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ABSTRACT 

The essential Bacillus subtilis DnaD and DnaB proteins have been implicated in the 

initiation of DNA replication. Recently DNA remodelling activities associated with both 

proteins were discovered that could provide a link between global or local nucleoid 

remodelling and initiation of replication. DnaD forms scaffolds and opens up supercoiled 

plasmids without nicking to form open circular complexes while DnaB acts as a lateral 

compaction protein. Here we show that DnaD-mediated opening of supercoiled plasmids 

is accompanied by significant untwisting of DNA. The net result is the conversion of 

writhe (Wr) into negative twist (Tw), thus maintaining the linking number (Lk) constant. 

These changes in supercoiling will reduce the considerable energy required to open up 

closed circular plectonemic DNA and may be significant in the priming of DNA 

replication. By comparison, DnaB does not affect significantly the supercoiling of 

plasmids. Binding of the DnaD C-terminal domain (Cd) to DNA is not sufficient to 

convert Wr into negative Tw, implying that the formation of scaffolds is essential for 

duplex untwisting. Overall our data suggest that the topological effects of the two 

proteins on supercoiled DNA are different; DnaD opens up, untwists and converts 

plectonemic DNA to a more paranemic form whereas DnaB does not affect supercoiling 

significantly and condenses DNA only via its lateral compaction activity. The 

significance of these findings in the initiation of DNA replication is discussed. 
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INTRODUCTION 

DNA replication is the most fundamental function in all biology. It is divided in three 

main stages known as initiation, elongation and termination. Initiation involves 

remodelling of a replication origin (oriC) through the action of the main initiator protein 

DnaA and primosomal multi-protein cascades that ultimately load two replicative ring 

helicases, one on each strand of the DNA duplex. The helicases in turn recruit the DNA 

primases thus signalling the switch from initiation to elongation and the two replication 

forks migrate in opposite directions, one on the leading and one on the lagging strand (11, 

21). Progression to the elongation stage does not guarantee completion of DNA 

replication as replication forks could be challenged and arrested anywhere along the 

DNA. In Escherichia coli, reconstitution of an active replication fork at arrested sites is 

mediated by PriA and/or PriC primosomal pathways that include the PriA, PriB, PriC and 

DnaT proteins (19, 25) while priming at the oriC is mediated by DnaA. Homologues of 

both DnaA and PriA are found in gram positive bacteria but another primosomal cascade 

involving the DnaD, DnaB and DnaI proteins is found only in some low G+C content 

gram positive bacteria, including Bacillus subtilis. While DnaI is believed to be the gram 

positive functional homologue of the Escherichia coli helicase-loader DnaC (not to be 

confused with the Bacillus subtilis DnaC helicase), both DnaD and DnaB have no 

homologues in gram negative bacteria. They are essential for viability and required for 

both DnaA and PriA-mediated initiation of DNA replication (3, 27). The molecular 

events that underpin the priming mechanism are unclear at present but data so far indicate 

that DnaD interacts with DnaA, PriA and DnaB (16, 20) while DnaI interacts with the 
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DnaC helicase (15, 26, 32, 36). DnaD is believed to act early in the cascade setting the 

stage for helicase recruitment. 

 

We have recently discovered that DnaD and DnaB have global DNA-remodelling 

activities. DnaD forms scaffolds and converts supercoiled DNA to an open circular form 

whereas DnaB compacts laterally supercoiled and linear DNA (35, 40). The biological 

significance of these activities is not clear at present but we have proposed a functional 

model with DnaD and DnaB being the link between global or local nucleoid remodelling 

and the initiation of DNA replication (35, 40). Atomic force microscopy (AFM) revealed 

that DnaD converts all the writhe of supercoiled plasmids into twist, and suggested that 

this DNA remodelling might be accompanied by significant untwisting of the duplex 

(40). Untwisting of the DNA may compensate for the considerable force required to open 

up supercoiled plasmids without nicking. Once opened up the plasmid is held firmly in 

the perimeter of a circular protein scaffold made up of DnaD molecules.  

