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Abstract

We present a comprehensive study of computing similarity between texts. We start from the observation that while the
concept of similarity is well grounded in psychology, text similarity is much less well-defined in the natural language
processing community. We thus define the notion of text similarity and distinguish it from related tasks such as textual
entailment and near-duplicate detection. We then identify multiple text dimensions, i.e. characteristics inherent to
texts that can be used to judge text similarity, for which we provide empirical evidence.

We discuss state-of-the-art text similarity measures previously proposed in the literature, before continuing with
a thorough discussion of common evaluation metrics and datasets. Based on the analysis, we devise an architecture
which combines text similarity measures in a unified classification framework. We apply our system in two evaluation
settings, for which it consistently outperforms prior work and competing systems: (a) an intrinsic evaluation in the
context of the Semantic Textual Similarity Task as part of the Semantic Evaluation (SemEval) exercises, and (b) an
extrinsic evaluation for the detection of text reuse.

As a basis for future work, we introduce DKPro Similarity, an open source software package which streamlines the
development of text similarity measures and complete experimental setups.



1 Introduction

Within the natural language processing (NLP) community, similarity between texts (text similarity, henceforth) is a
ubiquitous notion and utilized in a wide range of tasks such as question answering (Lin and Pantel, 2001), automatic
essay grading (Attali and Burstein, 2006), or paraphrase recognition (Dolan et al., 2004). However, text similarity
is often used as an umbrella term covering quite different phenomena—as opposed to the notion of similarity in
psychology, which is well studied and captured in formal models such as the set-theoretic model (Tversky, 1977) or
the geometric model (Widdows, 2004). We argue that the seemingly simple question “How similar are two texts?”
cannot be answered independently from asking what properties make them similar. Goodman (1972) gives a good
example for physical objects regarding the situation of a baggage check at the airport: While a spectator might
compare bags by shape, size, or color, the pilot only focuses on a bag’s weight, and a passenger compares bags by just
destination and ownership. Similarly, texts also have particular inherent properties that need to be considered in any
attempt to judge their similarity (Bär et al., 2011). Take for example two novels by the famous 19th century Russian
writer Leo Tolstoy. A reader may readily argue that these novels are completely dissimilar due to different plots,
people, or places. On the other hand, a second reader (e.g. a scholar overseeing texts of disputed authorship) may
argue that both texts are indeed highly similar because of their stylistic similarity. In consequence, text similarity
remains a loose notion unless we provide a frame of reference. We argue that text similarity cannot be seen as a fixed,
axiomatic notion. Rather, we need to define in what way two texts are similar.

From a human-centered perspective, we say that text similarity is a function between two texts t1 and t2 which
can be informally characterized by the readers’ shared view on the text characteristics along which similarity is to
be judged. However, to the best of our knowledge the definition of appropriate text characteristics for text similarity
computation has not been tackled yet in any previous research. We thus further argue that text similarity can be
judged along different text dimensions, i.e. groups of text characteristics which are perceived by humans and for which
we provide empirical evidence. For example, a scholar in digital humanities may be less interested in texts that share
similar contents—as opposed to e.g. near-duplicate detection (see Section 2)—but may rather be looking for text pairs
which are similar with respect to their style and structure. Throughout this work and in particular in Section 3, we
will elaborate on the idea of text dimensions and further discuss suitable dimensions for text similarity tasks.

2 Related Tasks

Text similarity has a close relation to a variety of other tasks in the field of natural language processing. These tasks
inherently are highly similar to text similarity, but require additional processing steps, e.g. for recognizing textual
entailment (Dagan et al., 2006) which implies further constraints for the similarity computation process.

Textual Entailment
A related task is textual entailment which is defined as the directional relationship between a text T (the text) and

a second text H (the hypothesis) where T entails H (T ⇒ H) “if the meaning of H can be inferred from the meaning
of T, as would typically be interpreted by people” (Dagan et al., 2006). Typically, if T entails H, T and H are often
also highly similar. However, an entailment relationship also holds true if H is not similar to T , but can be logically
inferred from T . Textual entailment further differs from text similarity in two significant ways: (a) it is defined as a
unidirectional relationship, while text similarity requires a bidirectional similarity relationship to hold between a text
pair, and (b) textual entailment operates on binary judgments while text similarity is defined as a continuous notion.

Paraphrase recognition
A task which is also closely related to text similarity is paraphrase recognition (Dolan et al., 2004). A paraphrase

comprises two texts t1, t2 which are “more or less semantically equivalent”1, but might differ in their syntactic structure
and the degree of details. Chen and Dolan (2011) define an ideal paraphrase as “meaning-preserving” which “must also
diverge as sharply as possible in form from the original, while still sounding natural and fluent.” Under this definition,
paraphrase recognition and text similarity closely resemble each other: Two texts for which a paraphrase relationship
holds are—in most cases—naturally also highly similar. However, in cases where e.g. one text is a negation of the
second one, the texts would still be highly similar, but would not be paraphrases any more. Additionally, paraphrases
typically comprise text pairs up to a sentence length only (Dolan et al., 2004; Knight and Marcu, 2002; Cohn et al.,
2008; Chen and Dolan, 2011) while text similarity applies to texts of any length. A key difference between paraphrase
recognition and text similarity is that paraphrases are annotated with binary judgments rather than continuous
similarity scores.

1 According to the instructions which were given to the annotators in the study by Dolan et al. (2004)
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Task Content Structure Style

Authorship Attribution (Mosteller and Wallace, 1964) Ø
Automatic Essay Scoring (Attali and Burstein, 2006) Ø Ø Ø
Information Retrieval (Manning et al., 2008) Ø Ø Ø
Paraphrase Recognition (Dolan et al., 2004) Ø
Plagiarism Detection (Potthast et al., 2012) Ø Ø
Question Answering (Lin and Pantel, 2001) Ø
Short Answer Grading (Leacock and Chodorow, 2003) Ø Ø Ø
Text Categorization (Cavnar and Trenkle, 1994) Ø
Text Segmentation (Hearst, 1997) Ø Ø
Text Simplification (Chandrasekar et al., 1996) Ø Ø
Text Summarization (Barzilay and Elhadad, 1997) Ø Ø
Word Sense Alignment (Ponzetto and Navigli, 2010) Ø

Table 1: Classification of common natural language processing tasks with respect to the relevant text dimensions
suitable for text similarity computation: content, structure, and style

Near-duplicate detection
Another field of related work is near-duplicate detection. In the context of web search and crawling, text pairs

(i.e. typically pairs of web pages) are to be detected which differ only slightly in some small portion of text, e.g. by
advertisments or timestamps, or as the result of a revision step (Manku et al., 2007; Hoad and Zobel, 2003). While
near-duplicate detection is similar to text similarity in that a bidirectional similarity relationship holds, it differs in
what is considered a text: In the context of near-duplicate detection, a text refers to a sequence of arbitrary characters,
e.g. HTML source code rather than a natural language text. Prior work thus mainly uses fingerprinting and hashing
techniques (Charikar, 2002) rather than methods from natural language processing to find near-duplicates—typically
in very large datasets, e.g. a corpus of 1.6 billion web pages (Henzinger, 2006).

Plagiarism detection
Manifold definitions for plagiarism have been proposed: the result of copying an original text and claiming its

authorship (Potthast et al., 2012), the “unauthorised use or close imitation” of an original text and claiming its
authorship (Hannabuss, 2001), or the “unacknowledged copying of documents” (Joy and Luck, 1999). By these
definitions, plagiarism detection and text similarity are clearly similar to each other, as a copied text naturally
exhibits a high degree of similarity with the original. However, a central aspect to all the definitions is the act of
unacknowledged, unauthorized reuse or copy of an original text which may appear in different forms, e.g. direct word-
by-word copies, the reuse of text with only slight changes (paraphrasing), or the omission of citations on referenced
text parts (Clough, 2003). High similarity between two texts is thus only an indicator for a further plagiarism analysis
(Potthast et al., 2012).

3 Text Dimensions

In this section, we introduce the notion of text dimensions. Text dimensions are characteristics inherent to texts that
can be used to judge text similarity. In the first part of this section, we detail the proposal of a conceptual model
of text dimensions and discuss its recent developments. In the second part, we give empirical evidence that humans
perceive text similarity along the proposed dimensions.

3.1 Identification of Text Dimensions

In the beginning of this article, we argued that text similarity is much less well-defined than the notion of similarity in
psychology. We proposed to define text similarity as a function between two texts t1 and t2 under given assumptions
(see Section 1). A key aspect to our definition is that readers need to share a common view on the text characteristics
along which similarity is to be judged. However, to the best of our knowledge no such characteristics have yet been
identified in any previous work. In this section, we elaborate on how we can model suitable text characteristics in a
framework which is applicable to any text similarity task.

We analyzed common NLP tasks with respect to the relevant text dimensions suitable for text similarity computa-
tion and present some examples in Table 1. We identified three major dimensions inherent to texts: content, structure,
and style (Bär et al., 2011). Content addresses all topics and their relationships within a text. Structure refers to the
internal developments of a given text, i.e. discourse structuring, such as the order of sections. Style refers to grammar,
usage, mechanics, and lexical complexity, as proposed in the task of automatic essay scoring (Attali and Burstein,
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2006). That task typically not only requires the essay to be about a certain topic (content dimension), but also an
adequate style and a coherent structure are necessary. However, a scholar in digital humanities might be interested in
texts that are similar to a reference document with respect to style and structure, while texts with similar content are
of minor interest. It should be noted that the dimensions in conceptual spaces are not totally independent, but are
correlated (Gärdenfors, 2000). For example, the structure dimension covaries with the style dimension, as a particular
style inherently leads e.g. to a particular usage pattern of function words. The style dimension in turn covaries with
the content dimension, as for example a particular content (such as a newspaper report about a car accident) requires
a particular (factual) style. Changes in the content dimension hence inherently often come with changes in the style
dimension.

3.2 Empirical Evidence

In Table 1, we identified a number of typical NLP tasks with respect to the relevant text dimensions suitable for
text similarity computation. We now ground the proposed text dimensions empirically by reporting on the results of
two annotation studies which we conducted in order to show that humans indeed judge similarity along the proposed
text dimensions. In these studies, we asked human participants to give insights into the rationales behind their text
similarity judgments (Bär et al., 2011). In the first one, we found empirical evidence for the content and structure
dimensions, while the second study further grounds the style dimension. Overall, the results show that human
annotators indeed distinguish between different text dimensions when they are asked to judge text similarity. In
consequence, text similarity cannot be seen as a fixed, axiomatic notion, but rather needs to be put into context, i.e.
a thorough definition of relevant text dimensions is fundamental to any text similarity computation.

Content vs. Structure Dimensions
In this study, we used the 50 Short Texts dataset (see Section 5.1.1) by Lee et al. (2005) that contains pairwise

human similarity judgments for 1,225 text pairs. We selected a subset of 50 pairs with a uniform distribution of
judgments across the whole similarity range. We asked three annotators (A1-A3): “How similar are the given texts?”
We then computed the Spearman correlation ρ of each annotator’s ratings with the gold standard: ρA1

= 0.83,
ρA2
= 0.65, and ρA3

= 0.85. The much lower correlation of the annotator A2 indicates that a different dimension was
probably used to judge similarity.

