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Summary 

In the plant cell, the chloroplast is the organelle where photosynthesis as well as biosynthesis 

of many other important metabolites takes place. Therefore, a permanent and regulated 

exchange of inorganic cations, anions and a variety of organic biosynthetic pathway 

intermediates is needed between plastids and the cytosol. Due to the nature of the double 

membrane of the chloroplast an efficient transport across the inner and outer envelope is 

necessary. At the inner envelope carriers and at the outer envelope OEPs (outer envelope 

proteins) mediate this transport. In this work, the physiological function of OEP24 and 

OEP21 using the model plant Arabidopsis thaliana was studied. For AtOEP24.1 several 

mutant lines were characterised showing that this isoform is not essential for plant 

development. A complete OEP24 loss of function could not be studied due to the limited 

availability of mutant lines for the second isoform AtOEP24.2. For OEP21, single mutants for 

both Arabidopsis isoforms where characterised and a double mutant knock-out was generated. 

No phenotype was detected for the double mutant. However, for an overexpression line of 

AtOEP21.1 amino acid accumulation was found at the end of the night period suggesting a 

possible relation between OEP21 and amino acid homeostasis.  

The second part of the work was focused on the discovery of new transporters located in the 

chloroplast envelope. For this purpose, protein sequencing of outer envelope membranes of 

pea chloroplasts and subsequent in silico analysis led to the identification of three unknown 

proteins: NOEP23, NOEP40 and NIEP57. The complete cDNA sequences in pea were 

obtained.  Further, NOEP40 could be located at the outer envelope and NIEP57 at the inner 

envelope of the chloroplast using in vivo GFP-targeting and immunoblot. Subcellular 

localisation of NOEP23 is still unclear. NOEP40 showed all characteristics of typical OEPs 

and a knock-down mutant line in Arabidopsis has an early growth and flowering phenotype 

under cold stress when compared to the wild-type. NIEP57 is an integral membrane protein 

composed of four α-helical membrane domains with N- and C-termini facing the 

intermembrane space. For AtNIEP57 several mutant lines were characterised, demonstrating 

that AtNIEP57 corresponds to a novel inner envelope protein essential for embryo 

development. Mature plants with a knock-down of AtNIEP57 showed a chlorotic phenotype 

suggesting an important function of the protein during the vegetative plant life as well. 
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Zusammenfassung 

In der pflanzlichen Zelle ist der Chloroplast das Organell, in dem die Photosynthese sowie die 

Biosynthese vieler wichtiger Metabolite stattfinden. Dafür ist ein dauerhafter und regulierter 

Austausch von anorganischen Kationen, Anionen und organischen Stoffwechselprodukten 

zwischen Plastid und Zytosol notwendig. Durch die Anwesenheit einer doppelten 

Hüllmembran der Chlorpolasten ist die Existenz von mehreren Transporter-Proteinen nötig. 

Der Austausch zwischen Plastiden und Zytosol wird in der inneren Hüllmembran von Carrier- 

Proteinen und in der äußeren Hüllmembran von den OEPs (für engl. outer envelope proteins) 

vermittelt. In dieser Arbeit wurde die physiologische Bedeutung von OEP24 und von OEP21 

mittels der Modellpflanze Arabidopsis thaliana untersucht. Für AtOEP24.1 wurden 

verschiedene Mutantenlinien charakterisiert, und es konnte gezeigt werden, dass diese 

Isoform für das Leben der  Pflanze nicht essentiell ist. Ein kompletter OEP24 knock-out 

konnte durch die limitierte Verfügbarkeit von Mutanten der zweiten Isoform AtOEP24.2 nicht 

untersucht werden. Mutantenlinien für beide vorkommende OEP21-Isoformen wurden in 

Rahmen dieser Arbeit charakterisiert und eine Doppelmutante wurde hergestellt. Für die 

Doppelmutante wurde kein Phänotyp detektiert. Eine Überexpressionslinie für OEP21.1 

zeigte jedoch eine Änderung im Aminosäurengehalt die eine Beteiligung von OEP21 in der 

Aminosäure Homöostase nahe liegen könnte.  

Im zweiten Teil meiner Arbeit wurden neue Metabolit-Transporter in der Hüllmembran von 

Chloroplasten entdeckt. Für diesen Zweck wurden Proteine von der äußeren Hüllmembran 

aus Erbsenchloroplasten sequenziert und in silico charakterisiert. Hierbei wurden drei neue, 

bisher unbekannte Proteine identifiziert: NOEP23, NOEP40 und NIEP57. Die komplette 

cDNA aus Erbse wurde für diese Proteine isoliert. Über in vivo GFP-targeting und 

Immunoblots wurden NOEP40 in der äußeren Hüllmembran und NIEP57 in der inneren 

Hüllmembran des Chloroplasten lokalisiert. Die subzelluläre Lokalisierung für NOEP23 

konnte nicht eindeutig geklärt werden. NOEP40 weist alle typischen Eigenschaften der OEPs 

auf, und eine knock-down Mutante in Arabidopsis zeigte, unter Kälte, ein früheres Wachstum 

und Blühen als der Wildtyp. NIEP57 ist ein integrales Membranprotein, das aus vier α-

helicalen transmembranen Domänen besteht. N- und C-Terminus des Proteins sind in den 

Intermembranraum orientiert. Durch die Analyse mehrerer Mutantenlinien Analyse für 

NIEP57 konnte gezeigt werden, dass AtNIEP57 ein neues Protein mit essentieller Funktion 

für die Embryonalentwicklung darstellt. Knock-down Linien für NOEP57 zeigten einen 
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chlorotisches Phänotyp in maturen Pflanzen, der auch auf eine wichtige Funktion des Proteins 

im späteren Leben der Pflanze hinweist. 
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Abbreviations 

2D two dimensional 
aa amino acids 
AGI Arabidopsis Genome Initiative 
AP alkaline phosphatase 
At Arabidopsis thaliana 
AtD-LDH Arabidopsis thaliana D-lactate dehydrogenase 
ATP adenosine triphosphate 
BCA bicinchoninic acid 
bp base pair 
BSA bovine serum albumin 
CD circular dichroism 
cDNA complementary DNA  
CNBr cyanogen bromide 
Col-0 Columbia 0 ecotype 
Col-er Columbia erecta ecotype 
CpHsc70-1 chloroplast heat shock protein 70-1 
DNA deoxyribonucleic acid 
dNTP deoxynucleotide triphosphates 
DTT dithiothreitol 
DUF domain of unknown function 
E. coli Escherichia coli 
ECL enhanced chemiluminescence 
EDTA ethylenediaminetetraacetic acid 
EST expressed sequence tag 
GAPDH glyceraldehyde-3-phosphate dehydrogenase 
GFP green fluorescent protein 
GPT1 glucose 6-phophate/phosphate translocator 
GTP guanosine-5'-triphosphate 
he heterozygous 
Hepes (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 
ho homozygous 
IEF isoelectric focusing 
IP isoelectric point 
kDa kilo Dalton 
LB lysogeny broth 
MOPS 3-(N-morpholino) propanesulfonic acid 
mRNA messenger RNA 
MS Murashige and Skoog 
MVA mevalonate 
MW molecular weight 
NAPP sodium pyrophosphate 
OEPs outer envelope proteins 
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PCR polymerase chain reaction 
PEG-Mal metoxypolyethylenglycol-maleimide 
Pi inorganic phosphate 
PMSF phenylmethylsulfonyl fluoride 
Ps Pisum sativum 
PVDF polyvinylidene fluoride 
rec recombinant 
RER1 reticulata-related 
RNA ribonucleic acid 
RNAi RNA interference 
rpm revolutions per minute 
RT PCR reverse-transcription polymerase chain reaction  
RT room temp 
RuBisCo ribulose-1,5-bisphosphate carboxylase/oxygenase 
SD standard deviation 
SDS sodium dodecyl sulphate 
T-DNA Transfer-DNA  
Tic translocon at the inner envelope of chloroplasts 
TILLING targeting induced local lesions in genomes 
Toc translocon at the outer envelope of chloroplasts 
TP triosephosphate 
Trafo transformation 
Tris tris(hydroxymethyl) aminomethane 
UTR untranslated region 
v/v volume per volume 
VDAC voltage dependent anion channel 
w/v weight per volume 
wt wild-type 
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I. Introduction 

A characteristic feature of metabolism in eukaryotic cells is the spatial compartmentation into 

membrane-delimited organelles. The most important organelles in the plant cell are the 

plastids and mitochondria. Among the plastid family the chloroplast is the organelle where 

photosynthesis – conversion of CO2 into carbohydrate with the release of O2 – takes place. 

However, besides this essential chemical process, biosynthesis of many other important 

metabolites such as fatty acids, isoprenoids, tetrapyrroles, nucleic acids, aromatic and non 

aromatic amino acids, poliphenols and lignins, and reduction of NO2
- and SO4

2-
 is carried out 

in the plastids as well. To fulfil all these biosynthetic functions, a permanent and regulated 

exchange of inorganic cations, anions and a variety of organic biosynthetic pathway 

intermediates is necessary between plastids and the cytosol. The plastid, as well as the 

mitochondrion, is surrounded by two envelope membranes and this feature is related to the 

origin of both organelles. Chloroplast arose from an endosymbiotic event in which an 

ancestor of nowadays living cyanobacteria was engulfed by a mitochondria-containing 

eukaryotic host cell. The mitochondrion, on the other hand, originated from an earlier 

independent endosymbiosis where an α-proteobacteria was engulfed (for overview see Gould 

et al., 2008; Gross and Bhattacharya, 2009a; Figure 1). Therefore, both organelles show 

similarities to the Gram-negative ancestors that gave them origin. Due to the presence of two 

membranes delimiting the organelles – in the chloroplast these two membranes are named 

outer and inner envelope, and are separated by an intermembrane space – the existence of ion 

channels and metabolite transporters regulating the exchange with the cytosol are necessary. 

The exchange across the inner chloroplast envelope membrane is carried out by characterised 

carrier proteins (for overview see Philippar and Soll 2007; Linka and Weber 2010). These 

transporters located in the inner envelope usually contain α-helical transmembrane domains, 

mediating the passage of hydrophilic solutes (for overview see Facchinelli and Weber 2011). 

The transport across the outer chloroplast envelope was however long time assumed to occur 

via an unselective diffusion pore like the porin VDAC (voltage dependent anion channel) 

located in the outer membrane of mitochondria (Figure 1). VDAC, a β-barrel pore, transports 

ions and metabolites in an unselective way, acting rather as a size-exclusion filter. The 

hypothesis of such a simplification in the transport across the outer envelope in the 

chloroplast could be refused by the identification of several abundant channel proteins that 
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regulate the transport of small solutes and are called OEPs, for outer envelope proteins 

(Figure 1; for overview see Philippar and Soll 2007; Duy et al., 2007; Pudelski et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Metabolite channels in the outer envelope  membrane of mitochondria and 
chloroplasts; Evolution from bacteria to organelles  (adapted from Bölter and Soll, 2001)  
Different types of porins in the outer envelope of Gram-negative bacteria. OmpF as a representative of 
classical solute porins, LamB as a specific maltose porin, and FecA depicting the TonB-dependent 
receptor-gated channels for Fe3+-chelates. The Gram-negative bacteria represent the evolutionary 
ancestor that gave origin to mitochondria and chloroplasts. In the outer membrane of mitochondria 
VDAC is an unspecific porin. In the outer envelope of the chloroplasts the different OEPs 
characterised as well as the solutes that they transport in vitro are depicted. OM: outer membrane, IM: 
inner membrane, PPS: periplasmic space, OE: outer envelope, IE: inner envelope, IMS 
intermembrane space, THY: thylakoids, 3-PGA: 3-phosphoglycerate, PPi: inorganic pyrophosphate. 

 

The existence of the selective OEPs in chloroplasts in contrast to mitochondria can 

evolutionary be explained by the necessity of a regulated and selective transport due to the 

origin of newly formed metabolic networks during the transformation of the endosymbiont 

into the plastid organelle. The OEPs characterised in the last years were all isolated from the 

outer chloroplast envelope membrane of pea where they represent abundant proteins (for 

overview see Duy et al., 2007). As other channel pores (VDAC, TOC75), they are deeply 

embedded in the membrane, and have a neutral or alkaline isoelectric point (Bölter et al., 

1999). All discovered OEPs were named according to the molecular weight in kilo Daltons. 

The majority of them, resembling the porins present in the outer membrane of the Gram-
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negative ancestor’s, have a β-barrel structure (OEP21, OEP24 and OEP37). In contrast, 

OEP16 proteins are α-helical.  Thus, for OEP16 an evolution from the plasma membrane of 

either the bacterial endosymbiont or the eukaryotic host can be proposed (for overview see 

Duy et al., 2007). The β-barrel porins in the outer membrane of Gram-negative bacteria are 

composed by an even number of amphiphilic β-sheets and are water-filled. Usually 14, 16 or 

18 strands are connected by hydrophilic loops forming the bacterial porin barrel, most of them 

being functionally as homo-oligomers (for overview see Zeth and Thein, 2010). Porins can be 

subdivided into classical (allowing diffusion of small solutes), slow (slower diffusion of larger 

solutes), specific channels (specifically binding the solutes to be transported) and TonB-

dependent receptor-gated channels (where a specific binding of iron chelates induces a TonB-

mediated conformational change of the channel; for overview see Duy et al., 2007). Another 

characteristic of the OEPs is the way of insertion into the outer envelope membrane of the 

chloroplast. The majority of the plastid localised proteins are encoded in the nucleus and post-

translationally imported into the plastid from the cytoplasm. This is a consequence of the loss 

of more than 90% of their genetic information to the host nucleus during evolution (see Benz 

et al., 2009 and references therein). To achieve the correct localisation, the encoded 

preproteins are translated with an N-terminal extension called transit peptide which allows 

targeting, specific recognition and subsequent regulated translocation via the Toc (translocon 

at the outer envelope of chloroplasts) and Tic (translocon at the inner envelope of 

chloroplasts) complexes (for overview see Benz et al., 2009, Andrès et al., 2010). In contrast 

to this well understood mechanism, specific signals for targeting of most β-barrel proteins and 

all OEPs to the chloroplast outer envelope as well as insertion pathways in the membrane are 

still unknown (for overview see Walther et al., 2009). The OEPs are present in the genome of 

all land plants (mono and dicotyledons as well as in Physcomitrella patents), but no sequence 

homologues could be identified in cyanobacteria or in other Gram-negative bacteria (for 

overview see Duy et al., 2007). 

1 OEP24 

In 1998, OEP24 was discovered in pea and characterised as an integral membrane protein 

(Pohlmeyer et al., 1998). PsOEP24 has an isoelectric point of 9.1 and was found to be present 

in different plastid types of shoots, roots and leaves. Hydropathy analysis as well as circular 

dichroism (CD) from recombinant OEP24 protein reconstituted into liposomes suggested 

twelve putative amphiphilic β-strands, proposing a pore-forming protein built by homodimers 

(Schleiff et al., 2003). In vitro, electrophysiological measurements of PsOEP24 liposomes 

showed that the OEP24 channel has a slight preference for cations. A high conductance with a 
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diameter of 3 nm for the simple water-filled pore could be calculated. Osmotically induced 

fusion of PsOEP24 liposomes with the planar lipid bilayer as well as light scattering of 

PsOEP24 (rec) liposomes experiments demonstrated that OEP24 is permeable to sugars 

(manitol and glucose), glucose 6-phosphate, gluconate, phosphoglyceric acid, 

dihydroxyacetone, ATP, acetate, malate, α-ketoglutarate, Pi and charged amino acids 

suggesting a large rather not selective pore (Pohlmeyer et al., 1998). Although the primary 

sequence of OEP24 shows no homology to mitochondrial or bacterial porins, it could be 

demonstrated that pea OEP24 can functionally replace the mitochondrial VDAC in yeast, 

suggesting that OEP24 forms a general solute channel also in vivo (Röhl et al., 1999).  

2 OEP21 

OEP21 was isolated only a year later than OEP24 also corresponding to an abundant protein 

in the outer envelope of pea chloroplast (Bölter et al., 1999). PsOEP21 has an isoelectric point 

of 9.6 and was shown to be an integral membrane protein present in different types of 

plastids. CD analysis as well as in silico analysis proposed an eight β-strand formed pore with 

N- and C-termini facing the cytosol that mostly forms homodimers (Hemmler et al., 2006). 

Electrophysiological studies described OEP21 as an intrinsically rectifying anion channel 

permeable to HPO4
2- and phosphorylated carbohydrates (triosephosphate, 3-phosphoglycerate, 

Gluc-6-phosphate). The rectification and ion selectivity of the channel was further shown to 

be regulated by ATP and triosephosphate (Bölter et al., 1999). Moreover, a fine tuning of 

PsOEP21 was proposed due to the existence of two ATP-binding sites: one high affinity site 

at the centre and a second at the vestibule facing the intermembrane space, harbouring an 

FX4K motif (Hemmler et al., 2006). This motif had been previously described in ATP 

sensitive K+ channels and in P-type ATPases (McIntosh et al., 1996; Drain et al., 1998; Seino, 

1999; Kühlbrandt, 2004; Bryan et al., 2004). Binding of ATP to the inner site blocks the 

channel current whereas binding to both sites decreased the anion selectivity of OEP21. 

Triosephosphate (TP) can bind to both sites with the same affinity and thus compete with 

ATP. In consequence, increasing the TP:ATP ratio at the intermembrane space releases the 

current block and increases anion selectivity, resulting in net efflux of TPs (Hemmler et al., 

2006). This feature described for the first time a regulatory step in the transport of metabolites 

across the outer envelope of the chloroplast.  

3 Other OEPs 

OEP37 from pea was described as a cation selective channel (Götze et al., 2006). It forms also 

a β-barrel pore with 12 β-strands (Schleiff et al., 2003), being the substrate specificity of this 
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channel still unclear. In the model plant Arabidopsis thaliana OEP37 represents a single copy 

gene; however knock-out mutants show no obvious phenotype under standard conditions 

although the expression is high in early germinating seedlings as well as in late 

embryogenesis (Götze et al., 2006).  

From all OEPs the α-helical OEP16 is the best characterised. This protein is part of the PRAT 

– preprotein and amino acid transporter – superfamily (Murcha et al., 2007; Pudelski et al., 

2010), and capable to transport amino acids in vitro (Pohlmeyer et al., 1997). In vivo, it could 

be shown that the loss of OEP16 causes metabolic imbalance, in particular that of amino acids 

during seed development and early germination, corroborating the function in shuttling amino 

acids across the outer envelope of seed plastids (Pudelski et al., 2011). 

OEP7 is a very short protein composed of only one α-helix, was the first OEP identified and 

corresponds to the most abundant OEP (Joyard et al., 1982, Salomon et al., 1990, Li et al., 

1991, Li and Chen, 1996). The function of OEP7 as a channel pore is still unclear and knock-

out Arabidopsis plants show no obvious phenotype although OEP7 again present an OEP-

typical differential expression pattern during seed development (Li, Philippar and Soll, 

unpublished). 

The abundance of the known OEPs in pea chloroplast, as well as the different expression 

pattern during plant development of the orthologs found in Arabidopsis strongly support the 

theory of a regulated and selective transport across the outer envelope of the chloroplast. 

Moreover, new plastid proteome analysis (Froehlich et al., 2003; Kleffmann et al., 2004; 

Baginsky et al., 2004; von Zychlinski et al., 2005; Zybailov et al., 2008; Bräutigam et al., 

2008a; Bräutigam et al., 2008b; Bräutigam and Weber, 2009; Ferro et al., 2010) reveals the 

existence of many unknown transporters confirming a selective and regulated transport across 

the outer envelope of the chloroplast by more than only one unselective porin-like protein.  
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4 Aim of the work 

The objective of my PhD research project was to describe the physiological meaning of the 

metabolite channels OEP24 and OEP21 in their respective organ specific forms (e.g. plastids 

of pollen, embryos or mature leaves) using the model plant Arabidopsis thaliana.  

Further, a screening assay on purified outer envelope membranes of pea chloroplast should 

lead to the identification and characterisation of new and up to now unknown metabolite and 

ion channels.  

As a whole, basic findings on the connection of plastid biosynthesis ways with the metabolic 

competence and function of the plant cell during development and differentiation of the 

respective organs are expected. The regulation of solute fluxes between plastids and the 

surrounding cell can lead to significant changes in the content of the most important plant 

substances (proteins/lipids/carbohydrates) and in the long term can be of general importance 

for plant productivity.  
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II. Materials 

1 Chemicals 

All chemicals used in this work were purchased from Applichem (Darmstadt, Germany), 

Fluka (Buchs, Switzerland), Biomol (Hamburg, Germany), Difco (Detroit, USA), Sigma-

Aldrich (Steinheim, Germany), GibcoBRL (Paisley, UK), Merck (Darmstadt, Germany), Roth 

(Karlsruhe, Germany), Roche (Penzberg, Germany) und Serva (Heidelberg, Germany). 

2 Enzymes 

Restriction enzymes were obtained from MBI Fermentas (St. Leon-Rot, Germany), New 

England Biolabs GmbH (Frankfurt am Main, Germany). T4-ligase was purchased from MBI 

Fermentas (St. Leon-Rot, Germany) and Invitrogen (Karlsruhe, Germany). Taq Polymerase 

was obtained from Diagonal (Münster, Germany), Eppendorf, MBI Fermentas, Clontech 

(Saint-Germainen-Laye, France), Finnzymes (Espoo, Finland) and Bioron (Ludwigshafen am 

Rhein, Germany). Reverse transcriptase was obtained from Promega (Madison, USA), RNase 

free DNase I from Roche (Mannheim, Germany) and RNase from Amersham Biosciences 

(Uppsala, Sweden). Cellulase R10 and Macerozyme R10 for digestion of the plant cell wall 

were from Yakult (Tokyo, Japan) and Serva (Heidelberg, Germany). 

