

A Simple Method for Estimating the Latency of Interactive, Real-Time
 Graphics Simulations

Anthony Steed*
Department of Computer Science, University College London

Abstract
One of the critical determinants of the effectiveness and usability
of interactive graphics simulations is the latency with which
visual updates can be made based on input from interaction
devices. High latency can diminish performance and can lead to
simulator sickness. We demonstrate a new method for measuring
latency using a standard video camera. The method is simple to
configure, sensitive and rapid to use. This is in contrast to
previous methods which required specialized equipment, were
laborious or could only determine gross changes in latency. We
attach a tracker to a pendulum and move a simulated image on the
screen using the tracker positions. We video both the pendulum
and simulated image together, and fit two sine curves, one to
centre of motion of pendulum and one to the centre of motion of
the simulated image. From the phase difference between these two
sine curves we can determine latency changes significantly less
than the frame rate of the camera. We demonstrate the method by
comparing the latency of a two different systems for a CAVETM-
like display.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.2 [Computer Graphics]: Graphics
Systems

Keywords: Latency, Performance, System Design, Real-Time
Graphics, Interactive Systems

1 Introduction
Real-time simulations are greatly enhanced by the fluidity of their
interactions. Fluidity refers to a combination of the update rate of
the displays, and the end-to-end latency of the system. The end-
to-end latency is the time taken from an input device changing
state to a consequent change on the screen. The update rate of the
simulation is mostly dependent on the application complexity and
rendering performance of the simulation. Although the end-to-end
latency critically depends on the update rate of the display it
additionally depends on several other issues, including the type of
input devices, types of serial and network connection, operating
system and application threading structure. Today many
installations will use PC networks for rendering, rather than single
machine renderers. This means that the end-to-end latency can be
hard to predict because there might be several CPUs and more
than one type of network or device interface. The relationship
between latency and update rates, and the potential sources of

latency are discussed in more detail in Section 2

Latency and update rate have both been shown to impact task
performance or user response to the simulation (e.g. [Bryson and
Fisher 1990; Ellis et al. 1999; Ellis et al. 2002, Meehan et al.
2003]). Latency can also cause nausea and simulator sickness
[Craig et al. 2000]. Monitoring latency so that it can be combated
is thus an important part of the implementation and maintenance
of real-time simulations.

In this paper we present a method for estimating the end-to-end
latency of a graphics simulation system. We measure latency by
simultaneously capturing a video of a target attached to a tracking
device moving on a pendulum, and the movement of a simulated
image that uses the resulting tracking data. By fitting two sine
curves, one to the horizontal displacements of the tracker, and one
to the horizontal displacement of the simulated image, we can
accurately track the phase difference of the two, and thus the
latency of the complete system. The contribution of the paper is
that our latency estimation technique combines the use of off-the-
shelf hardware, simple setup, automatic latency estimation given
an appropriate video sequence and latency estimation with
accuracy at a resolution finer than the frame rate of the video

We demonstrate the method by comparing the latency of two
different systems for driving a CAVETM-like system [Cruz-Neira
et al 1993]. We show that we can accurately measure known
latency offsets and known introduced delays in the system. We
also show that the method is more accurate than a standard frame
counting method with a high frame rate video camera.

2 Related Work

2.1 Sources of Latency
Latency in interactive real-time graphics simulations comes from
various sources [Mine 1993]:

• sensor reading and computation,

• sensor data communication

• application computation

• rendering computation

• display refresh.

Any particular installation may have extra complexity at several
stages. The tracking devices might be plugged in to a dedicated
machine that acts as a server on the network so that many
applications might connect. Although application simulation and
rendering might be done on a single PC, for large-wall or
CAVETM-like systems the rendering might be done on a separate
PC-based cluster connected to the application node via dedicated
networking. The rendering cluster itself might have a frame buffer
integration stage such as sort-last rendering. On a high-end

*A.Steed@cs.ucl.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1806949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rendering system, the rendering itself might be multi-processor or
multi-stage procedure.

Some aspects of installed systems are usually fixed. Most
commonly the tracker device will have a known, fixed sample rate
and the display system will have a fixed refresh rate. In contrast,
the application and rendering compute times will vary between
simulations and may vary within a simulation.

