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Abstract Knowledge of the hormonal pathway controlling
genotype-specific norms of reaction would shed light on the
ecological factors to which each genotype is adapted. Envi-
ronmentally mediated changes in the sign and magnitude of
covariations between heritable melanin-based colouration
and fitness components are frequent, revealing that extreme
melanin-based phenotypes can display different physiologi-
cal states depending on the environment. Yet, the hormonal
mechanism underlying this phenomenon is poorly under-
stood. One novel hypothesis proposes that these covaria-
tions stem from pleiotropic effects of the melanocortin
system. Melanocortins are post-translationally modified
bioactive peptides derived from the POMC prohormone
that are involved in melanogenesis, anti-inflammation,
energy homeostasis and stress responses. Thus, differential
regulation of fitness components in relation to environmen-
tal factors by pale and dark melanic individuals may be due
to colour-specific regulation of the POMC prohormone.
Accordingly, we found that the degree of reddish melanic
colouration was negatively correlated with blood circulat-
ing levels of the POMC prohormone in female tawny owls
(Strix aluco) rearing a brood for which the size was experi-

A. Roulin (P<) - G. Emaresi - P. Bize - J. Gasparini -
R. Piault - A.-L. Ducrest

Department of Ecology and Evolution,

University of Lausanne, Lausanne, Switzerland
e-mail: Alexandre.Roulin@unil.ch

J. Gasparini

Laboratoire Ecologie et Evolution,
Université Pierre et Marie Curie,
CNRS UMR 7625, 75005 Paris, France

R. Piault
Animal Ecology Group, University of Groningen,
Kerklaan 30, 9751 NN Haren, The Netherlands

8 March 2011

mentally reduced, but not when enlarged, and in females
located in rich but not in poor territories. Our findings sup-
port the hypothesis that the widespread links between mela-
nin-based colouration and fitness components may be
mediated, at least in part, by the melanocortin system.
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Introduction

Organisms usually experience temporal and spatial varia-
tion in environmental conditions. This phenomenon gener-
ates fluctuating selective pressures, potentially favouring
different genotypes that vary in their phenotypic response to
environmental changes, denoted norms of reaction or geno-
type by environment interaction (Hedrick 2006). Norms of
reactions are shaped by key regulators such as hormones
(e.g. sex steroids; Shahjahan et al. 2010) that are adjusted
throughout the life cycle according to environmental condi-
tions. Thus, our understanding of the proximate basis of
reaction norms requires the measurement, along an envi-
ronmental gradient, of candidate hormones.

In the present study, we adopt such an approach to inves-
tigate the proximate basis of the adaptive function of mela-
nin-based colouration. We consider this phenotypic trait
because the biochemistry of melanogenesis is well known
(Sturm 2006). As for most multigenic phenotypic traits,
several genes and hormones known to alter melanogenesis
can explain inter-individual variation in colouration (e.g.
127 loci in mice; Silvers 1979; Bennett and Lamoreux
2003). Here, we focus only on one set of genes belonging to
the melanocortin system.
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From a proximate perspective, the melanocortin system
is involved in the regulation of multiple physiological func-
tions, and may thus underlie covariations between melanin-
based colouration and other phenotypic traits such as
energy homeostasis, immunity, aggressiveness, sexual
behaviour, resistance to oxidative stress and activation of
the stress response and its further modulation (reviewed in
Ducrest et al. 2008). Melanocortins are peptides derived
from the proopiomelanocortin gene (POMC), which is
translated to a POMC prohormone. This molecule under-
goes a series of cell-specific proteolytic cleavages and mod-
ifications that result in the generation of several peptides,
namely the melanocortins (o-, - and y-melanin-stimulat-
ing-hormones, MSH, and the adrenocorticotropic hor-
mones, ACTH), and the endorphins (Pritchard et al. 2002).
In vertebrates, the POMC gene is mainly expressed in the
pituitary gland, but also in the central nervous system; in
most peripheral tissues, neural and pituitaric melanocortins
act as neurocrine and endocrine factors (Cone 2006),
whereas peripherally produced melanocortins have para-
crine and autocrine functions (Slominski et al. 2000).