 

The actual details of the molecular mechanism of the DnaD-induced topological effects 

are not known. In an effort to understand this mechanism we examined the effects of 

DnaD-binding to DNA on the activity of Escherichia coli topoisomerase I (topo I). Topo 

I relaxes negatively supercoiled DNA and changes in topology can be probed by effects 

on its activity. We reveal that DnaD untwists the DNA in a concentration dependent 

manner. Untwisting requires the formation of scaffolds by intact DnaD, since a C-

terminal domain (Cd) that binds to DNA and exhibits a DNA-dependent oligomerisation 

activity (5) is unable to significantly untwist supercoiled plasmids. By comparison, DnaB 
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does not affect the topology of DNA and its effect on DNA condensation is simply the 

result of lateral compaction. Our combined data suggest that the two proteins have 

different DNA remodelling effects. The significance of our findings and the putative 

roles of these proteins in DNA replication are discussed.  

 

MATERIALS AND METODS 

Protein purifications 

DnaD and DnaB proteins and the Cd domain of DnaD were purified as described before 

(5, 35, 40).  

 

Topo I relaxation assays 

pBluescript plasmid was purified from XL1Bule Escherichia coli cells using a plasmid 

midi-prep kit (Sigma). The same batch of pBluescript was used for all of the Topo I 

relaxation assays shown in this manuscript. pBluescript (18 nM) was incubated in a total 

volume of  25 µl with varying concentrations of protein(s) at 37 °C for 20 minutes to 

allow complex formation. Subsequently, 3 µl of 10×NEB buffer 4 (50 mM potassium 

acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 1 mM DTT), 1 µl BSA (30 

mg/ml), and 1 µl of Topo I (New England Biolabs; 4u/µl) were added and the reaction 

mixture (total volume 30 µl) was incubated at 37 °C for 40 minutes. All proteins in the 

reaction mixture were removed by digestion with excess of PK at 37 °C for 20 minutes.  

5 µl of 6×DNA gel loading buffer was added and the mixture loaded onto 1% w/v 

agarose gel casted in TAE buffer. The gel was run at 40 V in TAE buffer, in a cold room 
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for 7~8 hours, stained in 1 µg/ml ethidium bromide  for 40 minutes, and photographed 

with a digital camera. 

 

2D agarose gel elctrophoresis 

Topo I relaxation assays were set up, as described above. The reaction mixtures were 

subjected first to normal 1D agarose gel electrophoresis in 1.2 % w/v agarose gels, casted 

in TAE buffer, at 4 °C (cold room). The samples were loaded into a well on the top left 

corner of the gels, run at 40 V for 7 hours in one dimension and then soaked in TAE 

buffer supplemented with 4.5 µg/ml chloroquine for two hours. The gels were then turned 

clockwise by 90 ° and run in the second dimension at 20 V for 12 hours in TAE buffer, 

containing 4.5 µg/ml chloroquine. The gel was stained in 10 µg/ml ethidium bromide for 

35 minutes, destained in deionised water for two hours and photographed with a digital 

camera. 

 

RESULTS 

DnaD untwists supercoiled plasmids in a concentration-dependent manner 

Binding of DnaD to supercoiled pBR322 plasmid results in the formation of circular 

protein scaffolds with the plasmids held firmly around the periphery of these scaffolds 

