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Summary 

 

Obesity is associated with skeletal muscle insulin resistance, which is a crucial step in the 

development of type 2 diabetes. Among the mechanisms by which obesity may lead to insulin 

resistance, lipotoxicity is one of the hypotheses being explored; others include inflammation or the 

oxidative stress hypotheses.  This review focuses on the role of diacylglycerols (DAG), a family of 

lipid metabolites implicated in the pathogenesis of lipotoxicity and insulin resistance. While recent 

studies report contradictory results in humans with regards to the importance of DAG-induced 

insulin resistance in skeletal muscle, other current literature highlight a potential role for DAG as 

signaling molecules. This review will discuss possible hypotheses explaining these contradictory 

results and the need to explore further the role of DAG in human metabolism.  
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Introduction 

Obesity has become a major health care problem in the developed countries. In the United 

States, the incidence of obesity has increased from 14% to 23% to 30% in each of the past decades 

1. Diabetes and the metabolic syndrome have followed the same pattern 2, 3. In 2011, about 25.6 

million persons had diabetes, which corresponded to an estimate of 11.3 % of the US adult 

population 4. 

Insulin resistance (IR) is known as a characteristic trait of type 2 diabetes mellitus (T2DM) 5. 

The worsening of insulin action is a continuum beginning with peripheral IR and ending with a loss 

of insulin secretion 6. IR involves defects in multiple organ systems such as the skeletal muscle, the 

liver and the pancreas 7. Due to its relative anatomical importance (30-40% of body mass), skeletal 

muscle accounts for approximately 80% of the insulin-stimulated glucose uptake 8, 9. Skeletal 

muscle IR can be present and precedes for many years the onset of  T2DM 7, 10. IR is one of the 

principal mechanisms by which obesity is considered to increase the risk of T2DM and is a key 

feature of the metabolic syndrome. 

Lipotoxicity is one of the hypotheses being explored to explain the mechanisms by which 

obesity leads to IR. Other theories include the inflammation or the oxidative stress. Lipotoxicity, 

also known as the lipid metabolite theory, occurs when fatty acid in excess of the oxidative needs 

spillover into harmful pathways of nonoxidative metabolism 11.  

Within the muscle fibers, excess accumulation of triglycerides (intramyocellular lipids, IMCL) 

has been associated with skeletal muscle IR 12-14. Numerous human studies have confirmed the 

inverse association between IMCL and insulin sensitivity 15-18. However, this inverse association 

between IMCL and IR is not observed in endurance exercise training and/or conditions for efficient 

fatty acid utilization. Chronic endurance exercise has been shown to increase IMCL in parallel with 

improved IR 19, 20, thus leading to a paradigm, known as the ‘athlete paradox’ where IMCL 

accumulation per se does not directly affect insulin action. Thus the deleterious effect of increased 
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IMCL appears to be linked with the non-utilization of the fatty acid reservoir and with the 

accumulation of metabolically active lipid intermediates 21. Among the lipid intermediates that have 

been identified as potentially playing an important role in mediating fatty acid induced IR in 

muscle, there are four main families: diacylglycerols (DAG) 22, 23, ceramides 24-26, long chain fatty 

acyl-CoAs 27-29 and acylcarnitines 30-33.  

This review will focus solely on DAG-induced IR. We will discuss recent studies that have 

shown contradictory results pointing out the need to revisit the role of DAG in IR. We will also 

briefly review other studies that have underscore the importance of DAG as signaling molecules. 

Finally, we will consider possible reasons for the contradictory results about DAG-induced IR in 

human skeletal muscle and discuss alternative hypotheses on the role of DAG in skeletal muscle 

metabolism. 

 

Overview of DAG structure and mechanisms of DAG-induced insulin resistance 

DAG can be produced from triacylglycerol (TAG) hydrolysis, from phospholipids hydrolysis or 

de novo synthesized from monoacylglycerol (MAG) 34. Their structure and localization depends on 

their origin. Indeed 1,3-DAG and 2,3-DAG derive from TAG lipolysis and are mostly in lipid 

droplets, while 1,2-DAG come from esterification and accumulate mostly in the membranes; de 

novo synthesized DAG from phosphaditic acid hydrolysis is present in the endoplasmic reticulum 35. 