Feather melanisation occurs during growth in chicks and
moulting in adults. Melanin colouration is generated by the
deposition of mixed eu- (brown/black to grey) and pheomel-
anin (yellow to reddish brown) pigments. In the first of three
steps of melanogenesis, the rate-limiting enzyme tyrosinase
oxidases L-tyrosine to produce dopaquinone that is further
transformed to cysteinyldopa in the presence of cysteine
derivatives. In a second step, pheomelanin is produced, and
in the last stage when cysteine donors are depleted, eumela-
nin polymers are synthesised (Ito and Wakamatsu 2008).
Therefore, the quantity and the ratio of eu- to pheomelanin
depend primarily on the activity of tyrosinase and the pres-
ence of substrates cysteine and tyrosine in the melanosomes.
Two major regulators of melanogenesis, namely the mela-
nocortins and the Agouti protein (ASIP), control the level
and activity of the tyrosinase via binding to the melanocortin
1 receptor (MC1R) (Ito and Wakamatsu 2011; Walker and
Gunn 2010). Binding of melanocortins, particularly «-MSH,
to MCIR, induces transcription and activity of eumelanic
genes such as MITF, tyrosinase, TRP1 and DCT, and there-
fore increases the production of black/brown eumelanin. In
contrast, the inverse-agonist/antagonist ASIP blocks the
transcription of eumelanic genes (Le Pape et al. 2009) and
hence switches the balance between eumelanogenesis
towards pheomelanogenesis (Lin and Fisher 2007).

The different melanocortin peptides not only bind the
MCIR but four other melanocortin receptors that regulate
morphological, physiological and behavioural traits.
Because of the numerous pleiotropic effects of the POMC
gene, we predict an association between the different traits
regulated by the melanocortins binding to the different
MCRs (Ducrest et al. 2008). Hence, in species in which
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melanocortins account for part of the inter-individual varia-
tion in colouration, eumelanin- and pheomelanin-based col-
ouration may be correlated positively and negatively,
respectively, with the levels of the POMC prohormone and
the levels of melanocortins that bind to MC2-5Rs.

Interestingly, recent studies have shown that covaria-
tions between the degree of melanic colouration and other
phenotypic traits are more easily detected under specific
environmental conditions (Roulin et al. 2008a; Piault et al.
2009; Roulin 2009). In the tawny owl (Strix aluco), for
instance, we found that nestlings produced by pale and dark
reddish melanic females have different reaction norms.
Among nestlings raised by foster parents, nestlings born
from dark reddish mothers grew faster than those born from
paler reddish mothers when brood size was experimentally
reduced, but not when it was experimentally enlarged, with
dark and pale individuals growing at similar rates (Roulin
et al. 2008a). Thus, in the tawny owl, the genetic correla-
tion between melanic colouration and offspring growth was
stronger in some environments than in others. Because in
the tawny owl the expression of reddish melanism is
strongly heritable and not or weakly condition-dependent
(Gasparini et al. 2009a), this observation is likely to be the
result of the action of some genes involved in growth tra-
jectories and for which offspring born from differently col-
oured mothers should display either distinct alleles or
different expression levels in relation to rearing conditions.

To test whether regulation of the POMC prohormone is
colour-specific, we performed a brood size manipulation
experiment in breeding female tawny owls (i.e. these
females raised a brood for which we either added or
removed one hatchling) in order to induce changes in the
level of parental workload and thus modify the level of
stress experienced by parents. Assuming that melanocortin
hormones mediate colour-specific growth patterns found in
previous experiments (Roulin et al. 2008a; Piault et al.
2009), we measured the levels of blood circulating POMC
prohormone (Barna et al. 1998; Bell etal. 2005; Myers
et al. 2005) in these breeding females. We thus investigated
whether the levels of the POMC prohormone covary with
the degree of reddish melanic colouration differentially in
females rearing an experimentally reduced or enlarged
brood. Interestingly, beechnut (Fagus sylvatica) production
was particularly pronounced (personal observation), a food
source for woodmice (Apodemus sp.) and bank voles
(Clethrionomys glareolus) (Abt and Bock 1998; Margaletic
et al. 2005), the staple prey species in the study area (Rou-
lin et al. 2008b). Thus, beechnut densities should be pro-
portional to prey densities. As a consequence, we examined
whether the levels of the POMC prohormone covaries with
the degree of reddish colouration differently in females
rearing a progeny located in rich and poor territories with
respect to beech density.



