium fluoride (1M) to verify the labeling specificity. No 

staining was detected in any of these controls.  

For β-N-acetylhexosaminidase cytochemistry coverslips were incubated for 1h at 

37°C in Fast Red Violet salt solution (0.63M ethylene glycol monomethyl ether, 1% 

polyvinyl pyrrolidone, 0.1M citric acid-citrate buffer pH 4.4, 1.6M sodium chloride, 2.7mM 
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Fast Red Violet LB salt (Sigma, F3381)) using 0.5mM Naphthol-AS-BI-N-acetyl-β-D-

glucosaminide (Sigma, N4006) as the substrate, post-fixed for 10 min. in 10% formaldehyde, 

dehydrated in graded alcohols and mounted in Eukitt medium. Controls without the substrate 

or at basic pH gave no staining. Image acquisition was performed with an Axiovision Zeiss 

microscope. Quantification of lysosomal enzyme staining was performed using Image J 

software and images were then processed with Adobe Photoshop 5.0. 

 

Enzyme assay for acid phosphatase. Protein samples were prepared in the same lysis buffer 

as for immunoblotting but without NaF and Na3VO4, as previously described.23 10 μg of 

proteins diluted in sodium acetate buffer (0.1M, pH=5.5) with 20mM PNPP (p-Nitrophenyl 

Phosphate) was incubated for 2h at 37°C in a final volume of 400µl. The reaction was 

stopped by the addition of 50µl 2mol/L NaOH and absorbance was measured at 405nm.  

 

Quantitative real-time PCR analysis. RNA was isolated by RNAeasy kit (Qiagen, 74106) 

using the manufacturer's instructions. For cDNA synthesis the High capacity cDNA Reverse 

Transcription kit was used (Applied Biosystems). Samples were analysed using Tagman 

expression assays for beta-actin, Rn00667869_m1; Atg5, Rn01767063_m1; Atg7, 

Rn01492725_m1. Gene expression was measured from 5 biological repeats and technical 

triplicates amplified on a 7900HT Real-Time PCR System with SDS 2.3 software (Applied 

Biosystems). Relative expression values (V) were calculated by the ΔCt method and 

normalyzed to beta-actin expression as previously described.66  
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Quantification of cell death. Cytotoxicity was calculated by measurements of lactate 

dehydrogenase (LDH) release in the medium by using the CytoTox 96 Non-Radioactive 

Cytotoxicity Assay (Promega, G1780) as previously described.64 Data are expressed as a 

percentage of the LDH value of non-infected neurons treated with 0.1% of DMSO. Neuronal 

death was also evaluated by counting DAPI-stained pyknotic nuclei. Cells were examined 

using a Zeiss Axioplan 2 imaging microscope. Total number and pyknotic-positive nuclei 

were then counted using ImageJ software. Results were expressed as a percentage of 

pyknotic nuclei (relative to the total number of nuclei). Data were expressed as mean ± SEM 

and analyzed statistically by one-way ANOVA followed by Student’s t-test (two-tailed, two-

sample, and unequal variance). 

 

Quantification of AIF nuclear translocation. AIF nuclear staining was examined using a 

Zeiss Axioplan 2 imaging microscope. Measures of AIF nuclear fluorescence were 

performed using ImageJ software and a 60x magnification objective and then expressed as an 

average of fluorescence intensity/μm2. All data were expressed as mean ± SEM and analyzed 

statistically by one-way ANOVA followed by Student’s t-test (two-tailed, two-sample, and 

unequal variance). 

 

Quantification of LC3, Cathepsin B and mtHSP70 labelling. Confocal images of 

immunocytochemistry against LC3, cathepsinB and mtHSP70 or of transfected neurons with 

mRFP-GFP-LC3 DNA construct on coverslips of cortical neuronal cultures at different time 

points after STS treatment (0, 3, 6, 12 and 24h) were acquired using a Zeiss LSM 710 Meta 

confocal laser-scanning microscope. LC3, cathepsinB and mtHSP70 positive dots were then 
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analysed using ImageJ software and expressed as a number of positive dots per neuron. All 

data were expressed as mean ± SEM and analyzed statistically by one-way ANOVA 

followed by Student’s t-test (two-tailed, two-sample, and unequal variance). 

