First Flavor-Tagged Determination of Bounds on Mixing-Induced CP Violation in $B_{s}^{0} \rightarrow J / \psi \phi$ Decays

T. Aaltonen, ${ }^{23}$ J. Adelman, ${ }^{13}$ T. Akimoto, ${ }^{54}$ M. G. Albrow, ${ }^{17}$ B. Álvarez González, ${ }^{11}$ S. Amerio, ${ }^{42}$ D. Amidei, ${ }^{34}$ A. Anastassov, ${ }^{51}$ A. Annovi, ${ }^{19}$ J. Antos, ${ }^{14}$ M. Aoki, ${ }^{24}$ G. Apollinari, ${ }^{17}$ A. Apresyan, ${ }^{47}$ T. Arisawa, ${ }^{56}$ A. Artikov, ${ }^{15}$ W. Ashmanskas, ${ }^{17}$ A. Attal, ${ }^{3}$ A. Aurisano, ${ }^{52}$ F. Azfar, ${ }^{41}$ P. Azzi-Bacchetta, ${ }^{42}$ P. Azzurri, ${ }^{45}$ N. Bacchetta, ${ }^{42}$ W. Badgett, ${ }^{17}$ A. Barbaro-Galtieri, ${ }^{28}$ V.E. Barnes, ${ }^{47}$ B. A. Barnett, ${ }^{25}$ S. Baroiant, ${ }^{7}$ V. Bartsch, ${ }^{30}$ G. Bauer, ${ }^{32}$ P.-H. Beauchemin, ${ }^{33}$ F. Bedeschi, ${ }^{45}$ P. Bednar, ${ }^{14}$ S. Behari, ${ }^{25}$ G. Bellettini, ${ }^{45}$ J. Bellinger, ${ }^{58}$ A. Belloni, ${ }^{22}$ D. Benjamin, ${ }^{16}$ A. Beretvas, ${ }^{17}$ J. Beringer, ${ }^{28}$ T. Berry, ${ }^{29}$ A. Bhatti, ${ }^{49}$ M. Binkley, ${ }^{17}$ D. Bisello, ${ }^{42}$ I. Bizjak, ${ }^{30}$ R. E. Blair, ${ }^{2}$ C. Blocker, ${ }^{6}$ B. Blumenfeld, ${ }^{25}$ A. Bocci, ${ }^{16}$ A. Bodek, ${ }^{48}$ V. Boisvert, ${ }^{48}$ G. Bolla, ${ }^{47}$ A. Bolshov, ${ }^{32}$ D. Bortoletto, ${ }^{47}$ J. Boudreau, ${ }^{46}$ A. Boveia, ${ }^{10}$ B. Brau, ${ }^{10}$ A. Bridgeman, ${ }^{24}$ L. Brigliadori, ${ }^{5}$ C. Bromberg, ${ }^{35}$ E. Brubaker, ${ }^{13}$ J. Budagov, ${ }^{15}$ H. S. Budd, ${ }^{48}$ S. Budd, ${ }^{24}$ K. Burkett, ${ }^{17}$ G. Busetto, ${ }^{42}$ P. Bussey, ${ }^{21}$ A. Buzatu, ${ }^{33}$ K. L. Byrum, ${ }^{2}$ S. Cabrera, ${ }^{16, t}$ M. Campanelli, ${ }^{35}$ M. Campbell, ${ }^{34}$ F. Canelli, ${ }^{17}$ A. Canepa, ${ }^{44}$ D. Carlsmith, ${ }^{58}$ R. Carosi, ${ }^{45}$ S. Carrillo, ${ }^{18, n}$ S. Carron, ${ }^{33}$ B. Casal, ${ }^{11}$ M. Casarsa, ${ }^{17}$ A. Castro, ${ }^{5}$ P. Catastini, ${ }^{45}$ D. Cauz, ${ }^{53}$ M. Cavalli-Sforza, ${ }^{3}$ A. Cerri, ${ }^{28}$ L. Cerrito, ${ }^{30, r}$ S. H. Chang, ${ }^{27}$ Y. C. Chen, ${ }^{1}$ M. Chertok, ${ }^{7}$ G. Chiarelli, ${ }^{45}$ G. Chlachidze, ${ }^{17}$ F. Chlebana,,17 K. Cho, ${ }^{27}$ D. Chokheli, ${ }^{15}$ J. P. Chou, ${ }^{22}$ G. Choudalakis, ${ }^{32}$ S. H. Chuang, ${ }^{51}$ K. Chung, ${ }^{12}$ W. H. Chung, ${ }^{58}$ Y. S. Chung, ${ }^{48}$ C. I. Ciobanu, ${ }^{24}$ M. A. Ciocci, ${ }^{45}$ A. Clark, ${ }^{20}$ D. Clark, ${ }^{6}$ G. Compostella, ${ }^{42}$ M. E. Convery, ${ }^{17}$ J. Conway, ${ }^{7}$ B. Cooper, ${ }^{30}$ K. Copic, ${ }^{34}$ M. Cordelli, ${ }^{19}$ G. Cortiana, ${ }^{42}$ F. Crescioli, ${ }^{45}$ C. Cuenca Almenar, ${ }^{7, t}$ J. Cuevas, ${ }^{11, q}$ R. Culbertson, ${ }^{17}$ J. C. Cully, ${ }^{34}$ D. Dagenhart, ${ }^{17}$ M. Datta, ${ }^{17}$ T. Davies, ${ }^{21}$ P. de Barbaro, ${ }^{48}$ S. De Cecco, ${ }^{50}$ A. Deisher, ${ }^{28}$ G. De Lentdecker, ${ }^{48, f}$ G. De Lorenzo, ${ }^{3}$ M. Dell'Orso, ${ }^{45}$ L. Demortier, ${ }^{49}$ J. Deng, ${ }^{16}$ M. Deninno, ${ }^{5}$ D. De Pedis, ${ }^{50}$ P. F. Derwent, ${ }^{17}$ G. P. Di Giovanni, ${ }^{43}$ C. Dionisi, ${ }^{50}$ B. Di Ruzza, ${ }^{53}$ J. R. Dittmann, ${ }^{4}$ M. D'Onofrio, ${ }^{3}$ S. Donati, ${ }^{45}$ P. Dong, ${ }^{8}$ J. Donini, ${ }^{42}$ T. Dorigo, ${ }^{42}$ S. Dube, ${ }^{51}$ J. Efron, ${ }^{38}$ R. Erbacher, ${ }^{7}$ D. Errede, ${ }^{24}$ S. Errede, ${ }^{24}$ R. Eusebi, ${ }^{17}$ H. C. Fang, ${ }^{28}$ S. Farrington, ${ }^{29}$ W. T. Fedorko, ${ }^{13}$ R. G. Feild, ${ }^{59}$ M. Feindt, ${ }^{26}$ J. P. Fernandez, ${ }^{31}$ C. Ferrazza, ${ }^{45}$ R. Field, ${ }^{18}$ G. Flanagan, ${ }^{47}$ R. Forrest, ${ }^{7}$ S. Forrester, ${ }^{7}$ M. Franklin, ${ }^{22}$ J. C. Freeman, ${ }^{28}$ I. Furic, ${ }^{18}$ M. Gallinaro, ${ }^{49}$ J. Galyardt, ${ }^{12}$ F. Garberson, ${ }^{10}$ J. E. Garcia, ${ }^{45}$ A. F. Garfinkel, ${ }^{47}$ K. Genser, ${ }^{17}$ H. Gerberich, ${ }^{24}$ D. Gerdes, ${ }^{34}$ S. Giagu, ${ }^{50}$ V. Giakoumopolou, ${ }^{45, b}$ P. Giannetti, ${ }^{45}$ K. Gibson, ${ }^{46}$ J. L. Gimmell, ${ }^{48}$ C. M. Ginsburg, ${ }^{17}$ N. Giokaris, ${ }^{15, b}$ M. Giordani, ${ }^{53}$ P. Giromini, ${ }^{19}$ M. Giunta, ${ }^{45}$ G. Giurgiu,,${ }^{25}$ V. Glagolev, ${ }^{15}$ D. Glenzinski, ${ }^{17}$ M. Gold, ${ }^{36}$ N. Goldschmidt, ${ }^{18}$ A. Golossanov, ${ }^{17}$ G. Gomez, ${ }^{11}$ G. Gomez-Ceballos, ${ }^{32}$ M. Goncharov, ${ }^{52}$ O. González, ${ }^{31}$ I. Gorelov, ${ }^{36}$ A. T. Goshaw, ${ }^{16}$ K. Goulianos, ${ }^{49}$ A. Gresele, ${ }^{42}$ S. Grinstein, ${ }^{22}$ C. Grosso-Pilcher, ${ }^{13}$ R. C. Group, ${ }^{17}$ U. Grundler, ${ }^{24}$ J. Guimaraes da Costa, ${ }^{22}$ Z. Gunay-Unalan, ${ }^{35}$ C. Haber, ${ }^{28}$ K. Hahn, ${ }^{32}$ S. R. Hahn, ${ }^{17}$ E. Halkiadakis, ${ }^{51}$ A. Hamilton, ${ }^{20}$ B.