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ABSTRACT
Background The recurrent ∼600 kb 16p11.2 BP4-BP5
deletion is among the most frequent known genetic
aetiologies of autism spectrum disorder (ASD) and
related neurodevelopmental disorders.
Objective To define the medical, neuropsychological,
and behavioural phenotypes in carriers of this deletion.
Methods We collected clinical data on 285 deletion
carriers and performed detailed evaluations on 72
carriers and 68 intrafamilial non-carrier controls.
Results When compared to intrafamilial controls, full
scale intelligence quotient (FSIQ) is two standard
deviations lower in carriers, and there is no difference
between carriers referred for neurodevelopmental
disorders and carriers identified through cascade family
testing. Verbal IQ (mean 74) is lower than non-verbal IQ
(mean 83) and a majority of carriers require speech
therapy. Over 80% of individuals exhibit psychiatric
disorders including ASD, which is present in 15% of the
paediatric carriers. Increase in head circumference (HC)
during infancy is similar to the HC and brain growth
patterns observed in idiopathic ASD. Obesity, a major
comorbidity present in 50% of the carriers by the age of
7 years, does not correlate with FSIQ or any behavioural
trait. Seizures are present in 24% of carriers and occur
independently of other symptoms. Malformations are
infrequently found, confirming only a few of the
previously reported associations.
Conclusions The 16p11.2 deletion impacts in a
quantitative and independent manner FSIQ, behaviour and
body mass index, possibly through direct influences on
neural circuitry. Although non-specific, these features are
clinically significant and reproducible. Lastly, this study
demonstrates the necessity of studying large patient
cohorts ascertained through multiple methods to
characterise the clinical consequences of rare variants
involved in common diseases.

INTRODUCTION
The 16p11.2 locus (figure 1) encompasses several
distinct genomic structural variants, including a

recurrent interstitial deletion, of a ∼600 kb region
containing 29 genes.1 This deletion defined by
breakpoints 4 and 5 (BP4-BP5) has a population
prevalence of approximately 1/2000,2 and reaches
0.5% in autism spectrum disorders (ASD).3–7 It is
one of the most frequent known single locus aeti-
ologies of neurodevelopmental disorders and ASD.8

We and others have demonstrated that this dele-
tion predisposes to a highly penetrant form of
obesity with a 43-fold increased risk of developing
morbid obesity.1 9 Increased head circumference
(HC) has also been associated with the deletion.2 10

A mirror phenotype is observed in carriers of the
reciprocal duplication who present a high risk of
being underweight and microcephalic.2 10

The diversity of published clinical features,10–14

together with the report of asymptomatic (but not
fully evaluated) transmitting parents,10 15 16 demon-
strated the need to assess systematically the impact
of the deletion on neurocognitive development and
behaviour.15 To identify the essential clinical traits
accurately and assist with genetic counselling,
through a collaborative effort we have collected the
largest dataset of 16p11.2 BP4-BP5 ∼600 kb deletion
carriers. It combines deletion carriers from both the
16p11.2 European and Simons Variation in
Individuals Project (Simons VIP) consortia (n=116
and n=52, respectively). We present in this report
the natural history, frequency, and range of pheno-
types of this rearrangement. We demonstrate that
the 16p11.2 deletion consistently impacts cognitive
functioning, behaviour, growth, and body mass
index (BMI).

PATIENTS AND METHODS
Patients
This study was reviewed and approved by the insti-
tutional review board of each site conducting the
study. Signed consents were obtained from partici-
pants who underwent full assessments. For the
data collected through questionnaires, information
was gathered retrospectively and anonymously by
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physicians who had ordered comparative genomic hybridisation
(CGH) analyses performed for patient care purposes only.17

Consequently, research based informed consent was not required
by the institutional review board of the University of Lausanne
which granted an exemption for this part of the data collection.