(40). The contour lengths of the bound plasmids were found to be consistently longer 

than unbound molecules. The actual contour lengths were directly proportional to the 

sizes of the scaffolds, with larger scaffolds holding plasmid molecules with longer 

contour lengths compared to smaller scaffolds (40). The net result was the conversion of 

all the Wr into Tw. However, in the absence of nicking activity there will be no net 
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change in ∆Lk, implying that the elimination of Wr must be compensated by negative 

twisting i.e. untwisting of the double helix. From statistical measurements of 134 

pBR322 molecules bound to DnaD it has been established that this untwisting results in 

an average increase of the double helical turn from 10.6 to 16.1 bp (40). There is however 

no concrete biochemical data to reinforce these AFM observations. In an effort to provide 

biochemical evidence for these observations we examined the effects of DnaD binding to 

the activity of E. coli topo I. We argued that if DnaD binding to plasmids causes 

compensatory untwisting, treatment with topo I will relax this compensatory untwisting 

with a corresponding positive linking number change and subsequent removal of the 

bound DnaD will yield more relaxed supercoiled DNA. Because purifications of low 

copy number pBR322 plasmid (4,361 bp) yielded small amounts, to produce higher 

amounts of plasmid required for our experiments we used the high copy number 

pBluescript SK(-) plasmid (2,961 bp) instead.  

 

We discovered that incubation of pBluescript with increasing concentrations of DnaD, 

subsequent treatment with topo I and removal of all proteins by digestion with proteinase 

K (PK) resulted in a stimulation of relaxation up to 16 µM DnaD, followed by apparent 

inhibition of relaxation at 32 µM of DnaD (Fig.1A). By comparison free pBluescript was 

relaxed less efficiently, as can be clearly seen from the appearance of distinct 

topoisomers in the absence of DnaD compared to fully relaxed plasmid in the presence of 

DnaD (0.1-10 µM) under identical conditions (Fig. 1B; left panel). In fact, in the presence 

of 10 µM DnaD four to five times less topo I was sufficient to relax the bound plasmid 

relative to the amount required to relax unbound plasmid (Fig. 1B; right panel). The 
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simplest interpretation of these data is that DnaD binding and remodelling of the DNA 

causes increasing compensatory untwisting as the DnaD concentration is increased. 

Treatment with topo I relaxes this compensatory untwisting with corresponding positive 

linking number changes progressively increasing with increased untwisting. Subsequent 

removal of the bound DnaD yields supercoiled DNA with progressively higher positive 

linking number changes, resulting in the appearance of more relaxed negatively 

supercoiled DNA. However, at high concentrations of DnaD inhibition of the topo I 

activity is observed because the excess bound DnaD molecules sterically prevent access 

to the DNA. These DnaD-induced superhelical changes were unequivocally confirmed by 

2D gel electrophoresis (Fig. 1C). 

 

Supercoiled pBluescript topoisomers were separated in the first dimension by simple 1D 

agarose gel electrophoresis. The most supercoiled molecules have the fastest mobility 

while fully relaxed molecules run slowest through the gel matrix. The gel was then 

soaked in 4.5 µg/ml chloroquine turned 90o and topoisomers were separated in the second 

dimension in TAE buffer supplemented with 4.5 µg/ml chloroquine (Fig. 1C). 

Chloroquine relaxes negatively supercoiled DNA and can introduce positive supercoiling 

depending on its concentration (38). Plasmid molecules that were least negatively 

supercoiled will now be the most positively supercoiled and travel further toward the 

anode. We confirmed that incubation with increasing concentrations of DnaD (0.5, 1 and 

16 µM) and subsequent treatment with topo I does indeed increase the amount of 

supercoiled plasmids with smaller negative linking number, compared to the supercoils 

with higher negative linking number in the absence of DnaD (Fig. 1C). These data verify 
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that topo I relaxes the compensatory untwisting induced by DnaD, resulting in an overall 

positive change in the Lk. At high concentrations (32 µM) DnaD inhibits the topo I 

relaxation activity, as manifested by the presence of more supercoils with higher negative 

linking number in 2D gels (Fig. 1C).  

