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Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal dominantly 

inherited central nervous system white matter disease with variable clinical presentations 

including personality and behavioral changes, dementia, depression, parkinsonism, seizures, and 

others1,2. We combined genome-wide linkage analysis with exome sequencing and identified 14 

different mutations affecting the tyrosine kinase domain of the colony stimulating factor receptor 1 

(encoded by CSF1R) in 14 families affected by HDLS. In one kindred, the de novo occurrence of 

the mutation was confirmed. Follow-up sequencing analyses identified an additional CSF1R 

mutation in a patient clinically diagnosed with corticobasal syndrome (CBS). In vitro, CSF-1 

stimulation resulted in the rapid autophosphorylation of selected tyrosine-residues in the kinase 

domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from a partial loss 

of CSF1R function. Since CSF1R is a critical mediator of microglial proliferation and 

differentiation in the brain, our findings suggest an important role for microglial dysfunction in 

HDLS pathogenesis.

HDLS typically presents as an autosomal dominant disease associated with variable 

behavioral, cognitive and motor changes1-3. The onset of symptoms is usually in the fourth 

or fifth decade, progressing to dementia with death within six years. On magnetic resonance 

imaging (MRI), HDLS is characterized by patchy cerebral white matter abnormalities, often 

initially asymmetrical but becoming confluent and symmetrical with disease progression4-12. 

The changes predominantly involve the frontal and parietal white matter with evolving 

cortical atrophy affecting these lobes (Fig. 1a-b). Since neither the clinical symptoms nor the 

MRI changes are specific, a definite diagnosis of HDLS relies on pathological examination, 

showing widespread loss of myelin sheaths and axonal destruction, axonal spheroids, 

gliosis, and autofluorescent lipid-laden macrophages (Fig. 1c-i)1,4-8,10-12. Occasionally, 

brain biopsy has been used to confirm the diagnosis9.

To identify the genetic basis of HDLS, we established an international consortium with 

ethical approval from the Mayo Clinic Institutional Review Board and collected clinical 

data, MRI studies, blood and brain tissue samples from families with at least one patient 

with autopsy- or biopsy-proven HDLS. In total, we collected 14 kindreds from the United 

States, Norway, Germany and Scotland (Fig. 2). Family VA was selected for genome-wide 

linkage studies, and non-parametric linkage analyses identified one locus with a lod-

score>2.5 (chromosome 5; lod=2.67) and four loci with lod-scores>1.0 (Supplementary Fig. 

1). Subsequent parametric linkage analysis identified significant linkage on chromosome 

5q34 (lod=3.71, θ=0 at rs13178296), while none of the other loci reached significance 

(Supplementary Fig. 1). Obligate recombinants narrowed the candidate region to 30.3cM 

between rs801399 and rs1445716 (Supplementary Fig. 2), corresponding to a ~25Mb 

genomic interval containing 233 candidate genes.

To generate a list of potential disease-causing mutations, we performed whole-exome 

sequencing of two pathologically confirmed patients from family VA (VA-21 and VA-24, 

Fig. 2). We generated variant profiles for each patient and searched for shared heterozygous 

variants located within the chromosome 5q candidate region. We further predicted that 

mutations underlying HDLS are likely to be previously unidentified; therefore, we filtered 

all of the identified base alterations against dbSNP132. This led to the identification of two 
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non-synonymous mutations: c.80C>T (p.S27L) in the gene encoding the 5-

hydroxytryptamine receptor 4 (HTR4) and c.2624T>C (p.M875T) in the macrophage 

colony-stimulating factor 1 receptor gene (CSF1R). Both mutations segregated with disease 

in the extended family VA and were absent in 660 controls. We therefore searched for 

additional mutations in a cohort of 13 probands from autopsy- or biopsy-proven HDLS 

families (Fig. 2). Sanger sequencing of the 6 coding exons of HTR4 and 22 coding exons of 

CSF1R identified heterozygous CSF1R mutations in all 13 probands, whereas no other 

mutations in HTR4 were identified (Fig. 3; Supplementary Table 1). Segregation analyses 

confirmed transmission of the CSF1R mutations and co-segregation with the disease 

phenotype in all families where DNA from multiple affecteds was available (Fig. 2). We 

further confirmed the de novo occurrence of one CSF1R mutation in monozygotic twins 

from family NO, without a family history of HDLS (Supplementary Fig. 3). To confirm the 

rarity of these mutations, and to provide supporting evidence for pathogenicity, we also 

sequenced the CSF1R gene in 24 unrelated controls and genotyped the 13 novel mutations in 

at least 1436 Caucasian controls using Taqman genotyping assays. None of the mutations 

identified in HDLS patients and no other novel CSF1R mutations were found in controls.