Oecologia (2011) 166:913-921

915

The present study is a first step towards the understand-
ing of the potential role played by melanocortins in generat-
ing reaction norms. Significant results should stimulate
more detailed studies on the pleiotropic effects of the mela-
nocortin system, its importance in generating covariations
between melanin-based colouration and other phenotypic
traits, and more generally why environmental heterogeneity
can promote the evolution of local adaptation (Kawecki and
Ebert 2004). Our aim is therefore not to test whether inter-
individual variation in reddish colouration is the result of
the melanocortin system, but whether differently coloured
owls differentially regulate the POMC prohormone in rela-
tion to environmental factors.

Materials and methods

The study was carried out in 2007 in western Switzerland,
where we installed 366 nest boxes in forests located within
a 911-km? area, at a mean altitude of 672 m (range 458—
947 m). Nest boxes were hung up on trees in forest patches
of at least 4,000 m?; the mean distance between two nest
boxes was 627 m with a minimal distance of 500 m. The
landscape consists of managed forests (26.6%) and farm-
land (55.5%), with 116 villages of 100—1,000 inhabitants
dispersed on the whole area. Forest patches ranged from
0.0038 to 32 km? and were composed mainly of beeches
followed by oaks (Quercus spp.), pure spruce (Picea abies),
European silver fir (Abies alba) and common ash (Fraxinus
excelsior). Farmlands consist mainly in cereal fields, pas-
tures, truck farming, fruit orchards and fallows. In 2007, the
54 breeding females for which we measured levels of the
POMC prohormone laid between 2 and 7 eggs (mean + SD
4.8+ 1.0) from 1 February to 8 March (mean &+ SD 24
February + 7 days). Ninety-one percent of the eggs
hatched and 1-7 nestlings per nest took their first flight
(mean £ SD 4.2 &+ 1.4). Nestlings grow rapidly and leave
their nest at 25-30 days of age (Galeotti 2001).

Measurement of reddish colouration

For each breeding female, we collected three feathers
located on their back 5 cm below the neck. Feathers were
then stuck with adhesive tape onto a black paper, placed in a
black box equipped with a fluorescent tube (8w/20-640 bl-
super), and individually photographed with a digital camera
(Dimage A200, Konika Minolta) fixed at a distance of
27 cm to the feather. Pictures were imported in the software
Adobe Photoshop to measure individual spectral hues, satu-
ration and brightness. For each individual, we calculated a
mean value over the three feathers and then extracted the
first component (PCA1) of a principal components analysis,
which explained 72% of the total variance. We multiplied

PCAT1 values with —1 to obtain a scale from pale to dark
reddish, a methodology that we did not use in previous
papers. Measurements of colouration (i.e. PCA1l) were
shown to be repeatable, and strongly correlated with colour
scores obtained with a spectrophotometer, and colour morph
estimated in the field (Pearson’s correlation r = 0.80, n = 54,
P <0.0001). The concentration of pheomelanin pigments
stored in feathers accounts for 68% of the total variance in
reddish colouration and eumelanin pigment concentrations
for only 21% (Gasparini et al. 2009a). Additional analyses
based on the data collected by Gasparini etal. (2009a)
showed that the ratio of pheomelanin/eumelanin feather
content and the total amount of melanins contained in feath-
ers are associated with PCA1 (r=0.57, n=15, P=0.027
and r=0.87, n =15, P < 0.0001, respectively).