 

Statistical analysis. Data represent the mean values ± SEM. Data were analyzed statistically 

by one-way ANOVA followed by Students’ t-test (two-tailed, two-sample, and unequal 

variance) when ANOVA showed significant differences between the groups (p<0.05). 

p<0.05 was chosen as the threshold for statistical significance. In the case of multiple 

comparisons, Bonferroni’s correction was applied. 
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Figure Legends 
 
Figure 1. Time-course of cell death, caspase-3 activation and autophagosome increase in 

staurosporine-treated cultured cortical neurons. (a) Left panel: quantification of pyknotic 

nuclei as a percentage of all nuclei, following exposure to 1µM staurosporine (STS), showing 

a progressive increase in neuronal death (ct: 10±2 %, 6h: 34±3 %, 12h: 84±3 %, 24h: 98±1 

%; n≥12). Right hand panels: representative images of Hoechst-stained nuclei after 12h of 

DMSO (ct) or STS. Arrows indicate pyknotic nuclei. (b) Representative immunoblots for 

LC3 and cleaved caspase-3 and the corresponding quantification showing that STS treatment 

significantly increases cleaved caspase-3 (3h: 365±25 %, 6h: 675±78 %, 12h: 1014±77 %, 

24h: 1499%±143 %) and LC3-II (3h: 260±19 %, 6h: 361±44 %, 12h: 380±22 %, 24h: 

249±15 %) (n≥6). Values are expressed as a percentage of control. (c) Upper panels: 

Confocal images of LC3 immunolabeling (green) of two representative cultured cortical 

neurons at different time points following STS treatment. STS exposure induces a 

progressive increase in LC3-positive dots (green). Hoechst-stained nuclei are blue. Lower 

panel: quantification of the number of the LC3 positive dots per neuron, demonstrating a 

strong increase in the number of autophagosomes over the first 12h of STS treatment (ct: 

5.9±1.4 %, 3h: 35±5.3 %, 6h: 40.4±2.6 %, 12h: 47.1±4.5 %; 24h: 17.9±2.2 %; n≥5, 20 

neurons per experiment). Results are mean ± SEM, **p<0.01, ***p<0.001, versus control, 

Student’s t-test. Bars = 20 µM.  

 

Figure 2. Staurosporine treatment increases lysosomal activity and autophagic flux in 

cultured cortical neurons. (a) Enzymatic assay for acid phosphatase (AP), performed on 

protein extracts of cultured neurons (10μg) following exposure to 1μM staurosporine (STS), 
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indicating a moderate and transient increase in AP activity at 3h (125±6 %) and 6h (131±2 

%). Values are expressed as a percentage of control (ct, 0.1% DMSO for 24h), **p<0.01, 

versus control; Student’s t-test, n≥4. (b) Cytochemistry for AP 6h after STS treatment 

showing an increase in the number of large AP-positive puncta (right panels). Punctum areas 

have been quantified and classified in 3 size-groups: small (≤0.3μm2), intermediate (>0.3 and 

≤0.9μm2) and large (>0.9 μm2). STS treatment has substantially increased the percentage of 

large puncta (left panel). Values represent percentage of AP-positive puncta per size-group 

per neuron. **p<0.01 between DMSO and STS; Student’s t-test, n≥15. (c) Cytochemistry for 

β-N-acetylhexosaminidase showing an increase in the size of β-N-acetylhexosaminidase-

positive dots in STS-treated neurons (6h) compared to control. (d) Representative 

immunoblots for p62/SQSTM1 (upper panel) and the corresponding quantification (lower 

panel) showing that STS treatment significantly decreases p62 expression (3h: 75±5 %, 6h: 

52±2 %, 12h: 30±1 %, 24h: 18%±1 %) (n≥4). Values are expressed as a percentage of 

control. (e) Representative immunoblots against LC3 and p62/SQSTM1 and the 

corresponding quantifications demonstrating that addition of bafilomycin A1 (BA1, 300 nM, 

12h) to the cultures increases the level of LC3-II (BA1: 717±41 %) and p62/SQSTM1 (BA1: 

169±18 %) relative to control (ct) indicating a blockage of autophagic degradation (n≥5). 