Carriers were ascertained through several cohorts (table 1).
Details on ascertainment and data collection for the partici-
pants have been previously published.2 18 All participants in
the Simons VIP cohort were mapped using whole genome
oligonucleotide arrays, and were found to have the common,

Table 1 Ascertainment of deletion carriers
Inheritance

Cohorts† Mean age (y) Carriers M F Sex ratio p Value
De novo/inherited
(mother:father:unknown) Patients screened

Europe† Probands 10.7 85** 56 28 1.49×10−3 25/28 (17 : 10 : 1) 30635**

Carriers siblings 13.9 9 6 3 0.25 NA
Transmitting parents 37.4 22 8 13 0.19 NA

Simons VIP Probands 8.2 45*** 26 19 0.19 27/7 (2 : 3:2) 15749***

Carriers siblings 8.7 4 0 4 0.62 NA
Transmitting parents 42.7 3 2 1 – NA

Literature DD/ID§ 9.8 84 56 28 1.49×10−3 38/15 (8 : 7:0) NA
General population‡ 45.1 18* 8 10 0.41 NA 58635*

Obesity‡ 26.5 15 4 11 0.59 2/3 (3 : 0:0) 2579
Carriers TOTAL – 285 166 117 2.12×10−3 92/53(30 : 20) 107598

†Distribution of clinical indications for referral is detailed in the previous publication.2

‡Only anthropometric data were available and previously published.1 2

§Cases (including 7 relatives) reviewed from the literature.4 5 7 10 11 13–16 19–23 The copy number variant detection methods used in the literature are: 19K bacterial artificial chromosome
(BAC) microarray,4 Affymetrix 500K,5 Affymetrix 5.0,7 44K and 105K Agilent,10 44K and 105K Agilent,11 105K Agilent,14 Affymetrix 500K, Affymetrix 6.0, Illumina HumanHap300 BeadChip,
38K BAC microarray (Swegene), 44K, 105K and 244K Agilent,15 Affymetrix 500K, Affymetrix 6.0, and Illumina 1M,16 BAC microarray,19 Affymetrix 6.0,20 Agilent 105K,21 NimbleGen HD2,
Affymetrix 6.0, Affymetrix 500K or ROMA 85K,22 244K Agilent or Affymetrix 6.0.23

Data were available on 18/25*, 85/113** and 45/67*** deletion carriers.
Due to missing data, there may be differences between the total number of cases and the sum of cases in the various columns. Statistically significant values are in bold.
DD/ID, developmental disorders/intellectual disability; NA, non-available or not applicable; Simons VIP, Simons Variation in Individuals Project.

Figure 1 The 16p11.2 locus. Highly homologous blocks of low copy repeats (LCRs) may act as substrates for non-allelic homologous
recombination, predisposing to genomic disorders.48 Five LCRs have been defined as mediators of recurrent and clinically relevant imbalances within
the 16p11.2 chromosomal band. To clarify the terminology, we propose to number these ‘recombination hotspots’ from telomere to centromere as
breakpoints BP1 to BP5. The current study describes only features associated with the proximal 600 kb recurrent deletion, delineated by BP4 and
BP5 at genome sequence coordinates 29.5 and 30.1 Mb, respectively. Distal BP2-BP3 and BP1-BP3 mediated rearrangements, of respectively 220
and 550 kb, containing the SH2B1 gene, have also been reported in individuals with early onset obesity and variable degrees of developmental
delay.49 Several recurrent rearrangements overlap the proximal BP4-BP5 region studied here including the 1.7 Mb deletions and duplications from
BP1 to BP59 which should be considered as distinct entities. (A) Rearrangements are schematically pinpointed with reddish bars while grey bars
and striated blocks indicate intervals of recurrent polymorphisms reported in the Database of Genomic Variants (http://projects.tcag.ca/variation) and
common sequence stretches, respectively. (B) Genes encompassed by the genomic region between BP4 and BP5 are shown. All genomic positions
are given according to the human genome build hg18/NCBI 36.
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recurrent 16p11.2 BP4-BP5 deletion. Data for 96 carriers (76
probands and 20 relatives) from the European consortium were
obtained by completion of a questionnaire by referring clini-
cians. Fifty-four probands and 18 relatives (n=72) were exten-
sively evaluated on site by investigators of one of the consortia.
Data on 117 deletion carriers ascertained for developmental dis-
orders/intellectual disability (DD/ID) (n=84) , obesity (n=15)
and from the general population cohorts (n=18), were collected
from our previously published studies, as well as from the lit-
erature.1 2 4 5 7 10 11 13–16 19–23