Figure 1 shows the chemical structures of TAG and DAG molecules. 

Studies pointing to the potential mechanisms involved in DAG-induced insulin resistance derive 

from in vitro and animal research 36, 37. The proposed mechanism is that DAG activates 

serine/threonine kinases C (PKC) isoforms 38, 39 that in turn decrease tyrosine phosphorylation of the 

insulin receptor substrate 1 (IRS-1) and as a consequence decrease PI3-Kinase activation 40, 41. Thus, 

the common view, largely based on evidence from cell systems and animal models, is that muscular 

DAG content explains IR in obesity and T2DM 42.  
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Not all DAG are equal, indeed 1980’s early works described 1,2-DAG as the only active 

stereoisomer capable of activating PKCs 43, while 1,3 and 2,3-DAG 44 showed virtually no activity. 

Other studies pointed to an extreme level of specificity 45, for example the introduction of a single 

methyl group into the diglyceride backbone produced a DAG with virtually no kinase activating 

ability 46. Finally, the importance of the chain length and saturation into the activity of the DAG is 

also apparent from early biochemical works. Ebeling et al. 47 presented that DAG with saturated acyl 

side chains were as effective as those with unsaturated chains in kinase activation. Other groups 

supported that having two saturated fatty acids was less effective that one unsaturated fatty acid at 

any position, irrespective of chain length 48. Studies investigating chain length were dependent on 

the models used, indeed although some groups showed that different chain lengths were equipotent 

at interacting with the regulatory site in vitro, such as diC18:1, diC10:0 and diC8:0, chains of 10 

carbons or greater prevented the interaction of DAG with their regulatory site on the kinase in intact 

cells, mostly due to cell permeability 47. This high degree of specificity for structural features 

contrasted, with that observed for phospholipid bilayers or mixed micelles, where all lengths of 

acylchains appeared to be active 45. It is important to note that none of this biochemical work has 

been done in skeletal muscle cells, thus that the specific roles of fatty acids chain lengths and degree 

of saturation in DAG induced muscle IR have not yet been elucidated.  

 

Association between human muscle DAG content and insulin resistance  

In 2002, the first study in humans pointing to the positive association between DAG content and 

IR was a lipid infusion intervention 38. In this study, Itani et al. performed, in six healthy middle-age 

males volunteers, lipid infusions combined with a 6 hours euglycemic-hyperinsulinemic clamp, that 

is the gold standard method to measure insulin sensitivity in vivo	49. A control group of 6 other 

volunteers received the insulin infusion without lipids. Vastus lateralis biopsies were performed at 

baseline, at 2 hours and at 6 hours of the infusion. Infusion of lipids and insulin resulted in a three-
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fold increase in total DAG content after 6 hours. This was concomitant of an increase in PKCs 

activity. Insulin sensitivity was reduced in the lipid infusion group compared to the control group.  

Since then, numerous studies performed with human muscle have confirmed the positive 

relationship between total DAG content and insulin resistance. These are presented in Table 1. In 

2007, Schenk et al. 50 performed a randomized cross-over study in healthy women to investigate the 

effect of acute exercise combined with lipid infusion on muscle DAG and IR measured by 

intravenous glucose tolerance test (IVGTT). They hypothesized that a single session of exercise in 

human subjects would protect against fatty acid–induced insulin resistance the next day. Indeed, 

when subjects received the lipid infusion and were sedentary, their total muscle DAG content was 

increased. When they received their lipid infusion and exercised, exercise prevented DAG increase 

and the reduction in insulin sensitivity. 

Cross-sectional studies also confirmed the relationship between muscle DAG content and IR. In 

2007, Straczkowski et al. 51 observed that total muscle DAG were higher in obese (with and without 

impaired glucose tolerance) than lean controls and lean offsprings of type 2 diabetics. Total DAG 

were inversely related to insulin sensitivity measured by glucose clamps. Later Moro et al. 52 

compared sedentary subjects with a broad range of BMI and age, including type 2 diabetics. They 

observed that intramyocellular DAG content was elevated in obese vs. non obese subjects. They 

further looked at the fatty acid profile and found that DAG containing oleic acid (18:1) were higher 

in the obese than the non-obese volunteers. Insulin sensitivity was negatively correlated with DAG.  