3 Oligonucleotides 

Oligonucleotides were ordered from Qiagen/Operon (Köln, Germany) and from Metabion 

(Martinsried, Germany) in standard desalted quality. They were used for cloning, real time 

RT PCR and for genotyping mutant lines. 

Table 1: Oligonucleotides used in this work 

Name Sequence (5’-3’orientation) Application 
oligo-dT-Primer Reverse T T25V[NQ] Reverse transcription 
Act2/8fw GGTGATGGTGTGTCT Real time RT PCR 
Act2/8rev ACTGAGCACAATGTTAC " 
AtOEP24.1LCfw GGGACTTTGCGATTTCT " 
AtOEP24.1LCrev CTTTTACTACTAATTGGACTCACTAATA " 
AtOEP24.2LCfw TGGTGATAATGTGAGGGC Real time RT PCR / genotyping 
AtOEP24.2LCfw ACGAAACTGCTAGTAATAATAATG oep24.2-1 
AtOEP21.1LCfw GTGTCTTGTACGCGGA Real time RT PCR 
AtOEP21.1LCrev TGTGTTCATCAGCAGTGG " 
21.1LC_komp_fw AAAAAAGCAGGCTCCG Characterisation of OEP21.1 
21.1LC_komp_rev ACACGCTTATCAGCTCT overexpression line 
AtOEP21.2LCfw AGGATTTACGCCTCAGAA Real time RT PCR 
AtOEP21.2LCfw AATTTGCTCTCAACTGGT " 
At_noep40_LC_fw CGTTAGGGTTCCTACGG " 
At_noep40_LC_rev CTCAGCTACATTGCCCTC " 
At_noep57_LC_fw AGGGATTATCGAGGGC " 
At_noep57_LC_rev AGATGGGACCGTCACA " 
LB1SAIL GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC Genotyping SAIL mutant lines 
LB2SAIL GCTTCCTATTATATCTTCCCAAATTACCAATACA " 
LB1SAILTAIL CAAAAGTGTACCAAACAACGCTTTACAGCA " 
LBa1 TGGTTCACGTAGTGGGCCATCG Genotyping SALK mutant lines 
RBKp1SALK AGCTCATTAAACTCCAGAAACCCGCG " 
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GABI RBI CCAAAGATGGACCCCCACCCAC Genotyping GABI mutant lines 
GABILB2 ATATTGACCATCATACTCATTGC " 

SAIL1225fw CGTCAACAATCGTCCGGTTAT Genotyping oep24.1-1 and 24.1-
3 

SAIL1225rev TCGTCGCCGGTCCTAGCTT 
Genotyping oep24.1-1 and 24.1-
3  

OEP24.1i1fw TGAAATTGTATGGAGTCTCTGAG " 
OEP24.1i2rev TATAAGAGTATCTAGTGTCAACTGTTGG Genotyping oep24.1-1 
24.1-2-GABI086fw GGGAAGAAATAAGACAAAAAGCAAGTTGGC Genotyping oep24.1-2 
24.1-2-GABI086rev.1 GCTTCTCAACGGCGAGAGAGAGACC " 
24.1-2-GABI086rev.2 CTTTTTAGGGACGTTGTAGTCGATG " 

24.1-1RB_rev.1 CAGACAACTTGTTTGCTGGATCAATCAC T-DNA right border 
characterisation 

21.1A-fw CCCAAAGGAGCAGCAGAATTTG Genotyping oep21.1-1 
21.1A-rev CCCTTCATGTTCGCGTTGAGA " 
oep21-C-TDNA AAATGCAGTTACAGGTCATACCGCAAGTT " 
Oep21.1_LC_F GGACTTAAATCAGAAGAACC " 
21.1B-fw TTAAAGGAGCTCTTGGAGTTATGAAAC Genotyping oep21.1-2  
21.1B-rev CATCGCACAGAAGTAACTCGGAGC " 
OEP21N-TDNA TTGAGGAAAATGGAGACTTCTATGAGGTA " 
oep21E2R CAGTATCTAACTCTCCATGAAG " 
TILL21.2fw TTTTCATCACTTGTGTTTCTTTGATGG Genotyping oep21.2-1 
TILL21.2rev GGTTTAAGACCACGCATAAAGTCAAAC " 
23-1fw TCGTGTTTTAGTCGGTTCTGG Genotyping noep23-1 
23-1rev CAAGTCCTTGGGAGATAAGGC " 
40-1fw GGGATAAACAAACAACCAGGC Genotyping noep40-1 
40-1rev TATCCACCACCTCAATCGAAG " 
SAIL 57 fw TATAAACTTCTTTTGGACAAGCTGCC Genotyping noep57 -1 
SAIL 57 rev ATGCACCATAACCAAGAGCATTTGTG " 
RPnoep57SAIL CTTCCTCAGGGATTATCGAGG " 
57-2fw TTCCTATGGAAACACATTCCG Genotyping noep57 -2 
LPnoep57SAIL ATCTTCTTGCTTCTTCCCGAG " 
LPnoep57SALK TTTCCTCGTCTACTTGTGGG Genotyping noep57 -3, noep57-4 
RPnoep57SALK TTCCATAGGAACGACATGGAG " 

24.1-gene_fw.1 ACTTCTTTGTCTGGTTGCATTTCGATG Cloning of AtOEP24.1 for 
complementation 

24.1-gene_rev.1 GGAGTTAACCAACAACAAATACCTCATG " 

oep24.1komp TAGAGCTGGTTCCTCTGTTGATGG Genotyping of AtOEP24.1 
complementation 

attB2 ACCACTTTGTACAAGAAAGCTGGG " 
oep24.1komprev TTTGAAGCTAGAAAGCTGAGAG " 
LC 24.1_3’fw TTCGGTTGTTTGATGTGG " 
LC 24.1_3’fw GCAAATTCTTCATGTATTTGTG " 
komp mut fw1 AATCAAGCAACCTATAACAATCCACATAGC " 
komp mut rev1 ATTTGGTTTGTGTGCTTTGCTTTCG " 

oep21.1promo_ fw_n0 CAGGATAAATCAGGAACAGATAAAGCCAAG Cloning of AtOEP21.1 for 
complementation 

oep21.1gene rev GCTCTGAGTTAGTTTGTTTTTCGATGG " 

oep21.1-Ncofw CACCATGGAGACTTCTATGAGGTATAC 
Cloning of AtOEP21.1 for 
overexpression 

oep21.1cDNA+stop TTACAGGTCATACCGCAAGTTCCAT " 
noep23fw ATGGTTTTCTTGAGCTGGGTTCGCCCC Cloning of psNOEP23 
noep23rev TTATGATTTTGATGAATTAATGTGTTTCAGCA " 

noep23ps_NcoI(B) CACCATGGTTTTCTTGAGCTGGGTTCG Cloning of psNOEP23 for 
overexpression in E. coli 

noep23ps_XhoI AACTCGAGTGATTTTCATCAATTAATGTGTTTCAG  
noep23At_fw(cacc) CACCAGGTGTTCTTGAGTTGGGGCCG Cloning of AtNOEP23 for GFP 
noep23At_rev_ohne stop CGAAGCATTGACATGTTTCAGCACAG  
noep40fw ATGAAGCTCTCCCTCAAATTCCACAAC Cloning of psNOEP40 
noep40revB AAACTTGTTCTCCCCTTATTGCTTGC " 

noep40ps_NcoI GGCCATGGCCATGAAGCTCTCCCTCAAATTCCAC Cloning of psNOEP40 for 
overexpression in E.coli 

noep40ps_XhoI TGCTCGAGGGAAGAAGAAGCAGCAGTGGCA " 
noep40at_fw(cacc) CACCATGAAGGCATCGATGAAGTTTCGTG Cloning of AtNOEP40 for GFP 
noep40at_rev_ohne stop AGCAGCTCCTTTCAAAGCTTTCTTCAG " 
noep57fw CTTTCCTCTCTTCAGTTCTCTTATCTC Cloning of  psNIEP57 
noep57rev GTCGACATAGAATCCCTACAAAAAA " 

NcoI_Ctb CCATGGCTCCTTGTCGTTCATATGGAAACA Cloning of psNIEP57 for 
overexpression in E.coli 

noep57ps_XhoI TCCTCGAGAGCAGATCCTGCAACAACCTTCTTC " 
noep57at_fw(cacc) CACCATGTCACATATGGTGTTTCAGAGCG Cloning of AtNIEP57 for GFP 
noep57at_rev_ohne stop AGAGGCAGATGCAGCCACCTTC " 

At_noep57_RNAi TTTCCAATGTTTCCACCCCCTCC Cloning of AtNIEP57 for const. 
and inducible RNAi lines in At. 

At_noep57_stop TTAAGAGGCAGATGCAGCCACCTTC Cloning of AtNIEP57 for const. 



Materials 

9 

 

4 Vectors and constructs 

All plasmid vectors used in this work are enumerated in table 2.  

Table 2: Plasmid vectors used in this work 

Plasmid vector  Application  Origin  
pCRblunt Subcloning, sequencing Invitrogen 
pCR-XL-TOPO Subcloning, sequencing " 

pCR/8/GW-TOPO TA 
Entry vector for GATEWAY 
recombination " 

pENTR/D/TOPO Entry vector for GATEWAY 
recombination " 

pJET1.2 Subcloning, sequencing Fermentas 
pET21d Expression vector for E. coli Novagene/Merck (Darmstadt, Germany) 

pHGW Single fragment recombination vector Plant System Biology (University of 
Ghent, Belgium) 

pH2GW7 Overexpression vector " 
pH7GWIWG2(II) RNAi vector " 
p2GWF7 GFP fusion vector " 
pOpOffII Inducible RNAi vector Wielopolska et al., 2005 
pOpOn Inducible overexpression vector  

 

All constructs created in this work are enumerated in table 3.  

 
Table 3: Constructs created in this work. 

Protein Plasmid-vector Application  
 

AtOEP24.1 pCR-XL-TOPO Subcloning 
AtOEP24.1 pCR/8/GW-TOPO TA Gateway recombination 
AtOEP24.1 pHGW AtOEP 24.1 complementation 
AtOEP21.1(c-DNA) pENTR/D/TOPO Gateway recombination 
AtOEP21.1(c-DNA) pH2GW7 AtOEP 21.1 overexpression 
AtOEP21.1 pENTR/D/TOPO Gateway recombination 
AtOEP21.1 pHGW AtOEP 21.1 complementation 
PsNOEP23 pCRblunt Sequencing, subcloning 
PsNOEP23 pET21d E.coli overexpression 
AtNOEP23-stop codon pENTR/D/TOPO Gateway recombination (GFP) 
AtNOEP23-stop codon p2GWF7 GFP fusion 
PsNOEP40 pCRblunt Sequencing, subcloning 
PsNOEP40 pET21d E.coli overexpression 
AtNOEP40-stop codon pENTR/D/TOPO Gateway recombination (GFP) 
AtNOEP40-stop codon p2GWF7 GFP fusion 
PsNIEP57 pCRblunt Sequencing, subcloning 
PsNIEP57 (C_terminal) pET21d E.coli overexpression 
AtNIEP57-stop codon pENTR/D/TOPO Gateway recombination (GFP) 
AtNIEP57-stop codon p2GWF7 GFP fusion 
AtNIEP57(c-DNA) pENTR/D/TOPO Gateway recombination 
AtNIEP57(c-DNA) pH2GW7 AtNIEP57 overexpression 
AtNIEP57 (RNAi) pENTR/D/TOPO Gateway recombination 
AtNIEP57(RNAi) pH7GWIWG2(II) AtNIEP57 RNAi 
AtNIEP57(c-DNA) pOpOn Inducible AtNIEP57 overexpression 
AtNIEP57 (RNAi) pOpOffII Inducible AtNIEP57 RNAi 

and inducible overexpression 
lines in At. 

35Spromotor GATGTGATATCTCCACTGACGTAAGG Genotyping of overexpression 
lines in At. 
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5 Molecular weight markers and DNA standards 

PstI digested Phage DNA (MBI Fermentas) was used as a molecular size marker for agarose-

gel electrophoresis. For SDS-PAGE the Low Molecular Weight Marker composed of 

Lactalbumin (14 kDa), Trypsin-Inhibitor (20 kDa), Trypsinogen (24 kDa), Carboanhydrase 

(29 kDa), Glyceraldehyd-3-Dehydrogenase (36 kDa), Ovalbumin (45 kDa) and Bovine Serum 

Albumin (66 kDa) from Sigma-Aldrich was used. The peqGOLD Protein Marker II from 

Peqlab was also used.  

6 Antisera 

The following primary antibodies were generated in this work: psNOEP23 (mature protein 

form from pea), psNOEP40 (mature protein form from pea), psNIEP57 (C-terminal part, 

amino acid 301-526 of the protein from pea). Production and purification of the respective 

antigens are described under biochemical methods, section 4.6. All peptides/proteins were 

sent to Pineda, (Berlin, Germany) for immunization of rabbits. Primary antibodies directed 

against AtOEP24.1, AtOEP21.1, AtOEP37, AtPIC1, PsLSU, PsLHCP, PsOEP16.1, PsTic62, 

RuBisCo, GAPDH, CpHsc70-1 were already available in the lab. Antiserum recognizing 

AtOEP21.1 was purchased from Uniplastomic (France) and antiserum recognizing RuBisCo 

activase (from Gossipium hirsutum) was purchased from Agrisera (Sweden). 

7 Strains 

Cloning in E. coli was performed using the following strains: DH5-α (Invitrogen, Karlsruhe, 

Germany), TOP10 (Invitrogen), and MACH1 (Invitrogen). The strain BL21 (DE3) 

(Novagen/Merck, Darmstadt, Germany) were used for heterologous expression of proteins. 

The Agrobacterium tumefaciens GV3101::pMK90RK (Koncz and Schell, 1986), strain used 

in the stabile transformation of Arabidopsis thaliana was a kind gift of Dr. J. Meurer (Dept. 

Biologie I, Botany, LMU München).  

8 Plant material 

All experiments were performed on Arabidopsis thaliana plants, ecotype Col-0 (Columbia 0 

Lehle seeds, Round Rock, USA) and ecotype Col-erecta (Col-er). 

The T-DNA lines (Alonso et al., 2003; Rosso et al., 2003) SAIL_1225_B03, SAIL_548_C05, 

SALK_058578, SALK_122968, SAIL_266_D10, SAIL_64_A05, SAIL_1156_E1, 

SALK_033007 and SALK_089076 were purchased from NASC (University of Nottingham, 

GB). The lines GABI_086_H07 and GABI_279G09 were purchased from GABI-Kat (MPI 

for Plant Breeding Research, Köln, Germany). The TILLING mutant lines CS91501, 
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CS92311, and CS86516, were ordered at the Seattle TILLING Service (http://tilling.fhcrc.org; 

Till et al., 2003) and purchased from NASC (Scholl et al., 2000). Peas (Pisum sativum) var. 

“Arvica” were ordered from Bayerische Futtersaatbau (Ismaning, Germany). 
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III. Methods 

1 Plant methods 

1.1 Growth of Arabidopsis thaliana 

Seeds of Arabidopsis were sown on MS media (0.215% MS, 0.05% (2-(N-morpholino) 

ethanesulfonic acid) MES, 0.3% gelrite (pH 5.8 with KOH), (Murashige and Skoog, 1962), in 

some cases supplemented with 1% (w/v) sucrose, or directly on soil. Before sowing on sterile 

media, the seeds  were surface sterilised in 70% ethanol (1-2 min), 6% NaClO plus 0.05% 

tween 20 (3-5 min) followed by washing tree times in sterile H20. For bigger amounts of 

seeds an alternative dry sterilization was performed in which the seeds were put in a close 

recipient (desiccator) in the presence of the sterilising gas originated  by the mixture of 12% 

NaClO (20 ml) supplied with 1 ml of HCl for 16 h. To synchronize germination, the seeds 

were vernalized for 24 h at +4°C in the dark. To select the transformed plants and T-DNA 

insertion lines, the seeds were grown on MS media containing the adequate antibiotic or 

herbicide (25 µg/ml hygromycin, 100 µg/ml kanamycin or 50 µg/ml ammonium glufosinate, 

BASTA). After 2 to 3 weeks the plants were transferred to soil. Unless stated otherwise, 

plants were grown in a 16 h light (+21°C; 100 µmol photons m–2 s–1) and 8 h dark (+16°C) 

cycle (long-day). For short day conditions an 8 h light (+21°C; 100 µmol photons m–2 s–1) and 

16 h dark (+16°C) cycle was used. For continuous light 100 µmol photons m–2 s–1 (21°C), and 

for continuous low light 10 µmol photons m–2 s–1 (21°C) were applied. The noep40-1 phenotype 

was detected in long day conditions at 10°C. 

1.2 Cross fertilization of Arabidopsis thaliana 

Two mutant lines for OEP21.1: oep21.1-1 (SAIL_548_C05) (F4) and oep21.1-2 

(SALK_058578) (F6) were crossed with the mutant line 21.2-1 CS86516 (F4). Double mutant 

as well as double wild-type lines were characterised by PCR (T-DNA insertion lines) and 

sequencing (TILLING lines). To perform the cross, flowers from the female parents were 

used before the anthers began to shed pollen onto the stigma. For each flower the sepals, 

petals and each anther was removed leaving the carpel intact. For the male parent, flowers 

were chosen that visibly were shedding pollen. These flowers were removed and squeezed 

near the bases with forceps to separate the anthers from the other organs. The convex surface 

of the anthers was brushed against the stigmatic surface of the exposed carpels on the female 

parent. The elongated siliques resulting from the cross were harvested after 2-3 weeks and 

dried at room temperature for 2 weeks before planting (Detlef and Glazebrook, 2002). 
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1.3 Stable transformation of Arabidopsis thaliana 

The stable transformation of Arabidopsis plants was performed as referred by Bechtold et al., 

(1993). 3 days before plant transformation, a 10 ml Agrobacterium strain harbouring the right 

vector with the construct for the transformation was incubated in LB media and incubated at 

+28°C and 180 rpm. After two days, 500 ml of LB media were inoculated with 5 ml 

Agrobacterium culture and allowed to grow for one day under continuous shaking at +28°C. 

On the day of the transformation, the bacteria were harvested (6,000 x g, 10 min) and the 

pellet was reconstituted in 400 ml infiltration media (5% (w/v) sucrose, 0.215% MS, 0.05% 

(v/v) Silwet L-77). The plants to be transformed were prepared the night before as following: 

already formed siliques were cut and the plants were covered with a plastic bag to allow a 

maximum opening of the stomata cells. The plants were transformed under vacuum in a 

desiccator for 5 min in which they were immersed upside down in the infiltration media. After 

the transformation, the plants were allowed to recover lying on a humid paper and covered 

again until the next day when they were rinsed with water and erected. The T1 seeds from the 

transformed plants were harvested and selected on MS media supplied with the corresponding 

antibiotic or herbicide. 

1.4 Preparation and transient transfection of Arabidopsis thaliana protoplasts 

Arabidopsis mesophyll protoplasts were isolated from leaves of four-week-old plants and 

transiently transfected according to the protocol of Jen Sheen (available at 

http://genetics.mgh.harvard.edu/sheenweb/protocols_reg.html). GFP fluorescence was 

observed with a Leica TCS SP5 confocal laser-scanning microscope (Leica Microsystems, 

Wetzlar, Germany). 

2 Microbiology methods 

2.1 Media and growth 

E. coli was cultivated in LB media (1% tryptone, 0.5% yeast extract, 1% NaCl and if 

necessary 1.5% agar) at +37°C in either liquid culture or on agar plates supplemented with the 

appropriate antibiotics (ampicillin 100 µg/ml, kanamycin 50 µg/ml, streptomycin 50 µg/ml 

and spectinomycin 100 µg/ml).  

Agrobacterium was cultivated in LB media (liquid as well as on plates), at +28°C, 

supplemented with the appropriate antibiotics according to the resistance (50 µg/ml 

kanamycin (resistance strain GV3101), 100 µg/ml rifampicin (resistance Ti-plasmid), and the 

resistance of the transformed vector. 
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2.2 Bacteria transformation 

The preparation of chemical competent cells for transformation was done according to the 

protocol of Hanahan (1983). The transformation of the bacteria was performed using the heat 

shock method (Sambrook et al., 1989). 

For the preparation of competent Agrobacterium cells, 10 ml of liquid media supplied with 

the necessary antibiotic were inoculated with a single colony and incubated over night under 

continuous shaking at +28°C. The cells were harvested in 1 ml aliquots by centrifugation (5 

min, 6,000 x g, +4°C). The pellet was resuspended in 100 µl, CaCl2 (10 mM) at +4°C and 

centrifuged again (5 min, 6,000 x g at +4°C).  The pellet was resuspended in 50 µl CaCl2 (10 

mM) at +4°C, and snap frozen in liquid nitrogen. The competent cells were stored at –80°C. 

For transformation of the cells, 0.5 µg of DNA plasmid was given to 50 µl of competent cells 

and snap frozen for 1 min in liquid nitrogen. After that, the cells were incubated at +37°C for 

5 min and chilled down on ice. After the addition of 400 µl LB media or SOC media (2% 

trypton, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 

mM glucose) a 2-4 h incubation under continuous shaking at +28°C was achieved. After 

centrifugation for 10 s at 16,000 x g, the pellet was resuspended in a minimal amount of 

media and spread on LB plates supplied with the corresponding antibiotic and incubated for 2 

to 3 days at +28°C. The colonies were tested by colony PCR. 

