
Error estimation and adaptive mesh refinement for

aerodynamic flows

Ralf Hartmann1 and Paul Houston2

1 Institute of Aerodynamics and Flow Technology

DLR (German Aerospace Center)

Lilienthalplatz 7, 38108 Braunschweig, Germany

Ralf.Hartmann@dlr.de

2 School of Mathematical Sciences

University of Nottingham

University Park, Nottingham, NG7 2RD, UK

Paul.Houston@nottingham.ac.uk

Contents

1 Introduction 4
1.1 Elements of function space theory . 6

1.1.1 Spaces of continuous functions . 6
1.1.2 Spaces of integrable functions . 7
1.1.3 Sobolev spaces . 7

2 Motivation: Linear problems and adjoint equations 9
2.1 Error estimation for linear problems . 9
2.2 Derivation of adjoint problems for linear primal problems 11
2.3 The linear advection equation and adjoint problems 11
2.4 Numerical example: Linear advection equation 13

3 Discontinuous Galerkin methods for compressible flows and their corre-
sponding adjoint problems 15
3.1 The compressible Euler equations . 15
3.2 Derivation of adjoint problems for nonlinear primal problems 17
3.3 The adjoint equations to the compressible Euler equations 17
3.4 DG discretization of the compressible Euler equations 18
3.5 Consistency and adjoint consistency . 21
3.6 The compressible Navier-Stokes equations . 22
3.7 The adjoint equations to the compressible Navier-Stokes equations 23
3.8 DG discretization of the compressible Navier-Stokes equations 24
3.9 Consistency and adjoint consistency . 26

1

4 Adjoint-based error estimation and adaptive mesh refinement 28
4.1 Error estimation and mesh refinement for single target quantities 28
4.2 Error estimation for multiple target quantities 31

4.2.1 The standard approach . 31
4.2.2 A new approach . 32

4.3 Adaptive refinement for multiple target quantities 33
4.4 Derivation of residual-based indicators . 35
4.5 Numerical examples . 36

4.5.1 Ringleb flow problem . 37
4.5.2 Supersonic flow past a wedge . 37
4.5.3 Supersonic flow past a BAC3-11 airfoil 41
4.5.4 Supersonic viscous flow around the NACA0012 airfoil 45
4.5.5 Comparison of the approximate error representation for viscous and

inviscid flow. 49
4.5.6 Error estimation and adjoint-based refinement for multiple target quan-

tities . 51

5 Development of anisotropic mesh adaptation 63
5.1 Model problem and discretization . 64
5.2 Meshes, finite element spaces and traces . 65
5.3 Interior penalty discontinuous Galerkin method 66
5.4 Stability analysis . 68
5.5 Approximation results . 70
5.6 A priori error bounds . 77
5.7 A posteriori error estimation and adaptivity 81
5.8 Numerical experiments . 83

5.8.1 Singularly perturbed advection-diffusion problem 83
5.8.2 ADIGMA MTC3: Laminar flow around a NACA0012 airfoil 87
5.8.3 ADIGMA BTC0: Laminar flow around streamlined body 90

6 High-order/hp–adaptive finite element methods for compressible flows 91
6.1 Model problem and discretization . 93

6.1.1 Meshes and finite element spaces . 93
6.1.2 Stability analysis . 95

6.2 hp-Error bounds on the hypercube . 96
6.2.1 Isotropic polynomials degrees . 97
6.2.2 Anisotropic polynomial degrees . 98

6.3 A priori error analysis . 101
6.4 hp–Adaptivity on isotropically refined meshes 106

6.4.1 hp–extension control . 109
6.5 Numerical Experiments . 111

6.5.1 Mixed hyperbolic–elliptic problem . 111
6.5.2 ADIGMA MTC1: Inviscid flow around a NACA0012 airfoil 117
6.5.3 ADIGMA MTC3: Laminar flow around a NACA0012 airfoil 120

6.6 Anisotropic hp–mesh adaptation . 121
6.7 Numerical experiments . 124

2

6.7.1 Singularly perturbed advection–diffusion problem 124
6.7.2 Mixed hyperbolic–elliptic problem . 126
6.7.3 ADIGMA MTC3: Laminar flow around a NACA0012 airfoil 129

7 Application of error estimation and adaptation to complex flows 132
7.1 ADIGMA BTC0: Laminar flow around streamlined body 133
7.2 ADIGMA BTC3: Laminar flow around delta wing 137
7.3 ADIGMA BTC1: L1T2 high-lift configuration 142
7.4 ADIGMA BTC0: Turbulent flow around streamlined body 149
7.5 ADIGMA CTC4 (modified): Subsonic turbulent flow around DLR-F6 wing-

body configuration without fairing . 150

Acknowledgements 153

Bibliography 157

3

1 Introduction

Computational fluid dynamics (CFD) has become a key technology in the development of
new products in the aeronautical industry. During the last decade aerodynamic design engi-
neers have progressively adapted their way-of-working to take advantage of the possibilities
offered by new CFD capabilities based on the solution of the Euler and Navier–Stokes equa-
tions. Significant improvements in physical modelling and solution algorithms have been as
important as the enormous increase of computer power to enable numerical simulations at
all stages of aircraft development.

However, despite the progress made in CFD, in terms of user time and computational
resources, large aerodynamic simulations of viscous flows around complex configurations are
still very expensive. The requirement to reliably compute results with a sufficient level of
accuracy within short turn-around times places severe constraints on the application of CFD.
Indeed, within CFD the most popular class of methods which are currently used in industrial
codes are based on employing finite volume methods. While in principal these methods
are second–order accurate, in practice their convergence order deteriorates to somewhere
between first– and second–order on irregular and/or highly stretched meshes. Thereby, for
reliable numerical predictions to be made by such methods, extremely fine meshes with a large
number of degrees of freedom are required, which in turn leads to excessively large computing
times. As an alternative approach, in recent years there has been significant interest in
the development of high–order discretization methods; this is particularly evidenced by the
funding of the EU Framework 6 project ADIGMA [82] (Adaptive higher order variational
methods for aerospace applications) comprising of a consortium of academic and industrial
partners. On a given mesh they allow for an improved prediction of critical flow phenomena,
such as boundary layers, wakes, and vortices, for example, as well as force coefficients, e.g.,
drag, lift, moment. In particular, high–order methods are capable of achieving the same level
of accuracy while exploiting significantly fewer degrees of freedom compared with classical
finite volume methods.

One extremely promising class of high-order schemes based on the finite element frame-
work are Discontinuous Galerkin (DG, for short) methods. Indeed, the development of DG
methods for the numerical approximation of the Euler and Navier-Stokes equations is an
extremely exciting research topic which is currently being developed by a number of groups
all over the world, cf. [14, 15, 19, 20, 34, 38, 39, 50, 59, 61, 62, 95, 107, 108], for example. DG
methods have several important advantages over well established finite volume methods. The
concept of higher-order discretization is inherent to the DG method. The stencil is minimal
in the sense that each element communicates only with its direct neighbors. In particular,
in contrast to the increasing stencil size needed to increase the accuracy of classical finite
volume methods, the stencil of DG methods is the same for any order of accuracy which
has important advantages for the implementation of boundary conditions and for the parallel
efficiency of the method. Moreover, due this simple communication at element interfaces,
elements with so–called hanging nodes can be easily treated, a fact that simplifies local mesh
refinement (h–refinement). Additionally, the communication at element interfaces is identical
for any order of the method which simplifies the use of methods with different polynomial
orders p in adjacent elements. This allows for the variation of the order of polynomials over
the computational domain (p–refinement), which in combination with h–refinement leads to
so–called hp–adaptivity.

4

Mesh adaptation in finite element discretizations should be based on rigorous a posteriori
error estimates; for hyperbolic/nearly–hyperbolic equations such estimates should reflect the
inherent mechanisms of error propagation (see [70, 76]). These considerations are particularly
important when local quantities such as point values, local averages or flux integrals of the
analytical solution are to be computed with high accuracy. In the context of aerodynamic
flow simulations, it is of vital importance that certain force coefficients, such as the drag,
lift and moment on a body immersed within a compressible fluid, are reliably and efficiently
computed. Selective error estimates of this kind can be obtained by the optimal control
technique proposed in [36] and [23] which is based on duality arguments analogous to those
from the a priori error analysis of finite element methods. In the resulting a posteriori error
estimates the element-residuals of the computed solution are multiplied by local weights
involving the adjoint solution. These weights represent the sensitivity of the relevant error
quantity with respect to variations of the local mesh size. Since the adjoint solution is usually
unknown analytically, it has to be approximated numerically. On the basis of the resulting
a posteriori error estimate the current mesh is locally adapted and then new approximations
to the primal and adjoint solution are computed. This feed-back process is repeated, for
instance, until the required error tolerance is reached. In this way, optimal meshes, or in the
hp–setting, optimal finite element spaces can be obtained for various kinds of error measures,
where optimal can mean most economical for achieving a prescribed accuracy TOL or most
accurate for a given maximum number Nmax of degrees of freedom. This approach is quite
universal as it can, in principle, be applied to almost any problem, linear or nonlinear, as
long as it is posed in a variational setting.

This lecture course covers the theory of so-called duality-based a posteriori error esti-
mation of DG finite element methods. In particular, we formulate consistent and adjoint
consistent DG methods for the numerical approximation of both the compressible Euler and
Navier–Stokes equations; in the latter case, the viscous terms are discretized based on employ-
ing an interior penalty method. By exploiting a duality argument, adjoint–based a posteriori
error indicators will be established. Moreover, application of these computable bounds within
automatic adaptive finite element algorithms will be developed. Here, a variety of isotropic
and anisotropic adaptive strategies, as well as hp–mesh refinement will be investigated.

The outline of these notes is as follows. In Section 2 we give an introduction to the
adjoint–based a posteriori error estimation and mesh refinement for linear problems, and
their subsequent exploitation within an automatic adaptive finite element algorithms. Then,
in Section 3 we introduce both the compressible Euler and Navier–Stokes equations and
formulate DG numerical methods for their discretization. In particular, here we will be con-
cerned with the derivation of so-called adjoint consistent methods, which ensure the optimal
approximation of target functionals of the underlying solution. Section 4 is devoted to the
derivation of adjoint–based a posteriori error bounds for the computed error in a given target
functional of interest. Moreover, extensions to the case when there are multiple quantities of
interest will be considered. The practical performance of these a posteriori error estimates
within adaptive finite element algorithms will be studied through a series of numerical ex-
periments. In Section 5 we consider the generalization of the above ideas to the case when
anisotropic mesh refinement is permitted. In this setting, we derive both a priori and a poste-
riori error bounds for the DG approximation of linear functionals of the underlying analytical
solution. The a priori analysis is fully explicit in terms of the anisotropy of the underlying
computational mesh. Further, we introduce an anisotropic refinement algorithm, based on

5

choosing the most competitive subdivision of a given element from a series of trial (Carte-
sian) refinements. The extension of these ideas to general anisotropic hp–version DG finite
element methods is undertaken in Section 6. Finally, Section 7 is devoted to the application
of goal-oriented adaptive finite element algorithms to complex aerodynamic flows, including
three dimensional laminar flows as well as two and three dimensional turbulent flows.

Before we embark on Section 2, we first take a brief excursion into the theory of function
spaces to introduce the notational conventions used throughout these lecture notes.

1.1 Elements of function space theory

The aim of this section is to provide a brief overview of some elementary results from the
theory of function spaces and to introduce the notation which will be used throughout. For
proofs and further technical details on classical function spaces the reader is referred to the
monograph of Adams [1], for example.

1.1.1 Spaces of continuous functions

Let N denote the set of all nonnegative integers. An n–tuple α = (α1, . . . , αn) in N
n will be

referred to as a multi-index; the nonnegative integer |α| = |α1|+ · · ·+ |αn| is called the length
of the multi-index α. We define ∂α = ∂α1

1 . . . ∂αn
n , where ∂j = ∂/∂xj for j = 1, . . . , n.

Suppose that ω is an open set in R
n. For k ∈ N, we denote by Ck(ω) the set of all

continuous real-valued functions u defined on ω such that ∂αu is continuous on ω for every
multi-index α, |α| ≤ k. When k = 0, we shall write C(ω) in lieu of C0(ω). For k = ∞,
C∞(ω) will denote the intersection

⋂

k≥0C
k(ω).

We shall also require spaces of functions defined over the closure ω̄ of an open set ω ⊂ R
d.

For k ∈ N, Ck(ω̄) will signify the set of all u ∈ Ck(ω) such that ∂αu can be continuously
extended from ω onto ω̄ for every multi-index α, |α| ≤ k. Further, we define C∞(ω̄) as the
intersection

⋂

k≥0C
k(ω̄). The notation C0(ω̄) is abbreviated to C(ω̄).

Assuming that ω is a bounded open set in R
n and k ∈ N, the linear space Ck(ω̄) is a

Banach space equipped with the norm

‖u‖Ck(ω̄) = max
|α|≤k

sup
x∈ω

|∂αu(x)| .

For k ∈ N we denote by Ck,1(ω̄) the set of all u ∈ Ck(ω̄) such that the quantity

|u|Ck,1(ω̄) = max
|α|=k

sup
x 6=y, x,y∈ω

|∂αu(x) − ∂αu(y)|
|x − y|

is finite. Ck,1(ω̄) is a Banach space with the norm

‖u‖Ck,1(ω̄) = ‖u‖Ck(ω̄) + |u|Ck,1(ω̄) .

Clearly, Ck+1(ω̄) ⊂ Ck,1(ω̄). When u belongs to C0,1(ω̄), it is said to be Lipschitz continuous
on ω̄.

The support, suppu, of a continuous function u defined on an open set ω is the closure in
ω of the set {x ∈ ω : u(x) 6= 0}; in other words, suppu is the smallest closed subset of ω
such that u = 0 on ω \ suppu. For k = 0, 1, . . . ,∞, Ck

0 (ω) denotes the set of all u ∈ Ck(ω)
whose support is a bounded (and, by definition, closed) subset of ω.

6

1.1.2 Spaces of integrable functions

For p ≥ 1 and an open set ω ⊂ R
n, Lp(ω) will denote the set of all real-valued Lebesgue

measurable functions u defined on ω such that |u|p is integrable on ω with respect to the
Lebesgue measure dx = dx1 . . . dxn; it is implicitly assumed that any two functions which
are equal almost everywhere (i.e., equal, except maybe on a set of zero Lebesgue measure)
are identified. Lp(ω) is a Banach space equipped with the norm

‖u‖Lp(ω) =

(∫

ω
|u(x)|p dx

)1/p

.

When p = 2, L2(ω) is a Hilbert space with the inner product

(u, v)ω =

∫

ω
u(x) v(x) dx .

In the case when ω ≡ Ω, we write (·, ·) in lieu of (·, ·)Ω.
L∞(ω) denotes the set of all real-valued Lebesgue measurable functions u defined on ω

such that |u| has finite essential supremum; the essential supremum of |u| is defined as the
infimum of the set of all positive real numbers M such that |u| ≤ M almost everywhere on
ω. Again, any two functions that are equal almost everywhere on ω are identified. L∞(ω) is
a Banach space with norm

‖u‖L∞(ω) = ess.supx∈ω|u(x)| .
Hölder’s Inequality. Let u ∈ Lp(ω) and v ∈ Lq(ω), where 1/p+ 1/q = 1, 1 ≤ p, q ≤ ∞. Then
uv ∈ L1(ω) and

∣
∣
∣
∣

∫

ω
u(x) v(x) dx

∣
∣
∣
∣
≤ ‖u‖Lp(ω)‖v‖Lq(ω) .

In the special case when p = q = 2, this inequality is referred to as the Cauchy-Schwarz
Inequality.

1.1.3 Sobolev spaces

Given that ω is an open set in R
n, k a non-negative integer and 1 ≤ p ≤ ∞, we define the

Sobolev space
W k

p (ω) = {u ∈ Lp(ω) : ∂αu ∈ Lp(ω) , |α| ≤ k} ,
and equip it with the Sobolev norm defined by

‖u‖W k
p (ω) =

(
∑

|α|≤k ‖∂αu‖p
Lp(ω)

)1/p
, if 1 ≤ p <∞ ,

‖u‖W k
∞(ω) = max|α|≤k ‖∂αu‖L∞(ω) , if p = ∞ .

The associated Sobolev seminorm is defined by

|u|W k
p (ω) =

(
∑

|α|=k ‖∂αu‖p
Lp(ω)

)1/p
, if 1 ≤ p <∞ ,

max|α|=k ‖∂αu‖L∞(ω) , if p = ∞ .

7

In these definitions the derivatives are to be understood in the sense of distributions. The
Sobolev space W k

p (ω) is a Banach space with the norm ‖ · ‖W k
p (ω), 1 ≤ p ≤ ∞, k ≥ 0.

Specifically, for p = 2, the normed linear space W k
2 (ω) is a Hilbert space with the inner

product

(u, v)W k
2 (ω) =

∑

|α|≤k

(∂αu, ∂αv)ω ,

where (·, ·)ω denotes the inner product in L2(ω).
Finer smoothness properties of integrable functions can be detected by considering fractional-

order Sobolev spaces. Given that s is a positive real number, s 6∈ N, let us write s = m+ σ,
where 0 < σ < 1 and m = [s] is the integer part of s. The fractional-order Sobolev space
W s

p (ω), 1 ≤ p <∞, is the set of all u ∈Wm
p (ω) such that

|u|W s
p (ω) =

∑

|α|=m

∫

ω

∫

ω

|Dαu(x) −Dαu(y)|p
|x − y|n+σp

dxdy

1/p

<∞ ,

with the usual modification when p = ∞. The fractional-order Sobolev norm of index s is
defined by

‖u‖W s
p (ω) =

{

‖u‖p
W m

p (ω) + |u|pW s
p (ω)

}1/p
, if 1 ≤ p <∞ ,

‖u‖W m
∞(ω) + |u|W s

∞(ω) , if p = ∞ .

The fractional-order Sobolev space W s
p (ω) is a Banach space with this norm.

When p = 2 we shall write Hs in place of W s
2 to signify the fact that we are dealing with

a Hilbert space. We denote by Hs
0(ω) the closure of C∞

0 (ω) in the norm of Hs(ω); when ω is
a Lipschitz domain and 1/2 < s < 3/2, this space coincides with the set of all those functions
in Hs(ω) whose trace on ∂ω is equal to zero.

8

2 Motivation: Linear problems and adjoint equations

In this section we present an overview of the general theoretical framework of adjoint–based
a posteriori error estimation developed by C. Johnson and R. Rannacher and their collab-
orators. For a detailed discussion, we refer to the series of articles [23, 36, 71, 79], and the
references cited therein. To this end, we introduce the a posteriori error estimation for linear
problems in Section 2.1. Then in Section 2.2 we give a framework for deriving adjoint problem
for linear primal problems. This is then applied to the linear advection equation in Section
2.3. A numerical example in Section 2.4 highlights the practical importance of adjoint–based
refinement.

2.1 Error estimation for linear problems

We begin by considering a linear problem

Lu = f in Ω, Bu = g on Γ, (1)

where f ∈ L2(Ω), g ∈ L2(Γ), L denotes a linear differential operators on Ω, and B denotes a
linear boundary operator on Γ.

Let the linear problem (1) be discretized as follows: Find uh ∈ Vh,p such that

B(uh, vh) = ℓ(vh) ∀vh ∈ Vh,p, (2)

where Vh,p is a finite element space consisting of piecewise polynomial functions of degree p on
a partition Th of the domain Ω in elements κ ∈ Th of size h. Furthermore, B(·, ·) : V ×V → R

is a bilinear form and l(·) : V → R is a linear form including the forcing function f and the
boundary value function g. Here, V is some suitably chosen function space including the
analytical solution u ∈ V to the primal problem and satisfying Vh,p ⊂ V .

Furthermore, let us assume that the discretization (2) is consistent, i.e., the analytical
solution u ∈ V satisfies the following equation:

B(u, v) = ℓ(v) ∀v ∈ V. (3)

In many problems of physical importance the quantities of interest may be a series of target
or error functionals Ji(·), i = 1, . . . , N , N ≥ 1, of the solution. Relevant examples include
the mean value of the solution, the mean flow across a line, the point value of the solution
or different scalar quantities which can be computed from the solution u. For compressible
flows, which are not covered by the theory in this introductory section, such a quantity J(u)
could represent an aerodynamic force coefficient, like the drag, lift or moment coefficient. For
simplicity, we restrict ourselves to the case of a single linear target functional, i.e., N = 1, and
write J(·) ≡ J1(·); for the extension of the proceeding theory to multiple target functionals,
see Section 4.3; cf., also, [60]. In order to obtain a computable a posteriori bound on the
error between the true value of the functional J(u) and the computed value J(uh), we begin
by noting the Galerkin orthogonality of the discretization (2):

B(u, vh) − B(uh, vh) = B(u− uh, vh) = 0 ∀vh ∈ Vh,p. (4)

This will be a key ingredient in the following a posteriori error analysis.

9

We now introduce the following adjoint problem: find z ∈ V such that

B(w, z) = J(w) ∀w ∈ V ; (5)

We assume that (5) possesses a unique solution; clearly, the validity of this assumption
depends on both the definition of B(·, ·) and the choice of the functional under consideration.
Important examples which are covered by our hypothesis are discussed below, cf. [77].

For the proceeding error analysis, we must therefore assume that the adjoint problem (5)
is well–posed. Under this assumption, employing the Galerkin orthogonality property (4) we
deduce the following error representation formula:

J(u) − J(uh) = J(u− uh) = B(u− uh, z)

= B(u− uh, z − zh)

= ℓ(z − zh) − B(uh, z − zh) (6)

for all zh in the finite element space Vh,p. On the basis of the general error representation
formula (6), a posteriori estimates which provide upper bounds on the true error in the
computed target functional J(·) may be deduced. The simplest approach is to first decompose
the right–hand side of (6) as a summation of local error indicators ηκ over the elements κ in
the computational mesh Th, i.e., we write

J(u) − J(uh) = ℓ(z − zh) − B(uh, z − zh) ≡ R(uh, z − zh) =
∑

κ∈Th

ηκ; (7)

then, upon application of the triangle inequality, we deduce the following weighted a posteriori
error bound.

Theorem 2.1 Let u and uh denote the solutions of (1) and (2), respectively, and suppose
that the adjoint problem (5) is well–posed. Then, the following a posteriori error bound holds:

|J(u) − J(uh)| ≤ R|Ω|(uh, z − zh) ≡
∑

κ∈Th

|ηκ| (8)

for all zh in Vh,p.

We remark that the local error indicators ηκ appearing on the right–hand side of (9) in-
volve the multiplication of finite element residuals depending only on uh with local weighting
terms involving the difference between the adjoint solution z satisfying (5) and its projec-
tion/interpolant zh onto the finite element space Vh,p. These weights represent the sensitivity
of the error in the target functional J(·) with respect to variations of the local element residu-
als; indeed, they provide invaluable information concerning the global transport of the error,
which is essential for efficient error control.

Since the solution to the adjoint problem is usually unknown analytically it must be
numerically approximated, cf. [23, 43, 58]. Replacing the unknown exact adjoint solution
z in (7) by a numerical approximation z̄h /∈ Vh,p, we obtain following approximate error
representation

J(u) − J(uh) = R(uh, z − zh) ≈ R(uh, z̄h − zh) =
∑

κ∈Th

η̄κ. (9)

Note that the so-called adjoint-based indicators ηκ in (9) can be used to drive an adaptive
algorithm targeted at the accurate and efficient approximation of the target quantity J(u).

In the following sections we give some examples of adjoint problems.

10

2.2 Derivation of adjoint problems for linear primal problems

Let us again consider the linear PDE problem (1). Furthermore, let J(·) be a linear target
functional given by

J(u) = (jΩ, u) + (jΓ, Cu)Γ ≡
∫

Ω
jΩ udx +

∫

Γ
jΓ Cuds, (10)

where jΩ ∈ L2(Ω), jΓ ∈ L2(Γ), C is an operator on Γ which may be differential, and (·, ·)
and (·, ·)Γ denote the L2(Ω) and L2(Γ) inner products, respectively. We assume that the
target functional (10) is compatible with the primal problem (1), i.e., we assume that there
are linear operators L∗, B∗ and C∗ such that following compatibility condition holds:

(Lu, z) + (Bu,C∗z)Γ = (u,L∗z) + (Cu,B∗z)Γ. (11)

Then, L∗, B∗ and C∗ are the so-called adjoint operators of L, B and C, respectively. We
note that for given operators L and B associated with the primal problem (1) only a subset
of possible target functionals (10) with operators C are compatible; indeed, many definitions
of functionals may fail to satisfy the compatibility condition (11). However, assuming that
(11) holds, the adjoint problem associated to (1) and (10) is given by

L∗z = jΩ in Ω, B∗z = jΓ on Γ. (12)

Remark 2.2 In an adjoint-based optimization framework, see e.g. [47], this ensures that

J(u) = (u, jΩ) + (Cu, jΓ)Γ = (u,L∗z) + (Cu,B∗z)Γ

= (Lu, z) + (Bu,C∗z)Γ = (f, z) + (g,C∗z)Γ.
(13)

2.3 The linear advection equation and adjoint problems

The first model problem we consider is the linear advection equation: find u such that

∇ · (bu) + cu = f in Ω, u = g on Γ−, (14)

where f ∈ L2(Ω), b ∈ [C1(Ω)]d, c ∈ L∞(Ω) and g ∈ L2(Γ−), where

Γ− = {x ∈ Γ,b(x) · n(x) < 0} (15)

denotes the inflow part of the boundary Γ = ∂Ω. In the following, by Γ+ = Γ \Γ− we denote
the outflow boundary. In order to derive the continuous adjoint problem, we multiply the
left hand side of (14) by z, integrate over Ω and perform integration by parts. Thereby, we
obtain

(∇ · (bu) + cu, z) + (u,−b · n z)Γ−
= (u,−b · ∇z + cz) + (u,b · n z)Γ+

. (16)

Comparing with (11), we see that for Lu ≡ ∇ · (bu) + cu in Ω and

Bu = u, Cu = 0, on Γ−,

Bu = 0, Cu = u, on Γ+,

11

the adjoint operators are given by L∗z ≡ −b · ∇z + cz in Ω and

B∗z = 0, C∗z = −b · n z on Γ−,

B∗z = b · n z, C∗z = 0 on Γ+.