DAG content was not correlated with age, BMI, or body fat. Recently, Bergman et al. 53 compared 

intramyocellular DAG from obese diabetic men, obese non-diabetic men and women and lean 

trained athletes. Total DAG content was higher in diabetics than the two other groups; and was 

negatively correlated with insulin sensitivity measured by IVGTT. Using ultracentrifugation, they 

fractionated DAG species in cytosolic vs. membrane DAG. Approximately 80% of DAG were 

localized in membranes, these were lower in athletes compared to obese diabetics and non-diabetics. 
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Cytosolic DAG were lower in obese compared to diabetics and athletes. While membrane DAG 

content was negatively correlated in insulin sensitivity, cytosolic DAG content was not correlated 

with insulin sensitivity.  

Dubé et al. conducted two intervention studies in overweight or obese sedentary men and women 

54, 55. The first one in 2008 54 was a moderate aerobic exercise intervention. In a pre/post design,  

study volunteers underwent muscle biopsies and clamps before and after a 16 weeks supervised 

exercise training. Muscle DAG content was decreased with exercise training in conjunction with 

improved insulin sensitivity. The second intervention conducted in 2011 55 was a 16 weeks 

randomized controlled study with two arms: diet induced weight loss (DIWL) or exercise. The 

DIWL was geared to achieve 10% of weight reduction through approximately 500 kcal deficit per 

day. The exercise intervention was similar to the 2008 study. Both groups improved their insulin 

sensitivity by approximately 20% and decreased DAG content within skeletal muscle. No significant 

correlation was observed between the change in DAG content and the change in insulin sensitivity. 

Due to the fact that DIWL decreased total IMCL content while exercise increased IMCL, this study 

suggested a repartitioning from non-esterified fatty acids away from DAG into neutral lipids stores 

with exercise or a decrease in total lipid content with diet induced weight loss.  

 

Dissociations between human muscle DAG content and insulin resistance 

In 2006, Bruce et al. 56 did the first study to investigate the effect of endurance training on muscle 

DAG in humans. They observed no difference in intramyocellular DAG content before and after 8 

weeks of aerobic exercise in nine obese subjects. Table 2 lists the human studies that point to a 

negative or no association between DAG content and IR. 

Lipid infusion studies also presented conflicting results. Vistisen et al. 57 performed biopsies 

before, during glucose clamps with or without lipid infusion and after 30 minutes acute bout of 

exercise at the end of the clamps. They observed reductions in insulin sensitivity with the lipid 
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infusion but no changes in muscle DAG content neither before nor after the exercise bout. Recently, 

Hoeg et al. 58 performed glucose clamps after five hours of lipid infusion or saline infusion to 

healthy volunteers. Muscle biopsies were performed at baseline, after the five hours infusions and 

during the glucose clamps. Insulin sensitivity decreased approximately 25-35% after lipid infusion 

compared to saline infusion. No difference was observed in muscle DAG content in the lipid 

infusion compared with the control trial, nor a decreased in the insulin-signaling pathway. Taken 

together, these studies suggest that lipid oversupply decreases whole body insulin sensitivity without 

changes in intramyocellular DAG content, thus challenging this currently accepted mechanism for 

acute lipid-induced insulin resistance.  

Numerous cross-sectional studies have not been able to show differences in muscle DAG across 

groups of distinct insulin sensitivity levels. Anastasiou et al. 59 compared obese type 2 diabetics with 

non diabetics. Diabetics had higher HOMA-IR and higher IMCL content but no difference in muscle 

DAG content compared to non-diabetics. Similarly Perreault et al. 60 compared obese with impaired 

glucose tolerance to obese with normal glucose tolerance. No group differences were found in DAG 

concentration or DAG percent saturation. In a nested case-control study, Coen et al. 61 compared 

insulin sensitive to insulin resistant sedentary obese women. No differences were observed in total 

DAG content, in specific moieties or in degree of saturation. There was no correlation between 

intramyocellular DAG and insulin sensitivity. In a sub-cohort of men with metabolic syndrome, Van 

Hees et al. 62 categorized those with lower insulin sensitivity and those with higher insulin 

sensitivity assessed by OGTT. Their muscle content did not differ in total DAG content in the 

fasting state or after a high fat meal. Differences in the degree of saturation or specific DAG 

moieties were however found and are discussed below.  