In the Simons VIP cohort, four patients were excluded based
on the presence of additional pathological copy number var-
iants (CNV), other genetic diagnoses, birth asphyxia, fetal
alcohol syndrome, and/or prematurity <30 weeks. In the
European series, known additional variants (three carriers with
a CNV >500 kb and a pair of twins with an FGFR3 mutation)
did not represent an exclusion criterion. The inclusion or exclu-
sion of these five carriers did not have an impact on any results
(supplementary table S1). They were included in the final ana-
lysis because of the arbitrariness of this filtering that only takes
into account visible rearrangements and/or known point muta-
tions. We have to assume that many additional mutational
events not detectable by CGH array may be present in this
dataset.

In the VIP cohort, ethnicity was 75% Caucasian, 5.8%
African American, 1.9% Native American, 7.7% other (mixed
ancestry), 9.6% unknown (adopted). For the 72 patients evalu-
ated on site in the European cohort, all carriers were of
European descent.

All available data on patients ascertained for DD/ID from
the 16p11.2 European cohort, Simons VIP and the literature
(n=285) were pooled for statistical analysis. Due to missing
data for some phenotypes, the denominator changes, which is
specified throughout the text. Data collected through question-
naires or by direct assessment are presented separately in sup-
plementary tables S2 and S3. The 33 deletion carriers from the
general population and obesity cohorts, for which only
anthropometric data were available, are used in the analysis of
growth parameters alone. Full scale intelligence quotient
(FSIQ) was assessed in 68 intrafamilial controls. The Simons
Simplex Collection (SSC)24 was used as an ASD reference popu-
lation to investigate the effect of obesity on the frequency of
macrocephaly in patients with a neurodevelopmental disorder.

Cognitive functioning, psychiatric and behavioural assessment
Overall cognitive functioning was assessed using either the
Mullen Scales of Early Learning, the Differential Ability
Scales—Second Edition (Early Years and School Age, DAS-II),
the Wechsler Intelligence Scales (WPPSI-III; WISC-IV; WAIS-III)
or the Wechsler Abbreviated Scales of Intelligence, depending
on the age and ability level of the individual.25 Vineland
Adaptive Behaviour Scales (VABS)26 were used to measure
adaptive skills in daily life. Intellectual disability (ID) was diag-
nosed as having an FSIQ of 70 or below on a standardised IQ
test as well as concurrent deficits in adaptive functioning as
defined by the Diagnostic and Statistical Manual of Mental
Disorders, 4th edition, text revision (DSM-IV-TR) criteria.27

Different standardised neuropsychological measures were
used to assess global cognitive functioning of carriers in the lit-
erature.5 11 15 16 23 For the purpose of this study, throughout
the text we use the term FSIQ to refer to normalised cognitive
levels (general population mean=100; standard deviation
(SD)=15). ASD was diagnosed by experienced, research-reliable
clinicians using the Autism Diagnostic Interview—Revised

(ADI-R)28 and the Autism Diagnostic Observation Schedule
(ADOS).29 The Diagnostic Interview for Genetic Studies
(DIGS)30 was performed for adults, while children’s behavioural
and emotional problems were assessed with parent report ques-
tionnaires.31–33 Additional DSM-IV-TR diagnoses were made
by licensed psychologists and psychiatrists using history, parent
report and in-person interview. For all aforementioned evalua-
tions, the clinicians were not blinded to the genetic status of
the participants.

Statistical analyses
To prevent bias due to intrafamilial correlations, deletion-
carrying relatives of probands were excluded as required to
avoid including more than one member of the same family in a
single analysis. Obesity and morbid obesity in adults are
defined throughout the study as BMI ≥30 and 40 kg/m2,
respectively. Z scores were computed for all data using gender,
age, and geographically matched reference populations as previ-
ously described.1 Obesity in children and macrocephaly were
defined as BMI and HC Z score ≥2, respectively.