The 14 CSF1R mutations identified in HDLS families are all located in the intracellular 

tyrosine-kinase domain of CSF1R encoded by exons 12-22. The mutations include 10 

missense mutations and one single-codon deletion, all affecting residues highly conserved 

across species and within members of the CSF1/PDGF receptor family of tyrosine-protein 

kinases (Kit, FLT3 and PDGFRα/β)13 (Fig. 3). We further identified three splice-site 

mutations, leading to the in-frame deletion of exon 13 (NO) or exon 18 (CA2/FL2), deleting 

up to 40 consecutive amino acids within the tyrosine kinase domain (Supplementary Fig. 4).

Detailed clinical information was available for 24 patients with proven CSF1R mutations 

from 14 HDLS families (Table 1). Mean age at onset was 47.2±14.5 years (range 18-78 

years), with mean disease duration of 6.0±3.1 years (range 2-11 years) and a mean age at 

death of 57.2±13.1 years (range 40-84 years). In some families (FL1/CA1/VA), age at onset 

or death differed by more than 25 years among family members, whereas a monozygotic 

twin pair (family NO) showed highly similar disease course with ages at onset and death 

within one year from each other, suggesting that currently unidentified genetic or 

environmental factors may be important determinants of the age-related disease penetrance. 

Presenting features and evolving clinical symptoms also varied significantly within and 

across families, and ante mortem clinical diagnoses in mutation carriers included 

frontotemporal dementia (FTD), CBS, Alzheimer disease (AD), multiple sclerosis (MS), 

atypical cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL), and Parkinson disease (PD).

Since most patients included in our study were not diagnosed with HDLS, we hypothesized 

that CSF1R mutation carriers may be present in clinical series of early-onset AD, FTD, 

CBS, MS and PD, or ischemic stroke patients with additional white matter changes. 

Sequencing analyses of CSF1R exons 12-22 encoding the protein tyrosine kinase domain in 

up to 93 Mayo Clinic patients affected with each of these neurological syndromes led to the 

identification of an additional CSF1R missense mutation c.2509G>T (p.D837Y) in a woman 

with clinical symptoms resembling CBS (Supplementary Tables 2-3). The identification of a 
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CSF1R mutation in this limited patient series underscores that HDLS may be an under-

diagnosed disease.

CSF1R is a cell-surface receptor primarily for the cytokine CSF-1, which regulates the 

survival, proliferation, differentiation and function of mononuclear phagocytic cells, 

including microglia of the central nervous system14. CSF1R is composed of a highly 

glycosylated extracellular ligand-binding domain, a trans-membrane domain and an 

intracellular tyrosine-kinase domain15. Binding of CSF-1 to CSF1R results in the formation 

of receptor homodimers and subsequent auto-phosphorylation of several tyrosine residues in 

the cytoplasmic domain16. CSF1R autophosphorylation precedes CSF1R-dependent 

phosphorylation of several proteins, including the phosphatase SHP-1 and the kinases Src, 

PLC-g, PI(3)K, Akt and Erk16-18. In the brain, CSF1R is predominantly expressed in 

microglial cells, although low levels of CSF1R have been reported in cultured neurons19-21. 

An increase in CSF1R copy number and point mutations leading to constitutive activation of 

the CSF1R receptor have been associated with tumor development, including hematological 

malignancies and renal cell carcinomas22,23.

To assess the functional importance of the CSF1R mutations identified in this study, we first 

studied the effect of the mutations on CSF1R in vitro. We transiently expressed DDK-

tagged wild-type (CSF1RWT) and mutant (CSF1RE633K, CSF1RM766T and CSF1RM875T) 

CSF1R in cultured cells. Upon stimulation with CSF-1, autophosphorylation on multiple 

CSF1R tyrosine-residues was observed for CSF1RWT, while none of the mutants showed 

detectable levels of autophosphorylation (Fig. 4 and Supplementary Fig. 5). Since all 

mutations are in the CSF1R kinase domain, dimerization and/or cell surface expression are 

unlikely to be affected; however, we cannot exclude this at this time. These preliminary 

findings suggest that mutant CSF1R kinase activity is abrogated, likely affecting the 

phosphorylation of downstream targets. We speculate that mutant CSF1R might assemble 

into non-functional homodimers and wild-type/mutant heterodimers inducing a dominant-

negative disease mechanism.