When comparing obese to lean women, Trush et al. 63 observed no difference in total DAG, total 

saturated or total polyunsaturated moieties. Monounsaturated DAG were higher in the lean vs. 

obese, which was mostly explained by an increase in palmitoleic acid. Jocken et al. 64 compared 
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obese to lean men. They observed lower DAG content in muscle from obese compared to lean. This 

was also true for saturated, monounsaturated and polyunsaturated fatty acid species in DAG, which 

were lower by more then 30% in the obese men. To our knowledge, this is the first study to describe 

higher DAG in muscle from lean non-sedentary men as these subjects were included if they had less 

than three hours of organized sport activities 65. Compatible with this observation, we found total 

DAG content to be ~50% higher in muscle from chronically endurance trained subjects (5 or more 

exercise sessions per week) than lean sedentary subjects (exercising < 1 day per week, < 20 

minutes), who in turn had ~20% higher content than obese sedentary subjects matched by age 66.  

Similar differences were observed for saturated DAG and for DAG species in which one of the fatty 

acids was unsaturated. This same pattern was also true for insulin sensitivity, with higher insulin 

sensitivity in trained individuals compared to lean sedentary, which in turn were more insulin-

sensitive than obese sedentary subjects. Total DAG was positively correlated with insulin 

sensitivity. In a cross-sectional study comparing professional cyclists to healthy men (exercising < 2 

hours/week of moderate or vigorous intensity), Bergman et al. 67 found no difference in muscle 

DAG content between. These studies suggest that a higher DAG content is not necessarily related to 

IR, and they are in accord with an animal study showing that increased DAG content in muscle is 

not related to IR 68.  

Some intervention geared at reducing insulin resistance in type 2 diabetes also reported 

dissociations between improvements in insulin resistance while observing no changes in DAG. In a 

pre/post-intervention design, Anastasiou et al. 69 followed a group of obese diabetic women before 

and after a 10% weight loss reduction through hypocaloric diet. Although total intramyocellular 

TAG decreased, they observed no significant differences in total DAG, saturated or unsaturated 

DAG. Bajaj et al. 70 performed muscle biopsies and glucose clamps before and after four months of 

pioglitazone in diabetic subjects. Although they observed a decrease in insulin resistance, total DAG 

did not change after the intervention.  
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Of particular interest is the role of exercise training, indeed in chronically endurance trained 

subjects, total DAG content was higher in athletes and DAG content was positively associated with 

insulin sensitivity 66. In another cross-sectional study, overall DAG content was not different in 

cyclists compared with healthy volunteers that were less insulin sensitive than the cyclists 67. 

Although acute and chronic exercise have distinct mechanisms, acute exercise in context of lipid 

oversupply protected against the increase in DAG 50, 57.  

Taken together, these studies point to the fact that total DAG content is not necessarily related to 

IR; alternatively, it is possible that particular DAG species may be associated with IR.  

 

Specific moieties of DAG  

Distinct molecular species of DAG within muscle have been explored in a subset of human 

studies (Tables 1 and 2). Some studies point to differences in fatty acids (FA) chain lengths 55, 56 or 

degree of FA saturation 62, 67, but these results show important variability across the studies. When 

looking into fatty acid profile, Van Hees et al. 62 indicated that insulin resistant men presented 

higher percentage of palmitic acid (C16:0) and lower oleic acid (C18:1) than insulin sensitive 

subjects matched by weight. Moro et al. 52 noticed a significant increase in DAG containing oleic 

acid  (C18:1) in obese vs. non obese subjects. Thrush et al. 63 showed that lean women had more 

palmitoleic acid (C16:1) and decosahexaenoic acid (C22:6) compared to obese women.   