-Y. Han, ${ }^{48}$ J. Y. Han, ${ }^{48}$ R. Handler, ${ }^{58}$ F. Happacher, ${ }^{19}$ K. Hara, ${ }^{54}$ D. Hare, ${ }^{51}$ M. Hare, ${ }^{55}$ S. Harper, ${ }^{41}$ R. F. Harr, ${ }^{57}$ R. M. Harris, ${ }^{17}$ M. Hartz, ${ }^{46}$ K. Hatakeyama, ${ }^{49}$ J. Hauser, ${ }^{8}$ C. Hays, ${ }^{41}$ M. Heck, ${ }^{26}$ A. Heijboer, ${ }^{44}$ B. Heinemann, ${ }^{28}$ J. Heinrich, ${ }^{44}$ C. Henderson, ${ }^{32}$ M. Herndon, ${ }^{58}$ J. Heuser, ${ }^{26}$ S. Hewamanage, ${ }^{4}$ D. Hidas, ${ }^{16}$ C. S. Hill, ${ }^{10, e}$ D. Hirschbuehl, ${ }^{26}$ A. Hocker, ${ }^{17}$ S. Hou, ${ }^{1}$ M. Houlden, ${ }^{29}$ S.-C. Hsu, ${ }^{9}$ B. T. Huffman, ${ }^{41}$ R.E. Hughes, ${ }^{38}$ U. Husemann, ${ }^{59}$ J. Huston, ${ }^{35}$ J. Incandela, ${ }^{10}$ G. Introzzi, ${ }^{45}$ M. Iori, ${ }^{50}$ A. Ivanov, ${ }^{7}$ B. Iyutin, ${ }^{32}$ E. James, ${ }^{17}$ B. Jayatilaka, ${ }^{16}$ D. Jeans, ${ }^{50}$ E. J. Jeon, ${ }^{27}$ S. Jindariani, ${ }^{18}$ W. Johnson, ${ }^{7}$ M. Jones, ${ }^{47}$ K. K. Joo,,27 S. Y. Jun, ${ }^{12}$ J. E. Jung, ${ }^{27}$ T. R. Junk, ${ }^{24}$ T. Kamon, ${ }^{52}$ D. Kar, ${ }^{18}$ P. E. Karchin, ${ }^{57}$ Y. Kato, ${ }^{40}$ R. Kephart, ${ }^{17}$ U. Kerzel,,26 V. Khotilovich, ${ }^{52}$ B. Kilminster, ${ }^{38}$ D. H. Kim, ${ }^{27}$ H.S. Kim, ${ }^{27}$ J. E. Kim, ${ }^{27}$ M. J. Kim, ${ }^{17}$ S. B. Kim, ${ }^{27}$ S. H. Kim, ${ }^{54}$ Y. K. Kim, ${ }^{13}$ N. Kimura, ${ }^{54}$ L. Kirsch, ${ }^{6}$ S. Klimenko, ${ }^{18}$ M. Klute, ${ }^{32}$ B. Knuteson, ${ }^{32}$ B. R. Ko, ${ }^{16}$ S. A. Koay, ${ }^{10}$ K. Kondo, ${ }^{56}$ D. J. Kong, ${ }^{27}$ J. Konigsberg, ${ }^{18}$ A. Korytov, ${ }^{18}$ A. V. Kotwal, ${ }^{16}$ J. Kraus, ${ }^{24}$ M. Kreps, ${ }^{26}$ J. Kroll, ${ }^{44}$ N. Krumnack, ${ }^{4}$ M. Kruse, ${ }^{16}$ V. Krutelyov, ${ }^{10}$ T. Kubo, ${ }^{54}$ S. E. Kuhlmann, ${ }^{2}$ T. Kuhr, ${ }^{26}$ N. P. Kulkarni, ${ }^{57}$ Y. Kusakabe, ${ }^{56}$ S. Kwang, ${ }^{13}$ A. T. Laasanen, ${ }^{47}$ L. Labarga, ${ }^{31, \mathrm{c}}$ S. Lai, ${ }^{33}$ S. Lami, ${ }^{45}$ S. Lammel, ${ }^{17}$ M. Lancaster, ${ }^{30}$ R. L. Lander, ${ }^{7}$ K. Lannon, ${ }^{38}$ A. Lath, ${ }^{51}$ G. Latino, ${ }^{45}$ I. Lazzizzera, ${ }^{42}$ T. LeCompte, ${ }^{2}$ J. Lee, ${ }^{48}$ J. Lee, ${ }^{27}$ Y. J. Lee, ${ }^{27}$ S. W. Lee, ${ }^{52, s}$ R. Lefèvre, ${ }^{20}$ N. Leonardo, ${ }^{32}$ S. Leone, ${ }^{45}$ S. Levy, ${ }^{13}$ J. D. Lewis, ${ }^{17}$ C. Lin, ${ }^{59}$ C. S. Lin, ${ }^{28}$ J. Linacre, ${ }^{41}$ M. Lindgren, ${ }^{17}$ E. Lipeles, ${ }^{9}$ A. Lister, ${ }^{7}$ D. O. Litvintsev, ${ }^{17}$ C. Liu, ${ }^{46}$ T. Liu, ${ }^{17}$ N. S. Lockyer, ${ }^{44}$ A. Loginov, ${ }^{59}$ M. Loreti, ${ }^{42}$ L. Lovas, ${ }^{14}$ R.-S. Lu, ${ }^{1}$ D. Lucchesi, ${ }^{42}$ J. Lueck, ${ }^{26}$ C. Luci, ${ }^{50}$ P. Lujan, ${ }^{28}$ P. Lukens, ${ }^{17}$ G. Lungu, ${ }^{18}$ L. Lyons, ${ }^{41}$ J. Lys, ${ }^{28}$ R. Lysak, ${ }^{14}$ E. Lytken, ${ }^{47}$ P. Mack, ${ }^{26}$ D. MacQueen, ${ }^{33}$ R. Madrak, ${ }^{17}$ K. Maeshima, ${ }^{17}$ K. Makhoul, ${ }^{32}$ T. Maki, ${ }^{23}$ P. Maksimovic, ${ }^{25}$ S. Malde, ${ }^{41}$ S. Malik, ${ }^{30}$ G. Manca, ${ }^{29}$ A. Manousakis, ${ }^{15, b}$ F. Margaroli, ${ }^{47}$ C. Marino, ${ }^{26}$ C. P. Marino, ${ }^{24}$ A. Martin, ${ }^{59}$ M. Martin,,${ }^{25}$ V. Martin, ${ }^{21,1}$ M. Martínez, ${ }^{3}$ R. Martínez-Ballarín, ${ }^{31}$ T. Maruyama, ${ }^{54}$ P. Mastrandrea, ${ }^{50}$ T. Masubuchi, ${ }^{54}$ M. E. Mattson, ${ }^{57}$ P. Mazzanti, ${ }^{5}$ K. S. McFarland, ${ }^{48}$ P. McIntyre, ${ }^{52}$ R. McNulty, ${ }^{29, k}$ A. Mehta, ${ }^{29}$ P. Mehtala, ${ }^{23}$ S. Menzemer, ${ }^{11, \mathrm{~m}}$ A. Menzione, ${ }^{45}$ P. Merkel,,${ }^{47}$ C. Mesropian, ${ }^{49}$ A. Messina, ${ }^{35}$ T. Miao, ${ }^{17}$ N. Miladinovic, ${ }^{6}$ J. Miles, ${ }^{32}$ R. Miller, ${ }^{35}$ C. Mills, ${ }^{22}$ M. Milnik, ${ }^{26}$ A. Mitra, ${ }^{1}$ G. Mitselmakher, ${ }^{18}$ H. Miyake, ${ }^{54}$ S. Moed, ${ }^{22}$ N. Moggi, ${ }^{5}$ C. S. Moon, ${ }^{27}$ R. Moore, ${ }^{17}$ M. Morello, ${ }^{45}$