3 Molecular biology methods 

3.1 Polymerase Chain Reaction (PCR) 

DNA fragments for cloning into vectors and genotyping of plant mutant lines were amplified 

using Polymerase Chain Reaction (PCR) (Saiki et al., 1988). The protocol applied was 

according to the manufacturer’s recommendations. The BioTherm Taq-Polymerase 

(Diagonal), (Bioron) and the Tripel Master Taq-polymerase (Eppendorf) were used for PCR-

genotyping. The Pfu-Polymerase (MBI Fermentas), Phusion-Polymerase (Finnzymes) and 

Advantage®2 Polymerase Mix (Clontech Laboratories) were used for subcloning from PCR 

amplified fragments. 

3.2 Cloning strategies 

General molecular biological methods like restriction digestion of vectors, DNA ligation, 

determination of DNA concentrations and agarose gel electrophoresis were performed as 

described in Sambrook et al., (1989) as well as according to the manufacture’s 

recommendations. For purification of DNA fragments from agarose gels or directly after PCR 
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amplification the “Nucleospin Extract II Kit” from Macherey and Nagel (Düren, Germany) 

and QIAEXII Agarose Gel Extraction Kit or the QIAquick Gel Extraction Kit both from 

Qiagen (Hilden, Germany), were used. LR-recombination using the GATEWAY system 

(Invitrogen) was performed according to the manufacturer’s recommendations. The LR 

recombination reaction for the inducible pOpOn and pOpOffII vectors was incubated over 

night at 25°C. 

3.3 Isolation of DNA plasmids from Escherichia coli 

DNA plasmid preparation from transformed E. coli cells was performed by alkaline lysis with 

SDS and NaOH from 3-5 ml overnight cultures according to the protocol from Zhou et al., 

(1990). For high yield DNA purification, the Nucleobond AX Plasmid Purification Midi („AX 

100“) und Maxi („AX 500“) kits from Macherey and Nagel (Düren, Germany) according to 

the manufacture’s recommendations were used.  

3.4 Preparation of genomic DNA from Arabidopsis thaliana  

For genotyping of T-DNA insertion lines the following protocol was used: 2-3 Arabidopsis 

rosette leaves were supplied with 450 µl of extraction buffer (0.2 M Tris-HCl (pH 7.5), 0.25 

M NaCl, 25 mM EDTA, 0.5% SDS, 100 µg/ml RNase) and disrupted using the Tissue Lyser 

from Retsch/Qiagen for 3 min. Afterwards the samples were incubated at +37°C for 10 min 

and centrifuged for 10 min at 16,000 x g. The DNA present in the clear supernatant was 

precipitated with 300 µl of isopropanol for 5 min. After 5 min centrifugation at 16,000 x g at 

+4°C, the pellet was washed with 70% ethanol and after drying, 50 µl 10 mM Tris-HCl (pH 8) 

buffer was added to the DNA. For one PCR reaction (25 µl), 5 µl of DNA were used.  

For the preparation of big genomic fragments of DNA (amplification of genes for 

complementation) 200 mg of leaves were placed immediately in liquid nitrogen and ground 

thoroughly with a mortar and a pestle. The powder was recovered in 750 µl extraction buffer 

(1.4 M NaCl, 20 mM EDTA, 0.1 M Tris-HCl (pH 8), 3% (w/v) cetrimonium bromide 

(CTAB) plus 8 µl 10% dithiothreitol (DTT)) and incubated for 30 min at +65°C. The sample 

was supplied with 1 sample volume of chloroform/isoamylalcohol (24:1) and centrifuged at 

16,000 x g for 15 min at +4°C. The upper phase containing the DNA was precipitated with 1 

sample volume of isopropanol and centrifuged again at 16,000 x g for 15 min at +4°C. The 

pellet was washed in 70% ethanol, dried and resuspended in 400 µl TE-buffer (pH 8). Rest 

RNA was digested incubating the samples with 100 µg/ml RNase for 30 min at +37°C. After 

this step, a second extraction of the DNA was performed adding 1 sample volume of 

chloroform/isoamylalcohol and centrifugation for 5 min at maximum speed. The DNA 
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presented in the upper phase was precipitated using 1/10 sample volume 3 M NaOAc (pH 5.6) 

and 2.5 sample volume of ethanol for 2 h at -20°C. After this step the samples were 

centrifuged for 10 min (16,000 x g at +4°C). The pellet was washed with 70% ethanol, dried 

and resuspended in 50 µl mM Tris-HCl (pH 8). The DNA concentration was measured and 

the corresponding amount according to the manufacture’s recommendations for each 

polymerase was used for PCR amplification. 

3.5 Determination of DNA and RNA concentrations  

The concentration of DNA and RNA was measured photometrically according to the 

Lambert-Beer principle. The absorption of a diluted sample at 260 nm and 320 nm was 

determined and the concentration in µg/µl was calculated according to the following 

calculation:  

DNA: c [µg/µl] = (E260 – E320) x 0,05 x fdil 

RNA: c [µg/µl] = (E260 – E320) x 0,04 x fdil 
 

E denotes absorption of the sample at the given wavelength and fdil denotes the dilution factor 

of the sample. Additionally, the absorption at 280 nm was measured as an indication of 

protein contamination. In pure nucleic acids the relation E260/E280 corresponds to 1.8-2.  

3.6 Characterisation of plant T-DNA insertion lines 

T-DNA insertion lines were genotyped by PCR. To identify mutants with the T-DNA 

insertion in both alleles (homozygous) a combination of gene-specific primers flanking the 

predicted T-DNA insertion sites and T-DNA-specific primers were used. Amplification using 

T-DNA specific primer (LB or RB) in combination with a specific gene primer will only 

generate an amplification product in heterozygous and homozygous plants. Amplification 

using only gene specific primers flanking the T-DNA insertion site will only generate an 

amplification product in wild-type and heterozygous plants. The combination of these two 

PCR results allows a clear discrimination between wild-type, heterozygous and homozygous 

plants for the T-DNA insertion. 
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Table 4: PCR primer combination for genotyping muta nt lines in Arabidopsis 
The most used combination of primers is shown. For primer sequence please refer to table 1. 

Allele  Line  PCR for…  Primer  
oep24.1-1 SAIL_1225_B03 wt SAIL1225rev 
   SAIL1225fw 
  T-DNA LB1SAIL 
   SAIL1225rev 
oep24.1-2 GABI_086_H07 wt 24.1-2-GABI086fw 
   24.1-2-GABI086rev.1 
  T-DNA 24.1-2-GABI086rev.1 
   GABI RBI 
oep24.1-3 CS91501 TILLING SAIL1225rev 

   
SAIL1225fw 
(sequencing: OEP24.1i1fw) 

oep24.2 CS92311 TILLING AtOEP24.2LCfw 

   
AtOEP24.2LCrev 
(sequencing: 
AtOEP24.2LCfw) 

oep21.1-1 SAIL_548-C05 wt 21.1A-fw 
   21.1A-rev 
  T-DNA 21.1A-rev 
   LB1SAIL 
oep21.1-2 SALK_058578 wt 21.1B-fw 
   21.1B-rev 
  T-DNA 21.1B-fw 
   LBa1 
oep21.2-1 CS86516 TILLING TILL21.2fw 

   
TILL21.2rev 
(sequencing: TILL21.2fw) 

noep23-1 GABI_279G09 wt 23-1fw 
   23-1rev 
  T-DNA 23-1fw 
   GABILB2 
noep40-1 SAIL_266_D10 wt 40-1fw 
   40-1rev 
  T-DNA 40-1fw 
   LB1SAIL 
niep57-1 SAIL_64_A05 wt SAIL 57 fw 
   SAIL 57 rev 
  T-DNA SAIL 57 fw 
   LB1SAIL 
niep57-2 SAIL_1156_E1 wt 57-2fw 
   LPnoep57SAIL 
  T-DNA 57-2fw 
   Lb2SAIL 
niep57-3 SALK_033007 wt LPnoep57SALK 
niep57-4 SALK_089076  RPnoep57SALK 
  T-DNA LPnoep57SALK 
   LBa1 
AtOEP24.1  Complementation Trafo detection oep24.1komp 
   attB2 
  Homozygous plants oep24.1komprev 
   OEP24.1i1fw 

AtOEP21.1 
Overexpression of 
AtOEP21.1 in the double 
mutant 21dmA#35 

Trafo detection 35S 

   oep21.1cDNA+stop 

 
Complementation of the 
double mutant 21dmA#35 
with AtOEP21.1 

Trafo detection 21.1A-fw 

   attB2 

AtNIEP57 RNAi lines, overexpression 
lines Trafo detection 35S 

   At_noep57_RNAi 

For the determination of the specific insertion site and analysis of the unknown borders of the 

T-DNAs, amplified DNA fragments with several primer combinations (T-DNA specific and 

gene specific primers, Table 4 and 5) were cloned and subsequently sequenced. 
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The base pare number of the T-DNA insertion sites depicted in the figures of this work, were 

placed in relation to the +1 of the genes proposed by TAIR. In the TILLING lines, however, 

the site of the point mutation corresponds to the position given by TILLING. 

Table 5: PCR primer combination for T-DNA right bor der (RB) characterisation in the mutant 
lines in Arabidopsis. Primer combination used to sequence and analyse the unknown borders of the 
T-DNA insertions. For primer sequence please refer to table 1. 

Allele  Line  Primer  

oep24.1-1 SAIL_1225_B03 LB1SAIL 

  24.1-1RB_rev.1 

oep21.1-2 SALK_058578 LBa1 

  21.1B-rev 

niep57-1 SAIL_64_A05 LB1SAIL 

  SAIL 57 rev 

niep57-3 SALK_033007 RBKp1SALK 

  RPnoep57SALK 

3.7 Characterisation of plant TILLING lines 

To screen the TILLING mutant plants, amplification of the DNA fragment harbouring the 

point mutation was performed. The PCR amplified bands were purified directly from the PCR 

using the Kits enumerated in section 3.2 Cloning strategies and sent to sequence. 

3.8 DNA sequencing 

DNA sequencing was performed by the sequencing service of the Faculty of Biology, 

Genetics, Ludwig-Maximilians-Universität München. 

3.9 RNA extraction and real time RT-PCR  

Total RNA from Arabidopsis and pea plants was isolated using the Plant RNeasy Extraction 

kit (Qiagen, Hilden, Germany). The DNA was digested with RNase-free DNase I (Qiagen) 

and transcribed into cDNA using MMLV Reverse transcriptase (Promega, Mannheim). For 

that purpose a final volume of 10 µl composed of 0.5-1.0 µg RNA, 4 µM oligo-dT-Primer, 0.5 

mM dNTP and 2 units of MMLV was incubated at +42°C for 1.5 h (adaptation Clausen et al., 

2004). The cDNA was diluted 1:20 and the PCR was performed using the FastStart DNA 

Master SYBR-Green Plus Kit (Roche, Penzberg) according to the manufacture’s 

recommendations. The detection and quantification of transcripts were performed using the 

LightCycler system (Roche, Penzberg). A total of 45 cycles composed of 1 s at +95°C 

(denaturation), 7 s at 49+ (annealing), 19 s at +72°C (elongation) and 5 s at +79°C (detection) 
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were realised (Philippar et al., 2004). The gene specific mRNA content was normalised to 

10,000 actin molecules. For that purpose, real time RT PCR using oligonucleotides 

amplifying AtAct2 (At3g18780) and AtAct8 (At1g49240) was performed. The relative 

amount of RNA was calculated using the following calculation: 

Relative amount of cDNA = 2[n(Aktin)-n(Gen)] 

with n=threshold cycle of the respective PCR product. 

4 Biochemical methods 

4.1 Determination of protein concentration 

The protein concentration of the samples was determined using the Bradford (Bradford, 1976) 

(Bio-Rad Protein Assay, Bio-Rad, München, Germany) or BCA (bicinchoninic acid) method 

(Pierce BCA Protein Assay Kit, Thermo Scientific, Rockford, USA).  

4.2 Protein extraction from Arabidopsis thaliana 

For the protein extraction plant leaves were placed immediately in liquid nitrogen and ground 

thoroughly with a mortar and a pestle. The powder was mixed with one sample volume 

extraction buffer (50 mM Tris-HCl, (pH 8), 50 mM EDTA, 2% LDS (Lithium dodecyl 

sulphate), 10 mM DTT, 0.1 mM PMSF) and incubated on ice for 30 min. A centrifugation 

step followed (15 min at 16,000 x g at +4°C) to get rid of insoluble components. The protein 

concentration was determined using the BCA method. 

4.3 SDS-Polyacrylamide –gel electrophoresis (SDS-PAGE) 

The separation of proteins was performed according to Laemmli (1970) with an acrylamid 

concentration (relation of acrylamid to N,N'-methylenebisacrylamide 30:0.8) from 12.5 to 

15% in the separating gel. For the stacking gel 0.5 M Tris-HCl (pH 6.8) and for the separating 

gel 1.5 M Tris-HCl (pH 8.8) was used. To achieve a better resolution gels according to 

Shägger and Jagow (1987) were performed. For the stacking and separating gel 3 M Tris-HCl 

(pH 8.45) and 0.3% SDS was used. 13% of glycerine was added to the separating gel. The 

buffer used for these gels contained 0.2 M Tris-HCl (pH 8.9) in the anode buffer and 0.1 M 

Tris-HCl (pH 8.25), 0.1 M Tricine and 0.1% SDS in the cathode Buffer. Prior to loading the 

samples on the gels, they were solubilised in the Laemmli buffer (250 mM Tris-HCl (pH 6.8), 

40% glycerine, 9% SDS, 20% ß-mercaptoethanol, 0.1% bromophenol blue). 
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4.4 Staining of acrylamide gels 

SDS gels were stained using 0.18% Coomassie Brilliant Blue R250 dissolved in 50% 

methanol and 7% acetic acid for 15 min. Destaining was performed using 40% methanol, 7% 

acetic acid and 3% glycerine. Afterwards the gels were incubated in water and dried under 

vacuum. 

IEF gels were stained using colloidal coomassie. Therefore the gels were incubated in staining 

solution (Coomassie Blue G-250, 10% (1 mg dye/ml) 10% ammonium sulfate, 2% phosphoric 

acid (85%) and 20% methanol, added freshly) on a shaker at RT overnight. The gels were 

then washed three times for 20 min in H2O (or longer) and were then ready for scanning and 

analysis. 

4.5 Immunodetection  

4.5.1 Electrotransfer of proteins 

The proteins separated by SDS-PAGE were transferred to a nitrocellulose (PROTRAN BA83, 

0.2 µm, Whatman/Schleicher & Schüll) or to a PVDF membrane (Zefa Transfermembran 

Immobilon-P, 0.45 µm, Zefa-Laborservice GmbH, Harthausen, Germany) by a semi-dry-blot 

equipment (Amersham Biosciences) (Kyhse-Andersen, 1984). For this purpose 3 whatman 

papers were soaked in anode buffer I (300 mM Tris, 20% methanol, (pH 10,4), and placed in 

the blotting equipment (anode). 2 whatman papers, the membrane (PVDF membrane was 

activated in methanol before) and the gel, all of them soaked in the anode buffer II (25 mM 

Tris, 20% methanol (pH 10.4)) were  placed on top. 3 more whatman papers soaked in 

cathode buffer (25 mM Tris, 40 mM aminocapron acid, 20% methanol (pH 7.6)) were placed 

on the stack and the blotting equipment was closed with the cathode. The transfer was 

conducted for 1.5 h at 0.8 mA per cm2 membrane surface. After the transfer the marker 

proteins were cut from the membrane and visualized by staining with amido black (0.1% in 

ddH2O, Moser/Roth). 

4.5.2 Detection of proteins  

Labelling with protein-specific primary antibodies was carried out with polyclonal antibodies, 

and bound antibodies were visualized either with alkaline phosphatase (AP)-conjugated 

secondary antibodies (goat anti-rabbit IgG (whole molecule)-AP conjugated, Sigma-Aldrich 

Chemie GmbH, Taufkirchen) or using a chemiluminescence detection system (ECL, see 

below) in combination with a horseradish peroxidase-conjugated secondary antibody (goat 

anti-rabbit (whole molecule)-peroxidase conjugated, Sigma). The membrane was blocked 3 

times with skimmed-milk buffer and incubated with a dilution of the primary antibody (1:250-
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1:2,000) in TTBS (100 mM Tris-HCl (pH 7.5), 0.2% tween 20, 0.1% BSA, 150 mM NaCl) at 

room temperature for two hours or overnight at +4°C.  The membrane was blocked again in 

skimmed-milk buffer and incubated for 1 hour with the secondary antibody (1:10,000-

1:8,000). The membrane was washed twice in skimmed-milk and afterwards two times in 

water.  Detection of AP signals was performed in a buffer containing 66 µl/10 ml NBT (nitro 

blue tetrazolium chloride, 50 mg/ml in 70% N,N-dimethylformamide) and 132 µl/10 ml BCIP 

(5-bromo-4-chloro-3-indolyl phosphate, 12.5 mg/ml in 100% N,N-dimethylformamide) in 

100 mM Tris-HCl (pH 9.5), 100 mM NaCl, 5 mM MgCl2 buffer. To stop the reaction the 

membrane was incubated in 50 mM EDTA. 

To detect signals with the Enhanced Chemiluminescence (ECL) method, the Pierce ECL 

Western Blotting Substrate Kit (Thermo Fisher Scientific Inc., Rockford, USA) was used after 

manufacture’s recommendations. The following protocol was also used: solution 1 (100 mM 

Tris-HCl (pH 8.5), 1% (w/v) luminol, 0.44% (w/v) coomaric acid) and solution 2 (100 mM 

Tris-HCl (pH 8.5), 0.018% (v/v) H2O2) were mixed in a 1:1 ratio and added to the blot 

membrane (1-2 ml per small gel). After incubation for 1 min at RT (in the dark) the solution 

was removed and the luminescence detected with a film (Kodak Biomax MR, PerkinElmer, 

Rodgau, Germany). 

4.6 Generation of antisera 

For the generation of antisera against the new envelope proteins the pea sequence of NOEP23 

(full length), NOEP40 (full length) and NIEP57 (C-terminal: amino acid 301-526) were 

subcloned into the vector pET21d (Novagen/Merck). For heterologous expression, constructs 

were transformed in E. coli BL21 (DE3) cells (Novagen/Merck) and grown at +37°C in LB or 

M9ZB media in the presence of 100 µg/ml ampicillin to an OD600 of 0.4-0.6. Expression was 

induced by addition of 1 mM IPTG (isopropyl β-D-1-thiogalactopyranoside). Cells were 

grown for 3 h at +37°C and harvested at 6,000 x g for 15 minutes, at +4°C. The bacteria were 

resuspended in resuspension buffer (50 mM Tris-HCl (pH 8.0), 200 mM NaCl, 5 mM ß-

mercaptoethanol) and cells were broken using the Microfluidizer-Processor from Microfludics 

(Newton, USA). Afterwards the samples were sonified to break the DNA, and centrifuged at 

20,000 x g for 30 min at +4°C. The hard inclusion bodies were resuspended in the detergent 

buffer (20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 1% deoxycholic acid, 1% nonidet P-40, 10 

mM ß-mercaptoethanol) and centrifuged again at 12,000 x g for 10 min at +4°C). The pellet 

was resuspended in triton buffer (20 mM Tris-HCl (pH 7.5) 0.5% triton X-100, 5mM ß-

mercaptoethanol) and centrifuged (12,000 x g, 10 min, +4°C). This step was performed twice. 

The inclusion bodies were washed twice in Tris-buffer (20 mM Tris-HCl (pH 8.0), 10 mM 
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DTT) and dissolved in buffer G (50 mM NAPP (pH 8), 100 mM NaCl, 2 mM ß-

mercaptoethanol and 6 M guanidinium chloride). All proteins were purified via their C-

terminal polyhistidine tags using Ni-NTA-Sepharose (GE Healthcare, Munich, Germany) and 

eluted with 50-500 mM imidazole in buffer A (50 mM NaPP (pH 8.0), 100 mM NaCl, 2 mM 

ß-mercaptoethanol, 8 M urea). To electroelute recombinant psNIEP57 acrylamid gel slices 

containing the recombinant protein were electroeluted at 24 mA overnight in a dialyse tubing 

(14 kDa) in an SDS running buffer containing 4 M urea. All peptides/proteins were sent to 

Pineda (Berlin, Germany) for the immunization of rabbits. 

4.7 Purification of PsNOEP40 antiserum 

Due to the high background of the antiserum raised against PsNOEP40, a purification using 

CNBr-activated Sepharose TM 4B (GE, Healthcare) was performed according to the 

manufacturer’s recommendations with slight deviations. For that, the recombinant expressed 

PsNOEP40 (7 mg protein in 6 ml after purification from Ni-NTA-Sepharose columns) was 

dialysed over night against coupling buffer (0.1 M NaHCO3 (pH 8.3), 0.5 M NaCl, 1% triton 

X-100). The next day, lyophilized sepharose (0.23 gr of sepharose = 1 ml gel) was swollen in 

5 ml 1 mM HCl (15 min on shaker at RT) and washed afterwards 10 times (10 ml) with 1 mM 

HCl. The recombinant protein was added to the sepharose beads and rotated for 1 h at RT. 