In particular, for

J(u) =

∫

Ω
jΩ udx +

∫

Γ
jΓ Cuds =

∫

Ω
jΩ udx +

∫

Γ+

jΓ uds, (17)

the continuous adjoint problem is given by

−b · ∇z + cz = jΩ in Ω, (18)

subject to the boundary condition

b · n z = jΓ on Γ+. (19)

In the following, we give some examples:

1. Outflow normal flux: Given a weight function ψ ∈ L2(Γ+) and setting jΩ ≡ 0 and
jΓ = b · nψ in (18) and (19) we obtain the weighted normal flux through the outflow
boundary Γ+ defined by

J(u) =

∫

Γ+

b · nψ uds.

Then, z is the unique solution to the following boundary value problem: find z such
that

−b · ∇z + cz = 0 in Ω,

z = ψ on Γ+.

2. Mean value: Given a weight function jΩ ∈ L2(Ω) and setting jΓ ≡ 0 in (19) we obtain
the weighted mean value given by

J(u) =

∫

Ω
jΩ udx.

In this case, z is the solution to following adjoint problem: find z such that

−b · ∇z + cz = jΩ in Ω,

z = 0 on Γ+.

3. Point value: Under the assumption that the analytical solution u is a continuous func-
tion in the neighbourhood of a given point x0 ∈ Ω we consider the evaluation of the
point value

J(u) = u(x0).

Then, z is the solution to following adjoint problem: find z such that

−b · ∇z + cz = δx0
in Ω,

z = 0 on Γ+,

12

where δx0
denotes a δ-distribution at the point x0 with the property

∫

Ω
δx0

udx = u(x0).

In this setting the weak solution of the adjoint problem is a measure rather than a
regular distribution; in particular, z does not belong to L2(Ω). Thus, to avoid technical
complications, we may mollify the functional J by considering a nonnegative function
ϕ in L1,loc(R

d) whose support is contained in the unit ball B(0, 1) centered at x = 0
and such that the integral of ϕ over B(0, 1) is equal to 1. Writing ψ(x) = ϕε(x) ≡
ε−d ϕ((x − x0)/ε), the mollified functional

JM (u) =

∫

Ω
ψ udx

converges to u(x0) as ε→ 0. Further, setting J(w) = JM (w) into (5) as the right-hand
side, for 0 ≪ ε < 1 fixed, now results in a unique solution z.

The adjoint problem transports information along the characteristics of the primal prob-
lem but in the opposite direction. The solution to the adjoint problem is related to the domain
of influence for the target quantity under consideration, in the sense that the solution at all
points within the support of the adjoint solution may affect the value of the target quantity.
From (6) we see that the error J(u) − J(uh) of the discrete solution uh measured in terms
of the target quantity depends on the residuals of the primal solution within this domain
while the adjoint solution traces back to the origin of these residuals. In fact, the adjoint
solution describes quantitatively to what extent the residuals contribute to the error in the
target quantity. This information can be used by an adaptive algorithm that equilibrates the
adjoint-based indicators ηκ, see (9), by refining and coarsening the mesh. Such an algorithm
leads to meshes where the elements are distributed in order to reduce the contributions to
the error in the target quantity.

2.4 Numerical example: Linear advection equation

As first numerical example taken from [51, 52] we consider the linear advection equation (14)
on Ω = [0, 2] × [0, 1] ∈ R

2 with a vector field b as shown in Figure 1(a). For this problem
and the prescribed boundary values on the inflow boundary (u(x, 0) = 1 for 1

8 < x < 3
4 and

zero boundary values elsewhere) the solution is shown in Figure 1(c). Here, the two jumps of
the discontinuous boundary function are transported along the characteristic directions given
by the vector field. Assume that we are interested in the values of the solution on the part
1
4 < y < 1 of the right outflow boundary. Let us take, for example, J(u) =

∫

Γ+
uψ ds as target

functional, where ψ is chosen to be very smooth, ψ(2, y) = exp
((

3
8

)−2 −
(
(y − 5

8)2 − 3
8

)−2
)

for 1
4 < y < 1 and 0 elsewhere, such that also the corresponding adjoint solution is smooth,

see Figure 1(b).
Figure 1(d) shows the numerical solution on the adaptively refined mesh, see Figure 1(e),

which has been refined using the adjoint-based indicators. Note that the refinement takes
place at the position of only one of the discontinuities present in u. Indeed, the second
discontinuity is not resolved at all, as it is outside of the support of the adjoint solution,

13

(a) Vector field b (b) Adjoint solution related to the target
functional

R

∂Ω+ uψ ds with smooth ψ

(c) Primal solution on mesh, see Figure 1(e) (d) Primal solution on mesh, see Figure 1(f)

(e) Traditionally refined mesh (f) Adjoint-based refined mesh

Figure 1: Linear advection equation: Comparison of traditional and adjoint-based indicators,
[51, 52].

and hence does not belong to the domain of influence of the target quantity. Thereby, the
residuals in the neighborhood of this discontinuity do not contribute to the error in the
target quantity. Comparing the two meshes, Figure 1(e) and Figure 1(f), it is obvious that
the mesh in Figure 1(f) is more cost-efficient for evaluating the value of the target quantity
than the mesh refined with traditional residual–based indicators which do not include the
adjoint solution.

14

3 Discontinuous Galerkin methods for compressible flows and

their corresponding adjoint problems

In this section we introduce the compressible Euler and Navier-Stokes equations. We then
derive the corresponding adjoint problems connected to specific target quantities. To this
end, the derivation of adjoint problems as outlined in Section 2.2 for linear problems will
be extended to nonlinear problems. Furthermore, we will introduce the DG discretization
of the compressible Euler and Navier-Stokes equations which is both consistent and adjoint
consistent.

3.1 The compressible Euler equations

The compressible Euler equations are a nonlinear system of conservation equations (con-
servation of mass, momentum and energy) describing inviscid compressible flows which are
frequently used as a simple model for gas flows. In particular, here we consider the stationary
Euler equations

∇ · Fc(u) = 0 in Ω, (20)

where Ω is a bounded open Lipschitz domain in R
3. The vector of conservative variables u

is given by u = (ρ, ρv1, ρv2, ρv3, ρE)⊤ and the convective flux Fc(u) = (f c
1(u), f c

2(u), f c
3 (u))⊤

in three dimensions is given by

f c
1(u) =

ρv1
ρv2

1 + p
ρv1v2
ρv1v3
ρHv1

, f c
2(u) =

ρv2
ρv2v1
ρv2

2 + p
ρv2v3
ρHv2

, and f c
3(u) =

ρv3
ρv3v1
ρv3v2
ρv2

3 + p
ρHv3

, (21)

where ρ, v = (v1, v2, v3)
⊤, p and E denote the density, velocity vector, pressure and specific

total energy, respectively. Additionally, H is the total enthalpy given by

H = E +
p

ρ
= e+ 1

2v
2 +

p

ρ
, (22)

where e is the specific static internal energy, and the pressure is determined by the equation
of state of an ideal gas

p = (γ − 1)ρe, (23)

where γ = cp/cv is the ratio of specific heat capacities at constant pressure, cp, and constant
volume, cv; for dry air, γ = 1.4. The flux Jacobians Ai(u) := ∂uf

c
i (u), i = 1, 2, 3, are given

by

A1(u) =

0 1 0 0 0
−v2

1 + 1
2(γ − 1)v2 (3 − γ)v1 −(γ − 1)v2 −(γ − 1)v3 γ − 1

−v1v2 v2 v1 0 0
−v1v3 v3 0 v1 0

v1
(

1
2(γ − 1)v2 −H

)
H − (γ − 1)v2

1 −(γ − 1)v1v2 −(γ − 1)v1v3 γv1

,

15

A2(u) =

0 0 1 0 0
−v1v2 v2 v1 0 0

−v2
2 + 1

2(γ − 1)v2 −(γ − 1)v1 (3 − γ)v2 −(γ − 1)v3 γ − 1
−v2v3 0 v3 v2 0

v2
(

1
2(γ − 1)v2 −H

)
−(γ − 1)v1v2 H − (γ − 1)v2

2 −(γ − 1)v2v3 γv2

.

A3(u) =

0 0 0 1 0
−v1v3 v3 0 v1 0
−v2v3 0 v3 v2 0

−v2
3 + 1

2(γ − 1)v2 −(γ − 1)v1 −(γ − 1)v2 (3 − γ)v3 γ − 1
v3
(

1
2(γ − 1)v2 −H

)
−(γ − 1)v1v3 −(γ − 1)v2v3 H − (γ − 1)v2

3 γv3

.

Writing n ∈ R
3 to denote the unit outward normal vector to the boundary Γ = ∂Ω, the

normal flux Jacobian An(u,n) is given by

An(u,n) =
3∑

i=1

niAi(u). (24)

Moreover, the eigenvalues of the matrix An(u,n) are

λ1 = v · n− c, λ2 = λ3 = λ4 = v · n, λ5 = v · n + c, (25)

where c =
√

γp/ρ denotes the speed of sound.
The system of conservation equations (20) must be supplemented by appropriate bound-

ary conditions; for example at inflow/outflow boundaries, we require that

A−
n (u,n) (u− g) = 0 on Γ (26)

where g is a (given) vector function. Here, A±
n (u,n) denotes the positive/negative part of

An(u,n) defined by
A±

n (u,n) = PΛ±P−1, (27)

where P = [r1, . . . , r5] denotes the 5 × 5 matrix of eigenvectors of An(u,n) and Λ+ =
diag(max(λi, 0)) and Λ− = diag(min(λi, 0)) the 5×5 diagonal matrix of the positive/negative
eigenvalues of An(u,n), respectively, with Anri = λiri, i = 1, . . . , 5.

Considering the signs of λi, i = 1, . . . , 5, we distinguish four cases of farfield boundary
conditions:

• supersonic inflow: λi < 0, i = 1, . . . , 5,

• subsonic inflow: λi < 0, i = 1, . . . , 4, λ5 > 0,

• subsonic outflow: λ1 < 0, λi > 0, i = 2, . . . , 5, and

• supersonic outflow: λi > 0, i = 1, . . . , 5.

Each eigenvalue smaller than zero corresponds to an inflow characteristic. The number of
variables to be prescribed on the boundary depend on the number of inflow characteristics.

Finally, at wall boundaries we require that the normal velocity vanishes, i.e., v · n = 0.

16

3.2 Derivation of adjoint problems for nonlinear primal problems

In this section the derivation of adjoint problems as outlined in Section 2.2 for linear problems
will be extended to nonlinear problems. Let us consider following nonlinear problem,

Nu = 0 in Ω, Bu = 0 on Γ, (28)

where N is a nonlinear differential (and Fréchet-differentiable) operator and B is a (possibly
nonlinear) boundary operator. Let J(·) be a nonlinear target functional of the form

J(u) =

∫

Ω
jΩ(u) dx +

∫

Γ
jΓ(Cu) ds, (29)

with Fréchet derivative

J ′[u](w) =

∫

Ω
j′Ω[u]w dx +

∫

Γ
j′Γ[Cu]C ′[u]w ds, (30)

where jΩ(·) and jΓ(·) may be nonlinear with derivatives j′Ω and j′Γ, respectively, and C is
a differential boundary operator on Γ (which may be nonlinear) with derivative C ′. Here,
′ denotes the (total) Fréchet derivative and the square bracket [·] denotes the state about
which linearization is performed. Again, we say that the target functional (29) is compatible
with (28) provided the following compatibility condition holds

(N ′[u]w, z) + (B′[u]w, (C ′[u])∗z)Γ = (w, (N ′[u])∗z) + (C ′[u]w, (B′[u])∗z)Γ, (31)

where (N ′[u])∗, (B′[u])∗ and (C ′[u])∗ denote the adjoint operators to N ′[u], B′[u] and C ′[u],
respectively. This condition is analogous to (11), with L, B and C replaced by N ′[u], B′[u]
and C ′[u], respectively. Assuming that (31) holds the continuous adjoint problem associated
to (28) and (30) is:

(N ′[u])∗z = j′Ω[u] in Ω, (B′[u])∗z = j′Γ[Cu] on Γ. (32)

3.3 The adjoint equations to the compressible Euler equations

The most important target quantities in inviscid compressible flows are the pressure induced
drag and lift coefficients Cdp and Clp, respectively, on a given solid wall boundary ΓW ⊂ Γ.
These quantities are defined by

J(u) =

∫

Γ
j(u) ds =

1

C∞

∫

ΓW

pn · ψ ds, (33)

where j(u) = 1
C∞

pn · ψ on ΓW and j(u) ≡ 0 elsewhere. Here, C∞ = 1
2γp∞M

2
∞Ā =

1
2γ

|v∞|2

c2∞
p∞Ā = 1

2ρ∞|v∞|2Ā, where M denotes the Mach number, c the sound speed de-

fined by c2 = γp/ρ, Ā denotes a reference area, and ψ is given by ψd = (cos(α), 0, sin(α))⊤ or
ψl = (− sin(α), 0, cos(α))⊤ for the drag and lift coefficient, respectively. Subscripts ∞ indicate
free-stream quantities.

In order to derive the continuous adjoint problem, we multiply the left hand side of (20)
by z, integrate by parts and linearize about u to obtain

(∇ · (Fc
u[u](w)) , z) = − (Fc

u[u](w),∇z) + (n · Fc
u[u](w), z)Γ , (34)

17

where Fc
u[u] := (Fc)′ [u] denotes the Fréchet derivative of Fc with respect to u. Here,

we already use the subscript u notation, which we require in Section 3.7 to distinguish from
subscript ∇u denoting the derivative with respect to ∇u. Thereby, the variational formulation
of the continuous adjoint problem is given by: find z such that

−
(

w, (Fc
u[u])⊤∇z

)

+
(

w, (n · Fc
u[u])⊤ z

)

Γ
= J ′[u](w) ∀w ∈ V. (35)

The continuous adjoint problem is then given by

− (Fc
u[u])⊤∇z = 0 in Ω, (n · Fc

u[u])⊤ z = j′[u] on Γ. (36)

Using Fc(u) · n = p(0, n1, n2, n3, 0)
⊤ on ΓW , and the definition of j in (33) we obtain

p′[u](0, n1, n2, n3, 0) · z =
1

C∞
p′[u]n ·ψ on ΓW ,

which reduces to the boundary condition of the adjoint compressible Euler equations,

(B′[u])∗z = n1z2 + n2z3 + n3z4 =
1

C∞
n ·ψ on ΓW . (37)

This, in fact, is the adjoint operator of

Bu = n1u2 + n2u3 + n3u4 = 0 on ΓW ,

which via n1u2 + n2u3 + n3u4 = ρ(n1v1 + n2v2 + n3v3) = ρv · n = 0 represents a vanishing
normal velocity, v · n = 0, at wall boundaries.

3.4 DG discretization of the compressible Euler equations

We begin by introducing the necessary notation. Suppose that Th is a subdivision of Ω into
open element domains κ such that Ω̄ = ∪κ∈Th

κ̄. Let us assume that each κ ∈ Th is a smooth
bijective image of a fixed reference element κ̂, that is, κ = Fκ(κ̂) for all κ ∈ Th. On the
reference element κ̂ we define spaces of polynomials of degree p ≥ 0 as follows:

Qp = span {x̂α : 0 ≤ αi ≤ p, 0 ≤ i ≤ 3} , Pp = span {x̂α : 0 ≤ |α| ≤ p} .

We now introduce the finite element function space Vh,p consisting of discontinuous vector–
valued polynomial functions of degree p ≥ 0, defined by

Vh,p = {vh ∈ [L2(Ω)]5 : vh|κ ◦ Fκ ∈ [Qp(κ̂)]5 if κ̂ is the unit hypercube, and

vh|κ ◦ Fκ ∈ [Pp(κ̂)]
5 if κ̂ is the unit simplex, κ ∈ Th}.

(38)

Let κ+ and κ− be two adjacent elements of Th and x be an arbitrary point on the interior face
f = ∂κ+ ∩ ∂κ−. Given a function vector–valued function v which is assumed to be smooth
inside each element κ±, by v± := v|∂κ± we denote the traces of v on f taken from within
the interior of κ±, respectively. Indeed, given that κ+ and κ− are two adjacent elements
of Th, v∓ may be viewed as the exterior/outer trace of v on f relative to κ±, respectively.
For notational simplicity, in the sequel we shall neglect the superscript ‘+’ on the elemental

18

domain κ ∈ Th and write v± to denote the traces of v on f ⊂ ∂κ ∩ ∂κ− taken from within
the interior of κ and κ−, respectively, where κ and κ− are two adjacent elements of Th.

For deriving the DG discretization we introduce a weak formulation of (20). In particular,
we multiply (20) by an arbitrary smooth (vector-)function v and integrate by parts over an
element κ in the mesh Th; thereby, we obtain

−
∫

κ
Fc(u) · ∇v dx +

∫

∂κ
Fc(u) · nv ds = 0. (39)

To discretize (39), we replace the analytical solution u by the Galerkin finite element
approximation uh and the test function v by vh, where uh and vh both belong to the
finite element space Vh,p. In addition, since the numerical solution uh is discontinuous
between element interfaces, we must replace the flux Fc(u) · n by a numerical flux function
H(u+

h ,u
−
h ,n), which depends on both the interior– and outer–trace of uh on ∂κ, κ ∈ Th, and

the unit outward normal n to ∂κ. Thereby, summing over the elements κ in the mesh Th,
yields the DG discretization of (20) as follows: find uh ∈ Vh,p such that

−
∫

Ω
Fc(uh) · ∇hvh dx +

∑

κ∈Th

∫

∂κ
H(u+

h ,u
−
h ,n)v+

h ds = 0 ∀vh ∈ Vh,p. (40)

We remark that the replacement of the flux Fc(u)·n by the numerical flux function H(u+
h ,u

−
h ,n)

on the boundary of element κ, κ in Th, corresponds to the weak imposition of the boundary
data. The numerical flux H(·, ·, ·) must be consistent and conservative; here, we recall the
following definitions

(i) H(·, ·, ·)|∂κ is consistent with the flux Fc(·) · n, if for each κ in Th we have that

H(v,v,n)|∂κ = Fc(v) · n ∀κ ∈ Th;

(ii) H(·, ·, ·) is conservative, if given any two neighboring elements κ and κ′ from the finite
element partition Th, at each point x ∈ ∂κ ∩ ∂κ′ 6= ∅, noting that nκ′ = −n, we have
that

H(v,w,n) = −H(w,v,−n).

There are several numerical flux functions satisfying these conditions, such as the Go-
dunov, Engquist–Osher, Lax–Friedrichs, Roe or the Vijayasundaram flux. As examples, here
we consider three different numerical fluxes:

• The (local) Lax–Friedrichs flux HLF (·, ·, ·) is defined by

HLF (u+,u−,n)|∂κ = 1
2

(
Fc(u+) · n + Fc(u−) · n + α

(
u+ − u−

))
,

for κ ∈ Th, where α is the maximum over u+ and u−,

α = max
v=u+,u−

{|λ(An(v,n))|},

of the largest eigenvalue (in absolute value) |λ(An)| of the matrix An(u,n) =
∑3

i=0 niAi(u)
defined in (24).

19

• The Vijayasundaram flux HV (·, ·, ·) is defined by

HV (u+,u−,n)|∂κ = A+
n (ū,n)u+ +A−

n (ū,n)u− for κ ∈ Th,

where A+
n (ū,n) and A−

n (ū,n) denote the positive and negative parts, cf. (27), of the
matrix An(ū,n), respectively, evaluated at an average state ū between u+ and u−.

• The HLLE flux HHLLE(·, ·, ·) is given by

HHLLE(u+,u−,n)|∂κ = 1
λ+−λ−

(
λ+Fc(u+) · n − λ−Fc(u−) · n− λ+λ−

(
u+ − u−

))
,

where λ+ = max(λmax, 0) and λ− = min(λmin, 0).

Boundary conditions For boundary faces ∂κ ∩ Γ 6= ∅ we replace u−
h by an appropriate

boundary function uΓ(u+
h) which realizes the boundary conditions to be imposed.

First we define several farfield boundary conditions:

• Supersonic inflow corresponds to Dirichlet boundary conditions where

uΓ(u) = gD = u∞ on ΓD,sup.

• Supersonic outflow corresponds to Neumann boundary conditions where

uΓ(u) = u on ΓN.

• The subsonic inflow boundary condition takes the pressure from the flow field and
imposes all other variables based on freestream conditions u∞, i.e.,

uΓ(u) =

(

ρ∞, ρ∞v1,∞, ρ∞v2,∞, ρ∞v3,∞,
p(u)

γ − 1
+ ρ∞

(
v2
1,∞ + v2

2,∞ + v2
3,∞

)
)⊤

on ΓD,sub-in.

Here, p ≡ p(u) denotes the pressure evaluated using the equation of state (23).

• The subsonic outflow boundary condition imposes an outflow pressure pout and takes
all other variables from the flow field, i.e.,

uΓ(u) =

(

u1, u2, u3, u4,
pout

γ − 1
+
u2

2 + u2
3 + u2

4

2u1

)⊤

on ΓD,sub-out.

• The characteristic farfield boundary condition imposes Dirichlet boundary conditions
based on free-stream conditions on characteristic inflow variables. No boundary con-
ditions are imposed on characteristic outflow variables. This corresponds to using the
Vijayasundaram flux on the farfield boundary.

Finally, we define the following slip wall boundary condition:

20

• For slip wall boundary conditions used at reflective walls we set

uΓ(u) =

1 0 0 0
0 1 − n2

1 −n1n2 −n1n3 0
0 −n1n2 1 − n2

2 −n2n3 0
0 −n1n3 −n2n3 1 − n2

3 0
0 0 0 0 1

u on ΓW , (41)

which originates from u by subtracting the normal velocity component of u, i.e., v =
(v1, v2, v3) is replaced by vΓ = v − (v · n)n which ensures that the normal velocity
component vanishes, vΓ · n = 0.

Given the boundary function uΓ(u+
h) as defined above the DG discretization of (20) including

boundary conditions is given as follows: find uh ∈ Vh,p such that

N (uh,vh) ≡ −
∫

Ω
Fc(uh) · ∇hvh dx +

∑

κ∈Th

∫

∂κ\Γ
H(u+

h ,u
−
h ,n)v+

h ds

+

∫

Γ
HΓ(u+

h ,uΓ(u+
h),n)v+

h ds = 0 ∀vh ∈ Vh,p, (42)

where HΓ is usually the same numerical flux H as used on interior faces ∂κ \ Γ, κ ∈ Th.
However, in order to ensure adjoint consistency, see e.g. [54, 56], the numerical flux HΓ at
slip wall boundaries is given by

HΓ(u+
h ,uΓ(u+

h),n) = n · Fc
Γ(u+

h) = n · Fc(uΓ(u+
h)) on ΓW . (43)

3.5 Consistency and adjoint consistency

Using integration by parts on (42) we obtain the primal residual form: find uh ∈ Vh,p such
that

R(uh,vh) ≡
∫

Ω
R(uh) · vh dx +

∑

κ∈Th

∫

∂κ\Γ
r(uh) · v+

h ds+

∫

Γ
rΓ(uh) · v+

h ds = 0 (44)

for all vh ∈ Vh,p, where the primal residuals are given by

R(uh) = −∇ · Fc(uh) in κ, κ ∈ Th,

r(uh) = n · Fc(u+
h) −H(u+

h ,u
−
h ,n

+) on ∂κ \ Γ, κ ∈ Th, (45)

rΓ(uh) = n · Fc(u+
h) −HΓ(u+

h ,uΓ(u+
h),n+) on Γ.

Given the consistency of the numerical flux, H(w,w,n) = n · Fc(w), and the consistency of
the boundary function, i.e., uΓ(u) = u for the analytical solution u to (20), we find that u
satisfies the following equations

R(u) = 0 in κ, κ ∈ Th, r(u) = 0 on ∂κ \ Γ, κ ∈ Th, rΓ(u) = 0 on Γ. (46)

Thereby, (42) is a consistent discretization of (20), i.e., the analytical solution u ∈ V to the
primal problem (20) satisfies the equation

N (u,v) = 0 ∀v ∈ V, (47)

21

where V is some suitably chosen function space including the analytical solution u ∈ V to
the primal problem (20) and satisfying Vh,p ⊂ V; see [7, 54] for the choice of V in the case
of DG methods.

