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The timing of spiking activity across neurons is a fundamental aspect of the neural population code. Individual neurons
in the retina, thalamus, and cortex can have very precise and repeatable responses but exhibit degraded temporal
precision in response to suboptimal stimuli. To investigate the functional implications for neural populations in natural
conditions, we recorded in vivo the simultaneous responses, to movies of natural scenes, of multiple thalamic neurons
likely converging to a common neuronal target in primary visual cortex. We show that the response of individual
neurons is less precise at lower contrast, but that spike timing precision across neurons is relatively insensitive to
global changes in visual contrast. Overall, spike timing precision within and across cells is on the order of 10 ms. Since
closely timed spikes are more efficient in inducing a spike in downstream cortical neurons, and since fine temporal
precision is necessary to represent the more slowly varying natural environment, we argue that preserving relative
spike timing at a ;10-ms resolution is a crucial property of the neural code entering cortex.
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Introduction

The precision of neuronal spike trains is at the center of a
fundamental debate in neuroscience as to what aspects of
neuronal signaling are important in representing informa-
tion in the brain. Individual neurons can have extremely
precise and repeatable responses to the visual stimuli that
strongly drive them (down to 1-ms variability) [1–5], but they
exhibit seemingly degraded temporal precision of firing
activity in response to suboptimal stimuli [5–10]. In the
presence of natural scenes, the activity of individual neurons
is sparse [11] and precisely timed across repeated presenta-
tions of the visual stimulus, even though natural stimuli tend
to vary on a time scale that is several times slower [12].
However, in most natural circumstances, the brain does not
have access to multiple repetitions of the same identical
stimulus, and, therefore, it is the precision of spiking across
neuronal sub-populations on single trials that is ethologically
relevant. While synchrony across neurons in the retina and
visual cortex has been reported at various time scales, which
can depend on the visual stimulus [10,13], the temporal
precision of the neural code directly entering primary visual
cortex, and its dependence on the stimulus, are still unknown.
We used natural visual stimuli to investigate the spike timing
precision of populations of geniculate neurons that serve as
the direct input to visual cortex. We show that the response of
individual neurons is less precise across stimulus repetitions
when luminance contrast is reduced. However, this reduction
in the precision of spike timing is not observed at the level of
the neuronal population. Therefore, spike timing precision in
populations of geniculate neurons is relatively insensitive to
global changes in visual contrast and remains constant on the
order of ;10 ms. Since closely timed spikes from either a
single neuron [14] or several neurons [15] are more likely to
induce a spike in the downstream cortical neuron to which
they are projecting, and since fine temporal precision is

necessary in representing the more slowly varying natural
environment [12], preserving the relative timing of spikes at a
resolution of ;10 ms may be a crucial aspect of the neural
code entering primary visual cortex.

Results

A short movie of a natural scene recorded from a ‘‘cat-
cam’’ [16] was presented repeatedly to anesthetized cats while
recording extracellular activity of multiple single units in the
lateral geniculate nucleus (LGN) in vivo. To test how spike
timing precision in individual cells and cell populations was
affected by the properties of the visual stimulus, each group
of cells was stimulated with both a high-contrast (HC) version
and a low-contrast (LC) version of the movie. Figure 1A shows
the firing activity of a typical ON-center geniculate cell in
response to a 500-ms section of the movie presented at both
high and low contrast. Each line in the raster plot
corresponds to a single repeat and shows the spikes generated
during one presentation of this movie section. The peri-
stimulus time histogram (PSTH) shows the summed response
across 64 repeated presentations. The geniculate neurons
exhibited a typical pattern of response in which brief
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intervals of silence lasting 15 ms or more alternated with
firing ‘‘events’’ [6], or groups of closely spaced spikes lasting
up to 100 ms (median: 30 ms), which consistently occurred at
approximately the same time on each movie presentation. A
63% reduction of the luminance contrast in the movie
resulted in a 23% reduction in the neuronal firing rate, from
10.5 spikes/s at HC to 8.1 spikes/s at LC on average across cells
(see full distribution in Figure S1A), and in a latency increase
of 3.4 ms (Figure S1B). The firing rate reduction and latency
increase are visible as a decrease in height and a shift in time
in the PSTH events at LC in the particular example of Figure
1A.

PSTH events are typically wider in duration at LC than at
HC [17] (as in the example rasters and PSTHs shown in Figure
1A, where the average event full width at half-height is 7 ms at
HC, 11 ms at LC). Therefore, it has been assumed that
suboptimal stimulation leads to a decrease in the temporal
precision of the response. However, the widening of the
PSTH events from the HC to LC condition could, in
principle, arise from several sources, which have different
functional implications: either an increase in the inter-spike
intervals (ISIs) within the event on each trial (Figure 1B, left),
or an increased variability in the timing of the events
themselves from trial to trial (Figure 1B, right), or some
combination of both factors. Further analyses were per-
formed to test these two possibilities. First, over all cells, the
distribution of (within-trial) ISIs was very similar at HC and
LC. In Figure 1C, both distributions peak at 2.5 ms and have
similar full width at half-height (8 ms at HC, 6 ms at LC). If
ISIs were longer at LC than HC, the ISI distribution would be
wider at LC than HC, which is the opposite of what we find.
The fact that the ISI distribution at LC decays faster than at
HC is simply due to the higher firing rate at HC, as is the case
for Poisson processes (e.g., see [3]). Second, the timing of
events showed significantly more across-trial variability (or
‘‘jitter’’) at LC (10.9 6 1.6 ms mean 6 standard deviation)
than HC (8.2 6 1.3 ms), with a 2.7-ms difference on average
across cells (paired t-test, p , 0.01, n¼45 cells; see Figure 1D).
These results suggest, therefore, that overall spike timing

variability is primarily due to across-trial variability in the
timing of the event as a whole.
Ultimately, to compare within-cell and across-cell varia-

bility, correlation analysis is necessary. Therefore, we first re-
examined and validated these single-cell precision findings in
terms of correlation measures. First, we quantified the
average PSTH event duration by measuring the width of the

