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Abstract

Repolarization alternans, a beat-to-beat alternation in

action potential duration, enhances dispersion of repolar-

ization when propagation velocity is involved. In this work,

repolarization dynamics and propagation velocity kinetics

are studied in a chronic sheep model of pacing-induced

atrial fibrillation. Two pacemakers were implanted in four

sheep, the first one to deliver pacing protocols and the sec-

ond one to record a unipolar electrogram. Measuring in

vivo in a free-behaving sheep model right atrial CV kinet-

ics and repolarization alternans during electrical remod-

elling was shown to be feasible. A significant and gradual

decrease of propagation velocity and right atrial effective

refractory period during the weeks preceding sustained

atrial fibrillation was observed. Repolarization alternans

and propagation velocity kinetics are promising parame-

ters for in vivo assessment of atrial fibrillation susceptibil-

ity.

1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia

and is frequently responsible for morbid and fatal com-

plications. This study investigates the potential of orig-

inal electrophysiological parameters (i.e. repolarization

alternans and propagation velocity kinetics) in predicting

AF susceptibility in a pacing-induced sheep model of sus-

tained AF.

It has been shown experimentally that sustained AF re-

quires a critical amount of dispersion of repolarization [1]

and a critical slowing down of propagation velocity [2].

Repolarization alternans, a beat-to-beat alternation in ac-

tion potential duration, enhances dynamically the disper-

sion of repolarization when propagation velocity is in-

volved [3]. Moreover, atrial cells are especially prone

to repolarization alternans because of the absence of T-

tubules [4]. However, it is unknown whether repolarization

alternans plays a role in sustaining AF and whether the in-

volvement of propagation velocity restitution at slow heart

rates decreases atrial repolarization alternans threshold.

We hypothesize that the increased susceptibility to AF

that takes place during the time course of pacing-induced

electro-anatomical remodelling is associated with :

1. a gradual reduction in atrial repolarization alternans

threshold;

2. a gradual reduction in atrial propagation velocity.

In this paper, we report on the feasibility of studying

atrial repolarization alternans and propagation velocity ki-

netics in a chronic free-behaving sheep model of pacing-

induced AF. First we describe the experimental procedure

and the parameter extraction approach we used. Then, we

present some results on the evolution of propagation ve-

locity kinetics with respect to the induction of AF. We also

present preliminary observations of repolarization wave al-

ternation at high pacing rates.

2. Methods

Two pacemakers (VitatronTM ), each with a single lead

screwed into the right atrium (figure 1 (a)) were implanted

in four sheep. The first pacemaker was used to record

a broadband (sampling frequency 800 Hz, 0.4 Hz high

pass filter) unipolar atrial electrogram (EGM). Figure 1 (b)

shows a typical intracavitar EGM. The pacemaker impulse

(I) is followed by right atrial depolarization (Ra) and re-

polarization (Ta), and far-field ventricular depolarization

(Rv). An EGM and a subcutaneous ECG were recorded

with a Holter device and transmitted to a computer by

Bluetooth. The second pacemaker was used to deliver

long term intermittent burst pacing and electrophysiologi-

cal protocols.

2.1. Signal analysis

In order to extract the different parameters (repolariza-

tion alternans threshold and propagation velocity), iden-

tification of timing of each event must first be extracted

from EGM signals. These different types of event are
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Figure 1. (a) X-ray view of the pacemaker’s leads screwed

in the right atrium. (b) Typical right atrial EGM with pace-

maker impulse (I), atrial depolarization (Ra), atrial T wave

(Ta) and far-field ventricular depolarization (Rv)

pacemaker impulse, atrial depolarization and repolariza-

tion waves, and far-field ventricular depolarization wave.

The pacemaker impulse constitutes the highest fre-

quency component of the EGM. The impulse detection is

carried out as follows :

1. application of a highpass filter to the EGM signal. A

Chebyshev filter was used (cutoff frequency 180 Hz);

2. application of a threshold (α = 85% of the maximal

amplitude of the filtered signal);

3. identification of pacemaker impulses as local maxima.

Atrial depolarization waves were then identified as the

local minima (window length of 50 ms) following the

pacemaker impulse. A template matching approach was

used to identify the timing of T waves. In order to reduce

noise and artifacts, a fourth order polynomial was fitted

on each T wave segment. A threshold (85 % of maximal

amplitude) was applied to the subcutaneous ECG to detect

the far-field ventricular depolarizations. They were then

identified by the local maxima.