Three recent studies 53, 55, 66 point to the fact that some DAG moieties are particularly abundant in 

human skeletal muscle: C16:0/C18:0, C16:0/C18:1 and diC18:0. Taken together, these three DAG 

species accounted for approximately 80% of total DAG 66. Although statistical significance across 

groups or in relationship with insulin sensitivity differ among these studies, the data suggests that it 

is not the overall content of DAG that may be deleterious but that particular DAG moieties, even in 

smaller amounts, may confer the lipotoxic effect.  
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Another similarity in the two cross-sectional studies with insulin sensitive athletes compared to 

insulin resistant obese or T2DM 53, 66 is that DAG species that contained two unsaturated fatty acid 

were more abundant in obese or T2DM compared to highly insulin sensitive athletes. Athletes had 

higher content of saturated DAG and DAG species in which only one of the two fatty acids was 

unsaturated compared to their insulin resistance counterpart.   

One of the possible explanations for the important variability of these results is that habitual diet 

composition influences FA composition. Some studies requested their volunteers to eat a certain 

proportion of macronutrients in the days preceding the muscle biopsies, other fed their subjects, 

while others did not control food intake at all. This point is important as it is known from cultured 

myocytes studies that the exposure to palmitic acid (C:16:0) led to enhanced DAG levels and 

consequent activation of PKC, in contrast exposure to oleic acid (C18:1) did not 71. Recently, Krien 

et al. 72 showed no change in insulin sensitivity nor in DAG content in healthy humans before and 

after a 7 day diet on either palmitic acid (C16:0) or oleic acid (C18:1). Nevertheless, the incapacity 

to control for chronic habitual diet in studies investigating the composition of intramyocellular lipids 

is a main limitation in all of human studies that could in part explain the important variation across 

studies. Further dietary interventions are needed to explore the impact of diet on human DAG-

induced IR. 

 Another important limitation in the comparison of these studies is related to the methodology 

used to measure DAG. Some studies only measured DAG mass (synonym to total DAG content), 

others measured individual FA after removing the glycerol backbone, while others measured the FA 

composition without removing the glycerol backbone. Some studies measured the degree of 

saturation in percentages, others measured the absolute levels of saturated, monounsaturated or 

polyunsaturated FA. None of these human studies measured the specific positions of the FA-binding 

to the glycerol backbone (1,2-DAG, 1,3-DAG and 2,3-DAG).  
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Lipid intermediates are signaling molecules in futile cycles 

A possible explanation of the variability of intramyocellular DAG content in the human studies 

presented above is the role played by DAG as signaling molecules in futile cycles. An illustration of 

futile cycle is one of the central pathways connecting lipid and glucose metabolism called the 

glycerolipid/free fatty acid cycle (GL/FFA), also known as the triglyceride/FA cycle 35(Figure 2). 

This cycle includes a lipolytic arm and lipogenic arm. The lipid synthesis arm starts with FA 

esterification in fatty-acylCoA which then bonds to a glycerol backbone in the form of glycerol-3-P. 

The last step in this lipogenesis is the acetylation of 1,2-DAG into TAG. The lipolytic side starts 

with TAG hydrolysis to 2,3-DAG and ends with the hydrolyzation of 2-MAG into FFA and 

glycerol. Both of these can be recycled, indeed about half of the FFA released in the lipolytic 

segment is recycled into the lipogenic segment 73. At all times, the cells undergo a continuous 

synthesis and degradation of TAG even in low energy demands situations 74. This cycle takes place 

by consecutive actions of specific enzymes that are distributed in the membrane, cytosol, ER, 

nucleus and lipid droplets in a location-dependent regulation 74. This cycle is referred as ‘futile’ as it 

consumes ATP and produces heat while recycling substrate 75. The GL/FFA has been demonstrated 

to exist in cultured muscle cells and to protect from lipid oversupply IR 76. Indeed, it is hypothesized 

that certain toxic metabolites are rendered less toxic by conversion to corresponding esters and 

stored in lipid droplets or transported out of the cells 77.  