Furthermore, we note that the discretization (42) is adjoint consistent in combination
with the modified target quantity Ĵ(uh) = J(uΓ(uh)), where J(·) is an aerodynamic force
coefficient as given in (33). In fact, denoting by N ′[uh](wh,vh) the Fréchet derivative of
N (uh,vh) and by Ĵ ′[uh](wh) the Fréchet derivative of Ĵ(uh), both with respect to uh in the
direction of wh ∈ Vh,p, then the discrete adjoint problem given by: find zh ∈ Vh,p such that

N ′[uh](wh, zh) = Ĵ ′[uh](wh) ∀wh ∈ Vh,p,

is a consistent discretization of the continuous adjoint problem (36) with adjoint boundary
conditions (37), see e.g. [54, 56]. This means, that the analytical solution z to (36),(37)
satisfies

N ′[u](w, z) = Ĵ ′[u](w) ∀w ∈ V. (48)

Finally, noting that uΓ(u) = u holds for the analytical solution u, we see that the modification
Ĵ(uh) of the target quantity J(uh) is consistent, i.e., their values coincide, Ĵ(u) = J(u), if
evaluated for the analytical solution u. Finally, we note that we will omit theˆnotation and
write J instead of Ĵ in the following.

3.6 The compressible Navier-Stokes equations

The compressible Euler equations as considered in Section 3.1 serve as a simple model for gas
flows. In fact, while ignoring all viscous effects they describe an inviscid compressible flow. In
the following, we will enrich the physical model by including also viscous terms. The resulting
compressible Navier-Stokes equations serve as a model for laminar viscous compressible flows.

As in Section 3.1, the variables ρ, v = (v1, v2, v3)
⊤, p and E denote the density, ve-

locity vector, pressure and specific total energy, respectively. Furthermore, T denotes the
temperature. The equations of motion are given by

∇ · (Fc(u) −Fv(u,∇u)) ≡ ∂

∂xk
f c
k(u) − ∂

∂xk
fv
k (u,∇u) = 0 in Ω. (49)

The vector of conservative variables u is given by u = (ρ, ρv1, ρv2, ρv3, ρE)⊤ and the convec-
tive fluxes f c

k , k = 1, 2, 3, are given by (21). Furthermore, the viscous fluxes fv
k , k = 1, 2, 3,

are defined by

fv
k (u,∇u) =

0
τ1k

τ2k

τ3k

τklvl + KTxk

, k = 1, 2, 3,

where K is the thermal conductivity coefficient. Finally, the viscous stress tensor is defined
by

τ = µ
(

∇v + (∇v)⊤ − 2
3(∇ · v)I

)

,

22

where µ is the dynamic viscosity coefficient, and the temperature T is given by e = cvT ; thus

KT = µγ
Pr

(
E − 1

2v
2
)
,

where Pr = 0.72 is the Prandtl number.
For the purposes of discretization, we rewrite the compressible Navier–Stokes equations

(49) in the following (equivalent) form:

∇ · (Fc(u) −G(u)∇u) ≡ ∂

∂xk

(

f c
k(u) −Gkl(u)

∂u

∂xl

)

= 0 in Ω.

Here, the matrices Gkl(u) = ∂fv
k (u,∇u)/∂uxl

, for k, l = 1, 2, 3, are the homogeneity tensors
defined by fv

k (u,∇u) = Gkl(u)∂u/∂xl, k = 1, 2, 3.
As for the compressible Euler equations we consider supersonic and subsonic inflow and

outflow boundary conditions. Furthermore, we distinguish between isothermal and adiabatic
wall boundary conditions. To this end, decomposing ΓW = Γiso ∪ Γadia, we set

v = 0 on ΓW , T = Twall on Γiso, n · ∇T = 0 on Γadia, (50)

where Twall is a given wall temperature.

3.7 The adjoint equations to the compressible Navier-Stokes equations

The most important target quantities in viscous compressible flows are the total (i.e., the
pressure induced plus viscous) drag and lift coefficients, Cd and Cl, defined by

J(u) =

∫

Γ
j(u) ds =

1

C∞

∫

ΓW

(pn− τ n) · ψ ds =
1

C∞

∫

ΓW

(p ni − τijnj)ψi ds, (51)

where C∞ and ψ are as in (33). In order to derive the adjoint problem, we multiply the left
hand side of (49) by z, integrate by parts and linearize about u to obtain

(∇ · (Fc
uw −Fv

uw −Fv
∇u∇w) , z)

= − ((Fc
u −Fv

u)w −Fv
∇u∇w,∇z) + (n · (Fc

uw −Fv
uw −Fv

∇u∇w) , z)Γ ,

where Fv
u := ∂uFv(u,∇u) = G′[u]∇u and Fv

∇u := ∂∇uFv(u,∇u) = G(u) denote the deriva-
tives of Fv with respect to u and ∇u, respectively. Using integration by parts once more, we
obtain the following variational formulation of the continuous adjoint problem: find z such
that

−
(

w, (Fc
u −Fv

u)⊤∇z
)

−
(

w,∇ ·
(

(Fv
∇u)⊤∇z

))

+
(

w,n ·
(

(Fv
∇u)⊤∇z

))

Γ

+
(

w, (n · (Fc
u −Fv

u))⊤ z
)

Γ
−
(

∇w, (n · Fv
∇u)⊤ z

)

Γ
= J ′[u](w) ∀w ∈ V.

Given that

J ′[u](w) =
1

C∞

∫

ΓW

(pu[u]n − τu[u]n) ·ψw − (τ∇u[u]n) ·ψ∇w ds

=
(

w, 1
C∞

(pu n− τu n) · ψ
)

ΓW

−
(

∇w, 1
C∞

(τ∇u n) ·ψ
)

ΓW

,

(52)

23

we see that the adjoint solution z satisfies the following equation

− (Fc
u −Fv

u)⊤ ∇z−∇ ·
(

(Fv
∇u)⊤∇z

)

= 0, (53)

subject to the boundary conditions on ΓW = Γiso ∪ Γadia,

(n · (Fc
u −Fv

u))⊤ z + n ·
(

(Fv
∇u)⊤∇z

)

= 1
C∞

(pu n− τu n) ·ψ, (54)

(n · Fv
∇u)⊤ z = 1

C∞
(τ∇u n) · ψ. (55)

At wall boundaries ΓW , where v = (v1, v2, v3)
⊤ = 0, the normal viscous flux reduces to

n ·Fv(u,∇u) = (0, (τn)1, (τn)2, (τn)3,Kn ·∇T)⊤. Hence, (55) is fulfilled provided z satisfies

0
(τ∇un)1 z2
(τ∇un)2 z3
(τ∇un)3 z4

Kn · ∇T∇u z5

=
1

C∞

0
(τ∇un)1 ψ1

(τ∇un)2 ψ2

(τ∇un)3 ψ3

0

, (56)

which reduces to the conditions zi+1 = 1
C∞

ψi, i = 1, 2, 3, on ΓW , and z5 = 0 on Γiso. At
adiabatic boundaries we have n ·∇T = 0 and the last condition in (56) vanishes. Substituting
into (54) we obtain n · ((Fv

∇u)⊤∇z) = 0 on ΓW which at adiabatic boundaries reduces to
n · ∇z5 = 0. On isothermal boundaries no additional boundary condition is obtained. In
summary, the boundary conditions of the adjoint problem (53) to the compressible Navier-
Stokes equations are given by

zi+1 = 1
C∞

ψi, i = 1, 2, 3, on ΓW , z5 = 0 on Γiso, n · ∇z5 = 0 on Γadia. (57)

3.8 DG discretization of the compressible Navier-Stokes equations

In addition to the vector-valued discrete function space Vh,p defined in Section 3.4 we now in-
troduce the tensor-valued discrete function space Σh,p consisting of tensor-valued polynomial
functions of degree p ≥ 0, defined by

Σh,p = {τ ∈ [L2(Ω)]5×3 :τ |κ ◦ Fκ ∈ [Qp(κ̂)]5×3 if κ̂ is the unit hypercube, and

τ |κ ◦ Fκ ∈ [Pp(κ̂)]
5×3 if κ̂ is the unit simplex, κ ∈ Th}.

An interior face of Th is defined as the (non-empty) two–dimensional interior of ∂κ+∩∂κ−,
where κ+ and κ− are two adjacent elements of Th, not necessarily matching. A boundary
face of Th is defined as the (non-empty) two–dimensional interior of ∂κ ∩ Γ, where κ is a
boundary element of Th. We denote by ΓI the union of all interior faces of Th. Furthermore,
we define some jump and mean value operators for vector- and matrix-valued functions.
To this end, let κ+ and κ− be two adjacent elements of Th and x be an arbitrary point
on the interior face f = ∂κ+ ∩ ∂κ− ⊂ ΓI . Moreover, let v and τ be vector- and matrix-
valued functions, respectively, that are smooth inside each element κ±. By v± := v|∂κ± and
τ± := τ |∂κ± we denote the traces of, respectively, v and τ on f taken from within the interior
of κ±, respectively. Then, we define the averages at x ∈ f by {{v}} = (v+ + v−)/2 and
{{τ}} = (τ+ + τ−)/2. Similarly, the jump at x ∈ f is given by [[v]] = v+ ⊗ nκ+ + v− ⊗ nκ− .

24

On a boundary face f ⊂ Γ, we set {{v}} = v, {{τ}} = τ and [[v]] = v ⊗ n. For matrices

σ, τ ∈ R
m×n, m,n ≥ 1, we use the standard notation σ : τ =

∑m
k=1

∑n
l=1 σklτkl; additionally,

for vectors v ∈ R
m,w ∈ R

n, the matrix v ⊗ w ∈ R
m×n is defined by (v ⊗ w)kl = vk wl.

The DG discretization of the three–dimensional compressible Navier-Stokes equations (49)
is given by: find uh ∈ Vh,p such that

N (uh,v) ≡ −
∫

Ω
Fc(uh) : ∇hv dx +

∑

κ∈Th

∫

∂κ\Γ
H(u+

h ,u
−
h ,n

+) · v+ ds

+

∫

Ω
Fv(uh,∇huh) : ∇hv dx−

∫

ΓI

{{Fv(uh,∇huh)}} : [[v]] ds

−
∫

ΓI

{{G⊤(uh)∇hv}} : [[uh]] ds+

∫

ΓI

δ(uh) : [[v]] ds

+NΓ(uh,v) = 0 (58)

for all v in Vh,p. Here, the numerical flux H is as described in Section 3.4. For the penalization
term we consider the interior penalty (IP) scheme, [63], and the second scheme of Bassi and
Rebay (BR2), [16, 17]:

δ(uh) = δIP(uh) = CIP
p2

hf
{{G(uh)}}[[uh]] for IP [63], (59)

δ(uh) = δBR2(uh) = CBR2{{Le
0(uh)}} for BR2 [16, 17].

Here, hf represents the element dimension orthogonal to the face f ⊂ ∂κ+ ∩ ∂κ−, where
κ+ and κ− are adjacent elements, cf. Section 5.4. CIP is a positive constant, which, for
reasons of stability, must be chosen sufficiently large. Furthermore, the local lifting operator
Lf

0(uh) ∈ Σh,p is defined by:

∫

Ωe

Lf
0(uh) : τ dx =

∫

e
[[uh]] : {{G⊤(uh)τ}}ds ∀τ ∈ Σh,p,

where Ωe = κ+
e ∪ κ−e with e = ∂κ+

e ∩ ∂κ−e .
Finally, the boundary terms included in NΓ(uh,v) are given by

NΓ(uh,v) =

∫

Γ
HΓ(u+

h ,uΓ(u+
h),n+) · v+ ds+

∫

Γ
δΓ(u+

h) : v ⊗ nds,

−
∫

Γ
n · Fv

Γ(u+
h ,∇hu

+
h)v+ ds

−
∫

Γ

(

G⊤
Γ (u+

h)∇hv
+
h

)

:
(
u+

h − uΓ(u+
h)
)
⊗ nds,

(60)

where the penalization term on the boundary is given by

δIPΓ (uh) = CIP
p2

he
GΓ(uh) (uh − uΓ(uh)) ⊗ n for IP [63], (61)

δBR2
Γ (uh) = CBR2L

e
Γ(uh) for BR2 [16, 17].

Here, the local lifting operator Lf
Γ(uh) ∈ Σh,p on Γ is defined by:

∫

κ
Lf

Γ(uh) : τ dx =

∫

e
(uh − uΓ(uh)) ⊗ n :

(

G⊤
Γ (uh)τ

)

ds ∀τ ∈ Σh,p

25

for all κ ∈ Th, such that ∂κ ∩ Γ = e. Furthermore, the viscous boundary flux Fv
Γ and the

corresponding homogeneity tensor GΓ are defined by

Fv
Γ(uh,∇uh) = Fv(uΓ(uh),∇uh) = GΓ(uh)∇uh = G(uΓ(uh))∇uh. (62)

Furthermore, on adiabatic boundaries Γadia ⊂ ΓW , Fv
Γ and GΓ are modified such that n·∇T =

0. Finally, as in (43) we define

HΓ(u+
h ,uΓ(u+

h),n) = n · Fc
Γ(u+

h) = n · Fc(uΓ(u+
h)), (63)

where the boundary function uΓ(·) is given by uΓ(w) = (w1, 0, 0, 0, w5)
⊤ on Γadia, and by

uΓ(w) = (w1, 0, 0, 0, w1cvTwall)
⊤ on Γiso, see Section 3.4 for the treatment of other boundary

conditions. Finally, we note that the boundary function uΓ(·) is consistent, i.e., on all bound-
ary parts, uΓ(·) is chosen such that the analytical solution u to (49) satisfies uΓ(u) = u. As
a consequence also δΓ(·) as defined in (61) is consistent. In fact, the analytical solution u to
(49) satisfies δΓ(u) = 0.

3.9 Consistency and adjoint consistency

Using integration by parts in (58) we obtain the primal residual form: find uh ∈ Vh,p such
that

R(uh,vh) ≡
∫

Ω
R(uh) · vh dx +

∑

κ∈Th

∫

∂κ\Γ
r(uh) · v+

h + ρ(uh) : ∇v+
h ds

+

∫

Γ
rΓ(uh) · v+

h + ρΓ(uh) : ∇v+
h ds = 0 ∀vh ∈ Vh,p, (64)

where the primal residuals are given by

R(uh) = −∇ · Fc(uh) + ∇ · Fv(uh,∇huh) in κ, κ ∈ Th,

r(uh) =n · Fc(u+
h) −H(u+

h ,u
−
h ,n

+) − 1

2
[[Fv(uh,∇huh)]] − δ(uh)n,

ρ(uh) =
1

2

(

G(uh)[[uh]]
)⊤

on ∂κ \ Γ, κ ∈ Th, (65)

rΓ(uh) =n ·
(
Fc(u+

h) −Fc
Γ(u+

h) −Fv(u+
h ,∇u+

h) + Fv
Γ(u+

h ,∇u+
h)
)
− δΓ(u+

h)n,

ρΓ(uh) =
(

G⊤
Γ (u+

h) :
(
u+

h − uΓ(u+
h)
)
⊗ n

)⊤
on Γ,

see [54, 56] for more details. We see that the analytical solution u to (49) satisfies

R(u) = 0, r(u) = 0, ρ(u) = 0, rΓ(u) = 0, ρΓ(u) = 0,

where we used consistency of the numerical flux, H(w,w,n) = n · Fc(w), continuity of u,
and the consistency of the boundary function, i.e., u satisfies uΓ(u) = u on Γ. We conclude
that the discretization given in (58) is consistent.

Furthermore, we note that the discretization (58) is adjoint consistent in combination
with the modified target quantity

Ĵ(uh) = J(uΓ(uh)) +

∫

ΓW

δΓ(uh) : zΓ ⊗ nds, (66)

26

see [54, 56] for more details. Here, J(·) represents the aerodynamic force coefficient defined in
(51). Note that the modification Ĵ(uh) of the target quantity J(uh) is consistent, i.e., their
values coincide, Ĵ(u) = J(u), if evaluated for the analytical solution u. Again, we note that
we will omit theˆnotation and write J instead of Ĵ in the following.

27

4 Adjoint-based error estimation and adaptive mesh refine-

ment

Important quantities in aerodynamic flow simulations are the aerodynamic force coefficients
like the pressure induced as well as the viscous stress induced drag, lift and moment co-
efficients. In addition to the exact approximation of these quantities, it is of increasing
importance, in particular in the field of uncertainty quantification, to estimate the error in
the computed values.

While local mesh refinement is required for obtaining reasonably accurate results in ap-
plications, the goal of the adaptive refinement is either to compute the force coefficients as
accurately as possible within given computing resources or to compute these quantities up
to a given tolerance with the minimum computing resources required. In both cases a goal-
oriented refinement is needed, i.e., an adaptive refinement strategy specifically targeted to
the efficient computation of the quantities of interest. Furthermore, in the latter case, an
estimate is required on how accurate the force coefficients are approximated, i.e., an a poste-
riori error estimate that quantifies the error on the numerical solution measured in terms of
the quantity of interest.

In the following Section 4.1 we outline the approach of a posteriori error estimation and
adjoint-based mesh refinement for single target quantities. Then, in Section 4.2 we generalize
this approach to multiple target quantities. In Section 4.4 we derive residual-based indicators
which are targeted at resolving all flow features. Finally, in Section 4.5 we give a collection
of numerical examples.

4.1 Error estimation and mesh refinement for single target quantities

We begin by recalling the general approach of duality based a posteriori error estimation for
single target functionals; see e.g. [23, 52, 58] among many others. Furthermore, we give the
standard algorithm, as described in e.g. [21, 58], of goal-oriented (adjoint-based) adaptive
mesh refinement tailored to the accurate and efficient computation of a single target quantity.

Let us consider the nonlinear problem

Nu = 0 in Ω, Bu = 0 on Γ, (67)

where Ω ∈ R
d, d > 1, is an open bounded domain with boundary Γ = ∂Ω. N is a nonlinear

differential operator and B is a possibly nonlinear boundary operator on Γ. Let N : V×V →
R be a semi-linear form, nonlinear in its first argument and linear in its second argument,
such that the nonlinear problem (67) is discretized as follows: find uh ∈ Vh,p such that

N (uh,vh) = 0 ∀vh ∈ Vh,p. (68)

Furthermore, let us assume that the discretization (68) is consistent, i.e., the analytical
solution u ∈ V satisfies the following equation:

N (u,v) = 0 ∀v ∈ V. (69)

Here, V is some suitably chosen function space including the analytical solution u ∈ V to
the primal problem (67) and satisfying Vh,p ⊂ V, where Vh,p is a discrete function space on
the mesh Th = {κ} consisting of elements κ covering the computational domain Ω; cf. [7, 54]

28

for the choice of V in the case of DG methods. Subtracting (69) from (68) we then obtain
the Galerkin orthogonality

N (u,vh) −N (uh,vh) = 0 ∀vh ∈ Vh,p. (70)

Let J(·) be a nonlinear and differentiable target functional. We define the mean–value
linearization of J(·) as follows

J̄(u,uh;u − uh) = J(u) − J(uh) =

∫ 1

0
J ′[θu + (1 − θ)uh](u − uh) dθ, (71)

where J ′[w](·) denotes the Fréchet derivative of J(·) evaluated at some w in V.
Analogously, for v in V, we define the mean–value linearization of N (·,v)

M(u,uh;u − uh,v) = N (u,v) −N (uh,v)

=

∫ 1

0
N ′[θu + (1 − θ)uh](u − uh,v) dθ. (72)

Here, N ′[w](·,v) denotes the Fréchet derivative of u 7→ N (u,v), for v ∈ V fixed, at some w
in V. Let us now introduce the following adjoint problem: find z ∈ V such that

M(u,uh;w, z) = J̄(u,uh;w) ∀w ∈ V. (73)

Choosing w = u−uh in (73), recalling the linearization performed in (71), and exploiting
the Galerkin orthogonality (70) we get

J(u) − J(uh) = J̄(u,uh;u − uh) = M(u,uh;u − uh, z)

= M(u,uh;u − uh, z − zh) = −N (uh, z − zh) ∀zh ∈ Vh,p.

Thereby, we have the following error representation formula

J(u) − J(uh) = R(uh, z − zh), (74)

where R(uh, z− zh) = −N (uh, z− zh) includes the primal residuals multiplied by the differ-
ence of the adjoint solution z and an arbitrary discrete function zh ∈ Vh,p, see the definition of
R(·, ·) for the compressible Euler and Navier-Stokes equations in (44) and (64), respectively.

We note that the error representation formula (74) depends on the unknown analytical
solution z to the adjoint problem (73) which in turn depends on the unknown analytical
solution u to the primal problem (67). Thus, in order to render these quantities computable,
both u and z must be replaced by suitable approximations. Here, the linearizations leading
to M(u,uh; ·, ·) and J̄(u,uh; ·) are performed about uh and the adjoint solution z is replaced
by the solution z̄ to the following linearized adjoint problem: find z̄ ∈ V such that

N ′[uh](w, z̄) = J ′[uh](w) ∀w ∈ V. (75)

This is then approximated by the discrete adjoint problem: find z̄h ∈ V̄h,p such that

N ′[uh](wh, z̄h) = J ′[uh](wh) ∀wh ∈ V̄h,p. (76)

29

Here, V̄h,p is an adjoint finite element space from which the approximate adjoint solution
z̄h is sought. We remark that z̄h should not be calculated using the same finite element
space Vh,p employed for the primal problem; otherwise the resulting error representation
formula would be identically zero. In practice, there are essentially three approaches to
computing a numerical approximation z̄h of z. The first approach is to keep the degree p
of the approximating polynomial used to compute uh fixed, but compute z̄h on a sequence
of adjoint finite element meshes T̄h̄ which, in general, differ from the “primal meshes” Th.
Alternatively, z̄h may be computed using piecewise discontinuous polynomials of degree p̄,
p̄ > p, on the same finite element mesh Th employed for the primal problem. A variant of
this second approach is to compute the approximate adjoint problem using the same mesh
Th and polynomial degree p employed for the primal problem and to patchwise extrapolate
the resulting approximate adjoint solution z̄h ∈ Vh,p to an adjoint solution z̄h ∈ V2h,p̄,
p̄ > p. While this latter approach is the cheapest of the three methods, and is still capable
of producing adaptively refined meshes specifically tailored to the selected target functional,
the quality of the resulting approximate error representation formula may be poor. On the
basis of extensive numerical experimentation, we prefer to compute z̄h ∈ Vh,p̄ , p̄ = p+ pinc,
i.e., we set V̄h,p = Vh,p̄.

Rewriting the error representation (74) as follows

J(u) − J(uh) =R(uh, z − zh)

=R(uh, z − z̄) + R(uh, z̄ − z̄h) + R(uh, z̄h − zh),
(77)

we see that replacing the adjoint solution z in (74) by the solution z̄h to the discrete adjoint
problem (76), we obtain the following approximate error representation

J(u) − J(uh) ≈ R(uh, z̄h − zh). (78)

This corresponds to ignoring in (77) the error R(uh, z − z̄) due to the linearization of the
adjoint problem and the error R(uh, z̄−z̄h) due to the approximation of the linearized adjoint
problem. In fact, it can be shown (see e.g. [23]) that the linearization and the approximation
errors of the adjoint problem are of higher order (quadratic) in the discretization error, e = u−
uh, and may thus be neglected. In fact, in the series of publications [58, 59, 62], for example,
among many others, it has been demonstrated that the approximate error representation in
(78) is close to the true error in the target functional.

Finally, we note that (78) can be localized

J(u) − J(uh) ≈ R(uh, z̄h − zh) ≡
∑

κ∈Th

η̄κ, (79)

where |η̄κ| are local error indicators including the primal local residuals weighted with the
discrete adjoint solution, denoted as adjoint-based indicators or as dual-weighted-residual
(DWR) indicators, [23]. These local indicators can be used to drive an adaptive refinement
(and coarsening) algorithm specifically tailored to the accurate and efficient approximation
of the target quantity J(u). For example, suppose that the aim of the computation is to
compute J(·) such that the error |J(u) − J(uh)| is less than some user–defined tolerance
TOL, i.e., |J(u) − J(uh)| ≤ TOL, then in practice we may enforce the stopping criterion
|∑κ∈Th

η̄κ| ≤ TOL. If this condition is not satisfied on the current finite element mesh Th,

30

then the local indicators ηκ are employed as local error indicators to guide mesh refinement
and coarsening. The cycle of the goal-oriented adaptive mesh refinement [58] may be outlined
as follows.

Algorithm 4.1 (Single-target adaptive algorithm) Adaptive algorithm for the accurate
and efficient approximation of a single target quantity J(u):

1. Construct an initial mesh Th.

2. Compute uh ∈ Vh,p, see (68), on the current mesh Th.

3. Compute z̄h ∈ V̄h,p, see (76), on the same mesh employed for uh, with p̄ > p.

4. Evaluate the approximate error representation R(uh, z̄h − zh) =
∑

κ∈Th
η̄κ.

5. If |∑κ∈Th
η̄κ| ≤ TOL, where TOL is a given tolerance, then STOP.

6. Otherwise, refine and coarsen a fixed fraction of the total number of elements according
to the size of |η̄κ| and generate a new mesh Th; GOTO 2.

Again, in several publications, e.g. [23, 52, 53, 59, 64], the versatility of this adaptive algo-
rithm has been demonstrated.

4.2 Error estimation for multiple target quantities

In the following we present an extension of this approach to the efficient and accurate compu-
tation of multiple target quantities. Given, say N target quantities we replace the computa-
tion of N adjoint solutions as required in standard approaches by the solution of two auxiliary
problems, namely one discrete adjoint problem and one discrete error equation where the lat-
ter can also be considered as the adjoint to the adjoint problem. In particular, the solution to
the discrete error equation provides the a posteriori error estimation of arbitrary many tar-
get quantities. Furthermore, the solution to the adjoint problem related to an appropriately
defined combination of the original target functionals provides the adjoint-based refinement
indicators required for goal-oriented refinement.

This approach has been developed and applied to the scalar inviscid Burgers equation
considering point values in [60]. It has later been extended to the treatment of laminar
compressible flows considering multiple aerodynamic force coefficients in [55].

