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Abstract

Intraspecific coalitional aggression between groups of individuals is a widespread trait in the animal world. It occurs in
invertebrates and vertebrates, and is prevalent in humans. What are the conditions under which coalitional aggression
evolves in natural populations? In this article, I develop a mathematical model delineating conditions where natural
selection can favor the coevolution of belligerence and bravery between small-scale societies. Belligerence increases an
actor’s group probability of trying to conquer another group and bravery increase the actors’s group probability of
defeating an attacked group. The model takes into account two different types of demographic scenarios that may lead to
the coevolution of belligerence and bravery. Under the first, the fitness benefits driving the coevolution of belligerence and
bravery come through the repopulation of defeated groups by fission of victorious ones. Under the second demographic
scenario, the fitness benefits come through a temporary increase in the local carrying capacity of victorious groups, after
transfer of resources from defeated groups to victorious ones. The analysis of the model suggests that the selective
pressures on belligerence and bravery are stronger when defeated groups can be repopulated by victorious ones. The
analysis also suggests that, depending on the shape of the contest success function, costly bravery can evolve in groups of
any size.
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Introduction

Coalitional aggression between groups of individuals occurs not
only in humans but is prevalent in other vertebrates and
invertebrates as well. For instance, colonies of army ants battle
against each other to increase the size of their territory [1] and
termites satisfy the condition of eusociality by the existence of
sterile soldiers, not because they produce sterile workers [2].
Groups of chimpanzees engage in coordinated raids to obtain
additional mates and territory [3,4], and prehistoric groups of
hunter-gatherers fought against each others for resources by
throwing spears and boomerangs. It has even been suggested that
a typical tribal society lost about 5 percent of its population in
combat each year [5].
Coalitional aggression is a group level strategy, which allows

individuals within groups to acquire reproduction enhancing
resources from other groups. This strategy might have played a
central role in human evolution [6–12]. While modern warfare
between large scale societies is unlikely to be directly driven by
motives of reproduction, it is important to try to understand the
conditions under which coalitional aggression may have been
selected for in natural populations [12,13]. This strategy is
individually costly in time and energy. What then are the rewards
that make this enterprise worthwhile so that it can be selectively
favored over an evolutionary time scale?

While the analytics of the proximate causes of raiding is well
developed [14–18], there are few analyses of the demographic
benefits leading to the evolution of intraspecific coalitional
aggression between small-scale societies, and existing ones consider
a saturated habitat and assume that the benefits of warfare come
through the repopulation of defeated groups. In this case,
individuals from a victorious group of a pairwise contest migrate
into the defeated group and partially or completely replace
individuals from the defeated group, thereby adopting its territory
and/or its females [19–22]. This scenario may be consistent with a
situation where victorious groups take over specific resource points
that were occupied by defeated ones. Fights in social insects may
occur over colonies lying in suitable habitats [1] and primitive
warfare in hominids occurred over crucial water points and
shelters [12,23].
But repopulation of defeated groups is not the only plausible

demographic benefit that may lead to the evolution of coalitional
aggression. An alternative situation is that resources are captured
from defeated groups by victorious ones, which, when used by the
the individuals of victorious groups may result in an increase in
their local carrying capacity. For instance, due to its high
nutritional value, meat of all sorts was contested among hunter-
gatherers [12,23]. Groups winning contests over animal popula-
tions may have obtained higher shares of the contested resources.
The local use of such resources may then lead to different
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demographic outcomes than repopulation of defeated groups. For
instance, an increase in size of victorious groups may not only
increase their contribution to the ancestry of the population
because they are larger, but may also increase the probability that
these groups win further battles. A self-enforcing demographic
loop leading to higher levels of warfare between groups is thus a
plausible outcome of this process.
The aim of this paper is to analyze the co-evolutionary

dynamics of belligerence and bravery under this alternative
demographic scenario, where victorious groups can expand in
size as an outcome of warfare. These two traits are likely to be
involved in coalitional aggression as belligerence increases an
actor’s group probability of trying to defeat another group and
bravery increases an actors’s group ability to defeat another group.
In order to be able to contrast the selective pressure on
belligerence and bravery under the two aforementioned demo-
graphic scenarios, I present a mathematical model, which takes
both scenarios into account and allows me to contrast how
different assumptions may lead to similar or different selective
pressures on the evolution of these two traits when interaction
occurs between small-scale, pre-state societies (‘‘hunter-gatherer’’
warfare). The analysis of the model suggests that the selective
pressure on belligerence and bravery are stronger when defeated
groups can be repopulated by victorious ones.

Analysis

Life cycle assumptions
The population is assumed to consist of an infinite number of

groups, which are connected by random dispersal (i.e., infinite
island model of dispersal; [24]). The natural environment is
assumed to allow only N individuals to reach adulthood in each

group. The life cycle of individuals living in this population is
assumed to be similar in baseline structure to an earlier analyses of
the evolution of coalitional aggression [22], but it is augmented
with the possibility that the sizes of groups can vary as an outcome
of warfare; namely, the groups can become larger or smaller than
the baseline size N determined by the environmental condition.
Because this feature adds more complexity to the model,
individuals within groups are assumed, for simplicity, to be
haploid and follow clonal reproduction. For ease of presentation of
the demography underlying the model, I begin by introducing the
basic demographic assumptions and model parameters by
assuming a monomorphic population, where all individuals
express the same phenotypes. I then introduce variation in
behaviors and evolutionary dynamics.
In each generation, the following events occur in sequence. (1)

Each adult individual in a group produces a large number of
juveniles. Juveniles mature and become subadults. (2) Each
subadult disperses with probability m to a new randomly chosen
group. (3) War occurs between groups. With probability w the
subadults in each group engage into a fight with another group
from the population and try to defeat it in order to gain its
resources. The attacker group wins the ensuing battle with
probability v. The individuals from each group might also engage
into a fight locally, to defend their group because it is attacked.
This also occurs with probability w, in which case the attacker wins
the fight with probability v. Each group is assumed to engage only
in a single fight locally (to defend its resources), but a focal group
can be both an attacker and a defender in the same generation (see
Fig. 1). (4) Adults die and density-dependent competition
(regulation) occurs in each group between subadult individuals
to form the next generation. The number of individuals that reach
adulthood in each group depends on the outcomes of warfare and

Figure 1. Demographic outcomes and events faced by the individuals in a focal group (the terms ‘‘outcomes’’ and ‘‘events’’ are
used as defined in probability theory, e.g., p. 18, chapter 1 of [62]). Each different connected series of edges starting at the root node (top of
the figure) provides a demographic outcome. Different outcomes may lead to similar demographic events, which are denoted by si and described in
the text. The first series of edges, directly issued from the root node, represents the probabilities that the focal group fights or does not fight to
conquer another group from the population. The second series of edges represent the probabilities that the focal group fights or does not fights
locally. The third series of edges represent the winning probabilities of the various battles, which occur only if there is a fight. For instance, the left
most series of connected edges represent the outcome where the focal group fights against another group upon attacking (probability w), it fights
locally because it is attacked (probability w) and wins the two battles (probability v2). In order to obtain the probabilities of occurrence of each
demographic event describes in the text, one has to sum the probabilities of occurrence of outcomes where that event obtains, which gives
Pr(s1)~w(1{w)vzw2v(1{v)~ 1{vwð Þvw, Pr(s2)~(vw)2, Pr(s3)~(1{wv)2 , and Pr(s4)~wv(1{wv).
doi:10.1371/journal.pone.0021437.g001
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two different but complementary types of demographic scenarios
will be analyzed:
(i) Defeated group repopulation scenario (DGR). Here, in

groups that have not been defeated, only subadults from that
group compete against each other for access to breeding spots
vacated by the death of adults. By contrast, in groups that have
been defeated, subadults from both the victorious and defeated
group compete against each other for vacated breeding spots.
With probability h an individual randomly sampled from a
defeated group after competition is assumed to be a member from
that group before competition. Hence, defeated groups are
partially repopulated by individuals from the victorious group
and 1{h can be though of as the fraction of the individuals in a
defeated group that are replaced by those of the victorious group.
In both defeated and non-defeated groups exactly N individuals
are assumed to reach adulthood.
This DGR scenario is essentially a haploid version a the model

mentioned above [22], but different assumptions will be employed
below for the behavior of individuals in the population. Further,
the interactions between hostile groups will be made more
mechanistic here, which complements the previous analysis and
will also clarify its results.
(ii) Victorious group size expansion scenario (VGE). Here,

instead of repopulating a fraction 1{h of defeated groups,
individuals from the victorious group extract a share 1{h of the
resources of defeated groups and use them in their natal group to
produce offspring. Alternatively, this scenario could be interpreted
as a situation where two groups contest for a given prize (e.g., some
resources found in the environment) and where the winner of the
contest obtains a fraction 1{h of the prize.
In order to be able to directly compare this VGE scenario to the

DGR scenario described above, I assume that the extraction of
resources from defeated groups leads to an increase in the number
of individuals reaching adulthood in victorious groups by (1{h)N
individuals, while only hN individuals survive to adulthood in
defeated groups. The increase (or reduction) in group size is
assumed to last only a single generation because it is reasonable to
postulate that the additional resources gained through warfare can
only sustain additional individuals over a single generation.
Gained resources are thus temporary and there is no inheritance
of resources across generations.
One may also suppose that warfare occurs at different timings in

the life cycle of the individuals. For instance, subadults within
groups may wage war before their dispersal instead of after
dispersal so that stages (2) and (3) in the life cycle are interchanged.
This case will also be investigated below.