Aspects of the system installation that are difficult to control are
the timing of activities that transfer data between machines or
processes. With 1GB Ethernet now commonplace, in many
facilities it is common to host interface devices off dedicated
machines rather than having application software interface
directly to the interface device connected to the same host.
Although the theoretical latency of networked systems can be low,
in practice latencies of processes that are scheduled on device or
network input or output depend critically on the timing of the
signals that trigger the input or output.

As example of the potential issues in system configuration,
consider a tracking device that can output data at 60Hz. That is,
every 16ms, it becomes ready to send data on a serial or USB link.
To get the lowest latency, the application process must
simultaneously be ready to receive this data and exploit it. To
achieve this, one could set up the tracking device to send data
continuously, and then time the application so that it finished
rendering one frame at the same time that new data was available
so that the application could start work on the next frame directly.
In practice this would require that the both application simulation
and display ran at 60Hz, and could be synchronized.
Synchronizing the processes so is not commonly done in practice,
except on integrated hardware such as games consoles, so
typically a separate process would read data in to memory, with
the application simply taking the latest values out of memory. If
the application also runs at 60Hz, this could incur an overhead of
up to 16ms latency each frame. We might expect 8ms on average,
but we could persistently get 16ms if we were unlucky. A higher
data read rate obviously reduces the problem, though it does not
eliminate it.

Continuing this example, we could then note that 60Hz is not a
common refresh rate for high-end displays such as LCDs or
projection walls. A typical LCD monitor might run at 72Hz, and if
the rendering runs in less than 13.8ms, the graphics update rate
could be 72Hz. This means some frames will be rendered with the
same tracking data, but more importantly, the tracking will get out
of phase, so that some frames will be rendered with tracking data
that could be up to 16ms out of date. Thus the latency of a system
might vary from screen refresh to screen refresh, and it is would
be necessary to sample the latency several times to get a reliable
estimate. As a concrete example of these issues Jacoby et al.
[1996] discuss the latency improvements that are possible by
changing how a Polhemus Fastrak is used to connect to a single-
machine simulator. By moving from the default device
configuration, application and cabling to a revised one, the end-to-
end latency was reduced from 65ms to 30ms.

We note that although we are discussing end-to-end latency of the
system, we need to be precise about what we are actually
measuring. For example, different tracked devices on the same
tracker hardware might be reported at different timings simply

because of the way the tracking device itself works. Latency
might be measured with a single tracked device, which could be
lower latency than the normal use when two or more tracked
devices are used. Also, there might be variation in display
response. The top left of a CRT is shown before the bottom right,
so the latency response will be a few milliseconds different. With
an LCD display, the screen typically refreshes at the same time,
but different colors and different brightness levels take longer to
stabilize. With a multi-display system, different display cards, and
even different monitors on a single card might generate images at
different times unless all the images are genlocked or frame-
locked together. Thus there is rarely a single latency for a system
and we need to be very specific about what we might be
measuring.

Figure 1: A wired Intersense IS900 controller used as
pendulum with two attachment points. A red LED is attached.

Figure 2 A summary image of a typical video capture, with red
(upper line) being the physical pendulum and green (lower line) the

simulated image. The image is created by taking the mean color
across the video sequence minus the median color across the video

sequence, and then normalizing in each color channel.

2.2 Measuring Latency
Because latency is such an important issue several previous
estimation methods have been described. The most commonly
reported in use (e.g. [Meeham et al. 2003]) is Mine’s method
[Mine 1993] which uses an oscilloscope to measure the time
between the firing of two photo-diodes, one on a pendulum which
passes a small light, and another that registers the flash of a pixel
on a screen. Because such systems take measurements at fixed
physical positions, they need careful calibration to ensure that
they are measuring the same position on the swing of the
pendulum and the graphical representation. Adelstein, Johnston
and Ellis [1996] present a more technically sophisticated
arrangement with a driven pendulum that they use to analyze the
latency of several trackers. Both these methods require some
specific hardware or infrastructure to be built.

Liang, Shaw and Green [1991] count frames in a video at 60Hz of
a tracker attached to a moving pendulum. From tracking data, they
know when the pendulum passes the vertical, and by recording
tracking data via the video image, they can deduce the latency in
the number of frames. This particular method requires
reconfiguration of the tracker space, which is impractical in some
situations. Swindells, Dill and Booth [2000] present a similar, but
more accurate method that uses a tracker attached to a driven
turntable. They create a virtual turntable using tracking data, and
by capturing video of the real and virtual turntables together, they
can estimate latency by the angular difference. A simpler method
using a camera is described by [He et al. 2000]. A video is made
of a tracker moving in front of a display that shows an object
controlled by that tracker. By counting the number of frames
between noticeable turning points in the motion, one can get an
estimate of latency. However this is a laborious method, and
prone to error in the identification of the turning points in motion.
We term all of these types of approach, frame counting methods,
because their temporal resolution is in multiples of the video rate.
With sufficient samples they can be accurate, but some of the
methods are sensitive to the fact that they only take periodic
samples, whereas latency can vary quickly.

