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Abstract 
One of the critical determinants of the effectiveness and usability 
of interactive graphics simulations is the latency with which 
visual updates can be made based on input from interaction 
devices. High latency can diminish performance and can lead to 
simulator sickness. We demonstrate a new method for measuring 
latency using a standard video camera. The method is simple to 
configure, sensitive and rapid to use. This is in contrast to 
previous methods which required specialized equipment, were 
laborious or could only determine gross changes in latency. We 
attach a tracker to a pendulum and move a simulated image on the 
screen using the tracker positions. We video both the pendulum 
and simulated image together, and  fit two sine curves, one to 
centre of motion of pendulum and one to the centre of motion of 
the simulated image. From the phase difference between these two 
sine curves we can determine latency changes significantly less 
than the frame rate of the camera. We demonstrate the method by 
comparing the latency of a two different systems for a CAVETM-
like display. 

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism; I.3.2 [Computer Graphics]: Graphics 
Systems 

Keywords: Latency, Performance, System Design, Real-Time 
Graphics, Interactive Systems 

1 Introduction 
Real-time simulations are greatly enhanced by the fluidity of their 
interactions. Fluidity refers to a combination of the update rate of 
the displays, and the end-to-end latency of the system. The end-
to-end latency is the time taken from an input device changing 
state to a consequent change on the screen. The update rate of the 
simulation is mostly dependent on the application complexity and 
rendering performance of the simulation. Although the end-to-end 
latency critically depends on the update rate of the display it 
additionally depends on several other issues, including the type of 
input devices, types of serial and network connection, operating 
system and application threading structure. Today many 
installations will use PC networks for rendering, rather than single 
machine renderers. This means that the end-to-end latency can be 
hard to predict because there might be several CPUs and more 
than one type of network or device interface. The relationship 
between latency and update rates, and the potential sources of 

latency are discussed in more detail in Section 2 

Latency and update rate have both been shown to impact task 
performance or user response to the simulation (e.g. [Bryson and 
Fisher 1990; Ellis et al. 1999; Ellis et al. 2002, Meehan et al. 
2003]). Latency can also cause nausea and simulator sickness 
[Craig et al. 2000]. Monitoring latency so that it can be combated 
is thus an important part of the implementation and maintenance 
of real-time simulations. 

In this paper we present a method for estimating the end-to-end 
latency of a graphics simulation system. We measure latency by 
simultaneously capturing a video of a target attached to a tracking 
device moving on a pendulum, and the movement of a simulated 
image that uses the resulting tracking data. By fitting two sine 
curves, one to the horizontal displacements of the tracker, and one 
to the horizontal displacement of the simulated image, we can 
accurately track the phase difference of the two, and thus the 
latency of the complete system. The contribution of the paper is 
that our latency estimation technique combines the use of off-the-
shelf hardware, simple setup, automatic latency estimation given 
an appropriate video sequence and latency estimation with 
accuracy at a resolution finer than the frame rate of the video 

We demonstrate the method by comparing the latency of two 
different systems for driving a CAVETM-like system [Cruz-Neira 
et al 1993]. We show that we can accurately measure known 
latency offsets and known introduced delays in the system. We 
also show that the method is more accurate than a standard frame 
counting method with a high frame rate video camera. 

2 Related Work 

2.1 Sources of Latency 
Latency in interactive real-time graphics simulations comes from 
various sources [Mine 1993]: 

• sensor reading and computation, 

• sensor data communication 

• application computation 

• rendering computation 

• display refresh. 

Any particular installation may have extra complexity at several 
stages. The tracking devices might be plugged in to a dedicated 
machine that acts as a server on the network so that many 
applications might connect. Although application simulation and 
rendering might be done on a single PC, for large-wall or 
CAVETM-like systems the rendering might be done on a separate 
PC-based cluster connected to the application node via dedicated 
networking. The rendering cluster itself might have a frame buffer 
integration stage such as sort-last rendering. On a high-end 
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rendering system, the rendering itself might be multi-processor or 
multi-stage procedure. 

