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ABSTRACT

In this paper, we present a new paradigm to carry out the non-
rigid registration of multiple regions with a dense deformation field
derived from the optical flow model and the active contour frame-
work. The method can merge different tasks such as registration,
segmentation and incorporation of prior knowledge into a single
framework. The technique is based on finding the deformation field
which minimizes an energy functional designed to be minimal when
the curves selected in the moving image have reached the target
objects. This way, we obtain registration results that are accurate
on the considered contours with a deformation field smooth over the
whole image. Finally, the registration of multiple regions is handled
with a label function. A well-suited application of our registration
model is the atlas-based segmentation in medical imaging. Results
on 2D synthetic and real data show the performance of our regis-
tration algorithm.

1. INTRODUCTION

Atlas-based segmentation of medical images has become a standard
paradigm for exploiting prior anatomical knowledge in image seg-
mentation. In the majority of approaches proposed so far to register
an atlas to a patient image, the objective of the transformation is to
optimize some global intensity-based correspondence measure like
gray-level differences or mutual information. The main limitation
of these methods is that they often lead to a compromise between
the accuracy of the registration and the smoothness of the deforma-
tion. When at some places the registration is not accurate enough, a
widely-used solution is to globally or locally allow more variability
in the registration model in order to obtain more local deformation
but with the risk of creating irregularities in the deformation field.
Moreover, this does not assure that the desired level of precision
will be obtained. To cope with this problem, more local constraints
have to be included in the registration process. These constraints
should allow for more importance to be given to the registration of
relevant structures (to be robust regarding possible inconsistencies
between both images) and to introduce more prior knowledge, such
as the intensity distribution or the admissible shapes of the objects
selected to drive the registration. Thus, we introduce in this paper a
registration algorithm able to make an accurate registration, driven
by the objects present in the image while ensuring a regular defor-
mation field all over the image. This algorithm has been developed
in the active contour framework [2] because it is particularly well
suited to define and implement local constraints, as we will see later
in this paper.

The active contour technique was initially designed for image
segmentation. It looks for the optimal boundary of an object by
minimizing an energy functional. That way, one gets accurate seg-
mentation results. So far, the active contour model has been used
to segment objects in an image using boundary-based, region-based
or shape-based information. The registration technique we present
here will benefit from all of these families of active contours in
determining a dense deformation field defined on the whole im-

age. We propose a formulation adapting the active contour-based
segmentation framework to registration. This formalism is derived
from the combination of the general level set approach [3] with the
optical flow model [4]. Thus, we will see that different tasks such
as segmentation, incorporation of prior knowledge and registration
can be merged into a single framework. In this new framework, the
deformation field becomes the important variable and no longer the
contour as in the standard active contour approach. However, our
registration method keeps the same advantages of level set-based
segmentation in terms of accuracy and prior knowledge. In fact we
will show that the evolution terms designed for the image segmen-
tation process can be re-used for the image registration task.

This work is not the first attempt at integrating the active con-
tours framework in a non-rigid registration context. The main
source of inspiration for this work is the non-parametric approach
proposed by Vemuri et al. in [11]. They propose a registration algo-
rithm based on the level sets of the moving image. In this paper, the
level sets correspond to the contours naturally present in images. In
[14] we propose to take the idea of level sets registration from [11]
by recovering the dense deformation field from the level set function
of Osher and Sethian [3], instead of the gray level intensities of the
image [11]. This way, we were able to derive benefit from the nu-
merous segmentation models developed in the level set framework.
However one level set function can represent several objects in an
image but the contours of these objects have to be non-connected.
Beside, in the Vemuri’s model, connected and non connected can
be modeled with only one function. In this paper, we propose to
combine the advantages of [11] with our previous model [14] by
modeling the active contour by a label function. We note that in
the active contours framework, the idea of using labels to perform a
multiphase segmentation has recently been proposed by Cremers et
al. in [13].

The paper is organized as follows. First, the general evolution
equation for level sets-based registration based on the optical flow
model demonstrated in [14] is presented. After, we describe the
method we propose to perform the registration of multiple regions
based on a label function. Then, we present the use of a region-
based term arising directly from the standard active contour frame-
work in the proposed registration approach. Finally we illustrate the
performance of our algorithm on synthetic and real 2D data.

2. REGISTRATION METHOD

2.1 Active Contours in the Level Set Framework

In the active contour framework, two types of representation were
defined to model the contour.