Experimental procedure

In 2007, we matched 90 nests in pairs with similar hatching
date (Pearson’s correlation, P < 0.0001) and manipulated
brood sizes by exchanging hatchlings between nests of the
same pair; we took on average 2.4 nestlings from a nest E
(enlarged) and brought them in another nest R (reduced)
where we took on average 3.4 hatchlings to be brought in
nest E. Each family was thus composed of nestlings from
two origins with half the nests being experimentally
enlarged by one nestling and the other half experimentally
reduced by one nestling. Out of the 90 initial nests, we were
able to collect a blood sample to measure POMC prohor-
mone in adult females in 27 of the reduced nests and 27 of
the enlarged nests. Age of the offspring when their mother
was blood sampled did not differ between the two treat-
ments (14 3.7 days, range 9-21; Student’s f test:
ts; =1.19, P =0.24). Clutch size of enlarged and reduced
nests was similar (5, =0.70, P = 0.49). Breeding females
from the two brood size treatments did not differ in wing,
tail and tarsus lengths, body mass at the time of blood sam-
pling and plumage colouration (Student’s ¢ tests, P values
>0.30). Within pairs of experimental nests foster and bio-
logical mothers did not significantly resemble each other
with respect to reddish colouration (r=—0.13, n=35,
P =0.46) and pairing with respect to colouration was not
significantly disassortative in both the reduced and enlarged
brood size treatment (Pearson’s correlation comparing col-
ouration of female and male partners: r= —0.13, n =27,
P=0.53 vs. r=—-0.09, n =27, P=0.67). We successfully
created broods with a different number of nestlings as, at
the time when we blood sampled breeding females, their
nest contained significantly more nestlings in the enlarged
than reduced treatment (mean &= SE 4.9 +0.2 vs. 3.6 &+
0.2; Student’s ¢ test: 5, = 3.88, P =0.0002). To investigate
the long-term effect of the brood size manipulation experi-
ment, we captured breeding individuals in 2008 and
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examined whether females rearing an enlarged brood in
2007 were less likely to breed in 2008 than females rearing
a reduced brood in 2007.

Because beechnut production was very high in the
autumn 2006, we recorded the proportion of beech trees
during the winter 2006-2007, walking 75 m in the four car-
dinal points around each nest box. This proportion (mean is
32%, range 0-92%) was log,,+1 transformed to obtain a
normal distribution. In 2007, owls bred earlier in forests
where beeches were more abundant (r=—0.25, n =95,
P =0.015) indicating that abundance in beeches is an
appropriate surrogate of some aspects of territory quality in
the study year. The proportion of beech trees in territories
of experimentally enlarged and reduced broods was similar
(P =0.17). Within each brood size treatment, female plum-
age colouration was not significantly correlated with female
body size (i.e. wing, tail, tarsus and mass) and nestling age
when females were blood sampled (Pearson’s correlations,
P values >0.18) nor with the proportion of beeches
(ANCOVA, colour: Fi50= 0.95, P=0.33; treatment:
F 50=2.21, P =0.14; interaction: F 5, =2.90, P = 0.10).

Assessment of blood circulating levels of the POMC
prohormone

Blood sample of each of the 54 breeding females was col-
lected in tubes containing EDTA, immediately centrifuged
to separate the plasma from the blood cells, and frozen in
liquid nitrogen in the field until placed on the same day in
the laboratory at —80°C. We quantified the amount of
blood circulating POMC prohormone using the human
OCTEIA POMC ELISA kit (IDS, Boldon, UK). We carried
out the analyses using 50 pl of plasma. This kit consists of a
sandwich assay using two antibodies, which bind to POMC
prohormone accordingly to its relative concentration. The
sensitivity of the assay is 8 pmol/l, the inter-assay precision
is 10% and the cross-reactivity for ACTH is 3.6% and for
o-MSH 2.2%. We box—cox transformed POMC prohor-
mone values to normalize the dataset. POMC prohormone
levels were not correlated with time of the day when blood
samples were collected (mean is 1245 hours; range 0745
and 1745 hours) (r = 0.04, n = 54, P =0.79), the time taken
between capture and blood sampling (mean is 3.2 min;
range 0.1 and 4.3 min; r = 0.10, n = 54, P = 0.49) and nest-
ling age (r=-0.12, n=54, P=0.37). These variables
were therefore not considered in further analyses. In six
females and one male, we collected two blood samples on
two occasions. POMC prohoromone levels measured on
these two occasions were strongly correlated (r=0.82,
n="7, P=0.025). To avoid pseudo-replication, we calcu-
lated mean values over the two measurements. Finally, it is
worth noting that the level of POMC prohormone we mea-
sured is not the amount of melanocortins directly involved
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in melanogenesis, since the feathers collected for colour
assessment were not growing anymore.