Another important link between glucose and lipid metabolism is the glucose derived malonyl-

CoA which reduces fat oxidation in the mitochondria through its inhibitory action on carnitine 

palmitoyltransferase I. As a result fatty acyl-CoAs (FACoA) accumulate in the cytoplasm. This 

FACoA accumulation causes an exaggerated production of various reactive complex lipid-signaling 

molecules that may lead, among other negative effects, to IR and diabetes. Enhanced GL/FFA 

cycling activity provides an attractive mechanism by which a cell might escape the toxic action of 

fuel oversupply for both glucose or lipids oversupply 35. Other futile cycles linking glucose 
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metabolism and lipid metabolism may also be involved, in particular the substrate cycle between de 

novo lipogenesis and lipid oxidation 78, which has been proposed as a mechanism by which leptin 

protects skeletal muscle from excessive fat storage and lipotixicity 79. 

Two key signaling metabolites that are thought to provide a crucial link between intracellular fuel 

homeostasis and cell signaling processes are DAG and MAG. Among the signaling molecules 

derived by the GL/FFA cycle, DAG and MAG play multiple roles in the regulation of many 

pathways depending upon their site of production. To date, the effect of exercise on the GL/FFA 

cycle, or other substrate cycles linking glucose and lipid metabolism, is not known.  

In addition of their role in the insulin signaling cascade by activating PKCs and as signaling 

molecules in futile cycles as the GL/FFA cycle, DAG also play an important role in exocytosis and 

neurotransmission 80, as well as inflammation. Indeed, by activating a particular PKC isoform 

(PKCθ), DAG activate the pro-inflammatory pathway NFκB 39, which is thought to be one of the 

links between insulin resistance and inflammation 81. Thus, different DAG stereoisomers and fatty 

acids content may have different roles regarding these diverse functions of DAG.  

 

Conclusion 

Although DAG have been implicated in lipotoxicity in cellular systems and animal studies, recent 

human studies have yielded controversial findings pertaining to the DAG-induced insulin resistance 

hypothesis. Even if human data linking DAG to IR is mostly correlative and limited by the lack of 

consistency across measurement methods and research design (including dietary and exercise 

control), there are other hypotheses that could explain these conflicting findings.  

The first one is that that until now, DAG mass was measured in whole muscle lysates, thus not 

taking into account the importance of compartmentalization. Future studies need to assess 

subcellular localization, i.e. cytoplasmic membrane vs. organelle membranes vs. lipid droplets, as 
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well as DAG structure in terms of position of the fatty acid chains on the glycerol backbone in 

addition of fatty acid chain length or degree of saturation. 

Another possible explanation for the variability and inconsistencies in human studies is that the 

measurements of DAG content only reflect values at a specific time point, without any information 

on their fluxes. As discussed above, DAG are intermediates of multiple cellular processes such as 

the GL/FFA cycle. What we measure at a given time point could be the result of a physiological 

phenomenon linked with the GL/FFA cycle and not necessarily linked with a toxic effect. Thus, 

further studies exploring the GL/FFA cycle in human muscle and the modulations of this cycle by 

chronic exercise seem necessary in order to understand role of DAG as second messengers in energy 

metabolism pathways. 

Taken all of this together, future research in the field of lipotoxicity and particularly DAG-

induced IR should explore the effects of dietary interventions on DAG content as well as time-

dynamics on the DAG pool consequently of exercise and food intake. Furthermore, it will be 

important to define subcellular localizations of DAG subpopulations, are these in the membrane,  

cytosol or in the lipid droplets? In conjunction with the questions asked here, DAG structure need to 

be described in terms of sterospecific isoforms, chain lengths and degree of saturation.  Which DAG 

are involved with IR, are these 1,3- or 2,3- or 1,2-DAG? What chain lengths in which position and 

what degree of saturation in which position? Although some of these questions may be responded by 

animal studies and cell cultures, the heterogeneity and dynamic nature of DAG needs to be explored 

in human to be able to determine the relative contribution of DAG in human IR.  
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Figure legend 

 

Figure 1: TAG and DAG. Chemical structures of triacylglycerol and diacylglycerols with the 

hydrocarbon chain of fatty acid esterified on the glycerol backbone. The fatty acyl groups may have 

different saturation levels (not shown here). 