2.2. Experimental procedure

Three different pacing protocols, named S1S1, S1S2

and burst pacing, were used in the experimental procedure.

The first two are measurement protocols and the last one is

used for AF induction.

The S1S1 protocol was used to determine of atrial repo-

larization alternans threshold. It consists of sequences of

400 beats applied to the sheep’s right atrium. From one se-

quence to the next, the coupling interval is decremented by

10 millisecond (ms) steps, starting at 400 ms. This proto-

col stops when some stimulus fails to depolarize the right

atrium.

The S1S2 protocol was used to determine restitution of

atrial activation time. This protocol consists of sequences

of 20 beats at 400 ms cycle length (S1) followed by deliv-

ery of a premature beat (S2). From one sequence to the

next, the time interval between the last S1 beat and the S2,

defined as S1S2 interval, is decremented by 10 ms steps

(from 400 ms to 30 ms). The time interval between the

S2 impulse (I) and the following atrial depolarization (Ra)

for each S1S2 interval was measured. The atrial effective

refractory period was defined as the longest S1S2 interval

that failed to depolarize the atrial tissue.

The pacing protocol leading to sustained AF consists in

intermittent sequences of burst pacing of 5-sec duration

followed by 2-sec rest period. The pacing interval was

programmed at 10 ms above the atrial effective refractory

period.

The experimental procedure was the following :

1. measurement protocols (S1S1 and S1S2);

2. two weeks of burst pacing protocol (induction of

electro-anatomical remodeling);

3. measurement protocols (S1S1 and S1S2).

Measurements of atrial effective refractory period and

propagation velocity made before burst pacing activation

were taken as baseline conditions. Steps 2 and 3 were re-

peated until the sheep developed sustained AF.

3. Results

None of the four implanted sheep developed non-

sustained AF at baseline (before burst pacing protocol ac-

tivation), in spite of aggressive pacing rates during mea-

surement protocols (S1S1 and S1S2).

Paced rhythm Non sustained AF

S2
S1S1S1S1

Paced rhythm Non sustained AF

S2
S1S1S1S1

Figure 2. Non-sustained AF induced during the S1S2 pro-

tocol. AF started at a S1S2 interval = 100 ms

The burst pacing protocol was activated in two sheep

in which sustained AF was successfully induced after re-

spectively four and six weeks. Interestingly, both sheep

developed non-sustained AF after 2 weeks of burst pac-

ing during S1S2 protocol for coupling intervals between

140 ms and atrial effective refractory period (∼ 110 ms) as

shown in figure 2.

3.1. Propagation velocity kinetics

Activation time restitution was determined in both burst-

paced sheep on a 2-week basis. For long S1S2 intervals,

activation time remained stable; an increase was noted

954



(a)

(b)

(c)

S1S2 = 400 ms

S1S2 = 130 ms

S1S2 = 120 ms

S1 S1 S2

Activation time = 46 ms

Activation time = 30 ms

No capture = ERP

S1
S1

S1 S1

S2

Figure 3. Illustration of the slowing of propagation veloc-

ity with shortened S1S2 intervals. (a) Normal activation

time for long a S1S2 interval (400 ms). (b) Increase in ac-

tivation time near effective refractory period (130 ms). (c)

Effective refractory period (no atrial capture at 120 ms).

(corresponding to a slowing of propagation velocity) as the

S1S2 interval approached atrial effective refractory period

(figure 3). Figure 4 shows a representative example of acti-

vation time restitution kinetics at baseline (i.e. before burst

pacing activation) and after 15 and 30 days of burst pacing

before sustained AF was induced. Each activation time

curve was fitted by an exponential function using a mini-

mum least-squares approach :

y = a · exp (−
x

τ
) + c

where x is the S1S2 interval and y is the corresponding

activation time. The amplitude a, the offset c and the time

constant τ are the parameters to be estimated.
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Figure 4. Evolution of activation time curve during the

time course of burst pacing

The offset c, corresponding to the activation time at rest

(400 ms cycle length), increased progressively during the

time curse of rapid pacing from 13 ms at baseline to 17 ms

and 21 ms after 15 days and 30 days of burst pacing, re-

spectively. Also the amplitude a increased with burst pac-

ing, which illustrates the slowing of propagation velocity

for coupling intervals close to the effective refractory pe-

riod starting at a value of 25 ms at baseline, and increasing

to 30 ms and 44 ms after 15 and 30 days of burst pacing,

respectively. The corresponding propagation velocities for

both burst-paced sheep are summarized in table 3.1. No

significant evolution in the time constant τ was observed

with burst pacing.