Some aspects of installed systems are usually fixed. Most 
commonly the tracker device will have a known, fixed sample rate 
and the display system will have a fixed refresh rate. In contrast, 
the application and rendering compute times will vary between 
simulations and may vary within a simulation.  

Aspects of the system installation that are difficult to control are 
the timing of activities that transfer data between machines or 
processes. With 1GB Ethernet now commonplace, in many 
facilities it is common to host interface devices off dedicated 
machines rather than having application software interface 
directly to the interface device connected to the same host. 
Although the theoretical latency of networked systems can be low, 
in practice latencies of processes that are scheduled on device or 
network input or output depend critically on the timing of the 
signals that trigger the input or output.  

As example of the potential issues in system configuration, 
consider a tracking device that can output data at 60Hz. That is, 
every 16ms, it becomes ready to send data on a serial or USB link. 
To get the lowest latency, the application process must 
simultaneously be ready to receive this data and exploit it. To 
achieve this, one could set up the tracking device to send data 
continuously, and then time the application so that it finished 
rendering one frame at the same time that new data was available 
so that the application could start work on the next frame directly. 
In practice this would require that the both application simulation 
and display ran at 60Hz, and could be synchronized. 
Synchronizing the processes so is not commonly done in practice, 
except on integrated hardware such as games consoles, so 
typically a separate process would read data in to memory, with 
the application simply taking the latest values out of memory. If 
the application also runs at 60Hz, this could incur an overhead of 
up to 16ms latency each frame. We might expect 8ms on average, 
but we could persistently get 16ms if we were unlucky. A higher 
data read rate obviously reduces the problem, though it does not 
eliminate it.  

Continuing this example, we could then note that 60Hz is not a 
common refresh rate for high-end displays such as LCDs or 
projection walls. A typical LCD monitor might run at 72Hz, and if 
the rendering runs in less than 13.8ms, the graphics update rate 
could be 72Hz. This means some frames will be rendered with the 
same tracking data, but more importantly, the tracking will get out 
of phase, so that some frames will be rendered with tracking data 
that could be up to 16ms out of date. Thus the latency of a system 
might vary from screen refresh to screen refresh, and it is would 
be necessary to sample the latency several times to get a reliable 
estimate. As a concrete example of these issues Jacoby et al. 
[1996] discuss the latency improvements that are possible by 
changing how a Polhemus Fastrak is used to connect to a single-
machine simulator. By moving from the default device 
configuration, application and cabling to a revised one, the end-to-
end latency was reduced from 65ms to 30ms. 

We note that although we are discussing end-to-end latency of the 
system, we need to be precise about what we are actually 
measuring. For example, different tracked devices on the same 
tracker hardware might be reported at different timings simply 

because of the way the tracking device itself works. Latency 
might be measured with a single tracked device, which could be 
lower latency than the normal use when two or more tracked 
devices are used. Also, there might be variation in display 
response. The top left of a CRT is shown before the bottom right, 
so the latency response will be a few milliseconds different. With 
an LCD display, the screen typically refreshes at the same time, 
but different colors and different brightness levels take longer to 
stabilize. With a multi-display system, different display cards, and 
even different monitors on a single card might generate images at 
different times unless all the images are genlocked or frame-
locked together. Thus there is rarely a single latency for a system 
and we need to be very specific about what we might be 
measuring.  

Figure 1: A wired Intersense IS900 controller used as 
pendulum with two attachment points. A red LED is attached. 

Figure 2 A summary image of a typical video capture, with red 
(upper line)  being the physical pendulum and green (lower line) the 

simulated image.  The image is created by taking the mean color 
across the video sequence minus the median color across the video 

sequence, and then normalizing in each color channel. 