The excess of ligand was washed with at least 5 ml of the coupling buffer and the beads were 

blocked with 5 ml of blocking buffer (100 mM Tris-HCl (pH 8), 0.2 M glycine and 0.5 M 

NaCl, 1% triton X-100) for 2 h at RT. Afterwards an alternating washing (3-5 cycles) with 5 

ml of acetat buffer (0.1 M sodium acetate (pH 4), 0.5 M NaCl, 1% triton X-100) and blocking 

buffer was performed. The beads were equilibrated with 5 ml of equilibration buffer (100 mM 

Tris (pH 7.5) and 150 mM NaCl, 0.1% triton X-100). The antiserum (1 ml, diluted in 2 ml of 

TN buffer (100 mM Tris-HCl (pH 8.0), 150 mM NaCl) was added to the beads and rotated 1 

h at RT. The beads where then washed with 5 ml of TN buffer and the elution was performed 

adding 0.2 M glycine (pH 2.6). For this step 1 ml eluted antiserum was neutralized quickly in 

100 µl 1 M Tris (pH 8). All washing steps were performed in batch (15 ml falcon tube and the 

centrifugation steps were performed at no more than 1,000 x g). The antiserum was dialysed 

over night against ddH20, concentrated and stabilised adding 1% of BSA. Aliquots of the 

antiserum were snap frozen in liquid nitrogen and stored at –80°C and used as normal.  
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4.8 Isoelectric focusing (IEF) 

4.8.1 Preparation of stroma samples 

Rehydration buffer (7 M urea, 2 M thiourea, 0.2% biolytes 3-10 (Bio-Rad, München), 2% 3-

[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), 100 mM (DTT), 

bromophenol blue) was supplemented just before use with protease inhibitors 25X complete 

(in H2O). 100 to 200 µg soluble proteins (with a concentration of at least 6 mg/ml) was filled 

up with this buffer to a total volume of 200 µl and incubated at RT for 1 h. The samples were 

centrifuged for 10 min at 20,000 x g at RT and the supernatant was loaded into an IEF-tray 

(for 11 cm strips).  

4.8.2 First dimension IEF 

The samples (200 µl) were loaded into the IEF-tray, the protection foil was removed from the 

strips (ReadyStrip IPG strips, pH range 5-8, Bio-Rad, München) and gel strips were put on 

top of the sample avoiding air bubbles between the strip and the sample (gel side on bottom, 

writing on the left hand side). After incubation for 1 h at RT, the strips were covered with 

mineral oil and the run was started (Protean IEF Cell; Bio-Rad; settings: preset method; rapid; 

rehydration: yes, active; gel length 11 cm; pause after rehydration: yes; hold at 500V: yes). 

After 12 h of rehydration, the run pauses and wet wicks (use 10 µl H2O per wick) were 

inserted between strips and electrodes. Then the program was continued for ~ 9.5 h (35000 

Vh, end voltage: 8000 V). After the run finished, the strips were drained on a tissue to remove 

oil and transferred into a clean tray (with gel side facing up). They could either be applied 

directly to the second dimension or stored at -80°C for several weeks. 

4.8.3 Second dimension SDS-PAGE 

The strips were transferred to a clean tray and equilibrated for 20 min in equilibration buffer I 

(6 M urea, 2% SDS, 50 mM Tris (pH 8.8), 20% glycerol, 2% DTT). After incubation in 

equilibration buffer II (6 M urea, 2% SDS, 50 mM Tris (pH 8.8), 20% glycerol, 2.5% 

iodoacetamide) for 10 min, the strips were covered with running buffer. Normal SDS gels 

were performed. The IEF strip was placed to the top of the separating gel and overlaid with 

the stacking gel. Electrophoresis was performed at 35 mA per gel. 

4.9 Protein identification by mass spectrometry (MS) 

Colloidal coomassie Arabidopsis stained protein spots were cut from SDS-PAGE gels and 

sent for identification to the “Zentrallabor für Proteinanalytik” (ZfP, Adolf-Butenandt-Institut, 

LMU München). There, tryptic peptides were detected by Peptide Mass Fingerprint (MALDI, 

Matrix Assisted Laser Desorption/Ionization) and protein identification was then 
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accomplished with a Mascot software assisted database search (Perkins et al., 1999). To 

identify new envelope proteins of the chloroplast LC-MS/MS (Liquid Chromatography with 

MS runs) was used and the results were compared with a pea EST database (Franssen et al., 

2011). 

4.10 Hydrophobicity test 

Fractions of isolated inner envelope from pea chloroplasts were ultracentrifuged at 256,000 x 

g for 10 min at +4°C. The inner envelopes were resuspended in different treatment buffers: 

NaCl (1 M), Na2CO3 0.1 M (pH 11.3), urea (6 M) and triton 1%. After incubation on ice (urea 

at RT) for 20 min the membranes were ultracentrifuged at 100,000 x g for 10 min and 

supernatant and pellet were supplied with solubilisation buffer. The proteins were separated 

on SDS-PAGE and analysed by immunoblot.   

4.11 Proteolysis of inner envelope vesicles from Pisum sativum 

Proteolysis of chloroplasts inner envelopes to identify the orientation of PsNIEP57 was 

performed using the proteases thermolysin and trypsin. The envelopes were incubated in 330 

mM sorbitol, 50 mM Hepes (pH 7.6) and 0.5 mM CaCl2 with 1 µg thermolysin or 0.1 µg 

trypsin pro 1 µg protein and incubated for 15 min for the protease thermolysin or 5 min for 

trypsin on ice. For envelope solubilisation 1% triton was added. The thermolysin proteolysis 

was stopped by the addition of 5 mM EDTA and the trypsin proteolisis by the addition of 1 

µg α-Macroglobulin per 1 µg protease, 1 mM PMSF and 5 µg trypsin inhibitor per 1 µg 

protease. The proteins were separated on SDS-PAGE and analysed by immunoblot.   

4.12 PEGylation assay 

Inner envelope vesicles were treated with 7.5 mM metoxypolyethylenglycol-maleimide 5,000 

Da (PEGMAL, Laysan Bio, Arab, AL) in a buffer containing 100 mM Tris/HCl (pH 7.0), 1 

mM EDTA, for 0, 5, 10, and 30 min, at 4° C in the dark in absence or presence of 1% SDS. 

The PEGylation reaction was stopped by addition of 100 mM DTT and SDS-PAGE sample 

buffer. Bis-Tris gels (0.36 M Bis-Tris-HCl (pH 6.5-6.8), 7.5% acrylamide), were employed 

using a MOPS running buffer (50 mM MOPS, 50 mM Tris, 1 mM EDTA, 1 mM, 0.1% SDS). 

The protein was detected by immunoblotting. 

5 Cell biology methods 

5.1 Preparation of inner and outer envelope vesicles from Pisum sativum 

For isolation of IE and OE vesicles from chloroplasts, pea seedlings grown for 9-11 days on 

sand under a 12/12 h dark/light regime were used. All procedures were carried out at +4°C. 
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Pea leaves cut from ~ 20 trays were ground in a kitchen blender in 10-15 l isolation media 

(330 mM sorbitol, 20 mM MOPS, 13 mM Tris, 0.1 mM MgCl2, 0.02% (w/v) BSA) and 

filtered through four layers of mull and one layer of gauze (30 µm pore size). The filtrate was 

centrifuged for 5 min at 1,500 x g, the pellet gently resuspended with a brush and intact 

chloroplasts reisolated via a discontinuous Percoll gradient (40% and 80%). Intact 

chloroplasts were washed twice with wash media (330 mM sorbitol, Tris-base (~ pH 7.6)), 

homogenized and further treated according to the modification (Waegemann et al., 1992) of 

the previously described method (Keegstra and Youssif, 1986). 

5.2 Isolation and fractionation of Arabidopsis thaliana chloroplasts 

Intact Arabidopsis chloroplasts were prepared from ~ 150 g fresh weight leaf material of four 

week old plants grown on soil essentially as described in Seigneurin-Berny et al., 2008. 

Chloroplasts were subsequently taken up in 15 ml of 10 mM Hepes KOH (pH 7.6), 5 mM 

MgCl2 and lysed using 50 strokes in a small (15 ml) Dounce-homogenizer (Wheaton, 

Millville, NJ, USA). Further separation in envelopes was done according to Li et al., 1991. 

For only stroma preparation a shorter protocol was used. After disruption of the chloroplast 

with the Dounce-homogenizer the samples were centrifuged for 10 min at 3,800 x g followed 

by an ultracentrifugation at 195,000 x g, 15 min to remove the membrane fraction. The 

samples were concentrated using Amicon Ultra-15 Centrifugal Filter Units (Millipore, 

Schwalbach, Germany). 

5.3 Isolation of Arabidopsis thaliana chloroplasts 

Chloroplasts were isolated according to Aronsson and Jarvis (2002) with the following 

modifications: 21-day-old plants grown on soil were homogenized in 25 ml of isolation buffer 

(0.3 M sorbitol, 5 mM MgCl2, 5 mM EGTA, 5 mM EDTA, 20 mM Hepes/KOH (pH 8.0), 10 

mM NaHCO3, 50 mM ascorbic acid). After three homogenisation and filtration steps, the 

combined homogenate was pelleted at 1,000 x g for 5 min and resuspended in isolation buffer. 

Resuspended chloroplasts were separated on a two-step Percoll gradient (30/82% (w/v) 

Percoll) in a swing-out rotor at 1,500 x g for 10 min. The lower band comprising intact 

chloroplasts was washed in 50 mM Hepes/KOH (pH 8.0), 3 mM MgSO4, 0.3 M sorbitol, 50 

mM ascorbic acid. After a final wash, the chloroplasts were pelleted at 1,000 x g for 5 min 

and resuspended in 1 ml of wash buffer. 

5.4 Preparation of microsomal fraction from Pisum sativum 

Microsomal fractionation was performed according to Masatoshi (1974) with slight 

modifications: 100-140 mg of 8-day old pea leaves were ground in a kitchen blender in 200 
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ml buffer (0.05 M Tris-HCl (pH 7.5), 0.5 M sucrose, 1 mM EDTA) and filtered through four 

layers of mull and centrifuged first at 4,200 x g for 10 min at +4°C. The supernatant was 

afterwards centrifuged again at 10,000 x g, for 10 min at +4°C. To pellet the membranes, an 

ultracentrifuge step at 100,000 x g for 60 min at +4°C was performed. The membranes were 

resuspended in 0.01 M Tris-HCl (pH 7.5), 0.25 M sucrose and 0.5 mM EDTA.  

6 Metabolite analysis 

For OEP21 metabolite analysis ~ 50 mg of leaves of 4-week-old 21dmA2#35 (F4), 

21dwA2#38 (F4), K4.3 (T3) and K2.4 (T3) grown on soil, under a light/dark cycle of 12 h/12 

h, a day/night temperature 21°C/18°C were harvest. Extraction and analysis was performed in 

the group of Prof. Sonnewald, Universität Erlangen-Nürnberg under the supervision of Dr. 

Hofmann as described previously (Kogel et al., 2010).  

7 Microscopy  

To analyse the embryo lethality of AtNIEP57, heterozygous mutant plants (niep57-1) were 

grown under standard conditions (long day 16 h light, +21°C, 8 h dark +16°C). Siliques were 

prepared and destained using Hoyers-Solution (Liu and Meinke, 1998). After 1-2 days of 

incubation at dark, the seeds were analysed and photographed using a Differential 

Interference contrast microscopy (DIC), Zeiss Axiophot. 

To perform crosses, general phenotype analysis of mutants and to prepare the siliques for the 

embryo analysis, a stereo microscope, Stemi 2000-C (Zeiss, Göttingen, Germany) and a light 

microscope, Leica DM 1000, (Leica, Wetzlar, Germany) were used. 
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8 Computational methods 

Table 6: Software, databases and algorithms used in  the present study  

Name Reference URL 
BLAST (Databank GenBank) Altschul et al., 1997 http://www.ncbi.nlm.nih.gov/BLAST 

Genedoc 
Nicholas and Nicholas, 
1997 

http://www.psc.edu/biomed/genedoc 

ClustalX  Thompson et al., 1997  
Vector NTI Invitrogen  
ExPASy Gasteiger et al., 2003 http://www.expasy.org/ 

TopPred 
Heijne 1992; Claros 
and Heijne 1994 

http://mobyle.pasteur.fr/cgi-
bin/portal.py?#forms::toppred 

ARAMEMNON version 3.2 Schwacke et al., 2003 http://aramemnon.botanik.uni-koeln.de 

ChloroP 1.1 
Emmanuelsson et al., 
1999 

http://www.cbs.dtu.dk/services/ChloroP/ 

TargetP 1.1 
Emmanuelsson et al., 
2000 

http://www.cbs.dtu.dk/services/TargetP/ 

Microarray-Data, AtGenExpress 
Consortium 

Schmid et al., 2005 http://bar.utoronto.ca/efp/cgi-
bin/efpWeb.cgi 

TAIR (The Arabidopsis 
Information Resource) 

Lamesch et al., 2011 http://www.arabidopsis.org 

Gene Networks in Seed 
Development Website 

 http://seedgenenetwork.net/ 

ATTEDII Co-expression analysis Obayashi et al., (2011) http://atted.jp/top_search.shtml#CoExSe
arch 
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IV. Results 

1 OEP24 in Arabidopsis 

OEP24 was initially identified as an integral protein located in the outer envelope membrane 

of the chloroplast in pea. It was described to function in vitro as a weak cation selective 

channel with a large conductivity, transporting small hydrophilic solutes and metabolites 

(Pohlmeyer et al., 1998). In silico topology analysis of AtOEP24.1 suggested a β-barrel 

channel-forming protein composed of 12 β-sheets with the N- and C-termini of the protein 

facing the cytosol (Schleiff et al., 2003). 

In Arabidopsis two different isoforms of OEP24 are present: OEP24.1 (At1g45170) and 

OEP24.2 (At5g42960). Both isoforms share an amino acid identity of 75% (213 amino acids), 

leading to a molecular weight of 23.6 kDa for OEP24.1 and 23.4 kDa for OEP24.2 

respectively. Both proteins have an isoelectric point of 9.6. Further, OEP24.1 is also present 

as a splice variant with 167 amino acids and a molecular weight of 18.4 kDa (The Arabidopsis 

Information Resource (TAIR), Lamesh et al., 2011). The transcript content of OEP24.1 and 

OEP24.2 is comparatively low in all developmental stages of the plant life (AtGenExpress 

Consortium, Schmid et al., 2005). However, a differential expression of both genes can be 

observed when the pollen and seed development is analysed in detail. AtOEP24.1 is mostly 

expressed in the immature pollen stadium (uni and bicellular pollen, Honys et al., 2003), 

whereas AtOEP24.2 transcripts are highest in the late stage of embryo development (torpedo 

and mature embryo (Schmid et al., 2005). Immunoblot analysis of Arabidopsis chloroplast 

sub-fractions showed the localisation of OEP24 at the envelope membrane (Figure 2). 

 

 

1.1 Characterisation of OEP24.1 mutants in Arabidopsis  

In order to investigate the physiological function of OEP24.1, a T-DNA insertion line in 

Arabidopsis thaliana, oep24.1-1 (SAIL_1225_B03) was analysed. In this line, the T-DNA 

insertion is located in the first intron of the OEP24.1 gene (Figure 3). Previous work on this 

line showed that after PCR-genotyping of 418 plants from five different generations no 

homozygous mutant progeny was found, leading to a segregation of 52.2% heterozygous 

Figure 2: Localis ation of OEP24 at the 
envelope of Arabidopsis chloroplasts
Immunoblot analysis of the Arabidopsis 
chloroplast sub-fractions envelope (Env, 4 µg  
protein), stroma (Str, 10 µg protein) and 
thylakoids (Thy, 5 µg protein) using an 
antiserum raised against AtOEP24.1.  
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mutant and 47.8% wild-type plants. During my thesis work, further genotyping of 319 

oep24.1-1 F3 plants showed a segregation of 46.5% heterozygous and 53.5% wild-type 

plants. This segregation of 1:1:0 clearly suggested a defect in gametophyte transmission of the 

T-DNA insertion (Johnson-Brousseau and McCormick et al., 2004). Backcross to wild-type 

using mutated pollen as well as mutated ovules, showed that both, the male and the female 

gametophyte were able to transmit the mutated oep24.1-1 allele, but in an impaired form. The 

female gametophyte was able to transmit the mutation only in 16.8% (n= 1037) and the male 

gametophyte only in 21.4% (n= 1439). To explain the lack of oep24.1-1 homozygous mutant 

plants, an additional embryo/seed developmental defect was proposed. A detailed analysis 

showed that although the pollen grains of the mutant line looked normal under light 

microscopy and were vital, in vitro they were not able to germinate properly. The pollen 

germination rate in this mutant line was only 52% compared to the wild-type in the T3 

generation, and 59% of the wild-type in the T4 generation (A. Timper, K. Philippar, 

unpublished data).  

Due to the fact that SAIL_1225_B03 represented the only T-DNA insertion line available for 

the physiological study of OEP24.1 at the beginning of my thesis, the aim was to complement 

this mutant line by introducing a normal copy of OEP24.1 in the oep24.1-1 mutant 

background. Thereby, the phenotype – absence of homozygous progeny for the mutation and 

impaired pollen germination – should be rescued. In addition, two other mutant lines of 

OEP24.1 (oep24.1-2 and oep24.1-3) that appeared during my work were characterised. 

1.1.1 The oep24.1-1 mutant line 

Due to the localisation of the T-DNA insertion in the first intron of OEP24.1 in the line 

oep24.1-1 (Figure 3), the absence of homozygous progeny for the T-DNA insertion and 

previous work that showed an unaltered coding sequence as well as normal amount of 

OEP24.1 transcript in mutant pollen (A. Timper, K. Philippar unpublished results), a 

molecular analysis of the until yet unclear 3’ end of the T-DNA insertion was performed. 

After amplification with several combinations of specific T-DNA right and left border and 

OEP24.1 gene primers, cloning of the different amplification products and subsequent 

sequencing, it could be demonstrated that the 3’ end of the T-DNA insertion in the oep24.1-1 

line as well as the 5’ end also corresponds to a left border (LB) sequence (Figure 3). 

Furthermore, the T-DNA insertion caused a deletion of 28 bp of intron 1 from AtOEP24.1. 

After an in silico analysis, it was discovered that three potential cis-regulatory elements 

(MYBILEPR, CORECDC 3 and BOXII, data not shown) are located in this region. 
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Figure 3: Characterisation of OEP24.1 mutant lines 
OEP24.1 from Arabidopsis thaliana (At1g45170). Black arrows denote exons, white lines introns. The 
insertion sites of T-DNAs in lines SAIL_1225_B03 (oep24.1-1) and GABI_086_H07 (oep24.1-2) are 
indicated by triangles. The location of the point mutation in the TILLING line oep24.1-3 is indicated by 
a square. At this site, a splice junction is affected by the mutation. Binding sites for OEP24.1 gene 
specific primers and T-DNA specific left (LB) and right border (RB) primers used for genotyping and for 
real time RT PCR are depicted.  

To complement the oep24.1-1 line, the entire OEP24.1 gene (4598 bp), including the 

promoter region as well as the 3’ UTR region, was cloned in the pHGW.0 plasmid (Karimi et 

al., 2002) and afterwards stable transformed into the Arabidopsis oep24.1-1 heterozygous 

mutant line. Four different lines (#4, #8, #10 and #11) of the F3 generation of oep24.1-1 were 

transformed. The plants of the next generation after the transformation (T1) were selected 

with the antibiotic hygromycin. In addition, transformation and T-DNA insertion of oep24.1-1 

were confirmed by PCR genotyping. Six different lines (#4.3, #4.4, #10.1, # 10.3, #11.2 and 

#11.5) that presented a positive transformation with the OEP24.1 gene and were heterozygous 

for the T-DNA insertion oep24.1-1, were selected for further analysis (Table 7). The T2 

generation of the selected candidates was analysed by growing the plants on BASTA 

containing medium (selection marker for the T-DNA insertion in oep24.1-1). Resistant plants 

were subjected to a PCR to test for the presence of the OEP24.1 gene introduced by the 

transformation vector. Afterwards, another PCR with a gene specific reverse primer that 

hybridised 3’ downstream of the transformed OEP24.1 gene and thus amplified only the 

endogenous OEP24.1 and not the transformed construct was performed to distinguish 

between heterozygous and homozygous oep24.1-1 T-DNA insertions. In case of a successful 
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complementation in the T2 generation, I expected to find homozygous plants for the oep24.1-

1 T-DNA harbouring a copy of OEP24.1 introduced by the transformation and thereby 

complementing the putative lethality of the oep24.1-1 homozygous status. Unfortunately, at 

the end of the screening of the T2 generation (494 plants) it was impossible to find a positive 

transformed and homozygous line for oep24.1-1 (Table 7). 

Table 7: Complementation of oep24.1-1 
Four lines of the heterozygous oep24.1-1 F3 generation were stable transformed with the OEP24.1 
gene. For the T1 generation after transformation, the number of hygromycin resistant plants that 
harboured the stable transformed OEP24 (trafo +) and were as well heterozygous for oep24.1-1 (T-
DNA) is shown for each line. For the T2 generation, the numbers of heterozygous BASTA resistant 
and homozygous BASTA resistant oep24.1-1 plants, stable transformed with OEP24.1 are shown.  
  

oep24.1-1 F3 he 
T0 transformation 

T1 
trafo+ (hyg, PCR) 

T-DNA + (PCR) 

T2 
trafo + (PCR) 

T-DNA + (BASTA) 
  he ho 

Line #4 
Line #4.3 84 (77%) 0 
Line #4.4 50 (78%) 0 

Line #8 no positives in T1   

Line #10 
Line #10.1 73 (99%) 0 
Line #10.3 96 (95%) 0 

Line #11 
Line #11.2 150 (93%) 0 
Line #11.5 41 (93%) 0 

Total 6 494 0 

However, in the T2 generation two homozygous oep24.1-1 plants segregated of line #4.3 that 

were not transformed by the OEP24.1 gene construct. The same result appeared in the T3 

generation of line #4.3 in which 10 plants were found to be homozygous for oep4.1-1 but not 

transformed (data not shown). Surprisingly these represented the first homozygous oep24.1-1 

lines after genotyping of at least 737 plants before and after the complementation experiment. 