PVel at rest PVel near ERP

Sheep # 1 # 2 # 1 # 2

Baseline 101 cm/s 110 cm/s 51 cm/s 63 cm/s

2 weeks 88 cm/s 92 cm/s 44 cm/s 50 cm/s

4 weeks 66 cm/s AF 33 cm/s AF

6 weeks AF AF AF AF

Table 1. Propagation velocity (PVel) measured for both

burst paced sheep, at rest and near effective refractory pe-

riod, from baseline to sustained AF.

Atrial effective refractory periods also showed a gradual

decrease during the time course of burst pacing (figure 4).

Table 2 summarizes the values of atrial affective refractory

period.

Sheep # 1 # 2 # 3 # 4

Baseline 150 ms 160 ms 150 ms 160 ms

2 weeks NA 110 ms 120 ms NA

4 weeks NA 90 ms AF NA

6 weeks NA AF AF NA

Table 2. Atrial effective refractory periods measured on

four sheep, from baseline to sustained AF

3.2. Atrial repolarization alternans

In two of the four implanted sheep, we were able to re-

liably identify alternans of atrial repolarization which was

observed during S1S1 protocol at coupling intervals near

atrial effective refractory period. Figure 5 shows a rep-

resentative example. The top row shows a bipolar sub-

cutaneous ECG derivation with 4/1 atrioventricular block.

The bottom row shows the intracavitary EGM. Note the

alternation of atrial repolarization (Ta), while the far field

ventricular depolarization takes place every 4 atrial beats.

In general, atrial repolarization alternans and its threshold

could not be reliably established during the time course of

burst pacing because of 2/1 atrioventricular block at most

rapid pacing rates.
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Figure 5. Example of atrial repolarization alternans during

an S1S1 protocol. (a) Subcutaneous ECG during a four-to-

one atrioventricular block. The atrial EGM clearly shows

the beat-to-beat alternation in the repolarization wave am-

plitude (Ta). The S1S1 cycle length is 140 ms.

4. Discussion and conclusions

We report here for the first time the observation of right

atrial repolarization alternans in a free-behaving sheep

model of pacing-induced AF. Importantly, atrial repolar-

ization alternans was observed near atrial effective refrac-

tory period; its threshold, however, could not be reli-

ably determined during pacing-induced electro-anatomical

remodeling because of far field ventricular interference.

Also other important changes took place including:
1. a gradual decrease in atrial effective refractory period;

2. a progressive decrease in propagation velocity at any

pacing rates, with a marked slowing near atrial effective

refractory period.
Allessie et al. [5] reported in a similar model the lack

of any increase in dispersion of refractory periods with in-

creasing susceptibility to AF. Their measurements, how-

ever, were made during steady state conditions, i.e. with

delivery of a single premature beat to determine atrial

effective refractory periods. Our findings extend to the

whole heart previous works performed in single cells

showing the susceptibility of atrial cells to repolarization

alternans (Huser et al [4]). Therefore, repolarization alter-

nans might enhance dispersion of refractory periods only

at pacing rates near atrial refractory periods. Interestingly,

Qu et al. [3] showed in simulated tissues that propagation

velocity had to be engaged for discordant alternans to take

place. Only discordant alternans, where islands of action

portential duration were out of phase, increased dispersion

of repolarization. In the present study, propagation veloc-

ity declined gradually during the time course of electro-

anatomical remodeling, with a steep slowing near atrial re-
fractory period. This steep slowing paralleled the suscepti-

bility to AF as shown by bouts of non sustained AF at pac-

ing rates near atrial refractory periods after 15 and 30 days

of burst pacing. Because atrial repolarization alternans was

measured in a single point, and because its threshold could

not be determined reliably, the role of repolarization al-

ternans and propagation velocity in enhancing dispersion

of refractory periods and susceptibility to AF could not be

established. Future studies are warranted in which ven-

tricular rate will be controlled by producing atrioventric-

ular block. In conclusion, these preliminary results show

the feasibility of measuring both atrial repolarization alter-

nans and propagation velocity kinetics and their potential

in predicting susceptibility to AF.
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