One-tailed Fisher ’s exact test was used to compare frequen-
cies of the deletion in patients and controls. Two-tailed
Student’s t test was performed to assess whether BMI,
height, weight, and HC Z scores of deletion carriers were dif-
ferent from zero (general population mean). Correlation
between these features and FSIQ were examined using
Spearman correlation. The binomial test was performed to
test for gender bias.

A linear model was applied to correct HC Z scores for BMI,
age, and gender effects, using Matlab function regress. A two-
tailed Student t test was performed to test the residual effects
being different from zero. Linear mixed effect model was used
to analyse the longitudinal and cross-sectional data and prop-
erly handle autocorrelations. Model fitting was performed to
obtain the mean Z score and the corresponding p value for a
given time window. The calculations were done using the lme
function from the R package nlme.

For each of the Wage windows the mean Z scores were com-
puted for each of the P patients resulting in a W×P matrix.
Since W tests were carried out, we applied a multiple testing
correction that takes into account the correlation structure of
the test statistics. As a first step, the effective number of tests
(Weff ) was derived based on the Pearson’s correlation matrix of
the W×P dataset.34 We then applied Bonferroni correction of
the linear mixed effect model p values, but using Weff instead
of W tests to correct for multiple testing.

Breakpoint mapping with short arm of chromosome 16 custom
array CGH
To confirm 16p11.2 deletions and ensure that the breakpoints
are within the BP4 and BP5 low copy repeats (figure 1), we
hybridised Cy3-labelled DNA of the European patients to
custom made Nimblegen arrays. These arrays contained 71 000
probes spread across the short arm of chromosome 16 from
22.0 to 32.7 Mb (at a median space of 45 bp between 27.5 and
31.0 Mb) and 1000 control probes situated in invariable region
of the X chromosome.2 Cy5-labelled DNA from the GM12042
CEPH (Centre d’Etude du Polymorphisme Humain) cell line was
invariably used as reference. DNA labelling, hybridisation and
washing were performed according to Nimblegen protocols.
Scanning was performed using an Agilent G2565BA Microarray
Scanner. Image processing, quality control, and data extraction
were performed using the Nimblescan software V.2.5.
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RESULTS
The extent of the 16p11.2 rearrangements was assessed by aCGH
through standard medical diagnostic procedures and confirmed
by a high density custom made array as published (see
Methods).2 35 Only carriers of the ∼600 kb 16p11.2 BP4-BP5
deletion were considered for further phenotyping; we gathered
clinical information on 285 such carriers (figure 1). Cognitive
functioning was evaluated in 71 carriers (mean FSIQ=76.1;
SD=16.4; figure 2A) and was on average 32 points lower in de
novo carriers when compared to their non-carrier family
members (∼−2 SD, p=3.96×10−27; table 2A). There is a trend
towards higher FSIQ in de novo (n=32) versus inherited (n=14)
carriers (FSIQ 83 vs 74; p=0.13; table 2A and supplementary
table S1). Of note, parents of de novo deletion carriers who dir-
ectly enrol their child through a web based questionnaire (VIP
cohort) have a higher IQ than the mean of the general popula-
tion. Among carriers, 20% met DSM-IV-TR criteria for ID (65%
mild FSIQ 55–70 and 35% moderate FSIQ 40–55). There are no
differences in FSIQ between probands referred for neurodevelop-
mental disorders and carriers who were not medically ascertained

(relatives who carry the deletion) (table 2, supplementary table
S1). Carriers’ verbal IQ (mean=74; SD=17.5; range 23–107;
n=42) is significantly lower than non-verbal IQ (mean=83.3;
SD=18.0; range 47–160; n=43) (p=0.02). Of the 24 carriers
evaluated in Europe, 20 (83%) had speech and language therapy
during childhood.