 

Figure 2: Glycerol/FFA Cycle (adapted with permission from Prentki et al. 2011) . Glycerol/FFA 

cycle is the cyclic process of esterification of FFA into a glycerol, followed by its hydrolysis with 

the release of the FFA that can be reesterified. GL/FFA allows for continuous production of lipid 

intermediates that include triacylglycerol (TAG), diacylglycerol (DAG) monoacylglycerol (MAG), 

plysophosphatidic acid (LPA) and phosphatidic acid (PA). The lipogenic arm is represented with red 

arrows, the lipolytic arm with green arrows. The lipolytic arm is regulated by specific lipases that 

include adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL) and MAG lipase 

(MAGL). Hydrolysis by ATGL and HSL are facilitated by perilipin and comparative gene 

identification 58 protein (CGI-58).Fatty acyl CoA (FACoA) can either enter the lipogenic arm at 

various levels or enter beta-oxidation in the mitochondria for beta-oxidation 
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Table 1, Human studies showing an association between muscle DAG content and IR  
 

1st author 
(ref #) 

Year Design 
(CS or I) 

Subjects N Intervention Nutrition 
controlled 

AP 
controlled 

Results Comments 

Itani 38  2002 I Healthy males 6 Acute effect of 6h 
lipid infusion 

Y N Increase in IR and total DAG  Specific moieties not 
measured 

Straczkow-
ski 51  

2007 CS All males, 4 groups: 
A. Healthy lean 
controls 
B. Lean offsprings of 
T2DM 
C. OW or OB NGT 
D. OW or OB IGT 

A12, B12, 
C12, D9 
(27 for 
DAG: 
9,7,7,5) 

NA N N Total DAG D and C > A. No 
differences between A and B, nor 
between C and D. Total DAG was 
inversely related to IS. 

No differences in 
individual DAG. 

Schenk 50 2007 I Healthy women 8 Acute effect of 
lipid infusion with 
or without one 
exercise bout 

Y N Total DAG increased with lipid 
infusion. Exercise prevented IR and 
DAG increase. 

Specific moieties not 
measured, no clamp. 

Dubé 54 2008 I OW or OB older 
sedentary 

25 
(13 for 
DAG) 

Aerobic exercise, 
16 wks, 3 days/wk 

Y  Y Decrease in IR. Decrease in total 
DAG. No association between change 
in DAG and change in IS. 

Specific moieties not 
measured 

Moro 52 2009 CS All sedentary, broad 
range BMI and age, 
including 10 T2DM 

48 NA Y  Y Total DAG higher in OB and T2DM. 
IS was negatively correlated with 
DAG.  

C18:1 content higher in 
OB and T2DM.  

Dubé 55 2011 Randomized 
I 

OW or OB older 
sedentary 

16 Diet-induced 
weight loss with or 
without exercise, 
16 wks, 3 days/wk 

Y  Y Both interventions reduced IR and 
total DAG. No association between 
change in DAG and change in IS. 

Exercise decreased 
C14:0/18:0, C16:1/18:0, 
C16:1/18:1, C18:0/18:1, 
Di-C16:1, Di-C18:0, Di-
C18:1. 

Bergman 53 2012 CS 3 Groups: 
A: Athletes  
B: OB 
C: T2DM 

22 (10, 6 
and 6) 

NA Y Y Total DAG B and C > A, negatively 
correlated with IS. Cytosolic DAG A 
and C > B; no correlation with IS. 
Membrane DAG B and C > A, no 
correlation with IS.  

No clamp. 
C had higher membrane 
content of C18:0/C20:4, 
Di-C16:0 and Di-C18:0.  

CS: cross-sectional     OW: overweight 
I: intervention     OB: obese 
N: sample size     T2DM: type 2 diabetes 
Y: yes      NGT: normal glucose tolerance 
N: no or no information available   IGT: impaired glucose tolerance 
IR: insulin resistance or insulin resistant  AP controlled: study controlling for chronic physical activity  
IS: insulin sensitivity or insulin sensitive   Nutrition controlled: study controlling for meal composition (either in intervention or during the days before biopsy) 
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Table 2, Human studies pointing out for a disconnect between muscle DAG content and IR  
1st author 
(ref #) 

Year Design 
(CS or I) 

Subjects N Intervention Nutrition 
controlled 

AP 
controlled 

Results: DAG content in human 
skeletal muscle 

Comments 

Bruce 56 2006 I OB sedentary 9 Aerobic exercise, 
8 wks, 5 days/wk 

Y Y No significant decrease in total DAG. No clamp. 
Significant decrease in C16:0.  