Miller and Bishop [2006] note that with a motion detection
algorithm, one can determine the frame offset of a motion
automatically, but again the latency is detected in multiples of the
frame rate.

In contrast the method we propose estimates latency with a
normal video camera and the estimation is automatic once the

video is captured. We show the method is more accurate than the
frame counting method with a high frame rate camera.
Importantly we do not need to change any tracker configuration,
or change physical interfaces to devices: one just needs to write a
simple display application. This allows us to monitor the latency
of more complex system assemblies. The system is very simple to
set up and thus we hope it makes latency measurement much
more accessible in the laboratory.

3 Latency Measurement with Video
The method we propose, which we will term the sine fitting
method, uses a tracked pendulum. We attach a small light to the
pendulum and then video the pendulum and a screen behind it
which shows a simulated image whose position is driven by the
tracking information. We do not need to take care to calibrate the
camera position, we just need to ensure that the full range of
motion of the pendulum and the simulated image are on the video
frame. Figure 1 shows a simple pendulum set-up that we used in
the experiments in Section 4. Figure 2 shows a representation of
the video taken of the pendulum and the simulated image.

The advantage over previous methods is that because we know the
motion of the tracker, we can fit a curve to the discrete positions
extracted from the video. By extracting position information from
every video frame, we should be able to reconstruct the motion
accurately and thus achieve better time discrimination than simply
counting frame offsets, or sampling single positions of the
pendulum motion.

The current Matlab implementation of the sine fitting method has
the following stages:

1. Load video and select regions from the video that contain the
physical pendulum and simulated image.

2. Subtract the background.

3. Threshold and extract the pendulum and simulated image
regions.

4. Find centroids of pendulum regions and simulated image
regions and extract the horizontal displacements.

5. Remove any outlier displacements, and replace them by the
average of adjoining pixels.

6. Normalize displacements.

Figure 3: Fit of red (physical pendulum) and green (simulated image) displacements in a video 100 frames (4s) long. The solid
lines indicate the normalised displacements, and the dashed curves, the fitted sine curve. For clarity the fitted sine curves are

scaled to half their amplitude.

7. Fit one sine curve to the pendulum displacements and a
second to the simulated image displacements.

8. Convert the phase difference in frames in to ms.

Most of these stages are quite simple and use standard Matlab
functionality. For Step 7, we have two series of displacement
values normalized to [-1,1]. For each series we first estimate the
dominant frequency and the phase using the technique of Quinn &
Fernandes [1991]. To each series we then fit a function of the
form sine(ax + b) using the built-in Matlab function lsqcurvefit.
Figure 3 shows an example of the fit of the two curves to 100
frames of the video sequence represented in Figure 2.

We did a number of assessments of the potential sensitivity of this
method using simulated video. Under these ideal situations, where
the targets were solid red and solid green and exactly two pixels
square, we were able to reconstruct the latency to within 1ms,
when the latency was simulated in the hundreds of ms. We
experimented with adding random noise to the displacements. On
a video 200 pixels across, normally distributed noise with a
standard deviation of 10 pixels was added after we extracted
horizontal positions at Step 4. This degraded the accuracy of the
latency estimation to +/- 5ms. This level of accuracy would still
be useful as a measure, and this level of noise is significantly
higher than the noise in the videos that we examined.

4 Demonstrations
We examine the sensitivity of the sine fitting method (SFM) by
estimating the latencies of a typical large visualization facility.
This has two different image generators with unknown end-to-end
latencies. We also measure the impact of delaying the rendering
by one or more frames, which will have a well known latency
impact. For comparison, we make estimations using a second
latency measuring method based on a frame counting method
(FCM) using a high-speed video camera.