Figure 1. Spike Timing Precision in Single Cells

(A) Movies of natural scenes were presented while recording from
individual cells in the LGN. Left panel: The receptive field of a typical LGN
X ON cell is superimposed, to scale, on the first frame of the natural
visual stimulus. Right panel: Raster plots and PSTH for the response of
this cell during a 500-ms segment of the movie, at HC and LC.
(B) Possible sources of spike timing variability composing each PSTH
event, where the red tick marks denote the median time of each event.
(C) Distribution of ISIs (as defined in inset) over all cells (n ¼ 45), at HC
(black) and LC (gray). Arrows indicate distribution peaks.
(D) Distribution of the variability in median event time (as defined in
inset) for all events in all cells, at HC (black) and LC (gray).
doi:10.1371/journal.pbio.0060324.g001
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Author Summary

Neurons convey information about the world in the form of trains of
action potentials (spikes). These trains are highly repeatable when
the same stimulus is presented multiple times, and this temporal
precision across repetitions can be as fine as a few milliseconds. It is
usually assumed that this time scale also corresponds to the timing
precision of several neighboring neurons firing in concert. However,
the relative timing of spikes emitted by different neurons in a local
population is not necessarily as fine as the temporal precision across
repetitions within a single neuron. In the visual system of the brain,
the level of contrast in the image entering the retina can affect
single-neuron temporal precision, but the effects of contrast on the
neural population code are unknown. Here we show that the
temporal scale of the population code entering visual cortex is on
the order of 10 ms and is largely insensitive to changes in visual
contrast. Since closely timed spikes are more efficient in inducing a
spike in downstream cortical neurons, and since fine temporal
precision is necessary in representing the more slowly varying
natural environment, preserving relative spike timing at a ;10-ms
resolution may be a crucial property of the neural code entering
cortex.



PSTH autocorrelation function, in which the temporal
relationship between individual spikes is lost. We also
quantified the temporal precision of individual spikes in a
spike train by measuring the width of the spike autocorre-
lation function (i.e., the autocorrelation of the full spike

train). As detailed in Figure S2, the width of the PSTH
autocorrelation includes two possible sources of spike timing
variability (within-trial and across-trial), whereas the tempo-
ral width of the spike autocorrelation function corresponds
only to the within-trial variability. The PSTH autocorrelation

Figure 2. Firing Event Timing Precision Changes with Contrast, but Spike Timing within Events Does Not

(A and B) Examples of PSTH autocorrelation (A) and spike autocorrelation (B) for four typical cat LGN cells. In each plot, the temporal width of the
autocorrelation function is measured as the standard deviation of the Gaussian function that best fits it in the least-mean-square sense, both at HC (top
half of each plot) and LC (bottom half).
(C) Temporal width of PSTH autocorrelation for all cells (n ¼ 45). The dashed line is the unity line. The shaded area indicates the 95% confidence
estimate of the mean HC/LC ratio of the widths. The mean 6 standard deviation are represented along each axis by an arrowhead and bar. The four
cells illustrated in (A) and (B) are highlighted in the same colors in (C) and (D).
(D) Temporal width of spike autocorrelation for all cells (n¼ 45). Same conventions as in (C).
(E) Temporal width of PSTH autocorrelation for all cells at four levels of local contrast. Each bar represents the meanþ1 standard deviation (n¼45 cells)
at the corresponding range of local contrast. Note that the error bars, which represent standard deviation, are not by themselves indicative of whether
two distributions have significantly different means. Instead, we used asterisks to indicate that two means are statistically significantly different (paired
t-test, p , 0.05).
(F) Temporal width of spike autocorrelation for all cells (n ¼ 45) at the same four levels of local contrast as in (E). Each bar represents the mean þ 1
standard deviation.
doi:10.1371/journal.pbio.0060324.g002

PLoS Biology | www.plosbiology.org December 2008 | Volume 6 | Issue 12 | e3242674

Spike Timing Precision in Population Coding



and spike autocorrelation functions are shown in Figure 2A
and 2B for four typical LGN cells at HC (top) and LC
(bottom), with the temporal widths in each condition
indicated. The PSTH autocorrelation functions were signifi-
cantly wider at LC than at HC on average (Figure 2C; mean 6

standard deviation: HC: 10.0 6 2.5 ms; LC: 13.5 6 3.1 ms;
paired t-test, p ¼ 5 3 10�17, n ¼ 45), whereas spike
autocorrelations did not show a significant difference in
width between LC and HC (Figure 2D; HC: 8.4 6 2.8 ms; LC:
8.5 6 3.8 ms; paired t-test, p ¼ 0.46, n ¼ 45), thus confirming
that spike timing variability is primarily due to across-trial
event-timing variability (see Figure 1). This result was found
not only with natural movies, but also with spatiotemporal
white noise visual stimulation (Figure S3), and was not related
to the cell X or Y type (Figure S4) nor to the occurrence of
LGN bursts (Figure S5). These results indicate that decreasing
the overall contrast increases the timing variability of groups
of spikes (events), but preserves the relative inter-spike timing
precision within each group of spikes (as illustrated in Figure
1B, bottom right), at a time scale on the order of ;10 ms.
The analyses reported above involved the global level of

contrast in the full movie (HC versus LC). To further elucidate
the relationship between spike timing precision and contrast,
we computed the local contrast experienced by each cell as the
visual stimulus unfolds in time. Local values of spatiotemporal
contrast ranged from 6% to 50% root-mean-squared (RMS)
contrast (see Methods). We classified each firing event as
corresponding to one in four levels of local contrast: 6–13%,
13–20%, 20–34%, and 34–50%. For each of these contrast
levels, we computed the PSTH autocorrelation and spike
autocorrelation of each cell, as above. As shown in Figure 2E
and 2F, the results presented above for two global levels of
contrast (HC and LC) were confirmed with four levels of local
contrast. The width of the PSTH autocorrelation significantly
decreased as contrast increased (Figure 2E; paired t-test; left to
right pairwise comparisons: p¼ 13 10�6, p¼ 13 10�7, p¼ 23