 

DnaB does not cause significant changes in plasmid supercoiling 

Previous observations with AFM revealed that tetrameric DnaB binds to, and laterally 

compacts, supercoiled plasmids forming bead-like structures with the DNA wrapped 

around the protein (40). An important question to answer is whether this condensing 

activity is accompanied by significant changes in the superhelical properties of the DNA, 

analogous to that observed for DnaD. We examined the effects of DnaB binding on the 

activity of topo I. DnaB up to 4 µM only slightly enhanced topo I relaxation (Fig. 2A lane 

4 and Fig. 2B) that can be attributed to minor non-specific effects by DnaB binding rather 

than specific significant untwisting, as was observed for DnaD. As the concentration was 

raised to above 8 µM inhibition of the topo I activity was observed (Fig. 2A lanes 5-7), 

because of excess bound DnaB preventing access to the DNA. We verified these data 

with 2D gel electrophoresis (Fig. 2B). 

 

Taken together the above data show that DnaD-dependent opening of supercoiled 

plasmids is accompanied by significant concentration-dependent untwisting of the 

duplex, whereas DnaB-mediated compaction does not change the superhelical properties 

of the DNA and is simply the result of lateral compaction.  
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The DnaD scaffold is essential for untwisting the duplex  

DnaD consists of two domains with distinct activities (5). Its N-terminal domain (Nd) has 

a DNA-independent oligomerisation activity while its C-terminal domain (Cd) binds to 

DNA and exhibits a separate DNA-dependent oligomerisation activity (5). An important 

mechanistic detail to reveal is whether DNA-binding per sec is sufficient to untwist the 

duplex. To answer this question we investigated the effect of Cd binding to pBluescript 

on the activity of topo I (Fig. 3A). Increasing concentrations of Cd 0.5-1 µM did not 

affect the activity of topo I (Fig. 3A, compare lanes 3, 4 and 5) but at 8 µM a slight 

stimulation of topo I was apparent (Fig. 3A, compare lanes 3 and 6). This was better than 

the non-specific effect observed for DnaB (Fig. 2A lane 4 and Fig. 2B) but much less 

compared with the strong effect seen with the full length DnaD protein (Fig. 1), 

indicating that simple Cd binding to pBluescript causes only minor untwisting of the 

duplex. At 18 and 64 µM Cd there was apparent inhibition of topo I (Fig. 3A; lanes 7 and 

8). Like before with excess DnaD and DnaB, this inhibition was simply a steric effect. 

These observations were verified by 2D gel electrophoresis (Fig. 3B). The combined data 

indicate that the DNA-binding and DNA-induced oligomerisation activities of Cd were 

not sufficient to untwist the DNA significantly. Therefore, it is not simply the DNA-

binding event that untwists the duplex. The formation of the scaffold is also necessary 

and thus duplex untwisting is the result of the the sum of both DNA-binding and scaffold 

formation. Since the size of the scaffolds (40) and the extent of untwisting are both 

concentration dependent the implication is that as the scaffold increases in size at higher 

DnaD concentrations so does the untwisting of the duplex (see Discussion).  
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DnaB does not inhibit the DnaD-mediated untwisting activity 

AFM images of DnaD and DnaB mixtures with supercoiled pBR322 revealed unique 

bipolar nucleoprotein complexes with the two proteins located at diametrically opposite 

ends of the plasmid (40). At higher molar ratios of DnaD relative to DnaB one end of the 

plasmid was partially opened up whereas at higher molar ratios of DnaB relative to DnaD 

the plasmid adopted a highly compacted rod-like conformation (40). These data indicated 

that the two proteins bind to DNA simultaneously and antagonize each other for the 

overall effects on supercoiled DNA. An important question to answer is whether the 

DnaB antagonistic effect against DnaD is accompanied by a concomitant inhibition of the 

DnaD duplex untwisting activity. To answer this question, we examined the effects of 

DnaD and DnaB mixtures on the topo I activity. We investigated the effect of 4 µM 