In the first type of representation, ”the snake method” [2] pro-
poses a parametric representation of the contour by a linear combi-
nation of basis functions (e. g. splines, wavelets, ...) as follows:

C(q) =
K

∑
i=0

pibi(q), (1)
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where C(q) is the curve parameterized by q, pi are the con-
trol points, bi the basis functions and K the number of control
points/basis functions. The evolution of the snake is given by the
displacement vectors of its control points such as:

∂C(q, t)
∂ t

=−FN, (2)

where F is the velocity of the flow (or speed function) and N is the
unit normal to the curve C.

In the second type of representation, ”the level set method” ([3],
[7], [10]) proposes an implicit representation of the contour with a
level set function which is usually given by a signed distance map
as follows:

φ(x) =

{ 0 x ∈C
−d(x) x ∈Ωin
+d(x) x ∈Ω\Ωin,

(3)

where φ(x) is the level set function at the image point x, d is the
Euclidean distance to the closest contour point on C, Ω is the image
domain, Ωin is the image area inside the contour and Ω\Ωint is the
image area outside the contour.

In order to derive the motion equation, the level set values of the
evolving contour C(t) are constrained to always remain zero, which
means:

φ(C(t), t) = 0. (4)

By deriving (4) with the chain rule and combining the result
with (2), we obtain the standard active contour evolution equation
in the level set representation:

δφ
δC︸︷︷︸
∇φ

∂C
∂ t︸︷︷︸
−FN

+
∂φ
∂ t

= 0⇒ φt = F |∇φ |, (5)

where φt = ∂φ
∂ t . Note that the unit normal vector N is here defined

for each isophote, i.e. curve with the same level, as follows:

N =
∇φ
|∇φ | . (6)

Due to its implicit representation and global contour descrip-
tion, we have postulated in [14] that the level set representation is
a good support for estimating a deformation field defined on the
whole image domain.

2.2 Deformation Field Derived from the Optical Flow and the
Level Set Framework
In [14], the dense deformation field needed in registration is com-
puted by tracking the motion of the level set function, Equation (5),
with the optical flow method. Optical flow is a well-known pixel-
based image registration technique (for a detailed survey, see Barron
et al. [4]).

The optical flow method is based on the assumption that the
brightness of the moving image, here the isophotes of the level set
function φ(x, t), stays constant for small displacements, and for a
short period of time:

φ(x, t) = φ(x+u, t +dt)⇒ dφ(x, t) = 0, (7)

where u is the deformation vector field and dφ is the total derivative
of φ .

The optical flow constraint (7) can thus be rewritten as:

5φ
∂u(x, t)

∂ t
+

∂φ
∂ t

= 0. (8)

As a result, we get the evolution equation of the vector flow
from (8):

∂u(x, t)
∂ t

=− φt

|5φ |
5φ
|5φ | , (9)

where φt , given by Equation (5), represents the variation of the level
set function according to the desired application such as segmenta-
tion, registration, regularization, etc. Thus, by introducing (5) in
(9), we obtain the following formula merging the active contour
segmentation framework with the image registration task:

∂u(x, t)
∂ t

=−FN, (10)

where N represents the unit normal vector of level sets. Thus Equa-
tion (10) generates deformations radial to the active contours.

The speed function F and the normal vector field N in (10) are
determined from the level set function φ(x, t) and the deformation
field u(x, t). The level set function φ at time t is given by the de-
formation field u(x, t) and the initial level set function φ(x,0) such
that:

φ(x, t) = φ(x+u(x, t),0), (11)
which ensures that the evolution of the level set function exactly

corresponds to the current deformation.
Then, introducing Equation (11) in (10) yields:

∂u(x, t)
∂ t

=−F(φ(x+u(x, t),0))
5φ(x+u(x, t),0)
|5φ(x+u(x, t),0)| , (12)

Equation (11) is modified to stabilize the numerical computa-
tion when 5φ is close to zero as follows:

∂u(x, t)
∂ t

=−F(φ(x+u(x, t),0))
5φ(x+u(x, t),0)√

5φ(x+u(x, t),0)2 + ε2
, (13)

ε is a small positive constant. This equation makes the level sets
move along their respective normal with a speed F(x). The direc-
tion of the gradient is depending of the signed convention chosen to
distinguish the inside and outside of the object. With the level set
function described in (3), the gradient always goes trough the in-
side of the contour. Thus a contour point move out if F(x) > 0 and
in if F(x) < 0. We want to underline here that the active contour
framework rely their forces on a polarity (+/-).

Note that, as mentioned in [11], the existence and the unique-
ness of the result for PDEs of the same type of (13) is difficult to
prove and has to be further investigated.