10�4, n¼ 45 cells), while spike autocorrelation did not show a
significant difference in width across the four different levels
of local contrast (Figure 2F; paired t-test, p . 0.05 in all
pairwise comparisons, n¼ 45 cells).
If the relative timing of spikes is preserved at different

levels of contrast in single cells, what does it imply across the
population? The activity of local groups of cells with
neighboring receptive fields can be significantly correlated
if the visual input itself has strong spatial and temporal
correlations, as is the case with natural scenes [18–20].
Although it had been proposed that retinal and/or LGN
neurons could remove these correlations through high-pass
filtering achieved by lateral inhibition [21,22], more recent
neurophysiological studies suggest that the cells do not de-
correlate their inputs [13,23], and thus significant correla-
tions from natural scenes remain present. The strength of
pairwise correlation, defined as the area under the cross-
correlation function (in the HC condition), decreased with
the distance between the receptive fields of two cells (Figure
3A), following the decrease of spatial correlation strength in
the visual stimulus (Figure 3A, inset). We focused our analysis
on pairs of cells that displayed sufficient cross-correlation in
the HC condition (n ¼ 41, see Figure 3A) due to strong
correlations in their visual input. Neurons with partially
overlapped receptive fields (Figure 3B) typically receive
similar visual input and therefore tend to share response

Figure 3. Spike Timing Precision across Cells

(A) Correlation strength as a function of the spatial separation between
the receptive fields of cell pairs. Each symbol represents a pair of cells (n
¼ 71). Black symbols denote pairs included in the pairwise analysis (n¼
41), whereas red symbols denote pairs excluded from further analysis
(see Materials and Methods for inclusion criteria). Inset: Spatial
correlation profile of the natural scene stimuli.
(B) Receptive fields of five cells recorded simultaneously in a single
penetration, superimposed (to scale) on a single frame of the visual
stimulus.
(C) Response of two of these cells during a 500-ms segment of the
movie.
(D) Distribution of pairwise ISIs (as defined for the combined spike train
in inset) over all included pairs (n¼ 41; see above), at HC (black) and LC
(gray).
(E) Distribution of pairwise event timing variability (after matching events
that overlapped in both cells) for all included cell pairs.
doi:10.1371/journal.pbio.0060324.g003
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events, as is evident in the two typical LGN X ON cells shown
in Figure 3B and 3C. Both cells tended to fire during the same
events, but there was some degree of timing variability (see
also Figure S6).

The increased variability in event timing in the LC
condition for individual neurons, reported above (see Figure
2), could coexist with a range of effects across a population of
neighboring cells, involving within-trial and across-trial
variability in the relative timing of spikes from several cells.
Since the above result indicates that within cells, event times
are more variable across trials at lower stimulus contrast, we
then tested the hypothesis that event timing across cells, both
within trial and across trials, is also more variable at lower
stimulus contrast. From the perspective of a downstream
layer 4 V1 neuron receiving direct thalamic input, incoming
spike trains that arrive simultaneously from a pair of LGN
neurons may be represented by superimposing both spike
trains into a single combined spike train. The ISI distribution
for these combined spike trains is largely invariant to changes
in contrast and peaks at 2.5 ms for both levels of contrast
(Figure 3D; full width at half-height: 6 ms at HC, 4 ms at LC),
as was the case for single-cell spike trains (Figure 1C). The
across-cell event-time variability can be estimated by merging
events from both cells that overlap in time and measuring the
variability in the median time of the combined event (Figure
3E; mean 6 standard deviation of the event-time variability:
9.9 6 1.0 ms at HC, 13.0 6 1.4 ms at LC; n ¼ 41 cell pairs).
Across-cell event-time variability ranged between 8 and 19
ms, larger than but still on the same order of magnitude as
that for single cells (Figure 1D). Its average value was slightly
higher in the LC than in the HC condition (by 3.1 ms on
average across cell pairs; p , 0.01, n¼ 41). However, it should
be noted that this measure only indicates how the timing of
combined firing events varies across repetitions of an
identical stimulus. As argued above, it is the precision of
spiking across neurons on single trials that is relevant for the
neural population code.