Demographic events
Because a focal group in a focal generation may either attack or

not attack another group, fight or not fight a battle when it attacks
another group, be attacked or not be attacked by another group,
and win or loose any of the possible battles, several different
outcomes may affect the fitness of an adult individual from a focal
group (Fig. 1). It follows from the assumptions of scenario (i) and
(ii) that the different outcomes can be gathered into four different
demographic events (Fig. 1). The first, denoted s1, is when the
focal group keeps all its resources and its individuals obtain a share
of the ‘‘resources’’ of another group (be it through repopulation or
by taking a share of the group’s material resources). This event
occurs when the focal group attacks another one, defeats the
attacked group and is not defeated locally. The second
demographic event, denoted s2, is when the focal group loses a
share of it resources because it is defeated locally but obtains some
resources from another group after attacking and winning the

battle. The third event, denoted s3, is when the focal group does
not lose any resources locally and does not gain any resources from
another group. Finally, the fourth event, denoted s4, occurs when
the focal group loose resources locally (as it is defeated) and does
not obtain any resources from another group. This is the worst
event for a group.
Under the DGR scenario, a demographic event determines the

expected number of groups in which the individuals of a focal
group may reproduce. For the events s1,s2,s3, and s4, this number
is, respectively, 1z(1{h),1,1, and h and thus varies between zero
and one [for event s2, the mean of one is obtained as hz(1{h)].
For the VGE scenario, a demographic event determines the
number of individuals that reach adulthood in the focal group.
For the events s1,s2,s3, and s4, this number is, respectively,
Nz(1{h)N,N,N , and hN [for event s2, N is obtained as
(sz½1{h$)N]. Because groups are of size N under the DGR
scenario, the above assumptions imply that the additional number
of descendants accruing to a group when it wins a battle is the
same under the two scenarios and is given in both cases by
(1{h)N. This increase in group level benefit only lasts a single
generation, because, as assumed above, offspring do not inherit
resources from the parental generation.
The demographic events experienced by each group may also

change across generations. A focal group may experience a certain
demographic event, say s, in a parental generation, and after one
iteration of the life cycle that group may experience a different
demographic event, say s’, in the offspring generation. The
changes in the demographic events between parental and offspring
generation lead to a demographic dynamics, which is described by
a stochastic process whose transition probabilities are affected by
the behaviors of the individuals in the population.

Evolving behaviors and selection gradient
Following earlier models for the evolution of warfare in small

scale societies, individuals within groups are assumed to express
two different traits [20,22]. The first trait, denoted x, is called
‘‘belligerence’’. The average level of belligerence in a focal group is
assumed to vary between zero and one and it affects the
probability w that a focal group fights another one. The second
trait, denoted y, is called ‘‘bravery’’ and it is assumed to increase
the probability v that a group fighting another one wins the battle.
Bravery should be understood metaphorically as it may also
represent the production of a sterile soldier caste in social insects
or, for hominids, the investment into some technology of
appropriation.
Although both belligerence and bravery increase group success,

both traits are assumed to reduce the probability that an individual
expressing them survives up to the stage of density-dependent
competition (stage 4 of the life cycle). Since clonal reproduction is
assumed, the average phenotype of an offspring is the same as that
of its parent. One can then express the relative number of
juveniles, which reach the stage where they compete for breeding
spots, and that are produced by a focal adult individual with level
of belligerence x and bravery y as 1{Cx(x)½ $ 1{Cy(y)

! "
, where

Cx(x) is the cost of expressing belligerence and Cy(y) the cost of
expressing bravery (both cost functions are as assumed to be
convex). By contrast to previous work, this formulation entails that
belligerence and bravery are costly even if the group of the actor is
not engaged into a contest. There are two reasons for this
assumption. First, the model is simpler to analyze. Second, the
model may also represent battles between colonies of social insects,
in which case the production of a soldier caste is made
independently of whether there is a battle between groups or
not. More generally, one may also assume that investment into
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belligerence and bravery may be costly to the actor throughout its
life because these traits are probably costly in time and energy
beyond the battlefield (e.g., belligerence may involve spending
time convincing group members of raiding other groups and
bravery developing the technologies of appropriation).
The evolutionary dynamics of belligerence (x) and bravery (y)

are complicated to analyze in full form because the model is
demographically explicit (groups may vary in size), evolution
occurs in a subdivided population (fluctuations of gene frequencies
between groups occurs), and individuals within groups are subject
to a varying environment (warfare is a stochastic process, which
further depends on the behavior of individuals in the population). I
thus employ the assumptions of weak selection and additive gene
action. With these assumptions, one can evaluate the evolutionary
dynamics of a focal trait through a phenotypic gradient approach
by holding the other trait constant. Each trait is then assumed to
follow a gradual, step-by-step transformation caused by the
successive invasion of mutant alleles having different phenotypic
effects than resident alleles fixed in the population (e.g., adaptive
dynamics approach or ESS method; [25–30]).
The change in the frequency p in the population of a given

mutant allele, which codes for a small phenotypic deviation d
relative to the phenotype z expressed by individuals carrying a
resident allele (where z stems either for belligerence, x, or bravery,
y), can be written for the infinite island model as
Dp~p(1{p)dS(z)zO(d2), where S(z) is the force of directional
selection on the mutant allele and O(d2) is a remainder that
includes higher order terms [29]. Importantly, the selection
gradient S(z) on the trait is independent of the frequency of the
mutant in the population, which allows one to evaluate a
candidate evolutionary stable strategy z? (ES level of belligerence
or bravery) by solving S(z)~0 for z. Evaluating the criteria of
continuous stability [26,28,29] of the phenotype z requires one to
evaluate the change of gene frequency Dp to the second order in d
[29,31], which is theoretically possible but a difficult task under the
present demographic assumptions. However, the aim of this paper
is to compare the forces of directional selection on belligerence and
bravery under the VGE and DGR scenarios, which can be carried
out by studying the gradient S(z) since higher order terms will be
less important.
Although such an ESS approach does thus not give a full picture

of evolution, it allows one to obtain explicit analytical approx-
imations, which would otherwise be out of reach, and that have
repeatedly shown to provide good predictions for long-term
phenotypic evolution and/or the direction of selection under a
wide spectrum of biological applications involving local genetic
drift under complex demographies with weak assumptions about
the distribution of mutant’s deviating phenotypic effects [28,32–
37].
For the DGR scenario, group size is the same in each group in

the population in each generation. There are also no correlations
between the demographic events experienced by a group from one
generation to the next, and the occurrence of warfare is
independently distributed across generations. The selection
gradient on the trait z can then be evaluated by a standard
application of the direct fitness method [29,38,39], as

S(z)~
Lw
Lz.

z
Lw
LzR0

RR, ð1Þ

where w:w(z.,z
R
0 ,z1) is the fitness function giving the expected

number of adult offspring of a focal adult individual (an individual

taken at stage 1 of the life-cycle) bearing a mutant allele and RR is

the probability of identity-by-descent between the focal individual
and a randomly sampled individual (including himself) from the
focal patch, which is a measure of relatedness between group
members. The derivatives of w are the effects of actors on the
fitness of a focal individual and are evaluated at the phenotypic

value of the resident allele (z.~zR0 ~z1~z), where the actors are
the focal individual itself with phenotype denoted z., individuals
from the focal group with average phenotype denoted zR0 (the
average is over all individuals from the focal group, thus including
the focal individual itself), and individuals from different groups
with average phenotype z1.
Owing to the infinite island model assumptions, individuals

from different groups (with phenotype z1) have zero relatedness to
the focal individual. One way of understanding this result is by
noting that when there is an infinite number of groups, the
ancestral lineages of two homologous genes sampled from two
individuals within the same group have either stayed in the same
group and coalesced, or have migrated to two different groups and
can then be considered as being independent [40,41]. The
relatedness coefficient RR measures the increase in the probability
of identity between genes sampled from individuals within the
same group due to coalescence events within groups (e.g.,
‘‘identity-by-descent’’). By contrast, the ancestral lineages of two
genes sampled from individuals from two different groups do not
coalesce in a recent past and can be considered as being
independent [40,41]. Hence, these individuals are unrelated as
their homologous genes are not more identical than two genes
sampled at random from the population.
For the VGE scenario, group size may fluctuate across

generations and correlations between demographic states may
develop over time. The selection gradient S(z) will then also
depend on the reproductive values of individuals facing different
demographic events, which take into account the differences in
expected future contribution to the population of these individuals
according to the different types of demographic events that occur
in the groups they settle in [34,42]. As a result, the form of the
selection gradient S(z) for the VGE scenario is more complicated
than eq. 1 and is presented in Appendix S2 (eqs. B-1–B-2), but
conceptually it is an extension of eq. 1, which includes
demographic classes and where marginal fitness components are
weighted by reproductive values.

Fitness components for the DGR scenario
I will present the derivations of the fitness function w and the

selection gradient S for the DGR scenario directly in the main text
and refer to Appendix S2 for the derivation of these quantities for
the VGE scenario, as it is more complicated in the latter case but
conceptually similar.
In order to evaluate w for the DGR scenario, or more generally

the various components of the fitness function for the VGE
scenario, we need to relate behaviors to fighting (w) and winning
(v) probabilities. These will determine the demographic events,
which, in turn, determine fitness. The fighting and winning
probabilities can be thought of as macro demographic variables,
which depend on the mechanistic details relating trait value
expression by individuals within groups to group level behavior.

Fighting probability. Owing to the infinite island model of
dispersal assumptions introduced above, I assume that the
probability that the focal group with subadults expressing
average level of belligerence xA0 enters into a fight with another
group is given by some function w(xA0 ,x

A
1 ), which also depends on

the average level xA1 of belligerence among subadults in other
groups in the population. Because any class of individuals from
other groups (immigrants, juveniles, or adults) have zero
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relatedness to the focal individual, their average phenotypes can be
considered to be equivalent and we can set xA1 ~x1. Because
warfare occurs after the dispersal of juveniles (or subadults), the
average phenotype among subadults in the focal group is related to
that of adults before dispersal by

xA0 ~(1{m)xR0 zmx1, ð2Þ

since after dispersal a fraction m of offspring in the focal group are
descendant from that group (with parents carrying average

phenotype xR0 ), while a fraction m of offspring have immigrated
from other groups (with parents carrying average phenotype x1).
Alternatively to the situation described by eq. 2, one may also

assume that warfare occurs right before the dispersal of juveniles,
in which case the average phenotype among subadults is the same
as that among adults so that xA0 ~xR0 . These two different timings
of warfare can be considered simultaneously by writing the
average phenotype among subadults as

xA0 ~(1{mE)xR0 zmEx1, ð3Þ

where the parameter E is equal to zero when warfare occurs before
the dispersal of offspring and equal to one if it occurs after the
dispersal of offspring.
The exact functional relationship relating xA0 and x1 to the

fighting probability does not affect the qualitative result reported
below, but in order to obtain quantitative results one needs such a
functional relationship. For this reason, I introduce the island
model of warfare. Here, a group with average level of belligerence
x attacks independently another random group from the
population with probability a(x), which is assumed to be an
increasing function of its argument. Namely, the focal group
attacks another group with probability a(xA0 ), while another group
from the population attacks a group sampled at random with
probability a(x1). The assumption that each group attacks
independently of each other another random group from the
population implies that several groups may simultaneously attack
the same group. Since resources are limited, I assume that during a
single generation a focal group engages only into a single pairwise
contest over its local resources with another attacker group. When
several groups simultaneously attack the focal group (synchro-
nously or asynchronously), one randomly sampled group among
the attackers is assumed to engage into a fight with the focal group.
From these assumptions, the probability that the focal group

engages into a fight locally is given by 1{exp({a(x1)), which
increases with the level of belligerence x1, while the probability
that the focal group enters into a fight with another group from the
population through attacking is

w(xA0 ,x1)~a(xA0 )
1{exp({a(x1))

a(x1)
ð4Þ

(eqs. A-1–A-5 of Appendix S1). This equation says that the fighting
probability of the focal group increases with the average level of

belligerence xA0 of its members, but decreases with the average

level of belligerence in other groups in the population because, the
higher the level of belligerence in the population, the lower the
probability 1{exp({a(x1)½ $=a(x1) that the focal groups enters
into a fight with a given group conditional on it attacking. Note

that in a monomorphic population, for instance when x1~xA0 ~x,
the fighting probability w(x,x)~1{exp({a(x)) increases with the
overall level of belligerence.