4.1 System Structure
The system layout of a CAVETM-like system is shown in Figure 4.
The tracking system is a wired Intersense IS-900 with three
tracking devices connected [Intersense 2008]. The device was
configured with no latency compensation, high precision and high
sensitivity. The device is connected over RS232 at 38.4kbaud in
binary mode to an SGI Onyx2. The Onyx2 has 8 MIPS R12000
processors, 8GB RAM and four InfiniteReality2 graphics pipes.
The tracking information is read by a TrackD process [TrackD
2008].

The first image generator is an OpenGL/CAVElibTM [CAVELib
2008] program that runs on the Onyx2. This program connects to
the TrackD process via shared memory. It generates four mono or
time-sequential stereo video signals at 90Hz. These drive CRT
projectors at 1028x768 pixels. The CAVETM-like system
comprises three 3m x 2.2m walls and a 3m x 3m floor.

The second image generator is a self-built PC cluster. This has a
cluster master node with 2GB RAM, and dual 1.8GHz Intel
processors, and four cluster slave nodes with 1GB RAM, single
2.7GHz Intel processors and GeForce Quadro 5600 graphics
cards. All cluster nodes run Windows XP. Each cluster slave node
generates a single mono or time-sequential stereo video signal at
1028x768 @ 85Hz. To retrieve tracking information, a custom
tracker server process on the Onyx2 connects to TrackD and
distributes the readings over UDP at 200Hz. On the cluster master
node, we use the XVR software to create our applications [XVR
2008]. This reads the tracking information coming from the
Onyx2 in a dedicated process, and consumes the UDP tracking
data at 200Hz. The XVR process on the cluster master delegates
rendering to the cluster slaves using a form of distributed
OpenGL. The slave nodes are responsible for buffering OpenGL
and rendering two views; the master is unaware that stereo
rendering is occurring.

Figure 4: Outline architecture for the system being measured. There are two paths to generate images, one via CAVElib/OpenGl on
the Onyx2, and one via a PC cluster.

Intersense

Onyx2

TrackD

CAVElib
OpenGL

Tracker
Server

Projector

ClusterMaster

XVR
Master

ClusterSlave4

XVR
Slave

ClusterSlave3

XVR
Slave

ClusterSlave2

XVR
Slave

ClusterSlave1

XVR
Slave

Projector

Projector

Projector

Video	at	85Hz
Video	at	90Hz
1GB	Ethernet
Shared	Memory	

The networking between Onyx2 and cluster master is an un-
congested 1GB Ethernet. The cluster master node has a second
1GB Ethernet interface to the cluster slave nodes.

For both applications, a single green quadrilateral was drawn.
Only the tracker position was used, so the polygon did not rotate
on the screen. This is what we refer to as the simulated image.
Both applications allow the displays to be configured to render in
time-sequential stereo or mono. In both applications we added
functionality to optionally buffer and delay input tracker readings
by between 1 and 5 frames.

4.2 Implementation of Sine-Fitting Method
We used a Panasonic NV-GS300 Camera which is a 3 CCD
camera, recording at PAL frame rates (25Hz, 50Hz interlaced).
We used a 3CCD camera because we track two different colors on
the screen. A slightly different method using the same color for
the LED and the simulated image would mean that any camera
could be used without worrying about timing differences due to
the camera’s color processing. The video captured to a laptop was
720 by 576 in size. We de-interlaced the video by removing the
second field, and down-sized the video so that it was 320x240 @
25 Hz. One could extract both fields, use a progressive scan
camera, or a camera with NTSC rates to get a higher frame rate
video. For our tests we would either ensure that the display was in
mono, or the video was shot through stereo glasses so that there
was not a double image of the simulated image on the display.

We hung the tracker from the ceiling of the display area so that
the swing had radius of approximately 0.7m. To ensure a vertical
swing, we suspended both ends of the tracker which is a pistol-
grip shaped device. The assembly is shown in Figure 1. Once the
pendulum had swung a few times, any horizontal rotation was
imperceptible to the naked eye leaving only motion in a vertical
plane. We attached a red LED to the tracker. We used a green
quad as the simulated image, because green was the brightest tube
in our CRT projectors. The lowest point on the swing of the green
quadrilateral was about 0.7m below the top of the front screen.
The latency to each screen should be the same because the
renderings are frame-locked together and the video generation
uses genlocked hardware.

We found through informal experimentation, that about 4 seconds
of video, and 3-4 swing cycles was sufficient to get a good
estimate of latency. The filtering and numerical estimation parts
of the method are fast enough that in principle the latency
estimation could be done in real-time. In the results presented
below, the images of the pendulum and simulated image were
about 3x3 pixels, and would move between ¼ and ½ of the way
across the screen.