2.3 Constraints on the computation of the forces
In a registration framework, the computation of the attraction speed
term 2 F has to respect the two following points:

- Keeping the signed distance function:
In [6], Gomez et al. have demonstrated that when F is computed
at each point of a common level set function φ(x, t), all ispho-
tes evolve independently toward the target contour to minimize
their energy. This implies the well-known effect that the level
set function lost progressively its properties of signed distance
map during its evolution. The distance between two consecutive
isophotes decreases when they reach the target contour. Thus,
in registration, F has to be computed in a narrowband of one
pixel-width around the active contours. The displacement of
other points in the image will be found by interpolation.

- Canceling the segmentation force at convergence:
When an active contour reaches its target, the forces computed
around the contour are not zero but reversed. Thus we need a
condition to cancel the segmentation force at convergence.

In the two next sections, we will show how to introduce these two
constraints in the evolution equation (13).

2As attraction term, we consider a term that attracts the active contour to
its corresponding contour in the target image.



2.4 Registration of Multiple Regions
In [11], Vemuri et al. present a non rigid registration algorithm
based on the level sets of the moving image. They work with the
intensity function I of the moving image. Hence, the level sets of in-
terest in (13) correspond to the intensity contours naturally present
in the given image. They use the following evolution equation:

∂u(x, t)
∂ t

= (IT (x)− I(x+u(x, t)) · (14)

5Gσ ∗ I(x+u(x, t),0)√
5Gσ ∗ I(x+u(x, t),0)2 + ε2

,

where IT is the target image, Gσ is a Gaussian kernel with stan-
dard deviation of σ and ∗ is the convolution operator. We note that
Equation (14) is very similar to (13) when F = (I(x+u,0)−IT ) and
φ = I. But in (14) I needs to be convolved with a Gaussian kernel G
prior because the gradient computation is very sensitive to noise. As
the level sets of φ in (13), the level sets of I in (14) move along their
respective normal with a speed F . Besides, in (14) the direction
of the gradient depends on the local intensity levels of the image.
Thus, the gradient goes from the highest intensity to the lowest in-
tensity. In (13), due to the level set representation (Equation (3)),
the gradient is always oriented through the inside of the active con-
tour. The advantage of the Vemuri’s model is that connected, non
connected, close and open contours can be modeled with only one
function. The limitation is that all contours of the moving image
are considered for the registration. This can create mismatching in
presence of inconsistencies between the moving and the target im-
age as this will be illustrated in the results section 3. Also we will
show in the next section that the speed terms designed for the ac-
tive contour segmentation models cannot be used in the Vemuri’s
model.

One level set function φ can represent several objects in an im-
age but these objects can not be connected. To represent connected
contours, Vese and Chan propose in [8] to use a second level set
function.

In this paper, we drop the level set function φ that we use to
represent objects in [14]. We propose to use a label function L to
define an arbitrary number of connected or non connected closed
objects. This idea combine the advantages of our model (13) with
the Vemuri’s method [11]. Function L represents a labelled closed
region selected in the moving image I as follows:

L : x ∈Ω→ L(x) = k,k ∈ [1, ..,N] if x ∈Ωk, (15)

where Ωk is the kth labelled region and N is the arbitrary number of
regions.

In the L representation, the level sets of interest correspond to
the borders between two regions. As L is not a continuous function
across the borders, L is convolved with a Gaussian kernel Gσ prior
to the gradient computation.

Speed terms coming from the active contour framework can be
used again in the registration process if the gradient of L is oriented
inside the region. We define the following function S to determine
the desired gradient direction based on the label values:

S(x) =

{ +1 if maxi L(x+ xi) > L(x)
−1 if mini L(x+ xi) < L(x)
0 otherwise

, (16)

where x + xi, i ∈ [1,8] correspond to the 8-connected neighbors of
pixel x. maxi L(x+ xi) and mini L(x+ xi) are respectively the maxi-
mum and minimum values of function L among the 8 neighbors of
x. Figure 1 illustrates the function S. Each panel shows the current
pixel (enhanced in bold) surrounding by its 8 neighbors. The black
arrow shows the direction of the gradient. If neighbors have values
larger or equal to L(x), the gradient is already in the good direction
so S(x) = 1 (Figure 1(a)). If one neighbor has a value inferior to
L(x), the gradient direction will be change with S(x) = −1 (Figure

1(b)). Finally if the neighborhood has the same value of L(x), the
gradient has to be null which means S(x) = 0 (Figure 1(c)). The lat-
ter condition allows to compute the forces only on a narrowband of
one pixel-width around the contours selected to drive the registra-
tion and independently of the gaussian convolution. This satisfies
the first constraint described in section 2.3.