Winning probability. Eq. 4 gives the probability that a focal
group engages in a fight. But we also need an expression for the
probability that it wins the ensuing battle. I assume that the
probability that the focal group, where subadults express average
level yA0 ~(1{mE)yR0 zmEy1 of bravery, and that attacks another
group, where subadults express average level of bravery yA1 ~y1,
wins the ensuing battle is given by

v(yA0 ,y1)~
vg yA0 N

# $

vg yA0 N
# $

z(1{v)g y1Nð Þ
: ð5Þ

In this winning probability, N represents the number of
individuals producing subadults, g(:) describes the power of
contestants, which is a positive increasing function of its argument,
which can be thought of as the total effort put by a group into the
battle (level of bravery times relative number of combatants), and
the parameter v allows one to tune the advantage of being
offensive. If vw1=2, there is advantage to attacking if everything
else among the two groups is held constant (e.g., v(yA0 ,y1)~v in a
monomorphic population, where yA0 ~y1). An offensive advantage
may be justified by the fact that it has been suggested that most
primitive warfare consisted of ambushes and ambuscades, which
result from unilateral actions conducted under conditions where
individuals from attacked group were caught helpless [12,43]. On
the other hand, a defensive advantage (vv1=2) has been justified
by the fact that attackers often don’t know the intruded area as
well as defenders, which puts attackers at a disadvantage [44].
Equation 5 is a so-called contest success function [14,45,46],

which depends on the ratio of the effort the two opposing parties
put into winning a battle. Such a functional relationship follows
from a series of assumptions about contests [46], the strongest of
which is probably that the contest among a smaller number of
combatants is qualitatively similar to those among a large number
of combatants.

Probabilities of occurrence of demographic events. In
order to evaluate w we need the probabilities of occurrences of the
four demographic events. Let us use the shorthand notations
w0:w(xA0 ,x1) and v0:v(yA0 ,y1), where the second expression is
the probability that the subadults in the focal group win the battle
upon entering into a fight with another group from the population.
Likewise, call w1:w(x1,x1) the probability that the subadults from
another group in the population try to conquer the focal group
and enter into a fight with it, and let v1:v(y1,y

A
0 ) be the

probability that the attacking group wins the ensuing battle. With
these notations and using the different outcomes in Fig. 1, the
probabilities that the events s1,s2,s3, and s4 obtain in the focal
group are, respectively, given by

Pr(s1)~ 1{w1v1ð Þw0v0

Pr(s2)~w1v1w0v0

Pr(s3)~ 1{w1v1ð Þ 1{w0v0ð Þ

Pr(s4)~w1v1 1{w0v0ð Þ: ð6Þ

Fitness function. It is convenient to write the fitness function
as
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w~wpzwd, ð7Þ

where wp is the expected number of the focal individual’s settled

offspring that remained philopatric and wd is the expected number
of the focal individual’s settled offspring in other groups after
dispersal. Let us further call wp(s) the expected number of

philopatric offspring of a focal individual breeding in a group
when demographic event s occurs. Averaging over all
demographic events given in eq. 6, the philopatric component of
fitness in eq. 7 becomes

wp~wp(s1) 1{w1v1½ $w0v0zwp(s2)w1v1w0v0z

wp(s3)½1{w1v1$½1{w0v0$zwp(s4)w1v1½1{w0v0$:
ð8Þ

The fitness functions corresponding to each demographic event
are evaluated by following the life cycle assumptions presented in
the main text and standard calculations for the infinite island
model [29,41,42,47], which are as follows. A focal individual
produces a relative number b.~ 1{Cx(x.)½ $ 1{Cy(y.)

! "
of

offspring (relative to that of an individual in a resident
monomorphic population) that reach the regulation stage (stage
4 of the life cycle of the main text). When the focal group has not
been conquered, the focal individual’s offspring, which remained
philopatric (fraction 1{m of b.), compete in the focal group with
(1{m)br subadults produced in the focal group, where
br~ 1{Cx(x

R
0 )

! "
1{Cy(y

R
0 )

! "
is the average relative number of

subadults produced in the focal group that reach the regulation
stage. The focal individual’s philopatric offspring also compete
against mbd immigrants, where bd~ 1{Cx(x1)½ $ 1{Cy(y1)

! "
is

the average relative number of subadults produced in other groups
that reach the regulation stage.
When the focal group has been conquered, (1{m)b.h of the

focal individual’s offspring compete against h 1{mð Þbrzmbd½ $
subadults reaching the regulation stage in the focal group after
dispersal and warfare. The focal individual’s offspring also
compete against (1{h)bd subadults from the victorious group.
When the focal group conquers another group, (1{m)b.(1{h) of
the focal individual’s offspring compete against (1{h) 1{mð Þ½
brzmbd$ subadults from the focal group and hbd subadults from
the conquered group.
If warfare occurs before the dispersal of subadults; that is,

stages (2) and (3) of the life cycle are interchanged but every other
assumption of the model is the same, the above fecundity
functions still apply. These fecundity functions can be applied to
both warfare occurring before or after the dispersal of subadults,
because in both cases regulation occurs after dispersal and
warfare and it is the number of offspring reaching the regulation
stage that determines fitness. Hence, we can use the same fitness
functions to analyze the two different timings of warfare by
making use of eq. 3 and the analogous equation for bravery
(yA0 ~(1{mE)yR0 zmEy1).
Gathering all the above terms and taking into account the fact

that, when the focal group conquers another group, the focal
individual has descendants in the focal group and in the conquered
group gives

wp(s1)~
(1{m)b.

1{mð Þbrzmbd
z

(1{m)b.(1{h)

(1{h) 1{mð Þbrzmbd½ $zhbd

wp(s2)~
(1{m)hb.

h 1{mð Þbrzmbd½ $z(1{h)bd
z

(1{m)b.(1{h)

(1{h) 1{mð Þbrzmbd½ $zhbd

wp(s3)~
(1{m)b.

1{mð Þbrzmbd

wp(s4)~
(1{m)hb.

h 1{mð Þbrzmbd½ $z(1{h)bd
: ð9Þ

In order to evaluate wd, we need the probabilities that a random
group from the population is in demographic states s1,s2,s3, and
s4. These probabilities are, respectively, 1{w1v11½ $w1v11, (w1v11)2,
½1{w1v11$

2, and w1v11½1{w1v11$, where v11:v(y1,y1)~v be-
cause the demographic events that obtain in other groups than the
focal group depend only on the average level of belligerence and
bravery in the population (x1 and y1). Averaging over all these
cases, the immigrant component of fitness is

wd~wd(s1) 1{w1v0½ $a1vzwd(s2)(w1v)
2z

wd(s3)½1{w1v$
2zwd(s4)w1v½1{w1v$,

ð10Þ

where

wd(s1)~
mb.
bd

z
mb.(1{h)

bd

wd(s2)~
mb.h

bd
z

mb.(1{h)

bd

wd(s3)~
mb.
bd

wd(s4)~
mb.h

bd
: ð11Þ

Substituting eqs. 9–11 into eq. 7 and simplifying yields the
fitness of a focal adult as

w~(1{m)b.
(1{w1v1)

1{mð Þbrzmbd
z

w1v1h

h 1{mð Þbrzmbd½ $z(1{h)bd

%

z
w0v0(1{h)

(1{h) 1{mð Þbrzmbd½ $zhbd

&
z

mb.
bd

,

ð12Þ

where the philopatric component of fitness depends on three
terms. The first term accounts for the fitness accruing to the focal
individual when the focal group is not attacked plus when the
group is attacked and wins the battle, the second term accounts for
the fitness to the focal individuals when the focal group is attacked
but loses the battle, and, finally, the third term accounts for the
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fitness to the focal individuals when the focal group attacks another
group and wins the battle.
In order to compare the demographic benefits that accrue to a

focal group under the DGR scenario to that obtained under the
VGE scenario, it is useful to note that the reproductive value n(s)
of a group in demographic state s, which is the asymptotic
contribution of a group in state s to the growth rate of the
population (see eqs. B-5–B-6 of Appendix S2 and [34]) is obtained
in the DGR scenario as n(s)~wp(s)zwd(s), where the fitness
functions are evaluated at the phenotypic value of the resident
(x.~xR0 ~x1 and y.~yR0 ~y1), which gives

n(s1)~1z(1{h),n(s2)~1,n(s3)~1,andn(s4)~h, ð13Þ

and where the average of these group reproductive values over the
demographic events is equal to one.