Vistisen 57 2008 I OB men and 
women 

16 Acute effect of 
lipid infusion and 
acute exercise 

Y Y Decreased IS after lipid infusion was 
recovered with acute bout of exercise. 
No change in total DAG.  

Specific moieties not measured. 

Anastasiou 
59 

2009 CS OB T2DM vs 
non T2DM 

30 (9 vs. 
19) 

NA N N No difference in total DAG. No 
correlation between DAG and IS. 

No clamp. Specific moieties not 
measured 

Trush 63 2009 CS Lean vs OB 
women 

33 (18 
vs 15) 

NA N N No difference in total DAG. No 
differences in sum of saturated DAG or 
polyunsaturated DAG. Lean had higher 
content of monounsaturated DAG.  

No measure of IS. 
Individual moieties: Lean had more 
22:6, tended to have more 16:1. 

Perreault 60 2010 CS OB NGT vs 
IGT 

39 (19 
vs 20) 

NA Y N No difference in total DAG or degree of 
saturation.  

Correlation between DAG and IS 
not given. 

Coen 61 2010 CS OB sedentary 
women, IS vs 
IR 

22 (10 
vs 12) 

NA Y Y No difference in total or specific DAG. 
No correlation between DAG and IS. 

No differences in specific moieties. 

Jocken 64 2010 CS Lean vs OB 
men 

23 (13 
vs 10) 

NA N Y Total DAG Lean> OB. Saturated, 
monounsaturated and polyunsaturated 
species of DAG were also lower in OB. 

 

Bergman 67 2010 CS Healthy 
sedentary vs. 
cyclists men 

24 NA N Y No difference in total DAG. IS cyclists 
> sedentary. 

No clamp. 
Cyclists had higher 18:1, 18:2, but 
lower 16:0, 16:1 and 18:0. 

Anastasiou 
69 

2010 I OB T2DM 
sedentary 
women 

5 Hypocaloric diet, 
17 to 32 weeks to 
achieve 10% WL 

N Y at 
baseline, N 
during 
intervention 

No change in total DAG, saturated, 
monounsaturated or polyunsaturated 
DAG. 

No clamp 

Bajaj 70 2010 I T2DM 10 Pioglitazone for 4 
months 

Y Y No change in total DAG. IR decreased 
with intervention.  

 

Van Hees 
62 

2011 CS OW or OB men 
with metabolic 
syndrome, IS vs 
IR  

30 (15 
vs 15) 

NA N Y No difference in total DAG. No 
differences in DAG content after a high 
fat meal.  

No clamp. Higher degree of 
saturation in IR men explained by 
higher C16:0 and lower C18:1n-9.  

Amati 66 2011 CS 3 Groups:  
A: Athletes 
B: Lean 
sedentary 
C: OB sedentary 

42 (14, 
7 and 
21) 

NA Y Y Total DAG A > B and C. Same pattern 
for sum of saturated and unsaturated 
DAG on one FA. C had higher content 
of unsaturated DAG on both FA.  

Higher in A: C14:0/16:0, 
C16:0/18:0, C16:0/18:1, 
C16:1/18:0, C18:0/18:1, Di-C18:0. 
Higher in C: C16:1/18:1, Di-C14:0, 
Di-C16:1. 

Hoeg 58 2011 I Healthy young 16 Acute effect of 
lipid infusion 

Y Y No change in total DAG. IS decreased 
with lipid infusion. 

Specific moieties not measured. 

CS: cross-sectional     OW: overweight 
I: intervention     OB: obese 
N: sample size     T2DM: type 2 diabetes 
Y: yes      NGT: normal glucose tolerance 
N: no or no information available   IGT: impaired glucose tolerance 
IR: insulin resistance or insulin resistant  AP controlled: study controlling for chronic physical activity  
IS: insulin sensitivity or insulin sensitive   Nutrition controlled: study controlling for meal composition (either in intervention or during the days before biopsy 
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