To quantify further the relative precision of spiking across
the neuronal population, we computed cross-correlation in
pairs of cells. While all pairs under study displayed stimulus-
induced correlation, a few pairs also showed correlation on a
finer time scale (,1 ms), suggesting that they received
common input from the same retinal ganglion cell [15].
Figure 4A and 4B shows the spike and PSTH cross-
correlation functions for a pair of cells that shared input
from the same retinal afferent (as in 4/41 pairs) and a pair of
cells that did not. Importantly, since we are focusing on the
neural representation of the visual scene rather than the
details of the synaptic connectivity of LGN populations, our
measure of spike correlation incorporates ‘‘signal’’ correla-
tions (inherited from correlations present in the visual
stimulus) as well as ‘‘noise’’ correlations (arising from other
sources such as shared input from a common retinal
afferent). Both are integral components of the neural code
in natural viewing conditions [24] and, taken together, reflect
the relationships between the correlation structure of the
visual scene and the functional properties of the local
neuronal circuit. Across all pairs of cells under study, the
temporal width of spike cross-correlation only showed a
small difference between HC and LC (Figure 4C; mean 6

standard deviation: 14.7 6 4.7 ms at HC, 15.7 6 4.3 ms at LC;
t-test, p ¼ 0.05, n ¼ 41 pairs; see also control analyses in

Figures S3–S5). Moreover, the PSTH cross-correlation was
very similar to spike cross-correlation (Figure 4D). To
investigate how spike timing precision of cell pairs is
influenced by local visual contrast, we computed the spike
and PSTH cross-correlation at different contrast levels: 6–
13%, 13–20%, 20–34%, and 34–50%, as done previously for
individual cells. The cross-correlation was based only on the
events for which the local contrasts in both receptive fields
were at the same level. Consistent with the results presented
above, there was no trend in the width of spike and PSTH
cross-correlations as a function of local contrast (Figure 4E
and 4F; some of the pairwise t-tests showed statistical
significance, but not as a monotonic decrease in correlation
width with increasing contrast). These results indicate that
within-trial spike timing precision across cells is invariant to
the change in contrast of the natural scene, despite the
increased variability in event timings for individual cells
across trials with decreasing contrast.
As evident in Figures 2F and 4E, the spike cross-correlation

obtained from pairs of neurons was consistently wider than
the spike autocorrelation obtained from each individual
neuron. The difference in width was 8 ms on average (two-
sided Wilcoxon rank sum test, p , 1 3 10�6 for each of four
contrast levels, n ¼ 45 cells, n ¼ 41 cell pairs) and was also
found on a pair-by-pair basis. In almost all cell pairs, cross-
correlation width was significantly greater than the width of
the autocorrelation functions of both cells, as shown in
Figure 5A (see Figure S8 for the case of pairs lying close to the
unity line, i.e., with similar within-cell and across-cell
precision). This finding indicates that spike timing precision
was coarser in neuronal pairs than in individual neurons.
This decrease in precision can be explained by the fact that,
in general, the events are not perfectly aligned across both
cells, as illustrated in Figure 5B. Even if cells have wider PSTH
events at LC than HC, the overall increase in event time
variability from HC to LC by 3 ms is small in the face of
pairwise variability, which is on average 8 ms greater than
single-cell variability.
Another way to compare pairwise variability with contrast-

based variability is by computing, for each shared event, the
difference in event time between both cells (and its
variability) and the difference in event time between the
HC and LC condition (and its variability). As shown in Figure
5C, the difference in event times between two cells is more
variable (i.e., has a wider distribution) than the difference in
event times between HC and LC. The standard deviations of
the distributions across all events are 16 ms (HC) and 18 ms
(LC) across cells, and only 11 ms across contrast (n ¼ 4,205
events). In other words, the variability in event timing across
cells is approximately 1.5 times larger than the variability in
event timing across levels of contrast. Therefore, in the face
of across-cell variability, the smaller changes in variability due
to changes in contrast are negligible. Thus, spike timing
precision across most neighboring cells is relatively insensi-
tive to contrast.

Discussion

In response to movies of natural scenes, spike timing
precision across LGN relay cells remained on the order of
;10 ms, irrespective of contrast. The absolute timing of LGN
firing events changed from trial to trial, and more so at low
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contrast than at high contrast, but the relative timing of
spikes occurring in the same trial was insensitive to changes
in stimulus contrast—not only within cells but also across
correlated neighboring cells. While it is well known that the

response properties of single cells are strongly modulated by
contrast adaptation, which has effects including slower
temporal dynamics and increased gain and selectivity at
lower contrast [17,25,26], our results indicate that the

Figure 4. Spike Timing Precision across Cells Is Coarser than within Cells and Is Largely Insensitive to Contrast

(A) Spike cross-correlation for pairs of simultaneously recorded cells that exhibited correlated activity. Same conventions as in Figure 2B. Top left: Typical
pair of X ON cells. Top right: Pair consisting of a Y OFF cell and an X OFF cell that received common retinal input. Bottom: Average spike cross-
correlation over all 41 pairs.
(B) PSTH cross-correlation for pairs of simultaneously recorded cells that exhibited correlated activity. Same conventions as in Figure 2A. Top: Same
example pairs as in (A). Bottom: Average PSTH cross-correlation over all 41 pairs.
(C) Temporal width of the spike cross-correlation for all included cell pairs (n¼ 41). Same conventions as in Figure 2D.
(D) Comparison of the PSTH and spike cross-correlations at HC.
In (C and D), black dots correspond to pairs sharing common retinal input and colored dots correspond to the two example pairs from (A and B).
(E) Temporal width of spike cross-correlation for all included cell pairs, computed on the firing events for which both cells in the pair experienced the
same level of local contrast. Each bar represents the meanþ 1 standard deviation (n ¼ 41 cell pairs) at the corresponding range of local contrast.
(F) Temporal width of PSTH cross-correlation for all included cell pairs (n ¼ 41), computed on the firing events for which both cells in the pair
experienced the same level of local contrast. Each bar represents the meanþ 1 standard deviation.
doi:10.1371/journal.pbio.0060324.g004
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temporal precision of the LGN population code is globally
maintained in the face of a reduction in contrast.
Interestingly, while in individual neurons PSTH autocor-