P. Movilla Fernandez, ${ }^{28}$ J. Mülmenstädt,,${ }^{28}$ A. Mukherjee, ${ }^{17}$ Th. Muller, ${ }^{26}$ R. Mumford, ${ }^{25}$ P. Murat, ${ }^{17}$ M. Mussini, ${ }^{5}$ J. Nachtman, ${ }^{17}$ Y. Nagai, ${ }^{54}$ A. Nagano, ${ }^{54}$ J. Naganoma, ${ }^{56}$ K. Nakamura, ${ }^{54}$ I. Nakano, ${ }^{39}$ A. Napier, ${ }^{55}$ V. Necula, ${ }^{16}$ C. Neu, ${ }^{44}$ M.S. Neubauer, ${ }^{24}$ J. Nielsen, ${ }^{28, h}$ L. Nodulman, ${ }^{2}$ M. Norman, ${ }^{9}$ O. Norniella, ${ }^{24}$ E. Nurse, ${ }^{30}$ S. H. Oh, ${ }^{16}$ Y. D. Oh, ${ }^{27}$ I. Oksuzian, ${ }^{18}$ T. Okusawa, ${ }^{40}$ R. Oldeman, ${ }^{29}$ R. Orava, ${ }^{23}$ K. Osterberg, ${ }^{23}$ S. Pagan Griso, ${ }^{42}$ C. Pagliarone, ${ }^{45}$ E. Palencia, ${ }^{17}$ V. Papadimitriou, ${ }^{17}$ A. Papaikonomou, ${ }^{26}$ A. A. Paramonov, ${ }^{13}$ B. Parks, ${ }^{38}$ S. Pashapour, ${ }^{33}$ J. Patrick, ${ }^{17}$ G. Pauletta, ${ }^{53}$ M. Paulini, ${ }^{12}$ C. Paus, ${ }^{32}$ D. E. Pellett, ${ }^{7}$ A. Penzo, ${ }^{53}$ T. J. Phillips, ${ }^{16}$ G. Piacentino,,${ }^{45}$ J. Piedra,,${ }^{43}$ L. Pinera, ${ }^{18}$ K. Pitts, ${ }^{24}$ C. Plager, ${ }^{8}$ L. Pondrom, ${ }^{58}$ X. Portell, ${ }^{3}$ O. Poukhov,,${ }^{15}$ N. Pounder, ${ }^{41}$ F. Prakoshyn, ${ }^{15}$ A. Pronko, ${ }^{17}$ J. Proudfoot, ${ }^{2}$ F. Ptohos, ${ }^{17, \mathrm{j}}$ G. Punzi, ${ }^{45}$ J. Pursley, ${ }^{58}$ J. Rademacker, ${ }^{41, \mathrm{e}}$ A. Rahaman, ${ }^{46}$ V. Ramakrishnan, ${ }^{58}$ N. Ranjan, ${ }^{47}$ I. Redondo, ${ }^{31}$ B. Reisert, ${ }^{17}$ V. Rekovic, ${ }^{36}$ P. Renton, ${ }^{41}$ M. Rescigno, ${ }^{50}$ S. Richter, ${ }^{26}$ F. Rimondi, ${ }^{5}$ L. Ristori, ${ }^{45}$ A. Robson, ${ }^{21}$ T. Rodrigo, ${ }^{11}$ E. Rogers, ${ }^{24}$ S. Rolli,,${ }^{55}$ R. Roser, ${ }^{17}$ M. Rossi, ${ }^{53}$ R. Rossin,,${ }^{10}$ P. Roy, ${ }^{33}$ A. Ruiz,,${ }^{11}$ J. Russ, ${ }^{12}$ V. Rusu, ${ }^{17}$ H. Saarikko, ${ }^{23}$ A. Safonov, ${ }^{52}$ W. K. Sakumoto, ${ }^{48}$ G. Salamanna, ${ }^{50}$ O. Saltó, ${ }^{3}$ L. Santi, ${ }^{53}$ S. Sarkar, ${ }^{50}$ L. Sartori,,${ }^{45}$ K. Sato, ${ }^{17}$ A. Savoy-Navarro, ${ }^{43}$ T. Scheidle, ${ }^{26}$ P. Schlabach, ${ }^{17}$ E. E. Schmidt, ${ }^{17}$ M. A. Schmidt, ${ }^{13}$ M. P. Schmidt, ${ }^{59, a}$ M. Schmitt, ${ }^{37}$ T. Schwarz, ${ }^{7}$ L. Scodellaro, ${ }^{11}$ A. L. Scott, ${ }^{10}$ A. Scribano, ${ }^{45}$ F. Scuri, ${ }^{45}$ A. Sedov, ${ }^{47}$ S. Seidel, ${ }^{36}$ Y. Seiya, ${ }^{40}$ A. Semenov, ${ }^{15}$ L. Sexton-Kennedy, ${ }^{17}$ A. Sfyrla, ${ }^{20}$ S.Z. Shalhout, ${ }^{57}$ M. D. Shapiro, ${ }^{28}$ T. Shears, ${ }^{29}$ P.F. Shepard, ${ }^{46}$ D. Sherman, ${ }^{22}$ M. Shimojima, ${ }^{54, p}$ M. Shochet, ${ }^{13}$ Y. Shon, ${ }^{58}$ I. Shreyber, ${ }^{20}$ A. Sidoti, ${ }^{45}$ P. Sinervo, ${ }^{33}$ A. Sisakyan, ${ }^{15}$ A. J. Slaughter, ${ }^{17}$ J. Slaunwhite, ${ }^{38}$ K. Sliwa, ${ }^{55}$ J. R. Smith, ${ }^{7}$ F. D. Snider, ${ }^{17}$ R. Snihur, ${ }^{33}$ M. Soderberg, ${ }^{34}$ A. Soha, ${ }^{7}$ S. Somalwar,,${ }^{51}$ V. Sorin, ${ }^{35}$ J. Spalding, ${ }^{17}$ F. Spinella, ${ }^{45}$ T. Spreitzer, ${ }^{33}$ P. Squillacioti, ${ }^{45}$ M. Stanitzki, ${ }^{59}$ R. St. Denis, ${ }^{21}$ B. Stelzer, ${ }^{8}$ O. Stelzer-Chilton, ${ }^{41}$ D. Stentz, ${ }^{37}$ J. Strologas, ${ }^{36}$ D. Stuart, ${ }^{10}$ J. S. Suh,,${ }^{27}$ A. Sukhanov, ${ }^{18}$ H. Sun, ${ }^{55}$ I. Suslov, ${ }^{15}$ T. Suzuki, ${ }^{54}$ A. Taffard, ${ }^{24, g}$ R. Takashima, ${ }^{39}$ Y. Takeuchi, ${ }^{54}$ R. Tanaka, ${ }^{39}$ M. Tecchio, ${ }^{34}$ P. K. Teng, ${ }^{1}$ K. Terashi, ${ }^{49}$ J. Thom, ${ }^{17, \mathrm{i}}$ A. S. Thompson, ${ }^{21}$ G. A. Thompson, ${ }^{24}$ E. Thomson, ${ }^{44}$ P. Tipton, ${ }^{59}$ V. Tiwari, ${ }^{12}$ S. Tkaczyk,,${ }^{17}$ D. Toback, ${ }^{52}$ S. Tokar, ${ }^{14}$ K. Tollefson, ${ }^{35}$ T. Tomura, ${ }^{54}$ D. Tonelli, ${ }^{17}$ S. Torre, ${ }^{19}$ D. Torretta, ${ }^{17}$ S. Tourneur, ${ }^{43}$ W. Trischuk, ${ }^{33}$ Y. Tu, ${ }^{44}$ N. Turini, ${ }^{45}$ F. Ukegawa, ${ }^{54}$ S. Uozumi, ${ }^{54}$ S. Vallecorsa, ${ }^{20}$ N. van Remortel, ${ }^{23}$ A. Varganov, ${ }^{34}$ E. Vataga, ${ }^{36}$ F. Vázquez, ${ }^{18, n}$ G. Velev, ${ }^{17}$ C. Vellidis, ${ }^{45, b}$ V. Veszpremi, ${ }^{47}$ M. Vidal, ${ }^{31}$ R. Vidal,,${ }^{17}$ I. Vila, ${ }^{11}$ R. Vilar, ${ }^{11}$ T. Vine, ${ }^{30}$ M. Vogel, ${ }^{36}$ I. Volobouev, ${ }^{28,5}$ G. Volpi, ${ }^{45}$ F. Würthwein, ${ }^{9}$ P. Wagner, ${ }^{44}$ R. G. Wagner, ${ }^{2}$ R. L. Wagner, ${ }^{17}$ J. Wagner-Kuhr, ${ }^{26}$ W. Wagner, ${ }^{26}$ T. Wakisaka, ${ }^{40}$ R. Wallny, ${ }^{8}$ S. M. Wang, ${ }^{1}$ A. Warburton, ${ }^{33}$ D. Waters, ${ }^{30}$ M. Weinberger, ${ }^{52}$ W. C. Wester III, ${ }^{17}$ B. Whitehouse, ${ }^{55}$ D. Whiteson, ${ }^{44, g}$ A. B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{17}$ G. Williams, ${ }^{33}$ H. H. Williams, ${ }^{44}$ P. Wilson, ${ }^{17}$ B. L. Winer, ${ }^{38}$ P. Wittich, ${ }^{17, i}$ S. Wolbers, ${ }^{17}$ C. Wolfe, ${ }^{13}$ T. Wright, ${ }^{34}$ X. Wu, ${ }^{20}$ S. M. Wynne, ${ }^{29}$ A. Yagil, ${ }^{9}$ K. Yamamoto, ${ }^{40}$ J. Yamaoka, ${ }^{51}$ T. Yamashita, ${ }^{39}$ C. Yang, ${ }^{59}$ U. K. Yang, ${ }^{13,0}$ Y.C. Yang,,${ }^{27}$ W. M. Yao, ${ }^{28}$ G.P. Yeh, ${ }^{17}$ J. Yoh, ${ }^{17}$ K. Yorita, ${ }^{13}$ T. Yoshida, ${ }^{40}$ G. B. Yu, ${ }^{48}$ I. Yu, ${ }^{27}$ S. S. Yu, ${ }^{17}$ J. C. Yun, ${ }^{17}$ L. Zanello, ${ }^{50}$ A. Zanetti, ${ }^{53}$ I. Zaw, ${ }^{22}$ X. Zhang, ${ }^{24}$ Y. Zheng, ${ }^{8, d}$ and S. Zucchelli ${ }^{5}$
(CDF Collaboration)

[^0]```
\({ }^{23}\) Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
\({ }^{24}\) University of Illinois, Urbana, Illinois 61801, USA
\({ }^{25}\) The Johns Hopkins University, Baltimore, Maryland 21218, USA
\({ }^{26}\) Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
\({ }^{27}\) Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;
Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea;
Chonnam National University, Gwangju, 500-757, Korea
\({ }^{28}\) Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
\({ }^{29}\) University of Liverpool, Liverpool L69 7ZE, United Kingdom
\({ }^{30}\) University College London, London WC1E 6BT, United Kingdom
\({ }^{31}\) Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
\({ }^{32}\) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
\({ }^{33}\) Institute of Particle Physics: McGill University, Montréal, Canada H3A 2T8; and University of Toronto, Toronto, Canada M5S 1A7
\({ }^{34}\) University of Michigan, Ann Arbor, Michigan 48109, USA
\({ }^{35}\) Michigan State University, East Lansing, Michigan 48824, USA
\({ }^{36}\) University of New Mexico, Albuquerque, New Mexico 87131, USA
\({ }^{37}\) Northwestern University, Evanston, Illinois 60208, USA
\({ }^{38}\) The Ohio State University, Columbus, Ohio 43210, USA
\({ }^{39}\) Okayama University, Okayama 700-8530, Japan
\({ }^{40}\) Osaka City University, Osaka 588, Japan
\({ }^{41}\) University of Oxford, Oxford OX1 3RH, United Kingdom
\({ }^{42}\) University of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
\({ }^{43}\) LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
\({ }^{44}\) University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
\({ }^{45}\) Istituto Nazionale di Fisica Nucleare Pisa, Universities of Pisa, Siena and Scuola Normale Superiore, I-56127 Pisa, Italy
\({ }^{46}\) University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
\({ }^{47}\) Purdue University, West Lafayette, Indiana 47907, USA
\({ }^{48}\) University of Rochester, Rochester, New York 14627, USA
\({ }^{49}\) The Rockefeller University, New York, New York 10021, USA
\({ }^{50}\) Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome "La Sapienza," I-00185 Roma, Italy
\({ }^{51}\) Rutgers University, Piscataway, New Jersey 08855, USA
\({ }^{52}\) Texas A\&M University, College Station, Texas 77843, USA
\({ }^{53}\) Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy
\({ }^{54}\) University of Tsukuba, Tsukuba, Ibaraki 305, Japan
\({ }^{55}\) Tufts University, Medford, Massachusetts 02155, USA
\({ }^{56}\) Waseda University, Tokyo 169, Japan
\({ }^{57}\) Wayne State University, Detroit, Michigan 48201, USA
\({ }^{58}\) University of Wisconsin, Madison, Wisconsin 53706, USA
\({ }^{59}\) Yale University, New Haven, Connecticut 06520, USA
(Received 14 December 2007; published 22 April 2008)
```

This Letter describes the first determination of bounds on the $C P$-violation parameter $2 \beta_{s}$ using $B_{s}^{0}$ decays in which the flavor of the bottom meson at production is identified. The result is based on approximately $2000 B_{s}^{0} \rightarrow J / \psi \phi$ decays reconstructed in a $1.35 \mathrm{fb}^{-1}$ data sample collected with the CDF II detector using $p \bar{p}$ collisions produced at the Fermilab Tevatron. We report confidence regions in the two-dimensional space of $2 \beta_{s}$ and the decay-width difference $\Delta \Gamma$. Assuming the standard model predictions of $2 \beta_{s}$ and $\Delta \Gamma$, the probability of a deviation as large as the level of the observed data is $15 \%$, corresponding to 1.5 Gaussian standard deviations.