4.2.1 The standard approach

Let us now consider the extension of the above analysis to the error estimation and goal-
oriented mesh refinement for multiple target quantities. Given N target functionals Ji(u), i =
1, . . . , N , the standard approach for deriving an error representation formula analogous to
(74) for each Ji(·) is to introduce the following N adjoint problems: find zi ∈ V such that

M(u,uh;w, zi) = J̄i(u,uh;w) ∀w ∈ V, (80)

for i = 1, . . . , N . Analogous to (74) we obtain the following error representation formulae

Ji(u) − Ji(uh) = M(u,uh;u− uh, zi − zh) = R(uh, zi − zh), (81)

31

for each Ji(·), i = 1, . . . , N . In practice, the adjoint solutions zi, i = 1, . . . , N , are unknown
analytically and must be approximated numerically. After linearization and approximation
we have: find z̄i,h ∈ V̄h,p such that

N ′[uh](wh, z̄i,h) = J ′
i [uh](wh) ∀wh ∈ V̄h,p; (82)

this amounts to solving N systems of linear equations with the same matrix but N different
right–hand side vectors. Based on the discrete adjoint solutions z̄i,h, i = 1, . . . , N , the fol-
lowing approximate error representation formulae and local error indicators can be evaluated

Ji(u) − Ji(uh) ≈ R(uh, z̄i,h − zh) =
∑

κ∈Th

η̄(i)
κ , (83)

for i = 1, . . . , N .

4.2.2 A new approach

In view of the error representation formula (81) an alternative approach consists of considering
the following error equation: find e ∈ V such that

M(u,uh; e,w) = R(uh,w) ∀w ∈ V, (84)

whose solution is simply the discretization error e = u − uh. We remark that in the con-
text of duality, (84) may be thought of as the adjoint of the adjoint problem and (81) the
adjoint/adjoint-adjoint equivalence relating (80) to (84). Again after linearization, we obtain
the following discrete error equation: find ēh ∈ V̄h,p such that

N ′[uh](ēh,wh) = R(uh,wh) ∀wh ∈ V̄h,p. (85)

Thereby, in practice, instead of solving N discrete adjoint problems, cf. (82), for z̄i,h ∈
V̄h,p with data Ji(·) and then evaluating R(uh, z̄i,h − zh) to determine the size of the error
in the target functional Ji(·), i = 1, . . . , N , one can simply solve the discrete error equation
(84) for the approximate error ēh ∈ V̄h,p and evaluate

Ji(u) − Ji(uh) = J̄(u,uh; e) ≈ J ′
i [uh](e) ≈ J ′

i [uh](ēh), (86)

as an approximation to Ji(u)−Ji(uh), for i = 1, . . . , N . When N > 1 this approach is clearly
much more computationally efficient than the direct method. However, a disadvantage of this
second approach is that while solving the discrete error equation (85) for ēh gives information
concerning the size of the error in the computed target functionals Ji(·), i = 1, . . . , N , it does
not provide the necessary local information on each element in the computational mesh to
guide adaptive mesh refinement when the desired level of accuracy has not been achieved on
the current mesh. On the other hand, computing the solution zi,h, i = 1, . . . , N , to the N
discrete adjoint problems (82), the approximate error representation formulae in (83) provide
not only information concerning the size of the error in the computed target functionals, but

also local error indicators |η̄(i)
κ | which can be employed for adaptive mesh design.

32

4.3 Adaptive refinement for multiple target quantities

In this section we propose a strategy based on solving only two auxiliary problems (the
discrete error equation (85) and an adjoint problem subject to appropriate data which stems
from a specific combined target functional, cf. (91) below) which provide all the necessary
information needed to both estimate the size of the error in the computed target functionals,
as well as provide local error indicators that can be used to drive an adaptive mesh refinement
algorithm.

Given N different target functionals Ji(·), i = 1, . . . , N , N > 1, we would like to compute
each Ji(uh) to within a given user–defined tolerance TOLi, i = 1, . . . , N , respectively. More
precisely, we consider the following problem: find Ji(uh) ∈ R, i = 1, . . . , N , such that

|Ji(u) − Ji(uh)| ≤ TOLi , for i = 1, . . . , N . (87)

However, as we want to define a combined target quantity Jc(·) including all original target
quantities Ji(·), i = 1, . . . , N , we weaken the requirement (87), and simply insist that the
sum of the relative errors in each of the target functionals Ji(·), i = 1, . . . , N , is less than TOL.
In practice, since Ji(u), i = 1, . . . , N , is unknown, we approximate the sum of the relative
errors by

N∑

i=1

|Ji(u) − Ji(uh)|/|Ji(uh)|, (88)

see [60], assuming that Ji(uh) 6= 0, for i = 1, . . . , N . As an alternative choice we might insist
that the (weighted) sum of absolute errors in each of the target functionals Ji(·), i = 1, . . . , N ,
is less than TOL, i.e., considering

N∑

i=1

αi|Ji(u) − Ji(uh)|. (89)

where αi > 0, i = 1, . . . , N . Here, choosing αi = 1, i = 1, . . . , N , represents the special case
of considering the (unweighted) sum of absolute errors.

Let us begin by assuming that the sign of the error in each target functional Ji(·),
i = 1, . . . , N , is known. For example, in some applications it may be known from either
theoretical considerations or numerical experimentation that under mesh refinement the com-
puted quantity of interest Ji(uh) is always either smaller or greater than the exact value Ji(u),
for i = 1, . . . , N . This includes the special case of monotonically convergent target quantities.
For the case that under mesh refinement the quantity J(uh) converges to J(u) from above,
for example, then the error J(u) − J(uh) is always negative; analogously, when it converges
from below the error is always positive.

Employing this a priori knowledge concerning the convergence of the target functionals,
we introduce a combined target functional

Jc(v) =

N∑

i=1

ωiJi(v) , (90)

where ωi = si/|Ji(uh)| or ωi = αisi, depending on whether the relative and weighted absolute
errors (88) and (89), respectively, are considered. Here, si denotes the expected signs of the

33

errors Ji(u)− Ji(uh), i = 1, . . . , N , respectively. Thereby, we may now proceed as in Section
4.1 to derive an error representation formula for the error in the combined target functional
Jc(·). To this end, we introduce the following adjoint problem: find zc ∈ V such that

M(u,uh;w, zc) = J̄c(u,uh;w) ∀w ∈ V, (91)

where J̄c(u,uh;w) =
∑N

i=1 ωiJ̄i(u,uh;w) is the mean value linearization to Jc analogous to
(71). Thus, we now deduce the following error representation formula

Jc(u) − Jc(uh) =

N∑

i=1

ωi(Ji(u) − Ji(uh)) =

N∑

i=1

ωiJ̄i(u,uh;u − uh)

= M(u,uh;u − uh, zc − zh) = R(uh, zc − zh)

(92)

for all zh ∈ Vh,p.
In general, the signs si, i = 1, . . . , N , will not be known a priori. Thereby, we must first

solve the discrete error equation (85) for ēh and evaluate s̄i = sgn(J ′
i [uh](ēh)), i = 1, . . . , N .

Then, the adjoint problem (91) may be solved computationally using the predicted values of
si, i = 1, . . . , N , in Jc(·): find z̄c,h ∈ V̄h,p such that

N ′[uh](wh, z̄c,h) = J ′
c[uh](wh) ∀wh ∈ V̄h,p. (93)

Then the approximate error representation formula can be evaluated as follows

Jc(u) − Jc(uh) = R(uh, zc − zh) ≈ R(uh, z̄c,h − zh) ≡
∑

κ∈Th

η̄κ. (94)

This now provides both global information concerning the size of the error in the combined
target functional Jc(·), as well as local information necessary for adaptive mesh refinement.
Thus, the cycle of the adaptive algorithm can be outlined as follows.

Algorithm 4.2 (Multi-target adaptive algorithm) Adaptive algorithm for the accurate
and efficient approximation of multiple target quantities Ji(u), i = 1, . . . , N :

1. Construct an initial mesh Th.

2. Compute uh ∈ Vh,p, see (68), on the current mesh Th.

3. Compute ēh ∈ V̄h,p, see (85), on the same mesh employed for uh, with p̄ > p.

4. Evaluate Ji(u) − Ji(uh) ≈ J ′
i [uh](ēh) =: ψi, i = 1, . . . , N .

5. If |ψi| ≤ TOLi for all i = 1, . . . , N , then STOP.

6. Build the target quantity Jc based on s̄i = sgn(ψi), i = 1, . . . , N .

7. Compute z̄c,h ∈ V̄h,p, see (93), on the same mesh employed for uh, with p̄ > p.

8. Evaluate the approximate error representation
∑

κ∈Th
η̄κ, see (94).

9. If |∑κ∈Th
η̄κ| ≤ TOL, where TOL is a given tolerance, then STOP.

34

10. Otherwise, refine and coarsen a fixed fraction of the total number of elements according
to the size of |η̄κ| and generate a new mesh Th; GOTO 2.

Here, the stopping criterion in line (5) of Algorithm 4.2 corresponds to enforcing (87); on the
other hand, the stopping criterion (9) corresponds to enforcing either equation (88) or (89)
to be less than TOL, depending on the choice of weights in the combined target functional.
This approach leads to the solution of only two auxiliary problems, in comparison to the N
required for the standard approach.

We note that this approach has previously been developed for and applied to the DG
discretization of the inviscid 1d Burgers equation in [60] considering the sum of relative errors
of point values of the solution. In the following sections we apply this approach to the interior
penalty DG discretization of the compressible Navier-Stokes equations [63] considering sums
of relative and absolute errors of aerodynamic force coefficients including pressure induced
and viscous drag, lift and moment coefficients.

4.4 Derivation of residual-based indicators

Provided the adjoint solution related to an arbitrary target functional is sufficiently smooth
the corresponding error representation can be bounded from above by an error estimate
(Type II error bound) which includes the primal residuals but is independent of the adjoint
solution. By localizing this error estimate so-called residual-based indicators can be derived.
Mesh refinement based on these indicators leads to meshes which resolve all flow features
irrespective of any specific target quantity. We recall the derivation of them from [58, 62,
55]. Furthermore, we note that the residual-based indicators have been extended to include
symmetry boundary conditions in [64].

Let u and uh denote the solutions to (67) and (68), respectively. We now recall the error
representation formula in (74), namely,

J(u) − J(uh) = −N (uh, z − zh) = R(uh, z − zh), (95)

for any zh ∈ Vh,p. In particular, we can choose zh := Πhz ∈ Vh,p in (95), i.e.,

J(u) − J(uh) = R(uh, z − Πhz), (96)

where Πhz denotes an appropriate interpolation/projection of z into the discrete function
space Vh,p. Indeed, here we select Πh so that the following approximation property holds:
given κ ∈ Th, suppose that z|κ in [Hsκ(κ)]5, 0 ≤ sκ ≤ p+ 1. Then, there exists a constant C
dependent on sκ, p, and the shape regularity of Th, but is independent of the local mesh size
hκ, such that for 0 ≤ m ≤ sκ,

‖z − Πhz‖Hm(κ) ≤ Chsκ−m
κ ‖z‖Hsκ (κ). (97)

Then, by employing the trace theorem, we have

‖z − Πhz‖L2(∂κ) ≤ Chsκ−1/2
κ ‖z‖Hsκ (κ), 1 ≤ sκ ≤ p+ 1,

‖z − Πhz‖H1(∂κ) ≤ Chsκ−3/2
κ ‖z‖Hsκ (κ), 2 ≤ sκ ≤ p+ 1;

(98)

35

see Section 5.5; cf. also [8], for example. Using (64) we rewrite (96) as follows

J(u) − J(uh) =

∫

Ω
R(uh) · (z − Πhz) dx

+
∑

κ∈Th

∫

∂κ\Γ
r(uh) · (z − Πhz)

+ + ρ(uh) : ∇ (z − Πhz)
+ ds

+

∫

Γ
rΓ(uh) · (z − Πhz)

+ + ρ
Γ
(uh) : ∇ (z− Πhz)

+ ds, (99)

where the primal element residuals R(uh), the interior face residuals r(uh) and ρ(uh), and the
boundary residuals rΓ(uh) and ρ

Γ
(uh) are given for the compressible Euler and Navier-Stokes

equations in (45) and (65), respectively.
Assuming z|κ ∈ [Hsκ(κ)]5, 2 ≤ sκ ≤ p+1, for each κ ∈ Th, and applying Cauchy-Schwarz

inequality and the approximation estimates (97) and (98) in (99) we obtain

|J(u) − J(uh)| ≤

∑

κ∈Th

(

η(res)
κ

)2

1/2

, (100)

where η
(res)
κ is given by

η(res)
κ = hsκ

κ ‖R(uh)‖L2(κ) + hsκ−1/2
κ ‖r∂κ(uh)‖L2(∂κ) + hsκ−3/2

κ ‖ρ
∂κ

(uh)‖L2(∂κ). (101)

Here, we use the short notation r∂κ = r on ∂κ \ Γ and r∂κ = rΓ on Γ, i.e.,

‖r∂κ(uh)‖2
L2(∂κ) = ‖r(uh)‖2

L2(∂κ\Γ) + ‖rΓ(uh)‖2
L2(Γ),

and analogously for ρ
∂κ

, i.e.,

‖ρ
∂κ

(uh)‖2
L2(∂κ) = ‖ρ(uh)‖2

L2(∂κ\Γ) + ‖ρ
Γ
(uh)‖2

L2(Γ).

We point out that the a posteriori error bound (100) places severe regularity constraints on
the adjoint solution z, which are typically not fulfilled in practice. On the basis of numer-
ical experimentation, and stimulated by the estimate (100), we employ following so-called
residual-based indicators

ηres
κ = hκ‖R(uh)‖L2(κ) + h1/2

κ ‖r∂κ(uh)‖L2(∂κ) + h−1/2
κ ‖ρ

∂κ
(uh)‖L2(∂κ), (102)

in subsequent numerical examples.

4.5 Numerical examples

In this section we give several examples which shall illustrate and explain the structure
of adjoint solutions. In particular, we explain the adjoint solution’s role associated with
information transport, error transport, as well as error accumulation in numerical simulations,
which is a key ingredient of error estimation and goal-oriented adaptive mesh refinement.
Indeed, we show the adjoint solutions for a variety of problems, and demonstrate the accuracy
of the error estimation, as well as the performance of the adaptive mesh refinement algorithm.

36

In the first two examples, see Sections 4.5.1 and 4.5.2, we revisit standard test cases of
inviscid flows, the Ringleb flow problem and the supersonic flow past a wedge, respectively.
Then in a third example, see Section 4.5.3, we consider a supersonic flow around an unsym-
metric airfoil. In order to track paths of information and error transport in these flows and to
understand the structure of the adjoint solution and the resulting adaptive mesh refinement,
for all three examples, we choose a particularly simple target quantity, namely the solution
(one component of it only) at one specific point in the computational domain.

In Section 4.5.4 we consider the error estimation and adjoint-based mesh refinement for an
aerodynamic force coefficient. In particular, we demonstrate the performance of Algorithm 4.1
applied to approximating the pressure induced drag coefficient Cdp, for a supersonic viscous
flow around a NACA0012 airfoil. The accuracy of the error estimation is then compared in
Section 4.5.5 to that for an inviscid flow. In particular, here the effect of the linearization
and discretization of the adjoint problem and the dependence on the smoothness of the flow
and adjoint solutions are discussed.

Finally, in Section 4.5.6 we present several numerical results demonstrating the perfor-
mance of the error estimation and adjoint-based mesh refinement for the accurate and efficient
approximation of multiple force coefficients as outlined in Sections 4.2 and 4.3.

We note that in each of the following computations we set p = 1 for the numerical
approximation of the flow equations, i.e., uh ∈ Vh,1, and p = 2 for the discretization of the
adjoint problems, i.e., z̄h ∈ Vh,2, if not stated differently in the text.

4.5.1 Ringleb flow problem

As first example taken from [52, 58] we consider the solution of the two dimensional (2d)
compressible Euler equations to the Ringleb flow problem, that is one of the few non-trivial
problems of the 2d Euler equations for which a (smooth) analytical solution is known. For
this case the analytical solution may be obtained using the hodograph transformation, see
[29] or the appendix of [52]. This problem represents a transonic flow in a channel, see
Figure 2, with inflow and outflow boundaries given by the lower and upper boundaries of the
domain, and slip-wall boundaries, i.e., vanishing normal velocity v · n = 0, on the left and
right boundary. The solution to this flow problem is smooth but it is transonic with a small
supersonic region near the lower right corner. We choose the target functional to be

J(u) = ρ(−0.4, 2).

We note that this target functional is singular in the sense that it leads to a considerably
rough adjoint solution that mainly consists of a single spike transported in reverse direction of
the flow, see Figure 3(a). The mesh produced using the adjoint-based indicators, see (79), is
shown in Figure 3(b). Here, we see that the mesh is mostly concentrated in the neighborhood
of the characteristic upstream of the point of interest. However, due to the elliptic nature
of the flow in the subsonic region, a circular region containing the point of interest is also
refined, together with a strip of elements in the vicinity of the wall on the right–hand side of
the domain enclosing the supersonic region of the flow.

4.5.2 Supersonic flow past a wedge

In this example taken from [52, 58] we study the formation of an oblique shock when a
supersonic flow is deflected by a sharp object or wedge (also called supersonic compression

37

wall

wall

M > 1

M < 1

inflow

outflow

(a) (b)

Figure 2: (a) Geometry for Ringleb’s flow; M denotes the Mach number. (b) Flow direction
coloured according to the Mach number.

(a) z1 component of adjoint solution (b) adjoint-based refined mesh

Figure 3: Ringleb’s flow problem, J(u) = ρ(−0.4, 2), see [52]. Test case also considered in
[58].

38

v2t

n

a
b

v1

Figure 4: Geometry for the supersonic compression corner.

corner). Here, we consider a Mach 3 flow, over a compression corner of angle α which results in
the development of a shock at an angle β, cf. Figure 4. By employing the Rankine–Hugoniot
jump conditions, the analytical solution to this problem for a given α may be determined,
see [5, 97] among others. Here, we select the wedge angle α = 9.5◦; thereby, the angle of the
shock is given by β = 26.9308◦ . Furthermore, the true solution on the left– and right–hand
side of the shock, in terms of conservative variables (ρ, ρv1, ρv2, ρE), are given by

uleft ≈

1
3.5496

0
8.8

and uright ≈

1.6180
5.2933
0.8858
13.8692

,

respectively.
Again, for simplicity, we consider a point evaluation; in particular, the point value

J(u) = ρ(5, 2.05)

of the density just in front of the shock. In Figure 5(a) we show the z1 component of the
corresponding adjoint solution. It consists of three ‘spikes’, labelled 1, 2 and 3 in Figure 5(a),
originating from the point of interest. These spikes are transported upstream along the
characteristics corresponding to the three eigenvalues v and v ± c, with v = |v| =

√

v2
1 + v2

2

denoting the velocity of the gas and c =
√

γp/ρ the speed of sound. We note that the support
of this adjoint solution does not intersect the region of the computational domain where the
shock in the primal solution is located.

Let us now consider the more interesting case of a point evaluation of the density

J(u) = ρ(5, 2.01)

just behind the shock. Here, the support of the adjoint solution, see Figure 5(b), now in-
tersects the region containing the shock and has a rather complicated structure. The two
upper spikes of the adjoint solution both cross the shock in the neighborhood of the point of
evaluation. At their crossing points they again each split into a further three spikes. These
six spikes correspond to the three pairs of spikes, labelled spikes 4, 5 and 6 in Figure 5(b);
the two spikes in each pair cannot be distinguished on the resolution shown, as they are
extremely close together. Spike 3, corresponding to the same spike in Figure 5(a), is reflected
off the inclined wall and crosses the shock at its bottom part.

A comparison of the adjoint solution in Figure 5(b) and the mesh in Figure 6(b), produced
by the adjoint-based indicators (79) shows that the mesh has only been refined along the
support of spikes 3 and 6 in the vicinity of the top part of the shock, and in the neighborhood

39

spike 1

spike 2

spike 3

shock

spike 4

spike 5

spike 6
spike 3

shock

(a) (b)

Figure 5: Supersonic compression corner: z1 component of adjoint solution for the supersonic
compression corner for point evaluation of the density (a) in front of shock (b) behind shock.

(a) (b)

Figure 6: Supersonic compression corner, point evaluation of the density behind the shock:
(a) residual-based refined mesh with 3821 elements (|J(u) − J(uh)| = 8.938 × 10−3); (b)
adjoint-based refined mesh constructed with 3395 elements (|J(u)− J(uh)| = 2.888 × 10−4).

40

p(0, 0)

Figure 7: Profile of the BAC3-11 airfoil. Target quantity: pressure p at leading edge, [52, 58].

of the point where spike 3 crosses the bottom part of the shock. Comparing this mesh with the
mesh in Figure 6(b) produced using residual-based indicators (102) we see that the adaptively
refined meshes generated by employing the adjoint-based indicators are significantly more
efficient than those produced using the residual-based indicators. Indeed, the true error in
the computed target quantity is over an order of magnitude smaller when the adjoint-based
indicators are employed.

This demonstrates that it is not necessary to refine the entire shock in this example to
gain an accurate value of the target quantity under consideration, but only those parts that
influence the target quantity either by material transport (eigenvalue v), or by information
transported by the sound waves (eigenvalues v ± c).

4.5.3 Supersonic flow past a BAC3-11 airfoil

In this example, taken from [52, 59], we study a supersonic flow around a BAC3-11 airfoil;
this unsymmetric airfoil, see Figure 7, was originally specified in [3]. Here, we consider an
inviscid flow at Mach number M = 1.2 and an angle of attack α = 5◦.

The solution to this problem includes two shocks: one located in front of the leading edge
of the airfoil and one originating from the trailing edge; see Figure 8(a) and also Figure 9(b)
which shows a mesh that is refined at the position of the two shocks. Here, Figure 8(a)
shows the Mach 1 isolines of the solution; the Mach M = 1 isoline to the left of the airfoil
indicates the position of the first shock. The M = 1 isolines that originate from the upper
and lower surfaces of the airfoil represent the transonic lines of the flow. The flow left of the
first shock is supersonic; it is simply the M = 1.2 flow prescribed on the inflow boundary of
the computational domain. The flow in between the shock and the transonic lines is subsonic;
we note that the leading edge of the airfoil is located within this subsonic part of the flow.
Finally, the flow behind the transonic lines is supersonic again.

In this example we take the target quantity to be the value of the pressure at the leading
edge, i.e.,

J(u) = p(0, 0),

cf. Figure 7. A computation on a fine mesh gives a reference value of J(u) = 2.393.
The structure of the solution z̄h to the discrete adjoint problem (76) corresponding to

this point evaluation is displayed in Figure 8(b). This figure illustrates some principles of
information transport in supersonic as well as in subsonic flow regions. To the right–hand
side of the transonic lines the adjoint solution is zero as no information, neither by material
transport nor even by information transport due to sound waves, can enter the subsonic region
from the supersonic one. Within the whole subsonic region the adjoint solution is non-zero
corresponding to the fact that sound waves can reach the point of evaluation from any point

41

-3

-2

-1

0

1

2

3

0 1
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2

(a) (b)

Figure 8: Supersonic BAC3-11 flow. (a) Mach 1 isolines of the flow solution; (b) z1 isolines
of adjoint solution, [52, 58].

in the subsonic area and that all numerical errors which occur within this subsonic region
can (even though possibly to a small portion) affect the value of the solution at the point of
evaluation. However, the adjoint solution in the subsonic region is concentrated in a thin spike
that is transported upstream from the point of evaluation in direction of the flow. This spike
corresponds to the path of material transport and represents the main path of information
transport. To the left of the airfoil, this spike crosses the shock and splits into three spikes
while entering the supersonic region left of the shock. These spikes are transported upstream
along the characteristics corresponding to the three eigenvalues v and v ± c. We recall that
the characteristic corresponding to v represents the path of material transport, that in this
example is given by the line inclined at 5 degrees, whereas the characteristics corresponding
to v ± c represent the paths of information transport due to sound waves.

In Figure 9 we show the meshes produced using the adjoint-based and the residual-based
error indicators. Here, we see that the mesh constructed using residual-based indicators is
concentrated in the neighborhood of the two shocks. In contrast, the mesh produced using
the adjoint-based indicators only refines the mesh in the vicinity of the point of evaluation
and the part of the shock where the spike of the adjoint solution, i.e., where the main part
of information, crosses the shock. The other parts of the shock are not resolved, as the
numerical error in these regions only has a small affect on the accuracy of the solution at the
point of evaluation. Also there is no refinement in the vicinity of the shock emanating from
the trailing edge of the airfoil; thereby, this shock is not well resolved at all. Nevertheless,
the solution at the leading edge of the airfoil is not affected by this as no information is
transported upstream from the trailing edge, located in a supersonic part of the flow, to the

42

-1

-0.5

0

0.5

1

-0.5 0 0.5 1
-1

-0.5

0

0.5

1

-0.5 0 0.5 1

(a) (b)

Figure 9: Supersonic flow around BAC3-11 airfoil: (a) Adjoint-based refined mesh with
1803 elements (|J(u) − J(uh)| = 3.042 × 10−3); (b) Residual-based refined mesh with 13719
elements (|J(u) − J(uh)| = 3.542 × 10−2), [52, 58].

leading edge, located in the subsonic region. As in the previous example, we see that the
adaptively refined meshes generated by employing the adjoint-based indicators are much more
economical than those produced using the residual-based indicators. Indeed, in Figure 10 we
clearly observe the superiority of the former error indicator; on the final mesh the true error
in the computed functional is over two orders of magnitude smaller when the weighted error
indicator is employed.