4.3 Implementation of Frame Counting Method
We gathered comparative latency estimates using a Fastec
TroubleShooter camera. This was configured to capture video at
640x480 pixels at 500Hz. Latency was estimated by counting the
number of frames between the pendulum and the simulated image
reaching extreme positions. This process was done by hand using
image enhancement software because of low light capture by the
camera at 500Hz. It is easy to pin-point the frame where the
physical pendulum reaches its extreme position. It is harder to do
the same for the simulated image. Firstly, because the screen is a
CRT running at 85Hz or 90Hz, only every 5th or 6th frame on the
video captured by the Fastec camera shows the CRT illuminated
because of the CRT’s scanning. The simulated image may also be
static on for several frames at the extreme because of small sub-
pixel movements. Thus the frame number for the extreme of the
simulated image was chosen to be middle of the frames where the
simulated image appeared to be at its extreme.

5 Results
A number of different measurements were made on the system. A
summary of the findings is presented in Table 1. Both latency
estimation methods estimate gave the Onyx2 a higher latency than
the PC cluster system, with estimates of 90ms for the SFM and
104ms for the FCM for the latency of the Onyx2, compared to
64ms by the SFM and 72ms by the FCM for the cluster. However,
we note that the SFM gives a much lower standard deviation in its
estimation compared to the frame counting method. The
difference between the estimates of the two system latencies is
notable because despite the Onyx2 hosting the physical interface
to the tracker, the superior clock-rates of the components of PC
cluster system means that it has a lower end-to-end latency. We

Configuration Frame
Delay

 Samples SFM
Mean (s)

SFM
Std. Dev.(s)

FCM
Mean (s)

FCM
Std. Dev (s)

Onyx2, Mono 0 12 0.090 0.0076 0.104 0.0222
 1 4 0.111 0.0025 0.122 0.0159
 2 4 0.133 0.0068 0.123 0.0233
 3 4 0.154 0.0113 0.136 0.0163
 4 4 0.174 0.0037 0.177 0.0166
 5 4 0.197 0.0058 0.192 0.0370
Cluster, Mono 0 12 0.064 0.0096 0.072 0.0135
 1 4 0.078 0.0016 0.106 0.0170
 2 4 0.096 0.0066 0.116 0.0196
 3 4 0.116 0.0093 0.142 0.0117
 4 4 0.131 0.0029 0.131 0.0194
 5 4 0.150 0.0123 0.168 0.0306
Onyx, Stereo Left Eye N/A 8 0.085 0.0076 0.104 0.0208

Onyx, Stereo Right Eye N/A 8 0.096 0.0092 0.107 0.0234

Oynx, Mono, Offset mark N/A 12 0.091 0.0074 0.105 0.0160

Table 1: Estimated latencies with the sine fitting method (SFM) and frame counting method (FCM) for several system configurations.

note that for the SFM the standard deviation of the readings for
Onyx2 is slightly lower than that for the PC cluster. Extra jitter
would be expected for the PC cluster because of the additional
processes involved.

We can also investigate the effect of frame delay on each system.
The results are also given in Table 1 and plotted in Figure 5 and
Figure 6 for the SFM and Figure 7 and Figure 8 for the FCM. We
have fitted a trend line to each plot. The trend lines in Figure 5
and Figure 6 confirm the base latencies with no added frame delay
(63ms and 90 ms) that were reported for the SFM. The slopes are
different with each frame delay on the PC cluster causing an extra
17ms latency and each frame delay on the Onyx2 causing an extra
21ms latency. These indicate, respectively, frames at 60Hz and
47Hz. The former frequency is precisely the frequency of update
of the monitor of the cluster master: this indicates that the XVR
system is bound by the refresh rate of the cluster master’s display
(60Hz), rather than the cluster slaves’ displays (85Hz). The rate of
47Hz, is fractionally higher than half the video output rate of the
Onyx2 (90Hz). This indicates that, in mono mode, the application
system does not exploit the second potential frame that is
available. The fit for the two trend lines is very good for the SFM.