DOI: 10.1103/PhysRevLett.100.161802
PACS numbers: 13.25.Hw, 11.30.Er

The accurate determination of charge-conjugationparity ( $C P$ ) violation in meson systems has been one of the goals of particle physics since the effect was first discovered in neutral kaon decays in 1964 [1]. Standard model $C P$-violating effects are described through the

Cabibbo-Kobayashi-Maskawa (CKM) mechanism [2], which successfully describes the phenomenology of $C P$ violation in $B^{0}$ and $B^{+}$decays with a single phase responsible for all $C P$ violation effects [3]. However, comparable experimental knowledge from $B_{s}^{0}$ decays has been lacking.

In the $B_{s}^{0}$ system, the mass eigenstates $B_{s L}^{0}$ and $B_{s H}^{0}$ are admixtures of the flavor eigenstates $B_{s}^{0}$ and $\bar{B}_{s}^{0}$. This causes oscillations between the $B_{s}^{0}$ and $\bar{B}_{s}^{0}$ states with a frequency proportional to the mass difference of the mass eigenstates, $\Delta m_{s} \equiv m_{H}-m_{L}$. In the standard model this effect is explained in terms of second-order weak processes involving virtual massive particles that provide a transition amplitude between the $B_{s}^{0}$ and $\bar{B}_{s}^{0}$ states. The magnitude of this mixing amplitude is proportional to the oscillation frequency, while its phase, responsible for $C P$ violation in $B_{s}^{0} \rightarrow J / \psi \phi$ decays, is $-2 \beta_{s}^{S M}=-2 \arg \left(-\frac{V_{t s} V_{t b}^{*}}{V_{c s} V_{c b}^{*}}\right.$ [4], where $V_{i j}$ are the elements of the CKM quark mixing matrix. Global fits of experimental data tightly constrain the $C P$ phase to small values in the context of the standard model, $2 \beta_{s}^{S M} \approx 0.04$ [5]. The presence of physics beyond the standard model could contribute additional processes and modify the magnitude or the phase of the mixing amplitude. The recent precise determination of the oscillation frequency [6] indicates that contributions of new physics to the magnitude are unlikely [7]. However, new physics may contribute significantly to the observed $C P$ phase $2 \beta_{s}=2 \beta_{s}^{\mathrm{SM}}-\phi_{s}^{\mathrm{NP}}[7-9]$, where $\phi_{s}^{\mathrm{NP}}$ is due to the additional processes. The decay-width difference between the mass eigenstates, $\Delta \Gamma \equiv \Gamma_{L}-\Gamma_{H}$, is also sensitive to the same new physics phase. If $\phi_{s}^{\mathrm{NP}} \gg 2 \beta_{s}^{\mathrm{SM}}$ we expect $\Delta \Gamma=2\left|\Gamma_{12}\right| \cos \left(2 \beta_{s}\right)$ [9], where $\left|\Gamma_{12}\right|$ is the off-diagonal element of the $B_{s}^{0}-\bar{B}_{s}^{0}$ decay matrix from the Schrödinger equation describing the time evolution of $B_{s}^{0}$ mesons [10].

In this Letter we present the first study of the $B_{s}^{0} \rightarrow$ $J / \psi \phi$ decay [11] in which the initial state is identified as $B_{s}^{0}$ or its antiparticle $\bar{B}_{s}^{0}$ in a process known as "flavor tagging." Such information is necessary to separate the time evolution of mesons produced as $B_{s}^{0}$ or $\bar{B}_{s}^{0}$. By relating this time development with the $C P$ eigenvalue of the final state that is accessible through the angular distributions of the $J / \psi$ and $\phi$ mesons, we obtain direct sensitivity to the $C P$-violating phase. This phase enters the time development with terms proportional to both $\left|\cos \left(2 \beta_{s}\right)\right|$ and $\sin \left(2 \beta_{s}\right)$. Analyses of $B_{s}^{0} \rightarrow J / \psi \phi$ decays that do not use flavor tagging provide information on $\Delta \Gamma$, and are primarily sensitive to $\left|\cos \left(2 \beta_{s}\right)\right|$ and $\left|\sin \left(2 \beta_{s}\right)\right|$, leading to a fourfold ambiguity in the determination of $2 \beta_{s}$ [10,12].

This measurement uses $1.35 \mathrm{fb}^{-1}$ of data collected by the CDF experiment at the Fermilab Tevatron using a dimuon trigger which preferentially selects events containing $J / \psi \rightarrow \mu^{+} \mu^{-}$decays [13]. The CDF II detector is described in detail in Ref. [13] with the detector subsystems relevant for this analysis discussed in Ref. [14].

We reconstruct the $B_{s}^{0} \rightarrow J / \psi \phi$ decay from the decays $J / \psi \rightarrow \mu^{+} \mu^{-}$and $\phi \rightarrow K^{+} K^{-}$and require these final state particles to originate from a common point. We use an artificial neural network (ANN) [15] to separate $B_{s}^{0} \rightarrow$ $J / \psi \phi$ signal from background. In the ANN training, we consider the following variables: particle identification of
kaons using the time-of-flight detector and the specific ionization energy loss $(d E / d x)$ in the multiwire drift chamber, the momentum components of the $B_{s}^{0}$ and $\phi$ candidates transverse to the proton beam direction, the invariant mass of the $\phi$ candidate, and the quality of a kinematic fit to the trajectories of the final state particles. We have trained the ANN with signal events from simulated data that are passed through the standard GEANT-based [16] simulation of the CDF II detector [17] and are reconstructed as in real data. We use $B_{s}^{0} \rightarrow J / \psi \phi$ mass sideband candidates, defined as those having $m(J / \psi \phi) \in$ [5.2861, 5.3131] $\cup[5.4211,5.4481] \mathrm{GeV} / c^{2}$, as the background sample in the ANN training. Applying the selection on the output variable of the ANN, we observe $2,019 \pm 73$ $B_{s}^{0} \rightarrow J / \psi \phi$ signal events with a signal to background ratio of approximately one. The invariant $J / \psi \phi$ mass distribution is shown in Fig. 1. An event-specific primary interaction point is used in the calculation of the proper decay time, $t=m\left(B_{s}^{0}\right) L_{x y}\left(B_{s}^{0}\right) / p_{T}\left(B_{s}^{0}\right)$, where $L_{x y}\left(B_{s}^{0}\right)$ is the distance from the primary vertex to the $B_{s}^{0} \rightarrow J / \psi \phi$ decay vertex projected onto the momentum of the $B_{s}^{0}$ in the plane transverse to the proton beam direction, $m\left(B_{s}^{0}\right)$ is the mass of the $B_{s}^{0}$ meson [3], and $p_{T}\left(B_{s}^{0}\right)$ is its measured transverse momentum.