DnaB on the twisting activity of DnaD (Fig. 4B). At this concentration, DnaB does not 

inhibit topo I; (see Fig. 2). Increasing the concentration of DnaD (0.5-1 µM) in the 

presence of 4 µM DnaB resulted in a slight enhancement topo I relaxation, compared to 

the presence of equivalent concentrations of DnaD alone (Fig. 4B, lanes 3-6). At 8 µM 

DnaD plus 4 µM of DnaB non-specific steric inhibition of topo I was apparent (Fig. 4B, 

compare lanes 7 and 8). At 8 µM of DnaB non-specific steric inhibition of topo I was 

apparent throughout the range of 0.5-33 µM DnaD concentrations (Fig. 4A). The 

combined data suggest that DnaB does not inhibit the untwisting activity of DnaD and if 

anything it appears to slightly enhance it. 

 

AFM revealed that both proteins bind simultaneously to the same plasmid resulting in 

characteristic bipolar structures with the two proteins bound at diametrically opposite 
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ends of a rod-like supercoiled plasmid (40). Under the conditions of our experiment the 

two proteins should be bound simultaneously to the plasmid and partial opening should 

occur (40). This is also supported by the observation that as the concentration of DnaD is 

increased in the presence of DnaB, eventually topo I is sterically inhibited suggesting that 

DnaD binds to DNA simultaneously with DnaB. These data suggest that DnaB binding 

does not inhibit untwisting by DnaD.  

 

DISCUSSION 

DnaD is a replication initiation protein in Bacillus subtilis but its relative abundance in 

the cell, estimated at 3,000-5,000 molecules per cell (4), implies that it may also be 

involved in other additional functions. The discovery of its global DNA remodelling 

activity offered a possible link between replication and nucleoid remodelling (35, 40) but 

the actual mechanism of this remodelling is unclear. This remodelling activity is the sum 

of three separate activities residing on two distinct domains; an Nd domain with a DNA-

independent oligomerisation activity and a Cd domain with DNA-binding and DNA-

dependent oligomerisation activities (5). These separate activities must be coupled to 

each other on the same polypeptide to remodel DNA. This remodelling when applied to a 

supercoiled plasmid is also accompanied by an overall increase in the contour length of 

the plasmid DNA (40). Such an increase can only be explained by a concomitant 

untwisting of the helix and a statistical analysis of several DnaD-pBR322 complexes by 

AFM suggested an average untwisting of the duplex from 10.6 to 16.1 bp per turn (40). 

Our data offer direct biochemical evidence that DnaD binding to a supercoiled plasmid 

causes significant duplex untwisting. Binding of DnaD to DNA via its Cd and the DNA-
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induced oligomerisation event that accompanies this binding (5) are not sufficient to 

remodel the DNA, implying scaffold formation by Nd linked on the same polypeptide is 

essential (5). DnaD binds efficiently to a 19-mer oligonucleotide (5) and assuming 19 

bases as the binding size, compared to the size of pBluescript (2,961 bp), this represents 

approximately 155 binding sites per plasmid for DnaD. Therefore, at 28 and 56 molar 

excess of DnaD it is unlikely that the whole of the plasmid will be open up by DnaD and 

only at 448 molar excess it is likely that the whole of the plasmid will have been forced to 

open up. In fact untwisting increased progressively as the concentration of DnaD was 

raised and reached its maximum level at 8 µM (Fig. 1A), representing 1:448 molar excess 

of DnaD over the plasmid. We hypothesize that initially at low concentrations DnaD 

binds to few sites along the plasmid via its Cd domain and forms localized scaffolds that 

untwist the duplex only partially. As the concentration of DnaD increases the sizes of the 

local scaffolds also increase until they join to form a large circular scaffold holding the 

open plasmid in the periphery. We envisage that as the scaffold grows the duplex 

untwisting also increases progressively until the maximum possible open/paranemic 

plasmid conformation is achieved (Fig. 5). We estimate this to be the case at around 

1:440 molar excess of DnaD over pBluescript. Untwisting of the duplex will compensate 

against the considerable force required to eliminate all the Wr, open up supercoiled DNA 

without nicking, and increase its contour length in a paranemic conformation (Fig. 5).  