Motivated by the structure of the mesh generated by the adjoint-based error indicator,
here we also consider the performance of an alternative ad hoc error indicator based on a
modification of the residual indicator, whereby only elements in a neighborhood of a region
upstream of the point of interest are marked for refinement. More precisely, we write C to
denote the cone depicted in Figure 11(a) with apex half angle β, located in the center of the
airfoil with symmetry axes inclined at α = 5◦ according to the direction of the inflow. We
now define the modified residual-based indicator ηres,C

κ as follows:

ηres,C

κ =

{
ηres

κ , if centroid(κ) ∈ C,
0, otherwise.

This modification takes into account that we are not interested in the flow field in the whole
domain, but only in the point value of the pressure at the leading edge. Thereby, adaptive
mesh refinement is inhibited in the region downstream of the airfoil including the neighbour-
hood of the shock emanating from the trailing edge. Furthermore, refinement of the shock
in front of the leading edge of the airfoil is prevented in regions that are placed too far above
or below the airfoil since a low resolution of this shock in these areas is believed to not sig-
nificantly degrade the accuracy of the pressure value at the leading edge, cf. Figure 9(a). In
Figure 11(b) we show the mesh produced by employing ηres,C

κ with β = 45◦.
Finally, in Figure 10 we see that the modified residual indicator produces meshes that are

much more efficient for computing the value of the pressure at the leading edge of the airfoil
in comparison to the (unmodified) residual-based indicator ηres

κ . Nevertheless, the meshes

43

0.001

0.01

0.1

100 1000 10000

|J
(u

)
−
J
(u

h
)|

residual-based
modified residual

adjoint-based

elements

0.001

0.01

0.1

100 1000 10000 100000

|J
(u

)
−
J
(u

h
)|

residual-based
modified residual

adjoint-based

time units
(a) (b)

Figure 10: Supersonic flow around BAC3-11. Target quantity J(u): pressure at leading
edge. Use of the residual-based, the modified residual-based (ad hoc) and the adjoint-based
indicators. Convergence of |J(u) − J(uh)| vs. (a) number of elements and (b) time units,
[52].

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

β

C

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

(a) (b)

Figure 11: Supersonic flow around BAC3-11. (a) Cone C: domain where the modified
residual (ad hoc) indicator is active; (b) Mesh constructed using the modified residual (ad
hoc) indicator with 9516 elements (|J(u) − J(uh)| = 7.924 × 10−3), [52, 58].

44

(a) (b)

Figure 12: Supersonic viscous flow: (a) Mach isolines and (b) density isolines, [53].

produced using the adjoint-based indicators are even more efficient than those designed by
ηres,C

κ ; on the final mesh the true error in the computed functional is over an order of magnitude
smaller when the adjoint-based error indicator is employed. We note that the chosen shape
and size of the subdomain C and the resulting modified indicator only represents an ‘attempt’
to find a reasonable modification of the residual indicator ηres

κ that is capable of efficiently
computing the pressure at the leading edge of the airfoil and to provide a ‘fair’ comparison
with the goal–oriented adjoint-based indicator |η̄κ|. Indeed, the value of the angle β may be
chosen differently, though a priori it is unclear which parts of the shock in front of the leading
edge of the airfoil will influence the target functional. The angle β should not be chosen too
small as otherwise the lack of resolution of the shock in front of the leading edge of the airfoil
will impact on the computed value of the pressure at the point of interest; on the other hand
choosing β too large may lead to over–refinement. In contrast, the adjoint-based indicator
provides all the necessary information in order to decide which regions of the shock should
be refined, and to what extent.

4.5.4 Supersonic viscous flow around the NACA0012 airfoil

In this example, taken from [53], we consider a horizontal viscous flow at M = 1.2 and
Re = 1000, with an adiabatic no-slip boundary condition imposed on the profile, see Figure 12.
Due to the only slightly supersonic Mach number, the bow shock is located at some distance
in front of the airfoil. Furthermore, there are two weak shocks emanating from the trailing
edge of the airfoil, see Figure 13.

In the following we demonstrate that the approximate error representation R(uh, z̄h −
zh) =

∑

κ∈Th
η̄κ, cf. (79), which was derived from the (exact) error representation (74) by

replacing the (exact) adjoint solution z by a computed adjoint solution z̄h, gives a good
approximation to the true error measured in terms of the target quantity J(u) under con-
sideration. Furthermore, as in previous examples we highlight the advantages of designing
an adaptive finite element algorithm based on adjoint-based indicators (79) in comparison to
residual-based indicators (102).

Given that the flow is symmetric about the x-axis, both lift coefficients, Clp and Clf ,

45

Figure 13: Supersonic viscous flow: Zoom of density isolines at trailing edge, [53].

Elements # DoF JCdp
(u) − JCdp

(uh)
∑

κ∈Th
η̄κ θ

768 12288 -1.363e-02 -6.312e-03 0.46
1260 20160 -3.203e-03 -2.995e-03 0.94
2154 34464 -4.844e-04 -5.368e-04 1.11
3570 57120 -3.474e-04 -3.333e-04 0.96
6021 96336 -1.835e-04 -1.856e-04 1.01
10038 160608 -1.644e-04 -1.653e-04 1.01

Table 1: Supersonic viscous flow: Adaptive algorithm for the accurate approximation of Cdp.

vanish. On the basis of fine grid computations the reference values of the pressure induced
drag, Cdp, and the viscous drag, Cdf , are given by JCdp

(u) ≈ 0.10109 and JCdf
(u) ≈ 0.10773,

respectively.
In the following, we consider the approximation of the pressure induced drag, Cdp, i.e.,

the target quantity is J(·) = JCdp
(·). In Table 1, we collect the data of the adaptive algorithm

based on employing the adjoint-based indicators. Here, we show the number of elements and
degrees of freedom (DoF) for p = 1 (bilinear elements), the true error in the target quantity,
JCdp

(u)−JCdp
(uh), the approximate error representation formula R(uh, z̄h−zh) :=

∑

κ∈Th
η̄κ

and the effectivity index θ = R(uh, z̄h − zh)/(JCdp
(u) − JCdp

(uh)) of the error estimation.
First, we note that on all meshes the right sign of the error is predicted, which is always neg-
ative in this computation, i.e., the computed Cdp values converge to the reference value from
above. Furthermore, from the second mesh onwards, the approximate error representation
represents a very good approximation to the true errors, which is indicated by the effectivity
indices θ being very close to one.

In Figure 14 we compare the true error in the target quantity based on refining the
computational mesh employing either the adjoint-based or residual-based indicators. Here, we
see that for the first three refinement steps, when employing the residual-based indicator, the
accuracy in the target quantity is hardly improved. In contrast to that, when using adjoint-
based indicators, the error decreases significantly faster, being a factor of more than three
smaller already after the second refinement step than the error on the finest residual-based
refined mesh. Furthermore, the computed values of the target quantity J(uh) can be enhanced
by employing the approximate error representation R(uh, z̄h − zh) =

∑

κ∈Th
η̄κ to yield an

enhanced value of the target quantity, J̃Cdp
(uh) = JCdp

(uh)+R(uh, z̄h−zh). In Figure 14 we

see, that the improved values, J̃Cdp
(uh), are significantly more accurate than the (baseline)

JCdp
(uh) values, and even show a higher rate of convergence. In fact, it can be shown, see

46

0.1

0.102

0.104

0.106

0.108

0.11

0.112

0.114

0.116

1000 10000

cells

C
d
p

residual-based, Cdp
adjoint-based, Cdp

adjoint-based, enhanced Cdp
reference Cdp

1e-05

0.0001

0.001

0.01

0.1

1000 10000

cells

|0
.1

0
1
0
9
−

C
d
p
|

residual-based, Cdp
adjoint-based, Cdp

adjoint-based, enhanced Cdp

(a) (b)

Figure 14: Supersonic viscous flow: (a) JCdp
(uh) values on residual-based refined meshes,

JCdp
(uh) and the enhanced values, J̃Cdp

(uh) = JCdp
(uh) + R(uh, z̄h − zh), on adjoint-based

refined meshes versus number of elements; (b) Error of these values versus number of elements,
[53].

[62], that this value has a higher order of convergence than JCdp
(uh), provided the primal and

the adjoint solutions are smooth and the adjoint solution is approximated using higher-order
polynomials. Furthermore, the approximate error representation is close to the true error
even in cases of smooth adjoint solutions but possibly non-smooth primal solutions. The large
difference in the performance, see Figure 14, of the adjoint-based indicator and the residual-
based indicator in producing adaptively refined meshes for the accurate approximation of
the target quantity Cdp, is due to the very different parts of the computational meshes
being marked for refinement by the two types of indicators. Figures 15 (a) & (b) show the
finest mesh produced by employing the residual-based indicator. We see that this refinement
criterion aims at resolving all flow features: the extensive bow shock, the wake of the flow
behind the airfoil as well as the weak shocks emanating from the trailing edge of the airfoil.
In contrast to that, the refinement of the mesh produced by employing the adjoint-based
indicator, see Figures 15 (c) & (d), is very concentrated close to the airfoil. In particular, the
bow shock is mainly resolved in a small region upstream of the profile only, and there is even
no refinement at all at the position of the bow shock beyond six chord lengths above and
below the profile. Furthermore, the weak shocks emanating from the trailing edge are not
resolved and there is no refinement in the wake of the flow beyond three chord lengths behind
the profile. Instead, the refinement of the mesh is concentrated near the leading edge of the
profile and in the boundary layer of the flow. All other parts of the computational domain
are recognized by the adjoint-based indicator to be of minor importance for the accuracy
of the Cdp target quantity. In fact, the adjoint solution, see Figures 16 and 17, includes
the crucial information concerning which local residuals contribute to the error in the target
quantity and to what extent. Herewith, it offers all necessary information of error transport
and accumulation. Finally, the adjoint-based indicators mark only those parts of the domain
for refinement where residuals of the flow solution significantly contribute to the error of
the target quantity, i.e., all parts which are important for the accurate approximation of the
target quantity.

47

-8

-4

0

4

8

-4 0 4 8
-2

-1

0

1

2

-1 0 1 2 3

(a) (b)

-8

-4

0

4

8

-4 0 4 8
-2

-1

0

1

2

-1 0 1 2 3

(c) (d)

Figure 15: Supersonic viscous flow: (a) & (b) residual-based refined mesh of 17670 elements
with 282720 degrees of freedom and |JCdp

(u) − JCdp
(uh)| = 1.9 · 10−3 ; (c) & (d) goal-

oriented refined mesh for Cdp: mesh of 10038 elements with 160608 degrees of freedom and
|JCdp

(u) − JCdp
(uh)| = 1.6 · 10−4, [53].

48

-3

-2

-1

0

1

2

3

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

-2 -1 0 1 2

(a) (b)

Figure 16: Supersonic viscous flow: (a) Sonic isolines of the flow solution; (b) isolines of the
first component of the computed adjoint solution z̄h, [53].

4.5.5 Comparison of the approximate error representation for viscous and in-
viscid flow.

We recall that the approximate error representation R(uh, z̄h − zh) =
∑

κ∈Th
η̄κ, cf. (79),

was obtained by replacing the analytical solution z to the (exact) adjoint problem (73) in
the error representation (74) by the solution z̄h to an approximate adjoint problem which is
linearized about the discrete flow solution uh and discretized. In order to discuss the error
introduced by this replacement, we split the (exact) error representation (74) in three terms
as follows:

J(u) − J(uh) = R(uh, z − zh)

= R(uh, z − z̄) + R(uh, z̄ − z̄h) + R(uh, z̄h − zh),
(103)

where the first term represents the error incurred through linearization of the adjoint prob-
lem, the second term is the error due to the numerical approximation of the (linearized)
adjoint solution and the last term is the approximate error representation formula which is
actually computed in practice. The error R(uh, z̄− z̄h) due to the discretization of the adjoint
problem will be of higher–order than the approximate error representation, provided that the
adjoint solution is sufficiently regular and is approximated by higher order polynomials. The
linearization error term R(uh, z− z̄) is expected to be small in cases when the analytical so-
lution u is smooth. Rewriting the linearization term using R(uh,vh) = 0 for any vh ∈ Vh,p,
we have that

R(uh, z − z̄) = R(uh, (z − z̄) − Ih(z − z̄)) = R(uh, z − Ihz) −R(uh, z̄ − Ihz̄), (104)

where Ihz ∈ Vh,p denotes a discrete approximation of z. Here, we see that the linearization
term can also be expected to be small when the adjoint solution is smooth.

49

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5

(a) (b)

Figure 17: Supersonic viscous flow: Zoom of (a) sonic (M = 1) isolines of the flow solution;
(b) together with isolines of first component of the discrete adjoint solution z̄h, [53].

We note that the supersonic flow considered in the example in the previous section includes
an extensive bow shock where the solution u is not smooth. In fact, all information of the
flow crosses the shock from upstream before reaching the airfoil where the force coefficients
are evaluated. Vice verse, all information of the adjoint problem, travelling in opposite
direction along the flow characteristics, crosses the shock from downstream. According to
the discussion above and given that u is not smooth, the linearization error term, R(uh, z−z̄),
can only be expected to be small, when the adjoint solution is smooth. In this case, also the
discretization error of the adjoint solution, N (uh, z̄− z̄h), will be small, provided the adjoint
solution is approximated with higher–order polynomials.

As can be seen in Figures 16 and 17, the adjoint solution is in fact smooth in most parts
of the domain. In particular, at the position of the shock where the linearization error of
flow solution is large, the adjoint solution is smooth. This, as already discussed above, is
necessary for the linearization error term and the discretization error of the adjoint solution
to be small, and finally for the approximate error representation to be close to the true error
in the target quantity.

In fact, as shown in Table 1 for the viscous flow case considered, the approximate error
representation represents a remarkably close estimate of the true error in the target quantity.
In particular, the accuracy of the error estimation presented in Table 1 is significantly better
than that presented in [59], for the supersonic inviscid flow around a BAC3-11 airfoil with
a target quantity representing a (regularized) point evaluation, see also Section 4.5.3. This
difference clearly is attributed to both, a smaller linearization error of the flow solution due to
a smoother solution at a viscous shock, in contrast to at an inviscid shock, and to a smaller
discretization error of an adjoint solution which is smoother for an adjoint problem being
connected to a target quantity, J(u) = JCdp

(u), given by an integration of flow variables over
a line (profile), than the solution to an adjoint problem which is connected to a (regularized)
point evaluation.

In order to give a direct comparison with the viscous flow example at M = 1.2, Re = 1000

50

Elements # DoFs JCdp
(u) − JCdp

(uh)
∑

κ∈Th
η̄κ θ

768 12288 -1.184e-02 -2.218e-03 0.19
1260 20160 -4.214e-03 -6.197e-03 1.47
2151 34416 -9.285e-04 -5.458e-04 0.59
3687 58992 -2.472e-04 -3.666e-04 1.48
6165 98640 -9.057e-05 -9.796e-05 1.08
10605 169680 -6.057e-05 -6.150e-05 1.02

Table 2: Supersonic inviscid flow: Adaptive algorithm for the accurate approximation of Cdp.

and α = 0◦, we consider the corresponding inviscid test case, with M = 1.2, α = 0◦ and
the Cdp target quantity, in the following. Given the same freestream flow conditions and the
same target quantity, this comparison shall give us a closer insight to a possibly increased
linearization and discretization error of the adjoint solution for the inviscid flow in comparison
to the viscous flow problem.

Given the Cdp reference value for the inviscid computation based on fine grid computa-
tions to be JCdp

(u) ≈ 0.09549, the data of the adaptive refinement targeted at the accurate
approximation of this value is given in Table 2. Here, we see that the approximate error
representation

∑

κ∈Th
η̄κ is still reasonably close the true error. But, there is a significant

difference in the range of effectivity indices θ, which in the inviscid case is about 0.6-1.5 from
the second mesh onwards, see Table 2, whereas in the viscous case this is about 0.94-1.11,
cf. Table 1. This difference in the accuracy of the approximate error representation can be
attributed to the increased linearization error at the (inviscid) shock and to a significantly
less smooth adjoint solution in comparison to the viscous flow case. In fact, in Figures 18 and
19 we see that there are discontinuities of the adjoint solution near the trailing edge of the
profile due to the supersonic nature of the flow in this part of the domain. Furthermore, there
are discontinuities evolving close to the sonic lines of the flow above and below the profile.
In addition, we see a number of wiggles upstream of the airfoil which is are not observed
in the adjoint solution to the viscous flow problem, see Figures 16 and 17. This additional
roughness is introduced from the primal solution, which is smoothed-out by the numerical
(and artificial) viscosity of the DG scheme only, and as being an inviscid flow solution, lacks
of any physical smoothing introduced by the governing differential equations. This results
in the respective adjoint solution being significantly more rough than the adjoint solution to
the (smoother) viscous flow solution. Finally, the adjoint solution shows some wiggles right
at the position of the shock. Here, we have a coincidence in place of a large linearization
error of the flow solution and an oscillatory adjoint solution, which results in some of the
approximate error representations in Table 2 being less close to the true error, which is also
indicated by the respective effectivity indices θ noticeably differing from one.

4.5.6 Error estimation and adjoint-based refinement for multiple target quan-
tities

In this section, taken from [55], we present several numerical results demonstrating the per-
formance of the error estimation and adjoint-based mesh refinement for the accurate and
efficient approximation of multiple force coefficients. To this end, we consider the MTC3
test case defined in the European project ADIGMA [82]: laminar compressible flow around
a NACA0012 airfoil with inflow Mach number equal to 0.5, at an angle of attack α = 2◦, and

51

-3

-2

-1

0

1

2

3

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

-2 -1 0 1 2

(a) (b)

Figure 18: Supersonic inviscid flow: (a) Sonic isolines of the flow solution; (b) isolines of the
first component of the discrete adjoint solution z̄h, [53].

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5

(a) (b)

Figure 19: Supersonic inviscid flow: Zoom of (a) sonic (M = 1) isolines of the flow solution;
(b) together with z̄1 isolines, [53].

52

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 20: ADIGMA MTC3 test case: Mach number isolines. The laminar compressible flow
at M = 0.5, α = 2◦, Re = 5000 is a subsonic flow with a laminar separation at the trailing
edge, [55].

Reynolds number Re = 5000 with adiabatic no-slip wall boundary condition imposed on the
airfoil geometry. This is a steady subsonic flow with a large laminar separation at the trailing
edge, see Figure 20. The adaptive algorithms performed in the following will be based on the
coarse mesh of 400 quadrilateral elements shown in Figure 21.

In this test case the most relevant aerodynamic force coefficients, namely the pressure
induced and viscous drag coefficients, Cdp and Cdf , respectively, the total lift coefficient Cl

and the total moment coefficient Cm will be computed up to a predefined error tolerance
TOL. In the EU project ADIGMA the following industrial accuracy requirements have been
defined for this test case:

|JCdp
(u) − JCdp

(uh)| ≤ TOLCdp
= 5 · 10−4,

|JCdf
(u) − JCdf

(uh)| ≤ TOLCdf
= 5 · 10−4,

|JCl
(u) − JCl

(uh)| ≤ TOLCl
= 5 · 10−3,

|JCm(u) − JCm(uh)| ≤ TOLCm = 5 · 10−4.

(105)

Additionally, for academic purposes we define the following accuracy requirements:

|J⋆(u) − J⋆(uh)| ≤ 1

5
TOL⋆, for ⋆ ∈ {Cdp, Cdf , Cl, Cm}, (106)

where TOL⋆ stands for the tolerances defined in (105). Thereby, the academic accuracy
requirements are stronger in the sense that the tolerances for each of the force coefficients is
a fifth of the tolerances for the industrial accuracy requirements.

We remark that in view of the discretization being adjoint consistent for specific force
coefficients only, see Section 3.9 and [54], it would be preferable to approximate the total
drag coefficient Cd rather than separately its pressure induced and viscous parts, Cdp and
Cdf , respectively. Nevertheless, in the case of wing design in industry, for example, some
force coefficients are important to be accurately approximated separating pressure induced
and viscous parts as is requested for the drag coefficient in this case.

Finally, we note that very fine grid computations, also with higher polynomial degrees,
have been performed in order to obtain the following reference values (true values):

JCdp
(u) = Cref

dp = 0.0238006, JCdf
(u) = Cref

df = 0.0322805,

JCl
(u) = Cref

l = 0.037468, JCm(u) = Cref
m = −0.01662. (107)

53

-60

-40

-20

 0

 20

 40

 60

-60 -40 -20 0 20 40 60
-1

-0.5

 0

 0.5

 1

-0.5 0 0.5 1 1.5

Figure 21: Coarse mesh with 400 elements: (left) full and (right) detailed view, [55].

These reference values will be used to compare with the force coefficients being evaluated
on coarser meshes and using lower polynomial degrees in the following numerical examples.
Also the accuracy of a posteriori error estimates will be investigated based on the reference
values in (107).

In all subsequent computations we choose the penalization constant to be CIP = 20 in (59).
The solutions uh to the nonlinear primal discretization (58) are computed in Vh,p, with p = 1,
i.e., the flow solutions are approximated using piecewise bilinear functions. By reducing the
nonlinear residual over 6 orders of magnitude on each mesh, it is ensured that the resulting
flow solutions are sufficiently converged such that iterative solver error contributions are
negligible and errors observed with respect to force coefficients are due to the discretization
only. As in [59, 62], for example, the solutions z̄h to the linear discrete adjoint problems (82)
and (93) are computed in V̄h,p = Vh,p̄ with p̄ = p + 1. Also the solutions ēh to the discrete
error equations (85) are computed in V̄h,p = Vh,p̄.

In the following, we investigate the performance of the standard adaptive algorithm de-
scribed in Section 4.1 and 4.2.1 in comparison to the proposed algorithm described in Sections
4.2.2 and 4.3.

The standard approach Given N target quantities, Ji(·), i = 1, . . . , N , the standard
approach of error estimation and goal-oriented adaptive mesh refinement consists of a multiple
application of the single-target adaptive algorithm, i.e., the cycle of adaptive mesh refinement
as given in Algorithm 4.1 is employed for each of the target quantities separately. This
includes the solution of one discrete adjoint problem (82) for each of the target functionals,
Ji(·), i = 1, . . . , N , and the evaluation of the approximate error representation formulae (83)
for i = 1, . . . , N .

We note that this amounts to solving N systems of linear equations with the same matrix
but N different right–hand side vectors. Although additional adjoint solutions may possibly
be obtained cheaper by using an LU factorization of the matrix, for example, we refrain from
this due to the memory requirements and use an iterative solver instead. Furthermore, a
multiple application of Algorithm 4.1 leads to N separate sequences of adaptively refined
meshes where each sequence is based on the same coarse grid but the subsequently refined
meshes might differ from sequence to sequence. In fact, each of the N sequences of adaptively
refined meshes is particularly tailored to the accurate approximation of one of the N target

54

Elements # DoF J1(u) − J1(uh)
∑

κ∈Th
η̄
(1)
κ θ1

400 6400 1.040e-03 -1.404e-03 -1.35
652 10432 3.347e-03 2.959e-03 0.88
1090 17440 4.105e-04 5.712e-04 1.39
1801 28816 -2.019e-04 -1.093e-04 0.54
3034 48544 -2.284e-04 -1.893e-04 0.83
5056 80896 -1.468e-04 -1.373e-04 0.94
8515 136240 -7.400e-05 -7.141e-05 0.96
14374 229984 -3.884e-05 -3.912e-05 1.01
24265 388240 -1.678e-05 -1.698e-05 1.01

Table 3: Single-target adaptive algorithm for the numerical approximation of JCdp
(u).

Elements # DoF J2(u) − J2(uh)
∑

κ∈Th
η̄
(2)
κ θ2

400 6400 1.075e-02 1.525e-02 1.42
655 10480 -2.976e-03 -2.592e-03 0.87
1093 17488 -1.418e-03 -1.418e-03 1.00
1804 28864 -3.977e-04 -4.325e-04 1.09
2980 47680 -9.425e-05 -1.110e-04 1.18
5101 81616 -3.930e-05 -4.344e-05 1.11
8413 134608 -2.236e-05 -2.271e-05 1.02
14041 224656 -1.601e-05 -1.631e-05 1.02
23629 378064 -1.221e-05 -1.218e-05 1.00

Table 4: Single-target adaptive algorithm for the numerical approximation of JCdf
(u).

quantities under consideration. As a consequence each of the adjoint problems must be solved
on different meshes. In Tables 3, 4, 5 and 6 we demonstrate the performance of the standard
approach for the numerical approximation of the pressure induced drag, the viscous drag, the
total lift and the total moment coefficient, i.e.,

J1(u) = JCdp
(u), J2(u) = JCdf

(u), J3(u) = JCl
(u), J4(u) = JCm(u), (108)

respectively. In each case, i = 1, . . . , 4, we show the number of elements and degrees
of freedom (DoF) in Vh,1, the true error in the functional Ji(u) − Ji(uh), the approxi-

mate error representation formula
∑

κ∈Th
η̄

(i)
κ , and the corresponding effectivity index θi =

∑

κ∈Th
η̄

(i)
κ /(Ji(u)−Ji(uh)). We see that on all meshes, excluding the initial coarse mesh, the

quality of the computed error representation formulae
∑

κ∈Th
η̄

(i)
κ is relatively good, in the

sense that θi is close to one; moreover, as the mesh is refined, we observe that the effectivity
indices θi improve by slowly tending towards unity.