To further investigate this issue, we asked the annotators about the reasons for their judgments. A1 and A3
reported consistently that they focused only on the content of the texts intuitively and completely disregarded other
characteristics. However, A2 was also taking structural similarities into account, e.g. two texts were rated highly
similar because of the way they are organized: First, an introduction to the topic is given, then a quotation is stated,
then the text concludes with a certain reaction of the acting subject. These results indicate that human annotators
indeed judge similarity along different text dimensions, as introduced above.

Content vs. Style Dimensions
The annotators in the previous study distinguished between the text dimensions content and structure. The stylistic

aspect of the texts was not addressed, as the text pairs were all of similar style, and hence that dimension was not
perceived as salient.

In order to further investigate whether the style dimension can be grounded empirically, we conducted a second
study: We selected 10 pairs of short texts from Wikipedia (WP) and Simple English Wikipedia2 (SWP). We used the
first paragraphs of Wikipedia articles and the full texts of articles in Simple English to obtain pairs of similar length.
We then formed pairs in all combinations (WP-WP, SWP-WP, and SWP-SWP) to ensure that both text dimensions
content and style are salient for some pairs. For example, an article from SWP and one from WP about the same
topic share the same content, but are different in style, while two articles from SWP have a similar style, but different
content.

We then asked three annotators to rate each pair according to the content and style dimensions. A qualitative
analysis of the results shows that WP-WP and SWP-SWP pairs are perceived as stylistically similar, while WP-SWP
pairs are seen similar with respect to their content. We conclude that human annotators indeed distinguish between
the two text dimensions content and style for text pairs where they are discriminating, and thus perceived as salient
text characteristics.

3.3 Discussion

In this section, we adopted the theory of conceptual spaces to texts. Based on an analysis of common NLP tasks
where text similarity is fundamental, we proposed to focus on three major text dimensions: content, structure, and

2 Articles written in Simple English use a limited vocabulary and easier grammar than the standard Wikipedia, http://
simple.wikipedia.org
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Figure 1: High-level depiction of the steps that are performed by compositional measures to compute text similarity
between two given input texts: After tokenization, pairwise word similarity scores wsim are computed between
all words (i.e. similarity computation is limited to one word pair at a time), before then aggregating all
pairwise scores to an overall score tsim for the texts.

style. We then reported on the annotation studies which we conducted in order to empirically ground the proposed
text dimensions. The results of these studies demonstrate that humans distinguish between the proposed dimensions
when asked to rate the degree of text similarity. Also, they seem intuitively able to find an appropriate dimension of
comparison for a given text collection. Smith and Heise (1992) refer to that as perceived similarity which “changes
with changes in selective attention to specific perceptual properties.” Selective attention can probably be modeled
using dimension-specific similarity measures.

4 Text Similarity Measures

A large number of text similarity measures have been proposed in the literature. Making use of the text dimensions
defined in the previous section, we propose to categorize text similarity approaches mainly into measures based on
content, structure, and style.

4.1 Content Similarity Measures

We further sub-divide the quite large class of content similarity measures into compositional and non-compositional
measures.

4.1.1 Compositional Measures

Compositional measures tokenize the input texts, compute pairwise word similarity between all words, and aggregate
the resulting scores to an overall similarity score. Figure 1 shows a high-level depiction of the steps that are performed
by compositional measures to compute text similarity between two given input texts. After tokenization, pairwise word
similarity scores are computed between all words (i.e. similarity computation is limited to one word pair at a time),
before then aggregating all pairwise scores to an overall score for the texts. As discussed above, the literature proposes
different sets of instantiations for these steps. In Table 2, we summarize the proposals and list the underlying word
similarity measures along with a very brief summary of the employed aggregation strategy. Popular word similarity
measures have previously been surveyed by Zesch and Gurevych (2010) and comprise measures such as Wu and Palmer
(1994), Hirst and St. Onge (1998), Leacock and Chodorow (1998), Jiang and Conrath (1997), or Lesk (1986). Basic
strategies to aggregate the pairwise word similarity scores for a text pair are, for example, to compute the arithmetic
mean of all scores or to take the maximum score, even though more sophisticated strategies exist.

4.1.2 Non-Compositional Measures

Non-compositional measures, on the other hand, first project the complete input texts onto a certain model, e.g. a
high-dimensional vector space, before then comparing them based on the abstract representations. Figure 2 shows a
high-level depiction of the steps that are performed by non-compositional measures to compute text similarity between
two given input texts. After pre-processing, the texts are projected onto a certain model such as a high-dimensional
vector space or a graph structure, before text similarity is then computed based on the abstract representations. For
compositional measures which we discussed in the previous section, the two major steps (word similarity computation,
aggregation) were modular and fully interchangeable. Any compositional measure thus is an instantiation of measures
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Reference Word Similarity Measures Aggregation

Mihalcea et al. (2006) PMI-IR (Turney, 2001), Latent Semantic Analysis (Landauer
et al., 1998), Leacock and Chodorow (1998), Lesk (1986), Wu
and Palmer (1994), Resnik (1995), Lin (1998a), Jiang and
Conrath (1997), additional measures by Mohler and Mihalcea
(2009): Shortest Path (Rada et al., 1989), Hirst and St. Onge
(1998), Explicit Semantic Analysis Gabrilovich and Markovitch
(2007)

Bidirectional aggreg.

Li et al. (2006) Shortest Path (Rada et al., 1989), word order Cosine

Islam and Inkpen (2008) Longest Common Subsequence, SOC-PMI (Islam and Inkpen,
2006)

Unidirectional aggreg.

Ho et al. (2010) Longest Common Subsequence, Yang and Powers (2005) As above
Islam et al. (2012) Word trigrams (Web1T) As above, but modified maxSim

function

Tsatsaronis et al. (2010) Shortest Path (Rada et al., 1989), harmonic mean of tf-idf
scores

Similar to Mihalcea et al.
(2006)

Table 2: Compositional measures as sets of instantiations of the steps depicted in Figure 1. The measures differ
in the proposal of underlying word similarity measures and aggregation strategy—which are both fully
interchangeable.

Projection on Model

Model 1 Model 2Text 1 Text 2tsim

Figure 2: High-level depiction of the steps that are performed by non-compositional measures to compute text sim-
ilarity between two given input texts: After pre-processing, the texts are projected onto a certain model
such as a high-dimensional vector space or a graph structure, before the overall text similarity score tsim is
then computed based on the abstract representations.

and strategies for these steps. In order to form a new compositional measure, any combination of a new or existing word
similarity measure and aggregation strategy may be chosen. In contrast, the two major steps for non-compositional
measures (projection onto model, similarity computation) are an integral part of the text similarity measure and
typically not interchangeable. A non-compositional measure is thus more than just a combination of a particular
projection and similarity computation step. Due to the fact that the abstract models are very different between the
proposed measures, a similarity computation step specifically tailored towards the employed model is required. In
Table 3, we summarize major non-compositional measures.
From an algorithmic point of view, compositional measures are typically more expensive than non-compositional ones
as they compute pairwise word similarity between all words in two texts. Depending on the nature of the underlying
word similarity measure, this may require considerable processing time. Non-compositional measures, however, cannot
be generally said to be superior in runtime complexity. While some of the measures such as as the string distance
metrics require little to none effort to project the input texts onto the model, other measures such as Latent Semantic
Analysis (Landauer et al., 1998) and Explicit Semantic Analysis (Gabrilovich and Markovitch, 2007) need to build
up very large models first, before then being able to project texts onto them. Usually, however, the creation of the
models is a one-time effort which casts a large document collection such as Wikipedia onto its model representation.
The comparison of two texts can then be done rather efficiently.

Other Classification Schemes
In this article, we focus on compositional vs. non-compositional measures, but in the literature other classification

schemes have been proposed. For example, measures can be classified by the type of resources used into corpus-based
and knowledge-based measures (Mihalcea et al., 2006). Corpus-based measures operate on corpus statistics gathered
from a usually large representative corpus. For example, the raw frequencies of all words may be computed along with
statistics of which words appear in what documents in order to identify function words, a composition which is widely
known as tf-idf. Knowledge-based measures operate on lexical-semantic resources that encode human knowledge about
words. Such resources are, for example, dictionaries, thesauri, or wordnets. They encode knowledge about words and
their definitions (dictionaries, wordnets), or the relations between them (thesauri, wordnets) in a machine-readable
format. The most prominent example of a lexical-semantic resource probably is WordNet (Fellbaum, 1998). Ho et al.
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Text Similarity Measure Description

Levenshtein distance (Levenshtein, 1966) Edit-distance metric (uniform)
Longest Common Subsequence (Allison and Dix, 1986) Longest non-contiguous character sequence
Jaro distance (Jaro, 1989) Short string matching (e.g. person or place names)
Jaro-Winkler distance (Winkler, 1990) Short string and prefix matching
Greedy String Tiling (Wise, 1996) Shared substrings of maximal length
Longest Common Substring (Gusfield, 1997) Longest contiguous character sequence
Monge Elkan distance (Monge and Elkan, 1997) Edit-distance metric (affice gap model)
Latent Semantic Analysis (Landauer et al., 1998) Semantic space on corpus statistics
Word n-grams (Lyon et al., 2001) Word n-gram set comparisons
Character n-gram profiles (Keselj et al., 2003) Character n-gram set comparisons
Explicit Semantic Analysis (Gabrilovich and Markovitch, 2007) Vector space model on Wikipedia
Kennedy and Szpakowicz (2008) Projection onto Roget’s Thesaurus or WordNet
Vector Space Model (Salton and McGill, 1983) Generalized vector space model on word weights
Random Walks (Ramage et al., 2009) Modified PageRank on WordNet
WikiWalk (Yeh et al., 2009) Modified PageRank on Wikipedia

Table 3: Overview of existing non-compositional text similarity measures

(2010) and Tsatsaronis et al. (2010) extend the above classification scheme by proposing a third class hybrid measures
which employs resources of both types.

Islam and Inkpen (2008) propose an alternative classification scheme with four classes: vector-based document
model measures, corpus-based measures, hybrid measures, and descriptive feature-based measures. The first class
describes measures which use any type of vector representation to compare two texts. Corpus-based measures and
hybrid measures correspond to the classes by Ho et al. (2010) and Tsatsaronis et al. (2010) described above. Descriptive
feature-based measures refer to measures which use a machine learning classifier with any set of features derived from
the given texts.

4.2 Structural Similarity

As discussed in Section 3, we assume that text similarity can be computed along multiple dimensions inherent to
texts. We should thus also consider measures which compute similarity based on structural aspects inherent to the
compared texts.