relations were consistently wider at low contrast than high
contrast (Figure 2C and 2E), the width of the PSTH (and
spike) cross-correlation was independent of contrast (Figure
4C, 4E, and 4F). This surprising result can be explained by the
large variability in event timing across populations of
neurons, which is about 1.5 times larger than the variability
in event timing caused by changes in contrast (Figure 5C). A
related finding is that while in individual neurons, the PSTH
autocorrelations were consistently wider than the spike
autocorrelations, in cell pairs, PSTH and spike cross-
correlation had very similar widths (Figure 4D and 4F). This
finding suggests that correlations between cells arose mostly
from correlations present in the visual input in our
experimental conditions, and that neural ‘‘noise’’ (or across-
trial variability arising from intrinsic properties of the
system) shows little correlation across neurons (Figure S7).
Nevertheless, it should be noted that the presence of weak,
pairwise noise correlations does not rule out the possibility of
stronger, higher-order correlations at the population level
[27–29].
Downstream from the LGN, the influence of stimulus

contrast on the timing of spikes across V1 cells has only been
recently addressed. Spike timing precision across cells in
anesthetized macaque V1 reportedly decreased for low-
contrast grating stimuli [10], whereas we found that it was
contrast-independent in the cat LGN for natural stimuli.
Further, a recent study in cortical slices suggested that the
degree of noise correlation between two neighboring cortical
cells increased with firing rate [30], unlike the thalamic signal
and noise correlations reported here that were invariant to
contrast-driven changes in firing rates. These discrepancies
may be attributable to differences in the experimental
preparations and in the visual stimuli, or they could be
explained by specific contrast adaptation mechanisms that
occur in cortex but not in precortical areas. For example, in
the peripheral auditory system, adaptation to a constant
stimulus reduces the firing rate but does not impair spike
timing precision [31], in a similar fashion as what we found in
the visual thalamus.
Preserving spike timing across cells at a ;10-ms resolution

may be a crucial aspect of the neural population code in
natural conditions, given that the representation of spatio-
temporally varying natural scenes requires a finer temporal
precision than the time scale of the visual stimulus [12].
Furthermore, a 10-ms temporal resolution could facilitate
‘‘temporal coding’’ under the hypothesis that the neural
representation of sensory information relies on specific
temporal patterns of spikes [32–34]. However, the existence
or preservation of specific temporal patterns is beyond the
scope of the present study. Downstream from the thalamus,
spike timing precision may well vary along the visual pathway.
Single-cell studies found that trial-to-trial variability is
similar in the LGN and V1 when a V1 cell is presented with

Figure 5. Spike Timing Precision across Cells Is Insensitive to Contrast

Despite Contrast Effects on Single-Cell Event Timing

(A) Temporal width of the PSTH cross-correlation of cell pairs as a
function of the larger temporal width of the PSTH autocorrelations of
both cells in each pair at HC. Black dots correspond to pairs sharing
common retinal input and colored dots correspond to the two example
pairs from Figure 4A and 4B.
(B) Spike timing precision across cells is insensitive to the global level of
contrast (see main text).
(C) Full distribution of event time differences in all pairwise events (n ¼

4,205). The abscissa corresponds to the single-cell, contrast-based event
time difference. The ordinate corresponds to the across-cell event time
difference, both at HC (black) and at LC (gray). The mean 6 2 standard
deviations are represented along each axis by an arrowhead and bar.
doi:10.1371/journal.pbio.0060324.g005
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its preferred stimulus, but that V1 cells become more variable
for suboptimal stimuli [5,8,35]. In the presence of natural
movies, which combine optimal and nonoptimal stimulation
for each cell, recent studies in primate V1 indicate that some
visual information is present in the phase of local field
potentials at low frequency (,12 Hz) [36] and that power
associated with spiking activity is only informative at
frequencies under 12 Hz [37]. Therefore, the relevant time
scale in V1 is probably on the order of tens of milliseconds,
only slighter longer than what we found in the LGN. The
small increase in variability in V1 trial-to-trial spike timing
compared to the LGN [35] may be explained by nonlinearities
in the spiking mechanism and may coexist with lower
variability in V1 membrane potential [38]. It is also possible
that temporal precision is higher between cortical cells
receiving input from geniculate cells that share a common
retinal afferent, in a divergent–convergent pattern of con-
nectivity. In any case, it is difficult to relate these previous
results to population coding. The degree of spike timing
precision across V1 cells, especially in natural viewing
conditions, is not well quantified, and how it would be
affected by contrast or other variables is unknown. Further
studies are needed to elucidate how the functional architec-
ture of the thalamocortical circuit constrains spike timing
precision across cells and how it affects the neural code
entering V1.

Preserving synchrony across cells could have a number of
functional advantages. Synchronous spikes from several
thalamic neurons are reportedly needed to drive cortical
cells to threshold [15,39]. Recent studies have suggested that
the cortical response is sensitive to the timing of thalamic
inputs and that the ‘‘window of opportunity’’ for integration
of excitatory inputs at the thalamocortical synapse remains
unchanged in the face of adaptation [40]. Therefore, the
relative timing of spikes in thalamic neurons could be an
important aspect of the population neural code entering
primary sensory cortices and could benefit from being
insensitive to some properties of the sensory world while
maintaining sensitivity to other, presumably more interest-
ing, features.