Probability of identity-by-descent. Having an explicit
expression for the fitness function w to substitute into eq. 1, it
remains to evaluate the average probability of identity-by-descent
RR between two individuals sampled with replacement from the
same group, which is carried out by using standard methods
[29,47–49] applied to the island model with warfare [50]. We have

RR~
1

N
z

N{1

N

' (
R, ð14Þ

where R is the probability of identity between two individuals
sampled without replacement from the same group and that
satisfies the recursion

R~ 1{wvzwvfh2z(1{h)2g
! "

(1{m)2RR, ð15Þ

where w and v are, respectively, the fighting and winning
probabilities in a population monomorphic for belligerence and
bravery. Eq. 15 can be understood as follows. With probability
1{wv the focal group where the two individuals are sampled has
not been defeated, in which case the probability of identity

between the two individuals is (1{m)2RR: with probability

(1{m)2 the two offspring descend from the same group, in which
case they descend from the same individual with probability 1=N
and then carry identical genes or they descend from two different
individuals with probability 1{1=N and then carry identical
genes with probability R. With probability wv the focal group has
been defeated by another group in which case the two individuals
descend from the same group before regulation with probability

h2z(1{h)2 (with probability h2 from the defeated group and

with probability (1{h)2 from the victorious group), and their

probability of identity is then equal to (1{m)2RR [50].
After simplification, eq. 15 reduces to

R~(1{m)2 1{2wvh(1{h)½ $RR ð16Þ

and on substitution of eq. 14 and solving the for R gives

R~
(1{m)2 1{2wvh(1{h)½ $

N{(N{1)(1{m)2 1{2wvh(1{h)½ $
, ð17Þ

which further yields

RR~
1

N{(N{1)(1{m)2 1{2wvh(1{h)½ $
: ð18Þ

Results

Defeated group repopulation
Belligerence. Substituting the direct fitness function (eq. 12)

and the probability of identity-by-descent (eq. 18) into eq. 1, using
belligerence as the focal trait (z~x), eq. 3 to describe the
phenotype of subadults, holding bravery constant (y.~yR0 ~y1
~y), and applying the chain rule at the neutrality point
(x.~xR0 ~x1~x), the selection gradient on belligerence can be
expressed as

S~
{C0

x

1{Cx
1{(1{m)2 1{wvzwvh2zwv(1{h)2

! "
RR

# $
z

Lw0
LxA0

LxA0
LxR0

v(1{h)(1{m)RR,

ð19Þ

where Cx
0:dCx(x.)=dx.. Using LxA0 =Lx

R
0 ~(1{Em), one has

S~
{C0

x

1{Cx
1{(1{m)2 1{2wvh(1{h)½ $RR
# $

z

w0v(1{h)(1{Em)(1{m)RR,

ð20Þ

where w’:Lw0=LxA0 is the derivative of w(:,:) with respect to its

first argument, which, when using eq. 4, becomes w’~La(xA0 )
=LxA0 | 1{exp({a(x))½ $=a(x).
Because (1{m)2 1{2wvh(1{h)½ $RR is equal to R (eq. 15), the

selection gradient reduces to

S~
{Cx

0

1{Cx
1{Rð Þzw’v(1{h)(1{Em)(1{m)RR: ð21Þ

Setting S~0, the candidate ES level of belligerence then satisfies
the equation

Cx
0

1{Cx
~w’v(1{h)

(1{Em)Rp

1{R

% &
, ð22Þ

where Rp~(1{m)RR is the average probability of identity

between a gene sampled in a philopatric individual and a
homologous gene sampled from a neighbour
[Rp~(1{m) 1=Nz(N{1)R=Nð Þ], which can also be interpret-

ed as the probability of identity between a gene sampled in a focal
individual and one in an individual sampled at random from the
same group in the parental generation.
The left member of eq. 22 is the marginal decrease Cx

0=(1{Cx)
in fitness stemming from a single individual increasing its level of
belligerence as a result of expressing a mutant allele relative to that
of expressing a resident allele. The term w’v in the right member
of eq. 22 is the marginal increase in the probability of conquering
another group (change in contest probability times winning
probability), which results from an individual expressing belliger-
ence, and it tunes the fitness benefit of defeating an attacked
group.
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The increase in fitness stemming from defeating a group is given
by 1{h in eq. 22, which can be thought of as the average increase
in the reproductive value of a victorious group, and is weighted by
a measure of relatedness (1{Em)Rp=(1{R) between group
members, which depends on the model’s parameters and functions
(m, N, w, v, and h). The term 1{R in the denominator reflects
the reduction in the genetic variance in the population because
interactions occur in a spatially structured population and
(1{Em)Rp reflects the increase in the variance between groups.
Eq. 22 shows that the more individuals are related within groups,
the higher the level of belligerence.
When the right-hand-side of eq. 22 is higher than the left-hand-

side, a higher level of belligerence is selected for, because the
relatedness times the fitness benefits exceeds the fitness costs.
When the right-hand-side of eq. 22 is lower than the left-hand-
side, a lower level of belligerence is selected for. At an equilibrium
point both sides of eq. 22 balance each other out. Substituting the
explicit value of R (eq. 17) into eq. 22, this equilibrium is given by

Cx
0

1{Cx
~

w’v(1{h)(1{Em)(1{m)

N 1{(1{m)2f1{2wvh(1{h)g
! " : ð23Þ

When migration is low, the right member is large provided
provided N is not too big, in which case the selection pressure on
costly belligerence is high. When migration increases, the right
member decreases, which decrease the selection pressure on costly
belligerence.
A special case of eq. 23 will be useful for comparing different

results. This is the weak warfare benefit limit; namely, when h
becomes close to one but nevertheless remains smaller than one
(hv1), in which case eq. 23 reduces to

Cx
0

1{Cx
~

w’v(1{h)(1{Em)(1{m)

N 1{(1{m)2
! " , ð24Þ

where terms of order (1{h)2 and of higher order in the right
member of eq. 23 have been neglected.

Bravery. Substituting eq. 12 and eq. 18 into eq. 1, using
bravery as the focal trait (z~y), holding belligerence constant
(x.~xR0 ~x1~x), and following similar calculations as above, the
selection gradient on bravery can be written as

S~{
C0

y

1{Cy
1{(1{m)2 1{2wvh(1{h)½ $RR
# $

z(1{m)w {(1{h)
Lv1
LyA0

LyA0
LyR0

z(1{h)
Lv0
LyA0

LyA0
LyR0

% &
RR,

ð25Þ

where Cy
0:dCy(y.)=dy., w is the value of the fighting proba-

bility in a population monomorphic for the resident trait value.

Using LyA0 =Ly
R
0 ~(1{Em), Lv0=LyA0 ~{Lv1=LyA0 ~Nv(1{v)g’

=g, where g’:dg(u)=du, and defining

v’:
Nv(1{v)g’

g
, ð26Þ

which is the derivative of eq. 5 with respect to its first argument,
the selection gradient can be further simplified to

S~{
Cy

0

1{Cy
(1{R)z2wv’(1{h)(1{Em)(1{m)RR: ð27Þ

At an evolutionary rest point S~0, the candidate ES level of
bravery then satisfies

Cy
0

1{Cy
~wv’2(1{h)

(1{Em)Rp

1{R

% &

~
wv’2(1{h)(1{Em)(1{m)

N 1{(1{m)2f1{2wvh(1{h)g
! " , ð28Þ

which is similar in form to eq. 22. The left member of eq. 28 is the
marginal decrease Cy

0=(1{Cy) in fitness and wv’ is the increase in
the probability of conquering another group, which both stem
from an individual expressing a mutant bravery allele. The benefit
in the right member of eq. 28 takes the same interpretation as that
in eq. 23 but is twice as large because bravery also increases the
probability that the focal group wins a battle when attacked by
another one and is thus not taken over.

Bravery in groups of very large size. The marginal change
in the wining probability given by eq. 26 has the interesting feature
of increasing with group size, N, which suggests that, depending
on the shape of the function g describing the power of contestants,
the ES condition of bravery may become independent of groups
size (N cancels out in the right member of eq. 28). Individually
costly bravery may then evolve under very large group size. In
order to see when this might be the case, it is useful to note that
there are at least two meaningful ways to relate effort committed
into fighting to the power function g [14,45,46]. The first is to
assume that the winning probability predicts contest outcome from
the ratio of each side’s effort e committed into fighting, in which
case one can use g(e)~ec, where c scales the decisiveness of
fighting effort disparities [14,45]. The second is to assume that the
winning probability predicts the outcome of a battle from the
difference of each side’s effort committed into fighting, a situation
that is described by the function g(e)~exp(ce), which leads to the
contest success function being logistic. This difference form of the
contest success function characterizes a situation where the
outcome of a battle depends critically on just a little difference
between the opponents force [45].
Using the ratio form of the contest success function gives

g’~c(yN)c{1 so that v’~cv(1{v)=y, in which case the selection
pressure on bravery decreases with group size and vanishes when
groups become very large. For the difference form of the contest
success function, one has g’=g~c so that v’~cNv(1{v), in
which case the selection pressure on bravery becomes independent
of N as this parameter cancels out in eq. 28. It follows that bravery
may now evolve in groups of any size.