Stamatatos (2011) introduced Stopword n-grams that are based on the idea that similar texts may preserve syntactic
similarity while exchanging content words. Thus, the measure removes all content words while preserving only
stopwords. All n-grams of both texts are then compared using the containment measure (Broder, 1997). A possible
extension are part-of-speech n-grams, where one disregards the actual words that appear in two given texts, while
taking only the words’ part-of-speech tags into account. Such part-of-speech sequences are indicators for the texts’
shallow syntactic structures.

Hatzivassiloglou et al. (1999) employed two similarity measures between pairs of words in order to compare the
texts’ syntactic structures. They first construct the set of word pairs which appear in both texts. They then create
one feature vector per text, where each vector element corresponds to the weight of a shared word pair. The weights
are determined as follows: The word pair order measure assumes that a similar syntactic structure causes two words
to occur in the same order in both texts (with any number of words in between). The word pairs hence receive binary
weights whether they occur in the same order or not. The complementary word pair distance measure counts the
number of words which lie between those of a shared word pair. The word pairs hence receive numeric weights which
correspond to the number of words in between. Finally, the feature vectors are compared using Pearson correlation.

4.3 Stylistic Similarity

Measures of stylistic similarity adopt ideas from authorship attribution (Mosteller and Wallace, 1964) or use statistical
properties of texts to compute text similarity. The type-token ratio (TTR) (Templin, 1957), for example, compares the
vocabulary richness of two texts. However, it suffers from sensitivity to variations in text length and the assumption
of textual homogeneity (McCarthy and Jarvis, 2010): As a text gets longer, the increase of the number of tokens
is linear, while the increase of the number of types steadily slows down. In consequence, lexical repetition causes
the TTR value to vary, while it does not necessarily entail that a reader perceives changes in the vocabulary usage.
Secondly, textual homogeneity is the assumption of the existence of a single lexical diversity level across a whole text,
which may be violated by different rhetorical strategies. Sequential TTR (McCarthy and Jarvis, 2010) alleviates these
shortcomings. It iteratively computes a TTR score for a dynamically growing text segment until a point of saturation
– i.e. a fixed TTR score of 0.72 – is reached, then it starts anew from that position in the text for a new segment.
The final lexical diversity score is computed as the number of tokens divided by the number of segments.
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Inspired by Yule (1939) who discussed sentence length as a characteristic of style, we define two simple measures,
average sentence length and average token length. These measures compute the average number of tokens per sentence
and the average number of characters per token, respectively. Additionally, we compared the average sentence and
token lengths between the texts of a pair. We refer to these measures as sentence length ratio and token length ratio,
respectively.

Finally, texts can also be compared by their function word frequencies (Dinu and Popescu, 2009) which have
shown to be good style indicators in authorship attribution studies. They use a set of 70 function words identified by
Mosteller and Wallace (1964) and compute feature vectors of their frequencies for each text pair. The vector similarity
is determined using Pearson correlation.

4.4 Section Summary

In this section, we discussed a variety of text similarity measures that have been proposed in the literature and which
we classify into compositional and non-compositional measures.

An important observation is that there exist virtually any number of compositional measures as they can be
formed from arbitrary combinations of new or existing word similarity measures and a suitable aggregation strategy
(see Table 2). Even though some combinations have been explicitly proposed in the literature, as discussed above,
others may achieve good results as well. It is still unclear which combinations work well for what kind of data, and the
literature on compositional measures typically gives no clue as to why particular measures and strategies have been
preferred over others. In our opinion, all measures have their inherent strengths and weaknesses. We believe that all
of them judge text similarity along particular text characteristics, and—as we will see later in this article—instead
of creating more and more separate measures, it seems a promising research direction to harness the potential of the
existing measures and combine them in a single model, in order to capture a wide variety of text characteristics.

5 Evaluation Datasets and Methodology

In this section, we discuss the methodology for evaluating text similarity measures. The performance of text similarity
measures can be evaluated either in an intrinsic or extrinsic evaluation. In an intrinsic evaluation, the performance
of text similarity measures is evaluated in an isolated setting. In an extrinsic evaluation, the performance of text
similarity measures is evaluated with respect to a particular task at hand, where text similarity is a means for solving
a concrete problem. In the following, we discuss both types of evaluation, and present datasets and evaluation metrics
which have been widely used in the literature.

5.1 Intrinsic Evaluation

An intrinsic evaluation assesses the performance of text similarity measures in an isolated setting. Therefore, the
datasets for an intrinsic evaluation contain text pairs along with human similarity judgments. The intuition is that
machines should be able to judge text similarity for the given pairs in a similar manner as humans do. Systems are
thereby expected to output continuous text similarity scores within a given interval, e.g. between 0 and 5 where 0
means not similar at all and 5 is perfectly similar. Evaluation is then carried out by comparing the system results
with the human judgments. In the following, we introduce the datasets and the evaluation metrics which have been
widely used in the literature. In Section 6, we present details and results on an intrinsic evaluation which we carried
out in the context of the Semantic Textual Similarity (STS) Task (Agirre et al., 2012) at the Semantic Evaluation
(SemEval) workshop.

5.1.1 Datasets

Popular datasets for an intrinsic evaluation of text similarity measures are the 30 Sentence Pairs dataset (Li et al.,
2006), the 50 Short Texts collection (Lee et al., 2005), the Microsoft Paraphrase Corpus (Dolan et al., 2004), and the
Microsoft Video Description Paraphrase Corpus (Chen and Dolan, 2011). Each dataset contains text pairs which are
accompanied by human judgments about their perceived similarity.3 In Table 4, we summarize the statistics for these
datasets.4

3 A subset of the Microsoft Paraphrase Corpus and the Microsoft Video Description Paraphrase Corpus have been re-annotated
with human judgments in the context of the pilot Semantic Textual Similarity (STS) Task (Agirre et al., 2012) at the
Semantic Evaluation (SemEval) workshop.

4 Table 4 contains statistics for both intrinsic and extrinsic evaluation datasets. We discuss the latter in Section 5.2.1.
5 We report the class distributions along with the dataset descriptions in Section 5.2.1.
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Dataset Length in # Pairs Rating # Judges
Text Type / Domain Terms (�) Scale per Pair

30 Sentence Pairs (Li et al., 2006)
Concept Definitions 5–33 (14) 30 0–4 32

50 Short Texts (Lee et al., 2005)
News (Politics) 45–126 (80) 1,225 1–5 8–12

MS Paraphrase Corpus (Dolan et al., 2004)
News 5–31 (19) 5,801 binary3 2–3

MS Video. Paraphrase Corpus (Chen and Dolan, 2011)
Video descriptions 1–50 (7) 120K binary3 n/a

Wikipedia Rewrite Corpus (Clough and Stevenson, 2011)
Computer Science 36–343 (208) 95 4-way5 1

METER Corpus (Gaizauskas et al., 2001)
News (Law & Court, Show Business) 17–1K (205) 1,716 3-way5 1

Webis Crowd Paraphr. Corpus (Burrows et al., 2013)
Book excerpts 28–954 (618) 7,859 binary5 1

Table 4: Statistics for seven datasets which have been used for the evaluation of text similarity measures. We classify
them as datasets for an intrinsic (top) and extrinsic evaluation (bottom).

30 Sentence Pairs
Li et al. (2006) introduced a collection of 65 sentence pairs. The dataset is an extension of the collection of noun

pairs by Rubenstein and Goodenough (1965), where each noun was replaced by its definition from Collins Cobuild
English Dictionary (Sinclair, 2001). For example, the original noun pair gem/jewel was replaced by the sentence pair
“A gem is a jewel or stone that is used in jewellery. / A jewel is a precious stone used to decorate valuable things that
you wear, such as rings or necklaces.” The dataset is accompanied by judgments from 32 subjects on how similar in
meaning one sentence is to another. As the distribution of similarity scores was heavily skewed towards low scores,
Li et al. (2006) selected 30 pairs to reduce the bias in the frequency distribution. We refer to this subset by the name
30 Sentence Pairs, henceforth. In the literature, this dataset has been used for evaluation, for example, by Islam and
Inkpen (2008), Kennedy and Szpakowicz (2008), and Tsatsaronis et al. (2010).

50 Short Texts
The dataset by Lee et al. (2005) has been used for evaluation, for example, by Gabrilovich and Markovitch (2007)

and Yeh et al. (2009). It comprises 50 short texts (45 to 126 words in length)6 which contain newspaper articles from
the political domain. For the annotation by human judges, each text was paired with every other one, resulting in
1,225 distinct text pairs. Human judgments were collected from 83 subjects who were paid on a per-100-ratings basis.
The subjects were asked to rate “how similar they felt the documents were” on a discrete 1–5 scale (higher values
indicating higher similarity). In the end, each pair received between 8 and 12 human scores, which were averaged to
create the final scores.

An example text pair is shown in Figure 3. Here, the first text talks about a Chinese car registration system,
while the second one elaborates on the topic of Chinese workers seeking employment in Russia. The average human
similarity rating for this pair is in the medium range (2.80) on the 1–5 scale, which reflects the intuition that both texts
share particular topics (e.g. China), but differ in various aspects (e.g. car registration system vs. work & employment).

Microsoft Paraphrase Corpus
Dolan et al. (2004) introduced a dataset of 5,801 sentence pairs (5 to 31 words in length) taken from news sources

on the Web. The objective of this corpus is different from the corpora presented above: It originates in the field
of paraphrase recognition, and hence is originally not accompanied by continuous human similarity scores. Rather,
the text pairs are binary classified as paraphrase or no paraphrase. Despite the simpler annotation scheme, the text
similarity community has widely adopted this dataset for evaluating text similarity measures (Mihalcea et al., 2006;
Islam and Inkpen, 2008; Ramage et al., 2009; Tsatsaronis et al., 2010). Originally, binary judgments were collected
from 2–3 subjects who indicated whether a pair captures a paraphrase relationship or not (83% inter-annotator
agreement)7. In the end, 3,900 (67%) of all pairs were positive examples. According to the instructions which were
given to the annotators, a paraphrase relationship holds if two sentences are “more or less semantically equivalent”.
The loose definition is explained in more detail by several positive and negative examples in the annotation guidelines,
two of them are shown in Figure 4. For the positive example, the same content is expressed via similar lexical items

6 Lee et al. (2005) report the shortest document having 51 words probably due to a different tokenization strategy.
7 The reported agreement is the fraction of text pairs that the annotators agreed on (no chance correction).
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(a) Beijing has abruptly withdrawn a new car registration system after
drivers demonstrated “an unhealthy fixation” with symbols of Western
military and industrial strength - such as FBI and 007. Senior officials
have been infuriated by a popular demonstration of interest in American
institutions such as the FBI. Particularly galling was one man’s choice of
TMD, which stands for Theatre Missile Defence, a US-designed missile
system that is regularly vilified by Chinese propaganda channels.

(b) The Russian defense minister said residents shouldn’t feel threatened
by the growing number of Chinese workers seeking employment in the
country’s sparsely populated Far Eastern and Siberian regions. There
are no exact figures for the number of Chinese working in Russia, but
estimates range from 200,000 to as many as 5 million. Most are in the
Russian Far East, where they arrive with legitimate work visas to do
seasonal work on Russia’s low-tech, labor-intensive farms.