We note however, that for each target quantity one adjoint problem needs to be solved,
see the z1 components of the adjoint solutions related to the Cdp, Cdf , Cl and Cm values in
Figure 22. The four different adjoint solutions account for four different sensitivities of how
local residuals contribute to the error in the respective target functionals under consideration.
Based on this, four different sequences of meshes are created. The resulting locally refined
meshes are particularly tailored to the accurate and efficient computation of the respective
target quantity under consideration; for brevity we omit more details and refer to similar
computations in, e.g. [62, 53]. The four sequences of meshes, however, amount to about four

55

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(a)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(b)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(c)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(d)

Figure 22: The z1 components of the adjoint solution corresponding to the (a) Cdp, (b) Cdf ,
(c) Cl and (d) Cm force coefficients.

56

Elements # DoF J3(u) − J3(uh)
∑

κ∈Th
η̄
(3)
κ θ3

400 6400 -1.173e-01 -5.869e-02 0.50
658 10528 6.730e-03 6.836e-03 1.02
1108 17728 -1.110e-03 -1.165e-03 1.05
1861 29776 -1.604e-03 -1.808e-03 1.13
3127 50032 -1.066e-03 -1.019e-03 0.96
5224 83584 -4.971e-04 -4.969e-04 1.00

Table 5: Single-target adaptive algorithm for the numerical approximation of JCl
(u).

Elements # DoF J4(u) − J4(uh)
∑

κ∈Th
η̄
(4)
κ θ4

400 6400 -2.654e-03 -3.836e-03 1.45
670 10720 2.209e-03 2.055e-03 0.93
1138 18208 2.044e-04 1.647e-04 0.81
1912 30592 1.787e-05 1.910e-05 1.07
3295 52720 -1.704e-05 -1.693e-05 0.99

Table 6: Single-target adaptive algorithm for the numerical approximation of JCm(u).

times the number of flow solutions and adjoint solutions to be computed as compared to the
case of considering one target functional only. This computational overhead increases as the
number of target functionals N is increased rendering this approach inefficient for large N .

The new approach for multiple target functionals In this section we now employ the
approach of adjoint-based error estimation and mesh refinement for multiple target quanti-
ties as proposed in Sections 4.2.2 and 4.3. Given N target quantities this approach of error
estimation does not require N adjoint solutions. Instead, as described in Section 4.2.2, the
solutions to N adjoint problems are replaced by the solution to one discrete error equation.
Additionally, based on a combined target functional including all original target functionals,
see Section 4.3, only one adjoint solution is required for obtaining adjoint-based indicators to
be used in goal-oriented mesh refinement. In summary, this approach allows the error estima-
tion and adjoint-based refinement based on two auxiliary problems, namely the discrete error
equation and the discrete adjoint problem, irrespective of the number of target quantities.

Here, we consider the same test case as above; again, the goal is the accurate and efficient
approximation of the pressure induced and the viscous drag, the total lift and the total
moment coefficient, see (108), including providing error estimates for each of the computed
quantities.

First we adopt the strategy of reducing the sum of the relative errors in the four target
quantities, i.e., we choose the combined target functional in the adjoint problem (91) like in
(90) with ωi = si/|Ji(uh)|, i = 1, . . . , 4. This results in one sequence of adaptively refined
meshes tailored to the accurate approximation of all four quantities. In Table 7 we collect
the data of the adaptive algorithm. Here, we show the number of elements on the sequence
of adaptively refined meshes. Furthermore, there are four columns, one for each of the target
quantities Cdp, Cdf , Cl and Cm. Each column is subdivided into two subcolumns where the
left ones include the exact errors Ji(u) − Ji(uh), i = 1, . . . , 4, and the right ones include
the corresponding a posteriori error estimates J ′

i [uh](ēh), i = 1, . . . , 4, see (86), based on
the solution ēh ∈ V̄h,p to the discrete error equation (85). Here, we see that on all meshes,

57

Error in Cdp Error in Cdf Error in Cl Error in Cm

Ele Exact Estim. Exact Estim. Exact Estim. Exact Estim.

400 1.0e-03 -2.8e-03 1.1e-02 1.7e-02 -1.2e-01 -6.6e-02 -2.7e-03 -4.3e-03
649 1.1e-03 1.2e-03 -3.0e-03 -2.9e-03 6.0e-03 3.7e-03 2.4e-03 2.0e-03
1114 -2.7e-04 -6.7e-05 -1.4e-03 -1.9e-03 -1.1e-03 -1.1e-03 3.8e-04 3.3e-04
1879 -4.2e-04 -3.3e-04 -6.2e-04 -7.5e-04 -6.6e-04 -1.0e-03 -4.5e-05 -9.0e-05
3163 -2.0e-04 -1.7e-04 -4.6e-04 -5.2e-04 -5.4e-04 -6.4e-04 -3.0e-05 -2.7e-05
5248 -1.4e-04 -1.2e-04 -2.3e-04 -2.6e-04 -3.9e-04 -5.7e-04 -8.8e-05 -9.3e-05

Table 7: Multi-target adaptive algorithm for the numerical approximation of Cdp, Cdf , Cl

and Cm targeted at the reduction of the sum of relative errors. The error estimation is based
on the discrete error equation (85) and the estimate (86).

except the coarsest one, the estimated errors are quite close to the exact errors. In particular,
the signs s̄i = sgn(J ′

i [uh](ēh)), i = 1, . . . , 4, of the error estimates coincide with the signs
si = sgn(Ji(u)−Ji(uh), i = 1, . . . , 4, of the respective exact errors. We recall that these signs
are required in the definition of the combined target functional in (90) and are approximated
by s̄i as described in Section 4.3. We note that, here the difference between exact errors and
error estimates are larger than the respective differences in the Tables 3-6. This is due to
the fact that in Table 7 the estimates are based on (86) which includes two approximations:
first the linearization of Ji(·) about the discrete function uh and second the replacement of
the exact error e by the solution ēh ∈ V̄h,p to the discrete error equation. In contrast, the
error estimates in the Tables 3-6 include only one approximation, namely the replacement of
the analytical adjoint solution z by the discrete adjoint solution zh ∈ V̄h,p. Nevertheless, the
estimates in Table 7 are sufficiently close to the exact errors to serve as reasonable indication
of the size of the error in each target quantity. We recall that this error estimation is based
not on four (or in general N) adjoint solutions like in Section 4.5.6 but based on one solution
to a discrete error equation only.

Having investigated the accuracy of the a posteriori error estimation of the target quan-
tities, we now concentrate on the accuracy of the evaluated target quantities achieved based
on the two adaptive algorithms in this and the last subsection. Scanning through the Tables
3-6 we see that the industrial accuracy requirements (105) for Cdp (respectively, Cdf , Cl and
Cm) are reached after 2 (respectively, 3, 2 and 2) refinement steps. In contrast to that, in
Table 7 we see that the accuracy requirements are reached after 2 (respectively, 4, 2 and 2)
refinement steps. We notice that there is a slight increase in the number of refinement steps
for the adaptive approach based on the combined target functional in Table 7 in comparison
to the single-target adaptive approaches applied to each of the four of the target functionals
separately, see Tables 3-6. As in single-target and multi-target optimization algorithms, this
is due to the fact, that the single-target adapted meshes are optimized for the respective
single target quantities whereas the multi-target adapted mesh is optimized for the combined
target functional which results in a compromise between the single-target adapted meshes
that cannot be as accurate for the individual target functionals as the respective single-target
adapted meshes.

However, the efficiency of the adaptive mesh refinement can be improved: recalling that
the accuracy requirements in (105) are given in terms of absolute errors where the tolerances
of Cdp, Cdf and Cm are 1/10 times the tolerance of Cl, we see that choosing the combined

58

Error in Cdp Error in Cdf Error in Cl Error in Cm

Ele Exact Estim. Exact Estim. Exact Estim. Exact Estim.

400 1.0e-03 -2.8e-03 1.1e-02 1.7e-02 -1.2e-01 -6.6e-02 -2.7e-03 -4.3e-03
652 1.4e-03 1.4e-03 -3.0e-03 -2.9e-03 6.4e-03 4.1e-03 2.4e-03 2.0e-03
1138 -2.4e-04 -5.0e-05 -1.5e-03 -1.9e-03 -1.1e-03 -1.1e-03 4.3e-04 3.8e-04
1894 -4.7e-04 -3.2e-04 -2.9e-04 -4.9e-04 -5.1e-04 -8.4e-04 -5.5e-05 -6.2e-05
3112 -4.9e-05 2.6e-05 -4.0e-04 -5.0e-04 -5.6e-05 -2.6e-04 5.5e-05 6.3e-05
5131 -1.9e-04 -1.6e-04 -8.3e-05 -1.1e-04 -8.2e-04 -9.2e-04 -2.1e-05 -1.4e-05
8539 -1.0e-04 -8.1e-05 -2.2e-05 -4.9e-05 -1.1e-04 -3.3e-04 -2.4e-05 -1.8e-05

Table 8: Multi-target adaptive algorithm for the numerical approximation of Cdp, Cdf , Cl and
Cm targeted at the reduction of the weighted sum of absolute errors. The error estimation is
based on the solution to the discrete error equation (85) and the estimate (86).

target functional Jc(·) to correspond to the weighted sum of absolute errors might be more
appropriate for the problem at hand than the combined target functional corresponding to
the sum of relative errors as used in Table 7. In fact, considering the weighted sum of absolute
errors, i.e., Jc(·) is given by (90) with ωi = αisi, i = 1, . . . , 4, and adjusting the weighting
factors

α1 = 1, α2 = 1, α3 = 0.1, α4 = 1, (109)

the influence of each target functional on the combined target functional corresponds to the
specific accuracy requirements given in (105).

Analogous to the adaptive algorithm in Table 7 targeted at reducing the sum of relative
errors, we now collect the corresponding data in Table 8 for the adaptive algorithm targeted
at reducing the weighted sum of absolute errors. We see that the behaviour of the error
estimation is similar to that described for Table 7. We recall that the latter two tables include
the error estimates for the original force coefficients based on the solutions to the discrete error
equations, see Figure 23. Additionally, for the combined target functional Jc(uh) representing
the weighted sum of absolute errors, we now collect the error estimates in Table 9. Here, we
show the number of elements and degrees of freedom (DoF) in Vh,1, the true error in the
combined functional Jc(u)−Jc(uh), the approximate error representation formula

∑

κ∈Th
η̄κ,

see (94), and the corresponding effectivity index θc =
∑

κ∈Th
η̄κ/(Jc(u) − Jc(uh)). We see

that on all meshes, even including the initial coarse mesh, the quality of the computed error
representation formulae

∑

κ∈Th
η̄κ is extremely good in the sense that θc is close to one.

We recall that these error estimates are based on the discrete adjoint solution (93) related
to the combined target functional. Corresponding to the weighted sum (90) of the original
target functionals, the adjoint solution zc, see Figure 24, represents a linear combination of
the adjoint solutions, zi, i = 1, . . . , 4, (depicted in Figure 22) which are related to the original
target functionals Ji(u), i = 1, . . . , 4.

Considering again the accuracy of the computed target quantities we see in Table 8 that
the industrial accuracy requirements (105) for Cdp (respectively, Cdf , Cl and Cm) are reached
after 2 (respectively, 3, 2 and 2) refinement steps which is equal to the number of refinement
steps required in the respective single-target adaptive algorithms in Tables 3-6. However, we
recall that the adaptive algorithms in Tables 3-6 include the solutions to four (or in general

59

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 23: The first component of the solution ēh to the discrete error equation, see (85), on
the mesh of 8539 elements, cf. Table 8 and Figure 26(b).

Elements # DoF Jc(u) − Jc(uh)
∑

κ∈Th
η̄κ θc

400 6400 2.618e-02 2.636e-02 1.01
652 10432 7.378e-03 6.809e-03 0.92
1138 18208 2.258e-03 2.074e-03 0.92
1894 30304 8.582e-04 8.508e-04 0.99
3112 49792 5.087e-04 5.622e-04 1.11
5131 82096 3.753e-04 3.706e-04 0.99
8539 136624 1.622e-04 1.621e-04 1.00

Table 9: Multi-target adaptive algorithm for the approximation of Cdp, Cdf , Cl and Cm

targeted at the reduction of the weighted sum of absolute errors. The error estimation is
based on the solution, see Figure 24 of the discrete adjoint problem (93) and the estimate
(94).

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 24: The z1 components of the adjoint solution zc corresponding to the combined target
functional Jc(u) which is related to the weighted sum of absolute errors.

60

-1

-0.5

 0

 0.5

 1

-0.5 0 0.5 1 1.5
-1

-0.5

 0

 0.5

 1

-0.5 0 0.5 1 1.5

(a) (b)

Figure 25: The industrial accuracy requirements (105) are met on (a) the residual-based
adapted mesh of 8896 elements in 149.4s and on (b) the multi-target adapted mesh of 1894
elements in 80.8s.

N) adjoint solutions, whereas the algorithm in Table 8 requires the solution to two auxiliary
problems (the discrete error problem and the discrete adjoint problem) irrespective of the
number of target functionals. This difference can also been seen in terms of computing times.
In fact, the four separate single-target adaptive algorithms in Tables 3-6 add up to 147.5s
to reach the industrial requirements whereas the multi-target adaptive algorithm, Table 8,
requires 80.8s only. Note that this difference increases when considering N target quantities
for N > 4. In fact, the computing time in the single-target adaptive algorithms can be
expected to increase linearly with the number N of target quantities, whereas the computing
time of the multi-target adaptive algorithm requires always two auxiliary problems to be
solved and is thus independent of N .

Finally, we compare the adjoint-based (goal-oriented) adaptive algorithms discussed so far

with an adaptive algorithm using the residual-based indicators 102. The indicators |η(res)
κ |,

κ ∈ Th, include primal residuals but no adjoint solution. In fact, these indicators are not
targeted at the exact approximation of specific target quantities but at resolving all flow fea-
tures. Given that they do not depend on the adjoint solution, the residual-based indicators
are significantly faster to evaluate than the adjoint-based indicators. Nevertheless, as demon-
strated in a sequence of earlier publications, [23, 52, 53, 59] among others, the sequences of
meshes created using adjoint-based indicators are in general significantly more efficient and
require much less computing resources for accurately approximating the target quantities
under consideration than the meshes created using the residual-based indicators.

We observe now similar behaviour for the adjoint-based adaptive algorithm for multiple
target functionals outlined in these lecture notes, in comparison to the residual-based algo-
rithm. In fact, whereas the multi-target adaptive algorithm meets the industrial accuracy
requirements (105) after 3 refinement steps with 1894 elements taking 80.8s, the residual-
based adaptive algorithm meets the requirements after 6 refinement steps with 8896 elements
in 149.4s; see the meshes in Figure 25. Note, however, that in the latter case no error es-
timates are available. In summary, we see that, even by including the computation of error
estimates in each target quantity and in the combined target functional (weighted sum of
relative errors) the multi-target adaptive algorithm is significantly more efficient than the
residual-based algorithm.

61

-1

-0.5

 0

 0.5

 1

-0.5 0 0.5 1 1.5
-1

-0.5

 0

 0.5

 1

-0.5 0 0.5 1 1.5

(a) (b)

Figure 26: The academic accuracy requirements (106) are met on (a) the residual-based
adapted mesh of 67660 elements in 2691.2s and on (b) the multi-target adapted mesh of 8539
elements in 664.63s, [55].

This difference becomes even more significant when the stronger accuracy requirements
(106) are imposed. Scanning through Table 8 we see that these requirements for Cdp (re-
spectively, Cdf , Cl and Cm) are reached after 6 (respectively, 5, 3 and 3) refinement steps. In
summary, using the multi-target algorithm the academic accuracy requirement are met after
6 refinement steps with 8539 elements in 664.63s, whereas using the residual-based algorithm
the requirements are met after 10 refinement steps with 67660 elements in 2691.2s; see the
meshes in Figure 26.

62

5 Development of anisotropic mesh adaptation

The mathematical modeling of advection, diffusion, and reaction processes arises in many
application areas, not least aerodynamics. Typically, the diffusion is often small (compared
to the magnitude of the advection and/or reaction), degenerate, or even vanishes in sub-
regions of the domain of interest. This multi-scale behavior between the diffusion and the
advection/reaction creates various challenges in the endeavor of computing numerical approx-
imations to PDE problems of this type in an accurate and efficient manner. In particular,
computationally demanding features may appear in the analytical solutions of such prob-
lems; these include boundary/interior layers or even discontinuities in the subregions where
the problem is of hyperbolic type. When such, essentially lower-dimensional, features are
present in the solution, the use of anisotropically refined meshes has been extensively advo-
cated within the literature. Indeed, anisotropically refined meshes aim to be aligned with
the domains of definition of these lower-dimensional features of the solution, in order to pro-
vide the necessary mesh resolution in the relevant directions, thereby reducing the number
of degrees of freedom required to obtain an accurate approximation.

In this section, we consider the development of adaptive DG finite element methods
based on employing anisotropically refined computational meshes. To this end, we shall
first consider the application and analysis of DG methods for the numerical approximation
of second–order partial differential equations with nonnegative characteristic form. This
class of equations includes second–order elliptic and parabolic partial differential equations,
ultra-parabolic equations, first–order hyperbolic problems, the Kolmogorov–Fokker–Planck
equations of Brownian motion (see [12], for example), the equations of boundary layer theory
in hydrodynamics, and various other degenerate elliptic equations. More generally, according
to a well-known result of Hörmander [94], second–order hypoelliptic operators have nonneg-
ative characteristic form at each point of the domain Ω, after possible multiplication by −1,
so they too fall into this category.

The a priori error estimation presented here is based on exploiting the analysis developed
in [50], which assumed that the underlying computational mesh is shape–regular, together
with an extension of the techniques developed in [40] which precisely describe the anisotropy
of the mesh; for related anisotropic approximation results, we refer to [6, 27, 40, 80, 83], for ex-
ample. More specifically, we employ tools from tensor analysis, along with local singular-value
decompositions of the Jacobi matrix of the local elemental mappings, to derive directionally-
sensitive bounds for arbitrary polynomial degree approximations, thus generalizing the ideas
presented in [40], where only the case of approximation with conforming linear elements was
considered. The advantages of this general approach are that the resulting interpolation
bounds exploit the full spectral properties of the underlying (affine) element transformation,
and are thereby independent of the choice of coordinate axes. Additionally, no a priori
condition on the maximal angle of the computational mesh is required; indeed, numerical
experiments presented in [40] clearly demonstrate that this approach leads to approximation
bounds which show the correct asymptotic behaviour with respect to the maximal angle.
These interpolation error bounds are then employed to derive general anisotropic a priori
error bounds for the DG approximation of linear functionals of the underlying analytical
solution.

Additionally, a posteriori error bounds are derived based on the arguments outlined in
Sections 2 & 4, cf. [22, 58, 77, 79], for example. On the basis of our a posteriori error

63

bound we design and implement an anisotropic adaptive algorithm to ensure the reliable
and efficient control of the error in the prescribed target functional to within a given toler-
ance. This involves exploiting both local isotropic and anisotropic mesh refinement, based on
choosing the most competitive subdivision of a given element κ from a series of trial (Carte-
sian) refinements. The superiority of the proposed algorithms in comparison with standard
isotropic mesh refinement, and a Hessian–based anisotropic mesh refinement strategy, will be
illustrated by a series of numerical experiments.

The discussion in this section represents a brief survey of the article [43]; see also [49].

5.1 Model problem and discretization

Let Ω be a bounded open polyhedral domain in R
d, d = 2, 3, and let Γ signify the union of

its (d− 1)–dimensional open faces. We consider the advection–diffusion–reaction equation

Lu ≡ −∇ · (a∇u) + ∇ · (bu) + cu = f , (110)

where f ∈ L2(Ω) and c ∈ L∞(Ω) are real–valued, b = {bi}d
i=1 is a vector function whose en-

tries bi are Lipschitz continuous real–valued functions on Ω̄, and a = {aij}d
i,j=1 is a symmetric

matrix whose entries aij are bounded, piecewise continuous real–valued functions defined on
Ω̄, with

ζ⊤a(x)ζ ≥ 0 ∀ζ ∈ R
d , a.e. x ∈ Ω̄ . (111)

Under this hypothesis, (110) is termed a partial differential equation with nonnegative char-
acteristic form. By n(x) = {ni(x)}d

i=1 we denote the unit outward normal vector to Γ at
x ∈ Γ. On introducing the so called Fichera function b · n (cf. [94]), we define

Γ0 =
{

x ∈ Γ : n(x)⊤a(x)n(x) > 0
}

,

Γ− = {x ∈ Γ\Γ0 : b(x) · n(x) < 0} , Γ+ = {x ∈ Γ\Γ0 : b(x) · n(x) ≥ 0} .

The sets Γ− and Γ+ will be referred to as the inflow and outflow boundary, respectively.
Evidently, Γ = Γ0∪Γ−∪Γ+. If Γ0 is nonempty, we shall further divide it into disjoint subsets
ΓD and ΓN whose union is Γ0, with ΓD nonempty and relatively open in Γ. We supplement
(110) with the boundary conditions

u = gD on ΓD ∪ Γ− , n · (a∇u) = gN on ΓN , (112)

and adopt the (physically reasonable) hypothesis that b · n ≥ 0 on ΓN, whenever ΓN is
nonempty. Additionally, we assume that the following (standard) positivity hypothesis holds:
there exists a constant vector ξ ∈ R

d such that

c(x) +
1

2
∇ · b(x) + b(x) · ξ > 0 a.e. x ∈ Ω . (113)

For simplicity of presentation, we assume throughout that (113) is satisfied with ξ ≡ 0; we
then define the positive function c0 by

(c0(x))2 = c(x) +
1

2
∇ · b(x) a.e. x ∈ Ω . (114)

For the well-posedness theory (for weak solutions) of the boundary value problem (110),
(112), in the case of homogeneous boundary conditions, we refer to [74, 78].

64

x̂1

x̂2

κ̂

Fκ

x̃2

x̃1

κ̃

Qκ

x1

x2
κ

Figure 27: Construction of the element mapping via the composition of an affine mapping
Fκ and a C1–diffeomorphism Qκ.

5.2 Meshes, finite element spaces and traces

Let Th = {κ} be a subdivision of the (polyhedral) domain Ω into disjoint open element
domains κ constructed through the use of the mappings Qκ ◦ Fκ, where Fκ : κ̂ → κ̃ is an
affine mapping from the reference element κ̂ to κ̃, and Qκ : κ̃ → κ is a C1–diffeomorphism
from κ̃ to the physical element κ. Here, we shall assume that κ̂ is either the hypercube (−1, 1)d

or the unit d–simplex; in the latter case Qκ is typically the identity operator, unless curved
elements are employed. The mapping Fκ defines the size and orientation of the element
κ, while Qκ defines the shape of κ, without any significant rescaling, or indeed change of
orientation, cf. Figure 27 for the case when d = 2 and κ̂ = (−1, 1)2. With this in mind,
we assume that the element mapping Qκ is close to the identity in the following sense: the
Jacobi matrix JQκ of Qκ satisfies

C−1
1 ≤ ‖det JQκ‖L∞(κ) ≤ C1, ‖J−⊤

Qκ
‖L∞(κ) ≤ C2, ‖J−⊤

Qκ
‖L∞(∂κ) ≤ C3 (115)

for all κ in Th uniformly throughout the mesh for some positive constants C1, C2, and C3.
This will be important as our error estimates will be expressed in terms of Sobolev norms over
the element domains κ̃, in order to ensure that only the scaling and orientation introduced
by the affine element maps Fκ are present in the analysis. Writing mκ, mκ̃, and mκ̂ to denote
the d–dimensional measure of the elements κ, κ̃, and κ̂, respectively, the above condition
(115) implies that there exists a positive constant C4 such that

C−1
4 mκ̃ ≤ mκ ≤ C4mκ̃ ∀κ ∈ Th. (116)

The above maps are assumed to be constructed in such a manner to ensure that the union
of the closure of the disjoint open elements κ ∈ Th forms a covering of the closure of Ω, i.e.,
Ω̄ = ∪κ∈Th

κ̄. For a function v defined on κ, κ ∈ Th, we write ṽ = v ◦ Qκ and v̂ = ṽ ◦ Fκ to
denote the corresponding functions on the elements κ̃ and κ̂, respectively. Thereby, we have
that v̂ = v ◦Qκ ◦ Fκ.

Remark 5.1 We note that a similar construction of the element mappings for general meshes
consisting of curved quadrilateral elements has also been employed for both shape-regular and
anisotropic meshes in the articles [73] and [42], respectively. The key difference in the current
construction to that proposed in [42] is that here the element mapping Fκ contains information

65

about both size and orientation of κ. In contrast, in the construction developed in [42] both
orientation and shape information are included in Qκ, while Fκ only contains information
relating to the size of κ.

Remark 5.2 Within this construction we admit meshes with possibly hanging nodes; for
simplicity, we shall suppose that the mesh Th is 1-irregular, cf. [73].

Associated with Th, we introduce the broken Sobolev space of order s ≥ 0 defined by

Hs(Ω,Th) = {u ∈ L2(Ω) : u|κ ∈ Hs(κ) ∀κ ∈ Th} ,

equipped with the broken Sobolev norm and seminorm, denoted, respectively, by

‖u‖s,Th
=

∑

κ∈Th

‖u‖2
Hs(κ)

1
2

, |u|s,Th
=

∑

κ∈Th

|u|2Hs(κ)

1
2

.

For u ∈ H1(Ω,Th) we define the broken gradient ∇Th
u of u by (∇Th

u)|κ = ∇(u|κ), κ ∈ Th.