The two homozygous lines found in the T2 generation were further characterised by a full 

length 5’-3’ PCR using cDNA as the template. In comparison to controls, no amplification 

band was achieved for these lines confirming the knock-out status in oep24.1-1 (Bachelor 

thesis Olga Lesina, 2010). However these knock-out lines of AtOEP24.1 showed no obvious 

phenotype under normal growth conditions.  

1.1.2 Characterisation of the oep24.1-2 line 

During the course of my work, an additional T-DNA insertion line in the promoter region of 

OEP24.1, oep24.1-2 (GABI_086_H07, Figure 3) was acquired and characterised. The initial 

screening of the F2 and F3 generations showed that this line – in contrast to oep24.1-1– 

segregated in a normal way giving homozygous, heterozygous and wild-type alleles of the T-

DNA insertion. As the insertion of the T-DNA is located in the promoter region of the gene 

(Figure 3), further characterisation was performed to clarify the influence of this insertion on 

the expression of OEP24.1. The 3’ end of the T-DNA was amplified, cloned and sequenced 
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so that the exact site of the insertion could be determined (Figure 3). To verify if the 

homozygous lines correspond to knock-out mutants, total RNA from 14-days old-seedlings of 

the F3 generation was prepared, reverse transcribed, and analysed by quantitative real time 

RT PCR. The results showed that the homozygous line corresponds to an overexpression line 

with about 200 times the amount of OEP24.1 transcripts when compared to wild-type plants 

(Figure 4A). The amount of OEP24.2 RNA was also tested, showing no significant 

differences between the different lines (data not shown). The overexpression of AtOEP24.1 

could also be verified at the protein level (Figure 4B). This OEP24.1 overexpression line 

showed no obvious phenotype under normal growth conditions.   

 

 

 

 

 

 

 

 

Figure 4: OEP24.1 transcript and protein levels in line oep24.1-2 
A) Quantification of the OEP24.1 mRNA level using real time RT PCR. mRNA was prepared from 14- 
days-old seedlings of Col-0 as well as oep24.1-2 homozygous and oep24.1-2 wild-type background 
plants. The mRNA amount (arbitrary units, n= 3±SD) was normalised to 10000 actin transcripts. B) 
Immunoblot of Arabidopsis leaf protein extract (20 µg) using an antiserum raised against AtOEP24.1. 
OEP24 is shown by an arrow; the other signals correspond to unspecific binding of the antiserum.  

1.1.3 Characterisation of the oep24.1-3 line 

In addition to the two lines, a third mutant line for OEP24.1, oep24.1-3 was obtained. This 

line corresponds to a TILLING line. TILLING (Targeting Induced Local Lesions in 

Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point 

mutations produced by the mutagen ethyl-methanesulfonate in the gene of interest. 

Arabidopsis TILLING lines for point mutations in OEP24.1 were subjected to a screening by 

the Seattle Arabidopsis TILLING Project (Till et al., 2003). From this screening, the line 

CS91501 was ordered and named oep24.1-3. oep24.1-3 harbours a point mutation in which 

the nucleobase guanine of position 636 changes to the nucleobase adenine leading to a 

possible misspliced OEP24.1 RNA and to a frame shift in the open reading frame (see Figure 

3). For the initial screening of the M3 generation, the DNA of 16 plants was isolated as 
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described in materials and methods. After that, the region comprehending the expected point 

mutation was amplified with gene specific primers, and the amplified product was sent for 

sequencing. The results showed a segregation of two wild-types, eight heterozygous and six 

homozygous plants for the point mutation. As this point mutation is located in a splice 

junction site, a possible missplice was analysed as well. For this purpose, OEP24.1 cDNA of 

a homozygous line for the point mutation was amplified, cloned and sequenced, thereby 

revealing missplicing of the OEP24.1 RNA. 82 base pairs belonging to the first intron were 

not properly spliced out, leading to a frame shift and thus several stop codons within the open 

reading frame of the protein. This loss of function line did not show an obvious phenotype 

when grown under standard conditions. 

1.2 Characterisation of a mutant line for OEP24.2 

For OEP24.2 there is no T-DNA insertion line available. Instead, a TILLING line was 

requested from the Seattle Arabidopsis TILLING Project (Till et al., 2003) as well. After the 

PCR-based screening, one line (CS92311: oep24.2-1) containing a point mutation at position 

1004 in which the nucleobase guanine changes to the nucleobase adenine was identified. This 

mutation leads to the appearance of a stop codon at amino acid position 177 of the OEP24.2 

open reading frame (Figure 5). For screening of the M3 generation a part of the OEP24.2 gene 

harbouring the point mutation was amplified and sequenced from 11 plants. The segregation 

of the point mutation resulted in three wild-type lines, five heterozygous and three 

homozygous lines. Unfortunately it was not possible to perform a detailed analysis of these 

mutant lines due to the diverse background and TILLING induced phenotype that all the 

plants (homozygous, heterozygous and wild-type) exhibited under normal growth conditions. 

 

 

 

 

 

 
 
 
 
 
 
Figure 5: Characterisation of mutation lines of OEP 24.2 
OEP24.2 from Arabidopsis thaliana (At5g42960). Black arrows denote exons, white lines introns. The 
location of the point mutation in the TILLING line oep24.2 is indicated by a square. The point mutation 
leads to a premature stop codon at the position of amino acid 177.  Binding sites for OEP24.2 gene 
specific primers used for screening and for real time RT PCR are depicted. 
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Figure 6 : Localisation of OEP 21 at the  envelope of  
Arabidopsis chloroplast   
Immunoblot analysis of the Arabidopsis chloroplast sub-
fractions envelope (Env), stroma (Str) and thylakoids 
(Thy) using an antiserum raised against AtOEP21.1. For 
all sub-fractions 4 µg of protein were loaded. 

 

2 OEP21 in Arabidopsis 

OEP21 was first identified and characterised in pea. In vitro electrophysiological analysis 

allowed the speculation that the chloroplast export of primary photosynthesis products is 

regulated via OEP21 at the level of the outer envelope membrane (Bölter et al., 1999; 

Hemmler et al., 2006).  

There are two isoforms of OEP21 in Arabidopsis: OEP21.1 (At1g76405) and OEP21.2 

(At1g20816). Both proteins have an isoelectric point of 9.9 and share an amino acid identity 

of 78% (167 amino acids), giving a molecular weight of 19.5 kDa for OEP21.1 and 19.8 kDa 

for OEP21.2. OEP21.1 is also present as a splice variant with 59 amino acids and a molecular 

weight of 6.6 kDa (TAIR, Lamesch et al., 2011). Both OEP21 isoforms show a basal 

expression in the vegetative rosette of Arabidopsis (AtGenExpress Consortium, Schmid et al., 

2005). Immunoblot analysis of Arabidopsis chloroplast sub-fractions showed the localisation 

of OEP21 in the outer envelope membrane (Figure 6).  

                                                                              

            

2.1 Characterisation of OEP21 single mutants in Arabidopsis  

To clarify the physiological function of OEP21, different mutant lines for OEP21.1 and 

OEP21.2 were analysed. At the beginning of my thesis, two homozygous T-DNA insertion 

lines for OEP21.1, oep21.1-1 (SAIL_548_C05) and oep21.1-2 (SALK_058578) were 

available (Figure 7A). In the line oep21.1-1, the T-DNA insertion is located in the fourth exon 

of the gene.  Real time RT PCR showed that the transcript is absent in oep21-1 representing a 

knock-out line for OEP21.1 (Figure 8).  
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Figure 7: Characterisation of OEP21.1 and OEP21.2 m utant lines 
A) OEP21.1 from Arabidopsis thaliana (At1g76405). Black arrows denote exons, white lines introns. 
The insertion sites of T-DNAs in lines SAIL_548_C05 (oep21.1-1) and SALK_058578 (oep21.1-2) are 
indicated by triangles. Binding sites for OEP21.1 gene specific primers and T-DNA specific left (LB) 
primers used for genotyping and for real time RT PCR are depicted.  
B) OEP21.2 from Arabidopsis thaliana (At1g20816). Black arrows denote exons, white lines introns. 
The location of the point mutation in the TILLING line oep21.2 is indicated by a square. The point 
mutation leads to a premature stop codon at the position of amino acid 151. Binding sites for OEP21.2 
gene specific primers used for screening and for real time RT PCR are depicted. 

In oep21.1-2, the T-DNA insertion is located in the first intron of the gene (Figure 7A). For 

this mutant, the 3’ end of the T-DNA was analysed and it could be demonstrated that it also 

corresponds to a left border (LB) (Bachelor thesis Olga Lesina, 2010). Real time RT PCR 

results showed a reduction of the transcript amount of OEP21.1 to 40 % when compared to 

the wild-type Col-0 (Figure 8). Further, PCR amplification and sequencing analysis of the 

oep21.1-2 cDNA indicated that there is a case of alternative splicing in the first intron at the 
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T-DNA insertion site. Part of the cDNA showed a correct splicing of the first intron, leading 

to a wild-type copy of OEP21.1. On the other part of the cDNA the T-DNA was not correctly 

and completely spliced out, leading to a mutated OEP21.1. In summary it can be assumed that 

oep21.1-2 corresponds to a knock-down allele. 

 

 

 

 

 

 

 

 

 

Figure 8: OEP21.1 and OEP21.2 transcript levels in the mutant lines  
Quantification of the OEP21.1 and OEP21.2 mRNA level using real time RT PCR. mRNA was 
prepared from 15-days-old seedlings. The two T-DNA insertion lines for OEP21.1 (oep21.1-1, 
oep21.1-2) and the TILLING line for OEP21.2 (oep21.2-1) were tested. Wild-type Col-0, as the 
background genotype for the T-DNA insertion mutants and wild-type Col-er, as the background 
genotype for the TILLING line were also tested. The mRNA amount (arbitrary units, n= 3±SD) was 
normalised to 10000 actin transcripts. 

For OEP21.2, one TILLING line: CS86516 (Seattle Arabidopsis TILLING Project, Till et al., 

2003) was available. In this line, named oep21.2-1, a point mutation changes the nucleobase 

guanine at position 705 to the nucleobase adenine, resulting in a premature stop codon at 

amino acid position 151 of the OEP21.2 open reading frame (Figure 7B). The line was 

homozygous for the point mutation. For all three OEP21 mutants the content of OEP21.2 

RNA was tested using quantitative real time RT PCR. No significant differences to wild-type 

could be detected (Figure 8). In a previous work (A. Timper; R. Thomson, unpublished) all 

tree homozygous OEP21 mutant lines (oep21.1-1, oep21.1-2 and oep21.2-1) were analysed 

and showed no obvious phenotype under standard growth conditions. During the curse of my 

thesis, a second mutant line for OEP 21.2, oep21.2-2 was ordered. It corresponds to the T-

DNA insertion line SALK_122968. The T-DNA insertion is located at the promoter region (-

47 bp) of OEP21.2 (not shown). This mutant line contains five times more OEP21.2 RNA 

when compared to Col-0) (Bachelor thesis Olga Lesina, 2010). The line did not show any 

obvious phenotype when grown under standard conditions. Thus, no further analysis of this 

line was performed. 
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2.2 OEP21 double mutants 

The aim of my work was to cross the homozygous mutant lines oep21.1-1 and oep21.1-2 with 

the homozygous mutant line oep21.2-1 in order to generate a double mutant to clarify the 

function of OEP21 in vivo. 

Homozygous oep21.1-1 (F4) and oep21.1-2 (F6) were crossed with the homozygous line 

21.2-1 (F4) generation. The next generation – F1 after crossing – was genotyped and 

heterozygous plants for oep21.1-1, oep21.1-2 and oep21.2-1 were selected. In the F2 

generation of the cross between oep21.1-1 and oep21.2-1, only one homozygous double 

mutant line (21dmA#35) was found after genotyping 376 plants. For this line the 

corresponding background wild-type (21dwtA#38) was also selected. For the cross between 

oep21.1-2 and oep21.2-1 (21dmB) cross, five homozygous double mutant lines were found 

after genotyping 190 plants. The double mutant 21dmA#35 and two double mutant lines of 

21dmB were genotyped again in the F3 generation to verify the homozygous double mutant 

status. 

The double mutant and double wild-type lines for OEP21 were subjected to phenotype 

analysis. Seedlings grown on 0.5% MS media with and without supplementation of sugar and 

plantlets germinated on soil were tested under different light conditions (long day, short day, 

constant light). No obvious phenotype could be detected in any line. For detailed analysis 

only the double mutant line 21dmA#35 and the corresponding wt-line (21dwtA#38) were 

selected because they descended from the cross of the knock-out line 21.1-1 and 21.2-1. The 

double knock-out status from this line was demonstrated at the protein level (Figure 9A and 

B). 

 

 
 
 
 
 
 
 
Figure 9: Confirmation of the OEP21 double mutant l ine at the protein level 
Chloroplast envelope (10 ug of protein) of 4-weeks-old Arabidopsis plants was separated in a Shägger 
gel. Immunoblot was performed using antibodies raised against AtOEP21.1. A) Signals of OEP37, an 
outer envelope protein of the chloroplast, are shown as a loading control. #35: double mutant line 
21dmA#35, Col-0: wild-type Columbia-0. 
B) An amido black stained fraction of the blot is shown as a loading control. #35: double mutant line 
21dmA#35, #38: double wild-type line 21dwtA#38. 
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2.3 Complementation of the OEP21 double mutant 

The double mutant line 21dmA#35 was stable transformed with the entire OEP21.1 gene 

(4275 bp), including the promoter of the gene as well as 3’ UTR region and with the OEP21.1 

cDNA under the control of the 35S promoter. The aim of this experiment was to have a 

complemented line as a control for further experiments. From this complementation 

experiment two lines (K4.3 and K2.4) were selected. Real time RT PCR of 14-days-old 

seedlings, of the line K4.3 (transformed with the OEP21.1 gene) displayed similar levels of 

OEP21.1 RNA, and the K2.4 line (transformed with the 35S::21.1 cDNA) showed 7 times 

more OEP21.1 RNA level when compared to the wild-type Col-0 (data not shown). 

Immunoblot analysis of Arabidopsis chloroplast using an antiserum raised against AtOEP21.1 

corroborated these results (Figure 10).  

 

 

 
 
 
 
Figure 10: Confirmation of the overexpression and c omplementation lines of OEP21.1 
Immunoblot analysis of Arabidopsis isolated chloroplasts (10 ug of proteins) using an antiserum 
generated against AtOEP21.1. An amido black stained fraction of the blotted membrane is shown as a 
loading control. #35: double mutant line 21dmA#35, Col-0: wild-type, K2.4: overexpression OEP21.1 
line, K4.3: complemented OEP21.1 line. 

2.4 Stromal proteins of the OEP21 double mutant 

As the double mutant line (21dmA#35) did not show any visible phenotype when grown 

under different light conditions a screen for changes in the proteome of mutant chloroplasts 

was performed. Stroma samples of the double mutant and the double wild-type was separated 

in 2D IEF/SDS-PAGE (Figure 11). Protein spots that showed an apparent increase or decrease 

compared to the corresponding wt-line (21wtA#38) samples were analysed by Peptide Mass 

Fingerprint (MALDI, Matrix Assisted Laser Desorption/Ionization) at the “Zentrallabor für 

Proteinanalytik” of the LMU München (Dr. Lars Israel). From this analysis five proteins 

could unequivocally identified as the plastid intrinsic GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase), embryo defective 2726 (RNA binding/translation elongation factor), 

RuBisCo activase, RuBisCo and CpHsc70-1. The change discovered for RuBisCo, RuBisCo 

activase, and GAPDH could be an indication for an alteration in the carbohydrate metabolism 

in the mutant line. In order to quantify protein contents immunoblot analysis using antisera 

raised against GAPDH, cpHsc70-1 and RuBisCo activase were performed. Unfortunately, no 

significant differences in the amount of the tested proteins could be detected when comparing 
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stroma and total protein leaf extract from the double mutant and the double wild-type lines 

(data not shown). 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 11: Comparative 2D IEF/SDS-PAGE analysis of 21dmA#35 and 21dwtA#38 chloroplast 
stroma.  
Protein spots with an apparent increase or decrease (arrows) in protein amount relative to the wt 
sample were cut and identified by mass spectrometry: 1) GAPDH, 2) embryo defective 2726, 3) and 4) 
RuBisCO activase. 100 µg of proteins were used. The experiment was performed twice. For the 
second time, where RuBisCo and CpHsc70-1 were detected, 200 µg of protein were loaded (data not 
shown). #35: double mutant line 21dmA#35, #38: double wild-type line 21dwtA#38. 

2.5 Metabolite analysis of the OEP21 double mutant 

In order to elucidate if the transport or storage of chloroplast metabolites was impaired in the 

OEP21 double mutant, contents of glycolysis and citric acid cycle intermediates as well as 

sugars and amino acids were determined. For that purpose, 4-week-old plants grown in a 12 

hours light (9 to 21 h) and 12 hours dark rhythm from the mutant line 21dmA#35 and the 

wild-type line 21dwtA#38 were compared. In addition, the complemented K4.3 and the 

overexpression K2.4 lines were analysed as controls. No significant changes in glycolysis and 

citric acid cycle metabolites could be observed between the tested lines. In contrast, a 

significant increase of the amino acids serine, threonine, phenylalanine, tryptophan, tyrosine, 

leucine and isoleucine, at the end of the night could be detected in the K2.4 overexpression 

line when compared to all other lines (Figure 12A, B). This change was still visible after one 

hour of light exposure for phenylalanine, leucine and isoleucine (Figure 12B). For the time 

points 14 h (mid day), 20 h (end of the day) and 22 h (one hour dark) no change could be 

registered (data not shown). 
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Figure 12: Amino acids are increased in the OEP21.1  overexpression K2.4 line at the end of the 
night  
Amino acids were determined in 4-week-old plants grown at a 12 hours light (9 to 21 h) and 12 hours 
dark rhythm. Comparison between the overexpression line K2.4 (black bars) and the complemented 
K4.3 line (white bars) are shown. A) Amino acids Ser: serine and Thr: threonine at time point 8 h are 
shown for both mutants. B) Amino acids Phe: phenylalanine, Trp: tryptophan, Tyr: tyrosine, Leu: 
leucine, Ile:  isoleucine at time point 8 h (1 h before light) and 10 h (1h light) are shown.  
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3 New membrane intrinsic proteins in the chloroplast envelope 

The aim of this part of my thesis was to discover new so far unknown chloroplast envelope 

proteins that are implicated in metabolite transport. For this purpose, purified outer envelope 

of pea was separated by SDS-PAGE in absence and in presence of urea (previous work 

Andreas Timper, Figure 13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Outer envelope proteins of pea separated  by SDS-PAGE 
Purified outer envelope of pea was separated by SDS-PAGE in absence and in presence of urea. 
Protein bands depicted by arrows were selected for protein sequencing. PsNOEP23 was detected in 
band 3, PsNOEP40 in bands 10 and 12, and PsNIEP57 was detected in band 10, 11 and 12. 
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Both gels were compared carefully and bands that exhibited a shift in the running behaviour 

were selected for further analysis. It is known that especially outer envelope membrane 

proteins displaying a β-barrel structure show a different running behaviour when they are 

separated in the presence of urea (personal communication Prof. Soll). As usually chloroplast 

outer envelope membrane proteins built a β-barrel pores (for overview see Duy et al., 2007), 

this feature was selected as the first hint to search for new outer envelope proteins acting as 

metabolite transporters. Eight bands were excised from the gels (Figure 13) and sent for 

sequencing at the “Zentrallabor für Proteinanalytik” at the LMU München (Dr. Lars Israel). 

The samples were sequenced using LC-MS/MS and the resulting peptide masses were 

compared with a pea EST database (Franssen et al., 2011) to identify the respective protein in 

Pisum and the ortholog in Arabidopsis. All proteins with a molecular weight consistent with 

their band size on the gel, a basic isoelectric point (IP), and a putative chloroplast/outer 

envelope localisation according to Ferro et al., (2010) or TAIR-prediction (Lamesch et al., 

2011), were selected as candidates. As the pea EST database is composed by all possible open 

reading frames, the pea sequenced peptides for each candidate was tested to be in frame with 

the presented orthologous protein in Arabidopsis. From this analysis, three putative new 

envelope proteins were selected and named according to the molecular weight of the protein 

in Arabidopsis. At2g17695: NOEP23 (new outer envelope protein of 23 kDa), At3g57990: 

NOEP40 (new outer envelope protein of 40 kDa) and At5g24690: NIEP57 (most likely 

representing new inner envelope protein of 57 kDA) (Table 8). The  selected candidates were 

further characterised in silico for the presence of α-helical membrane regions using a total of 

18 different prediction algorithms and for the presence of a β-barrel structure (five to six 

prediction algorithms) all available in  the ARAMEMNON database (ARAMEMNON plant 

membrane protein database, Schwacke et al., 2003). Only for AtNIEP57, two to four α-helical 

membrane domains were predicted (Table 8). For AtNOEP40, a probable β-barrel structure 

was proposed by three of the five algorithm tested. For AtNOEP23 neither α-helical domains 

nor a β-barrel pore was suggested. To analyse the localisation of the candidates in more detail, 

an in silico prediction by a total of 17 different targeting prediction programs available in the 

ARAMEMNON database (Schwacke et al., 2003) was used (Table 8). From this analysis only 

AtNIEP57 was annotated as a chloroplast protein, due to the existence of a transit peptide of 

41 amino acids (ChloroP, Emanuelsson et al., 1999). For AtNOEP23 and AtNOEP40 no 

classical chloroplast transit peptide was predicted. In addition for AtNOEP23 and AtNIEP57, 

domains of unknown function were found. The domain in AtNOP23 is fully uncharacterised 

and the domain in AtNIEP57 that is present in eukaryotes, is typically between 168 to 186 
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amino acids long, has a conserved RYQ sequence motif and comprises amino acids 239 to 

409 of AtNIEP57 (TAIR, Lamesch et al., 2011). Interestingly a glycine and aspartic acid rich 

motif at the soluble N-terminal part of the protein was detected (Figure 14, Figure 23). 