To address whether CSF1R autophosphorylation is also disrupted in HDLS patient samples, 

we first subjected blood samples from a healthy control and HDLS patient CA1-1 to CSF1R 

immunoblotting, which revealed no apparent difference in CSF1R total or phosphorylation 

levels (Supplementary Fig. 6a). Further, CSF1R immunoblotting was performed in frontal 

cortex brain tissue of healthy controls as well as patients with HDLS. Brain samples from 

AD and ALS patients were included as neurodegenerative disease controls. Our data showed 

varied levels of total and phosphorylated CSF1R in these brain samples (Supplementary Fig. 

6b); however, statistical analysis did not reveal a significant difference between any of the 

groups. Although these preliminary in vivo studies do not reveal a defect in 

autophosphorylation, these findings do not necessarily conflict with the data obtained in 

cultured cells. First, HDLS patients are heterozygous for the CSF1R mutations and 

therefore, in contrast to our in-vitro experiments, wild-type receptor is still present in these 

patients. In our cell culture experiments, CSF1R signaling was down regulated by serum 

deprivation to minimize basal signaling through this receptor before stimulation with the 

CSF-1 ligand. CSF-1 is a serum protein, so without this deprivation in vivo, immediate 

changes in CSF-1-induced CSF1R autophosphorylation may not be apparent as we cannot 
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disregard wild-type receptors at the cell surface that have already been activated. 

Unfortunately, without access to an immortalized cell line derived from an HDLS patient, 

we are currently unable to accurately assess acute receptor activation in vivo. Finally, the 

post-mortem brain samples from HDLS patients included in these studies exhibit extensive 

degeneration, leaving the possibility that cells with greater disruption of CSF1R signaling 

are underrepresented in the tissue sample.

Unraveling the genetic etiology of HDLS may significantly contribute to the understanding 

of other adult-onset leukoencephalopathies. De novo mutations in CSF1R could explain the 

disease in sporadic patients that have been described with clinical and pathological 

similarities to HDLS24-29. Future CSF1R mutation screening may also determine whether 

HDLS and pigmentary orthochromatic leukodystrophy (POLD) are part of a single 

clinicopathologic entity, as was recently suggested2. Moreover, the discovery of a mutation 

in a microglial trophic factor receptor may further elucidate the role of microglia in more 

common white matter disorders, particularly those associated with axonal dystrophy, such as 

Binswanger’s disease24,30, multiple sclerosis31 and HIV encephalitis32.

Interestingly, our findings also shed new light on Nasu-Hakola disease (NHD), a rare 

condition characterized by systemic bone cysts and dementia with striking similarities to 

HDLS33-35. NHD is caused by recessive loss-of-function mutations in the DAP12/TREM2 

protein complex36,37, which was recently implicated in CSF1R signaling, establishing NHD 

as a primary microglial disorder38. We speculate that a partial loss of the CSF1R/DAP12 

signaling cascade in microglia is responsible for the neurological phenotypes observed in 

HDLS and NHD, whereas a complete loss of this signaling cascade in bone marrow-derived 

macrophages is needed for the bone-cysts formation observed in NHD. In support of this 

hypothesis, a partial loss-of-function mutation in TREM2 in a family with early-onset 

dementia without bone-cysts was recently reported39. Also, no bone-cysts were reported in 

any of our HDLS patients and a bone scan in a patient CA1-1 did not show bone fractures, 

hypomineralization or any other bone structure abnormalities.

In summary, we have shown that mutations affecting the tyrosine-kinase domain of CSF1R 

underlie the white matter disease of HDLS, establishing HDLS as an important novel 

member of the recently defined class of primary microglial disorders, called 

‘microgliopathies’40. Future molecular studies of CSF1R signaling might offer novel 

insights into microglial physiology and the involvement of this cell type in HDLS and 

neurodegeneration. Moreover, CSF1R mutation screening in neurodegenerative disease 

patient series will now allow an accurate diagnosis of HDLS and could facilitate detection of 

presymptomatic individuals, which is indispensable for therapy development and early 

treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neuroimaging (a-b) and neuropathological (c-i) findings in HDLS patient FL2-1
Patient FL2-1 (Table 1 and Fig. 2) developed a mild depression followed shortly by 

forgetfulness at the age of 50 years. Two years later he had a flat affect, inappropriate 

behavior, poor concentration, executive dysfunction, restless legs syndrome, and insomnia. 