 

Local DnaD-mediated superhelical changes at the oriC 

The untwisting activity of DnaD may also be an essential function for oriC remodelling 

to facilitate the initiation of DNA replication. Conversion of the duplex from plectonemic 
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to paranemic by DnaD binding and untwisting within the oriC, may be an essential 

feature for the initiation of DNA replication in Bacillus subtilis. With an effective zero 

Lk the paranemic helix within oriC could be easily separated, thus exposing the 

necessary single strands for loading of the replicative helicase. DnaD may facilitate 

DnaA-binding and melting of the oriC. There are 15 DnaA boxes in the Bacillus subtilis 

oriC and DnaA has differing activities for these sites (23). It binds to strong sites before 

weaker sites in vivo and the affinity of the binding sites plays a role in the staged 

assembly of the unwound oriC (18, 23). Local DnaD remodelling of the oriC may be 

targeted by the direct interaction with DnaA (16) and may enhance DnaA binding 

particularly to the weaker sites thus stimulating the formation of the unwound orisome. 

Indeed, the Escherichia coli DNA remodelling protein HU interacts with oriC and 

enhances the ability of DnaA to unwind the origin in vitro (14). Changes in supercoiling 

within oriC may also affect the binding affinity and/or specificity of other primosomal 

proteins. Indeed such changes in other cases like the hix site can switch the local DNA 

structure from an inefficient conformation for Hin interaction to an efficient one (2). A 

paranemic duplex may also facilitate the helicase loading in replication restart sites away 

from oriC and targeting of DnaD to restart sites may be mediated by a direct interaction 

with PriA (20).  

 

DnaD is a potential modulator of global superhelical density 

The precise role of DnaD in vivo may not be confined to the initiation of DNA 

replication. For example, could its DNA remodelling activity with the significant 

untwisting of the DNA and stimulation of topo I activity be part of the essential 
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homeostatic control of global superhelical density in vivo? Bacterial nucleoids are 

negatively supercoiled closed circular compacted structures separated into distinct 

topological domains (6, 12, 27). Modulation of the superhelical density has been shown 

to be an important factor in bacterial physiology affecting global transcriptional 

regulation, replication, recombination and response to environmental challenges (8, 34, 

37, 39), and nucleoid architectural changes are apparent during growth (1, 17). Excess 

negative supercoiling is growth inhibitory (10) and in Escherichia coli, topA null mutants 

exhibit a growth defect due to increased negative supercoiling and frequently acquire 

compensatory mutations that inactivate DNA gyrase or over-produce topo IV resulting in 

a reduction of negative supercoiling (7, 9, 28, 29). It is attractive to speculate that in 

addition to other functions, DnaD may also act as a global regulator of superhelical 

density in Bacillus subtilis. Indeed its relative abundance in the cell (4) suggests functions 

additional to initiation of DNA replication. Over-production of DnaD in vivo may be an 

alternative mechanism for stimulating topo I activity and thus relieving excess negative 

supercoiling in Bacillus subtilis. A putative functional cooperation between DnaD and 

topo I does not imply a direct interaction between the two proteins (although this has not 

been excluded), as topo I activity can be modulated indirectly by DNA binding proteins 

in the absence of a direct interaction (31). 

 

The role of DnaB 

The precise function(s) of DnaB in the initiation of DNA replication is rather ambiguous. 