Figure 3: Example sentence pair taken from the 50 Short Texts dataset by Lee et al. (2005). The average human
similarity score of this pair is 2.80 (standard deviation 0.98) on a 1–5 scale.

Positive example: equivalent content

(a) The Senate Select Committee on Intelligence is preparing a blistering
report on prewar intelligence on Iraq.

(b) American intelligence leading up to the war on Iraq will be criticised
by a powerful US Congressional committee due to report soon, officials
said today.

Negative example: shared content of the same event, but lacking details

(a) Researchers have identified a genetic pilot light for puberty in both mice
and humans.

(b) The discovery of a gene that appears to be a key regulator of pu-
berty in humans and mice could lead to new infertility treatments and
contraceptives.

Figure 4: Positive and negative paraphrase examples taken from the annotation guidelines of the Microsoft Research
Paraphrase Corpus (Dolan et al., 2004). Semantically overlapping and discriminating phrases are underlined.

(underlined). The negative example, on the other hand, does not capture a paraphrase relationship due to the lack
of details (underlined), even though both sentences share a basic description of the same event.

Due to the nature of the original dataset described above, only an extrinsic evaluation could only be carried out,
where the goal would be to identify whether a paraphrase relationship holds or not. However, in the context of
the Semantic Textual Similarity (STS) Task (Agirre et al., 2012) at the Semantic Evaluation (SemEval) workshop,
a subset of 1,500 text pairs from this dataset were re-annotated with human similarity judgments on a continuous
0− 5 scale. That way, the text pairs of the original dataset have been reused, but instead of the binary paraphrase
annotations, the new dataset is accompanied by continuous human judgments on text similarity. Hence, the revised
dataset is well suited for an intrinsic evaluation and may be highly beneficial for future work on text similarity. In
Section 6, we conduct our intrinsic evaluation on this dataset in addition to four other datasets. The revised dataset
is freely available.8

Microsoft Video Description Paraphrase Corpus
Chen and Dolan (2011) originally introduced this dataset in the field of paraphrase recognition to address the lack

of a large-scale evaluation dataset. In their study, they presented short (i.e. typically less than 10 seconds) video clips
to human subjects and asked each one to provide a single sentence description of the video’s “main action or event”.
They carried out the study in a crowdsourcing setting using Amazon Mechanical Turk. In total, the collection contains
about 120,000 multilingual parallel descriptions (approximately 85,000 in English) of more than 2,000 video clips. The
parallel descriptions of a single video clip can then be considered paraphrases of each other. The authors argue that

8 http://www.cs.york.ac.uk/semeval-2012/task6/index.php?id=data

10



gathering paraphrases in this particular way overcomes the limitations of traditional paraphrase acquisition: The
subjects are not biased by any lexical or stylistic choices of an original sentence which is then to be paraphrased.

As with the aforementioned dataset, this dataset is originally suited only for an extrinsic evaluation where the goal
would be to identify whether a paraphrase relationship holds or not. However, this dataset has also been adopted for
the evaluation of text similarity measures in an intrinsic evaluation in the context of the Semantic Textual Similarity
Task (Agirre et al., 2012) at SemEval-2012. Human subjects annotated the similarity of a subset of 1,500 text pairs
from this dataset on a continuous 0−5 scale. We report details on our intrinsic evaluation on this dataset in Section 6.
The annotated subset is again freely available.8

5.1.2 Metrics

In an intrinsic evaluation, the system output is usually compared with human judgments by computing Pearson or
Spearman correlation, which we discuss in the following.

Pearson’s r
The correlation coefficient is typically denoted by r and measures the strength of linear dependence between two

similarity score vectors, i.e. how well the system reflects human judgments. The value of r is in the interval [−1;1]
where r = 0 can be interpreted as not similar at all, and r =−1 and r = 1 are perfect linear relationships (completely
similar). The relationship between ~x and ~y can be visualized in a scatter plot: For perfect linear relationships, all
data points are on a regression line that has a positive (r = 1) or negative (r = −1) slope. Pearson’s r between two
score vectors ~x and ~y is computed as follows, with n= |~x |= |~y|:

r =
n
∑

x i yi −
∑

x i

∑

yi
p

n
∑

x2
i (
∑

x i)2
p

n
∑

y2
i (
∑

yi)2
(1)

Linear transformations of the similarity scores do not affect the correlation. For example, a perfect correlation r = 1
can be observed between ~x = [1,2, 3,4] and ~y = [2,4, 6,8]. Pearson’s r, however, cannot cope with any non-linear
relationships such as ~x = [1,2, 3,4] and ~y = [1,4, 9,16] and is highly sensitive to outliers.

Spearman’s ρ
Typically denoted by ρ, Spearman’s rank correlation is not computed between the absolute values of the elements

in two similarity score vectors, but between their ranks. In case of the absence of tied ranks, Spearmans’s ρ can be
calculated using a simplified procedure: The raw similarity scores are transformed into ranks, then the difference di
between each of the ranks x i and yi is computed. Spearman’s ρ is then computed as follows, with n= |~x |= |~y|:

ρ = 1−
6
∑

d2
i

n(n2 − 1)
(2)

If tied ranks are present, Spearman’s ρ is computed as Pearson’s r (see Equation 1) between the ranked similarity
scores. For tied ranks, the arithmetic mean between all of their individual ranks is used.

Spearman’s ρ overcomes the shortcomings of Pearson’s r such as sensitivity to outliers and its limitation to
measuring only linear relationships between the similarity score vectors. However, Spearman’s ρ suffers from the
drawback that a perfect correlation of all ranks does not entail a perfect prediction of continuous similarity scores:
For example, if a measure were to predict ~x = [0.1,0.2, 4.9,5.0], i.e. two very low and two very high similarity scores
on a 0− 5 scale, a perfect Spearman’s ρ would be computed with the gold standard ~y = [4.7,4.8, 4.9,5.0], i.e. very
high similarity scores for all four elements. Here, a perfect rank correlation ρ = 1 would be observed as only the
pairwise ranks are compared: rank(~x) = rank(~y) = [4, 3,2,1].

5.2 Extrinsic Evaluation

An extrinsic evaluation measures the performance of text similarity measures with respect to a particular task at
hand, where text similarity is a means for solving a specific problem. In this article, and particularly in Section 7,
we focus on the task of text reuse detection. Text reuse is thereby defined as “the reuse of existing written sources
in the creation of new text” (Clough et al., 2002). A system for computing text similarity is expected to produce a
classification output which assigns each text pair a class label such as similar/dissimilar for a binary classification, or
highly similar/moderately similar/dissimilar for a multiclass setting. Evaluation is then carried out by comparing the
system output with the human classifications. In the following, we introduce the datasets and the evaluation metrics
which are suitable for an extrinsic evaluation. In Section 7, we present details and results of an extrinsic evaluation
which we carried out for the task of text reuse detection.
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5.2.1 Datasets

Popular datasets for this task include the Wikipedia Rewrite Corpus (Clough and Stevenson, 2011), the METER
Corpus (Gaizauskas et al., 2001), and the Webis Crowd Paraphrase Corpus (Burrows et al., 2013). The datasets
contain text pairs along with human judgments on the degree of text reuse.

Wikipedia Rewrite Corpus
The dataset introduced by Clough and Stevenson (2011) contains 95 pairs of short texts (193 words on average).

For each of 5 questions about topics of computer science (e.g. “What is dynamic programming?”), a reference answer
(source text, henceforth) has been manually created by copying portions of text from a suitable Wikipedia article.
Text similarity now occurs between a source text and the answers given by each of 19 human subjects. The subjects
were asked to provide short answers, each of which should comply to one of four rewrite levels and hence reuse the
source text to a varying extent. According to the degree of rewrite, the dataset is 4-way classified as cut & paste (38
texts; simple copy of text portions from the Wikipedia article), light revision (19; synonym substitutions and changes
of grammatical structure allowed), heavy revision (19; rephrasing of Wikipedia excerpts using different words and
structure), and no plagiarism (19; answer written independently from the Wikipedia article). We will further discuss
this dataset in Section 7 and give an example of a heavy revision in Figure 5 on page 19.

METER Corpus
The dataset was created by Gaizauskas et al. (2001) and contains news sources from the UK Press Association

(PA) and newspaper articles from 9 British newspapers that reused the PA source texts to generate their own texts.
The complete dataset contains 1,716 texts from two domains: law & court and show business. All newspaper articles
have been annotated whether they are wholly derived from the PA sources (i.e. the PA text has been used exclusively
as text reuse source), partially derived (the PA text has been used in addition to other sources), or non-derived (the
PA text has not been used at all).

Several newspaper texts, though, have more than a single PA source in the original dataset where it is unclear
which (if not all) of the source stories have been used to generate the rewritten story. However, for text similarity
computation it is important to have aligned pairs of reused texts and source texts. Therefore, Sánchez-Vega et al.
(2010) proposed to select only a subset of text pairs where only a single source story is present in the dataset. This
leaves 253 pairs of short texts (205 words on average) out of which 181 (72%) are classified as positive samples where
text reuse occurs, and 72 (28%) as negative samples.

Webis Crowd Paraphrase Corpus
The dataset by Burrows et al. (2013) was originally introduced as part of the PAN 2010 international plagiarism

detection competition (Potthast et al., 2010). It contains 7,859 pairs of original texts along with their paraphrases
(28 to 954 words in length) with 4,067 (52%) positive and 3,792 (48%) negative samples. The original texts are book
excerpts from free e-books of Project Gutenberg9, and the corresponding paraphrases were acquired in a crowdsourcing
process using Amazon Mechanical Turk (Callison-Burch and Dredze, 2010). In the manual filtering process10 of all
acquired paraphrases, Burrows et al. (2013) follow the paraphrase definition by Boonthum (2004): a good paraphrase
exhibits patterns such as synonym use, changes between active and passive voice, or changing word forms and parts
of speech, and a bad paraphrase is rather e.g. a (near-)duplicate or an automated one-for-one word substitution. This
definition implies that a more sophisticated interpretation of text similarity scores needs to be learned, where e.g.
(near-)duplicates with very high similarity scores are in fact negative samples.

5.2.2 Metrics

In an extrinsic evaluation, the system output is compared with human classifications. Besides accuracy, i.e. the
number of correctly predicted text pairs divided by the total number of pairs, a popular evaluation metric is F1 score,
which we discuss in the following.

F1 score
In a classification context, F1 score evaluates system performance in terms of precision and recall. Contrary to

Pearson’s r and Spearman’s ρ, F1 score does not directly compare a system output of continuous similarity scores with
human similarity judgments. It rather expects a system to produce a classification output which assigns each text
pair a class label such as similar/dissimilar for a binary classification, or highly similar/moderately similar/dissimilar
for a multiclass setting. These classifications are then compared with human judgments, and can be categorized

9 http://www.gutenberg.org
10 Burrows et al. (2013) do not report any inter-annotator agreement for the filtering process, as the task was split across two

annotators and each text pair was labeled by only a single annotator.