  

 

2.2 Measuring Latency 
Because latency is such an important issue several previous 
estimation methods have been described. The most commonly 
reported in use (e.g. [Meeham et al. 2003]) is Mine’s method 
[Mine 1993] which uses an oscilloscope to measure the time 
between the firing of two photo-diodes, one on a pendulum which 
passes a small light, and another that registers the flash of a pixel 
on a screen. Because such systems take measurements at fixed 
physical positions, they need careful calibration to ensure that 
they are measuring the same position on the swing of the 
pendulum and the graphical representation. Adelstein, Johnston 
and Ellis [1996] present a more technically sophisticated 
arrangement with a driven pendulum that they use to analyze the 
latency of several trackers. Both these methods require some 
specific hardware or infrastructure to be built. 

Liang, Shaw and Green [1991] count frames in a video at 60Hz of 
a tracker attached to a moving pendulum. From tracking data, they 
know when the pendulum passes the vertical, and by recording 
tracking data via the video image, they can deduce the latency in 
the number of frames. This particular method requires 
reconfiguration of the tracker space, which is impractical in some 
situations. Swindells, Dill and Booth [2000] present a similar, but 
more accurate method that uses a tracker attached to a driven 
turntable. They create a virtual turntable using tracking data, and 
by capturing video of the real and virtual turntables together, they 
can estimate latency by the angular difference. A simpler method 
using a camera is described by [He et al. 2000]. A video is made 
of a tracker moving in front of a display that shows an object 
controlled by that tracker. By counting the number of frames 
between noticeable turning points in the motion, one can get an 
estimate of latency. However this is a laborious method, and 
prone to error in the identification of the turning points in motion. 
We term all of these types of approach, frame counting methods, 
because their temporal resolution is in multiples of the video rate. 
With sufficient samples they can be accurate, but some of the 
methods are sensitive to the fact that they only take periodic 
samples, whereas latency can vary quickly.  

Miller and Bishop [2006] note that with a motion detection 
algorithm, one can determine the frame offset of a motion 
automatically, but again the latency is detected in multiples of the 
frame rate. 

In contrast the method we propose estimates latency with a 
normal video camera and the estimation is automatic once the 

video is captured. We show the method is more accurate than the 
frame counting method with a high frame rate camera. 
Importantly we do not need to change any tracker configuration, 
or change physical interfaces to devices: one just needs to write a 
simple display application. This allows us to monitor the latency 
of more complex system assemblies. The system is very simple to 
set up and thus we hope it makes latency measurement much 
more accessible in the laboratory. 

3 Latency Measurement with Video 
The method we propose, which we will term the sine fitting 
method, uses a tracked pendulum. We attach a small light to the 
pendulum and then video the pendulum and a screen behind it 
which shows a simulated image whose position is driven by the 
tracking information. We do not need to take care to calibrate the 
camera position, we just need to ensure that the full range of 
motion of the pendulum and the simulated image are on the video 
frame. Figure 1 shows a simple pendulum set-up that we used in 
the experiments in Section 4. Figure 2 shows a representation of 
the video taken of the pendulum and the simulated image.  

The advantage over previous methods is that because we know the 
motion of the tracker, we can fit a curve to the discrete positions 
extracted from the video. By extracting position information from 
every video frame, we should be able to reconstruct the motion 
accurately and thus achieve better time discrimination than simply 
counting frame offsets, or sampling single positions of the 
pendulum motion. 

The current Matlab implementation of the sine fitting method has 
the following stages: 

1. Load video and select regions from the video that contain the 
physical pendulum and simulated image.  

2. Subtract the background. 

3. Threshold and extract the pendulum and simulated image 
regions. 

4. Find centroids of pendulum regions and simulated image 
regions and extract the horizontal displacements. 

5. Remove any outlier displacements, and replace them by the 
average of adjoining pixels. 

6. Normalize displacements. 

Figure 3: Fit of red (physical pendulum) and green (simulated image) displacements in a video 100 frames (4s) long. The solid 
lines indicate the normalised displacements, and the dashed curves, the fitted sine curve. For clarity the fitted sine curves are 

scaled to half their amplitude. 