5.3 Interior penalty discontinuous Galerkin method

We introduce the (symmetric) interior penalty DG discretization of the advection–diffusion–
reaction problem (110), (112), cf. Section 3. For ease of presentation, we recall the following
notation. Given a polynomial degree p ≥ 1 we define the finite element space Vh,p as follows

Vh,p = {u ∈ L2(Ω) : u|κ ◦Qκ ◦ Fκ ∈ Rp(κ̂); κ ∈ Th} ,

where Rp is Pp, when κ̂ is the unit d–simplex, or Rp is Qp, when κ̂ = (−1, 1)d. Here, Pp

denotes the set of polynomials of total degree p on κ̂ and Qp(κ̂), the set of all tensor-product
polynomials on κ̂ of degree p in each coordinate direction.

An interior face of Th is defined as the (non-empty) (d−1)–dimensional interior of ∂κ+ ∩
∂κ−, where κ+ and κ− are two adjacent elements of Th, not necessarily matching. A boundary
face of Th is defined as the (non-empty) (d− 1)–dimensional interior of ∂κ ∩ Γ, where κ is a
boundary element of Th. We denote by ΓI the union of all interior faces of Th. Let κ+ and κ−

be two adjacent elements of Th, and x an arbitrary point on the interior face f = ∂κ+∩∂κ−.
Furthermore, let v and q be scalar- and vector-valued functions, respectively, that are smooth
inside each element κ±. By (v±,q±), we denote the traces of (v,q) on f taken from within
the interior of κ±, respectively. Then, the averages of v and q at x ∈ f are given by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ κ are given by

[[v]] = v+ nκ+ + v− nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,

respectively, where we denote by nκ± the unit outward normal vector of κ±, respectively. On
a boundary face f ⊂ Γ, we set {{v}} = v, {{q}} = q, and [[v]] = vn, where n denotes the unit
outward normal vector on the boundary Γ.

66

Given that κ is an element in the subdivision Th, we denote by ∂κ the union of (d − 1)–
dimensional open faces of κ. Let x ∈ ∂κ and suppose that nκ(x) denotes the unit outward
normal vector to ∂κ at x. With these conventions, we define the inflow and outflow parts of
∂κ, respectively, by

∂−κ = {x ∈ ∂κ : b(x) · nκ(x) < 0} , ∂+κ = {x ∈ ∂κ : b(x) · nκ(x) ≥ 0} .

For simplicity of presentation, we suppose that the entries of the matrix a are constant on
each element κ in Th; i.e.,

a ∈ [Vh,0]
d×d
sym . (117)

We note that, with minor changes only, our results can easily be extended to the case of√
a ∈ [Vh,q]

d×d
sym, q ≥ 0; moreover, for general a ∈ L∞(Ω)d×d

sym , the analysis proceeds in a similar

manner, based on employing the modified DG method proposed in [46]. In the following, we
write ā = |√a |22, where | · |2 denotes the matrix norm subordinate to the l2–vector norm on
R

d and āκ = ā|κ.
The interior penalty DG approximation of (110), (112) is defined as follows: find uh in

Vh,p such that

B(uh, v) = ℓ(v) (118)

for all v ∈ Vh,p. Here, the bilinear form B(·, ·) is defined by

B(w, v) = Ba(w, v) + Bb(w, v) − Bf (v,w) − Bf (w, v) + Bϑ(w, v) ,

where

Ba(w, v) =
∑

κ∈Th

∫

κ
a∇w · ∇v dx ,

Bb(w, v) =
∑

κ∈Th

{

−
∫

κ
(w b · ∇v − cwv) dx

+

∫

∂+κ
(b · nκ)w+v+ ds+

∫

∂−κ\Γ
(b · nκ)w−v+ ds

}

,

Bf (w, v) =

∫

ΓI∪ΓD

{{a∇hw}} · [[v]] ds , Bϑ(w, v) =

∫

ΓI∪ΓD

ϑ[[w]] · [[v]] ds ,

and the linear functional ℓ(·) is given by

ℓ(v) =
∑

κ∈Th

(
∫

κ
fv dx−

∫

∂−κ∩(ΓD∪Γ−)
(b · nκ) gD v

+ ds

−
∫

∂κ∩ΓD

gD((a∇v+) · nκ) ds+

∫

∂κ∩ΓN

gNv
+ ds+

∫

∂κ∩ΓD

ϑgDv
+ ds

)

.

Here ϑ is called the discontinuity-penalization parameter and is defined by ϑ|f = ϑf for
f ⊂ ΓI ∪ ΓD, where ϑf is a nonnegative constant on face f . The precise choice of ϑf , which

67

depends on a and the discretization parameters, will be discussed in detail in the next section.
We shall adopt the convention that faces f ⊂ ΓI ∪ ΓD with ϑ|f = 0 are omitted from the
integrals appearing in the definition of Bϑ(w, v) and ℓ(v), although we shall not highlight this
explicitly in our notation; the same convention is adopted in the case of integrals where the
integrand contains the factor 1/ϑ. Thus, in particular, the definition of the DG-norm, cf.
(119) below, is meaningful even if ϑ|f happens to be equal to zero on certain faces f ⊂ ΓI∪ΓD,
given that such faces are understood to be excluded from the region of integration. For details
concerning the construction of the DG method (118), we refer the reader to the article [50],
for example.

Remark 5.3 For notational simplicity, we have neglected the superscript ‘+’ on the elemen-
tal domain κ ∈ Th in the definition of both the bilinear form B(·, ·) and the linear functional
ℓ(·). With this in mind, on an interior face f ⊂ ∂κ ∩ ∂κ−, where κ and κ− are two adjacent
elements of Th, the notation v± is used denote the traces of v on f taken from within the
interior of κ and κ−, respectively.

5.4 Stability analysis

Before embarking on the error analysis of the DG method (118), we first derive some prelim-
inary results. Let us first introduce the DG–norm ||| · ||| by

|||w|||2 =
∑

κ∈Th

(

‖√a∇w‖2
L2(κ) + ‖c0w‖2

L2(κ) +
1

2
‖w+‖2

∂−κ∩(ΓD∪Γ−)

+
1

2
‖w+ − w−‖2

∂−κ\Γ +
1

2
‖w+‖2

∂+κ∩Γ

)

+

∫

ΓI∪ΓD

ϑ|[[w]]|2 ds+

∫

ΓI∪ΓD

1

ϑ
|{{a∇w}}|2 ds , (119)

where ‖ · ‖τ , τ ⊂ ∂κ, denotes the (semi)norm associated with the (semi)inner-product
(v,w)τ =

∫

τ |b · nκ|vw ds, and c0 is as defined in (114). We remark that the above defi-
nition of ||| · ||| represents a slight modification of the norm considered in [74]; in the case
b ≡ 0, (119) corresponds to the norm proposed by Baumann et al. [18, 91] and Baker et al.
[9], cf. [95].

For a given face f ⊂ ΓI ∪ ΓD, such that f ⊂ ∂κ, for some κ ∈ Th, we write f̃ and f̂ to
denote the respective faces of the mapped elements κ̃ and κ̂, respectively, based on employing
the element mappings Qκ and Fκ. More precisely, we write f̃ = Q−1

κ (f) and f̂ = F−1
κ (f̃).

Further, we define mf , mf̃ , and mf̂ to denote the (d − 1)–dimensional measure (volume) of

the faces f , f̃ , and f̂ , respectively; clearly, in two–dimensions, i.e., d = 2, mf̂ , the length of
the corresponding face on the canonical element, is equal to 2 when quadrilateral elements
are employed. In view of (115), we note that there exists a positive constant C5, such that

C−1
5 mf̃ ≤ mf ≤ C5mf̃ (120)

for every face f ⊂ ΓI ∪ΓD. Moreover, the surface Jacobian Sf,f̃ arising in the transformation

of the face f to f̃ may be uniformly bounded in the following manner

‖Sf,f̃‖L∞(f̃) ≤ C6 (121)

68

for all faces f ⊂ ΓI ∪ ΓD, where C6 is a positive constant.
Let us now quote the following inverse inequality.

Lemma 5.4 Let κ be an element contained in the mesh Th and let f denote one of its faces.
Then, the following inverse inequality holds

‖v‖2
L2(f) ≤ Cinv

mf

mκ
‖v‖2

L2(κ) (122)

for all v such that v ◦Qκ ◦ Fκ ∈ Rp(κ̂), where Cinv is a constant which depends only on the
dimension d and the polynomial degree p.

Proof: On the reference element κ̂, for any function v̂ ∈ Rp(κ̂), there exists a positive
constant C ′

inv, such that

‖v̂‖2
L2(f̂)

≤ C ′
inv‖v̂‖2

L2(κ̂); (123)

see, for example, [7]. Thereby, employing (121) and (120) we deduce that

‖v‖2
L2(f) ≤ C6‖ṽ‖2

L2(f̃)
= C6

mf̃

mf̂

‖v̂‖2
L2(f̂)

≤ C6

C5

mf

mf̂

‖v̂‖2
L2(f̂)

. (124)

In an analogous manner, by exploiting (116) and (115) gives

‖v̂‖2
L2(κ̂) =det(F−1

κ)‖ṽ‖2
L2(κ̃) =

mκ̂

mκ̃
‖ṽ‖2

L2(κ̃)≤C4
mκ̂

mκ
‖ṽ‖2

L2(κ̃)≤C1C4
mκ̂

mκ
‖v‖2

L2(κ). (125)

Inserting (124) and (125) into (123) gives the desired result. �

Remark 5.5 The inverse inequality stated in Lemma 5.4 is an extension of the standard
result employed on isotropic finite element meshes to the case when anisotropic elements may
be present. Indeed, in the isotropic setting, we have that mκ ≈ hd

κ and mf ≈ hd−1
κ , where

hκ denotes the diameter of the element κ ∈ Th; thereby, the scaling on the right–hand side
of the inequality (122) is of size 1/hκ, as expected. Moreover, this result extends the inverse
inequality stated in [42] to the case when the affine mapping Fκ includes not only size, but
also orientation information, cf. above.

We now define the function h in L∞(ΓI ∪ΓD), as h(x) = min{mκ1
,mκ2

}/mf , if x is in the
interior of f = ∂κ1 ∩ ∂κ2 for two neighboring elements in the mesh Th, and h(x) = mκ/mf ,
if x is in the interior of f = ∂κ ∩ ΓD. We note that in the isotropic setting we observe that
h ∼ h, where h denotes the mesh local mesh size, cf. Remark 5.5 above. Similarly, we define
the function a in L∞(ΓI∪ΓD) by a(x) = max{āκ1

, āκ2
} if x is in the interior of f = ∂κ1∩∂κ2,

and a(x) = āκ if x is in the interior of ∂κ ∩ ΓD. With this notation, we now provide the
following coercivity result for the bilinear form B(·, ·) over Vh,p × Vh,p.

Theorem 5.6 Define the discontinuity-penalization parameter ϑ arising in (118) by

ϑ|f ≡ ϑf = Cϑ
a

h
for f ⊂ ΓI ∪ ΓD, (126)

where Cϑ is a sufficiently large positive constant (see Remark 5.7 below). Then, there exists
a positive constant C, which depends only on the dimension d and the polynomial degree p,
such that

B(v, v) ≥ C|||v|||2 ∀v ∈ Vh,p. (127)

69

Proof: This result follows by application of the inverse estimate derived in Lemma 5.4,
following the general argument presented by Prudhomme et al. [95] in the case when b ≡ 0;
cf., also [74]. �

Remark 5.7 Theorem 5.6 indicates that the DG scheme is coercive over Vh,p×Vh,p provided
that the constant Cϑ > 0 arising in the definition of the discontinuity–penalization parameter
ϑ, is chosen sufficiently large. More precisely, Cϑ should be selected to be a positive constant
which is greater than CfCinv/2, where Cinv is the constant arising in the inverse inequality
stated in Lemma 5.4 and

Cf = max
κ∈Th

card {f ⊂ ΓI ∪ ΓD : f ⊂ ∂κ} ;

the restriction to 1–irregular meshes ensures that Cf is uniformly bounded independently of
the mesh size.

For the proceeding error analysis, we assume that the solution u to the boundary value
problem (110), (112) is sufficiently smooth: namely, u ∈ H3/2+ε(Ω,Th), ε > 0, and the
functions u and (a∇u) · nf are continuous across each face f ⊂ ∂κ\Γ that intersects the
subdomain of ellipticity, Ωa = {x ∈ Ω̄ : ζ⊤a(x)ζ > 0 ∀ζ ∈ R

d}. If this smoothness
requirement is violated, the discretization method has to be modified accordingly, cf. [74].
We note that under these assumptions, the following Galerkin orthogonality property holds:

B(u− uh, v) = 0 ∀v ∈ Vh,p . (128)

For simplicity of presentation, it will be assumed in the proceeding analysis, as well as in
Section 5.6, that the velocity vector b satisfies the following assumption:

b · ∇Th
v ∈ Vh,p ∀v ∈ Vh,p . (129)

To ensure that (110) is then meaningful (i.e., that the characteristic curves of the differential

operator L are correctly defined), we still assume that b ∈
[
W 1

∞(Ω)
]d

.

Remark 5.8 We note that hypothesis (129) is a standard condition assumed for the analysis
of the hp–version of the DG method; see, for example, [42, 50, 74]. Indeed, this condition
is essential for the derivation of a priori error bounds which are optimal in both the mesh
size h and spectral order p; in the absence of this assumption, optimal h–convergence bounds
may still be derived, though a loss of p3/2 is observed in the resulting error analysis, unless
the scheme (118) is supplemented by appropriate streamline–diffusion stabilization, cf. the
discussion in [73]. Given that within the current setting, we are only interested in deriving
error bounds for the h–version of the DG method, hypothesis (129) is indeed unnecessary, but
for simplicity of presentation, we retain this assumption.

5.5 Approximation results

In this section we develop the necessary approximation results needed for the forthcoming a
priori error estimation developed in Section 5.6. To this end, on the reference element κ̂, we

70

define Π̂p to denote the orthogonal projector in L2(κ̂) onto the space of polynomials Rp(κ̂);
i.e., given that v̂ ∈ L2(κ̂), we define Π̂pv̂ by

(v̂ − Π̂pv̂, ŵ)κ̂ = 0

for all ŵ ∈ Rp(κ̂), where (·, ·)κ̂ denotes the L2(κ̂) inner product. Similarly, we define the
L2-projection operators Π̃p and Πp on κ̃ and κ, respectively, by the relations

Π̃pṽ := (Π̂p(ṽ ◦ Fκ)) ◦ F−1
κ , Πpv := (Π̃p(v ◦Qκ)) ◦Q−1

κ ,

for ṽ ∈ L2(κ̃) and v ∈ L2(κ), respectively. Also, we define the (element-wise) L2–projection
operator onto Vh,p by (ΠTh

p u)|κ := Πp(u|κ) for all elements κ ∈ Th.
We remark that this choice of projector is essential in the following a priori error analysis,

in order to ensure that

(u− ΠTh
p u,b · ∇Th

v) = 0 (130)

for all v in Vh,p, cf. the proofs of Lemma 5.22 and Theorem 5.23 below. We remark that this
same choice of projector is also necessary in the corresponding case when (129) fails to hold;
in this situation an equality of the form (130) with b replaced by a suitable projection of b
is still necessary for the underlying analysis; cf. [41], Chapter 5.

With this notation, we now quote the following approximation results on the reference
element κ̂.

Lemma 5.9 Let κ̂ be the reference element, and let f̂ denote one of its faces. Given a
function v̂ ∈ Hk(κ̂), the following error bounds hold for m = 0, 1:

|v̂ − Π̂pv̂|Hm(κ̂) ≤ C|v̂|Hs(κ̂), m ≤ s ≤ min(p+ 1, k), (131)

|v̂ − Π̂pv̂|Hm(f̂) ≤ C|v̂|Hs(κ̂), m+ 1 ≤ s ≤ min(p + 1, k), (132)

where C is a positive constant which depends only on the dimension d and the polynomial
order p.

Proof: The proof of (131) is standard; see [30], for example. The approximation result (132)
follows upon application of the multiplicative trace inequality, cf. [73]. �

Corollary 5.10 Using the notation of Lemma 5.9, there exists a positive constant C, which
depends only on the dimension d and the polynomial order p, such that for m = 0, 1:

|v − Πpv|Hm(κ) ≤ C|det(JFκ)|1/2 ‖J−⊤
Fκ

‖m
2 |v̂|Hs(κ̂), m ≤ s ≤ min(p + 1, k), (133)

|v − Πpv|Hm(f) ≤ C|mf |1/2 ‖J−⊤
Fκ

‖m
2 |v̂|Hs(κ̂), m+ 1 ≤ s ≤ min(p + 1, k). (134)

Proof: The proof of the each inequality stated in the corollary is based on exploiting a
standard scaling argument to the respective left–hand sides of the approximation results
stated in Lemma 5.9, together with (115), (120), (121), and (124). Indeed, the proof of (133)
exploits (131), together with the following (scaling) inequality

|v − Πpv|2Hm(κ) ≤ ‖det JQκ‖L∞(κ) ‖J−⊤
Qκ

‖2m
L∞(κ) |ṽ − Π̃pṽ|2Hm(κ̃)

≤ C1(C2)
2m|ṽ − Π̃pṽ|2Hm(κ̃) ≤ C1(C2)

2m|det JFκ | ‖J−⊤
Fκ

‖2m
2 |v̂ − Π̂pv̂|2Hm(κ̂); (135)

71

here we have used (115). Finally, employing (115), (121), and (120), we deduce that

|v − Πpv|2Hm(f) ≤ Cm
3 C6|ṽ − Π̃pṽ|2Hm(f̃)

≤ Cm
3 C6

C5

mf

mf̂

‖J−⊤
Fκ

‖2m
2 |v̂ − Π̂pv̂|2Hm(f̂)

. (136)

Upon substituting (136) into (132), we deduce (134). �

Finally, it remains to scale the Hs(κ̂), s ≥ 0, semi-norm defined on the reference element
κ̂ to κ̃ based on employing the affine element transformation Fκ. In order to retain the
anisotropic mesh information within the Jacobian JFκ , we first re-write the square of the
Hs(κ̂) semi-norm of a function v̂ in terms of the integral of the square of the Frobenius
norm of an sth–order tensor containing the s–order derivatives of v̂. With this definition the
transformation of the s–order derivatives of v̂ defined over κ̂ may naturally be transformed
to derivatives of the (mapped) function ṽ defined over κ̃. Indeed, for the case when s = 2,
this approach is analogous to the technique employed in [40].

To this end, we now introduce the following tensor notation; here, and in the following
we use calligraphic letters A,B, . . . to denote Nth–order tensors, where it is understood that
a 0th–order tensor is a scalar, a 1st–order tensor is a vector, a 2nd–order tensor is a matrix,
and so on. The following discussion regarding tensors is based on the work presented in the
article [84].

Definition 5.11 For an N th–order tensor A ∈ R
I1×I2×...×IN , the matrix unfolding A(n) ∈

R
In×(In+1In+2...INI1I2...In−1), n = 1, . . . , N , contains the element ai1i2...iN at the position with

row number in and column number equal to

(in+1 − 1)In+2In+3 . . . INI2 . . . In−1 + (in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1 + . . .

+(iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1 + . . .+ in−1.

In essence a matrix unfolding represents a splitting of an Nth–order tensor into a vector
of (N−1)th–order tensors. These (N−1)th–order tensors are then recursively unfolded until
2nd–order tensors (matrices) are realised. Figure 28 shows the three unfoldings possible for
a 3rd–order tensor.

This definition prompts us to consider a way of multiplying a tensor by a matrix. Clearly
if we have a matrix U ∈ R

Jn×In then we can pre-multiply A(n) by U . Forming an Nth–order
tensor from UA(n) by reversing the matrix unfolding procedure we have the product of a ma-

trix and a tensor, giving rise to a tensor B ∈ R
I1×I2×...×In−1×Jn×In+1×...IN . Diagrammatically

this can be represented as

A Unfold−−−−→ A(n)
U×−−→ UA(n)

Refold−−−−→ A×n U
︸ ︷︷ ︸

×nU

.

We formalize this in the following definition.

Definition 5.12 The n-mode product of a tensor A ∈ R
I1×I2×...×IN by a matrix U ∈ R

Jn×In ,
denoted by A×nU , is an I1 × I2 × . . . × In−1 × Jn × In+1 × . . . IN -tensor of which the entries
are given by

(A×n U)i1i2...in−1jnin+1...iN :=

In∑

in=1

(A)i1i2...in−1inin+1...iN (U)jnin .

72

I1

I1

I2

I2

I3

I3

A

A(1)

I1

I1

I2

I2

I3

I3
A

A(2)

(a) (b)

I1

I1

I2

I2

I3

I3

A

A(3)

(c)

Figure 28: Matrix unfolding of a 3rd order tensor: (a) First unfolding; (b) Second unfolding;
(c) Third unfolding.

Lemma 5.13 For A ∈ R
I1×I2×...×IN and U ∈ R

Jn×In, we have that

(A×n U)(n) = UA(n).

Proof: Consider element (A ×n U)i1i2...in−1jnin+1...iN , its position in (A ×n U)(n) is at row
number jn and column number k, where

k = (in+1 − 1)In+2In+3 . . . INI2 . . . In−1 + (in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1 + . . .

+(iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1 + . . .+ in−1.

Now,

(UA(n))jnk =

In∑

in=1

(U)jnin(A(n))ink =

In∑

in

(A)i1i2...in−1inin+1...iN (U)jnin .

73

Hence, (A×n U)(n) = UA(n), as required. �

By considering a vector v as an In × 1 matrix, then an n-mode product of v⊤ and A can
be formed to produce an I1 × I2 × . . .× In−1 × 1× In+1 × . . .× IN -tensor. This tensor could
be viewed as an N − 1-tensor, but instead we leave it as an N -tensor in order that we can
form other m-mode products without the value of m having to change. However, if we have
a 1 × 1 × . . . × 1-tensor then we simply view this as a scalar. The n-mode product satisfies
the following property.

Property 1. For a tensor A ∈ R
I1×I2×...×IN and the matrices F ∈ R

Jn×In and G ∈
R

Jm×Im, n 6= m, we have

(A×n F) ×m G = (A×m G) ×n F = A×n F ×m G.

We also introduce the Frobenius norm of a tensor.

Definition 5.14 The Frobenius-norm, ‖ · ‖F , of a tensor A ∈ R
I1×I2×...×IN is given by

‖A‖2
F =

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

(A)2i1i2···iN .

Lemma 5.15 Given a tensor A ∈ R
I1×I2×...×IN and an orthogonal matrix F ∈ R

In×In, the
following holds

‖A ×n F‖F = ‖A‖F . (137)

Proof: For a matrix A ∈ R
In×m we have that

‖FA‖F = ‖A‖F . (138)

Using the identity in Lemma 5.13, namely, (A×n F)(n) = FA(n), we deduce that

‖A ×n F‖F = ‖FA(n)‖F .

Given that A(n) ∈ R
In×In+1...IN ...I1...In−1 , exploiting (138) gives

‖A ×n F‖F = ‖FA(n)‖F = ‖A(n)‖F = ‖A‖F .

�

In order to rescale |v̂|Hs(κ̂) to the corresponding quantity on κ̃, we first note that

|v̂|2Hs(κ̂) =

∫

κ̂
‖D̂s(v̂)‖2

F dx̂,

where D̂s(v̂) ∈ R
d×d×···×d is the sth–order tensor containing the sth–order derivatives of v̂

with respect to the coordinate system x̂ = (x̂1, . . . , x̂d), i.e.,

(D̂s(v̂))i1,i2,...,is =
∂sv̂

∂x̂i1 · · · ∂x̂is

, ik = 1, . . . , d, for k = 1, . . . , s.

Thereby, for s = 0, D̂s(v̂) = v̂, for s = 1, D̂s(v̂) is the gradient vector, and for s = 2, D̂s(v̂)
is the Hessian matrix of second–order derivatives. Writing D̃s(ṽ) ∈ R

d×d×···×d to denote the
sth–order tensor containing the sth–order derivatives of ṽ with respect to the coordinate
system x̃ = (x̃1, . . . , x̃d), we now state the following lemma relating |v̂|2Hs(κ̂) to |ṽ|2Hs(κ̃).

74

Lemma 5.16 Under the foregoing assumptions, for ṽ ∈ Hs(κ̃), s ≥ 0, we have that

|v̂|2Hs(κ̂) = |det(J−1
Fκ

)|
∫

κ̃
‖D̃s(ṽ) ×1 J

⊤
Fκ

×2 J
⊤
Fκ

×3 . . .×s J
⊤
Fκ
‖2

F dx̃.

Proof: The case when s = 0 follows trivially. For s ≥ 1, we first note that the entry
(D̂s(v̂))i1i2...is may be written in the form

∂sv̂

∂x̂i1 · · · ∂x̂is

=
d∑

j1=1

· · ·
d∑

js=1

(JFκ)j1i1 · · · (JFκ)jsis
∂sṽ

∂x̃j1 · · · ∂x̃js

,

for ik = 1, . . . , d and k = 1, . . . , s; this follows by employing an induction argument together
with the chain rule. Thereby, from Definition 5.12 and Property 1 above, we deduce that

D̂s(v̂) = D̃s(ṽ) ×1 J
⊤
Fκ

×2 J
⊤
Fκ

×3 . . .×s J
⊤
Fκ
. (139)

The statement of the lemma now follows by a simple change of variables. �

Remark 5.17 For the case when s = 0, Lemma 5.16 simply states the change of variable
formula for the L2-norm. For s = 1 we note that (139) gives rise to the usual change of
variables for the gradient operator, namely,

D̂s(v̂) ≡ ∇x̂v̂ = D̃s(ṽ) ×1 J
⊤
Fκ

= J⊤
Fκ
∇x̃ṽ,

where ∇x̂ and ∇x̃ denote the gradient operator with respect to the coordinate systems x̂
and x̃, respectively. Similarly, for s = 2, (139) may be written in the more familiar form
Hx̂(v̂) = J⊤

Fκ
Hx̃(ṽ)JFκ , where Hx̂(·) and Hx̃(·) denote the Hessian matrix operators with

respect to the coordinate systems x̂ and x̃, respectively, cf. [40].