12



according to the predictive value as true positives (tp), true negatives (tn), false positives (fp), and false negatives
(fn). Precision and recall are defined as:

precision=
t p

tp+ f p
recal l =

t p

tp+ f n
(3)

F1score is defined as the harmonic mean of precision and recall:

F1 =
2 · precision · recall
precision+ recall

(4)

6 Intrinsic Evaluation

As we have shown in the previous section, humans indeed perceive text similarity along different text dimensions. We
therefore proposed to focus on the three dimensions content, structure, and style. Depending on the concrete task at
hand, we argue that a sophisticated system for the detection of text similarity may need to address more than a single
text dimension when computing similarity, e.g. a combination of all three dimensions. We thus propose to combine a
multitude of text similarity measures in a unified classification framework, where appropriate similarity measures are
used for each of the text dimensions (Bär et al., 2012).

For an intrinsic evaluation, we apply our system to the pilot Semantic Textual Similarity (STS) Task at the Semantic
Evaluation (SemEval-2012) exercises (Agirre et al., 2012). In the following, we first introduce the task in detail and
report on the five evaluation datasets. We then give a detailed system description and an overview of our system
along with its configuration parameters, and discuss the results obtained.

6.1 Task Description

Since 1998, SemEval is an ongoing series of semantic evaluation exercises, where systems compete on a number of
shared tasks. The goal is to find computational means for assessing different aspects of meaning in language. While
the exercise series primarily addressed word sense disambiguation (Yarowsky, 1995) in its early days (and was called
Senseval back then)11, it has evolved into a major venue for researchers working on a wide variety of topics such
as text simplification (Chandrasekar et al., 1996), semantic role labeling (Palmer et al., 2010), or textual entailment
(Dagan et al., 2006).

In 2012, a new task was introduced: The Semantic Textual Similarity (STS) Task (Agirre et al., 2012) is intended
to unite multiple efforts across the applied semantics community. The goal is to design algorithms which measure the
degree of semantic similarity between two sentences in a pair. These scores—a continuum from 0 (not similar at all)
to 5 (completely similar)—are then compared to averaged human judgments. That way, it is evaluated how well the
algorithmically produced scores resemble human judgments.

6.2 Employed Text Similarity Measures

In this section, we report on the text similarity measures which we used to compute similarity along the three
characteristic text dimensions content, structure, and style.

6.2.1 Content Similarity

In Table 5, we list the compositional and non-compositional measures we used in the intrinsic evaluation and describe
the configuration parameters as necessary.

For our experiments, we applied a novel measure based on a distributional thesaurus. The idea here is that similarity
can possibly be effectively computed based on word co-occurrence statistics in a large corpus. Similar to Lin (1998b),
we therefore implemented a word similarity measure based on pairwise similarity scores between all words from 10
million dependency-parsed sentences of English newswire. We then implemented a text similarity measure based on
these pre-computed scores which follows the aggregation strategy by Mihalcea et al. (2006).

We used another novel approach, where we apply text expansion mechanisms which augment or replace (parts
of) the original texts with synonyms, hence allowing for better comparisons in any consecutive step. We used two
expansion mechanisms: lexical substitution and statistical machine translation, which we describe in the following.
We then compared the modified texts using the strategy by Mihalcea et al. (2006) with the underlying measure by
Resnik (1995) as described in Section 4.1.1.

11 http://www.senseval.org
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Text Similarity Measure Configurations

Compositional Measures
Mihalcea et al. (2006) Resnik (1995) on WordNet

Non-compositional Measures
Character n-gram profiles n= 2, . . . , 15
Explicit Semantic Analysis Wikipedia, Wiktionary
Greedy String Tiling
Longest common subsequence 2 normalizations
Longest common substring
Word n-grams Jaccard/Containment, n= 1, . . . , 15

Table 5: Compositional and non-compositional text similarity measures introduced in Section 4, along with their
configurations, which we used in the intrinsic evaluation

For lexical substitution, we used the system based on supervised word sense disambiguation (Biemann, 2012a,b)
which automatically provides substitutions for a set of 1,012 frequent English nouns with high precision. For each
covered noun, we added all the substitutions to the text and computed pairwise word similarity for the texts as
described above. This feature alleviates the lexical gap for the covered subset of words. For statistical machine
translation, we used the Moses SMT system (Koehn et al., 2007) to translate the original English texts via three
bridge languages (Dutch, German, Spanish) back to English. In the translation process, additional lexemes are
introduced which alleviate potential lexical gaps. The full augmented texts then comprise the concatenation of the
original texts and all three back-translations. The system was trained on the Europarl corpus (Koehn, 2005), using
the following configuration which was not optimized for this task: WMT11 baseline without tuning, with MGIZA
alignment.

6.3 Experimental Setup

Our system builds upon the theoretical insights of Section 3: We combine a multitude of text similarity measures in
a unified classification framework, where the measures are drawn from all three dimensions content, structure, and
style. Our system is based on DKPro Core12, a collection of software components for natural language processing
built upon the Apache UIMA framework (Ferrucci and Lally, 2004). In Section 8, we will further detail the technical
aspects of the framework.

The system works as follows: We first run each of the similarity measures introduced above separately on all text
pairs. We then use the resulting similarity scores as features for a machine learning classifier in order to combine the
measures. That way, we follow our motivation that the similarity computation process needs to address multiple text
dimensions. In detail, we proceed as follows.

Pre-processing We tokenize the input texts and lemmatize using the TreeTagger (Schmid, 1994). Where applicable,
we additionally apply a stopword filter.

Feature Generation We compute text similarity scores for the text pairs with all measures and for all configurations
introduced above. This resulted in a vector of 300+ individual text similarity scores for each text pair.

Feature Combination We now use the pre-computed similarity scores and combine the log-transformed values using
a linear regression classifier from the Weka toolkit (Hall et al., 2009). The classifier then predicts a numerical
similarity score for all text pairs based on the given features.

Post-processing As the classifier determines a linear combination of the numerical features, the predicted text sim-
ilarity scores may fall outside the required interval [0, 5]. We thus convert all scores outside this interval to
the minimum/maximum value, respectively. For the configuration of Run 2—which we will introduce in the
following—we further apply a post-processing filter which strips all characters off the texts which are not in
the character range [a-zA-Z0-9]. If the texts are then equal, we set their similarity score to the maximum (5.0)
regardless of the classifier’s output. That way, we try to reduce the number of classification errors for texts
which resemble each other under the assumption of a simplified vocabulary.

During the development cycle, we evaluated the performance of our system using 10-fold cross-validation on the
training data. For the final system, we trained the classifier on the available training data and generated one model
per dataset which we then applied to the test data. We report the following experimental configurations:

12 http://code.google.com/p/dkpro-core-asl
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Text Dimension Text Similarity Features MSRpar MSRvid SMT-eur

Best Feature Set, Run 1 .711 .868 .735
Best Feature Set, Run 2 .724 .868 .742

Content Pairwise Word Similarity .564 .835 .527
Character n-gram profiles .658 .771 .554
Explicit Semantic Analysis .427 .781 .619
Word n-grams .474 .782 .619
String Similarity .593 .677 .744
Distributional Thesaurus .494 .481 .365
Lexical Substitution .228 .554 .483
Statistical Machine Transla-
tion

.287 .652 .516

Structure Part-of-speech n-grams .193 .265 .557
Stopword n-grams .211 .118 .379
Word Pair Order .104 .077 .295

Style Statistical Properties13 .168 .225 .325
Function Word Frequencies .179 .142 .189

Table 6: Best results (Pearson correlation) for individual classes of measures, grouped by text dimension, on the
training datasets MSRpar, MSRvid, and SMT-eur, using 10-fold cross-validation

Run 1 In a manual feature selection process, we identified the features which achieved the best performance on the
training data (see Table 7). For each of the known datasets MSRpar, MSRvid, and SMT-eur, we trained a
separate classifier and applied it to the test data. For the two surprise datasets On-WN and SMT-news, we
trained the classifier on a joint dataset of all known training datasets.

Run 2 In the second configuration of our system we studied the effects of two additional features: lexical substitution
and statistical machine translation. We added the corresponding measures (see Section 6.2.1) to the feature
set of Run 1.

6.4 Results & Discussion

We now report and discuss the results obtained in the feature selection using the available training data, as well as
the final results obtained on the test data.

6.4.1 Feature Selection

In order to find an optimal feature combination, we evaluated our system on the three available training datasets
MSRpar, MSRvid, and SMT-eur by computing Pearson correlation of the system output with human judgments. In
Table 6, we report the results achieved on each dataset using 10-fold cross-validation. The best results are based on
the feature set of Run 2, with Pearson’s r = .724, r = .868, and r = .742 for the datasets MSRpar, MSRvid, and
SMT-eur, respectively. Run 2 performs at least as good as Run 1 across all three training datasets, even though the
differences are not statistically significant.14 Run 2 further outperforms (statistically significant) the best performing
classes of content similarity measures for two of the three datasets.

Individual classes of content similarity measures achieved good results. A different class performed best for each
dataset, e.g. character n-gram profiles for the MSRpar dataset, pairwise word similarity for the MSRvid dataset, and
even simple string similarity measures for the SMT-eur dataset. We attribute the differences to the different nature
of the data, as the original texts which were taken from completely different sources with a varying degree of lexical
overlap.

Text similarity measures related to structure and style achieved only poor results on the training data. We attribute
this fact to the following properties of the data: (i) The text length is only a single sentence. Measures designed to
capture sophisticated aspects of structural similarity probably do not work well on these short texts. (ii) The texts of
all pairs display similar style. This is due to the nature of the data and the pairing process: Pairs were only formed

13 For brevity, we group the following measures (see Section 4.3): type-token ratio, sequential TTR, average sentence length,
average token length, sentence length ratio and token length ratio.

14 95% confidence intervals (Fisher Z-value transformation): 0.688 ≤ r ≤ 0.756 (MSRpar), 0.849 ≤ r ≤ 0.884 (MSRvid), 0.707 ≤
r ≤ 0.772 (SMT-eur)
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Run Text Similarity Measure Configurations

1 Character 2-, 3-, and 4-gram profiles
Distributional Thesaurus Cardinal numbers
Explicit Semantic Analysis Wikipedia, Wiktionary
Greedy String Tiling
Longest common subsequence 2 normalizations
Longest common substring
Mihalcea et al. (2006) Resnik (1995) on WordNet
Word 1- and 2-grams Containment, w/o stopwords
Word 1-, 3-, and 4-grams Jaccard
Word 2- and 4-grams Jaccard, w/o stopwords

2 All Features of Run 1
Lexical Substitution for Word Similarity
Statistical Machine Transl. for Word Similarity

Table 7: Feature sets of the two final system configurations for the intrinsic evaluation

between texts taken from the same source (e.g. news texts, video descriptions, etc.). By pairing texts that way, we
expect stylistic measures to fail.