  

 

7. Fit one sine curve to the pendulum displacements and a 
second to the simulated image displacements. 

8. Convert the phase difference in frames in to ms. 

Most of these stages are quite simple and use standard Matlab 
functionality. For Step 7, we have two series of displacement 
values normalized to [-1,1]. For each series we first estimate the 
dominant frequency and the phase using the technique of Quinn & 
Fernandes [1991]. To each series we then fit a function of the 
form sine(ax + b) using the built-in Matlab function lsqcurvefit. 
Figure 3 shows an example of the fit of the two curves to 100 
frames of the video sequence represented in Figure 2. 

We did a number of assessments of the potential sensitivity of this 
method using simulated video. Under these ideal situations, where 
the targets were solid red and solid green and exactly two pixels 
square, we were able to reconstruct the latency to within 1ms, 
when the latency was simulated in the hundreds of ms. We 
experimented with adding random noise to the displacements. On 
a video 200 pixels across, normally distributed noise with a 
standard deviation of 10 pixels was added after we extracted 
horizontal positions at Step 4. This degraded the accuracy of the 
latency estimation to +/- 5ms. This level of accuracy would still 
be useful as a measure, and this level of noise is significantly 
higher than the noise in the videos that we examined. 

4 Demonstrations 
We examine the sensitivity of the sine fitting method (SFM) by 
estimating the latencies of a typical large visualization facility. 
This has two different image generators with unknown end-to-end 
latencies. We also measure the impact of delaying the rendering 
by one or more frames, which will have a well known latency 
impact. For comparison, we make estimations using a second 
latency measuring method based on a frame counting method 
(FCM) using a high-speed video camera. 

4.1 System Structure 
The system layout of a CAVETM-like system is shown in Figure 4. 
The tracking system is a wired Intersense IS-900 with three 
tracking devices connected [Intersense 2008]. The device was 
configured with no latency compensation, high precision and high 
sensitivity. The device is connected over RS232 at 38.4kbaud in 
binary mode to an SGI Onyx2. The Onyx2 has 8 MIPS R12000 
processors, 8GB RAM and four InfiniteReality2 graphics pipes. 
The tracking information is read by a TrackD process [TrackD 
2008].  

The first image generator is an OpenGL/CAVElibTM [CAVELib 
2008] program that runs on the Onyx2. This program connects to 
the TrackD process via shared memory. It generates four mono or 
time-sequential stereo video signals at 90Hz. These drive CRT 
projectors at 1028x768 pixels. The CAVETM-like system 
comprises three 3m x 2.2m walls and a 3m x 3m floor.  

The second image generator is a self-built PC cluster. This has a 
cluster master node with 2GB RAM, and dual 1.8GHz Intel 
processors, and four cluster slave nodes with 1GB RAM, single 
2.7GHz Intel processors and GeForce Quadro 5600 graphics 
cards. All cluster nodes run Windows XP. Each cluster slave node 
generates a single mono or time-sequential stereo video signal at 
1028x768 @ 85Hz. To retrieve tracking information, a custom 
tracker server process on the Onyx2 connects to TrackD and 
distributes the readings over UDP at 200Hz. On the cluster master 
node, we use the XVR software to create our applications [XVR 
2008]. This reads the tracking information coming from the 
Onyx2 in a dedicated process, and consumes the UDP tracking 
data at 200Hz. The XVR process on the cluster master delegates 
rendering to the cluster slaves using a form of distributed 
OpenGL. The slave nodes are responsible for buffering OpenGL 
and rendering two views; the master is unaware that stereo 
rendering is occurring. 