The orbital angular momenta of the vector $($ spin 1) mesons, $J / \psi$ and $\phi$, produced in the decay of the pseudoscalar (spin 0) $B_{s}^{0}$ meson, are used to distinguish the $C P$-even $S$ - and $D$-wave final states from the $C P$-odd $P$-wave final state. We measure the decay angles $\theta_{T}, \phi_{T}$, and $\psi_{T}$, defined in Ref. [10], in the transversity basis [18].


FIG. 1. Invariant $\mu^{+} \mu^{-} K^{+} K^{-}$mass distribution with the fit projection overlaid. The vertical lines indicate the mass sideband regions.

The transverse linear polarization amplitudes $A_{\|}$and $A_{\perp}$ correspond to $C P$ even and $C P$ odd final states at $t=0$, respectively. The longitudinal polarization amplitude $A_{0}$ corresponds to a $C P$ even final state. The polarization amplitudes are required to satisfy the condition $\left|A_{0}\right|^{2}+$ $\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}=1$.

In order to separate the time development of the $B_{s}^{0}$ meson from that of the $\bar{B}_{s}^{0}$ meson, we identify the flavor of the $B_{s}^{0}$ or $\bar{B}_{s}^{0}$ meson at the time of production by means of flavor tagging. Two independent types of flavor tags are used, each exploiting specific features of the production of $b$ quarks at the Tevatron, which are primarily produced in $b \bar{b}$ pairs. The first type of flavor tag infers the production flavor of the $B_{s}^{0}$ or $\bar{B}_{s}^{0}$ meson from the decay products of the other $b$ quark in the event. This is known as an oppositeside flavor tag (OST). The OST decisions are based on the charge of muons or electrons from semileptonic $B$ decays [14] or the net charge of the opposite-side jet [14]. If multiple tags are available for an event, the decision from the highest dilution flavor tag is chosen [14]. The tag dilution $\mathcal{D}$, defined by the probability to correctly tag a candidate $P_{\text {tag }} \equiv(1+\mathcal{D}) / 2$, is estimated for each event. The calibration of the OST dilution is determined from $B^{+} \rightarrow J / \psi K^{+}$and $B^{0} \rightarrow J / \psi K^{* 0}$ decays. The second type of flavor tag identifies the flavor of the reconstructed $B_{s}^{0}$ or $\bar{B}_{s}^{0}$ meson at production by correlating it with the charge of an associated kaon arising from fragmentation processes [19], referred to as a same-side kaon tag (SSKT). The SSKT algorithm and its dilution calibration on simulated data are described in Ref. [6]. The average dilution is (11 $\pm$ 2) \% for the OST and $(27 \pm 4) \%$ for the SSKT, where the uncertainties contain both statistical and systematic effects. The measured efficiencies for a candidate to be tagged are $(96 \pm 1) \%$ for the OST and $(50 \pm 1) \%$ for the SSKT.

An unbinned maximum likelihood fit is performed to extract the parameters of interest, $2 \beta_{s}$ and $\Delta \Gamma$, plus additional parameters (referred to as "nuisance parameters") that include the signal fraction $f_{s}$, the mean $B_{s}^{0}$ width $\Gamma \equiv$ $\left(\Gamma_{L}+\Gamma_{H}\right) / 2$, the mixing frequency $\Delta m_{s}$, the magnitudes of the polarization amplitudes $\left|A_{0}\right|^{2},\left|A_{\|}\right|^{2}$, and $\left|A_{\perp}\right|^{2}$, and the strong phases $\delta_{\|} \equiv \arg \left(A_{\|}^{*} A_{0}\right)$ and $\delta_{\perp} \equiv \arg \left(A_{\perp}^{*} A_{0}\right)$. The fit uses information on the reconstructed $B_{s}^{0}$ candidate mass $m$ and its uncertainty $\sigma_{m}$, the $B_{s}^{0}$ candidate proper decay time $t$ and its uncertainty $\sigma_{t}$, the transversity angles $\vec{\rho}=\left\{\cos \theta_{T}, \phi_{T}, \cos \psi_{T}\right\}$, and tag information $\mathcal{D}$ and $\xi$, where $\mathcal{D}$ is the event-specific dilution and $\xi=$ $\{-1,0,+1\}$ is the tag decision, in which +1 corresponds to a candidate tagged as $B_{s}^{0},-1$ to a $\bar{B}_{s}^{0}$, and 0 to an untagged candidate. The single-event likelihood is described in terms of signal $\left(P_{s}\right)$ and background $\left(P_{b}\right)$ probability distribution functions (PDFs) as

$$
\begin{align*}
& f_{s} P_{s}\left(m \mid \sigma_{m}\right) P_{s}\left(t, \vec{\rho}, \xi \mid \mathcal{D}, \sigma_{t}\right) P_{s}\left(\sigma_{t}\right) P_{s}(\mathcal{D}) \\
& \quad+\left(1-f_{s}\right) P_{b}(m) P_{b}\left(t \mid \sigma_{t}\right) P_{b}(\vec{\rho}) P_{b}\left(\sigma_{t}\right) P_{b}(\mathcal{D}) \tag{1}
\end{align*}
$$

The signal mass PDF $P_{s}\left(m \mid \sigma_{m}\right)$ is parametrized as a single Gaussian with a standard deviation determined separately for each candidate, while the background mass PDF, $P_{b}(m)$, is parametrized as a first order polynomial. The distributions of the decay time uncertainty and the eventspecific dilution are observed to be different in signal and background, so we include their PDFs explicitly in the likelihood. The signal PDFs $P_{s}\left(\sigma_{t}\right)$ and $P_{s}(\mathcal{D})$ are determined from sideband-subtracted data distributions, while the background PDFs $P_{b}\left(\sigma_{t}\right)$ and $P_{b}(\mathcal{D})$ are determined from the $J / \psi \phi$ invariant mass sidebands. The PDFs of the decay time uncertainties, $P_{s}\left(\sigma_{t}\right)$ and $P_{b}\left(\sigma_{t}\right)$, are described with a sum of gamma function distributions, while the dilution PDFs $P_{s}(\mathcal{D})$ and $P_{b}(\mathcal{D})$ are included as histograms that have been extracted from data.