Combination of BA1 and STS treatment (6h after exposure to BA1) results in a greater 

increase in LC3-II than treatment with STS or BA1 alone (BA1+STS: 995±126 %; *p<0.05; 

Student’s t-test) and mitigates the STS-induced degradation of p62/SQSTM1 (STS: 51±3 %, 

BA1+STS: 141±18 %, **p<0.01; Student’s t-test) confirming that STS induces functional 

autophagy. Results are expressed as mean ± SEM. Bars = 20 μm. (f) Upper panels: confocal 

images of a representative cultured cortical neuron transfected with GFP RFP-LC3 DNA 
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construct at different time points following STS treatment. Lower panel: Quantification of 

the number of LC3-positives dots per neuron following STS treatment. Total LC3-positive 

dots per neuron (GFP+ RFP+ and GFP- RFP+ LC3-positives dots): ct: 10.3±1.9 %, 6h: 

35.4±3.6 %, 12h: 71.3±4 %; early autophagosomes (GFP+ RFP+ LC3-positives dots): 6.3±1.4 

%, 6h: 24.2±2.8 %, 12h: 47±3.1%; late autophagosomes (GFP- RFP+ LC3-positives dots): 

4.5±1.4 %, 6h: 11.2±1.5 %, 12h: 24.3±1.8 %. Results are mean ± SEM, n=4 independent 

experiments (20 neurons per experiment). ***p<0.001, versus control, Student’s t-test. Bars 

= 10 µM. 

Figure 3. Combination of 3-methyladenine and Q-VD-OPH is highly protective against 

staurosporine neurotoxicity. (a) Quantification of pyknotic nuclei 12h after staurosporine 

(STS) exposure showing that pre-treatment with 3-methyladenine (3-MA, 10mM) or Q-VD-

OPH (25μM) reduces STS-induced neuronal death, and combination of the two inhibitors 

affords greater neuroprotection than either treatment alone. Counts of pyknotic nuclei are 

expressed as a percentage of the total number of nuclei (ct, 0.1%DMSO) (n≥7). (STS: 82±2 

%; STS+3-MA: 58±2 %; STS+Q-VD-OPH: 47±3 %; STS+3-MA+Q-VD-OPH: 28±2 %). (b) 

Representative Western blot and the corresponding quantification of cleaved caspase-3 12h 

after STS exposure, demonstrating that not only Q-VD-OPH but also 3-MA pre-treatments 

significantly decrease caspase-3 activation (STS: 1091±160 %; STS+3-MA: 717±92 %; 

STS+Q-VD-OPH: 108±31 %; STS+3-MA+Q-VD-OPH: 98±17 %). Values are expressed as 

a percentage of control (0.1% DMSO). Results are mean ± SEM, *p<0.05; **p<0.01, versus 

STS-treated, Student’s t-test, n=3. (c) Quantification of AIF nuclear translocation following 

6h of STS (right panel) (ct: 15±1 %; STS: 48±2 %, STS+3-MA: 19±1 %) and representative 

images of neurons immunostained for AIF (green) and Hoechst (blue) showing that pre-
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treatment with 3-MA strongly reduces AIF nuclear translocation. Results are mean ± SEM, 

***p<0.001, versus control, Student’s t-test. n≥20. Bar = 20μm.  

 

Figure 4. Knockdown of Atg5 reduces staurosporine-induced autophagy and apoptosis. 

(a) Q-RT-PCR assay for Atg5 in primary cortical neurons transduced with a lentiviral vector 

encoding shRNA targeted to Atg5 showing that Atg5 shRNA decreases Atg5 mRNA 

expression (47±0.6%) (***p<0.001, versus infection control, Student’s t-test, n=5). (b) 

Confocal images of staurosporine (STS)-treated cortical neurons expressing sapphire-LC3 

and immunolabeled with an antibody against GFP, showing that downregulation of Atg5 

decreases strongly the presence of sapphire-LC3 positive dots. Bar = 10μm. Expression of (c) 

LC3-II (empty vector+STS: 308±38 %; shRNA Atg5+STS: 214±9 %) and (d) cleaved 

caspase-3 (empty vector+STS: 834±42 %; shRNA Atg5+STS: 444±49 %) are both 

significantly reduced in shRNA Atg5-treated neurons 12h after the application of STS as 

shown by representative Western blots and their corresponding quantifications. Values are 

expressed as a percentage of control (0.1% DMSO). Results are mean ± SEM, **p<0.01, 

shRNA Atg5 STS versus infection control STS, Student’s t-test, n≥7. (e) Quantification of 

pyknotic nuclei 12h after STS exposure showing significantly reduced cell death in STS-

treated neurons with Atg5 knockdown and near complete protection together with Q-VD-