The 16p11.2 BP4-BP5 deletion has been repeatedly associated
with ASD, and is one of its most frequent known
aetiologies.4–8 Of the fully assessed carriers, ∼15% (8/55) of the
children and no adults met criteria for ASD by ADOS and
ADI-R. More than 70% (51/70) of non-ASD carriers were
found to have other DSM-IV-TR diagnoses27 including atten-
tion deficit and disruptive behaviour disorders, anxiety disor-
ders, mood disorders, and substance related disorders (table 2B).
There is a significant excess of males among carriers ascertained
for neurodevelopmental disorders (138 M/75 F; p=2.4×10−4) in
contrast to other criteria (table 1). Gender, however, is not a
significant covariate of FSIQ, adaptive level (Vineland), behav-
ioural scores (Social Responsiveness Scale, SRS), neurological
symptoms or any other trait (supplementary table S1).

Figure 2 Distribution of full scale intelligence quotient (FSIQ) and body mass index (BMI) in deletion carriers.(A) Distribution of FSIQ of 16p11.2
BP4-BP5 deletion carriers (grey bars), intrafamilial non-carrier relatives (control, blue bars) and general population (blue bell curve). The red dashed
vertical line represents the FSIQ threshold (70) for intellectual disability (ID). FSIQ is on average 32 points lower in carriers (n=71; mean=76.1;
SD=16.4) when compared to their relatives who did not carry the deletion (n=68; mean=108.3; SD=10.9). SD in carriers is similar to that of the
reference population (mean=100; SD=15). Bin size was calculated to obtain 10 equal sized bins. (B) Cross-sectional distribution of BMI in carriers
(circles: female; open squares: male). BMI progressively increases throughout childhood and adulthood. 70% of the adult carriers are obese (BMI
≥30). The dashed lines represent the 3rd and 97th Center for Disease Control and Prevention (CDC) centile, while the dotted lines pinpoint the
thresholds for underweight (BMI=18.5), obesity (30), and morbid obesity (40).

Table 2 FSIQ (A), behavioural and psychiatric features (B) in deletion carriers and intrafamilial controls
Carriers

Probands Relatives Non-carriers

A Inherited De novo Unknown Parents Siblings Parents Siblings

Mean age (years) 14.7 10.9 15.7 36.8 10.2 38.6 11.7
Mean FSIQ 74 82.7 64.9 78.6 65.3 109.1 106.6
Number of cases 14 32* 14 7 4 46 22

B 16p11 Europe n (%)† Simons VIP n (%)† Total cohorts

DSM-IV-TR diagnosis Children Adults Children Adults n (%)

ASD‡ 1 (12.5) 0 7 (15) 0 8 (11.4)
Any DSM-IV-TR diagnosis other than ASD 4 (50)§ 6 (50)§ 39 (83) 2 (67) 51 (72.9)
No diagnosis 3 (37.5) 6 (50) 1 (2) 1 (33) 11 (15.7)
Total 8 12 47 3 70

*Two mosaic cases.
†10 probands and 10 relatives in the 16p11.2 European cohort and 44 probands and 6 relatives in Simons VIP.
‡ADOS and Autism Diagnostic Interview criteria
§Include attention deficit and disruptive behaviour disorders (n=4), anxiety disorders (n=5), mood disorders (n=3) and substance related disorders (n=2). Patients can have more than one
diagnosis.
ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum disorder; DSM-IV-TR, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision; FSIQ, full scale
intelligence quotient.
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We observed characteristic anthropometric patterns in
deletion carriers. Birth weight is below average (n=124, Z
score=−0.61; supplementary table S4), whereas Z scores for
BMI are significantly higher by the age of 3.5 (Z score=1.01,
p=0.03) (figure 3B). Longitudinal data show that this increase
in BMI can be sudden and dramatic (figure 3D, supplementary
figure S1). By the age of 7 years, obesity is a major comorbidity
present in more than 50% of the carriers (supplementary
figure S2). Excluding carriers ascertained for obesity, the fre-
quency reaches 75% in adults (36/48), and among all adult
obese patients 45% are morbidly obese (figure 2B). The variance
of BMI in deletion carriers is higher than in the general popula-
tion (p=2.06×10−8). Hyperphagia was recorded (through par-
ental questionnaires or reports) in all carriers (n=14) with
obesity examined at the European site. The most severe cases
require strict control of food access through locked cupboards
and refrigerator.