Materials and Methods

Neural recordings. Single-cell activity was recorded extracellularly
in the LGN of anesthetized and paralyzed cats using a seven-electrode
system. Four animals were used for a total of ten electrode
penetrations. Surgical and experimental procedures were performed
in accordance with United States Department of Agriculture guide-
lines and were approved by the Institutional Animal Care and Use
Committee at the State University of New York, State College of
Optometry. As described in [41], cats were initially anaesthetized with
ketamine (10 mg kg�1 intramuscular) followed by thiopental sodium
(20 mg kg�1 intravenous during surgery and at a continuous rate of 1–
2 mg kg�1 h�1 intravenous during recording; supplemented as
needed). A craniotomy and duratomy were performed to introduce
recording electrodes into the LGN (anterior, 5.5; lateral, 10.5).
Animals were paralyzed with atracurium besylate (0.6–1 mg kg�1 h�1

intravenous) to minimize eye movements, and were artificially
ventilated. Geniculate cells were recorded extracellularly from layer
A of LGN with a multielectrode matrix of seven electrodes [42]. The
multielectrode array was introduced in the brain with an angle that
was precisely adjusted (25–30 degrees antero-posterior, 2–5 degrees
lateral-central) to record from iso-retinotopic lines across the depth
of the LGN. A glass guide tube with an inner diameter of ;300 lm at
the tip was attached to the shaft probe of the multi-electrode to
reduce the inter-electrode distances to approximately 80–300 lm.
Layer A of LGN was physiologically identified by performing several

electrode penetrations to map the retinotopic organization of the
LGN and center the multielectrode array at the retinotopic location
selected for this study (5–10 degrees eccentricity). Recorded voltage
signals were conventionally amplified, filtered, and passed to a
computer running the RASPUTIN software package (Plexon). For
each cell, spike waveforms were identified initially during the
experiment and were verified carefully off-line by spike-sorting
analysis. Cells were classified as X or Y according to their responses to
counterphase sinusoidal gratings. Cells were eliminated from this
study if they did not have at least 2 Hz mean firing rates in response
to all stimulus conditions, or if the maximum amplitude of their
spike-triggered average in response to spatiotemporal white noise
stimuli was not at least five times greater than the amplitude outside
of the receptive field area.

Visual stimulation. For each cell in the main experiments, visual
stimulation consisted of 128–240 repeats of one of two short movies
of natural scenes taken from ‘‘cat-cam’’ movies recorded from a small
camera mounted on top of a cat’s head while roaming in grasslands
and forests [16]. As in [17], to improve temporal resolution, movies
were interpolated by a factor of two (from 25 to 50 Hz) using
commercial software (MotionPerfect, Dynapel Systems Inc.) and then
presented at 60 frames per second, i.e., at 1.23 speed. Following
interpolation, the intensities of each movie frame were rescaled to
have a mean value of 125 (where the full range of intensity values was
0–255). Each movie spanned 48348 pixels at an angular resolution of
0.2 degree per pixel. The first movie (presented to 28 of the cells
included in the final analysis) was 750 frames and lasted 12.5 s, while
the second movie (presented to the remaining 17 cells) was 600
frames long and lasted 10 s. The stimuli were presented at 60 frames
per second with a 120-Hz monitor refresh rate, such that each frame
was displayed twice. Each movie was repeated 64–120 times at each of
two global levels of luminance contrast: 0.4 (high contrast, or HC) and
0.15 (low contrast, or LC) RMS contrast [17].

In addition to ‘‘cat-cam’’ natural movies, as a control for each cell
we also used visual stimulation consisting of spatiotemporal binary
white noise shown at high contrast (0.55 RMS contrast) and low
contrast (0.20 RMS contrast). The spatial resolution and refresh rate
of the white noise stimulus were the same as those of the natural
scene movies. Each cell in the reported data was stimulated with the
natural scenes movies as well as the white noise stimuli with an equal
number of repeats (120 repeats at each level of contrast for 28/45
cells, 64 repeats at each level of contrast for 17/45 cells).

Receptive fields. For each cell, the spatiotemporal receptive field
was estimated by standard spike-triggered-average techniques based
on spatiotemporal white noise stimuli [43,44]. The spatial receptive
field was fitted with a difference of two-dimensional Gaussians. The
distance between receptive fields was defined as the distance between
the centers of the Gaussians. The diameter of each receptive field was
estimated as the average length of the major and minor axes of the
one–standard deviation ellipse that defines the receptive field center.
The overlap between two receptive fields was evaluated as the
normalized dot product of the two receptive fields, computed after
each receptive field had been normalized so that its dot product with
itself was one [45,46].

Properties of neural response. For each cell at each level of
contrast (HC or LC), a single PSTH was computed as the cumulative
response of the cell over all 64–120 repeats of the same short movie.
Each PSTH was therefore 10 or 12.5 s long, depending on the
duration of the stimulus presented to the cell. ISIs were computed as
the time intervals between consecutive spikes; in the case of pairs of
cells, we merged the spike trains from both cells and computed the
ISIs from the combined spike train. Bursts were identified as groups
of spikes separated from each other by 4 ms or less, where the first
spike is preceded by a period of silence of 100 ms or more [47–49].
The degree of burstiness exhibited by each neuron was defined as the
percentage of spikes belonging to a burst.

Correlation analysis. Previous studies typically define temporal
precision of single neurons as the standard deviation of the spike
times within an identified event across trials [6–9,31,35]. In this study,
we first defined a related measure which is the (temporal) width of the
central peak in the PSTH autocorrelation [50]. The width of PSTH
events and the width of the PSTH autocorrelation function are
directly related, by a factor of =2 in the Gaussian approximation. In
computing the PSTH (and its autocorrelation), all spike trains that
the cell produced in response to multiple repeats of an identical
stimulus were collapsed into one ‘‘lumped’’ spike train (i.e., a PSTH
with a 1-ms bin size, of the same duration as a single presentation of
the movie, i.e., 10 or 12.5 s). In the PSTH autocorrelation measure,
the relative timing of spikes within a given trial or across all trials
were confounded. To investigate within-trial temporal precision, we
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therefore computed a different measure: the width of the central
broad peak in the spike autocorrelation, which we defined as the
autocorrelation function of the full (several minutes long) spike train
without collapsing the trials together [51,52].