Examination 3 years after the onset of symptoms demonstrated psychomotor slowing, and 

ideomotor and constructional apraxia. The Mini-Mental State Examination (MMSE) score 

was 22/30. His gait was slow and shuffling. His postural stability was poor leading to 

frequent falls. He had rigidity and bradykinesia in all four extremities symmetrically. (a-b) 

Axial T2-weighted MR images showed localized hyperintense foci in both frontal and 

parietal lobes (long arrows), involving the periventricular, deep and subcortical white 

matter, sparing the subcortical U-fibers. Hyperintense focus in the right forceps minor 

(arrowhead) was seen. In the final stage of his illness, he became mute, reached a vegetative 

state, and died at the age of 55 years. Autopsy was performed. (c) Myelin loss in frontal 

white matter with a pigmented macrophage and a pale vacuolated axonal spheroid (Luxol 

fast blue). (d) Spheroids with phosphorylated neurofilament immunohistochemistry. (e) 

Spheroids with amyloid precursor protein immunohistochemistry. (f) Pigmented 

macrophages and reactive astrocytes (H&E). (g) White matter macrophages with HLA-DR 

immunohistochemistry. (h) Bizarre white matter astrocytes. (i) Ballooned cortical neurons 

with alpha-B-crystallin immunohistochemistry. Bar (c-i) = 30 μm
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Figure 2. Families with HDLS and CSF1R mutations
Abbreviated pedigrees of all families with HDLS included in this study. Filled symbols 

indicate affected individuals. An arrowhead indicates the proband. To protect confidentiality 

some individuals are not shown and sex is portrayed using a diamond for all individuals 

except affected individuals and their spouse. In each family, at least one affected family 

member received an autopsy (red pound sign) or biopsy (red star) confirmation of HDLS. A 

‘+’ sign indicates that DNA was included in the CSFR1 sequencing analyses to confirm that 

mutations segregated with disease. For each patient with DNA available for genetic studies, 

a unique patient number (UPN) corresponding to Table 1 is included above the patient.
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Figure 3. Genomic organization and protein domain structure of CSF1R with summary of 
CSF1R mutations
(a) The CSF1R gene extends over 60kb and contains 22 exons (vertical hatches). (b) Exon 

structure of the human CSF1R cDNA. Positions of the start codon (ATG) and stop codon 

(TGA) are indicated. For mutations detected, arrows indicate positions relative to exons and 

protein domains. (c) Domain structure of the CSF1R protein showing the immunoglobulin 

domains (IG) and the protein tyrosine kinase domain (PTK), interrupted by the kinase insert 

(shaded). (d) Fifteen heterozygote CSF1R mutations detected in 14 families with autopsy or 

biopsy proven HDLS and in one patient clinically diagnosed with corticobasal syndrome. 

Family identifiers, cDNA numbering (relative to NM_005211.3) and predicted translational 

changes are indicated. (e) ClustalW alignment for the parts of the PTK domain where the 

mutations occur, including multiple CSF1R homologs and all human CSF1/PDGF receptor 

family members. Comparison of human CSF1R (NP_005202.2), mouse CSF1R 

(NP_001032948.2), chicken CSF1R (XP_414597.2), Zebrafish CSF1R (NP_571747.1), 

human KIT (NP_000213.1), human FLT3 (NP_004110.2), human PDGFRα (NP_006197.1) 

and human PDGFRβ (NP002600.1). Amino acid positions of the mutations are indicated 

above the alignment.
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Figure 4. CSF-1 induces autophosphorylation of wild-type but not mutant CSF1R
Autophosphorylation of several tyrosine residues within the kinase domain of CSF1R is 

critical for its subsequent signaling involved in cell survival and proliferation. We studied 

CSF1R autophosphorylation in HeLa cells which do not express detectable levels of CSF-1 

thereby minimizing endogenous CSF1-induced signaling. A representative Western blot of 

lysates from CSF1RWT or mutant CSF1RM875T transfected HeLa cells treated with CSF-1 

for 5, 15, or 30 minutes is shown. Lysates from untreated CSF1R-transfected cells are 

included as a control and GAPDH immunoreactivity is shown to ensure equal protein 

loading. Total CSF1R immunodetection for both DNA constructs was robust. Further, we 

observed strong phosphorylation of wild-type CSF1R after 5 minutes of CSF-1 treatment, 

which decreased over the course of 15 and 30 minutes, as determined by immunoblotting 

using CSF1R phospho-specific tyrosine (p-Y) antibodies. In contrast, no CSF1R 

autophosphorylation at any of the selected tyrosine residues was detected after CSF-1 

treatment in CSF1RM875T transfected cells. Experiments were repeated three times with 

similar outcome. Comparable results were obtained using CSF1R mutants CSF1RE633K 

and CSF1RM766T (Supplementary Fig. 5).
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