Relation to previous analytical models. An analytical
model of selective groups extinction was developed in [19] (see also
[51]), where altruists within groups increase the probability that a
group wins a battle during pairwise contests. In this previous
model, a parameter k is used, which is defined as the likelihood
that groups engage in a contest and is equivalent to the fighting
probability, w, whereby we can set k~w. [19] also introduces a
parameter lA, which is the change in a group’s survival probability
due to its members expressing altruism should a contest occur, so
that one can write lA~v’. The cost c in [19] is also equivalent to
Cy

0=(1{Cy) here and since complete repopulation of defeated
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groups was assumed in [19], one can also set h~0. With all these
stipulations, we can write eq. 28 as c~klA(1{Em)Rp=(1{R),
which agrees with eq. 6 of [19] in the absence of reproductive
leveling (t~0) and if one makes the additional assumption that
warfare occurs after dispersal, in which case E~1 and
(1{Em)Rp~R in eq. 28 if h~0. The result of [19] thus agrees
qualitatively with those derived above.
Eq. 28 is also related to eq. 3.3 of [22], where the cost Ca is

given here by Cy
0=(1{Cy), while the change vBw in winning

probability is given here by v’. With this, we can write eq. 28 as
Ca=(wvBw)~2(1{h)(1{Em)Rp=(1{R). The right hand side of
eq. 3.3 of [22] can be simplified to 4(1{h)Rp=(1{R) [50], so that
this eq. 3.3 reads Ca=(vBw)~4(1{h)Rp=(1{R). The difference
in the factor 2 between the two results stems from the fact that in
our earlier analysis we assumed a two-sex rather than a one-sex
model and assumed that only males expressed belligerence, while
both sexes benefited from it so that the cost of expressing
belligerence is halved relative to the present model.
In addition, the term w appearing in the denominator of the left-

hand side of eq. 28 is missing in Ca=(vBw)~4(1{h)Rp=(1{R)
because we assumed previously [22] that bravery was costly only
conditional on there being a contest between groups, which
cancels the w in the denominator of eq. 28. Finally, the absence of
the term 1{Em in eq. 3.3 of [22] shows that our earlier model
involves warfare occurring before the dispersal of juveniles (E~0),
although we described in our life cycle section that warfare
occurred after the dispersal of juveniles. Hence, in order to match
the life cycle description, the benefit vBw must be taken as being
of order 1{m and the same reasoning applies to the invasion
condition of belligerence [22, eq. 3.1]. Alternatively, our earlier
model can be interpreted as a model of warfare before the
dispersal of offspring.
These considerations show that DGR demographic scenario

analyzed here is consistent with previous work endorsing closely
related assumptions. The main difference with previous work so
far is that the qualitative results obtained earlier apply to warfare
occurring before and after the dispersal of subadults (the warriors
in the model) and the winning and fighting probabilities have been
made more mechanistic (e.g., eq. 4 and eq. 5). Further, making
these functions more mechanistic has revealed that, depending on
the form of the contest success function, costly bravery may
actually evolve in large-scale societies and that the fighting
probabilities are likely to depend on the level of belligerence in
other groups from the population, which was not clear from
previous work.

Victorious group size expansion
Under the VGE scenario, the selection gradients on belligerence

and bravery involves more terms because the reproductive value of
offspring settling in groups facing different demographic events
must be taken into account (compare eq. 1 to eqs. B-1–B-2 of
Appendix S2). In addition, the stochastic process determining the
probabilities of occurrences of the demographic events (s1,s2,s3,
and s4) of a focal group depends on its size and the sizes of other
groups because the contest success functions depend on the sizes of
pairs of opposing groups in that case (eqs. B-14–B-15 of Appendix
S2). With all these complications, I was unable to obtain explicit
analytical expressions for the selection gradients on belligerence
and bravery for all parameter values.
Nevertheless, it was observed in numerical work that the

stationary probabilities of occurrences of the demographic states
often take values very close to that of independently distributed
probabilities of occurrences across generations, which are the
stationary values of the demographic process when h is equal to

one. Hence, an approximation for this model is to consider that h
takes values close to one (a defeated groups keeps a large fraction
of its resources), in which case one can obtain analytical
expressions for the selection gradients on belligerence and bravery
for the VGE model, which are now detailed.

Belligerence. Assuming that the fitness benefits of defeating
other groups are small, we can evaluate the selection strengths on
belligerence to the first order in h (i.e., neglecting terms of order
(1{h)2 and higher order; eqs. B-23–B-32 of Appendix S2). The
candidate ES level of belligerence is then found to satisfy

Cx
0

1{Cx
~w’v (1{h) 1{(1{m)2

# $! " (1{Em)Rp

1{R

% &
, ð29Þ

where the left member has the same form as that in eq. 22. The
term in square brackets in the right member of eq. 29 measures
the average increase in a group’s reproductive value from
defeating another group, where the average is over the cases
where the focal group is and is not defeated locally by another
group. The second term in the right member of eq. 29 is a
measure of relatedness, which has the same interpretation as that
in the DGR scenario (eq. 22) and which is given by

(1{Em)Rp

1{R
~

(1{Em)(1{m)

1{(1{m)2
# $

N
ð30Þ

(eq. B-38 of Appendix S2), whereby eq. 29 reduces to

Cx
0

1{Cx
~

w’v(1{h)(1{Em)(1{m)

N
: ð31Þ

Comparing eq. 31 to eq. 24 highlights that the demographics
benefits of belligerence are generally lower under the VGE
scenario than under the DGR scenario and that this difference
decreases when the level of migration, m increases. The selection
gradients on belligerence for the two demographic situations
become equivalent when migration becomes very strong (set m
close to one in eq. 24 and eq. 31). The difference between the two
selection gradients for small m values stems from the fact that
under the DGR model the benefits of obtaining additional
resources from other groups are partially cancelled out as this also
increases local competition. Indeed, an increase in the carrying
capacity of victorious groups implies that there are more
individuals competing to gain access to adulthood in such groups
in the next generation. This is why the benefit of conquering other
groups in eq. 29, (1{h) 1{(1{m)2

# $
, decreases as the level of

philopatry increases.
The probability of identity Rp is higher under the VGE scenario

than under the DGR scenario for most of the range of parameter
values (Fig. 2). This stems from the fact that under the VGE
model, defeated groups are repopulated by individuals from two
groups, which increases the diversity within groups unless h~0 in
which case groups are completely repopulated so that the
relatedness within groups is not affected by the repopulation
event. But by comparing eq. 31 to eq. 24, we see that the selective
pressure on belligerence under the DGR scenarios is generally
larger than that under the VGE scenario.

Bravery. Assuming that the benefits of defeating other groups
are small (e.g., h is close to one), the candidate ES level of bravery
is found to satisfy
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Cy
0

1{Cy
~

wv’2(1{h)(1{Em)(1{m)

N
ð32Þ

(eq. B-43 of Appendix S2). Eq. 32 is similar in form to the selection
gradient on bravery under the DGR model (eq. 22). But here
again, comparing these two equations shows that the demographic
benefits of bravery are generally lower under the VGE scenario
than under the DGR scenario, which is again due to the fact that
the benefits of obtaining resources from other groups are partially
cancelled out as they also increase local competition.

Stronger warfare benefits. The analytical results presented
in the last two section (eq. 31 and eq. 32) suggest that the selective
pressure on belligerence and bravery is generally stronger under
the DGR than under the VGE scenario, especially when
migration is limited. However, these analytical results rely on the
assumption that the benefits of warfare are small and one may
wonder if these results still hold if the benefits of warfare are
strong; that is, if h is low.
Fig. 3 compares the selective pressure on belligerence under the

VGE scenario to that obtained under the DGR scenario without
making any assumption on the values h can take. Fig. 3 illustrates
that the selective pressure on belligerence is always larger under
the DGR than under the VGE scenario for all values of h. This
suggests that the qualitative results obtained by assuming large h
values hold more generally, and that the weak warfare benefit
approximation (large h values) is actually often good for values as
high as h~1=2, and the same results apply to the evolution of
bravery. Similar patterns were observed for the selection pressure
on bravery and using both the difference and the ratio forms of the
contest success function.

Discussion

Evolutionary models of social interactions occurring within and
between groups of individuals have often emphasized the benefits
and conflicts associated with resource exchange within groups
[52–56]. But since resources come in total finite supply in a
population, struggle and conflict between groups is also likely to be
an evolutionary outcome [4,6,7,10,16,19]. Here, the evolutionary
dynamics of belligerence and bravery in the island model of
warfare has been analyzed under two distinct but complementary
types of demographic benefits that can drive group conflict:
defeated group repopulation and victorious group size expansion.
The analysis of the models shows that the condition under

which both belligerence and bravery spread in the population
under the two demographic scenarios depends on four quantities
(see eq. 22, eq. 28, eq. 29, and eq. 32). The first quantity is the
relative marginal cost to a focal individual of expressing the trait
under scrutiny [Cx

0=(1{Cx) for bravery and Cy
0=(1{Cy) for

belligerence]. The second is the increase in the probability of
defeating another group from the population (w’v for belligerence
and wv’ for bravery). The third quantity is the increase in the
reproductive value of a group, which defeats another one, relative
to that of not defeating it (1{h for the DGR scenario and
(1{h) 1{(1{m)2

! "
for the VGE scenario). This quantifies the

demographic benefits of belligerence and bravery, which will affect
the selection gradients on both traits proportionally to the
relatedness between group members. The higher the relatedness
within groups, the higher the reproductive value of a group
belongs to the gene lineage carried by a focal individual expressing
belligerence or bravery. The fourth quantity is thus a measure of
relatedness between group members [(1{Em)Rp=(1{R)]. Kin-
ship, therefore, not only plays its classical effect in determining the

Figure 2. Graph comparing the probability of identity Rp in the DGR scenario to that obtained in the VGE scenario. The quasi flat line
is the the value of Rp for the VGE scenario obtained without making any assumption on the value h can take, while the downward bent line is the
relatedness for the DGR scenario. The first set of two lines in the graph is for N~10, while the second set of two lines is for N~20, while the other
parameter values are m~0:1, w~0:5, v~0:5, and g(e)~ec, where the value c takes does not affect Rp.
doi:10.1371/journal.pone.0021437.g002
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individual’s sacrifice in the promotion of its group [6,53,55,56],
but it also markedly affects the tendency of individuals within
groups to try to take over other ones.
The increase in the probability of defeating other groups from

the population (w’v and wv’) depends on the mechanistic details
underlying the interactions between groups (e.g., contest success
functions, how attack rates convert into fighting probabilities).
Different ecological and environmental situations may result in
different functional relationships mapping belligerence and
bravery into fighting and winning probabilities. The strength of
selection on bravery turns out to critically depend on such
mechanistic details because effort committed into fighting may
translate into very different wining probabilities [14,45,46]. For
the case where contest outcome depends on the ratio of each side’s
fighting effort, the selection pressure on bravery decreases with
group size and vanishes in large groups. By contrast, when contest
outcome depends on the difference of each side’s fighting effort,
which may be a common situation [14], the selection pressure on
bravery turns out to be independent of group size. This is
interesting because it allows for the evolution of costly bravery in
large-scale societies, without the need of invoking any special
forces for that case.
How different are the selection on belligerence and bravery

under the two demographic scenarios? It is worthwhile to
emphasize at this point that in order to be initially able to
compare the DGR to the VGE scenario, I assumed that the
demographic benefits of warfare accruing to a focal group are

comparable in magnitude. Although the demographic processes
underlying these two models are different, the reproductive value
n(s) of a group in demographic state s, which provides the far
distant future contribution of a group in state s to the growth rate
of the population (see eq. B-5 of Appendix S2 and [34,57]), are
exactly the same for the two scenarios when the migration rate of
juveniles is complete and the distribution of demographic states is
independent across generations [n(s1)~1z(1{h),n(s2)~1,n(s3)
~1,n(s4)~h, eq. 13 and eq. B-12 of Appendix S2]. In this case,
the long-term fitness benefits accruing to an individual in a group
that has won a war is exactly the same under the two scenarios, but
the selective pressure on belligerence and bravery depends on the
four quantities discussed above. It is thus a priori not clear which
scenario is more conducive to belligerence and bravery, and by
how much the selection pressure on the traits will differ between
them.
Under the life-cycle assumptions used in this paper, the main

quantitative difference in the selective pressure on belligerence and
bravery under the two scenarios stems from the fitness benefits of
defeating other groups and relatedness taking different values.
Under the DGR scenario, the fitness benefits of defeating another
group; namely, the increase in group reproductive value, is equal
to 1{h, but this value is lower under the VGE and equal to
(1{h) 1{(1{m)2

! "
when the benefit of warfare are small.