Statistics

We performed statistical analyses using JMP IN 7.0.0. We
used a stepwise ANCOVA including the box—cox trans-
formed levels of POMC prohormone as the dependent vari-
able, and brood size treatment (‘treatment’), proportion of
trees that were beeches (‘beeches’) and reddish colouration
measured as PCA1 (‘colour’) as three independent vari-
ables, plus all possible interactions. Non-significant interac-
tions were subsequently removed from the final model. The
analyses are two-tailed and significance level is set to 0.05.
In all models, residuals were normally distributed, and vari-
ances were homogeneous between treatments.

Results

The brood size manipulation experiment had the intended
effect on breeding females. Of the 27 females rearing an
experimentally enlarged brood in 2007, only 8 (29.6%) of
them were breeding in 2008, whereas 16 out of 27 (59.3%)
females rearing an experimentally reduced brood in 2007
were breeding in 2008 (Chi-square test: x> =4.80,
P =0.028).

Mean concentration in the POMC prohormone was
68.5 pmol/l (SD 85.4; range 6 and 346.7). After stepwise
backward simplification of the model, the interactions
‘treatment’ by ‘colour’ and ‘beeches’ by ‘colour’ were both
significant (Table 1). When brood size was experimentally
reduced, darker reddish females showed lower levels in the
POMC prohormone than pale reddish females (multiple

Table 1 Analysis of covariance testing POMC prohormone levels
(box-cox transformed) in relation to brood size manipulation experi-
ment and the proportion of trees that were beeches (an index of food
abundance) in breeding female tawny owls (Strix aluco)

Source of variation Test statistics P

F df
Colour 2.00 1,48 0.16
Treatment 0.09 1,48 0.84
Beeches 0.11 1, 48 0.74
Colour x beeches 4.48 1,48 0.039
Colour x treatment 4.80 1,48 0.033

The term colour refers to the degree of reddish colouration, treatment
to the brood size manipulation experiment (enlarged vs. reduced
broods), and beeches to the proportion of trees that were beeches in for-
ests where nest boxes were erected. We removed from the final model
the triple interactions and the two-way interaction ‘treatment x beech-
es’ which were not significant (P values >0.40)
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Fig. 1 Relationship between POMC prohormone levels (box-cox
transformed) in relation to reddish colouration in breeding female taw-
ny owls (Strix aluco) raising an experimentally reduced (closed circles
and straight regression line; r = —0.48, n =27, P = 0.012) or enlarged
brood (open circles and broken regression line; r=0.01, n=27,
P =0.95)

regression analysis, colour: F) 5, =4.90, P =0.037; beech:
F5,=0.51, P=0.48), whereas there was no relationship
between colouration and levels of the POMC prohormone
in the enlarged treatment (multiple regression analysis, col-
our: Fy,,=0.02, P=0.88; beech: F,,=0.99, P=0.33)
(Fig. 1). The interaction ‘beeches’ by ‘colour’ was signifi-
cant because darker reddish females had lower levels of the
POMC prohormone when their territory was located in a
forest where beeches were abundant (territories with pro-
portion of beeches above the median, ANCOVA, colour as
covariate: F),s=35.57, P=0.026; treatment as factor:
F|55=0.12, P =0.73) but not when relatively rare (territo-
ries with proportion of beeches below the median,
ANCOVA, colour as covariate: Fiy= 0.03, P=0.87;
treatment as factor: F; 53 = 0.37, P = 0.55).