BMI correlates neither with FSIQ (supplementary table S5)
nor behavioural or adaptive scores (SRS, VABS). Furthermore, it
is independent of ascertainment methods, inheritance,
gender, or the presence of neurological features (supplementary
table S1). Childhood obesity is, however, often associated with
accelerated prepubertal linear growth, although the mechanism
underlying this phenomenon remains unclear.36 In obese dele-
tion carriers, a similar association is observed (figure 3A) in
children whose height is increased (n=57, Z score=0.54,
p=6.8×10−4) and peaks at 9 years of age (Z score=1.08,
p=1.5×10−3). This is to be contrasted with short stature,
which is apparent in probands (n=182, Z score=-0.33,
p=3.2×10−3), newborns (n=88, Z score=−0.49, p=1.3×10−3),
non-obese children (n=91, Z score=−0.59, p=4.4×10−4), and

adults (n=32, Z score=−1.1, p=8.0×10−5) (figure 3A, supple-
mentary tables S1, S4, supplementary figure S3).

An overall increase in HC is observed in probands (n=146, Z
score=0.56, p=4.0×10−4) with macrocephaly (HC Z score ≥2)
present in 29/170 (17%) of the carriers. HC correlates positively
with BMI (r=0.45, p=2.8×10−8) (supplementary table S5) and
remains elevated after correcting for BMI, age, and gender (linear
model; mean corrected Z score=0.60, p=1.1×10−5). Obese dele-
tion carriers show an increased frequency of macrocephaly when
compared to non-obese carriers (32% and 10%, respectively;
p=1.8×10−3). Longitudinal data (figure 3B,C, supplementary
figure S4) show that HC, which is lower at birth by 0.57 Z scores
(n=58), increases during infancy (+1.74 Z scores, p=4.8×10−4),
several years before the elevation of BMI Z scores. In the Simon
Simplex Collection of ASD children, 41.3% of patients with
obesity have macrocephaly when compared to 12.5% in non-
obese patients (p=5.4×10−26) (supplementary figure S5).

Neurological features observed in patients referred for DD/ID
include a wide range of findings (supplementary table S2).
Gross motor delay was reported in 37.6% of the patients
(32/85 ascertained for DD/ID in the European cohorts), which
is consistent with previous series,10 23 37 and mean age of
walking is significantly delayed (mean=20.5 months, SD=8.6,
n=30, p=8.63×10−6). Epilepsy is a frequent feature reported in
47/195 (24%) of the probands. While this frequency is not sig-
nificantly different in non-medically ascertained carriers (5/38,
13%, p=0.2), it is higher in the fully assessed probands (22/54,
41%, p=1.6×10−2). A small fraction of carriers (12/233)
received a diagnosis of paroxysmal dyskinesia syndrome
(OMIM 128200). MRI performed in a subset of carriers (n=65)
showed mostly mild and non-recurrent features. Posterior fossa

Figure 3 Height, body mass index (BMI), and head circumference (HC) in 16p11.2 BP4-BP5 deletion carriers through development. Height
(panel A), BMI (panel B) and HC (panel C) mean Z scores (and corresponding p values in red) for each age window were computed using a mixed
effect model to analyse longitudinal and cross-sectional data together. p Values are derived from a two-sided t test of the fixed effects estimates
probing whether they are significantly different from 0. Full red dots are p values surviving multiple testing correction (significance’s threshold at
6.3×10−3 for height in both obese and non-obese, at 5.6×10−3 for BMI, and at 7.1×10−3 for HC) as opposed to empty red dots. Number of cases
N is indicated for each age category. Panel A: Deletion carriers were classified in two groups; either the ‘obese group’ (squares) if they presented
obesity at least once during their development, or the non-obese group (triangles). Height is significantly increased in prepubertal obese carriers
while non-obese children remain slightly shorter than the general population. Panel B: BMI is significantly elevated by 3.5 years of age. Panel C: HC
follows a rapid increase (+1.74 Z score, p=4.8×10−4) during infancy, and remains high throughout life. Panel D: Longitudinal measures of BMI in a
subset of 12 carriers illustrating different age onsets of BMI acceleration. The grey area specifies the interval between the 3rd and 97th centile as
defined by the WHO data (http://www.who.int/childgrowth/en) between 0–2 years and the Centre for Disease Control and Prevention data above
2 years of age. The white line marks the 50th centile. All available longitudinal data are included in supplementary figure S2.
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and/or craniocervical junction related abnormalities (eg, Chiari
I malformation, cerebellar tonsillar ectopia, platybasia) were
present in 19 of 41 fully reviewed MRIs.