The FCM does not give such good discrimination of the impact of
latency. Although the estimated trend in latency for the cluster is
calculated at 17ms, the trend line itself is a relatively poor fit to
the data and the trend in latency for the Onyx2 is 18ms a frame, or
55Hz, which is not close to the expected per frame delay of 22ms

(45Hz). We suggest that the poor performance of the FCM
compared to the SFM is because the latter is using many more
sample points, as it uses every frame of the video in its estimation.

An additional test we performed was to track the latency between
the two different stereo frames for the Onyx2. For the SFM this
should be quite challenging, because the theoretical latency
difference is 11ms (90Hz) when the frame length of the video is
25 ms (50Hz). However, as can be seen in Table 1, the stereo left
image has a latency of 85ms, and the stereo right 96ms. Although
the standard deviations of the two are relatively high compared to
the latency difference, we performed a Student’s unpaired, two-
tailed t-test to compare the two distributions of estimates. The t
value was 2.619, and with 14 degrees of freedom, this gives a
significant difference at p = 0.0202 (i.e confidence above 95% to
reject the null hypothesis that the two distributions are the same).
There was no significant difference in the frame times between
stereo left eye and right eye for the FCM.

A final, inconclusive test that was performed was to attempt to
track the latency difference between two different areas of the
screen. This result is the last presented in Table 1. We offset the
simulated image so that it was 0.66m lower on the screen. With
2.2m high screens, this is 3/10 of the screen further down. Thus if
the screen refreshes at 90Hz, with a CRT this should be
approximately 3ms additional latency. Although the SFM does
estimate a difference in mean latencies, the difference is only
1.3ms, and the standard deviations indicate that the difference is

y	=	0.0213x	+	0.0899
R²	=	0.9733

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

M
ea
su
re
d	
La
te
nc
y	
(s
)

Frame	Delay

Latency	trend

y	=	0.0174x	+	0.0622
R²	=	0.9448

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

M
ea
su
re
d	
La
te
nc
y	
(s
)

Frame	Delay

Latency	trend

Figure 7: The estimated latency of the Onyx 2 system at
different frame delays with the frame-counting method

Figure 8: The estimated latency of the PC cluster system at
different frame delays with the frame-counting method

Figure 5: The estimated latency of the Onyx 2 system at
different frame delays with the sine-fitting method

Figure 6: The estimated latency of the PC cluster system at
different frame delays with the sine-fitting method

y	=	0.0186x	+	0.0958
R²	=	0.7185

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

M
ea
su
re
d	
La
te
nc
y	
(s
)

Frame	Delay

Latency	trend

y	=	0.0178x	+	0.0769
R²	=	0.7549

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

M
ea
su
re
d	
La
te
nc
y	
(s
)

Frame	Delay

Latency	trend

not statistically significant (t value of 0.4236 and 22 degrees of
freedom, give p=0.67). The FCM does not detect a significant
difference either.

6 Conclusions
We have demonstrated a new, simple to set up and relatively
sensitive latency measurement method. The sine fitting latency
estimation method is easy to configure as it simply needs a tracker
to be hung from a pendulum and it only requires a standard video
camera. This also makes it relatively flexible to install: there is no
need to bring additional equipment in to the tracked space and the
video camera can be fixed a convenient distance away. A simple
display application needs to be written or an existing application
needs to be modified.

For more general applications, where the developer wants to
include the latency of their own application in the measurement,
there are several strategies that could be used to generate the
required visual feedback without including incurring extra
latency. The rendering required is only a few pixels, enough to be
tracked on the video, so does not intrinsically take much time. If
there is sufficient rendering time, the frame buffer can be cleared
after the full render, and the simulated image drawn. To avoid a
frame buffer clear, the normal application rendering could be done
to an off-screen buffer, to a different viewport, or in certain
circumstances the rendering pipeline or shader configured to
discard RGB pixels after the z-test (thus incurring the full cost of
the shading), or with a color mask. After any alterations to the
rendering, the developer needs to check that the frame rate does
not change; this should imply that the rendering latency hasn’t
been increased.

With the sine fitting method we were able to estimate end-to-end
system latencies of two different image generators for a CAVETM-
like system. We were able to accurately detect the expected
impact of an introduced frame delay in the application system.
Further we were able to reliably detect the timing offset between
the two eyes in a frame sequential stereo system, a difference of
11ms. With the data we gathered we were not able to reliably
detect a timing difference of 3ms. However it is worth reflecting
that at this temporal resolution, we might be frustrated either
because our latency detection process is not sensitive, or because
3ms is within the normal variation in the end-to-end latency of the
system. Based on the discussion of Section 2.1, for the system we
investigated, we can predict an uncertainty of ~5ms in the end-to-
end system latency, because the trackers, rendering and displays
all operate at different frequencies. Thus we suggest that our
latency measurement process is sufficient to detect the types of
difference that might be important in normal laboratory
conditions.