 

Figure 4: Outline architecture for the system being measured. There are two paths to generate images, one via CAVElib/OpenGl on 
the Onyx2, and one via a PC cluster. 
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The networking between Onyx2 and cluster master is an un-
congested 1GB Ethernet. The cluster master node has a second 
1GB Ethernet interface to the cluster slave nodes.  

For both applications, a single green quadrilateral was drawn. 
Only the tracker position was used, so the polygon did not rotate 
on the screen. This is what we refer to as the simulated image. 
Both applications allow the displays to be configured to render in 
time-sequential stereo or mono. In both applications we added 
functionality to optionally buffer and delay input tracker readings 
by between 1 and 5 frames. 

4.2 Implementation of Sine-Fitting Method 
We used a Panasonic NV-GS300 Camera which is a 3 CCD 
camera, recording at PAL frame rates (25Hz, 50Hz interlaced). 
We used a 3CCD camera because we track two different colors on 
the screen. A slightly different method using the same color for 
the LED and the simulated image would mean that any camera 
could be used without worrying about timing differences due to 
the camera’s color processing. The video captured to a laptop was 
720 by 576 in size. We de-interlaced the video by removing the 
second field, and down-sized the video so that it was 320x240 @ 
25 Hz. One could extract both fields, use a progressive scan 
camera, or a camera with NTSC rates to get a higher frame rate 
video. For our tests we would either ensure that the display was in 
mono, or the video was shot through stereo glasses so that there 
was not a double image of the simulated image on the display. 

We hung the tracker from the ceiling of the display area so that 
the swing had radius of approximately 0.7m. To ensure a vertical 
swing, we suspended both ends of the tracker which is a pistol-
grip shaped device. The assembly is shown in Figure 1. Once the 
pendulum had swung a few times, any horizontal rotation was 
imperceptible to the naked eye leaving only motion in a vertical 
plane. We attached a red LED to the tracker. We used a green 
quad as the simulated image, because green was the brightest tube 
in our CRT projectors. The lowest point on the swing of the green 
quadrilateral was about 0.7m below the top of the front screen. 
The latency to each screen should be the same because the 
renderings are frame-locked together and the video generation 
uses genlocked hardware. 

We found through informal experimentation, that about 4 seconds 
of video, and 3-4 swing cycles was sufficient to get a good 
estimate of latency. The filtering and numerical estimation parts 
of the method are fast enough that in principle the latency 
estimation could be done in real-time. In the results presented 
below, the images of the pendulum and simulated image were 
about 3x3 pixels, and would move between ¼ and ½ of the way 
across the screen. 

4.3 Implementation of Frame Counting Method 
We gathered comparative latency estimates using a Fastec 
TroubleShooter camera.  This was configured to capture video at 
640x480 pixels at 500Hz. Latency was estimated by counting the 
number of frames between the pendulum and the simulated image 
reaching extreme positions. This process was done by hand using 
image enhancement software because of low light capture by the 
camera at 500Hz. It is easy to pin-point the frame where the 
physical pendulum reaches its extreme position. It is harder to do 
the same for the simulated image. Firstly, because the screen is a 
CRT running at 85Hz or 90Hz, only every 5th or 6th frame on the 
video captured by the Fastec camera shows the CRT illuminated 
because of the CRT’s scanning. The simulated image may also be 
static on for several frames at the extreme because of small sub-
pixel movements. Thus the frame number for the extreme of the 
simulated image was chosen to be middle of the frames where the 
simulated image appeared to be at its extreme. 