OPH  (empty vector+STS: 88±1 %; shRNA Atg5+STS: 59±2 %; empty vector+STS+Q-VD-

OPH: 60±2 %; shRNA Atg5+STS+Q-VD-OPH: 30±1 %). Results are mean ± SEM, 

***p<0.001, Student’s t-test, n≥6.  
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Figure 5. Knockdown of ATG7 inhibits staurosporine-induced autophagy and 

apoptosis. (a) Q-RT-PCR assay for Atg7 in primary cortical neurons transduced with 

lentiviral vectors encoding shRNAs targeted to Atg7 showing that shRNAs against Atg7 

strongly decreases Atg7 mRNA relative to control infection (13±0.5 %) (n=5). (b) 

Representative Western blot and corresponding quantification showing the downregulation 

of Atg7 in neurons transduced with lentiviral shRNAs against Atg7 (47±2 %) compared to 

control neurons (n=9). (c) Confocal images of STS-treated cortical neurons expressing 

sapphire-LC3 and immunolabeled with an antibody against GFP demonstrating that 

downregulation of Atg7 decreases drastically the presence of sapphire-LC3 positive dots. Bar 

= 10μm. Expression of (d) LC3-II (empty vector: 293±22 %; shRNAs Atg7: 124±12 %) and 

(e) cleaved caspase-3 (empty vector: 565±27 %; shRNAs Atg7: 162±6 %) are both 

significantly reduced in neurons treated with Atg7 shRNAs 12h after the application of STS 

(1µM) as shown by representative Western blots and their quantifications (n≥6). Values are 

expressed as a percentage of control (0.1% DMSO). Results are mean ± SEM, ***p<0.001, 

Atg7 shRNAs versus infection control, Student’s t-test. (f) Quantification of pyknotic nuclei 

12h after STS exposure showing significant protection against STS with Atg7 knockdown 

and almost complete protection when Atg7 knockdown is combined with Q-VD-OPH (empty 

vector+STS: 88±1 %; shRNAs Atg7+STS: 48±2 %; empty vector+STS+Q-VD-OPH: 58±3 

%; shRNAs Atg7+STS+Q-VD-OPH: 29±2 %). Results are mean ± SEM, ***p<0.001, 

Student’s t-test, n≥6. 

  

Figure 6. Knockdown of Atg5 or Atg7 reduces nuclear accumulation of apoptosis 

inducing factor. (a) Quantification of nuclear apoptosis inducing factor (AIF) staining 
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(average of nuclear fluorescence intensity/μm2) reveals that AIF nuclear translocation 

stimulated by staurosporine (STS) is strongly reduced in neurons transduced with shRNAs 

against Atg5 or Atg7 compared to empty vector control (empty vector+STS: 55±3; shRNA 

Atg5+STS: 31±2; shRNAs Atg7+STS cortical: 26±3). Data are mean ± SEM. ***p<0.001, 

Student’s t-test, n≥10. (b) Representative images of primary cortical neurons stained with 

anti-AIF antibody (green) and Hoechst (blue) infected with empty vector (left), shRNA Atg5 

(middle) and shRNAs Atg7 (right) after 6h of STS (1µM) treatment showing a reduction of 

AIF nuclear translocation. Bars = 20µm. 

Figure 7. Overexpression of Atg7 sensitizes neurons to staurosporine-induced apoptosis. 

(a) Representative Western blot and the corresponding quantification showing the 

upregulation of Atg7 expression in Atg7-myc-transduced neurons (n=7). (b) Confocal 

images of staurosporine (STS)-treated cortical neurons immunolabeled for LC3 showing an 

increase of LC3-positive dots in Atg7-myc-transduced neurons. Bar =10µm. (c) 

Representative Western blots and the corresponding quantifications demonstrating that 

overexpression of Atg7 increases the expression of both LC3-II (empty vector+STS: 248±12 

%, Atg7-myc+STS: 362±44 %) and cleaved caspase-3 (empty vector+STS: 580±42 %, Atg7-

myc+STS: 922±77 %) (n≥4). (d) Representative Western blots and the corresponding 

quantifications showing the effect of Atg7 overexpression on LC3-II levels with the addition 

of bafilomycin A1 (BA1) (empty vector+STS+BA1: 604±26 %, Atg7-myc+STS+BA1: 