Table 8: Putative new chloroplast envelope proteins  in Arabidopsis 
The AGI code for the selected candidates, the molecular weight (MW) in kDA, the isoelectric point (IP), 
the predicted localisation by the presence of a transit peptide (TP) (ARAMEMNON), the length of 
transit peptide (ChloroP), presence of α-helical transmembrane domain or β-barrel structure 
(ARAMEMNON) as well as the potential function and protein domains are shown. 

 MW 
kDa IP 

Predicted 
localisation 

(TP) 
α-helical β-barrel Function  Domains 

At2g17695 
(AtNOEP23) 

23.2 9.6 ----- 0 maybe unknown 
unknown 
function 

(DUF1990) 

At3g57990 
(AtNOEP40) 39.8 10 

 
----- 

 
0 yes unknown ----- 

At5g24690 
(AtNIEP57) 56.8 9.4 

chloroplast 
41 aa 

 
2-4 ----- unknown 

unknown 
function 

(DUF3411) 

With the help of the EST pea contigs (Franssen et al., 2011) and the already known sequence 

in Arabidopsis, primers for the isolation of the complete cDNA sequences in pea were 

designed. After PCR amplification using pea cDNA as template, cloning and sequencing, the 

coding sequences of PsNOEP23, PsNOEP40 and PsNIEP57 were obtained (Table 9); Figure 

14). Whereas PsNOEP23 was represented by only one peptide in the proteomic sequencing 

for PsNOEP40 three different peptides in two sequenced bands and for PsNIEP57 five 

different peptide bands in three different sequenced bands were found (Table 9, Figure14). 

Table 9: Putative new pea chloroplast envelope prot eins in pea 
The molecular weight (MW) in kDa and the isoelectric point (IP) of the proteins were calculated using 
Vector NTI, the predicted localisation by the presence of a transit peptide (TP) and its length was 
analysed using the online programs TargetP and ChloroP. The number of sequenced peptides for 
each protein after analysing the proteomic results is given. 

 

 
 

 
 
 
 
 

The amino acid sequences for the new envelope proteins found in pea and in Arabidopsis are 

shown in Figure 14. The identity between AtNOEP23 and PsNOEP23 is 62%, AtNOEP40 

and PsNOEP40 share 27%, and AtNOEP57 and PsNOEP57 64% amino acids, respectively. 

 
MW 
kDa IP 

Predicted 
localisation 

(TP) 

No. of 
sequenced 
peptides 

PsNOEP23 23.6 9 ----- 1 

PsNOEP40 42.4 9.3 ----- 3 

PsNIEP57 57.4 9.1 
chloroplast 

45 aa 
5 
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Figure 14 : Amino acid sequence of the new envelope proteins of  Arabidopsis and pea  
Identical amino acids are shaded in black, similar amino acids in grey and the sequenced peptides in 
pea are underlined in green. A) AtNOEP23 and PsNOEP23, B) AtNOEP40 and PsNOEP40, C) 
AtNIEP57 and PsNIEP57. The predicted α-helical transmembrane domains are depicted in red boxes, 
and the glycine and aspartic acid rich motif with a blue box. 

3.1 Subcellular localisation of the new envelope proteins 

3.1.1 In vivo GFP targeting 

To determine the subcellular localisation of the selected protein candidates, a transient 

transformation of mesophyll Arabidopsis protoplast using the Arabidopsis proteins fused to a 

C-terminal GFP was performed. A confocal laser scanning microscope was used to analyse 

the GFP- and autofluorescence of transformed protoplasts. The red autofluorescence that 

appears when chlorophyll is excited by the laser of the microscope was used as a marker for 

chloroplasts (Figure 15).  
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Figure 15: Subcellular localisation of AtNOEP23, At NOEP40 and AtNOEP57 in Arabidopsis 
protoplasts   
Arabidopsis mesophyll protoplasts were transiently transformed with C-terminal GFP fusions to 
AtNOEP23, AtNOEP40 and AtNIEP57. Signals for GFP fluorescence (GFP), chlorophyll 
autofluorescence (chlorophyll), and the overlay of both (merge) are shown. Bar, = 10 µm. 

For AtNOEP23, possible plasma membrane localisation was detected in protoplasts 

transformed with the construct. For AtNOEP40, it was not possible to achieve a clear 

localisation due to the formation of aggregates in the cytoplasm. In contrast, weak but clear 

chloroplast envelope signals were obtained for AtNOEP57.  

3.1.2 Immunoblot analysis 

For the subcellular and biochemical characterisation of the new chloroplast envelope proteins 

in pea, antisera against PsNOEP23, PsNOEP40 and PsNIEP57 were raised. Therefore the full 

coding sequences of PsNOEP23 and PsNOEP40 were subcloned into the pET21d plasmid 

vector.  In this vector six histidine residues were fused to the C-terminal part of the proteins. 

The constructs were overexpressed in BL21 E.coli cells and subsequently purified from 

inclusion bodies by affinity chromatography. The purified recombinant proteins (Figure 16) 

were sent for the generation of antiserum to Pineda Antikörperservice, Berlin. For PsNOEP40 

two bands (43.6 and 41.3 kDa) of the overexpressed protein appeared. This is probably due to 

the existence of a methionine at position 21 of the protein that can act as a second 

translational start.  
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The purification of PsNIEP57 for the generation of antiserum was more difficult. The full 

length mature protein was not able to be overexpressed using different plasmids such as 

pET21d, pPROEX, pSP65 or pCOLD. For each vector, two different temperatures (12°C and 

37°C) and different types of growth media (LB and M9ZB) as well as different E.coli strains 

(BL21, BL21-lys, Rossetta-lys, C43 cells) were tested without success. Two N-terminal 

constructs of PsNIEP57 (amino acid 44 to 278 and amino acid 44 to 345) were also tried to be 

overexpressed (pET21d, BL21cells, M9ZB, 37°C, 12°C) without positive result. Only the C-

terminal part (amino acid 301-526) of the protein could be successful purified from E. coli 

(vector pET21d, BL21 E.coli strain, M9ZB media, 37°C; Figure 16C) and therefore selected 

for the generation of the antiserum. After overexpression of PsNOEP57, purification of 

inclusion bodies and purification of the protein using the Ni-NTA column, an additional step 

of purification was necessary. For that purpose, the recombinant protein was electroeluted 

from the acrylamid gel and sent for the generation of antiserum (Pineda Antikörperservice, 

Berlin). 

 

 

 

 

 

 

 

 

Figure 16: Purification of recombinant PsNOP23, PsN OEP40 and PsNIEP57  
A) PsNOEP23 (24.5 kDa) was recovered in the 500 mM and (B) 5 µg PsNOEP40 (43.6 and 41.3 kDA 
depending on the start methionine) in the 50 mM imidazole fraction from the Ni-NTA column. 
C) PsNIEP57 (25.8 kDa for the C-terminal part) was recovered in the 500 mM imidazole fraction. 2 µg 
PsNOEP23, 4 µg PsNOEP40 and 6 µg PsNIEP57 were loaded on the gel and stained. 

In the following, antisera generated in rabbit after 240 days for PsNOEP23, 270 days for 

PsNOEP40 and 270 days for psNIEP57 were used to perform immunoblot analysis of pea 

chloroplast sub-fractions. For PsNOEP40 it was necessary to perform a purification of the 

antiserum using recombinant protein coupled to cyanogen-bromide activated sepharose due to 

the high background. A localisation at the outer envelope of the chloroplast could be detected 

for PsOEP40 (Figure 17A). PsNIEP57 instead was localised at the inner envelope of the 

chloroplast in pea as well as in the chloroplast envelope fraction in Arabidopsis (Figure 17A, 

B).  
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For PsOEP23, although the antiserum did recognize well the overexpressed recombinant 

protein (Figure 17C), no signal could be detected neither in the pea chloroplast subcellular 

fractions nor in pea mitochondria or pea microsomal fractions (artificial vesicles formed from 

the endoplasmic reticulum as well as from the plasma membrane when cells are disrupted 

(Abas et al., 2010, data not shown).  

 

    

Figure 17: Immunoblot of the new envelope proteins in pea and Arabidopsis chloroplast 
fractions 
A) Immunoblot of the pea chloroplast sub-fractions OE (outer envelope), IE (inner envelope), stroma 
(Str) and thylakoids (Thy) using an antiserum raised against PsNOEP40 (5 µg of protein) and 
PsNIEP57 (2 µg of protein). LSU (large subunit of RuBisCO, 1 µg of protein) appears as a marker of 
the stroma, LHCP (light-harvesting complex proteins, 0.6 µg of protein) as a marker of the thylakoid 
fraction, PIC1 (permease in chloroplasts, 10 µg of protein) as a marker protein of the inner envelope of 
the chloroplast, and OEP 16.1 (1 µg of protein) as a marker of the outer envelope of the chloroplast. 
B) Immunoblot of the Arabidopsis chloroplast sub-fractions envelope (Env), stroma (Str) and 
thylakoids (Thy) using an antiserum raised against PsNIEP57. For all sub-fractions 4 µg of protein 
were loaded. C) Immunoblot of the recombinant (rec) PsNOEP23 (50 ng) using antiserum raised 
against PsNOEP23 (120 days) as well as the preimmune serum (Pi).  

3.2 Molecular characterisation of PsNIEP57 

PsNIEP57 was further characterised to determine whether the protein corresponds to an 

integral membrane protein or is only superficially attached to the inner envelope of the 

chloroplast. For this purpose inner envelope vesicles of pea chloroplasts were treated with 

NaCl, Na2CO3, urea and triton. Afterwards membrane proteins were pelleted from soluble 

proteins and analysed by immunoblotting (Figure 18). PsNIEP57 could only be solubilised 

from membranes by the membrane disrupting detergent triton indicating that PsNIEP57 

corresponds to an integral membrane protein. 

NOEP4045 -

OEP16

kDa

LSU

OE     IE     Str    Thy

45 -

14.4 -

LHCP25 -

NIEP57

24-

45 -

PIC1

A

NIEP5745 -

kDa Env Str       Thy
B

kDa

PiαNOEP23

24-

rec PsNOEP23

C



Results 

49 

45 -

kDa

66 -

Triton
1%

TIC62

NIEP57

IE   P     S      P     S     P    S    P    S

NaCl
1M

Na2CO3 

pH 11.3
Urea
6M 

 

 

 

 

 

 
Figure 18: PsNIEP57 is an integral membrane protein  of the inner chloroplast envelope 
Inner envelope of pea chloroplasts (4 ug of protein) were treated with NaCl (1 M), Na2CO3 (0.1 M pH 
11.3), urea (6 M) and triton 1%. Afterwards envelopes were ultracentrifuged at 100,000 x g. Pellet (P) 
and supernatant (S) were loaded separately on the gel and an immunoblot was performed using 
antibodies raised against PsNIEP57.TIC62, a protein that is only attached to the inner envelope of the 
chloroplast was used as a control (Stengel et al., 2008). 

As mentioned before, for AtNIEP57 four α-helical transmembrane domains were predicted.  

Four transmembrane domains were also predicted for the mature form of psNIEP57 when 

analysed with the prediction program TopPred 0.01 (Heijne 1992; Claros and Heijne 1994) 

(Figure 19A). To analyse the topology of PsNIEP57 in more detail, a chemical cysteine 

modification assay in pea inner envelope membranes was performed. PsNIEP57 contains six 

cystein residues in the primary sequence which are orientated as follows when four 

transmembrane domains are proposed: two cysteins facing the stroma, two buried within the 

envelope membrane, and two facing the intermembrane space (Figure 19B). To test this 

prediction, inner envelope vesicles were incubated with PEG-maleimide (PEG-Mal). 

Maleimide is a chemical compound that reacts with the thiol group of cysteines. Due to the 

five kDa size of the PEG-Mal molecule, covalently PEG-Mal bound to cystein containing 

proteins will lead to an increased molecular weight that can be visualized by immunoblotting 

(Figure 19C). As the PEG-Mal reagent is membrane non permeable and the inner envelope 

vesicles were prepared according to the protocols of Keegstra and Youssif (1986) and 

Waegemann et al. (1992), giving vesicles with a right-side-out orientation (Heins et al., 2002; 

Balsera et al., 2009), only the cysteins facing the intermembrane space should be able to react 

with the reagent. After 30 min of incubation with PEG-Mal, two bands became visible in the 

assay. This suggests that the four remaining cysteine residues of the protein are not accessible 

for the reagent. In presence of 1% SDS, where the inner envelope vesicles are solubilised and 

membranes are disrupted, all protein cysteins are PEGylated, as demonstrated by the presence 

of five bands on the immunoblot (Figure 19C). The fact that only five instead of six bands are 

detected can be interpreted by the assumption of one cysteine being faster PEGylated than the 

others so that no proteins with two PEGylated cysteins can be observed by immunoblot. The 

change in the molecular weight is bigger than expected for the PEGylation and can be due to a 
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different running behaviour of the protein in the Bis-Tris/SDS-PAGE used in this approach 

(Kovács-Bogdán et al., 2011). This experiment corroborates the assumption of four 

transmembrane domains for psNIEP57, but cannot explain the orientation of NIEP57 due to 

the equal number of cysteins on both sides of the membrane.                                                                                  

 

 

 

 

 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19: PsNIEP57 is composed of four transmembra ne domains 
A) Graphical output showing four predicted transmembrane domains for PsNIEP57 using the TopPred 
program. B) Topology model predicted for PsNIEP57. C) Verification of the topology prediction by 
PEGylation of PsNIEP57 in inner envelope membrane vesicles. Inner envelopes (5 µg of protein) of 
pea chloroplasts were treated for the indicated time points (min) with 7.5 mM of PEG-maleimide in 
presence (+) or absence (-) of 1% SDS. The reaction was stopped adding 100 mM DTT. The proteins 
were separated using SDS-PAGE and immunoblot was performed using an antiserum raised against 
PsNIEP57. Cys: cystein, IMS: intermembrane space, N: N-terminal, C: C-terminal. 

To analyse the orientation of PsNIEP57, proteolysis analysis of inner chloroplast envelopes 

was performed. The vesicles with a right-side-out orientation were treated with proteases in 

the presence or absence of triton 1%. In the absence of triton, only a certain amount of 

proteolytic sites depending of the topology of the protein are accessible for the proteases. In 

contrast, in the presence of triton that disrupts the membrane proteins are fully accessible to 

proteolysis. The different fragment band pattern with and without triton should allow to 

clarify the membrane orientation of PsNIEP57. Due to four predicted transmembrane domains 
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two expected orientations of the protein are possible: one with N- and C-termini orientated 

towards the intermembrane space, and the other with N- and C-termini orientated towards the 

stroma (Figure 20A). Figure 20B, shows vesicles treated with thermolysin. Here one band of 

45 kDa appears that is completely absent when proteolysis is performed in the presence of 

detergent. It can be assumed that available N- and C-termini of the protein are digested. This 

shift of 7 kDa can thus only be explained when N- and C-termini are facing the IMS. In the 

presence of triton a core of about 35 kDa can be observed, indicating that more sites of the N- 

and C-part are accessible for proteolysis. When the experiment was performed with trypsin 

three bands appeared (Figure 20C). The size of the resulted bands (~10, ~15 and ~17 kDa) 

indicates that trypsin can digest the protein more efficiency than thermolysin, leaving an 

intact fragment of about 10 kDa in the presence of triton. Unfortunately the band sizes 

obtained with the trypsin proteolysis cannot exclude the topology of the protein with N- and 

C-termini orientated toward the stroma. Depending on where the protein is digested, a similar 

band pattern is expected for both orientations. The N-terminal peptide of about 27 kDa that 

would be protected from the protease if the N- and C-terminal were orientated toward the 

stroma cannot be detected because the antibody was not raised against the soluble N-terminal 

part and first transmembrane domain of the protein. In general, thermolysin as well as trypsin 

cut very often within PsNIEP57, so no clear expected pattern due to selected cutting sites 

could be expected as for other proteins. However, an orientation of N- and C-termini of 

PsNIEP57 towards the intermembrane space (Figure 20A, left) is most likely. 
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Figure 20: Topology prediction of PsNIEP57  
A) Two possible topology predictions for PsNIEP57. The molecular weight in kDa is giving for each 
hydrophilic part of the protein. The molecular weight for the transmembrane domains is about 2 kDa 
each. B) Proteolysis using thermolysin (5 µg). For each line 5 µg of protein was used. The reaction 
was incubated 15 min on ice C) Digestion using trypsin (0.5 µg). For each line 5 µg protein was used. 
The digestion was incubated 5 min on ice. 1% triton was used for membrane solubilisation. The 
proteins were separated using SDS-PAGE and immunoblot was performed using an antiserum raised 
against PsNIEP57, IMS: intermembrane space, N: N-terminal, C: C- terminal. 
                                                                                                                                                                            

3.3 Mutation of NOEP23 and NOEP40 in Arabidopsis  

In order to describe the physiological role of the new chloroplast envelope proteins, 

Arabidopsis T-DNA insertion lines for AtNOEP23 and AtNOEP40 were analysed.  

3.3.1 NOEP23 

NOEP23 was found in mono- as in dicotyledonous plants, in Physcomitrella and in green 

algae. Interestingly, NOEP23 is also present in bacteria. Moreover, the unknown domain 

(DUF 1990) described for NOEP23 is mostly present in the bacteria kingdom and AtNOEP23 

is the only protein in Arabidopsis harbouring this domain. The expression profile of 

AtNOEP23 as well as co-expression analysis cannot be analysed due to the absence of the 

gene in the ATH1 microarray chip. 

For AtNOEP23 only one T-DNA insertion line was available: GABI_279G09. For this line 

the T-DNA was localised at the 3’UTR of the gene (data not shown). Homozygous and 
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heterozygous plants showed no obvious phenotype when grown under standard conditions 

(data not shown).  

3.3.2 NOEP40 

In Arabidopsis, NOEP40 corresponds to a single gene family. Orthologs of AtNOEP40 are 

present in mono- and dicotyledonous plants, in the moss Physcomitrella patens and in the 

spike moss Selaginella moellendorffii. No orthologous protein was found in green algae or 

cyanobacteria. The expression profile showed that AtNOEP40 has its highest expression in 

cauline leaves, but is expressed ubiquitously throughout plant development (AtGenExpress 

Consortium, Schmid et al., 2005). Co-expression analysis revealed that AtNOEP40 is co-

expressed with several unknown chloroplast located proteins, an S-adenosyl-methionine 

dependent methyltransferase, a chloroplast envelope protein involved in FeS-cluster synthesis, 

a plastid predicted ABC1-family and kinase-domain containing protein, as well as with the 

mitochondrial D-lactate dehydrogenase (AtD-LDH) and a putative  glyoxalase located in the 

chloroplast (Atted II database, Obayashi et al., 2011 and Bachelor thesis Olga Lesina, 2011).  

For NOEP40, the T-DNA insertion line SAIL_266_D10 (noep40-1) was analysed. In this line, 

the insertion is located in the promoter region of the gene at position -25 bp. The F2 

generation was genotyped and homozygous, heterozygous as well as the out crossed wild-type 

background lines were selected (Bachelor thesis Olga Lesina, 2011). To test if the 

homozygous lines correspond to knock-out mutants, total RNA from 15-days-old seedlings of 

the T4 generation was prepared, reverse transcribed, and the RNA amount of NOEP40 was 

determined using real time RT PCR. The results showed that the homozygous line 

corresponds to a knock-down line presenting only one third of the transcript level when 

compared to the wild-type background and the Col-0 wild-type (Figure 21A). The 

homozygous noep40-1 knock-down mutants interestingly showed a faster growth and earlier 

flowering when compared with the wild-type during slow growth at low temperature 

conditions (10°C) (Figure 21B). To further characterise the importance of AtNOEP40 in the 

development of the plant, RNAi as well as overexpression lines were generated and an 

additional T-DNA insertion line: SAIL_759_A01 (that was no available at the beginning of 

the study) disrupting the single exon of the gene, was ordered.  
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Figure 21: NOEP40 transcript levels and phenotype i n line noep40-1 
A) Quantification of the NOEP40 mRNA level using real time RT PCR. mRNA was prepared from15-
days-old seedlings of Col-0 as well as noep40-1 wild-type background and homozygous plants. The 
mRNA amount (arbitrary units, n=3±SD) was normalised to 10000 actin transcripts. B) Phenotype of 
82-old-days Col-0 and noep40-1 growth at 10°C (Bachelor thesis Olga Lesina). 

3.4 In planta function of NIEP57 

3.4.1 Relatives and expression of NIEP57 

NIEP57 has been annotated as potential solute transporter with plant-specific but not 

prokaryotic evolutionary origin (Figure 22A; Tyra et al., 2007). AtNIEP57 is present in 

mono- and dicotyledonous plants as well as in the moss Physcomitrella patens and it was also 

found to be present in green algae, red algae and glaucophytes (Figure 22A). In Arabidopsis 

AtNIEP57 is annotated to be similar to RER1 (reticulata-related 1, 20% identical amino 

acids, Figure 23), a potential chloroplast inner envelope protein of unknown function 

harbouring three predicted α-helices (ARAMEMNON database, Schwacke et al., 2003). 