(a) (b) (c)

Figure 1: Illustration of Function S. a) S(x) = 1: Gradient is in the
right direction. b) S(x) =−1: Gradient direction has to be changed.
c) S(x) = 0: Gradient is null.

Thus, φ(x) is replaced by L(x) in Equation (13) and the con-
straints on the gradient through function S is added such that we
obtain the following evolution equation:

∂u(x, t)
∂ t

= −S(x)F(L(x+u(x, t),0)) · (17)

5Gσ ∗L(x+u(x, t),0)√
5Gσ ∗L(x+u(x, t),0)2 + ε2

,

where F is the speed function given by the active contour segmen-
tation model.

The representation by a label function allows first to select the
contours in the moving image that have to drive the registration,
then to model closed and connected objects by only one function.

Figure 2, 3 and 4 compare the gradient direction, the attraction
force to a target contour (represented by a dotted line) and the force
at convergence (when the active contour reaches its target contour)
on the three function φ (Panel 1), I (Panel 2) and L (Panel 3). The
active contour is represented by the black line. For the Figures 3
and 4, the target contour corresponds to the dotted line.

(a) (b) (c)

Figure 2: Illustration of the gradient direction on the functions φ ,
I and L: a) ∇φ on a narrowband of 1 pixel-width around the zero
level set. b) ∇I on a contour. c) ∇L on a narrowband of 1 pixel-
width around the border between two regions.

2.5 Model of Simultaneous Registration and Segmentation
In this section, we show how evolution terms originally designed
for the active contour-based segmentation can be used in our reg-
istration model. We illustrate our model with a region-based term
based on the probability density function (pdf) of intensities and
on the entropy measure. Note that other region-based segmentation
models like [9, 15] can be introduced in our registration model in
the same way.

2.5.1 Region-based speed function

In our approach, the moving image is considered as a reference im-
age or atlas. It contains spatial prior knowledge about the target



(a) (b) (c)

Figure 3: Illustration of an attraction force trough a contour (dotted
line) on the functions φ , I and L: a) F∇φ on a narrowband of 1
pixel-width around the zero level. b) F∇I on a contour. c) F∇L
on a narrowband of 1 pixel-width around the border between two
regions.

(a) (b) (c)

Figure 4: Forces at convergence on the functions φ , I and L: a) F∇φ
on a narrowband of 1 pixel-width around the zero level set. b) F∇I
on a contour. c) F∇L on a narrowband of 1 pixel-width around the
border between two regions.

image such as a good initial position for the active contours driv-
ing the registration process. Other kinds of prior knowledge can
be extracted from the reference image like prior intensity distribu-
tions concerning the structures to be segmented in the target image.
We choose to illustrate our registration method with an approach
inspired by Herbulot et al. in [12]. This approach is presented in
detail in a joint paper [15]. It is based on the following energy de-
signed to be minimal when the entropy of a region Ω defined in the
target image by the evolving label function is close to the entropy
of the corresponding region in the reference image:

E(Ω) =
1
|Ω|

∫

Ω
−ln(qprior(I(x),Ω))dx, (18)

where qprior is the prior density distribution of a given region ex-
tracted from the reference image and I is the intensity function of
the target image.

We assume that corresponding regions between the reference
and target images have similar intensity distributions. Note that
qprior does not evolve during the registration process. Hence it
is computed once on the reference image in a pre-process step.
This substantially reduces the computation complexity making this
model fast.

The pdf of a given region in the reference image is estimated
using the Parzen windows method [1]:

p(α,Ω) =
1
|Ω|

∫

Ω
Gσ (α− I(x))dx, (19)

where G is a Gaussian kernel with 0-mean and σ2 variance.
The derivation of functional (18) leads to the following speed

function:

F(qprior,x) =
1
|Ω| (ln(qprior(I(x),Ω))). (20)

This term is used in a region competition approach between the
current region and the neighboring region as:

F(x) = F(qprior,in,x)+F(qprior,out ,x)), (21)

where F is the speed term in (20), qprior,in is the reference pdf in-
side the current region and qprior,out is the reference pdf outside the
current region. Competition regions can be found in the labelled
image with the 8 neighbors of the current pixel x. When there are
several possible regions for qprior,out , we choose to consider the one
that gives the highest probability for the pixel x, i.e. the one with
the maximal value for qprior,out(x).