Hence, the benefit of defeating a group decreases as migration
decreases under the VGE model. The main reason for this
difference is that when the benefits of warfare increase local

Figure 3. Selection gradient S on belligerence for the DGR and VGE scenarios as a function of h. The functional relationships used are
Cx(x)~x4 , w given by eq. 4 with a(x)~x, and g(e)~ec , and the resident trait value was set to x~1. The parameter values are N~5, v~0:5, and the
value c takes does not affect the selection pressure on belligerence. Further, m~0:9 in the top right panel, m~0:75 in the top left panel, m~0:5 in
the lower right panel, and m~0:1 in the lower left panel. The top line in each panel is eq. 21; that is, the selection gradient for the DGR scenario and
denoted by SDGR. The second line in each panel is SfzSPr with eq. B-18 of Appendix S2 using z~x and eq. B-20 of Appendix S2; the selection
gradient for the VGE without making any assumption on the value h can take, which is denoted by SVGE . The last line in each panel is eq. B-36 of
Appendix S2; the selection gradient for the VGE assuming that h is small and is denoted by SVGE{approx. Three observations follow from this figure,
which were also observed under a wider range of numerical exploration. First, for strong migration rates all three selective pressures agree. Second,
for low migration rates the selective pressure is stronger under the DGR than under the VGE scenario for all values of h. Third, the small h
approximation of the VGE scenario underestimates the strength of selection on belligerence when migration is low, but the approximation works
quiet will for hw0:5. Similar results were observed if the contest success function is of the difference form.
doi:10.1371/journal.pone.0021437.g003
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carrying capacity and there is small migration, a local increase in
group size does not contribute much to the far distant future
growth rate of the population because the benefits of warfare are
not exported but increase competition locally, which reduces
group reproductive value (eq. B-29 of Appendix S2). That local
competition between individuals within groups can partially or
even completely inhibit the benefits obtained by expressing social
behaviors is a classical result [29,42,56,58,59]. By contrast, under
the DGR scenario, groups contribute more to the far distant future
growth rate of the population by repopulating other groups
because this is a form of exportation of the demographics benefits
of belligerence and bravery, which are not destroyed locally
through an increase in competition. Another way to interpret this
is to say that competition is more of the ‘‘hard’’ type under the
DGR scenario than under the VGE scenario [60,61], and thus
more conducive to selection on costly social behaviors.
The relatedness coefficient tends to be smaller under the DGR

scenario than under the VGE scenario, which now tips the balance
in favor of stronger selection on belligerence and bravery under
the VGE scenario. This follows from the fact that genetic mixing
occurs during repopulation, which decreases the probability of
identity within groups, unless groups are completely repopulated
(Fig. 2). By contrast, no such mixing occurs under the VGE
scenario, where groups remain the same unit after warfare,
although an increase in groups size due to gaining more resources
also tends to decrease the relatedness within groups because
coalescence within groups (probability that two individuals
descend from the parent) decreases (Fig. 2). A consequence is that
the difference in the relatedness between the two scenarios is not so
strong (Fig. 2).
Combining the effect of relatedness and the fitness benefits of

defeating other groups on the selective pressure suggests that
selection is stronger on both traits under the DGR than under the
VGE scenario. From an evolutionary perspective, this suggests
that the possibility to repopulate defeated groups by fission of a
victorious one or by its members fertilizing the females of defeated
groups leads to higher fitness benefits than the gain of additional
resources by conquest, which increase local carrying capacity.
The two demographic scenarios of warfare analyzed here may

also occur under different ecological conditions. The DGR
scenario may be more consistent with a situation where groups
live on or around resources that are concentrated and have static

positions in space and time (such as patchily distributed resources,
water points, or shelters) and fight over them for monopolization.
This may be the case in social insects [1] or in hominids living in
arid or semiarid environments, where population density is low
and water holes were often the main cause of competition [12,23].
The DGR scenario may also be consistent with situations where
bands of males aimed at gaining additional mates by raiding and
mating with female from other groups. By contrast, the VGE
scenario is more likely to represent a situation where groups fight
for animal resources, which were important for meat, clothing,
and raw materials used in tool-making [12,23]. Here, the gained
resources can be shared among combatants and put in use in the
focal group.
As a final point, the DGR and VGE scenarios are mainly

relevant for understanding the fitness benefits of warfare in pre-
state societies, where interactions occur between individuals that
are more likely to share a recent common ancestor than are
individuals sampled at random from the population. But the role
of and motivations behind belligerence and bravery in the
transition from small-scale to large-scale societies remains to be
better understood. In the absence of benefits to self or relatives,
there should be no naturally selected motivations in the world
causing an individual to lay down its life.
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Appendix S1: from attack rates to pairwise fighting probabilities

In this appendix, I present the derivation of the probability that a focal group engages in a fight with

another one under the assumption that each group attacks another random group from the population

independently of each other. Further, during a single generation each group is assumed to engage at most

into a single pairwise contest when it is in the role of a defender (see section “Fighting probability” of

the main text); there is thus only a one-shot local contest when a given group is attacked.

I first consider the case where the total population consists of a finite number nd of groups and then

let the number of groups grow very large (nd → ∞). With the finite number of groups assumption,

the probability that a focal group is not attacked when the attack rate is a for each group in the

population is [1− a/(nd − 1)]
nd−1

, where a/(nd − 1) is the probability that a random group from the

population attacks the focal group. In the limit of an infinite number of groups, the probability that the

focal group is not attacked is then given by exp(−a), which is obtained by using the standard relation

limn→∞(1−x/n)n → exp(−x). The probability that a focal group is attacked by another group and that

a fight occurs when it is in the role of a defender is then 1− exp(−a).
With probability a/(nd−1), the focal group attacks another random group from the population. When

this event occurs and k other groups from the population attack the same group as the focal group, the

probability that the focal group gets into a fight with the attacked group is given by 1/(1 + k), where
1+k is the total number of groups (including the focal) attacking the same group. Hence, conditional on

the focal group attacking another random group from the population, the probability that it will engage

into a contest with the attacked group is given by the average of 1/(1 + k) over a Binomial distribution,

which gives the number of simultaneous attacks on the group attacked by the focal group. This yields

the average

q =

nd−2�

k=0

1

1 + k

(nd − 2)!

k!(nd − 2− k)!

�
a

nd − 1

�k �
1− a

nd − 1

�nd−2−k

, (A-1)

where nd − 2 is the number of groups in the population without the focal group and the group it has

attacked.

Using the fact that (nd − 2)! = (nd − 1)!/(nd − 1), eq. A-1 can be written as

q =
1

a

nd−2�

k=0

(nd − 1)!

(1 + k)![nd − 1− (1 + k)]!

�
a

nd − 1

�1+k �
1− a

nd − 1

�nd−1−(1+k)

. (A-2)

I now make the change of variable h = k + 1 in the summation sign, which gives

q =
1

a

nd−1�

h=1

(nd − 1)!

h!(nd − 1− h)!

�
a

nd − 1

�h �
1− a

nd − 1

�nd−1−h

, (A-3)

and shows that the sum is over a Binomial distribution with probability of success a/(nd−1) and number

of draws nd − 1. Since the sum runs from h = 1 to h = nd − 1, the sum gives the probability that there

is at least one success in nd − 1 draws, whereby

q =
1

a

�
1−

�
1− a

nd − 1

�nd−1
�
. (A-4)

By letting the number of groups grow large (nd → ∞) and using again limn→∞(1 − x/n)n → exp(−x)
the probability that a focal group, conditional on it attacking another group, enters into a contest with

the attacked group is given by [1− exp(−a)] /a. Since the focal group can attack nd − 1 groups, the

probability that the focal groups enters into a fight when it is in the role of an attacker in a monorophic

population is (nd − 1)× a/(nd − 1)× [1− exp(−a)] /a = 1− exp(−a).
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If we now call φ(i, j) the probability that a focal group with average level of belligerence i, and thus
attack rate a(i), enters into a fight with another group when j is the average level of belligerence in the
remaining groups in the population, which thus have attack rate a(j), then the above results give

φ(i, j) = a(i)
1− exp(−a(j))

a(j)
. (A-5)
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Appendix S2: VGE model

Selection gradient

In this appendix, I present the derivation of the selective pressures on belligerence and bravery under
the VGE demographic scenario. For this scenario, the demographic events s1, s2, s3, and s4, determine
the number of individuals that reach adulthood in a group after stage 4 of the life cycle. For the events
s1, s2, s3, and s4, the group size that obtains is, respectively, N + (1 − h)N,N,N , and hN (see section
”Demographic events” of the main text). A focal group is thus likely to fluctuate between different sizes
across generations.