Discussion

The POMC gene is mainly expressed in the pituitary gland
and also in the brain and in peripheral tissues. The POMC
mRNA is translated to the POMC prohormone, which
through tissue-specific processing results in the different
melanocortins (a-, -, and y-MSH and ACTH, as well as
o-, B-, and y-endorphins) that exert neurocrine, endocrine
and paracrine actions (Pritchard et al. 2002; Boswell and
Takeuchi 2005). Because these different melanocortins are
able to bind to five distinct melanocortin receptors (MC1-
5Rs), controlling melanogenesis but also behavioural and
physiological traits, Ducrest et al. (2008) recently proposed
the hypothesis that the melanocortin system generates phe-
notypic correlations between melanin-based colouration

and other attributes. This hypothesis assumes that the level
of melanocortin activity in one tissue is proportional to
activity in other tissues. Connections between the different
tissues, particularly between the pituitary and the skin, may
exist through endocrine and neurocrine circuits. Homozy-
gous knockout mice for Tpit (a Tbox transcription factor)
that is restrictively expressed and regulates the pituitary
development, used as a model for isolated ACTH defect,
exhibit a yellowish belly (Pulichino etal. 2003) as in
POMC KO mice (Yaswen et al. 1999) and POMC-deficient
human (Krude et al. 1998). This suggests that in mice pitui-
taric o-MSH circulates in the blood stream and regulates
melanogenesis in skin. Based on this kind of observation,
we predict that the baseline level of circulating POMC pro-
hormone may be correlated with the baseline activity of the
melanocortin bioactive peptides that regulate the degree of
melanin-based colouration.

We found that darker reddish female tawny owls had
lower levels of the POMC prohormone than paler reddish
females when rearing an experimentally reduced (but not
enlarged) brood and when they were located in forests
where the proportion of beech trees was high (but not when
low), an indirect measure of the abundance of their staple
prey. In the following, we discuss the potential physiologi-
cal effects of circulating POMC prohormone, why the lev-
els of circulating POMC prohormone can be associated
with colouration in prime environments, whether covaria-
tion between colouration and levels of POMC prohormone
is adaptive, and how future studies should proceed.

Potential physiological effects of the circulating POMC
prohormone

The level of the circulating POMC prohormone in the
tawny owl was 68.5 pmol/l (range 6-346.7), a value of sim-
ilar order of magnitude to the values reported in dogs
(range 15—-108 pmol/l) and sheep (40-75 pmol/l) using the
same assay (Granger 2004; Bell et al. 2005). To investigate
the physiological effects of circulating melanocortins,
researchers administrated these hormones or their
analogues orally, subcutaneously, intraperitoneally, intra-
venously or intracerebrally. Systemic injection of melano-
cortins resulted in the darkening of skin (Lerner and
McGuire 1979; Ugwu et al. 1997), in a reduction of inflam-
matory reactions, septic shock and fever (Chiao et al. 1996;
Gonindard et al. 1996; Grabbe et al. 1996; Huang et al.
1998; Getting 2006) as well as stress-induced corticoste-
rone levels (Daynes et al. 1987), and an increase in sexual
behaviour (van der Ploeg et al. 2002; Wessells et al. 2003)
and aggressiveness (Morgan and Cone 2006). As indicated
above, melanocortin peptides control many important phys-
iological pathways, suggesting that these active peptides
should be tightly regulated at the levels of their activity
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(acetylation, amidation, phosphorylation), their processing
by convertases (PC1, PC2, carboxypeptidase E, PAM)
(Wilkinson 2006), and expression of the POMC prohor-
mone.

Proximate mechanisms underlying covariation
between the levels of blood circulating POMC
prohormone, colouration and stress

Melanin pigments account for a large part of the variation
in animal colouration. The synthesis of melanin is con-
trolled, in part, by melanocortins produced and processed in
the skin (paracrine and autocrine) (Slominski et al. 2000;
Rousseau et al. 2007; Schallreuter et al. 2008). Endocrine
melanocortin control of colouration cannot be excluded,
since stress stimulates a release of plasma POMC-derived
polypeptides in man (Meyerhoff et al. 1988), or increases
plasma levels of «-MSH and ACTH and further induces
skin darkening in the arctic charr (Salvelinus alpinus; Hogl-
und et al. 2000). Moreover, mice deficient for Tpit, a tran-
scription factor that regulates pituitary development,
exhibit a yellowish belly fur (Pulichino et al. 2003).