The full Matlab code, the test applications written in CAVElib
and XVR and an example video can be found on the author’s
home page: http://www.cs.ucl.ac.uk/staff/A.Steed

Acknowledgements
Many thanks to Dr. Alan Wilson from the Royal Veterinary
College, London for the loan of the Fastec TroubleShooter
camera.

References
ADELSTEIN, B., JOHNSTON, E. and ELLIS, S. 1996. Dynamic

response of electromagnetic spatial displacement trackers.
Presence: Telepresence and Virtual Environments, 5(3):302-318.

BRYSON,S., and FISHER. S. S. 1990. Defining, Modeling, and
Measuring System Lag in Virtual Environments. Stereoscopic
Displays and Applications I, Proceedings SPIE 1256, 98-109.

CAVElibTM, VRCO, 2008. http://www.vrco.com/
CRAIG, S. J., REID, L., and KRUK, R. 2000. The effect of visual

system time delay on helicopter control. Proceedings of the IEA
2000/HFES 2000 Congress, 3-69-3-72.

CRUZ-NEIRA, C., SANDIN, D.J. and DEFANTI, T.A. 1993.
Surround-screen projection based virtual reality: the design and
implementation of the CAVE. Proceedings of the 20th annual
conference on Computer graphics (SIGGRAPH ‘93), 135-142.

ELLIS, S.R., ADELSTEIN, B.D., BAUMELER, S. , JENSE, G.J. and
JACOBY, R.H. 1999. Sensor Spatial Distortion, Visual Latency,
and Update Rate Effects on 3D Tracking in Virtual
Environment. Proceedings IEEE Virtual Reality (IEEE VR’99)
Conference, 218-221.

ELLIS, S. R., WOLFRAM, A., AND ADELSTEIN, B.D. 2002. Large
amplitude three-dimensional tracking in augmented
environments: a human performance trade-off between system
latency and update rate. Proceedings of HFES. pp. 2149-2154.

HE, D., LIU, F., PAPE, D., DAWE, G. and SANDIN. D. 2000.
Video-Based Measurement of System Latency, International
Immersive Projection Technology Workshop, Ames IA, USA.

INTERSENSE IS-900, 2008. http://www.isense.com/
JACOBY, R. H., ADELSTEIN, B. D., and ELLIS, S. R. 1996.

Improved temporal response in virtual environments through
system hardware and software reorganization. Proceedings of
the SPIE 2653, Stereoscopic displays and virtual reality systems
III, 271-284

LIANG, J., SHAW, C., and GREEN, M. 1991. On Temporal-Spatial
Realism in the Virtual Reality Environment. Proceedings of the
fourth annual symposium on user interface software and
technology 19-25.

MEEHAN, M., RAZZAQUE, S., WHITTON, M. C., and BROOKS, F. P.
2003. Effect of Latency on Presence in Stressful Virtual
Environments. In Proceedings of the IEEE Virtual Reality 2003
(March 22 - 26, 2003). VR. IEEE Computer Society,
Washington, DC, 141-138.

MINE, M. 1993. Characterization of end-to-end delays in head-
mounted display systems. Technical Report TR93-001.
Department of Computer Science, University of North Carolina
at Chapel Hill.

MILLER, D. and BISHOP, G. 2002. Latency Meter: a Device for
Easily Monitoring VE Delay, in Proceedings of SPIE Vol.
#4660 Stereoscopic Displays and Virtual Reality Systems IX,
San Jose, CA.

QUINN, B.G. and FERNANDES, J.M. 1991. A fast technique for the
estimation of frequency, Biometrika,. 78(3), 489-497

SWINDELLS, C., DILL, J. C., and BOOTH, K. S. 2000. System lag
tests for augmented and virtual environments. In Proceedings of
the 13th Annual ACM Symposium on User interface Software
and Technology (UIST '00). ACM, New York, NY, 161-170.

TRACKD, VRCO. 2008.
http://www.vrco.com/trackd/Overviewtrackd.html

XVR. 2008. VR media, http://www.vrmedia.it/