6.4.2 Final Results

In the final evaluation on the test data, three evaluation metrics were used (Agirre et al., 2012):15 The ALL metric
computes Pearson correlation of the union of the system outputs across all five datasets with human judgments. That
is, given the five similarity score vectors ~si = {si1 , . . . , sin} for i ∈ {1, . . . , 5}, a concatenated vector ~s = {~s1, . . . , ~s5} is
constructed which is then compared with the analogous concatenation of the human judgments.

The ALLnrm metric first normalizes the system output per dataset, then applies the ALL metric.16 The normal-
ization reduces the squared error

∑

i(yi − x ′i)
2, whereby x ′i = x iβ1 + β2 with β1,2 determined analytically and ~x and

~y being the system output and the human judgments, respectively.
Mean refers to the weighted mean across the Pearson correlations ri of all five datasets i = {1, . . . , 5}, where the

weight corresponds to the number ni of text pairs in each dataset:
∑

i(rini)/
∑

i ni

In Table 8, we report the offical results achieved on the test data. In total, 35 teams submitted 88 systems in
addition to the provided cosine similarity baseline. Almost all systems outperformed the provided baseline for the
ALL and ALLnrm metrics. For the Mean metric, the baseline was ranked #70 with an average Pearson correlation
r = 0.435 across the five test datasets. Our first configuration, Run 1, was ranked #4 across all three evaluation
metrics. It was outperformed by our best system configuration (Run 2) which was ranked #1 for the evaluation
metrics ALL (r = .823)17 and Mean (r = .677), and #2 for ALLnrm (r = .857). The results of both configurations
are within the 95% confidence interval for the ALL metric.17

Error Analysis
In the following, we investigate the erroneous predictions by the classifier. In particular, we analyze the differences

between the configurations of Run 1 and 2 in order to assess the effects of the two additional features lexical substitution
and statistical machine translation. We therefore show an example text pair in the following, which is taken from the
SMT-news dataset:

(i) Putin’s Russia has already lost 12 leading journalists to murder in the past. . .

(ii) Putin’s Russia has already lost 12 prominent journalists, murdered in the last. . .

15 At system submission time, the ALL metric was the single offical evaluation metric. The task organizers later introduced
two additional methods: ALLnrm and Mean.

16 The ALL metric penalizes systems which do not perform equally well across all five datasets. The ALLnrm metric, on the
other hand, assigns higher overall scores to systems which perform well only on some of the datasets. Besides the open
question that remains which goal is more desirable, the ALLnrm metric was criticized for reducing the variance of similarity
scores in the normalization step, which disproportionally favors poor predictions when computing Pearson correlation in
the following step.

17 95% confidence interval (Fisher Z-value transformation): 0.811≤ r ≤ 0.834
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#1 #2 #3 System r1 r2 r3 MSR-
par

MSR-
vid

SMT-
eur

On-
WN

SMT-
news

1 2 1 UKP (Run 2) .823 .857 .677 .683 .873 .528 .664 .493
2 3 5 TakeLab .813 .856 .660 .698 .862 .361 .704 .468
3 1 2 TakeLab .813 .863 .675 .734 .880 .477 .679 .398
4 4 4 UKP (Run 1) .811 .855 .670 .682 .870 .511 .664 .467

5 6 13 UNT .784 .844 .616 .535 .875 .420 .671 .403
...

...
...

...
...

...
...

...
...

...
...

...

87 85 70 Baseline .311 .673 .435 .433 .299 .454 .586 .390

Table 8: Official results on the test data for the top 5 participating runs out of 89 for the datasets MSRpar, MSRvid,
and SMT-eur, as well as for the surprise datasets On-WN and SMT-news. We report the ranks (#1: ALL, #2:
ALLnrm, #3: Mean) and the corresponding Pearson correlation r according to the three offical evaluation
metrics (see Sec. 6.4.2). The provided cosine similarity baseline is shown at the bottom of this table. The
95% confidence interval17 comprises the top four systems.

The above example received the maximum similarity score (5.0) by human annotators. In Run 1, our system predicted
a similarity score of 4.37, while in Run 2 a score of 4.80 was predicted. We can clearly see that the improved score is
due to the additional features of Run 2, as we show in the following. The first part of the texts are transformed into
the following (not necessarily grammatically correct) fragments using statistical machine translation (as described in
Section 6.2.1, using Spanish as a bridge language):

(i) The Russia of Putin has already lost 12 outstanding journalists of murder. . .

(ii) The Russia of Putin has already lost 12 outstanding journalists, murdered. . .

In the translation process, the mismatching words leading and prominent were transformed into outstanding in both
texts. That way, the lexical gap was closed and in consequence an improved similarity score (4.80) was computed,
which is very close the the human score (5.0). In the following, we give a second interesting example which also
highlights the positive effects of the additional features of Run 2:

(i) Western Europeans, who have been spared this legacy, should heed our warnings.

(ii) The western Europeans, who have forgotten this history, should heed our warnings.

The above example received an average human similarity score of 5.0. The predictions by Runs 1 and 2 are 3.67
and 3.95, respectively. For this text pair, there is a lexical gap between the words legacy and history, which carry
similar meanings in the two texts. In analogy to the first example, we see that the prediction of Run 2 shows an
improvement over Run 1. In this case, we attribute the improved performance to the employed lexical substitution
system: As discussed in Section 6.2.1, this system provides substitutions for a set of 1,012 frequent English nouns.
The substitutions for the words legacy and history are listed below:

(i) legacy: –

(ii) history: record, story, background, past, annals, account, antiquity, historical record

For this example, no substitutions were found for the word legacy. For history in the second text, eight substitutions
(see above) were found. As described in Section 6.2.1, in our experiments we add all substitutions to the original
texts. In a subsequent step, text similarity measures are thus much better able to compute a proper similarity score
between the two augmented texts, as additional synonyms are given.

6.5 Section Summary

In this section, we presented an intrinsic evaluation of our system in the context of the pilot Semantic Textual Similarity
(STS) Task at SemEval-2012. We showed that our system performed best across the three official evaluation metrics.
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While we did not reach the highest scores on any of the single datasets (see Table 8), our system was most robust
across different data.

In future work, it would be interesting to inspect the performance of a combined model on all features of all
participating systems. We already carried out first experiments in this direction: We combined the feature sets of the
two top-ranked systems, i.e. our Run 2 and the system by TakeLab (Sarić et al., 2012), in a single log-linear regression
model. Our assumption holds true and the combined model performs best across all three evaluation metrics with
r1 = .835, r2 = .872, and r3 = .707 for the metrics ALL, ALLnrm and Mean, respectively. The combined feature
set also achieves the best performance on the MSRvid dataset, r = .899. The results show that the text similarity
computation process can greatly benefit from a rich set of features covering a wide variety of text characteristics. In
consequence, we believe this to be a highly promising direction for future research.

The STS Task is a supervised setting, i.e. text pairs along with human judgments are provided at development
time in order to train the systems. This setting allows our system to built a machine learning classifier which learns
very well combinations of the text similarity scores with respect to human judgments on the training data, and then
successfully applies this model to unseen test data. However, we argue that its generalization is still limited, due
to two major issues: (a) It is unclear how to judge similarity between pairs of texts which contain contextual (e.g.
temporal) references such as on Monday vs. after the Thanksgiving weekend. (b) For several pairs, it is unclear what
point of view to take, e.g. for the pair An animal is eating / The animal is hopping. Is the pair to be considered
similar (an animal is doing something) or rather not (eating vs. hopping)? In both cases, a different set of annotators
may have a different view on how similar such texts actually are. Even more, a new collection of text pairs may favor
particular points of view, such as resolving temporal references with respect to a time frame that is shared by many
text pairs. For future work, we believe that a more clear-cut definition of what constitutes text similarity and what
point of view is to be taken is key to systems that will generalize even better.

7 Extrinsic Evaluation

In this section, we conduct an extrinisic evaluation of our system in the task of text reuse detection. We first describe
the task in Section 7.1, and then report on our experimental setup and the features used in Sections 7.2 and 7.3. We
then discuss the evaluation results on three standard datasets and conclude with an analysis of our findings.

7.1 Task Description

Text reuse is “the reuse of existing written sources in the creation of a new text” (Clough et al., 2002). Text reuse is
a common phenomenon and arises, for example, on the Web from mirroring texts on different sites or reusing texts
in public blogs. In other text collections such as content authoring systems of communities or enterprises, text reuse
arises from keeping multiple versions, copies containing customizations or reformulations, or the use of template texts
(Broder et al., 1997). Detecting text reuse has been studied in a variety of tasks and applications, e.g. the detection of
journalistic text reuse (Clough et al., 2002), the identification of rewrite sources for ancient literary texts (Lee, 2007),
or the analysis of text reuse in blogs and web pages (Abdel-Hamid et al., 2009).

A common approach to text reuse detection is to compute similarity between a source text and a possibly reused
text. A multitude of text similarity measures have been proposed for computing similarity based on surface-level and
semantic features (see Section 4). However, existing similarity measures typically exhibit a major limitation: They
compute similarity only on the features which can be derived from the content of the given texts. Thus, they so far
ignore any other text characteristics, e.g. the structural and stylistic text dimensions.

Figure 5 shows an example of text reuse taken from the Wikipedia Rewrite Corpus (Clough and Stevenson, 2011)
(see Section 5.2.1 for details on the dataset) where parts of a given source text have been reused either verbatim or by
using similar words or phrases. As the example illustrates, the process of creating reused text includes a revision step
in which the author has a certain degree of freedom on how to reuse the source text. Similarity between the topics
and their relations in both revisions can then be detected by content-centric text similarity measures. However, the
author has further split the source text into two individual sentences and changed the order of the reused parts. For
detecting the degree of similarity of such a revision, structural similarity should be computed. Additionally, the given
texts exhibit a high degree of similarity with respect to stylistic features, e.g. vocabulary richness.18 In order to use
such features as indicators of text reuse, we propose to further include measures of stylistic similarity.

7.2 Employed Text Similarity Measures

For this task, we employ a similar set of text similarity measures as in Section 6.2, with a minor set of modifications:
While we used the set of structural and stylistic similarity measures as originally described, we slightly modified the

18 The type-token ratio (Templin, 1957) of the texts is 0.79 and 0.71, respectively.
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Source Text. PageRank is a link analysis algorithm used by the
:::::
Google

:::::::
Internet

::::::
search

::::::
engine that

assigns a numerical weighting to
::::
each

:::::::
element of a

:::::::::
hyperlinked

:::
set

::
of

:::::::::
documents, such as the World

Wide Web, with the purpose of “measuring” its relative importance within the set.

Text Reuse. The PageRank algorithm is used to designate
::::
every

::::::
aspect of a

::
set

::
of
:::::::::::
hyperlinked

:::::::::
documents with a numerical weighting. It is used by the

:::::
Google

::::::
search

::::::
engine to estimate the

relative importance of a web page according to this weighting.

Figure 5: Example of text reuse taken from the Wikipedia Rewrite Corpus (Clough and Stevenson, 2011). Various
parts of the source text have been reused, either verbatim (underlined) or using similar words or phrases
(wavy underlined). However, the editor has split the source text into two individual sentences and changed
the order of the reused parts.

set of content similarity measures to better fit the task of text reuse detection. In the following, we list all the differing
measures and those with modified configuration parameters.