It has been suggested to act in conjunction with DnaI, effectively forming a pair of 

helicase loaders that load DnaC onto DNA (36) or alternatively as a membrane 
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attachment protein to regulate initiation of DNA replication by regulating the recruitment 

of DnaD from the cytoplasm to the membrane (13, 30, 33). The latter suggestion is 

consistent with the localization of GFP-DnaD and GFP-DnaB fusions proximal to the cell 

membrane (22) suggesting that the two proteins are likely to interact at some stage during 

primosomal assembly. A mutation in dnaB (DnaBS371P) suppresses the temperature 

sensitive phenotype caused by the dnaD23ts mutation and while DnaB does not interact 

with DnaD, the resulting DnaBS371P mutant interacts directly with DnaD (30). These 

data indicate that there is a genetic link between the two proteins and that DnaB can 

adopt a conformation (induced by the S371P mutation) that interacts directly with DnaD. 

Indeed, a DNA-dependent interaction between the two proteins has been detected (20) 

but it has not been established whether this direct interaction alters the mode of DnaD 

binding to DNA. Both proteins can bind simultaneously to a supercoiled plasmid 

resulting in opposing remodelling effects (40) and in this paper we have established that 

although DnaB opposes DnaD-mediated remodelling it does not inhibit the untwisting 

activity of DnaD. On the contrary it slightly enhances untwisting.  
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FIGURES 

Figure 1 

DnaD stimulates the topo I activity. 

A. The effect of increasing concentrations of DnaD on the activity of topo I.  

pBluescript (18 nM) was incubated with increasing concentrations of DnaD (0.5, 1, 8, 16 

and 32 µM; lanes 4-8, respectively) and then treated sequentially with topo I (4 units) and  

PK prior to electrophoresis. Controls are shown in lanes 1-3, as indicated. Relaxed, linear 

and negatively supercoiled plasmid is indicated by R, L and SC(-), respectively. 

Increased relaxation of the SC(-) plasmid is observed up to 8 µM DnaD (lanes 4-6), 

manifested by the increasing appearance of R. At higher concentrations of DnaD, topo I 

is inhibited as manifested by the appearance of supercoils with higher electrophoretic 

mobility in lanes 7 and 8. 

B. The left panel shows that the initial stimulation of the topo I relaxation activity is 

evident at 1 and 10 µM DnaD (lanes 6 and 7, respectively) whereas at 0.1 and 0.01 µM 

DnaD there was no observable effect (lanes 4 and 5, respectively). Controls are shown in 

lanes 1-3, as indicated. The right panel compares the relaxation of pBluescript by 

increasing concentrations of topo I (4, 8 and 16 units) in the presence and absence of 10 

µM DnaD, as indicated. 16 units of topo I was required to relax pBluescript with 

approximately the same efficiency as 4 units in the presence of 10 µM DnaD (compare 

lanes 4 and 7). Controls are shown in lanes 1-3, as indicated.   

C. 2D gel electrophoresis verifying that DnaD untwists duplex DNA.  

The gels from left to right show 2D gels of the products from the reactions in lanes 3, 4, 

5, 7 and 8 of panel A, respectively. The positions of the R, L and SC(-) plasmids are 
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indicated. Topoisomers with progressively increasing negative Lk are apparent from top 

to bottom. Only topoisomers with Lk values from 0 to -9 are indicated for clarity. 

 

Figure 2 

DnaB does not alter the supehelical properties of DNA. 

A. The effect of increasing concentrations of DnaB on the activity of topo I. 

pBluescript (18 nM) was incubated with increasing concentrations of DnaB (4, 8, 16 and 

26.7 µM; lanes 4-7, respectively) and then treated with topo I (4 units). The reaction was 

terminated and the mixture was treated with PK prior to electrophoresis. Controls are 

shown in lanes 1-3, as indicated. Relaxed, linear and negatively supercoiled plasmid is 

indicated by R, L and SC(-), respectively. Marginal non-specific stimulation is barely 

visible at 4 µM DnaB (lane 4) and inhibition is observed at 8, 16 and 26.7 µM DnaB 

(lanes 5, 6 and 7). Overall there is no significant effect on the topo I activity. 