These demographic fluctuations make the calculations of the selection gradient on an evolving pheno-
type z more complicated. In the presence of such demographic fluctuations and if the number of juveniles
produced by each individual is assumed to be large (or is Poisson distributed), the selection gradient can
be expressed as

S = Sf + SPr (B-1)

[1], where

Sf =
�

s

�

s�

ν(s�)

�
∂fp(s)

∂z•
+

∂fp(s)

∂zR0

R
R(s)

+
�

s∗

Pr(s∗)

�
∂fd(s, s∗)

∂z•
+

∂fd(s, s∗)

∂zR0

R
R(s∗)

��
Pr(s� | s) Pr(s) (B-2)

and

SPr =
�

s

�

s�

ν(s�)
∂Pr(s� | s)

∂zR0

fp(s)R
R(s) Pr (s) , (B-3)

where all sums are over all elements s of the set S = {s1, s2, s3, s4} of demographic events (see Fig. 1), and
where the components of selection follow from rearranging eqs. 26–27 of [1] as given by eqs. A-48–A-49
of [2]. All partial derivatives in eqs. B-2–B-3 are evaluated at the phenotypic value of the resident allele
(z• = zR0 = z1 = z) and all other quantities in S are also evaluated at this neutrality point.

Because the four demographic events determine the state of a focal group (its size), I will from now
on, and for ease of presentation, refer to the four events s1, s2, s3, and s4, as the demographic states of
a group. The size of a focal group is the main variable that will affect the components of selection given
by eq. B-2 and eq. B-3, and which depend on four type of quantities, the justification of which are given
in [1].

(1) Two frequency functions. First, the probability fp(s) that a gene sampled in a group, which is in
a given state s� in the offspring generation, descends from an individual from that group that was in state
s in the parental generation. This probability is independent of the states of the group in the offspring
generation [1], which follows from the assumption that fecundity is Poisson distributed (or very large).
The second frequency function is the probability fd(s, s∗) that a gene sampled in a group, which is in a
given state s� in the offspring generation and was itself in state s in the parental generation, descends
through migration from a group in state s∗ in the parental generation. For completeness, I mention
that these frequency functions can be related to individual fitness functions, which measure the expected
number of offspring reaching adulthood of a focal parent conditional on the same demographic events
described for the frequency functions, by wp(s, s�) = fp(s)Ns�/Ns, wd(s, s�, s∗) = fd(s, s∗)Ns�/Ns∗ [1],
where Ns is the number of individuals in a group in demographic state s.

(2) The stationary probability Pr(s) that a focal group of individuals is in demographic state s, which is
the steady-state distribution of the Markov chain with forward transitions probabilities Pr(s� | s), where



2

s is the demographic state of the group in the parental generation and s� is its state in the offspring
generation. This stationary distribution satisfies

Pr(s�) =
�

s

Pr(s� | s) Pr(s). (B-4)

(3) The relative reproductive value ν(s) of all individuals within a group in demographic state s,
which satisfies the recursion

ν(s) =
�

s�

�
fp(s) Pr(s

� | s) +
�

s∗

fd(s
∗
, s) Pr(s� | s∗) Pr(s∗)

�
ν(s�) (B-5)

and
�

s ν(s) Pr(s) = 1, where ν(s) Pr(s) is the reproductive value of all groups in state s in the population.
In the special case where the demographic states are independently distributed across generations Pr(s� |
s∗) = Pr(s�), in which case eq. B-5 can be simplified by using ν(s) Pr(s) so that the reproductive value
of a group in state s is directly given by

ν(s) = fp(s) +
�

s∗

fd(s
∗
, s) Pr(s∗). (B-6)

(4) The probability of identity by descent RR(s) between two homologous genes sampled with re-
placement in a group in state s. This probability can be expressed as

R
R(s) =

1

Ns
+

�
Ns − 1

Ns

�
R(s), (B-7)

where Ns is the number of individuals in a group in demographic state s and R(s) is the probability of
identity between two homologous genes sampled without replacement in that group. This probability
satisfies the recursion

R(s�) =
�

s

Pr(s | s�)fp(s)2RR(s), (B-8)

where Pr(s | s�) is the probability that a group in state s� in the offspring generation derives from a
group in state s in the parental generation [backward transition probability of the demographic states
Pr(s | s�) = Pr(s� | s) Pr(s)/Pr(s�)], and fp(s)2 is the backward migration probability that a pair of genes
sampled in a group in a given state s� in the offspring generation both descend from the same group that
was in state s in the parental generation.

Frequency functions

For the life-cycle assumptions described in the main text, the frequency functions are given by

fp(s) =
(1−m)b•Ns

(1−m) brNs +mbdNeq
(B-9)

and

fd(s, s
∗) =

mb•Ns∗

(1−m) bdNs +mbdNeq
, (B-10)

where Neq =
�

s Ns Pr(s) is the average group size in the population [1, eqs. 33–34] with the number of
adults in the different demographics states being given by Ns1 = [1 + (1− h)]N , Ns3 = [h+ (1− h)]N =
N , Ns2 = N , and Ns4 = hN .
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On substitution of these numbers into eq. B-9 one has

fp(s1) =
(1−m)b•[1 + (1− h)]

(1−m) br[1 + (1− h)] +mbd (Neq/N)

fp(s3) =
(1−m)b•

(1−m) br +mbd (Neq/N)

fp(s2) =
(1−m)b•

(1−m) br +mbd (Neq/N)

fp(s4) =
(1−m)b•h

(1−m) brh+mbd (Neq/N)
, (B-11)

and similar calculations lead to explicit expressions for the frequency functions for the migrant offspring
[fd(·, ·)].

Assuming a population of resident individuals and substituting the frequency functions into eq. B-5
results in complicated expressions but they can be handled with a symbolic algebra system like Mathemat-
ica [3]. Assuming that the demographic states are independently distributed across generations, eq. B-6
still results in complicated expressions but when dispersal is complete (m = 1), the group reproductive
values reduce to

ν(s1) = 1 + (1− h), ν(s2) = 1, ν(s3) = 1, and ν(s4) = h, (B-12)

which is similar to those obtained under the DGR scenario (eq. 13 of the main text).

Transition probabilities

In order to evaluate S, we also need the transition probabilities of the demographic states for a focal
group, which, as for the DGR scenario, will depend on the fighting and winning probabilities. The fighting
probabilities between groups are assumed to be the same as those in the DGR scenario (eq. 1 of the main
text or eq. A-5 of Appendix S1), with the only difference that the average phenotype among subadults
in the focal group after dispersal may now depend on the demographic states because the frequency of
individuals in the focal group after dispersal and descending from the focal group may depend on the
size of that group in the parental generation.

When warfare occurs before the dispersal of subadults, we have xA
0 = xR

0 and yA0 = yR0 , but when
warfare occurs after the dispersal of subadults, we have to take into account that migration has changed
the average phenotype in the focal group (see eq. 2 of the main text). The average level of belligerence
in the focal group when the size of the focal group in the parental generation is Ns is xA

0 (s) = [(1 −
m)Ns]/[(1−m)Ns+mNeq]xR

0 +[mNeq]/[(1−m)Ns+mNeq]x1, where [(1−m)Ns]/[(1−m)Ns+mNeq]
is the probability of sampling an individual of philopatric origin in the focal group after dispersal. Note
that x1 does not depend on demographic states because any class of individuals from other groups
have zero relatedness to the focal individual so that their average phenotypes can be considered to be
equivalent when viewed from the focal group and taken to be equal to x1. In order to take simultaneously
into account the case where warfare occurs before and after the dispersal of subadults (e.g. eq. 3 of the
main text), I write the average phenotypes of subadults in the focal group as

x
A
0 (s) =

(1−m�)Ns

(1−m�)Ns +m�Neq
x
R
0 +

m�Neq

(1−m�)Ns +m�Neq
x1

y
A
0 (s) =

(1−m�)Ns

(1−m�)Ns +m�Neq
y
R
0 +

m�Neq

(1−m�)Ns +m�Neq
y1, (B-13)

where the parameter � is set to zero when warfare occurs before the dispersal of offspring and set to one
if it occurs after the dispersal of offspring.
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With probability φ0(s) ≡ φ(xA
0 (s), x1) the subadults in a focal group, which was in demographic state

s in the parental generation, enter into a fight with another group by attacking. The focal group is
assumed to win the ensuing battle with probability

v0(s) =
�

s∗

Pr(s∗)
ωg

�
yA0 (s)Ns

�

ωg
�
yA0 (s)Ns

�
+ (1− ω)g(y1Ns∗)

, (B-14)

which is an average over all possible contests faced by the individuals in the focal group at steady-state.
This equation is the direct extension of eq. 5 of the main text to the case where opposing groups vary
in size, and is then averaged over the distribution Pr(s∗) of demographic states of the attacked group
evaluated in the neutral process. Taking such an average can be justified by the fact that owing to
the infinite island model assumptions, groups affect each other in a nonstochastic manner, only through
limiting densities, which can be taken as those of the focal deme itself [1, 4].

With probability φ1 ≡ φ(x1, x1) a focal group in demographic state s is attacked by another group
from the population, in which case the probability that the attacking group wins the ensuing battle is

v1(s) =
�

s∗

Pr(s∗)
ωg(y1Ns∗)

(1− ω)g
�
yA0 (s)Ns

�
+ ωg(y1Ns∗)

, (B-15)

which is an average over all demographic states of the attacker group.
With these notations, the forward transition probabilities, from a focal group in demographic state s

in the parental generation to any of the four other states in the offspring generation are given by

Pr(s1 | s) = [1− φ1v1(s)]φ0(s)v0(s)

Pr(s2 | s) = φ1v1(s)φ0(s)v0(s)

Pr(s3 | s) = [1− φ1v1(s)][1− φ0(s)v0(s)]

Pr(s4 | s) = φ1v1(s)[1− φ0(s)v0(s)]. (B-16)

The stationary distribution (eq. B-4) induced by this Markov chain is difficult to analyze because the
transition probabilities themselves depend on the stationary distribution (e.g., eq. B-14) so that the
stationary distribution it is only implicitly determined and cannot be evaluated by using linear algebra.
This is a non-homogeneous Markov chain that is homogeneous only asymptotically.