Since melanocortins are involved in the control of
important physiological pathways such as stress control via
the hypothalamic-pituitary-adrenocortical axis (HPA)
through the action of ACTH, which is derived from the
POMC prohormone, it is expected that POMC expression
and in turn the POMC prohormone are environmentally
regulated. Accordingly, stress induced through a week of
immobilization induced an increase in pituitaric POMC
mRNA, plasma ACTH and corticosterone in rats (Noguchi
et al. 2006). In near-term ovine fetus, long-term hypoxia
increased plasma POMC prohormone and ACTH but
reduced the ratio of POMC prohormone to ACTH com-
pared to control sheep (Myers et al. 2005).

In tawny owls, pale reddish females decreased their level
of plasma POMC prohormone when experiencing a higher
level of stress (i.e. experimentally enlarged broods),
whereas dark reddish females produced POMC prohor-
mone independently of the brood size manipulation treat-
ment. Different scenarios can account for this observation.
Firstly it is possible that, as shown by Myers et al. (2005),
under stressful conditions more ACTH is necessary and
more plasma POMC prohormone is processed to ACTH
resulting in a reduction of plasma POMC prohormone in
pale reddish owls. Secondly, certain stress such as fasting
induces a reduction in pituitaric POMC mRNA. Experi-
ments carried out in laboratory animals showed that fasting
usually induces a decrease in the expression of the POMC
gene (Sanchez et al. 2004; Myers et al. 2005; Dallman et al.
1999; Bertile etal. 2003; Schwartz and Porte 2005).
Accordingly, pale pheomelanic females may decrease the
level of POMC gene expression because melanocortins
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may induce too many costly activities, which would be det-
rimental when resources are scarce.

Another scenario is based on the assumption that the
POMC prohormone and ACTH levels needed under stress-
ful conditions are colour-specific, with differently coloured
individuals requiring different amount of ACTH to with-
stand a stressful situation, as shown for feeding behaviour
in different rat strains, where fasting reduces hypothalamic
POMC mRNA in Brown Norway rats and induces POMC
mRNA in Fisher rats (Kappeler et al. 2004). As different
sources of stress induce an increased or reduced expression
level of the POMC gene (Noguchi et al. 2006; Chen et al.
2008), pale reddish individuals had lower levels of POMC
prohormone under stressful conditions, i.e. when rearing an
enlarged brood compared to when rearing a reduced brood
(Fig. 1), and dark reddish females may increase POMC pro-
hormone levels under stressful conditions.

Studies on the proximate mechanisms occurring under
stressful conditions are rapidly expanding but little is
known about spatial and temporal variation in POMC gene
expression, PC1/2 activation and ACTH and «-MSH levels
between different colour morphs, along an environmental
gradient (e.g. different intensity and type of stress).
However, these different scenarios stem from stronger
covariations between colouration and the levels of the
POMC prohormone under prime environmental conditions.
A number of biochemical factors regulate POMC gene expres-
sion, translation and further processing and modification. Such
factors include steroids, glucocorticoids, cytokines, prosta-
glandines, cathecholamine and other neurotransmitters
(Schallreuter et al. 2008; Slominski et al. 2004), potentially
allowing individuals to adjust melanocortin levels in
relation to environmental or social factors but also to life
stages (Ellis et al. 2008; Palermo et al. 2008). Knowledge
of the identity of these factors, their effect on melanocor-
tin levels and physiological traits, and of how they are
themselves regulated is key to determining when
individuals switch on/off the expression of the POMC
gene.

Are life history strategies of dark and pale reddish tawny
owls mediated by melanocortins?