5 Results 
A number of different measurements were made on the system. A 
summary of the findings is presented in Table 1. Both latency 
estimation methods estimate gave the Onyx2 a higher latency than 
the PC cluster system, with estimates of 90ms for the SFM and 
104ms for the FCM for the latency of the Onyx2, compared to 
64ms by the SFM and 72ms by the FCM for the cluster. However, 
we note that the SFM gives a much lower standard deviation in its 
estimation compared to the frame counting method. The 
difference between the estimates of the two system latencies is 
notable because despite the Onyx2 hosting the physical interface 
to the tracker, the superior clock-rates of the components of PC 
cluster system means that it has a lower end-to-end latency. We 

Configuration Frame 
Delay 

 Samples SFM 
Mean (s) 

SFM 
Std. Dev.(s) 

FCM 
Mean (s) 

FCM 
Std. Dev (s) 

Onyx2, Mono 0  12 0.090 0.0076 0.104 0.0222 
 1  4 0.111  0.0025 0.122 0.0159 
 2  4 0.133 0.0068 0.123 0.0233 
 3  4 0.154 0.0113 0.136 0.0163 
 4  4 0.174 0.0037 0.177 0.0166 
 5  4 0.197 0.0058 0.192 0.0370 
Cluster, Mono 0  12 0.064 0.0096 0.072 0.0135 
 1  4 0.078 0.0016 0.106 0.0170 
 2  4 0.096 0.0066 0.116 0.0196 
 3  4 0.116 0.0093 0.142 0.0117 
 4  4 0.131 0.0029 0.131 0.0194 
 5  4 0.150 0.0123 0.168 0.0306 
Onyx, Stereo Left Eye N/A  8 0.085 0.0076 0.104 0.0208 

Onyx, Stereo Right Eye N/A  8 0.096 0.0092 0.107 0.0234 

Oynx, Mono, Offset mark N/A  12 0.091 0.0074 0.105 0.0160 

Table 1: Estimated latencies with the sine fitting method (SFM) and frame counting method (FCM) for several system configurations. 

 



  

 

note that for the SFM the standard deviation of the readings for 
Onyx2 is slightly lower than that for the PC cluster. Extra jitter 
would be expected for the PC cluster because of the additional 
processes involved. 

We can also investigate the effect of frame delay on each system. 
The results are also given in Table 1 and plotted in Figure 5 and 
Figure 6 for the SFM and Figure 7 and Figure 8 for the FCM. We 
have fitted a trend line to each plot. The trend lines in Figure 5 
and Figure 6 confirm the base latencies with no added frame delay 
(63ms and 90 ms) that were reported for the SFM. The slopes are 
different with each frame delay on the PC cluster causing an extra 
17ms latency and each frame delay on the Onyx2 causing an extra 
21ms latency. These indicate, respectively, frames at 60Hz and 
47Hz. The former frequency is precisely the frequency of update 
of the monitor of the cluster master: this indicates that the XVR 
system is bound by the refresh rate of the cluster master’s display 
(60Hz), rather than the cluster slaves’ displays (85Hz). The rate of 
47Hz, is fractionally higher than half the video output rate of the 
Onyx2 (90Hz). This indicates that, in mono mode, the application 
system does not exploit the second potential frame that is 
available. The fit for the two trend lines is very good for the SFM. 

The FCM does not give such good discrimination of the impact of 
latency. Although the estimated trend in latency for the cluster is 
calculated at 17ms, the trend line itself is a relatively poor fit to 
the data and the trend in latency for the Onyx2 is 18ms a frame, or 
55Hz, which is not close to the expected per frame delay of 22ms 

(45Hz). We suggest that the poor performance of the FCM 
compared to the SFM is because the latter is using many more 
sample points, as it uses every frame of the video in its estimation. 

An additional test we performed was to track the latency between 
the two different stereo frames for the Onyx2. For the SFM this 
should be quite challenging, because the theoretical latency 
difference is 11ms (90Hz) when the frame length of the video is 
25 ms (50Hz). However, as can be seen in Table 1, the stereo left 
image has a latency of 85ms, and the stereo right 96ms. Although 
the standard deviations of the two are relatively high compared to 
the latency difference, we performed a Student’s unpaired, two-
tailed t-test to compare the two distributions of estimates. The t 
value was 2.619, and with 14 degrees of freedom, this gives a 
significant difference at p = 0.0202 (i.e confidence above 95% to 
reject the null hypothesis that the two distributions are the same). 
There was no significant difference in the frame times between 
stereo left eye and right eye for the FCM.  