752±26 %) (n≥4). (e) Quantification of pyknotic nuclei 6h after STS exposure showing that 

Atg7 upregulation significantly increased cell death in normal and in STS-treated conditions 

(empty vector: 21±1 %; empty vector+STS: 40±2 %; Atg7-myc: 33±2 %; Atg7-myc+STS: 

69±2 %) (n≥26). Results are mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, Student’s t-test. 
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Figure 8. Knockdown of Beclin1 does not affect staurosporine-induced autophagy but 

sensitizes neurons to apoptosis. (a) Representative Western blot and the corresponding 

quantification showing a downregulation of about 73% of Beclin-1 expression in neurons 

transduced with Beclin-1 shRNA compared to control neurons. (n≥5). (b) Confocal images 

of staurosporine (STS)-treated cortical neurons expressing sapphire-LC3 and immunolabeled 

with an antibody against GFP demonstrating that downregulation of Beclin1 has no effect on 

the formation of sapphire-LC3 positive dots. Bar = 10μm. (c) Expression of LC3-II (empty 

vector+STS: 301±13 %; shRNA Beclin1+STS: 322±19 %; n≥5) is not affected by 

downregulation of Beclin1 12h after STS exposure (1µM) as shown by representative 

Western blot and its quantifications but (d) is strongly decreased (empty vector: 368±66 %; 

shRNA Beclin1: 169±9 %, n=6) following rapamycin treatment (10 µg/ml, 24h). (e) 

Expression of cleaved-caspase-3 (empty vector: 84±7 %; empty vector+STS: 779±22 %; 

shRNA Beclin1: 342±33; shRNA Beclin1+STS: 2192±143 %) is dramatically increased by 

downregulation of Beclin1. Beclin1-enhanced caspase-3 activation following STS treatment 

is almost completely prevented by Q-VD-OPH (391±94 %) (n≥5). Values are expressed as a 

percentage of control (0.1% DMSO, uninfected) (mean ± SEM), ***p<0.001, Student’s t-

test. (f) Quantification of pyknotic nuclei 12h after STS exposure showing that Beclin1 

knockdown significantly increases cell death in normal and in STS-treated conditions (empty 

vector: 23±1 %; empty vector+STS: 79±2 %; shRNA Beclin1: 56±2 %; shRNA 

Beclin1+STS: 100±0.4 %) (n≥26). Results are mean ± SEM, ***p<0.001, Student’s t-test. 

 
Figure 9. Knockdown of ATG7 inhibits apoptosis induced by etoposide or MK801. 

Representative Western blots and the corresponding quantifications showing that the levels 
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of cleaved caspase-3 and LC3-II are both increased by treatment with (a) MK801 (40µM) 

(cleaved caspase-3, 24h: 611±18 %, 48h: 874±61 %; LC3-II, 24h: 125±4 %, 48h: 175±9 %) 

or with (b) etoposide (10 µM) (cleaved caspase-3, 24h: 1096±142 %, 48h: 1025±140 %; 

LC3-II, 24h: 124±16 %, 48h: 143±2 %) (n≥4). Representative Western blots and the 

corresponding quantifications demonstrating that downregulation of Atg7 prevents the 

caspase-3 activation and LC3-II increase induced by 48h of (c) MK801 (cleaved caspase-3, 

empty vector: 939±38 %, shRNA Atg7: 126±10 %, LC3-II: empty vector: 281±19 %, 

shRNA Atg7: 80±5 %) or of (d) etoposide (cleaved caspase-3, empty vector: 1422±90 %, 

shRNA Atg7: 202±16  %; LC3-II, empty vector: 156±11 %, shRNA Atg7: 49±18 %) (n=4). 

Quantification of pyknotic nuclei 48h following (e) MK801 (empty vector: 44±1 %, shRNA 

Atg7 21±1 %) and (f) etoposide (empty vector: 57±1 %, shRNA Atg7 34±2 %) treatments 

shows that Atg7 downregulation provides strong neuroprotection (n≥7). Results are mean ± 

SEM, *p<0.05, **p<0.01, ***p<0.001, Student’s t-test. 
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