From an ultimate point of view, why did the POMC prohor-
mone circulate at higher levels in pale reddish owls raising
a reduced compared to an enlarged brood? Furthermore,
why did melanocortin precursors circulate in the blood
stream at relatively constant levels in dark reddish owls,
while in paler owls levels were more variable? A likely
explanation is that the net benefit of circulating POMC pro-
hormone is higher in situations of low than high stress, par-
ticularly in pale individuals. Given the numerous
physiological effects of melanocortins, their overproduction
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may lead individuals to invest resources into a wide range
of activities, which in turn could be detrimental under
stressful conditions. Interestingly, even under weakly
stressful situations, dark reddish birds also showed low lev-
els of POMC prohormone suggesting that they avoid
investing in too many activities regulated by melanocortins.
Dark reddish individuals may thus invest resources in traits
regulated by melanocortins relatively independently of
changes in the environment, while pale conspecifics regu-
late these traits more finely in relation to variation in envi-
ronmental factors. Accordingly, various studies showed
that pale and dark reddish tawny owls invest resources
differentially into various traits including body growth and
maintenance, immunity and reproduction. Pale birds seem
to adopt less risky strategies than dark conspecifics: when
conditions are poor, they skip reproduction more often
(Roulin et al. 2003), invest less effort in mounting a strong
immune response following an immune challenge to limit
body mass loss (Gasparini et al. 2009a, b), and produce
nestlings that are better able to maintain body mass under
low food supply (Piault et al. 2009). If pale individuals are
better able to buffer variation in environmental factors by
finely regulating melanocortin levels, dark reddish birds
may have some other advantages such as offspring growing
faster in body mass when prey are provided ad libitum
(Roulin et al. 2008a, b; Piault et al. 2009), and when chal-
lenged with antigens, they maintain a stronger level of anti-
body for a longer period of time compared to pale
individuals (Gasparini et al. 2009a).

Conclusion and perspectives

Melanin-based colouration is a multigenic trait and inter-
individual variation in the degree of melanism may be
caused in part by melanocortins. Regardless of the exact
role played by melanocortins in generating variation in col-
ouration, our study demonstrates that differently melanic
female tawny owls differentially regulate the POMC pro-
hormone in relation to environmental factors. Because in
the tawny owl the expression of reddish colouration is
strongly heritable and not or weakly condition-dependent
(Gasparini etal. 2009a), an environmentally induced
change in the magnitude of the covariation between colour-
ation and the levels of the POMC prohormone must be due
to a change in the level of the POMC prohormone but not to
a change in colouration.

The present study is a first step into an understanding of
the potential role of hormones in generating norms of reac-
tion (Boswell and Takeuchi 2005; Ducrest et al. 2008), and
hence our reasoning goes beyond the melanocortin system.
Knowledge of the regulators of phenotypic correlations is
helpful to predict how their sign and magnitude can change

along an environmental gradient. In this context, melanin-
based colouration is a promising model system, and the
present study raises a number of issues to tackle the ecologi-
cal role of the melanocortin system. First, we intend to mea-
sure expression levels of the POMC gene in relation to
colouration in several tissues. The idea is to investigate
whether expression levels of this gene are coordinated
across organs, which is plausible given that melanocytes
have a neuroendocrine regulatory function (Slominski
2009). This is an important issue because melanin produc-
tion is determined, in part only, by the expression of the
POMC gene found in feather buds, whereas many pheno-
typic traits that covary with melanin-based colouration are
influenced by POMC gene copies found in the pituitary
gland that control for instance energy homeostasis (Coll
et al. 2004). Second, our aim is to assess the levels of pro-
hormone convertases (PC1/2) processing the POMC prohor-
mone and the levels of the resulting melanocortin bioactive
peptides, especially under the stress experienced with the
brood size manipulation. The final step will be an experi-
mental injection of melanocortins to confirm their role in
generating inter-individual colour variation and to investi-
gate whether they generate covariations between melanin-
based colouration and other phenotypic traits. Furthermore,
the inverse-agonist/antagonist agouti protein (ASIP) should
also be considered in future studies as it may play another
key role in the balance between pheo- and eumelanogenesis,
and thus may determine colouration and regulation of many
other traits (Ducrest et al. 2008). A thorough study of the
melanocortin system should provide a proximate explana-
tion as to how norms of reaction are regulated by differently
melanic individuals, and help understand the adaptive func-
tion of variation in melanin-based colouration. It may also
provide an appropriate system to tackle issues about geno-
type by environment interactions.
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