The time and angular dependence of the signal PDF $P_{s}\left(t, \vec{\rho}, \xi, \mid \mathcal{D}, \sigma_{t}\right)$ for a single flavor tag can be written in terms of two PDFs, $P$ for $B_{s}^{0}$ and $\bar{P}$ for $\bar{B}_{s}^{0}$, as

$$
\begin{align*}
P_{s}\left(t, \vec{\rho}, \xi \mid \mathcal{D}, \sigma_{t}\right)= & \frac{1+\xi \mathcal{D}}{2} P\left(t, \vec{\rho} \mid \sigma_{t}\right) \epsilon(\vec{\rho}) \\
& +\frac{1-\xi \mathcal{D}}{2} \bar{P}\left(t, \vec{\rho} \mid \sigma_{t}\right) \epsilon(\vec{\rho}) \tag{2}
\end{align*}
$$

which is trivially extended in the case of two independent flavor tags (OST and SSKT). The detector acceptance effects on the transversity angle distributions, $\epsilon(\vec{\rho})$, are modeled with $B_{s}^{0} \rightarrow J / \psi \phi$ simulated data. Threedimensional joint distributions of the transversity angles are used to determine $\epsilon(\vec{\rho})$ in order to correctly account for any dependencies among the angles. The time and angular probabilities for $B_{s}^{0}$ can be expressed as

$$
\begin{align*}
P(t, \vec{\rho}) \propto & \left|A_{0}\right|^{2} \mathcal{T}_{+} f_{1}(\vec{\rho})+\left|A_{\|}\right|^{2} \mathcal{T}_{+} f_{2}(\vec{\rho}) \\
& +\left|A_{\perp}\right|^{2} \mathcal{T}_{-} f_{3}(\vec{\rho})+\left|A_{\|}\right|\left|A_{\perp}\right| \mathcal{U}_{+} f_{4}(\vec{\rho}) \\
& +\left|A_{0}\right|\left|A_{\|}\right| \cos \left(\delta_{\|}\right) \mathcal{T}_{+} f_{5}(\vec{\rho}) \\
& +\left|A_{0}\right|\left|A_{\perp}\right| \mathcal{V}_{+} f_{6}(\vec{\rho}) \tag{3}
\end{align*}
$$

where the functions $f_{1}(\vec{\rho}) \ldots f_{6}(\vec{\rho})$ are defined in Ref. [10]. The probability $\bar{P}$ for $\bar{B}_{s}^{0}$ is obtained by substituting $\mathcal{U}_{+} \rightarrow$ $\mathcal{U}_{-}$and $\mathcal{V}_{+} \rightarrow \mathcal{V}_{-}$. The time-dependent term $\mathcal{T}_{ \pm}$is defined as

$$
\begin{aligned}
\mathcal{T}_{ \pm}= & e^{-\Gamma t} \times\left[\cosh (\Delta \Gamma t / 2) \mp \cos \left(2 \beta_{s}\right) \sinh (\Delta \Gamma t / 2)\right. \\
& \left.\mp \eta \sin \left(2 \beta_{s}\right) \sin \left(\Delta m_{s} t\right)\right]
\end{aligned}
$$

where $\eta=+1$ for $P$ and -1 for $\bar{P}$. The other timedependent terms are defined as

$$
\begin{aligned}
\mathcal{U}_{ \pm}= & \pm e^{-\Gamma t} \times\left[\sin \left(\delta_{\perp}-\delta_{\|}\right) \cos \left(\Delta m_{s} t\right)-\cos \left(\delta_{\perp}-\delta_{\|}\right)\right. \\
& \times \cos \left(2 \beta_{s}\right) \sin \left(\Delta m_{s} t\right) \pm \cos \left(\delta_{\perp}-\delta_{\|}\right) \sin \left(2 \beta_{s}\right) \\
& \times \sinh (\Delta \Gamma t / 2)] \\
\mathcal{V}_{ \pm}= & \pm e^{-\Gamma t} \times\left[\sin \left(\delta_{\perp}\right) \cos \left(\Delta m_{s} t\right)-\cos \left(\delta_{\perp}\right) \cos \left(2 \beta_{s}\right)\right. \\
& \left.\times \sin \left(\Delta m_{s} t\right) \pm \cos \left(\delta_{\perp}\right) \sin \left(2 \beta_{s}\right) \sinh (\Delta \Gamma t / 2)\right] .
\end{aligned}
$$

These relations assume that there is no direct $C P$ violation in the system. The time dependence is convolved with a Gaussian proper time resolution function with standard deviation $\sigma_{t}$, which is adjusted by an overall calibration factor determined from the fit using promptly decaying background candidates. The average of the resolution function is 0.08 ps , with a root-mean-square deviation of 0.04 ps.

We model the background lifetime $\operatorname{PDF} P_{b}\left(t \mid \sigma_{t}\right)$ with a delta function at $t=0$, one and two exponentials with negative slope for $t<0$ and $t>0$, respectively, all of which are convolved with the Gaussian resolution function. The background angular PDFs are factorized, $P_{b}(\vec{\rho})=$ $P_{b}\left(\cos \theta_{T}\right) P_{b}\left(\varphi_{T}\right) P_{b}\left(\cos \psi_{T}\right)$, and are obtained using $B_{s}^{0}$ mass sidebands events.

Possible asymmetries between the tagging rate and dilution of $B_{s}^{0}$ and $\bar{B}_{s}^{0}$ mesons have been studied with control samples and found to be statistically insignificant. We allow important sources of systematic uncertainty, such as the determination of overall calibration factors associated with the proper decay time resolution and the dilutions, to float in the fit. The mixing frequency $\Delta m_{s}=17.77 \pm 0.12 \mathrm{ps}^{-1}$ is constrained in the fit within the experimental uncertainties [6]. Systematic uncertainties coming from alignment, detector sculpting, background angular distributions, decays from other $B$ mesons, the modeling of signal and background are found to have a negligible effect on the determination of both $\Delta \Gamma$ and $\beta_{s}$ relative to statistical uncertainties.

The signal probability distribution is invariant under the simultaneous transformation $\left(2 \beta_{s} \rightarrow \pi-2 \beta_{s}, \Delta \Gamma \rightarrow\right.$ $-\Delta \Gamma, \delta_{\|} \rightarrow 2 \pi-\delta_{\|}$, and $\delta_{\perp} \rightarrow \pi-\delta_{\perp}$ ), causing the likelihood function to have two minima. This symmetry can be removed by restricting any of the above parameters within appropriate ranges. However, even after removal of the exact symmetry, approximate symmetries remain, producing local minima. Since the log-likelihood function is nonparabolic, we cannot meaningfully quote point estimates. Instead we choose to construct a confidence region in the $2 \beta_{s}-\Delta \Gamma$ plane.

We use the Feldman-Cousins likelihood ratio ordering [20] to determine the confidence level ( $C L$ ) for a $20 \times 40$ grid evenly spaced in $2 \beta_{s} \in[-\pi / 2,3 \pi / 2]$ and $\Delta \Gamma \in$ $[-0.7,0.7]$. The other parameters in the fit are treated as nuisance parameters (e.g., $B_{s}^{0}$ mean width, transversity amplitudes, strong phases) [21]. To ensure that the obtained confidence regions provide the quoted coverage against deviations of the nuisance parameters from their values measured in our fit to data, we perform pseudoexperiments by randomly sampling the nuisance parameter space within $\pm 5 \sigma$ of the fit values and confirm coverage of the $68 \%$ and $95 \%$ confidence regions shown in Fig. 2. The solution centered in $0 \leq 2 \beta_{s} \leq \pi / 2$ and $\Delta \Gamma>0$ corresponds to $\cos \left(\delta_{\perp}\right)<0$ and $\cos \left(\delta_{\perp}-\delta_{\|}\right)>0$, while the opposite is true for the solution centered in $\pi / 2 \leq \beta_{s} \leq \pi$


FIG. 2. Feldman-Cousins confidence region in the $2 \beta_{s}-\Delta \Gamma$ plane, where the standard model favored point is shown with error bars [9]. The intersection of the horizontal and vertical dotted lines indicates the reflection symmetry in the $2 \beta_{s}-\Delta \Gamma$ plane.