A final, inconclusive test that was performed was to attempt to 
track the latency difference between two different areas of the 
screen. This result is the last presented in Table 1. We offset the 
simulated image so that it was 0.66m lower on the screen. With 
2.2m high screens, this is 3/10 of the screen further down. Thus if 
the screen refreshes at 90Hz, with a CRT this should be 
approximately 3ms additional latency. Although the SFM does 
estimate a difference in mean latencies, the difference is only 
1.3ms, and the standard deviations indicate that the difference is 
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Figure 7: The estimated latency of the Onyx 2 system at 
different frame delays with the frame-counting method 

 

Figure 8: The estimated latency of the PC cluster system at 
different frame delays with the frame-counting method 

Figure 5: The estimated latency of the Onyx 2 system at 
different frame delays with the sine-fitting method 

 

Figure 6: The estimated latency of the PC cluster system at 
different frame delays with the sine-fitting method 

y	=	0.0186x	+	0.0958
R²	=	0.7185

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

M
ea
su
re
d	
La
te
nc
y	
(s
)

Frame	Delay

Latency	trend

y	=	0.0178x	+	0.0769
R²	=	0.7549

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

M
ea
su
re
d	
La
te
nc
y	
(s
)

Frame	Delay

Latency	trend



  

 

not statistically significant (t value of 0.4236 and 22 degrees of 
freedom, give p=0.67). The FCM does not detect a significant 
difference either.  

6 Conclusions 
We have demonstrated a new, simple to set up and relatively 
sensitive latency measurement method. The sine fitting latency 
estimation method is easy to configure as it simply needs a tracker 
to be hung from a pendulum and it only requires a standard video 
camera. This also makes it relatively flexible to install: there is no 
need to bring additional equipment in to the tracked space and the 
video camera can be fixed a convenient distance away. A simple 
display application needs to be written or an existing application 
needs to be modified.  

For more general applications, where the developer wants to 
include the latency of their own application in the measurement, 
there are several strategies that could be used to generate the 
required visual feedback without including incurring extra 
latency. The rendering required is only a few pixels, enough to be 
tracked on the video, so does not intrinsically take much time. If 
there is sufficient rendering time, the frame buffer can be cleared 
after the full render, and the simulated image drawn. To avoid a 
frame buffer clear, the normal application rendering could be done 
to an off-screen buffer, to a different viewport, or in certain 
circumstances the rendering pipeline or shader configured to 
discard RGB pixels after the z-test (thus incurring the full cost of 
the shading), or with a color mask.  After any alterations to the 
rendering, the developer needs to check that the frame rate does 
not change; this should imply that the rendering latency hasn’t 
been increased. 

With the sine fitting method we were able to estimate end-to-end 
system latencies of two different image generators for a CAVETM-
like system. We were able to accurately detect the expected 
impact of an introduced frame delay in the application system. 
Further we were able to reliably detect the timing offset between 
the two eyes in a frame sequential stereo system, a difference of 
11ms. With the data we gathered we were not able to reliably 
detect a timing difference of 3ms. However it is worth reflecting 
that at this temporal resolution, we might be frustrated either 
because our latency detection process is not sensitive, or because 
3ms is within the normal variation in the end-to-end latency of the 
system. Based on the discussion of Section 2.1, for the system we 
investigated, we can predict an uncertainty of ~5ms in the end-to-
end system latency, because the trackers, rendering and displays 
all operate at different frequencies. Thus we suggest that our 
latency measurement process is sufficient to detect the types of 
difference that might be important in normal laboratory 
conditions.  

The full Matlab code, the test applications written in CAVElib 
and XVR and an example video can be found on the author’s 
home page: http://www.cs.ucl.ac.uk/staff/A.Steed 
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