In the implementation, we speed up the algorithm using the fol-
lowing function K, which gives to F(x) a constant magnitude speed
while conserving the direction of propagation:

K(x) = kSign(F(x)), (22)

where k is a positive constant and Sign() is the sign function. Fi-
nally, numerical stabilities are obtained when k∆t is smaller or equal
to the length of one pixel. The deformation field u is updated as fol-
lows:

u(x, t +∆t) = u(x, t)+∆t
∂u(x, t)

∂ t
= u(x, t)−∆tFN, (23)

where ∆t is the time step.

2.6 Interpolation and Regularization
Deformations computed on the active contour are then extended to
the whole image by diffusion. The PDE corresponding to the linear
diffusion is the well-known heat equation:

∂v(x, t)
∂ t

= ∆v(x, t), (24)

v(x, t = 0) = u∗(x),

where u∗ is the solution of Equation (23) at the point x and ∆ is
the Laplacian operator. This equation corresponds to the Gaussian
regularization.

This diffusion has also a regularization effect. Therefore we do
not use a regularization term in the F computation in equation (18).
The Gaussian interpolation will also attenuate the contribution of
the two lateral opposite forces around the active contour when it
reaches its target.

A regular displacement field is obtained with a Gaussian filter
applied to u(x, t +∆t) at each iteration.

Finally the registration is speed up with a multi-resolution ap-
proach.

3. RESULTS

Figure 5 shows the data set of 2D images used to illustrate the reg-
istration method. It contains synthetic images (Row 1) and neck 2D
CT images (Row 2). The moving and target images are respectively
shown in the first and second column. The synthetic images contain
four connected regions. Three have a uniform intensity that stays
constant between the moving and the target image. The last region
has a similar distribution in both images but the orientation of the
texture pattern is different. The neck images come from different
subjects. They contain common structures as the trachea, the ver-
tebra, the jaw, the external contour of the neck and structures that
do not correspond and can thus perturb the registration as the arte-
ria, muscles and fat (Figure 5(f)). The target contours are copied
onto all of these images to visualize the initial differences. Column
3 shows the label function defining the regions that our algorithm
has to consider. The label function of the CT image was obtained by
thresholding the moving image 5(d). Figure 6 shows the registration
results obtained on these data with the Vemuri’s model (Column 1)
and our registration algorithm (Column 2). The target contours are
copied onto all of these images to visualize the quality of the reg-
istration. The deformed grid of Column 3 helps to visualize the
deformation defined on the whole image domain by our algorithm.
The results obtained on synthetic images (Row 1) show that both
algorithms give the same quality of registration on uniform regions.



(a) (b) (c)

(d) (e) (f)

Figure 5: Data set used to illustrate the registration method. Rows:
1) Synthetic 2D images. 2) Neck 2D CT. Columns: a) Moving
Image. 2) Fixed image. 3) Labelled function.

However, concerning the texture area, due to its very local speed
term (difference of intensity), the Vemuri’s algorithm is trying to
register the details of the texture pattern. Since our algorithm per-
forms a global registration of this region, the texture pattern is thus
following the deformation of the region contours. In the neck im-
ages, the Vemuri’s algorithm is trying to register the structures that
do not correspond. This has for consequences to disturb the regis-
tration of common structures as the trachea, the vertebra or the jaw.
The proposed method registers the most common structures.

(a) (b) (c)

(d) (e) (f)

Figure 6: Comparison between the Vemuri’s model [11] and our al-
gorithm. Rows: 1) Results on synthetic image. 2) Results on CT
neck image. Columns: 1) Zoom on Vemuri’s algorithm result. 2)
Zoom on our algorithm result 3) Deformed grid to visualize the de-
formations computed on the whole image domain by our algorithm.

4. DISCUSSION AND CONCLUSIONS

In this paper, we present a general formulation for adapting the ac-
tive contour framework to image registration. It allows to perform
segmentation and registration at the same time, which fits particu-
larly well the atlas registration method. We propose a scheme for
multiple regions registration based on the modeling of active con-
tours by a label function. We illustrate the registration method with
a region-based attraction term initially designed for active contours.

The closest work to the non rigid registration algorithm we pro-
pose is probably the well-known Demons algorithm of Thirion [5].
The common points between both algorithms are first that they are
designed to match contours. Contour points are generally more im-
portant than other points in the image. Furthermore, using only the
contour points leads to a faster algorithm. Then both algorithms
rely their forces on a polarity (+/-). However in the Thiron’s algo-
rithm this polarity depends on intensity differences and in our algo-
rithm it depends on the objects to register. Future work is mainly
focused on the study of the similitude between our algorithm and
the Thirion’s algorithm. Moreover the performance of our region-
based registration algorithm will be analyzed on 3D images and
compared to the non rigid registration algorithms currently used for
atlas-registration.
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