Although analysis of single cells was a necessary first step, the
primary focus of this study was on spike timing variability across cells.
Two definitions of cross-correlation were used: spike cross-correla-
tion [52,53] and PSTH cross-correlation, which is the cross-
correlation between two PSTHs. Spike cross-correlation width gives
the spike timing variability across cells within each trial. PSTH cross-
correlation has a different meaning: it is approximately equivalent to
the ‘‘shuffled’’ or ‘‘shifted’’ spike correlation, in which each spike
train of one cell is paired with a spike train of the other cell recorded
during a different repeat of the same stimulus. The PSTH cross-
correlation averages correlations from all possible pairwise combi-
nations of repeats (actually including the non-shuffled one, which is
only one in thousands of combinations and therefore has a negligible
contribution).

All four types of correlation functions (spike or PSTH, auto- or
cross-correlation) were made analogous to Pearson’s correlation
coefficient by (i) subtracting the product of the average firing rates,
and (ii) dividing by a normalization factor (see below), such that
correlation could take values between �1 and þ1. To determine the
existence of a central peak or trough in a correlation function, we
found the Gaussian function that best fit the central 6100 ms, in a
least-mean-square sense. The standard deviation of this Gaussian
provides a measure of the correlation width. In the case of
autocorrelation, the height Ai of the best-fitting Gaussian was
measured for each cell i and was subsequently set to 1 to normalize
the autocorrelation function. In the case of cross-correlation between
cells i and j, the best-fitting Gaussian was normalized by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAi 3AjÞ

p
, where Ai and Aj are the heights of each respective

autocorrelation function before normalization. The area under the
Gaussian curve after normalization was used to define the strength of
the cross-correlation between two neurons.

Inclusion criterion for pairs: A pair of cells was included in the final
pairwise analysis if its spike cross-correlation function peaked at a
value of 0.065 or higher, an arbitrary threshold below which the cross-
correlation function could not be well fitted by a Gaussian function.

Correlations in the visual stimulus. For all pairs of pixels
corresponding to the receptive field centers of pairs of cells, we
measured the correlation function between both time series (i.e., the
time series of the intensity values of each pixel across all frames of the
movie). Correlation strength was defined as the area under the
Gaussian curve that best fit the cross-correlation function. The
resulting spatial profile of correlation in the visual input, i.e., the
graph of correlation strength as a function of the distance between
two pixels, was fitted (in the least-mean-square sense) to an
exponential function with a negative exponent, which is the form
expected for spatial correlations in a signal with a power spectrum
decreasing as 1/f 2 with spatial frequency.

Event analysis. Single-cell event analysis: PSTH ‘‘events’’ were first
defined in the PSTH at HC as times of firing interspersed with
periods of silence lasting at least 20 ms. If the standard deviation of
all spike times constituting an event was less than 20 ms, an attempt
was made to break up the event into several events, a procedure in
which the spikes were fitted to a mixture-of-Gaussians model using
the Expectancy Maximization (EM) algorithm for maximum like-
lihood [54]. PSTH events at LC were then defined by aligning LC
spikes to existing HC events if possible, with a preference for an HC
event that occurred earlier rather than after the LC spike (since it is
known that spikes tend to be more delayed at LC than HC). If no
corresponding HC event was found, a new event was created at LC,
with a corresponding empty event at HC. The timing of an event on a
given repeat was defined as the median time of all spikes composing
this event. For each event at a given contrast level, the event time
variability was the standard deviation of the timing of the event
across repeats. We computed for each cell its average event time
variability across all events.

Pairwise event analysis: Starting from the single-cell event analysis
above, each event from the first cell was matched to one or several
events in the second cell with which it overlapped in time. If several
events in one cell could be matched to a single event in the other cell,
these events were merged into one. The list of all events that could be
matched across the two cells constituted the list of ‘‘shared events.’’
For each shared event at a given contrast level, the event time
variability was the standard deviation of the timing of the event
across repeats and across both cells. We computed for each cell pair
its average event time variability across all events.

Event-by-event analysis of event time difference, within cells and across cells:

For all pairs (cell A and cell B), for each pairwise event that existed in
the four cases (cell A at HC, cell A at LC, cell B at HC, and cell B at
LC), we computed within-cell HC-LC event time difference as the
average event time at LC minus the average event time at HC, for
each of the two cells (cell A and cell B). In other words, we hold the
cell fixed and varied across two contrast levels. We also computed
across-cell event time difference at a given contrast level (HC or LC)
as the average event time for cell A minus the average event time for
cell B. In this case, we hold contrast fixed and varied across two cells.
Therefore, each pairwise event yielded four different data points (23
2) to compare the distributions of across-cell and within-cell event
time difference, as shown in Figure 5C.

Local spatiotemporal contrast. For each cell, we computed the
local value of spatiotemporal contrast as follows. For each firing event
determined as above, we identified the smallest rectangle in the image
that encompassed the cell’s receptive field (e.g., 3 3 4 pixels) and
extracted from the movie the luminance values of these pixels at the
six previous frames. Six movie frames at 60 Hz correspond to a
duration of ;100 ms, matching the temporal kernel of the cells. The
RMS contrast of this spatiotemporal patch of the movie was
computed as the standard deviation over all the corresponding pixel
values (e.g., 33 43 6 values). In the LC movie, local contrast values in
the 45 cells ranged from 6–20% RMS contrast. In the HC movie, they
ranged from 14–50%. For each cell, each firing event (in either the
HC or LC condition) was assigned one in four levels of local contrast:
6–13%, 13–20%, 20–34%, or 34–50%. Correlation analysis was then
performed as described above on small sections of data correspond-
ing to individual events. We restricted the cross-correlation analysis
to the firing events for which both cells experienced a value of local
contrast that fell into the same range (out of the four ranges defined
above).