Malformations or major medical problems are present in
76/130 (58%) of the probands from both cohorts, of which 53
have only a single pathological feature (supplementary tables
S3 and S6). In non-medically ascertained carriers identified in
the families through cascade testing, this frequency is much
lower (10/38, 26.3%, p=7.6×10−4). No specific recurrent mal-
formation sequence or multisystemic involvement is observed
(supplementary table S6). There are, however, features likely to
be associated with the deletion which, in most cases, do not
require treatment such as vertebral abnormalities (hemiverteb-
rae or kyphoscoliosis affect ∼20% of carriers). Facial dys-
morphia was visible in 69/150 (46%) carriers, yet no recurrent
facial gestalt was observed in either cohort.

The frequency of this BP4-BP5 deletion (table 1) among
patients referred for clinical chromosome hybridisation micro-
array is similar for both consortia (0.28%). Though the two
cohorts were assembled in different continents and healthcare
systems, as well as using different ascertainment criteria, they
share striking similarities with the exception of the rate of
inherited cases. Among Simons VIP patients, the deletion arose
almost exclusively de novo (table 1). Globally, for participants
with available parental data (51%), the deletion occurred de
novo in 92/145 cases (including two mosaic cases) (64%) and
was inherited in the remaining cases (36%). Assuming a stable
prevalence of the deletion, this high rate of de novo events
implies decreased fitness of this deletion (0.52 and 0.20 in the
European and Simons VIP cohorts, respectively).

DISCUSSION
Our study demonstrates that the recurrent 600 kb BP4-BP5
deletion, which has a prevalence of ∼0.05% in the general
population,2 has a consistent impact on traits affecting adap-
tive skills. FSIQ is decreased by ∼2 SD in carriers of both
genders, about 20% of them meeting criteria for ID. Since the
FSIQ variance remains identical to that of the general popula-
tion (p=0.25), approximately 30% of deletion carriers fall
within the normal range (FSIQ ≥85). Bias in these estimates is
unlikely since there were no differences in FSIQ scores of pro-
bands and non-medically ascertained carriers.

FSIQ does not capture the full range of disabilities experi-
enced by deletion carriers. A history of speech therapy is fre-
quent (83%) and psychiatric comorbidities affect >80% of
carriers. The penetrance of ASD is 15% in our cohorts
(table 2B), supporting the association of this deletion with
ASD.38 Increased growth velocity of HC during infancy recapi-
tulates the well documented pattern in idiopathic ASD. This
shared head growth pattern, which has attracted considerable
attention as a marker of abnormal brain development, has been
linked to an increase in white matter volume, brain weight and
numbers of neurones in the prefrontal cortex of ASD
patients.39

Obesity is a major comorbidity of 16p11.2 deletion carriers,
with a penetrance among adults of >70%. Durable weight loss
in adolescents or adults has not yet been documented: (1) two
adults treated by bariatric surgery relapsed several years later;
and (2) an adolescent dropped from 39.5 to 27.7 kg/m2 by
dieting and engaging in intense physical activity, but returned
to his initial weight 2 years after discontinuing this regimen.
Weight control is therefore recommended although no data are
available on the efficacy of early intervention in deletion car-
riers. The reported association of ID with obesity40 has led to

the proposal that impaired cognition may result in abnormal
eating behaviour and obesity.41 In 16p11.2 deletion carriers,
however, obesity occurs independently of cognitive function,
adaptive or social behaviour scores.