Selection: effect on settled offspring number Sf

The frequency functions (eq. B-9 and eq. B-10) describe a model of local group size fluctuations with
Wright-Fisher reproduction [1,2]. For this case, it has been shown that the first component of the selection
gradient on a phenotype z, Sf , can be simplified and expressed solely in terms of the perturbations of the
relative fecundity of a focal individual (number of juveniles produced before a competition stage) as

Sf =
�

s

1

b

�
∂b•
∂z•

+
∂b•

∂zR0

1

Ns

�
ν(s) (1−R(s)) Pr(s) (B-17)

[2, eq. 21 of the Appendix].
In the present model, we further have ∂b•/∂z

R
0 = 0, whereby

Sf =
1

b

∂b•
∂z•

�

s

ν(s) (1−R(s)) Pr(s), (B-18)

which can be used to evaluate both the selection gradient on belligerence and bravery by using b• =
[1− Cx(x•)] [1− Cy(y•)].
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Selection: effect on offspring reproductive value SPr

Belligerence

Using eq. B-13 to describe the phenotype of subadult individuals and holding bravery constant (yR0 =
y1 = y), the perturbations of the transition probabilities (eq. B-16) due to expressing belligerence and
evaluated at the neutrality point (xR

0 = x1 = x) are given by

Pr(s1 | s)
∂xR

0

=
∂φ0(s)

∂xR
0

v0(s) [(1− φv1(s)]

Pr(s2 | s)
∂xR

0

=
∂φ0(s)

∂xR
0

v0(s)φv1(s)

Pr(s3 | s)
∂xR

0

= −Pr(s1 | s)
∂xR

0

Pr(s4 | s)
∂xR

0

= −Pr(s2 | s)
∂xR

0

. (B-19)

Substituting these expressions into eq. B-3 and rearranging produces

SPr =
�

s

fp(s)R
R(s) Pr (s)

× ∂φ0(s)

∂xR
0

v0(s)
�
{1− φv1(s)}{ν(s1)− ν(s3)}+ φv1(s){ν(s2)− ν(s4)}

�
. (B-20)

Bravery

Using eq. B-13 in eq. B-16 and holding belligerence constant, the perturbations of the transition proba-
bilities evaluated at the neutrality point can be written as

Pr(s1 | s)
∂yR0

= φ

�
{1− φv1(s)}

∂v0(s)

∂yR0

− φv0(s)
∂v1(s)

∂yR0

�

Pr(s2 | s)
∂yR0

= φ
2

�
v1(s)

∂v0(s)

∂yR0

+ v0(s)
∂v1(s)

∂yR0

�

Pr(s3 | s)
∂yR0

= −Pr(s1 | s)
∂yR0

− φ
∂v1(s)

∂yR0

Pr(s4 | s)
∂yR0

= −Pr(s2 | s)
∂yR0

+ φ
∂v1(s)

∂yR0

. (B-21)

Substituting these expressions into eq. B-3 and rearranging produces

SPr =
�

s

fp(s)R
R(s) Pr (s)

�
{ν(s1)− ν(s3)}

Pr(s1 | s)
∂yR0

+{ν(s2)− ν(s4)}
Pr(s2 | s)

∂yR0

+ {ν(s4)− ν(s3)}φ
∂v1(s)

∂yR0

�
. (B-22)

Approximate functionals

Stationary distribution

By using eq. B-16, I was unable to obtain analytical expression for the stationary demographic distribution
Pr(s) under neutrality, which we need in order to evaluate eq. B-2 and eq. B-3. Without an analytical
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expression of the stationary distribution there is no hope to evaluate explicitly the selection gradients on
belligerence and bravery.

However, numerical exploration of the stationary distribution suggests that it is weakly affected by
the parameter h when h > 0.5 and that the probabilities of occurrences of the demographic states take
values very close to that if h were equal to one in that case. An approximation for the Markov chain
described by eq. B-16 for large h values can then be obtained by carrying out a first order Taylor expansion
around h = 1 of the transition probabilities given by eq. B-16, which was done with Mathematica [3].
Substituting the resulting transition probabilities into eq. B-4 and solving for the stationary distribution
gives

Pr(s1) = (1− φω)φω +O
�
(1− h)2

�

Pr(s2) = φ
2
ω
2 +O

�
(1− h)2

�

Pr(s3) = (1− φω)2 +O
�
(1− h)2

�

Pr(s4) = φω(1− φω) +O
�
(1− h)2

�
, (B-23)

where O
�
(1− h)2

�
is a remainder of order (1−h)2. In the rest of this Appendix, I evaluate the components

of the selection gradients on belligerence and bravery to the first order in 1− h so that eq. B-23 can be
used in order to evaluate eq. B-2 and eq. B-3 to the first order in h around h = 1.

Winning and fighting probabilities

A first order Taylor expansion of the fighting probability around h = 1 gives

∂φ0(s)

∂xR
0

=
∂φ0(s)

∂xA
0 (s)

∂xA
0 (s)

∂xR
0

= (1− �m)φ� +O (1− h) , (B-24)

where φ� ≡ ∂φ0(s)/∂xA
0 (s).

Substituting eq. B-23 into eqs. B-14–B-15 gives

∂v0(s)

∂yR0

=
∂v0(s)

∂yA0 (s)

∂yA0 (s)

∂yR0

= (1− �m)v� +O (1− h) , (B-25)

where v� ≡ Nω(1− ω)g�/g, and

∂v1(s)

∂yR0

=
∂v1(s)

∂yA0 (s)

∂yA0 (s)

∂yR0

= −(1− �m)v� +O (1− h) . (B-26)

In a monormorphic population we also have

v0(s) = ω +O (1− h)

v1(s) = ω +O (1− h) . (B-27)
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With these results, eq. B-21 reduces to

Pr(s1 | s)
∂yR0

= φv
�(1− �m) +O (1− h)

Pr(s2 | s)
∂yR0

= O (1− h)

Pr(s3 | s)
∂yR0

= O (1− h)

Pr(s4 | s)
∂yR0

= −φv
�(1− �m) +O (1− h) . (B-28)

Reproductive values

Substituting eqs. B-9–B-10, eq. B-16, and eq. B-23 into eq. B-5 and solving for the reproductive values
provides the following first order Taylor expansion around h = 1 at neutrality:

ν(s1) = 1 + (1− h)
�
1− (1−m)2

�
+O

�
(1− h)2

�

ν(s2) = 1 +O

�
(1− h)2

�

ν(s3) = 1 +O

�
(1− h)2

�

ν(s4) = 1− (1− h)
�
1− (1−m)2

�
+O

�
(1− h)2

�
, (B-29)

which gives

ν(s1)− ν(s3) = (1− h)
�
1− (1−m)2

�
+O

�
(1− h)2

�

ν(s2)− ν(s4) = (1− h)
�
1− (1−m)2

�
+O

�
(1− h)2

�

ν(s4)− ν(s3) = −(1− h)
�
1− (1−m)2

�
+O

�
(1− h)2

�
. (B-30)

These expressions are needed to evaluate the selection pressure SPr for both belligerence and bravery
(eq. B-20 and eq. B-22). Eq. B-30 illustrates that the changes in reproductive value involve terms of
order (1− h). Hence, in order to evaluate SPr to the first order around h = 1, it is sufficient to evaluate
all other functionals (fp(s), RR(s), Pr (s), etc.) to the zero’s order as any term of order (1− h) in these
functionals would result in second order terms in the selection gradient.

Probabilities of identity by descent

Substituting eq. B-10, eq. B-16, and eq. B-23 into eq. B-8 and solving for relatedness provides the following
first order Taylor expansions

R(s) =
(1−m)2

N − (N − 1)(1−m)2
+O

�
(1− h)2

�
(B-31)

and

Rp ≡
�

s

fp(s)R
R(s) Pr(s)

=
(1−m)

N − (N − 1)(1−m)2
+O

�
(1− h)2

�
. (B-32)
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Approximate selection gradient

We now have all the elements to evaluate the selection gradients on belligerence and bravery to the first
order around h = 1.

Selection on belligerence

Holding bravery constant and using belligerence as the evolving trait, eq. B-18 reduces to

Sf = − C �
x

1− Cx
(1−R) +O

�
(1− h)2

�
, (B-33)

because
�

s ν(s) Pr(s) = 1 and R(s) is the same for all s (see eq. B-31) and is denoted R.
Substituting eq. B-30, eq. B-24, and eq. B-27 into eq. B-20 gives

SPr =
�

s

fp(s)R
R(s) Pr (s)

× (1− �m)φ�
ω

�
(1− φω) (1− h)

�
1− (1−m)2

�
+ φω(1− h)

�
1− (1−m)2

��
, (B-34)

which can be simplified to

SPr = φ
�
ω(1− h)

�
1− (1−m)2

�
(1− �m)Rp +O

�
(1− h)2

�
(B-35)

by using eq. B-32. The coefficient Rp is the average probability of identity between a gene sampled in a
philopatric individual (individual that has not dispersed) and a homologous gene sampled in a neighbour.

Adding up Sf and SPr, and taking into account only first order terms, one obtains the inclusive fitness
effect from expressing belligerence as

S = − C �
x

1− Cx
(1−R) + φ

�
ω(1− h)

�
1− (1−m)2

�
(1− �m)Rp. (B-36)

Setting the selective pressure to zero and neglecting terms of order (1− h)2 and of higher order, the
cost-to-benefit ratio under which belligerence spreads can be written as

C �
x

1− Cx
=

φ�ω(1− h)
�
1− (1−m)2

�
(1− �m)Rp

1−R
, (B-37)

where using eqs. B-31–B-32 produces

Rp

1−R
=

(1−m)

(1− (1−m)2)N
. (B-38)

Selection on bravery

Following similar calculations as in the last section, we have from eq. B-18 for bravery that

Sf = −
C �

y

1− Cy
(1−R). (B-39)

Using eq. B-30 and eqs. B-26–B-28 in eq. B-20, and holding belligerence constant produces

SPr =
�

s

fp(s)R
R(s) Pr (s)

�
(1− h)

�
1− (1−m)2

�
φ(1− �m)v�

+(1− h)
�
1− (1−m)2

�
φ(1− �m)v�

�
+O

�
(1− h)2

�
, (B-40)
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whereby

SPr = φv
�2(1− h)

�
1− (1−m)2

�
(1− �m)Rp +O

�
(1− h)2

�
. (B-41)

Adding up the selective pressures one obtains

S = −
C �

y

1− Cy
(1−R) + v

�2(1− h)
�
1− (1−m)2

�
(1− �m)Rp +O

�
(1− h)2

�
. (B-42)

Using eq. B-38, eq. B-39, and eq. B-42 in this selection gradient, neglecting the remainder, and setting
S = 0 finally gives

C �
y

1− Cy
=

φv�2(1− h)(1− �m)(1−m)

N
. (B-43)
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