and $\Delta \Gamma<0$. Assuming the standard model predicted values of $2 \beta_{s}=0.04$ and $\Delta \Gamma=0.096 \mathrm{ps}^{-1}$ [9], the probability to observe a likelihood ratio equal to or higher than what is observed in data is $15 \%$. Additionally, we present a Feldman-Cousins confidence interval of $2 \beta_{s}$, where $\Delta \Gamma$ is treated as a nuisance parameter, and find that $2 \beta_{s} \in$ [0.32, 2.82] at the $68 \%$ confidence level. The $C P$ phase $2 \beta_{s}, \Delta \Gamma, \Gamma$, and the linear polarization amplitudes are consistent with those measured in Ref. [10]. We also exploit current experimental and theoretical information to extract tighter bounds on the $C P$-violating phase. Applying the constraint $\left|\Gamma_{12}\right|=0.048 \pm 0.018$ [9] in the relation $\Delta \Gamma=2\left|\Gamma_{12}\right| \cos \left(2 \beta_{s}\right)$, we obtain $2 \beta_{s} \in[0.24,1.36] \cup$ [1.78, 2.90] at the $68 \%$ C.L.

In summary we present confidence bounds on the $C P$-violation parameter $2 \beta_{s}$ and the width difference $\Delta \Gamma$ from the first study of $B_{s}^{0} \rightarrow J / \psi \phi$ decays using flavor tagging. Assuming the standard model predicted values of $2 \beta_{s}=0.04$ and $\Delta \Gamma=0.096 \mathrm{ps}^{-1}$, the probability of a deviation as large as the level of the observed data is $15 \%$, which corresponds to 1.5 Gaussian standard deviations. Treating $\Delta \Gamma$ instead as a nuisance parameter and fitting only for $2 \beta_{s}$, we find that $2 \beta_{s} \in[0.32,2.82]$ at the $68 \%$ confidence level. The presented experimental bounds restrict the knowledge of $2 \beta_{s}$ to two of the four solutions allowed in measurements that do not use flavor tagging [10,12] and improve the overall knowledge of this parameter.

We would like to thank U. Nierste for several useful suggestions. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS, France; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community's Human Potential Programme; the Slovak R\&D Agency; and the Academy of Finland.
${ }^{\text {a }}$ Deceased.
${ }^{\mathrm{b}}$ Visitor from University of Athens, 15784 Athens, Greece.
${ }^{c}$ Visitor from Universidad Autónoma of Madrid, E-28049 Madrid, Spain.
${ }^{\mathrm{d}}$ Visitor from Chinese Academy of Sciences, Beijing 100864, China.
${ }^{\mathrm{e}}$ Visitor from University of Bristol, Bristol BS8 1TL, United Kingdom.
${ }^{\mathrm{f}}$ Visitor from University Libre de Bruxelles, B-1050 Brussels, Belgium.
${ }^{g}$ Visitor from University of California Irvine, Irvine, CA 92697, USA.
${ }^{h}$ Visitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
${ }^{\text {i }}$ Visitor from Cornell University, Ithaca, NY 14853, USA.
${ }^{\mathrm{j}}$ Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.
${ }^{\mathrm{k}}$ Visitor from University College Dublin, Dublin 4, Ireland.
${ }^{1}$ Visitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
${ }^{m}$ Visitor from University of Heidelberg, D-69120 Heidelberg, Germany.
${ }^{\mathrm{n}}$ Visitor from Universidad Iberoamericana, Mexico D.F., Mexico.
${ }^{\circ}$ Visitor from University of Manchester, Manchester M13 9PL, England, United Kingdom.
${ }^{\mathrm{p}}$ Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
${ }^{\mathrm{q}}$ Visitor from University de Oviedo, E-33007 Oviedo, Spain.
${ }^{\mathrm{r}}$ Visitor from Queen Mary, University of London, London, E1 4NS, England, United Kingdom.
${ }^{\mathrm{s}}$ Visitor from Texas Tech University, Lubbock, TX 79409, USA.
${ }^{\mathrm{t}}$ Visitor from IFIC (CSIC-Universitat de Valencia), 46071 Valencia, Spain.
[1] J. H. Christenson et al., Phys. Rev. Lett. 13, 138 (1964).
[2] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[4] I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63, 114015 (2001).
[5] E. Barberio et al. (Heavy Flavor Averaging Group), arXiv:hep-ex/0603003.
[6] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 242003 (2006), and references therein.
[7] Z. Ligeti, M. Papucci, and G. Perez, Phys. Rev. Lett. 97, 101801 (2006).
[8] W.-S. Hou, M. Nagashima, and A. Soddu, Phys. Rev. D 76, 016004 (2007).
[9] A. Lenz and U. Nierste, J. High Energy Phys. 06 (2007) 072.
[10] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 121803 (2008).
[11] Charge-conjugate states are implied throughout the Letter unless otherwise specified.
[12] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 98, 121801 (2007).
[13] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[14] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 062003 (2006), and references therein.
[15] A. Zell et al., SNNS, Stuttgart Neural Network Simulator, User Manual, Version 3.2 (University of Stuttgart, Stuttgart, Germany, 1994) (Computer Science Department, Report No. 6/94, 1994).
[16] R. Brun et al., Report No. CERN-DD-78-2-REV, 1978).
[17] E. Gerchtein and M. Paulini, ECONF Report No. C0303241, 2003; ECONF Report No. TUMT005, 2003; arXiv:physics/0306031.
[18] A. S. Dighe, I. Dunietz, and R. Fleischer, Eur. Phys. J. C 6, 647 (1999).
[19] A. Ali and F. Barreiro, Z. Phys. C 30, 635 (1986); M. Gronau, A. Nippe, and J. L. Rosner, Phys. Rev. D 47, 1988 (1993); M. Gronau and J. L. Rosner, Phys. Rev. D 49, 254 (1994).
[20] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
[21] A.C. Davison and D. V. Hinkley, Bootstrap Methods and Their Applications (Cambridge University Press, Cambridge, U.K., 1997).


[^0]:    ${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
    ${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
    ${ }^{3}$ Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
    ${ }^{4}$ Baylor University, Waco, Texas 76798, USA
    ${ }^{5}$ Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
    ${ }^{6}$ Brandeis University, Waltham, Massachusetts 02254, USA
    ${ }^{7}$ University of California, Davis, Davis, California 95616, USA
    ${ }^{8}$ University of California, Los Angeles, Los Angeles, California 90024, USA
    ${ }^{9}$ University of California, San Diego, La Jolla, California 92093, USA
    ${ }^{10}$ University of California, Santa Barbara, Santa Barbara, California 93106, USA
    ${ }^{11}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
    ${ }^{12}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
    ${ }^{13}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
    ${ }^{14}$ Comenius University, 84248 Bratislava, Slovakia; Institute of Experimental Physics, 04001 Kosice, Slovakia
    ${ }^{15}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
    ${ }^{16}$ Duke University, Durham, North Carolina 27708, USA
    ${ }^{17}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
    ${ }^{18}$ University of Florida, Gainesville, Florida 32611, USA
    ${ }^{19}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
    ${ }^{20}$ University of Geneva, CH-1211 Geneva 4, Switzerland
    ${ }^{21}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
    ${ }^{22}$ Harvard University, Cambridge, Massachusetts 02138, USA