In the original system, we used the Resnik (1995) measure which is capable of measuring semantic similarity
between words, and which we then aggregated according to the strategy proposed by Mihalcea et al. (2006). For this
task, we used two additional word similarity measures with WordNet (Fellbaum, 1998): Jiang and Conrath (1997)
and Lin (1998b).

For assessing word n-gram similarity, we compared the sets of n-grams using the Jaccard coefficient, following
Lyon et al. (2001), as well as using the containment measure (Broder, 1997). We again tested n-gram sizes for
n = 1,2, . . . , 15, and will use the original system name Ferret (Lyon et al., 2004) to refer to the variant with n = 3
using the Jaccard coefficient, henceforth.

Furthermore, we used Latent Semantic Analysis (LSA) (Landauer et al., 1998) for comparing texts, where the
construction of the semantic space was done using the evaluation corpora (see Section 7.4).

For this task, we did not use the following measures: no text expansion mechanisms (see Section 6.2.1) such as
lexical substitution or statistical machine translation, and no similarities from a Distributional Thesaurus (Lin, 1998b).

7.3 System Description

The system we used for the extrinsic evaluation in the context of text reuse detection is a modification of the system
originally introduced in Section 6.3 . It again follows the idea that text similarity can be best detected if a composition
of measures is used. As for the original system, we refer the reader to Section 8 for an elaborate discussion on the
technical aspects of the system. The system we used for the experiments throughout this section modifies the original
setup as follows:

Pre-processing no modifications; see Section 6.3

Feature Generation no modifications; see Section 6.3

Feature Combination We slightly modified the feature combination step of the original system to meet the require-
ments of this task. We still use the pre-computed similarity scores as input for the machine learning classifier.
While we used a linear regression classifier in Section 6 which predicts numerical scores for each text pair,
we now combine the features (using their raw values instead of applying a log-transformation) with a Naive
Bayes and a C4.5 decision tree classifier (J48 implementation) from the Weka toolkit (Hall et al., 2009). These
classifiers are able to predict nominal classes of text reuse, e.g. a heavy revision shown in Figure 5.

Post-processing We did not apply any post-processing steps for this task.

Using 10-fold cross-validation, we then ran three sets of experiments as follows:

Run 1 In the first set of experiments, we tested the text similarity scores of one single measure at a time as a single
feature for the classifier. That way, we were able to determine those text similarity measures which perform
best per text dimension.

Run 2 We then tested a combination of similarity measures per text dimension, i.e. we combined multiple similarity
measures of the content, structure, and style dimensions separately. That way, we were able to determine the
performance of multiple measures within a single text dimension.

Run 3 In the third configuration, we combined the measures across text dimensions to determine the best overall
configuration, i.e. we combined multiple similarity measures regardless of their text dimension. That way, we
were able to investigate the effects of computing text similarity along multiple text dimensions.
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System Acc. F̄1

Majority Class Baseline .400 .143
Ferret Baseline .642 .517

Chong et al. (2010)21 .705 .641
Clough and Stevenson (2011)

- our re-implementation20 .726 .658
- as reported in their work .800 .757

Our System .842 .811

Table 9: Results for the best classification on the Wikipedia Rewrite Corpus for the original 4-way classification

7.4 Results & Discussion

In this section, we report the results obtained on the evaluation datasets, thereby demonstrating the effectiveness of
the proposed compositional approach to computing text similarity across the three text dimensions content, structure,
and style.

We utilized three datasets for the evaluation of our system which originate in the fields of plagiarism detection,
journalistic text reuse detection, and paraphrase recognition: the Wikipedia Rewrite Corpus (Clough and Stevenson,
2011), the METER Corpus (Gaizauskas et al., 2001), and the Webis Crowd Paraphrase Corpus (Burrows et al., 2013),
described in detail in Section 5.2.1.

Evaluation was carried out in terms of accuracy and F̄1 score. By accuracy, we refer to the number of correctly
predicted texts divided by the total number of texts. As the class distributions in the datasets are skewed, we report
the overall F̄1 score as the arithmetic mean across the F1 scores of all classes (which vary from dataset to dataset) in
order to account for the class imbalance (Clough et al., 2002; Sánchez-Vega et al., 2010).

We compare our results with two baselines: the majority class baseline and the word trigram similarity measure
Ferret (Lyon et al., 2004) (see Section 7.2). Additionally, we report the best results from the literature for comparison.

7.4.1 Wikipedia Rewrite Corpus

We summarize the results on this dataset in Table 9.19 In the best configuration, when combining similarity measures
across dimensions, our system achieves a performance of F̄1 = .811. It outperforms the best reference system by
Clough and Stevenson (2011) by 5.4 points in terms of F̄1 score compared to their reported numbers, and by 15.3
points compared to our re-implementation of this system.20 Their system uses a Naive Bayes classifier with only a
very small feature set: word n-gram containment (n= 1,2, . . . , 5) and longest common subsequence. For comparison,
we re-implemented their system and also applied it to the two datasets in the remainder of this section. We report
our findings in Section 7.4.2 and 7.4.3.

In Table 10, we report the best results for the combinations of text similarity measures within and across dimensions.
When we combine the measures within their respective dimensions, content outperforms structural and stylistic
similarity. However, all combinations of measures across dimensions in addition to content similarity improve the
results. The best performance is achieved by combining the three similarity measures longest common subsequence,
stopword 10-grams, and character 5-gram profiles from the two dimensions content and structure. This supports our
hypothesis that computing text similarity indeed benefits from dimensions other than content.

7.4.2 METER Corpus

For the evaluation of our system on the METER corpus, we followed Sánchez-Vega et al. (2010) and folded the
annotations to a binary classification of 181 reused (wholly/partially derived) and 72 non-reused instances in order
to carry out a comparable evaluation study.

We summarize the results on this dataset in Table 11. In the best configuration, our system achieves an overall
performance of F̄1 = .768. It outperforms the best reference system by Sánchez-Vega et al. (2010) by 6.3 points in

19 Figures in italics are taken from the literature, while we (re-)implemented the remaining systems. This applies to all result
tables in this paper.

20 While we were able to reproduce the results of the Ferret baseline as reported by Chong et al. (2010), our re-implementation
of the system by Clough and Stevenson (2011) (Naive Bayes classifier, same feature set) resulted in a much lower overall
performance. We observed the largest difference for the longest common subsequence measure, even though we used a
standard implementation (Allison and Dix, 1986) and normalized as described by Clough and Stevenson (2011).

21 Chong et al. (2010) report F̄1 = .698 in their original work. This figure, however, reflects the weighted arithmetic mean over
all four classes of the dataset where one class is twice as prominent as each of the others. As dicussed in Section 7.4, we
report all F̄1 scores as the unweighted arithmetic mean in order to account for the class imbalance.

20



Text Similarity Dimension Acc. F̄1

Combinations within dimensions
Content .747 .693
Structure .716 .660
Style .442 .398

Combinations across dimensions
Content + Style .800 .757
Content + Structure .842 .811
Structure + Style .632 .569
Content + Structure + Style .832 .798

Table 10: Results of the best combinations of text similarity measures within (left) and across (right) dimensions on
the Wikipedia Rewrite Corpus

System Acc. F̄1

Majority Class Baseline .715 .417
Ferret Baseline .684 .535

Clough and Stevenson (2011)22 .692 .680
Sánchez-Vega et al. (2010) .783 .705

Our System .802 .768

Table 11: Results for the best classification on the METER Corpus

terms of F̄1 score. Their system uses a Naive Bayes classifier with two custom features which compare texts based on
the length and frequency of common word sequences and the relevance of individual words.

In Table 12, we show that the performance of text reuse detection always improves over individual measures when
we combine the measures within their respective dimensions. An exception is the combination of structural similarity
measures, which only performs on the same level as the best individual measure part-of-speech 3-grams containment.
Combinations of content similarity measures show a better performance than combinations of structural or stylistic
measures. Our system achieves its best performance on this dataset when text similarity measures are combined
across all three dimensions content, structure, and style. The best configuration resulted from using a Naive Bayes
classifier with the following measures: Greedy String Tiling, stopword 12-grams, and Sequential TTR. As for the
previous dataset, the effects of dimension combination held true regardless of the classifier used.

The influence of the stylistic similarity measures is particularly interesting to note. In contrast to the Wikipedia
Rewrite Corpus, including these measures in the composition improves the results on this dataset: Our classifier is
able to detect similarity even for reused texts by expert journalists. This is due to the fact that a journalistic text
which reuses the original press agency source most likely also shows stylistic similarity in terms of e.g. vocabulary
richness.

7.4.3 Webis Crowd Paraphrase Corpus

We summarize the results on this dataset in Table 13. Even though the Ferret baseline is a strong competitor
(F̄1 = .789), our system achieves the best results on this dataset with F̄1 = .852. The results reported by Burrows
et al. (2013) are slightly worse (F̄1 = .837). Their best score was achieved by using a k-nearest neighbor classifier with
a feature set of 10 similarity measures. They exclusively used similarity measures that operate on the texts’ string
sequences and thus capture the content dimension of text similarity only, e.g. the Levenshtein (1966) distance and a
word n-gram similarity measure.

As for the previous datasets, our hypothesis holds true that the combination of similarity dimensions improves
the results: When we combine the similarity features within each of the respective dimensions, the performance
numbers increase (see Table 14. The combination of content similarity measures is stronger than the combination of
structural and stylistic similarity measures, and performs on the same level as the original results reported by Burrows
et al. (2013). This is to be expected, as their system uses a feature set which also addresses the content dimension
exclusively.

22 We report the results for our re-implementation of the system by Clough and Stevenson (2011). In their original work, they
did not evaluate on this dataset.
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Text Similarity Dimension Acc. F̄1

Combinations within dimensions
Content .759 .712
Structure .731 .701
Style .755 .672

Combinations across dimensions
Content + Style .779 .733
Content + Structure .739 .713
Structure + Style .767 .739
Content + Structure + Style .802 .768

Table 12: Results of the best combinations of text similarity measures within (left) and across (right) dimensions on
the METER Corpus

System Acc. F̄1

Majority Class Baseline .517 .341
Ferret Baseline .794 .789

Clough and Stevenson (2011)22 .798 .795
Burrows et al. (2013) .839 .837

Our System .853 .852

Table 13: Results for the best classification on the Webis Crowd Paraphrase Corpus

When we combine measures across dimensions, the results improve even further. An exception is the combination
of content and structural measures, which performs slightly worse than content measures alone due to the lower
performance of structural measures on this dataset. The best configuration of our system resulted from combining
all three dimensions content, structure, and style in a single classification model using the decision tree classifier,
resulting in F̄1 = .852.