B. 2D gel electrophoresis verifying that DnaB does not untwist duplex DNA. 

2D gels showing reactions in the absence (left) and presence of 4 and 8 µM DnaB 

(middle and right, respectively), equivalent to the products of the reactions in lanes 3, 4 

and 5 from panel A. The positions of the R, L and SC(-) plasmids are indicated together 

with the position of the Lk=0 topoisomer. Topoisomers with progressively increasing 

negative Lk are apparent from top to bottom. 

 

Figure 3 

The Cd of DnaD cannot untwist duplex DNA. 

A. The effect of increasing concentrations of Cd on the activity of topo I.  
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pBluescript (18 nM) was incubated with increasing concentrations of Cd (0.5, 1, 8, 16 

and 64 µM; lanes 4-8, respectively) and then treated sequentially with topo I (4 units) and 

PK prior to electrophoresis. Controls are shown in lanes 1-3, as indicated. No effect on 

topo I activity was observed at 0.5 and 1 µM  Cd (compare lanes 3, 4 and 5) but a slight 

stimulation of relaxation was observed at 16 µM Cd (compare lanes 3 and 6). At higher 

Cd concentrations (16 and 64 µM) inhibition of relaxation was observed. 

B. 2D gel electrophoresis verifying that Cd inhibits the topo I at high concentration. 

2D gels showing reactions in the absence (left) and presence of 8 and 64 µM Cd (middle 

and right), equivalent to the products of the reactions in lanes 3, 6 and 8 from panel A. 

The positions of the R, L and SC(-) plasmids are indicated together with the position of 

the Lk=0 topoisomer. Topoisomers with progressively increasing negative Lk are 

apparent from top to bottom. 

 

Figure 4 

DnaB inhibits untwisting by DnaD. 

A. The effect of DnaB (8 µM) on the twisting activity of increasing amounts of DnaD 

(0.5-33 µM), as indicated. Appropriate mixtures of proteins were incubated with 

pBluescript (18 nM), sequentially treated with topo I and PK before electrophoresis. The 

positions of fully relaxed, linear and supercoiled plasmids are indicated by R, L and SC, 

respectively. Increasing amounts of DnaD and treatment with topo I resulted in gradual 

positive increases of Lk by duplex untwisting, manifested as a gradual relaxation of the 

negatively supercoiled plasmid (lanes 4, 6 and 8) followed by steric inhibition of topo I 

activity at high concentrations of DnaD (lanes 10 and 12). Under identical conditions but 
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in the presence of 8 µM DnaB, the untwisting activity of DnaD was totally inhibited, as 

manifested by the presence of mainly supercoiled plasmid throughout (lanes 5, 7, 9, 11 

and 13). Controls are shown in lanes 1-3, as indicated.  

B. The same experiment as the one shown in panel A was carried out with 4 µM DnaB at 

0.5, 1 and 9.7 µM DnaD, as indicated. Increasing the concentrations of DnaD (0.5-1 µM) 

in the presence of 4 µM DnaB resulted in a slight enhancement of topo I relaxation the 

presence of equivalent concentrations of DnaD alone (lanes 3-6). 

  

Figure 5 

A schematic diagram illustrating conversion of DNA from plectonemic to paranemic by 

DnaD-concentration dependent untwisting. DNA remodeling by DnaD is the sum of 

separate DNA-independent and DNA-dependent oligomerisation activities residing on its 

Nd and Cd domains, respectively, plus a DNA-binding activity on the Cd domain (15). 

Based upon a DNA-remodelling model proposed before (15), we suggest that initial 

binding of DnaD to DNA via its Cd domain causes only minor untwisting of the duplex 

but as the scaffold forms at higher concentrations, via oligomerisation interactions 

mediated by the Nd domain, gradual untwisting of the duplex becomes significant and the 

duplex is eventually converted to a paranemic form. Only three helical turns are shown 

for simplicity and although untwisting is depicted to open up individual helical turns, it is 

likely that it will be distributed throughout all the helical turns in the circular plasmid 

molecule as the DnaD scaffold grows. 
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