Interestingly, after a similarity search of AtNIEP57 against GenBank more than one form or 

NIEP57 was found for several species indicating the existence of subfamilies (Figure 22B).  

NIEP57 of subfamily II showed a longer N-terminal part than the forms of subfamily I 

(Figure 22C).  
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Figure 22: NIEP57 is a plant specific protein.   
A) Phylogenetic tree of AtNIEP57 (At5g24690) from Tyra et al., (2007), where AtNIEP57 was 
described as a plant specific transporter. The different algal groups are shown in different colours: red 
for red algae, green for green algae as well as land plants, and magenta for glaucophytes. B)  
Phylogenetic tree showing the subfamilies present in mono and dicotyledonous plants. C) Graphical 
representation of the alignment between NIEP57 subfamily I and II. Black boxes: predicted 
transmembrane domains, DUF3411: domain of unknown function, RYQ: conserved motif in DUF3411, 
GD motif: glycine and aspartic acid rich motif. 

The glycine and aspartic acid rich motif was not present in the subfamily II and is partially 

present in AtRER1 (Figure 23). N- and C-termini of AtRER1 and PtNIEP57.3 are even 

shorter when compared to the NIEP57 subfamily I (Figure 23).  
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Figure 23: Alignment between NIEP57 of different pl ant species 
Identical amino acids are shaded in black, similar amino acids in grey. NIEP57 of Arabidopsis 
(AtNIEP57), pea (PsNIEP57), AtRER1 (At5g22790), and different forms of NIEP57 present in Populus 
trichocarpa (PtNIEP57) and Ricinus communis (RcNIEP57) are shown. The predicted α-helical 
transmembrane domains are depicted in red boxes, the glycine and aspartic acid rich motif in a green 
box and the RYQ conserved motif of DUF 3411 in a blue box. 
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Transcripts of AtNIEP57 in Arabidopsis are present throughout plant development and peak 

in rosette and senescing leaves, (Figure 24A; AtGenExpress Consortium, Schmid et al., 

2005). A detailed expression analysis of NIEP57 in the different tissues of Arabidopsis 

embryo development (http://seedgenenetwork.net) shows the highest expression at the 

globular stage in the chalazal seed coat and the peripheral endosperm (Figure 24B). 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 
Figure 24: Expression profile of AtNIEP57 during plant and embryo development 
A) Expression of AtNIEP57 during plant development, AtGenExpress Consortium (Schmid et al., 
2005). Mean signal intensities (arbitrary units±SD) were averaged from 2–3 replicates. B) Tissue-
specific expression pattern of AtNIEP57 in pre-globular, globular, heart, linear cotyledon and 
maturation green stages (Harada-Goldberg Arabidopsis LCM Gene-Chip Data Set). Different tissues 
are defined as follows: CZE - Chalazal Endosperm; CZSC - Chalazal Seed Coat; EP - Embryo Proper; 
GSC - General Seed Coat; MCE - Micropylar Endosperm; PEN - Peripheral Endosperm; S - 
Suspensor; WS - Whole Seed. Seed tissues are coloured according to transcript density for signals 
that are absent (white), insufficient (blue), <500 (beige), 500–5000 (orange), 5000–10 000 (purple), 
and >10 000 (dark red). Data available at http://seedgenenetwork.net. 

In a large scale protein-protein interaction study, NIEP57 was classified as one of 123 new 

potential cell-cycle proteins, because NIEP57 interaction was confirmed with a protein, which 

binds to the E3-ubiquitin ligase of an anaphase-promoting complex (Van Leene et al., 2010). 

Co-expression analysis (Atted II database, Obayashi et al., 2011), reveals potential functional 

links of NIEP57 to (1) plastid thiamine metabolism: co-expression with a) the thiamine 

monophosphate synthase TH1, and b) a putative hydrolase involved in phylloquinone 
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synthesis that binds thiamine pyrophosphate); to (2) nucleoside triphosphate/phosphorylation 

-controlled processes: co-expression with a) GTP-binding potential chloroplast outer 

membrane protein, b) a GTPase involved in the regulation of the organization of thylakoids c) 

a putative PP2C-type protein phosphatase (AtPP2C19) from the plasma membrane, and d) 

with a membrane-bound protein serine/threonine kinase that functions as blue light 

photoreceptor involved in stomatal opening, chloroplast movement and phototropism); and to 

(3) metabolite transport activity: co-expression with a) a member of the ATH subfamily 

(ATH8) involved in chloroplast transport, b) a putative Ca-binding mitochondrial carrier-type 

protein, and with c) AtBAT2/AtBASS1 a putative chloroplast bile acid: sodium symporter-

like transporter). In particular the BAT1 and BAT5 isoforms of the latter transporter family 

have recently been described to function in Na-dependent plastid pyruvate (BAT1, Furumoto 

et al., 2011) and 2-keto acid transport (BAT5, Gigolashvili et al., 2009). 

3.4.2 Knock-out mutation of NIEP57 in Arabidopsis 

For AtNIEP57 four T-DNA insertion lines were available: SAIL_64_A05 (niep57-1), 

SAIL_1156_E1 (niep57-2), SALK_033007 (niep57-3) and SALK_089076 (niep57-4). For all 

lines, the exact insertion site was determined (Figure 25). In niep57-1, the T-DNA insertion is 

located in the 6th exon and the 3’ end of the T-DNA insertion is also a left border. In niep57-2 

the T-DNA is located in the last intron and the 3’ end of the T-DNA insertion could not be 

determined. In niep57-3 the insertion is located in the 3th intron and the 3’ end of the T-DNA 

insertion could be determined. Moreover, it could be seen that the insertion caused a deletion 

of 16 bp from exon number 4. In niep57-4 the T-DNA insertion line is also located in intron 

number 3 (5 bp behind the 3th exon) but the 3’ end of the T-DNA insertion could not be 

determined (Figure 25). 
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Figure 25: Characterisation of NIEP57 mutant lines 
NIEP57 from Arabidopsis thaliana (At5g24690). Black arrows denote exons, white lines introns. The 
insertion sites of T-DNAs in lines SAIL_64_A05 (niep57-1), SAIL_1156_E1 (niep57-2), SALK_033007  
(niep57-3), SALK_089076 (niep57-4) are indicated by triangles. Binding sites for NIEP57 gene specific 
primers and T-DNA specific left (LB) border primers used for genotyping and for real time RT PCR are 
depicted.  

For all four lines it was not possible to find homozygous alleles for the T-DNA insertion 

(Table 10.)  

Table 10: Segregation of the T-DNA insertion in niep57-1, niep57-2, niep57-3 and niep57-4 
Two generations for each line were genotyped. The percentage of wild-type (wt) and heterozygous 
(he) plants from two generations is depicted as well as the total amount analysed for each line. 

 

 

 

 

 

 

The heterozygous plants did not show an obvious phenotype under standard growth 

conditions. Due to the absence of homozygous descendants for the T-DNA insertion, a 

detailed observation of the siliques of heterozygous plants was performed to analyse a 

niep57-1 niep57-2 niep57-3 niep57-4 

wt           he wt           he wt           he wt           he 

F2      25%       75% F2   37.5%    62.5% F3   73.3%    26.6% F3 21.4%      78.5% 

F3   49.4%    50.5% F3   44.4%    55.5% F4     40%        60% F4 14.8%      85.1% 

48.3%    51.6% 

(n= 196) 

41.1%    58.8% 

(n= 17) 

51.1%      48.8% 

(n= 45) 

17.03%      82.9% 

(n= 41) 
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possible embryo lethal phenotype. For this purpose, green siliques from heterozygous, wild-

type background and Col-0 plants were harvested and cleared for a few days in 100% ethanol 

at 4°C. Afterwards the siliques were analysed under the binocular microscope. From this 

observation a phenotype for lines niep57-1, niep57-2 and niep57-3 could be detected: 

approximately 25% of the seeds in each silique looked abnormal (Figure 26A). In young 

siliques the aborted seeds looked white and empty without an embryo inside. When the silique 

became older, their seed coat turned brown and dehydrated (Figure 26B and C).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26: Phenotype of niep57 mutant seeds   
Siliques form heterozygous and wild-type niep57-1, niep57-2, niep57-3 and niep57-4 and Col-0 plants 
were observed under the binocular after clearance in 100% ethanol. A) For each line the normal and 
defect seeds per silique were counted. B) Young silique and young seeds of niep57-1 C) Old silique 
and old seeds of niep57-1. 

In the abnormal seeds it was impossible to detect the presence of an embryo under the 

binocular.  To analyse the embryo development more detail, siliques of different ages of 

heterozygous niep57-1 and niep57-3 plants – the two lines that clearly disrupt the coding 

sequence of NIEP57 – were harvested and cleared using the mounting media Hoyer’s solution 

(Liu and Mainke, 1998) and observed using differential interference contrast microscopy. 
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In both niep57 mutant lines it could be observed that in the abnormal seeds indeed there was 

an embryo inside, but that the normal development was usually arrested at the globular 

embryo stage (Figure 27). Moreover, an abnormal cell division pattern could also be detected 

in some cases in the embryo proper as well as in the suspensor part (Figure 27, panel M, N 

and O). For late developmental stages (Figure 27 panel P) no embryo could be detected at all.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
Figure 27: Arrested embryo development in niep57-1. 
Niep57-1 heterozygous siliques were dissected and seeds were cleared using Hoyer’s solution. After 
incubation of one day in the dark, the embryos were observed using differential interference contrast 
microscopy. For each developmental stage, pictures of normal wild-type like embryos (A-D, I-L)  were 
taken. The corresponding abnormal embryo (coming from the same silique) was also photographed 
(E-H, M-P). Bar, = 100 µm. Arrows show abnormal cell division pattern. 

The conclusion from this observation is that these abnormal and aborted embryos correspond 

to homozygous alleles for the T-DNA insertion in NIEP57, leading to the discovery of a novel 

inner envelope chloroplast located protein that is required for proper embryo development in 
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Arabidopsis. Most likely the function of NIEP57 is crucial in the globular stage, where gene 

expression peaks (Figure 24B) and embryos are arrested (Figure 27). 

3.4.3 Overexpression and RNAi lines for AtNIEP57 

Due to the embryo lethal phenotype of homozygous T-DNA insertion lines for AtNIEP57, 

another experimental approach was selected in order to clarify the physiological function. For 

this purpose overexpression and RNAi lines for AtNIEP57 were generated.  To generate the 

overexpression lines, the cDNA of AtNIEP57 was subcloned into the pH2GW7 plasmid 

vector under the control of the 35S promoter. For the RNAi lines, the first 380 bp of 

AtNIEP57 were cloned in the pH7GWIWG2(II),0 plasmid vector (Karimi et al., 2002). Both 

constructs were stable transformed into Col-0 Arabidopsis plants. Positive transformed plants 

(T1) were selected on MS media supplied with the selection agent hygromycin. Although 14 

Arabidopsis Col-0 plants were transformed with the RNAi construct and after several 

attempts of the selection with hygromycin only two positive transformed plants were 

recovered. These two lines showed no obvious phenotype. In contrast, for the overexpression 

line, 11 Arabidopsis Col-0 plants were transformed and 28 positive transformed plants were 

recovered. Here apart from the normal growth of positive stable transformed a lot of seedlings 

exhibited a phenotype already in the T1 generation. These seedlings were albino, very small 

and grew very slow (Figure 28, panel B, H).  After recreation on MS media without selection 

agent the small albino plants were transferred to soil. Most of these chlorotic plants could 

however not grow on soil and died after a few days. Besides this first albino phenotype 

observed for the plants, other phenotypes randomly appeared during the development and 

further of the plants (Figure 28). The presence of anthocyanins could be detected in albino 

plants (Figure 28, panel I), others plants had very short roots and an aberrant development 

(Figure 28, panel J).  Some lines could be successfully transferred to soil where they 

continued to grow with a very slow development producing seeds in some cases.  Other plants 

that were chlorotic at the beginning turned green or presented a variegated phenotype (Figure 

28, panel K, G, A, E). In contrast, some plantlets that looked normal at the first developmental 

stages became spontaneously chlorotic starting from the inner inflorescence of the plant and 

moving to the leaves. The stem and siliques became also variegated (Figure 28, panel F, C, D 

and L). One interesting feature was that the plants that exhibited an albino/variegated and 

small phenotype used to live longer than normal wild-type plants (Figure 28, panel K).  

From the lines were it was possible to obtain seeds, the T2 generation was sowed on MS 

media to analyse if the phenotype was reproducible. Four lines (9.2, 9.5, 9.6 and 11.3 clearly 

segregated showing the same phenotype: the seedlings presented albino cotyledons and green 
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true leaves (Figure 28, panels M-P). The cotyledons turned to green after a few days. The 

lines were also grown on MS media with and without sugar and subjected to different light 

conditions (constant low light, constant light, long day and short day). No obvious effect on 

the phenotype was visible due to the different light and media conditions (data not shown).  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure  28: Phenotype of the AtNIEP57 overexpression lines  
Panel A to L shows the different phenotypes present in the T1 generation after stable transformation 
of Col-0 plants with 35S::NIEP57. The age in days in given in brackets A: 8.1, (24 d); B: line 10.3, (27 
d); C: 10.7, (43 d); D: 9.3, (47 d); E: 9.2, (50 d); F: 10.3, (50 d), G: 10.6, (50 d); H: 11.4, (52 d); I: 11.6, 
(52 d), J: 11.5, (52 d); K: 11.6, (106 d); L: siliques of line 10.2. Panel M to P shows the phenotype 
present in the T2 generation of line 9.5, (12 d). All plants were grown under a 16 h light period. Plants 
on media: MS supplied with 1% sucrose. 

To analyse if the phenotype was caused due to an overexpression of AtNIEP57, RNA from 

green and chlorotic sectors of the same plant was isolated, reverse transcribed, and the RNA 

amount of AtNIEP57 was determined using quantitative real time RT PCR (Figure 29). The 

results showed that the AtNIEP57 gene is rather silenced than overexpressed in the chlorotic 

parts of the plant when compared to the green sectors of the plant. The 35S::NIEP57 cDNA 

thus most likely corresponds a transgene induced gene silencing.  
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Figure 29: The 35S:: NIEP57 cDNA  corresponds to a transgene induced gene silencing 
A) Line 10.2 (T1), 47-days-old, grown under 16 h day light period. B) mRNA was prepared from the 
green and chlorotic parts of the plant showed in A) and subjected to real time RT PCR analysis. PCR 
products of 435 bp (actin) and 455 bp (AtNIEP57) are shown. C) The level of AtNIEP57 mRNA was 
quantified and normalized to actin (n=1). 

3.4.4 Inducible overexpression and RNAi lines for AtNIEP57 

Due to the embryo lethal phenotype in homozygous T-DNA insertion lines for NIEP57, the 

almost absent AtNIEP57 RNAi lines obtained after transformation, and the induced gene- 

silencing effect produced in the overexpression lines, inducible overexpression and RNAi 

lines were produced in the following. For this purpose, the same constructs used for the stable 

overexpression and RNAi lines were subcloned into the pOpOn and pOpOffII system 

(Wielopolska et al., 2005) and Col-0 plants were stable transformed.  This plasmid vector 

system allows dexamethasone-inducible RNAi or overexpression of plant genes. Especially 

the inducibility of an RNAi knock-down from this system may be useful in helping to identify 

the function of genes, which when constitutively silenced give embryo lethality or pleiotropic 

phenotypes (Wielopolska et al., 2005), and thus are a suitable system to characterise the 

physiological role of AtNIEP57 in the plant. Transformed plants were selected in the T1 and 

the T2 generation of the pOpOffII plants (RNAi) and were treated using the inducible agent 

dexamethasone. On the one hand seeds from the T2 generation sowed directly on MS + 

dexamethasone media showed the same phenotype as the constitutive overexpression lines 

(Figure 30). On the other hand, plants were first allowed to grow six days on MS media and 

then transferred to dexamethasone. For these plants, the chlorotic phenotype appeared in new 

developing organs, showing a similar effect as the constitutively overexpression lines that 

were green and then turned chlorotic from the inside to the outside of the plant (not shown). 

When plants directly grown on soil were treated with dexamethasone the effect was less 

drastic and a chlorotic effect could only be achieved in the stem (Annette Schock, personal 

communication). These results confirmed the idea that a reduced level of AtNIEP57 is 

responsible for the chlorotic phenotype. 
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Figure 30: Inducible RNAi of AtNIEP57 
12-days-old T2 generation of Col-0 plants transformed with the inducible RNAi system 
AtNIEP57/pOpOffII grown on MS + 1% sucrose supplied with 10 µM dexamethasone. The plants were 
grown in a 16 h light period, A) line 5.1, B) line 7.1, C) Col-0. 

Due to the fact that AtNIEP57 is co-expressed with genes involved in the thiamine 

metabolism and that the phenotype of gene-silenced AtNIEP57 is similar to the 35S::IspH 

cDNA transgene lines of IspH – an enzyme involved in the non mevalonate pathway in the 

plastid, in which the biosynthesis of the thiamine precursor 1-deoxy-D-xylulose 5-phosphate 

is produced (Hsieh et al., 2005) – an experiment to rescue the phenotype of the 35S::NIEP57 

lines supplying the media with thiamine and thiamine pyrophosphate was performed. For that 

purpose, two 35S::NIEP57 lines (T2) showing a clear phenotype similar to line 9.5, (please 

refer to Figure 28, chlorotic cotyledons at the seedling stage) as well as Col-0 were sowed on 

MS media, supplied  with  1% sucrose and thiamine or thiamine pyrophosphate (0, 5, 30, 50, 

100, 200 µM). Unfortunately the chlorotic phenotype could not be rescued by this experiment 

(data not shown). 
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V. Discussion 

1 OEP24 

OEP24 was initially discovered and well characterised in pea as a β-barrel outer envelope 

protein (Pohlmeyer et al., 1998) and was proposed to be a high-conductance (slightly cation-

selective) solute channel. Moreover, PsOEP24 was able to replace the mitochondrial VDAC 

in yeast (Röhl et al., 1999), suggesting that OEP24 acts more or less as a porin-like type of 

channel that is principally permeable to small hydrophilic solutes and metabolites.  Indeed 

sugars, glucose 6-phosphate, gluconate, phosphoglyceric acid, dihydroxyacetone, ATP, 

acetate, malate, α-ketoglutarate, Pi and charged amino acids permeated through recombinant 

PsOEP24 reconstituted into artificial lipid bilayers (Pohlmeyer et al., 1998).  The existence of 

two different isoforms in Arabidopsis AtOEP24.1 and AtOEP24.2, with different expression 

patterns during pollen and embryo development, suggested that OEP24 could be important for 

solute transport during pollen and/or embryo development. At the beginning of my work this 

idea was strongly supported by the phenotype present in the only Arabidopsis T-DNA 

insertion mutant available for the study of OEP24: oep24.1-1. For this line no homozygous 

progeny for the T-DNA insertion could be isolated and segregation was of 50% wild-type, 

50% heterozygous plants. Further, the heterozygous plants showed about 50% reduced 

germination rates of pollen grain in vitro. Gametophyte defects were reported also previously 

for mutants of the Arabidopsis plastid glucose 6-phophate/phosphate translocator GPT1. 

GPT1 is a transporter located at the inner envelope of plastids and imports glucose-6-

phosphate into plastids of non green tissues (Niewiadomski et al., 2005).  A linkage between 

GPT1 at the inner envelope and OEP24 seemed thus be possible with OEP24 being the 

channel transporting small solutes including glucose-6-phosphate across the outer envelope. 

To clear the situation of OEP24.1, a complementation assay was performed during my thesis 

work thereby stable transforming heterozygous oep24.1-1 mutant plants with AtOEP24.1 

gene to see if the gametophyte lethal phenotype in the mutant line could be rescued. As 

previous attempts using the promoter of OEP24.1 and the cDNA failed to complement the 

phenotype, an approach with the OEP24.1 promoter and the entire gene was tested. Due to the 

location of the T-DNA in the first intron of the gene (see Figure 3) and the deletion of 

regulatory elements (MYBILEPR, CORECDC 3 and BOXII) produced by this insertion 

which perhaps have an important role in the expression regulation of the OEP24.1 gene, this 

experiment would be the only suitable to try to complement the line. Unfortunately this 

approach could not complement the phenotype after genotyping of 494 plants. Moreover, for 
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the first time, the discovery of two homozygous lines for the oep24.1-1 T-DNA insertion in 

the T2 generation that appeared after the complementation experiment but in plants not 

transformed with the OEP24 construct was really not expected. The fact that there was indeed 

no transformed OEP24.1 construct in these lines was tested by PCR using primers that 

amplified only the stable transformed OEP24.1 (OEP24.1 gene specific primer and attB2 

primer that amplified a part of the destination vector used for the transformation), and two 

more primer sets that amplified two independent regions (promoter region and 3’UTR region 

were point mutations in the OEP24.1 complementation product were found). The 

amplification and subsequent sequencing with these primer sets also proved the absence of a 

stable transformation with the OEP24.1 constructs in these lines. Further the plants were not 

resistance to hygromycin (selection agent carried by the transformation vector). In summary 

none of the two homozygous plants for the oep24.1-1 T-DNA insertion prove to be stable 

transformed with the OEP24.1 gene construct used for complementation. The idea that the 

lines indeed could be complemented by the transformed OEP24.1 by a stable transformation 

only produced by a part of the OEP24.1 gene (e.g. due to a DNA rearrangement producing the 

loss of the primer sites and hygromycin resistance but sufficient for the complementation) 

seems not to be correct, since for all other transformed lines the genotyping approaches could 

be performed without problems. The only speculation that can be made regarding these results 

is that the homozygous lines that appeared here after several self pollinations and one 

transformation treatment lost some unknown regulatory factors linked with the gametophyte 

lethality produced by the T-DNA insertion in the intron region of OEP24.1. This seems to be 

the case due to the finding of ten more homozygous lines in the T3 generation. All oep24.1-1 

homozygous lines found in the T2 and T3 generation descended from the same line 

transformed in T1 (line #4.3). It is well known that the integration pattern of T-DNA 

fragments not only affects transformation efficiency and stability, but also expression 

properties of the transgenes. The integration of vector backbone sequences into the plant 

genome, producing potentially regulatory effects is also common (for overview see Lee and 

Gelvin, 2008). It is well known that introns display several active regulatory functions as well 

(Morello and Brevario et al., 2008), indicating a possible but unknown gametophyte specific 

regulation mode of AtOEP24.1 that was lost in the respective line #4.3. 