7.5 Section Summary

In this section, we conducted an extrinisic evaluation of our system in the task of text reuse detection. We evaluated
our system on three standard datasets where text reuse is prevalent and which originate in the fields of plagiarism
detection, journalistic text reuse detection, and paraphrase recognition: the Wikipedia Rewrite Corpus (Clough and
Stevenson, 2011), the METER Corpus (Gaizauskas et al., 2001), and the Webis Crowd Paraphrase Corpus (Burrows
et al., 2013), which we described in detail in Section 5.2. We showed that the composition of measures consistently
outperforms previous approaches across all three datasets.

As we showed, similarity computation works best if the text dimensions are chosen well with respect to the type of
text reuse at hand. For the Wikipedia Rewrite Corpus, for example, the stylistic similarity features perform poorly,
which is why the composition of all three dimensions performs slightly worse than the combination of only content

Text Similarity Dimension Acc. F̄1

Combinations within dimensions
Content .840 .839
Structure .816 .814
Style .819 .817

Combinations across dimensions
Content + Style .844 .843
Content + Structure .838 .838
Structure + Style .831 .830
Content + Structure + Style .853 .852

Table 14: Results of the best combinations of text similarity measures within (left) and across (right) dimensions on
the Webis Crowd Paraphrase Corpus
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and structural features. For the other two datasets, however, stylistic similarity is a strong dimension within the
composition, and consequently the best performance is reached when combining all three text dimensions content,
structure, and style.

8 Software Package DKPro Similarity

In the course of the experiments on text similarity presented in this article, we realized that the community could
greatly benefit from a full-featured framework for similarity computation—as up to now, developing text similarity
measures is a highly scattered effort. Only a few text similarity measures proposed in the literature (see Section 4)
are released publicly, and those then typically do not comply with any standardization. This fact was also realized by
the organizers of the SemEval-2012 Semantic Textual Similarity Task (see Section 6), as they argue for the creation
of an open source framework for text similarity (Agirre et al., 2012).

In order to fill this gap, we developed DKPro Similarity (Bär et al., 2013), an open source framework for text
similarity. Our goal was to provide a comprehensive repository of text similarity measures, which are implemented in
a common framework using standardized interfaces. Besides the already available measures, DKPro Similarity is easily
extensible and intended to allow for custom implementations, for which it offers various templates and examples. It
is implemented in Java and released as public Maven23 modules. The implementation is publicly available at Google
Code24 under the Apache Software License v2 and for some components under GNU GPL v3.

8.1 Architecture

DKPro Similarity is designed to operate in one of two modes: The stand-alone mode allows to use text similarity
measures as independent components in any experimental setup, but does not offer means for further language
processing, e.g. lemmatization. The UIMA-coupled mode tightly integrates similarity computation with full-fledged
Apache UIMA-based language processing pipelines. That way, it allows performing any number of language processing
steps, e.g. co-reference or named-entity resolution, along with the text similarity computation.

Stand-alone Mode
In this mode, text similarity measures can be used independently of any language processing pipeline just by

passing them a pair of texts as (i) two strings, or (ii) two lists of strings (e.g. already lemmatized texts). We therefore
provide an API module, which contains Java interfaces and abstract base classes for the measures. That way, DKPro
Similarity allows for a maximum flexibility in experimental design, as the text similarity measures can easily be
integrated with any existing experimental setup:

1 TextSimilarityMeasure measure = new GreedyStringTiling();

2 double similarity = measure.getSimilarity(text1, text2);

The above code snippet instantiates the Greedy String Tiling measure (Wise, 1996) and then computes the text
similarity between the given pair of texts. The resulting similarity score is normalized into [0,1] where 0 means not
similar at all, and 1 corresponds to perfectly similar.25 By using the common TextSimilarityMeasure interface, it
is easy to replace Greedy String Tiling with any measure of choice, such as Explicit Semantic Analysis (Gabrilovich
and Markovitch, 2007). We give an overview of measures available in DKPro Similarity in the following section.

UIMA-coupled Mode
In this mode, DKPro Similarity allows text similarity computation to be directly integrated with any UIMA-based

language processing pipeline. That way, it is easy to use text similarity components in addition to other UIMA-based
components in the same pipeline. For example, an experimental setup may require to first compute text similarity
scores and then to run a classification algorithm on the resulting scores.

In Figure 6, we show a graphical overview of the integration of text similarity measures (right) with a UIMA-based
pipeline (left). The pipeline starts by reading a given dataset, then performs any number of pre-processing steps such
as tokenization, sentence splitting, lemmatization, or stopword filtering, then runs the text similarity computation,
before executing any subsequent post-processing steps and finally returning the processed texts in a suitable format
for evaluation or manual inspection. As all text similarity measures in DKPro Similarity conform to standardized
interfaces, they can be easily exchanged in the text similarity computation step.

With DKPro Similarity, we offer various subclasses of the generic UIMA components which are specifically tai-
lored towards text similarity experiments, e.g. corpus readers for standard evaluation datasets as well as evaluation

23 http://maven.apache.org
24 http://code.google.com/p/dkpro-similarity-asl
25 Some string distance measures such as the Levenshtein distance (Levenshtein, 1966) return a raw distance score where less

distance corresponds to higher similarity. However, the score can easily be normalized, e.g. by text length.
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Figure 6: DKPro Similarity allows to integrate any text similarity measure (right) which conforms to standardized
interfaces into a UIMA-based language processing pipeline (left) by means of a dedicated Similarity Scorer
component (middle).

components for running typical evaluation metrics. By leveraging UIMA’s architecture, we also define an additional
interface to text similarity measures: The JCasTextSimilarityMeasure inherits from TextSimilarityMeasure, and
adds a method for two JCas text representations:26

double getSimilarity(JCas text1, JCas text2);

The additional interface allows to implement measures which have full access to UIMA’s document structure. That
way, it is possible to create text similarity measures which can use any piece of information that has been annotated
in the processed documents, such as dependency trees or morphological information.

A large number of measures presented in Section 4 are already available in the corresponding modules. As the
project is actively under development, we do not provide a comprehensive list of measures here, as it would soon
be outdated. Among many others, popular measures implemented in DKPro Similarity include compositional text
similarity measures based on pairwise word similarity scores such as the one proposed by Mihalcea et al. (2006),
and a set of non-compositional text similarity measures such Greedy String Tiling (Wise, 1996) and the Levenshtein
distance (Levenshtein, 1966), as well as Explicit Semantic Analysis (Gabrilovich and Markovitch, 2007) and Latent
Semantic Analysis (Landauer et al., 1998).

8.2 Experimental Setups

DKPro Similarity further encourages the creation and publication of complete experimental setups. That way, we
promote the reproducibility of experimental results, and provide reliable, permanent experimental conditions which
can benefit future studies and help to stimulate the reuse of particular experimental steps and software modules.

The experimental setups are instantiations of the generic UIMA-based language processing pipeline depicted in
Figure 6 and are designed to precisely match the particular task at hand. They thus come pre-configured with corpus
readers for the relevant input data, with a set of pre- and post-processing as well as evaluation components, and
with a set of text similarity measures which are well suited for the particular task. The experimental setups are
self-contained systems and can be run out-of-the-box without further configuration.27

DKPro Similarity contains ready-made setups for reproducing the results reported in this article. DKPro Similarity
has also been used for other tasks such as question answering (Walter et al., 2012). We would like to encourage other
researchers to participate in our efforts and invite them to explore our existing experimental setups as outlined above,
run modified versions of our setups, and contribute own text similarity measures to the framework. For that, DKPro
Similarity also comes with an example module for getting started, which guides first-time users through both the
stand-alone and the UIMA-coupled modes.

9 Conclusions

In the natural language processing community, text similarity is fundamental to a variety of tasks and applications,
e.g. automatic essay grading and question answering. Contrary to the notion of similarity in psychology, though, text
similarity traditionally has been a loose notion and is much less well-defined than its psychological counterpart. We
argued that a major shortcoming of previous text similarity research is the fact that no attempt has been made yet
to formalize in what way text similarity between two texts can be computed. Still, text similarity is regarded as a

26 The JCas is an object-oriented Java interface to the Common Analysis Structure (Ferrucci and Lally, 2004), Apache UIMA’s
internal document representation format.

27 A one-time setup of local lexical-semantic resources such as WordNet may be necessary, though.
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fixed, axiomatic notion in the community. In consequence, we proposed to define text similarity as a notion which
can be judged along multiple text dimensions, i.e. characteristics inherent to texts. For the application to texts, we
proposed to focus on three generic text dimensions for which we provided empirical evidence: content, structure, and
style. Based on the analysis, we combined a multitude of text similarity measures along these dimensions in a unified
classification model. As we showed, this system consistently outperformed prior work and competing systems in both
an intrinsic and an extrinsic evaluation:

Intrinsic Evaluation
We first applied our system in an intrinsic evaluation, namely the Semantic Textual Similarity (STS) Task (Agirre

et al., 2012) as part of the Semantic Evaluation (SemEval) exercises. Across all five evaluation datasets, our system
performed best in two out of three official evaluation metrics and was ranked #2 for the third metric when comparing
the system output to human judgments. While we did not reach the highest scores on any of the single datasets, our
system was most robust across different data. In the experiments, we showed that text similarity can be best detected
if a multitude of measures—each addressing different text characteristics—are combined in a single classification
model. Due to the nature of the data in this task, a combination of measures along the content dimension showed
the best results.

Extrinsic Evaluation
In an extrinsic evaluation, we applied our system to the task of text reuse detection. In this task, text pairs

were classified by our system according to the degree of text reuse they exhibit and then compared with human
classifications. In these experiments, we empirically showed that text reuse can be best detected if measures are
combined across multiple text dimensions. For two out of three datasets, the best performance was reached when
combining all three dimensions content, structure, and style in a single classification model, while for the third datasets
stylistic measures showed a poor performance and in consequence the best performance was reached when combining
only measures from the content and the structure dimensions. Across all three datasets, our system outperformed all
previous work on this data.

Future Work
The greatest obstacle that hinders the broad adoption of our research in future work is the lack of suitable evaluation

datasets. For example, in the data by Agirre et al. (2012) two major issues remain: (a) It is unclear how to judge
similarity between pairs of texts which contain contextual references such as on Monday vs. after the Thanksgiving
weekend. (b) For several pairs, it is unclear what point of view to take, e.g. for the pair An animal is eating. /
The animal is hopping. Is the pair to be considered similar (an animal is doing something) or rather not (eating vs.
hopping)? As long as there are no more specific instructions given on how to judge text similarity for such cases,
there will inevitably be variations in text similarity judgments—both for judgments by human subjects as well as by
text similarity measures.

Apart from that, the community also lacks a generalized framework which can be used to compute text similarity.
While some frameworks for similarity computation already exist, e.g. the S-Space Package or the SimMetrics Library,
none of them is specifically tailored towards text similarity. In this article, we thus introduced DKPro Similarity, an
open source package for developing text similarity measures as well as complete experimental setups. Our goal here
is to promote the reproducibility of experimental results, and to provide reliable, permanent experimental conditions
which can benefit future studies and help foster the reuse of particular experimental steps and software modules.
We hope to stimulate further research in this field and foster future developments of text similarity measures and
experimental setups.
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