Supporting Information

Figure S1. Distribution of Firing Rates and Latencies

(A) Distribution of average firing rates at HC versus LC (n¼ 45 cells).
The dashed line is the unity line. The shaded area indicates the 95%
confidence estimate of the mean HC/LC ratio of the average firing
rates. The mean 6 1 standard deviation are represented along each
axis by an arrowhead and bar.
(B) Distribution of latencies between LC and HC events, across all
7,878 events from 45 cells. Latency is defined to be positive if LC
occurs later than HC. The distribution of latencies has long tails and
is only shown for the central 650 ms. The mean and standard
deviation of the best-fitting Gaussian (in red) are indicated.

Found at doi:10.1371/journal.pbio.0060324.sg001 (258 KB PDF).

Figure S2. Connections between Spike Train Properties and
Correlation Measures

Found at doi:10.1371/journal.pbio.0060324.sg002 (456 KB PDF).

Figure S3. Results of Experiments in Which Visual Stimulation
Consisted of Spatiotemporal White Noise Stimuli

(A) Temporal width of the PSTH autocorrelation at HC versus LC for
the same 45 cells as in the main results. This figure has the same
conventions as in Figure 2C.
(B) Temporal width of the spike autocorrelation at HC versus LC for
the same 45 cells. Same conventions as in Figure 2D.
(C) Temporal width of the spike cross-correlation at HC versus LC for
the subset of pairs that exhibited a measurable amount of cross-
correlation with white noise stimuli. Same conventions as in Figure
4C.

Found at doi:10.1371/journal.pbio.0060324.sg003 (271 KB PDF).

Figure S4. Control for X versus Y Cell Type

The main single-cell results (see Figure 2) hold for both X cells (red)
and Y cells (green). Cells of unknown X or Y type are represented in
black. The shaded areas correspond to the 95% confidence estimates
of the mean HC/LC ratio of the autocorrelation widths, for X cells
(red, n ¼ 19) and Y cells (green, n ¼ 18). This figure has the same
conventions as in Figure 2C and 2D.
(A) Temporal width of PSTH autocorrelation for natural movies.
(B) Temporal width of spike autocorrelation for natural movies.
(C) Temporal width of PSTH autocorrelation for spatiotemporal
white noise stimuli.
(D) Temporal width of spike autocorrelation for spatiotemporal
white noise stimuli.
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Found at doi:10.1371/journal.pbio.0060324.sg004 (344 KB PDF).

Figure S5. Control for the Occurrence of LGN Putative Calcium
Bursts

(A) Temporal width of the PSTH autocorrelation at HC versus LC (as
in Figure 2C), for the 34 least bursty cells (out of 45 cells total).
(B) Temporal width of the spike autocorrelation at HC versus LC (as
in Figure 2D), for the same 34 least bursty cells.
(C) Temporal width of the spike cross-correlation at HC versus LC, as
in Figure 4C, for the 22 pairs (out of 41 pairs in the main analysis)
involving the 34 least bursty cells from (A) and (B).

Found at doi:10.1371/journal.pbio.0060324.sg005 (281 KB PDF).

Figure S6. Examples of Raster Plots and PSTH for a Single Firing
Event Shared by Two Cells

(A) Event shared by two X ON cells recorded simultaneously, showing
raster plots and PSTHs. Only the repeats in which cell 1 fired at least
one spike are shown (56/64 repeats at LC, 63/64 at HC).
(B) Same event for cell 1 only. The trials have been reordered based
on the event time (calculated as the median spike time within the
event for each trial, denoted with black circle; see Materials and
Methods). The black lines are the best linear fit to the event times,
excluding the ten repeats on which the cell fired the earliest and the
ten repeats on which the cell fired the latest.
(C) Same data as in (A) where the trials are sorted as in (B) by
increasing event time for cell 1.
(D) Same data as in (A) where the trials are ‘‘dejittered’’ by aligning
their median event time for cell 1.
(E) Another event shared by two other cells from a different electrode
penetration (cell 3 spikes: red circles; cell 4 spikes: small blue dots).
These two cells, an X ON cell and a Y ON cell, share input from the
same retinal afferent.
(F) Same as (E) except that the trials are sorted by increasing event
time for cell 3. Only the repeats in which cell 3 fired at least one spike
are shown (60/120 repeats at LC, 44/120 at HC).

Found at doi:10.1371/journal.pbio.0060324.sg006 (485 KB PDF).

Figure S7. Distribution of Noise Correlation

The distribution is across all pairs included in the analysis. The mean
and standard deviation are indicated.

Found at doi:10.1371/journal.pbio.0060324.sg007 (176 KB PDF).

Figure S8. Control for Pairs of Cells with the Most Receptive Field
Overlap, Which Are Likely to Fire at Similar Event Times

(A) Difference in width between the spike cross-correlation function
and the wider of the two spike autocorrelation functions for each
pair, as a function of the distance between the two receptive fields.
Circles: 15 most closely-spaced pairs. The circles filled in black
represent the four pairs of cells receiving common retinal input, as in
Figure 4C. Crosses: 26 remaining pairs.
(B) Temporal width of the spike cross-correlation at HC versus LC for
the 15 pairs shown by circles in (A) (n¼15 pairs). Same conventions as
in Figure 4C.

Found at doi:10.1371/journal.pbio.0060324.sg008 (284 KB PDF).

Text S1. Supporting Analyses

Found at doi:10.1371/journal.pbio.0060324.sd001 (122 KB PDF).
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