To clarify the situation of OEP24.1, the two other mutant lines were characterised. The 

homozygous oep24.1-2 overexpression line showed no obvious phenotype when analysed 

under standard conditions, although an increased expression for more than 200 times could be 

shown (see Figure 4A and B) as well as an increase in the protein level. However, after the 
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characterisation of the TILLING line oep24.1-3 it can be concluded that the gametophyte 

phenotype demonstrated in the oep24.1-1 line is maybe independent of the OEP24.1 gene due 

to the presence of homozygous oep24.1-3 plants that for the point mutation show a clear 

frame shift in the transcript. Certainly, here the question is open, if the missplicing affects all 

the transcripts of OEP24.1 or only a part, giving normal transcripts of OEP24.1 at all, which 

are enough to support the OEP24 function in the plant. In this work, two independent 

amplification and sequencing results of the cDNA of oep24.1-3 homozygous mutants showed 

only the misspliced form of the cDNA. An immunodecoration showing the knock-out status 

of this line at the protein level could not be performed due to the similarity of OEP24.1 and 

the OEP24.2 isoform, which is still intact in this line. In summary, the physiological role of 

OEP24.1 in Arabidopsis could not be clarified using the mutant lines available.  

A further characterisation of OEP24.2 was also not possible due to the high amount of 

background mutations and phenotypes present in the only TILLING mutant line available for 

OEP24.2. It is well known that this kind of mutant lines harbour a high mutant background 

due to the mutagenesis technique, which they are subjected. It was previously estimated, on 

average, that each M2 TILLING plant carries 720 mutations, whereas for the T-DNA 

populations only 1.5 insertions per line are found (Till et al., 2003; Alonso et al., 2003, for 

overview see Kurowska et al., 2011).  

In spite of the different expression patterns of both isoforms, the similarity between OEP24.1 

and OEP24.2 could also be a reason why the single mutants do not show any visible 

phenotype. It may be possible that one isoform can replace the absence of the other. It would 

be therefore reasonable to cross both homozygous TILLING lines from each gene, to analyse 

if a phenotype linked to the impaired transport capacity of OEP24 in a double mutant could 

clarify the physiological role of OEP24 during the plant life. Prior to this experiment both 

TILLING lines however should undergo intensive backcrossing with wild-type due to the 

possible multiple background mutations present.  

2 OEP21 

Like OEP24, OEP21 was first discovered and characterised in pea and in vitro studies 

proposed OEP21 as an important transporter of primary photosynthesis products of the outer 

envelope of the chloroplast (Bölter et al., 1999) transporting HPO4
2- and phosphorylated 

carbohydrates (triosephosphate, 3-phosphoglycerate, Gluc-6-phosphate). In vitro a regulation 

of the recombinant PsOEP21 channel was proposed due to the existence of two ATP-binding 

sites: one high affinity site and the second harbouring an FX4K motif (Hemmler et al., 2006). 
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In Arabidopsis the OEP21.2 isoform is equipped with the FX4K motif, while for the second 

isoforms, OEP21.1, as well as in other plants species, the conserved phenylalanine is changed 

by to a leucine. It was shown previously that the ATP-binding site of Ca2+ATPases is given 

by the conserved lysine rest present in both isoforms and that the phenylalanine – in the case 

of OEP21.1 the leucine – delivers more a stability function (for overview see Kühlbrandt, 

2004). However, in vitro electrophysiological studies showed that the presence of the 

phenylalanine in PsOEP21 and AtOEP21.2 has a function in channel rectification (Hemmler 

et al., 2006). In Arabidopsis both isoforms are very similar and due to a basal and relative low 

expression of both isoforms in all plant tissues, it was assumed that both isoforms 

independently can form a functional channel. That was consistent with the observation of no 

obvious phenotype of the single mutants for both isoforms under standard conditions.  In my 

work it was clarified that only oep21.1-1 corresponds to a knock-out of OEP21.1 at the 

transcriptional level. In contrast, oep21.1-2 – with the T-DNA insertion in the intron – 

corresponded to a knock-down line for OEP21.1 (see Figure 8). No alteration in the 

expression level of OEP21.2 could be seen in both lines excluding the idea of an induction of 

OEP21.2 to support the absence of OEP21.1. The subsequent analysis of the double mutant 

was performed only on the descendants from oep21.1-1 crossed with oep21.2-1. Only one 

homozygous double mutant was found after genotyping 376 plants. The percentage of double 

mutants lines found for this cross was thus relatively low (0.26%) but could be expected as 

both genes are located on the same chromosome and it was therefore necessary to have a 

crossing over event to get the double mutant. The OEP21 double mutant could be well 

characterised at the protein level (see Figure 9). Due to the fact that the antiserum against 

AtOEP21.1 recognizes both isoforms of OEP21, the result of the immunodecoration showed 

that – although oep21.2-1 is a TILLING mutant harbouring a point mutation in the last exon 

of the protein, leading to a premature stop in the translation – the truncated OEP21.2 protein 

is totally degraded in the double mutant giving no OEP21 at all (see Figure 9). The double 

mutant showed also no obvious phenotype when grown at different light conditions, although 

a de-regulation of the carbohydrate metabolism of the plant was expected. Therefore, a more 

detailed characterisation of the mutant proteome and analysis of the metabolites involved in 

glycolysis and citric acid cycle as well as of sugars and amino acids was performed. 

Previously, an Arabidopsis knock-out mutant for the triose phosphate/phosphate translocator 

located at the inner chloroplast envelope showed accumulation of starch content and reduction 

of sucrose and glucose (Schneider et al., 2002). 3-phosphoglycerate and triosephosphate were 

also increased in the mutant line. The lack of triosephosphate export for cytosolic sucrose 
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biosynthesis was almost fully compensated by accelerated starch turnover and export of 

neutral sugars from the stroma throughout the day (Schneider et al., 2002). An expected 

similar phenotype was not detected for the OEP21 double mutant line, instead changes in the 

amount of amino acids were observed in the OEP21.1 overexpression line when compared to 

the double mutant, double wild-type and OEP21.1 complemented double mutant. In particular 

an enhanced amount of aromatic amino acids was detected indicating a possible higher 

transport carbon for the synthesis of these amino acids that are exclusively produced in 

plastids. In summary these results indicate at least that OEP21 seems not to play an essential 

role in the plant model Arabidopsis. 

The results obtained for OEP24 and OEP21 however, do not exclude the idea of the 

selectivity in transport capacity of the OEPs. It could be possible that some of them indeed 

harbour overlapping functions in vivo, compensating in this way the absence of the other OEP 

in Arabidopsis. As described previously, OEP24 in vitro is also capable to transport 

hexosephosphates as well as phosphoglyceric acid (Pohlmeyer et al., 1998) indicating a 

possible compensating transport activity for the carbohydrate metabolism. This may be the 

case for OEP24 and OEP21 but not for the well characterised amino acid-specific OEP16 

where a loss of the protein causes a metabolic imbalance, in particular that of aspartate-

derived amino acids during seed development and early germination. Thus here it is evident 

that in vivo OEP16 can function in shuttling amino acids across the outer envelope of seed 

plastids (Pudelski et al., 2011). It may also be possible that the C3 model plant Arabidopsis is 

not the most suitable system to study the physiological function of OEP21 and OEP24. In 

comparative proteomic studies of chloroplast envelope membranes between C3 plants (pea) 

and mesophyll cell C4 plants (maize) it could be shown that OEP24 as well as OEP37 show a 

major relative increase in C4 plants (Bräutigam et al., 2008a), maybe to compensate the 

higher metabolite flux between chloroplast and cytosol in C4 plants. In contrast, OEP21 was 

reduced in relative abundance and OEP16 did not differ in relative spectral abundance 

between C3 and C4. OEP24 was also found to be present in proplastid envelope proteomic 

analysis (Bräutigam and Weber, 2009).  Proplastids present in the meristems are supplied with 

reducing power, energy and precursor metabolites from the cytoplasm and provide branched 

chain and aminoacids, fatty acids and lipid as well as nucleotide precursors to support cell 

growth. An elevated transport activity and therefore expression of transporters at both 

membranes of the chloroplast is expected (Bräutigam and Weber, 2009). 
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3 New chloroplast envelope proteins 

At least two new envelope membranes proteins NIEP57 and NOEP40 located at the inner and 

outer envelope of the chloroplast respectively could be discovered after searching for new 

envelope membrane proteins of the chloroplast. For this search a different approach as the one 

used to discover the already known OEPs was performed. The approach I used was not based 

on the amount of the proteins present in the outer envelope; instead a more fine selection was 

applied based on some characteristics of the already known OEPs and their related proteins 

found in Gram-negative bacteria. The most important characteristics included: different 

running behaviour in urea SDS-page, presence in chloroplast membrane preparations, basic 

isoelectric point, no transit peptide and β-barrel structure prediction.  

3.1 NOEP23 

AtNOEP23 was present in a chloroplast proteome database with subplastidial localisation and 

was afterwards annotated as a putative but still unclear envelope protein (Ferro et al., 2010). 

The idea of NOEP23 being an outer envelope protein of the chloroplast, harbouring a β-barrel 

structure was strengthened after the structure predictions proposed by the algorithms 

presented in the ARAMEMNON database (Schwacke et al., 2003): absence of classical 

transit peptide which is common for outer envelope membrane proteins (Schleiff et al., 2003) 

and no α-helical transmembrane domains. NOEP23 thus possess some features of the outer 

envelope proteins of the chloroplast where relatively little is known about the membrane 

integration mechanisms (for overview see Walther et al., 2009). Unfortunately the localisation 

for PsNOEP23 could not be verified when testing different pea subcellular fractions by 

immunoblot (outer and inner envelope, stroma, microsomal fraction) or pea mitochondria. 

Instead plasma membrane like signals were detected in transient transformation of mesophyll 

Arabidopsis protoplast using AtNOEP23 with a C-terminal GFP (see Figure 15). Regarding 

the unsuccessful localisation by immunodecoration, it may be possible that the protein is low 

expressed in the tested outer envelope of the chloroplast of young pea leaves. The proteomic 

analyses were initially all new candidates were identified was performed on the same type of 

pea outer envelope preparation. A low expression of the protein in these samples can be 

deduced due to the representation of PsNOEP23 by only one short peptide in one sequenced 

band. These results lead also to the question if NOEP23 belongs at all to the chloroplast outer 

envelope or if the peptide found in the proteomic analyse corresponds to a contamination of 

the sample. The AtNOEP23 T-DNA insertion mutant located at the 3’UTR so far did not help 

in the physiological study of the protein during plant development therefore further 
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characterisation of NOEP23 has to be addressed in future studies. To clarify the subcellular 

localisation of the protein maybe the generation of a second antiserum would be helpful.  

3.2 NOEP40 

AtNOEP40 instead was not present in the chloroplast proteome database with subplastidial 

localisation (Ferro et al., 2010), but according to the results of my thesis work is very likely to 

be a classical outer chloroplast envelope protein. As NOEP23, NOEP40 had no transit peptide 

or α-helical transmembrane domains predicted. The prediction by ARAMEMNON (Schwacke 

et al., 2003) suggests a β-barrel structure although the predictions for β-barrel forming 

proteins are complicate due to the short membrane-spanning regions and high variations in 

properties when compared with α-helical membrane proteins (Yan et al., 2011 and references 

therein). AtNOEP40::GFP failed to yield a chloroplast envelope signal (see Figure 15) which 

is common for outer envelope β-barrel proteins that for GFP-targeting rather are miss targeted 

and aggregate in the cytoplasm (personal communication K. Philippar). This phenomenon can 

be attributed to the structure and insertion mechanism of the OEPs into the outer envelope 

membrane. The only OEP that gives clear envelope localisation by GFP is the short OEP7 

which inserts into the outer envelope membrane of plastids by one α-helix. The 

immunodecoration in contrast confirmed the localisation of NOEP40 at the chloroplast outer 

envelope in pea unequivocally (see Figure 17). The fact that NOEP40 is a protein present only 

in higher plants and not in bacteria is a feature shared with the already known OEPs and is 

explained by the high mutation rate in amino acid sequence of bacterial porins and channels 

(in particular in domains facing the external medium) making traditional phylogeny based 

solely on the primary sequence impossible (for overview see Duy et al., 2007). For the 

observation of the NOEP40 co-expressed proteins it is worth to highlight the mitochondrial 

lactate dehydrogenase (AtD-LDH) and a chloroplast putative glyoxalase. AtD-LDH is 

proposed to participate in methylglyoxal detoxification in the mitochondria catalysing the 

reaction from D-lactate resulting from the cytoplasmic glyoxalase cycle into pyruvate 

(Engqvist et al. 2009). Methylglyoxal corresponds to a cytotoxic product formed 

spontaneously in plants by nonenzymatic mechanisms under physiological conditions from 

glycolysis and from photosynthesis intermediates as glyceraldehyde-3-phosphate, and 

dihydroxyacetone phosphate. It was previously shown that its production in various plants is 

enhanced under stress conditions and has negative consequences on cellular systems (for 

overview see Hossain et al., 2011). The putative glyoxalase located in the chloroplast is 

involved in carbohydrate metabolic processes and cold stress (TAIR, Lamesch et al., 2011). 

These observations can be linked to the phenotype observed in the NOEP40 knock-down 
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mutants grown at low temperature conditions (10°C). Thus, a potential transport function of 

NOEP40, which has an impact on metabolic signalling in growth and developmental 

processes as well as during abiotic stress is possible. Further characterisation of the RNAi and 

overexpression lines and the second T-DNA insertion line as well as electrophysiological 

studies will help to elucidate the function of NOEP40.  

3.3 NIEP57 

AtNIEP57 was present in the chloroplast proteome database (Ferro et al., 2010). After the in 

silico characterisation classical chloroplast transit peptide, four α-helical membrane domains 

and GFP-targeting results, the confirmation of the localisation to the inner envelope of the 

chloroplast by immunodecoration was shown (see Figure 17). Thus is a clear case of 

contamination of the outer envelope membrane sample that was sent for peptide sequencing, 

although an additional step of outer envelope purification was performed. In the sequencing 

data indeed contamination of already known proteins located at the inner envelope of the 

chloroplast such as components of the TIC complex (TIC110 and TIC55), stroma (large 

subunit of RuBisCo, RuBisCo activase) and thylakoids (Alb3, LHCA3) were found. 

The interesting embryo lethal phenotype of NIEP57 knock-out mutant, however suggests an 

elemental function of the protein. AtNIEP57 was previously described as a plant specific 

solute transporter protein (Tyra et al., 2007) and the hydrophobicity test (see Figure 18) 

proved that NIEP57 corresponds to an integral membrane protein as it is expected for a 

transporter. To be able to transport solutes and metabolites at least four or more 

transmembrane domains are required (Linka and Weber 2010 and references therein). To 

analyse the topology of PsNIEP57, several proteolysis experiments as well as a PEGylation 

assay were performed and a topology of four transmembrane domains with the N- and C- 

termini orientated towards the intermembrane space was proposed (see Figures 19 and 20). 

The topology proposed should still be taken with care and more detailed analysis should be 

performed in order to confirm the prediction. To clarify this situation, peptide antiserum 

raised against a sequence located at the N-terminal part of the protein was ordered. The long 

N-terminal part of NOEP57, facing the intermembrane space could possibly be involved in 

the recognition of metabolites to be transported. In higher plants two to three isoforms for 

NIEP57 were found for several species, and one subgroup showed a longer N-terminal part 

suggesting different adaptations of NIEP57. It would be also interesting to analyse in more 

detail the glycine and aspartic acid rich motif at the soluble N-terminal part of some NIEP57. 

The C-terminal domain of unknown function (DUF 3411) found for AtNIEP57 is also present 

in several unknown chloroplast-located Arabidopsis proteins and in the related protein 
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AtRER1. AtRER1 itself is related to two additional unknown proteins, one of them showing a 

reticulation phenotype in cotyledon and leaves upon mutation (Gonzalez-Bayón et al., 2006). 

Three of four independent homozygous T-DNA lines showed that AtNIEP57 is an essential 

embryo protein, causing lethality and aborted embryogenesis in the globular stage when 

missing (see Figure 27). For the fourth line niep57-4, no aborted embryo or other 

abnormalities as missing seeds could be detected although no homozygous plants were found 

after genotyping 41 plants and the segregation analysis for this line suggested embryo 

lethality (see table 10). In the future, germination analysis should be performed for this line to 

discard any effect of NIEP57 in this process. Unfortunately the 3’ end of the T-DNA insertion 

could not be determined and further characterisation to analyse if the T-DNA is spliced out 

also failed. Although the other three mutant lines clearly showed aborted embryo 

development, the segregation ratio of about 50% wild-type:50% heterozygous points to a 

defect in gametophyte transmission. In order to discard impairment in female or male 

gametophyte transmission, reciprocal crosses with wild-type should be carried out. The 

heterozygous niep57 mutant plants showed no phenotype when compared to the wild-type, 

indicating that the niep57 mutation is completely recessive. One copy of the NIEP57 gene is 

able to produce sufficient protein for normal plant development.  

In the last years many nuclear genes that encode chloroplast proteins required for proper 

embryo development in Arabidopsis were described. Three major types of chloroplast-

localised proteins appear to be most frequently associated with embryo lethality in 

Arabidopsis (1) enzymes required for the biosynthesis of amino acids, vitamins, nucleotides, 

and fatty acids; (2) proteins required for the import, modification, and localisation of essential 

proteins within the chloroplast; and (3) proteins required for chloroplast translation (Bryant et 

al., 2011). The plastidial glucose-6-phosphate/phosphate antiporter GPT1 described as the 

major route of entry of carbon into non-photosynthetic plastids was also shown to be essential 

for morphogenesis in Arabidopsis embryos (Andriotis et al., 2010). Developmental arrest 

generally occurs at around the globular stage prior to the formation of embryonic organs, 

suggesting that some specific plastid functions are essential for embryo development, many of 

them at the stage of chloroplast differentiation (Andriotis et al., 2010 and references therein). 

The induced AtNIEP57 silenced plants showed that NIEP57 is not only an essential protein 

for embryo development but also important in the vegetative life of the plant. The chlorotic 

phenotype is given by the coordinated silencing of the transgene, arising spontaneously and 

independently from multiple sites of the plant, and spreading towards younger tissues (see 
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Figure 28). Interestingly, a very similar phenotype was described previously in Arabidopsis 

transgenic 35S::IspH (Hsieh et al., 2005) with the same silencing effect as 35S::NIEP57. 

IspH corresponds to a plastid enzyme involved in the plastid non-mevalonate pathway of 

isoprenoid biosynthesis. In plants, the mevalonate (MVA) and non-mevalonate pathways are 

compartmentalized in the cytoplasm and plastid, respectively. The cytosolic pathway proceeds 

through the intermediate mevalonate and provides precursors for sterols and ubiquinone. The 

plastidial MVA-independent pathway is used for the synthesis of isoprene, carotenoids, 

absisic acid, and the side chains of chlorophylls and plastoquinone (Laule et al., 2003 and 

references therein). Although this subcellular compartmentalization allows both pathways to 

operate independently in plants, there is evidence that they cooperate in the biosynthesis of 

certain metabolites (Laule et al., 2003 and references therein). A linkage between the 

phenotype in both silencing mutant lines (IspH and niep57) can suggest that NIEP57 is 

involved in the transport of metabolites related to the plastid-intrinsic non-MVA pathway. 

Interestingly the co-expression data relates NIEP57 to the plastid thiamine metabolism and to 

pyruvate transport, two events connected with the non-MVA pathway as well (Hsieh et al., 

2005; Laule et al., 2003 and references therein). 
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VI. Outlook  

Electrophysiological characterisation of NOEP40 and NIEP57 is fundamental to clarify if the 

proteins are transporters. For that purpose first the purification of recombinant NIEP57 

protein in heterologous systems has to be optimised. Here other expression systems than E. 

coli (e.g. yeast) and NIEP57 proteins from other organisms than pea should be tested. 

Topology characterisation of PsNOEP40 by circular dichroism (CD analysis) will hopefully 

confirm the β-sheet structure and crosslink experiments as well as blue native gel 

electrophoresis gels will reveal if NOEP40 and NIEP57 form multimers. To elucidate the 

function of both new envelope proteins metabolite as well as transcriptomic analysis should 

be performed with the characterised mutant lines. For NIEP57, the inducible RNAi lines 

created in this work will allow the characterisation of the function of the protein in the 

vegetative life of the plant. Additionally, for NIEP57 transmission electron microscopy of the 

chlorotic leaves would be helpful to analyse if and how the chloroplast biogenesis is affected. 
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