We hypothesise that the deletion directly affects the neural
circuitry involved in all these phenotypes, including energy
balance. The early increase in HC precedes the onset of obesity
(supplementary figure S4). This increase in HC is also observed
later in childhood and adolescence (figure 3C) when correlation
with brain volume is lower and contribution of skull thickness
higher.42 43 Furthermore we demonstrate that childhood
obesity in 16p11.2 deletion carriers, as well as in patients with
autism (SSC cohort), is a confounding factor contributing to
increased HC (supplementary figure S5). This deletion lowers
final adult height by 1 SD (supplementary figure S3), though
the well documented association between idiopathic childhood
obesity and prepubertal height acceleration36 is maintained in
obese children carrying the deletion (figure 3A,B, supplemen-
tary figure S3).

Epilepsy is the most frequent neurological disorder observed
in deletion carriers, and electroencephalogram (EEG) evaluation
should be prescribed if abnormal movements or behaviours sus-
picious for seizures are observed. A smaller and possibly under-
estimated fraction of carriers have paroxysmal dyskinesia
syndrome. We failed to observe a difference in the presence or
absence of epilepsy when stratifying for either cognitive func-
tioning, BMI or HC (supplementary table S1). It is possible
that epilepsy and the latter phenotypes are related to haploin-
sufficiency of distinct genes (figure 1B). Mutations in PRRT2, a
gene mapping to the deleted interval, were recently identified
in patients diagnosed with epilepsy and paroxysmal dyskin-
esia,44 whereas a 118kb deletion that encompasses MVP,
CDIPT, SEZ6L2, ASPHD1, and KCTD13 segregated in a three-
generation pedigree with ASD and other neurodevelopmental
abnormalities but not epilepsy.45 Of note, morpholino-driven
reduction of the expression level of the KCTD13 ortholog
resulted in macrocephaly in zebrafish, while its depletion in the
brain of mouse embryos resulted in an increase of proliferating
cells.35

Although we report a large spectrum of malformations (sup-
plementary table S3), the 16p11.2 deletion should not be
regarded primarily as a malformation syndrome. Indeed, the
majority of these abnormalities are infrequent, suggesting
either fortuitous associations or low penetrance (eg, coloboma/
microphthalmia) possibly through unmasking of recessive
mutations. Vertebral and spinal related anomalies (∼20%, sup-
plementary table S3) seem, however, to be strongly associated
with the deletion, suggesting that spine x-ray and orthopaedic
evaluations should be routinely performed in deletion carriers.
TBX6, which maps within the interval, is a candidate gene for
vertebral malformations since mice homozygous for a Tbx6
mutation showed rib and vertebral body anomalies.46

Additionally, TBX6 polymorphisms were associated with con-
genital scoliosis in the Han population.47

In conclusion, our study demonstrates in two independent
datasets that the 16p11.2 BP4-BP5 600 kb deletion consistently
and quantitatively impacts cognitive functioning, HC, BMI,
and growth. A range of behavioural disorders affects the vast
majority of carriers. Probands referred for neurodevelopmental
disorders or morbid obesity and carriers who were not medic-
ally ascertained (relatives of a proband) show similar values for
FSIQ and BMI, suggesting that ‘asymptomatic’ carriers are
uncommon. Five carriers within our cohorts presented an
FSIQ >100 and may therefore represent the higher end tail of
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the FSIQ distribution of deletion carriers. All five presented lan-
guage disorders, autism, disruptive behaviour or obesity. The
deleterious impact of the deletion is further highlighted by its
low fitness reflected by the rarity of multigenerational carrier
families. In contrast to BMI, the variance of global cognitive
functioning (FSIQ) is the same among carriers and control
population, suggesting that the factors determining its variabil-
ity are identical to those at play in the general population and
unrelated to the 16p11.2 locus.

This comprehensive study of the 16p11.2 BP4-BP5 phenotype
helps to guide clinical monitoring and counselling of patients
and families and to potentially overcome the genetic counsel-
ling challenge posed by its variability. It illustrates that the
study of rare variants causing common diseases lacking pathog-
nomonic features requires the assembly and detailed clinical
characterisations of large cohorts, recruited using multiple
ascertainment criteria.
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