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Invited commentary

Megaloblastic anaemia in vitamin B12 deficiency

Deficiency of either folic acid or vitamin B12 results in
megaloblastic anaemia: the release into the circulation of
immature erythrocytes due to a failure of the normal
process of erythrocyte maturation in the bone marrow
(Wickramasinghe, 1995, 1999). Pernicious anaemia is the
megaloblastic anaemia due specifically to vitamin B12

deficiency, in which there is also spinal cord degeneration,
leading to peripheral neuropathy. It is a disease of later life;
only about 10 % of patients are aged ,40 years; by the age
of 60 years about 1 % of the population are affected, rising
to 2–5 % of people aged .65 years, as a result of atrophic
gastritis (commonly due to autoimmune disease) and hence
impaired secretion of intrinsic factor, which is required for
the absorption of vitamin B12 (Baik & Russell, 1999). Up
to one-third of patients develop neurological signs without
megaloblastosis, and high intakes of folate may prevent
megaloblastosis in vitamin B12 deficiency (Dickinson,
1995; Savage & Lindenbaum, 1995). As discussed later,
it has long been believed that only man, and not other
animals, develops megaloblastic anaemia as a result of
vitamin B12 deficiency, and indeed it is not obvious why
vitamin B12 deficiency should affect haematopoiesis.

Folate deficiency is relatively common; by contrast,
dietary deficiency of vitamin B12 is rare, and pernicious
anaemia is usually due to impaired absorption. Dietary
deficiency does occur in strict vegetarians, since there are
no plant foods that are sources of the vitamin. The small
amounts of biologically available vitamin B12 that have
been reported in algae (Watanabe et al. 2000; Takenaka
et al. 2001; Kittaka-Katsura et al. 2002) are almost
certainly due to bacterial contamination. A number of
non-cobalamin corrinoids in algae are active in microbiolo-
gical assays and thus appear to be vitamin B12, although
they have no vitamin activity, and may indeed be antime-
tabolites (Yamada et al. 1999).

The cause of megaloblastic anaemia is impaired DNA
synthesis. Rapidly dividing cells, as in bone marrow, can
either use preformed thymidine monophosphate (TMP)
for DNA synthesis, or can synthesize it de novo from
deoxyuridine monophosphate (dUMP). This reaction is
catalysed by thymidylate synthetase, which uses methyle-
netetrahydrofolate as the methyl donor, so it is obvious
that folate deficiency will result in impaired de novo
synthesis of thymidylate. It is less obvious how vitamin
B12 deficiency affects thymidylate synthesis; the vitamin
is required by only three mammalian enzymes: methionine
synthetase, methylmalonyl CoA mutase and leucine

aminomutase, none of which is involved in nucleotide
metabolism (Glusker, 1995; Marsh, 1999).

The reduction of methylenetetrahydrofolate to methylte-
trahydrofolate, catalysed by methylenetetrahydrofolate
reductase is irreversible, and the major source of folate
for tissues is methyltetrahydrofolate. The only metabolic
function of methyltetrahydrofolate is in the methylation
of homocysteine to methionine, and this is the only way
in which methyltetrahydrofolate can be demethylated to
yield free tetrahydrofolate in tissues. Methionine synthe-
tase thus provides the link between the physiological
functions of folate and vitamin B12.

Impairment of methionine synthetase activity in vitamin
B12 deficiency results in the accumulation of methyltetra-
hydrofolate, which can neither be utilized for other reac-
tions nor demethylated to provide free tetrahydrofolate.
Vitamin B12 deficiency thus leads to functional folate
deficiency, with much folate trapped as (unusable) methyl-
tetrahydrofolate (Krebs et al. 1976; Horne et al. 1989).
This ‘methyl folate trap’ hypothesis appears to explain
many of the similarities between the symptoms and meta-
bolic effects of folate and vitamin B12 deficiency (Shane,
1985). However, it does not provide a completely satisfac-
tory explanation of the effects of vitamin B12 deficiency
(Chanarin et al. 1985). Since most dietary folate is methyl-
ated during intestinal absorption, it is difficult to see how it
is that a high intake of folate can mask the megaloblastic
anaemia due to vitamin B12 deficiency (Scott & Weir,
1994; Weir & Scott, 1998; Scott, 1999).

Isolated bone marrow cells and stimulated lymphocytes
incubated with [3H]TMP will incorporate label into
DNA. In the presence of adequate amounts of methylene-
tetrahydrofolate, the addition of dUMP as a substrate for
thymidylate synthetase reduces the incorporation of
[3H]TMP because of dilution of the pool of labelled
material by newly synthesized TMP. The extent to which
dUMP suppresses the incorporation of [3H]TMP into
DNA thus reflects folate status. In normal cells, the incor-
poration of [3H]thymidine into DNA after pre-incubation
with dUMP is 1·4–1·8 % of that without pre-incubation.
By contrast, cells that are deficient in folate form little or
no thymidine from dUMP, and hence incorporate nearly
as much of the [3H]thymidine after incubation with
dUMP as they do without pre-incubation. Either a primary
deficiency of folic acid or functional deficiency secondary
to vitamin B12 deficiency has the same effect. In folate
deficiency, addition of any biologically active form of
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folate, but not vitamin B12, will normalize the dUMP
suppression of [3H]thymidine incorporation. In vitamin B12

deficiency, addition of vitamin B12 or methylenetetra-
hydrofolate, but not methyltetrahydrofolate, will normalize
dUMP suppression (Killman, 1964; Pelliniemi & Beck,
1980).

Hitherto, it has been believed that the megaloblastic
response to vitamin B12 deficiency is unique to man.
Deficient rats (Toyoshima et al. 1996), monkeys
(Kark et al. 1974) and fruit bats (Rousettus aegyptiacus;
Green et al. 1975) develop neuropathy, but have unim-
paired haematopoiesis, suggesting that man is more reliant
on the de novo synthesis of TMP, and less able to salvage it
from DNA breakdown, than other species. The normal sup-
pression of the incorporation of [3H]thymidine into DNA
by added dUMP in the fruit bat is about 5 %, and in the
rat about 30 %, of that seen in human subjects (Carmel,
2000). Ebara et al. (2003) have now shown that when
vitamin B12-deficient rats are subjected to the additional
stress of hypoxia to induce haematopoiesis, they do
indeed develop megaloblastosis, although vitamin B12

deficiency alone is not sufficient.
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