In order to describe the length scales and orientation of the element κ̃ we adopt a similar
approach to that developed in [40]. To this end, we first need the following definition for the
Singular Value Decomposition of a matrix.

Definition 5.18 A matrix A ∈ R
m×n can be decomposed as follows:

A = UΣV ⊤,

where U ∈ R
m×m is an orthogonal matrix termed the left singular matrix, Σ ∈ R

m×n is a
pseudo-diagonal matrix with non-zero entries called the singular values and V ∈ R

n×n an
orthogonal matrix termed the right singular matrix. This decomposition is called the Singular
Value Decomposition (SVD).

It is convention that the singular values σi of Σ are non-increasing, that is σ1 ≥ σ2 ≥
· · · σs ≥ 0, where s = min(m,n). Figure 29 shows the physical meaning of the SVD for a
matrix A ∈ R

2×2, which is assumed to be of full rank. Viewing the matrix A as a map, the left
singular matrix U = [u1,u2] is composed of orthonormal vectors ui, i = 1, 2, which are in the
direction of the images of the respective orthonormal vectors vi of the matrix V = [v1,v2].
The singular values represent the stretching factors of the corresponding orthonormal vectors;

75

S

A

AS

v1
v2

σ1u1

σ2u2

Figure 29: SVD of a 2 × 2 matrix A.

hence the SVD provides a complete characterisation of the map A. For more information on
the Singular Value Decomposition, see, for example, Trefethen & Bau [105].

With this definition, we perform an SVD decomposition of the Jacobi matrix JFκ of the
affine element mapping Fκ. Thereby, we write

JFκ = UκΣκV
⊤
κ ,

where Uκ and Vκ are d× d orthogonal matrices containing the left and right singular vectors
of JFκ , respectively, and Σκ = diag(σ1,κ, σ2,κ, . . . , σd,κ) is a d× d diagonal matrix containing
the singular values σi,κ, i = 1, . . . , d, of JFκ . By convention, we assume that σ1,κ ≥ σ2,κ ≥
. . . ≥ σd,κ > 0. Writing Uκ = (u1,κ . . .ud,κ), where ui,κ, i = 1, . . . , d, denote the left singular
vectors of JFκ , we note that ui,κ, i = 1, . . . , d, give the direction of stretching of the element
κ, while σi,κ, i = 1, . . . , d, give the stretching lengths in the respective directions. Indeed, for
axiparallel meshes, as considered in [42], for example, then ui,κ, i = 1, . . . , d, will be parallel
to the coordinates axes and σi,κ, i = 1, . . . , d, will denote the local mesh lengths within the
respective coordinate direction, cf. Section 6.

With this notation, we make the following observations

|det(JFκ)| = Πd
i=1σi,κ, ‖J−⊤

Fκ
‖2 = 1/σd,κ, mf ≤ C7 Πd−1

i=1 σi,κ, (140)

where C7 is a positive constant independent of the element size. Here, we recall that f is a
given face of the element κ. Employing Lemma 5.15, we note that

‖D̃s(ṽ) ×1 J
⊤
Fκ

×2 J
⊤
Fκ

×3 . . .×s J
⊤
Fκ
‖2

F

=

d∑

i1=1

d∑

i2=1

. . .

d∑

is=1

(σi1,κσi2,κ . . . σis,κ)2(D̃s(ṽ) ×1 u⊤
i1,κ ×2 u⊤

i2,κ ×3 . . .×s u⊤
is,κ)2

≡ Ds
κ̃(ṽ,Σκ, Uκ). (141)

Remark 5.19 We note that, should the mapping Fκ yield a near isotropic element κ, then
upon defining the standard isotropic mesh size hκ by

hκ := diam(κ), (142)

76

we have
σi,κ ∼ hκ, i = 1, . . . , d.

Hence, in this isotropic setting
Ds

κ̃(ṽ,Σκ, Uκ) ∼ h2s
κ .

Thereby, exploiting (140) and (141) together with Corollary 5.10, we deduce the following
approximation result.

Theorem 5.20 Using the notation of Lemma 5.9, there exists a positive constant C, which
depends only on the dimension d and the polynomial order p, such that for m = 0, 1:

|v − Πpv|Hm(κ) ≤ C|σd,κ|−m

[∫

κ̃
Ds

κ̃(ṽ,Σκ, Uκ) dx̃

]1/2

, m ≤ s ≤ min(p+ 1, k),

‖v − Πpv‖L2(f) ≤ C|σd,κ|−1/2

[∫

κ̃
Ds

κ̃(ṽ,Σκ, Uκ) dx̃

]1/2

, 1 ≤ s ≤ min(p+ 1, k),

|v − Πpv|H1(f) ≤ C

∣
∣
∣
∣

mf

mκ

∣
∣
∣
∣

1/2

|σd,κ|−1

[∫

κ̃
Ds

κ̃(ṽ,Σκ, Uκ) dx̃

]1/2

, 2 ≤ s ≤ min(p+ 1, k).

Remark 5.21 For the purposes of deriving the forthcoming a priori error bound on the
error in the computed target functional, cf. Theorem 5.23 below, it is convenient to leave
the statement of the third approximation result above in terms of mf and mκ, rather than in
terms of the stretching factors σi,κ, i = 1, . . . , d, solely, since these quantities naturally arise
within the definition of the discontinuity-penalization parameter σ defined in (126).

In the following sections, we consider the a priori and a posteriori error analysis, respec-
tively, of the DG finite element method (118) in terms of certain linear target functionals of
practical interest.

5.6 A priori error bounds

In this section we derive an a priori error bound for the interior penalty DG method intro-
duced in Section 5.3. Following the arguments presented in Sections 2 & 4, cf. also [77, 79],
we begin our analysis by considering the following adjoint problem: find z ∈ H2(Ω,Th) such
that

B(w, z) = J(w) ∀w ∈ H2(Ω,Th). (143)

Let us assume that (143) possesses a unique solution. Clearly, the validity of this assumption
depends on the choice of the linear functional under consideration; see the discussion in
Section 2.3 and article [77].

We now decompose the global error u− uh as

u− uh = (u− ΠTh
p u) + (ΠTh

p u− uh) ≡ η + ξ , (144)

where ΠTh
p denotes the L2–projection operator introduced in Section 5.5. With these defini-

tions we have the following result.

77

Lemma 5.22 Assume that (113) and (129) hold and let γ1|κ = ‖c/c0‖2
L∞(κ); then the func-

tions ξ and η defined by (144) satisfy the following inequality

|||ξ|||2 ≤ C

∑

κ∈Th

(

‖√a∇η‖2
L2(κ) + γ1‖η‖2

L2(κ) + ‖η+‖2
∂+κ∩Γ + ‖η−‖2

∂−κ\Γ

)

+

∫

ΓI∪ΓD

1

ϑ
|{{a∇η}}|2 ds+

∫

ΓI∪ΓD

ϑ|[[η]]|2 ds

)

,

where C is a positive constant that depends only on the dimension d and the polynomial degree
p.

Proof: From the Galerkin orthogonality condition (128), we deduce that

B(ξ, ξ) = −B(η, ξ),

where ξ and η are as defined in (144). Thereby, employing the coercivity result stated in
Theorem 5.6 gives

|||ξ|||2 ≤ − 1

C
B(η, ξ) . (145)

Using the identity (130), the right–hand side of (145) may be bounded as follows:

B(η, ξ) ≤ C|||ξ|||

∑

κ∈Th

(

‖√a∇η‖2
L2(κ) + γ1‖η‖2

L2(κ) + ‖η+‖2
∂+κ∩Γ + ‖η−‖2

∂−κ\Γ

)

+

∫

ΓI∪ΓD

1

ϑ
|{{a∇η}}|2 ds+

∫

ΓI∪ΓD

ϑ|[[η]]|2 ds

)1/2

; (146)

see [104, 74] for details. Substituting (146) into (145) gives the desired result. �

For the rest of this section, let us now assume that the volume of the elements, denoted
by mκ for each κ ∈ Th, has bounded local variation; i.e., there exists a constant C8 ≥ 1 such
that, for any pair of elements κ and κ′ which share a (d− 1)–dimensional face,

C−1
8 ≤ mκ/mκ′ ≤ C8 . (147)

With this hypothesis, we now proceed to prove the main result of this section.

Theorem 5.23 Let Ω ⊂ R
d be a bounded polyhedral domain and Th = {κ} a subdivision of

Ω, such that the elemental volumes satisfy the bounded local variation condition (147). Then,
assuming that conditions (113), (117), and (129) on the data hold, and u ∈ Hk(Ω,Th), k ≥ 2,
z ∈ H l(Ω,Th), l ≥ 2, then the solution uh ∈ Vh,p of (118) obeys the error bound

|J(u) − J(uh)|2 ≤ C

∑

κ∈Th

{

α

σ2
d,κ

+
β2

σd,κ
+ (β1 + γ1)

}
∫

κ̃
Ds

κ̃(ũ,Σκ, Uκ) dx̃

×

∑

κ∈Th

{

α

σ2
d,κ

+
β2

σd,κ
+ (β1 + γ2)

}
∫

κ̃
Dt

κ̃(z̃,Σκ, Uκ) dx̃

 ,

78

for 2 ≤ s ≤ min(p+ 1, k) and 2 ≤ t ≤ min(p+ 1, l), where α|κ = āκ̃, β1|κ = ‖c+∇ ·b‖L∞(κ),
β2|κ = ‖b‖L∞(κ), γ1|κ = ‖c/c0‖2

L∞(κ), γ2|κ = ‖(c + ∇ · b)/c0‖2
L∞(κ), for all κ ∈ Th. Here, C

is a constant depending on the dimension d, the polynomial degree p, and the parameters Ci,
i = 1, . . . , 8.

Proof: Decomposing the error u − uh as in (144), we note that the error in the target
functional J(·) may be expressed as follows:

J(u) − J(uh) = J(u− uh)

= B(u− uh, z)

= B(u− uh, z − zh)

= B(η, z − zh) + B(ξ, z − zh)

≡ I + II (148)

for all zh ∈ Vh,p. Let us first deal with term I. To this end, we define zh = ΠTh
p z and w = z−zh;

after a lengthy, but straightforward calculation, we deduce that

I2 ≤ C

∑

κ∈Th

{

‖√a∇η‖2
L2(κ) + β1‖η‖2

L2(κ) + β2ǫ
−1
κ ‖∇η‖2

L2(κ) + ‖[[η]]‖2
∂−κ

+‖ϑ−1/2{{a∇η}}‖2
L2(∂κ∩(ΓI∪ΓD)) + ‖ϑ1/2[[η]]‖2

L2(∂κ∩(ΓI∪ΓD))

})

×

∑

κ∈Th

{

‖√a∇w‖2
L2(κ) + β1‖w‖2

L2(κ) + β2ǫκ‖w‖2
L2(κ) + ‖w+‖2

∂−κ

+‖ϑ−1/2{{a∇w}}‖2
L2(∂κ∩(ΓI∪ΓD)) + ‖ϑ1/2[[w]]‖2

L2(∂κ∩(ΓI∪ΓD))

})

, (149)

for any set of real positive numbers ǫκ, κ ∈ Th. Let us now consider Term II. Here, we note
that a bound analogous to (146) in the proof of Lemma 5.22 holds with η and ξ replaced by
ξ and w in (146), respectively. Indeed, in this case we have that

|B(ξ, w)| ≤ |||ξ||| ×

∑

κ∈Th

(

‖√a∇w‖2
L2(κ) + γ2‖w‖2

L2(κ) + ‖w+‖2
∂−κ

+‖ϑ1/2[[w]]‖2
L2(∂κ∩(ΓI∪ΓD)) + ‖ϑ−1/2{{a∇w}}‖2

L2(∂κ∩(ΓI∪ΓD))

)] 1
2
. (150)

Thereby, employing Lemma 5.22 in (150) and inserting the result and (149) into (148) we

79

deduce that

|J(u) − J(uh)|2 ≤ C

∑

κ∈Th

{

‖√a∇η‖2
L2(κ) + (β1 + γ1) ‖η‖2

L2(κ) + β2ǫ
−1
κ ‖∇η‖2

L2(κ)

+‖η+‖2
∂+κ∩Γ + ‖η−‖2

∂−κ\Γ + ‖[[η]]‖2
∂−κ

+‖ϑ−1/2{{a∇η}}‖2
L2(∂κ∩(ΓI∪ΓD)) + ‖ϑ1/2[[η]]‖2

L2(∂κ∩(ΓI∪ΓD))

})

×

∑

κ∈Th

{

‖√a∇w‖2
L2(κ) + (β1 + β2ǫκ + γ2) ‖w‖2

L2(κ)

+‖w+‖2
∂−κ + ‖ϑ−1/2{{a∇w}}‖2

L2(∂κ∩(ΓI∪ΓD))

+‖ϑ1/2[[w]]‖2
L2(∂κ∩(ΓI∪ΓD))

})

. (151)

After application of Theorem 5.20 gives

|J(u) − J(uh)|2 ≤ C

∑

κ∈Th

āκ

σ2
d,κ

1 +
āκ

mκ

∑

f⊂∂κ

mf

ϑf
+
σd,κ

∑

f⊂∂κ ϑf

āκ

+
β2

σd,κ

[

1 +
1

ǫκσd,κ

]

+ (β1 + γ1)

}∫

κ̃
Ds

κ̃(ũ,Σκ, Uκ) dx̃

)

×

∑

κ∈Th

āκ

σ2
d,κ

1 +
āκ

mκ

∑

f⊂∂κ

mf

ϑf
+
σd,κ

∑

f⊂∂κ ϑf

āκ

+
β2

σd,κ
[1 + ǫκσd,κ] + (β1 + γ2)

}∫

κ̃
Dt

κ̃(z̃,Σκ, Uκ) dx̃

)

.

The statement of Theorem 5.23 now follows by selecting ǫκ = 1/σd,κ, for each κ ∈ Th,
and employing the definition of the discontinuity-penalization parameter ϑ stated in (126),
together with the bounded variation of the elemental volumes (147) and (140). �

Remark 5.24 The above result represents an extension of the a priori error bound derived
in the article [50] to the case when general anisotropic computational meshes are employed.
We note that although the analysis presented in [50] assumed shape–regular meshes, the ex-
plicit dependence of the polynomial degree was retained in the resulting a priori error bound;
however, following the arguments in [50] an analogous hp–version bound of the form stated
in Theorem 5.23 may be deduced; this will be considered in detail in Section 6.

Remark 5.25 The a priori bound stated in Theorem 5.23 clearly highlights that in order to
minimize the error in the computed target functional J(·), the design of an optimal mesh must
exploit anisotropic information emanating from both the primal and adjoint solutions u and
z, respectively. Indeed, a mesh solely optimized for u may be completely inappropriate for z,
and vice verse, thus there must be a trade-off between aligning the elements with respect to
either solution in order to minimize the overall error in J(·).

80

5.7 A posteriori error estimation and adaptivity

In this section we consider the derivation of an adjoint-based a posteriori error bound for
the error in the computed target functional J(uh), together with its implementation into a
general adaptive algorithm in the anisotropic setting.

For a given linear functional J(·) the proceeding a posteriori error bound will be expressed
in terms of the finite element residual Rint defined on κ ∈ Th by

Rint|κ = (f − Luh)|κ ,

which measures the extent to which uh fails to satisfy the differential equation on the union
of the elements κ in the mesh Th; thus we refer to Rint as the internal residual. Also,
since uh only satisfies the boundary conditions approximately, the differences gD − uh and
gN − (a∇uh) · n are not necessarily zero on ΓD ∪ Γ− and ΓN, respectively; thus we define the
boundary residuals RD and RN, respectively, by

RD|∂κ∩(ΓD∪Γ−) = (gD − u+
h)|∂κ∩(ΓD∪Γ−) , RN|∂κ∩ΓN

= (gN − (a∇u+
h) · n)|∂κ∩ΓN

.

With this notation, we may derive the following general result.

Theorem 5.26 Let u and uh denote the solutions of (110), (112) and (118), respectively,
and suppose that the adjoint solution z is defined by (143). Then, the following error repre-
sentation formula holds:

J(u) − J(uh) = R(uh, z − zh) ≡
∑

κ∈Th

ηκ , (152)

where

ηκ =

∫

κ
Rint(z − zh) dx−

∫

∂−κ∩Γ
(b · nκ)RD(z − zh)+ ds

+

∫

∂−κ\Γ
b · [[uh]](z − zh)+ ds−

∫

∂κ∩ΓD

RD((a∇(z − zh)+) · nκ) ds

+

∫

∂κ∩ΓD

ϑRD(z − zh)+ ds+

∫

∂κ∩ΓN

RN(z − zh)+ ds−
∫

∂κ\Γ
ϑ[[uh]] · nκ(z − zh)+ ds

+
1

2

∫

∂κ\Γ

{
[[uh]] · (a∇(z − zh)+) − [[a∇uh]](z − zh)+

}
ds (153)

for all zh ∈ Vh,p.

Proof: The proof follows from the arguments presented in Section 4.1. �

Thereby, on application of the triangle inequality, we deduce the following a posteriori
error bound.

Corollary 5.27 Under the assumptions of Theorem 5.26, the following a posteriori error
bound holds:

|J(u) − J(uh)| ≤ R|Ω|(uh, z − zh) ≡
∑

κ∈Th

|ηκ| , (154)

where ηκ is defined as in (153).

81

(a) (b) (c)

Figure 30: Cartesian refinement in 2D: (a) & (b) Anisotropic refinement; (c) Isotropic refine-
ment.

For a user-defined tolerance TOL, we now consider the problem of designing an appropriate
finite element mesh Th such that

|J(u) − J(uh)| ≤ TOL ,

subject to the constraint that the total number of elements in Th is minimized. For simplicity
of presentation, in this section we first consider the case when Ω ⊂ R

2 and Th consists of
1–irregular quadrilateral elements; the generalization to hexahedral meshes when Ω ⊂ R

3 will
be treated at the end of this section. Following the discussion presented in [77], we exploit
the a posteriori error bound (154) with z replaced by a suitable numerical approximation,
denoted by z̄h, cf. Section 4.1. On the basis of numerical experimentation, we compute
z̄h ∈ Vh,p̄ , p̄ = p + pinc; in Section 5.8, we set pinc = 1, cf. [58, 79]. Thereby, in practice we
enforce the stopping criterion

R|Ω|(uh, z̄h − zh) ≤ TOL . (155)

If (155) is not satisfied, then the elements are marked for refinement/derefinement according
to the size of the (approximate) error indicators |η̄κ|; these are defined analogously to |ηκ| in
(153) with z replaced by z̄h, cf. Algorithm 4.1.

To subdivide the elements which have been flagged for refinement, we employ a simple
Cartesian refinement strategy; here, elements may be subdivided either anisotropically or
isotropically according to the three refinements (in two–dimensions, i.e., d = 2) depicted in
Figure 30. In order to determine the optimal refinement, stimulated by the articles [96, 98],
we propose the following strategy based on choosing the most competitive subdivision of κ
from a series of trial refinements, whereby an approximate local error indicator on each trial
patch is determined.

Algorithm 5.1 Given an element κ in the computational mesh Th (which has been marked
for refinement), we first construct the mesh patches Th,i, i = 1, 2, 3, based on refining κ
according to Figures 30(a), (b), & (c), respectively. On each mesh patch, Th,i, i = 1, 2, 3, we
compute the approximate error estimators

Rκ,i(uh,i, z̄h,i − zh) =
∑

κ′∈Th,i

ηκ′,i,

for i = 1, 2, 3, respectively. Here, uh,i, i = 1, 2, 3, is the DG approximation to (110), (112)
computed on the mesh patch Th,i, i = 1, 2, 3, respectively, based on enforcing appropriate

82

boundary conditions on ∂κ computed from the original DG solution uh on the portion of the
boundary ∂κ of κ which is interior to the computational domain Ω, i.e., where ∂κ ∩ Γ = ∅.
Similarly, z̄h,i denotes the DG approximation to z computed on the local mesh patch Th,i,
i = 1, 2, 3, respectively, with polynomials of degree p̄, based on employing suitable boundary
conditions on ∂κ∩Γ = ∅ derived from z̄h. Finally, ηκ′,i, i = 1, 2, 3, is defined in an analogous
manner to ηκ, cf. (153) above, with uh and z replaced by uh,i and z̄h,i, respectively.

The element κ is then refined according to the subdivision of κ which satisfies

min
i=1,2,3

|ηκ| − |Rκ,i(uh,i, z̄h,i − zh)|
#dofs(Th,i) − #dofs(κ)

,

where #dofs(κ) and #dofs(Th,i), i = 1, 2, 3, denote the number of degrees of freedom associ-
ated with κ and Th,i, i = 1, 2, 3, respectively.

An alternative approach which is very similar to Algorithm 5.1 is to simply construct the
mesh patches Th,i, i = 1, 2, and compute the approximate local primal and adjoint solutions
on these meshes only. Given an anisotropy parameter θ ≥ 1, isotropic refinement is selected
when

maxi=1,2 |Rκ,i(uh,i, z̄h,i − zh)|
mini=1,2 |Rκ,i(uh,i, z̄h,i − zh)| < θ;

otherwise an anisotropic refinement is performed based on which refinement gives rise to the
smallest predicted error indicator, i.e., the subdivision for which |Rκ,i(uh,i, z̄h,i−zh)|, i = 1, 2,
is minimal. For the purposes of these lecture notes, we shall not pursue this latter approach;
rather, we refer the reader to [43, 49] for details.

The extension of this approach to the case when Th is a hexahedral mesh in three-
dimensions follows in an analogous fashion. Indeed, in this setting, we again employ a
Cartesian refinement strategy whereby elements may be subdivided either isotropically or
anisotropically according to the four refinements depicted in Figures 31(a)–(d). We remark
that we assume that a face in the computational mesh is a complete face of at least one
element. This assumption means that the refinements depicted in Figures 30(b)–(d) may
be inadmissible. In this situation, we replace the selected refinement by either one of the
anisotropic mesh refinements depicted in Figures 31(e)–(g), or if necessary, an isotropic re-
finement is performed.

5.8 Numerical experiments

In this section we present a number of experiments to numerically demonstrate the perfor-
mance of the anisotropic adaptive algorithm outlined in Section 5.7.

5.8.1 Singularly perturbed advection-diffusion problem

In this first example we consider a linear singularly perturbed advection-diffusion problem
on the (unit) square domain Ω = (0, 1)2, where a = εI, 0 < ε≪ 1, b = (1, 1)⊤, c = 0, and f
is chosen so that

u(x, y) = x+ y(1 − x) + [e−1/ε − e−(1−x)(1−y)/ε] [1 − e−1/ε]−1, (156)

83

(a)

(b) (c) (d)

(e) (f) (g)

Figure 31: Cartesian refinement in 3D.

cf. [74]. For 0 < ε ≪ 1, solution (156) has boundary layers along x = 1 and y = 1.
Throughout this section we set ε = 10−2; Figure 32(a) shows the analytical solution in this
case.

Here, we suppose that the aim of the computation is to calculate the (weighted) mean
value of u over Ω, i.e., J(u) =

∫

Ω uψ dx, where ψ = 100(1 − tanh(100(r1 − 0.01)(r1 +
0.01)))(1 − tanh(100(r2 − 0.2)(r2 + 0.2))), r1 = x − 1.0 and r2 = y − 0.5; thereby, J(u) =
4.409917162888037. The corresponding analytical solution to the adjoint problem is depicted
in Figure 32(b).

To demonstrate the versatility of the proposed competitive refinement algorithm, cf. Al-
gorithm 5.1, in this section we employ bi-linear, bi-quadratic, and bi-cubic elements, i.e.,
p = 1, p = 2, and p = 3, respectively. To this end, in Figure 33 we plot the error in the
computed target functional J(·) using both an isotropic (only) mesh refinement algorithm,
together with the anisotropic refinement strategy outlined in Section 5.7. For purposes of
comparison with standard anisotropic refinement strategies employed within the literature,
we also consider the use of a Hessian–based algorithm. More precisely, for each element in the
mesh, we construct a metric for the primal and adjoint problems based on computing the pos-

84

(a) (b)

Figure 32: Advection–diffusion problem with ǫ = 10−2: (a) Primal solution; (b) Adjoint
solution.

itive part of the Hessian matrix of the computed numerical solutions uh and z̄h, respectively.
Upon application of the metric intersection algorithm proposed in [28], elements marked for
refinement are anisotropically/isotropically subdivided, as in Figure 30, according to the rel-
ative size of the eigenvalues of the newly constructed metric; see [40] for details. We point
out that this general strategy is based on minimizing anisotropic a priori bounds on the error
between the unknown analytical solution and its numerical approximation computed using
piecewise linear polynomials, assuming that the analytical solution is sufficiently regular. In
practice, this type of anisotropic mesh refinement strategy, based on computing second-order
derivatives of the numerical solution, has proven to be extremely successful, though its exten-
sion to higher-order polynomials still remains an open question. The purpose of the following
section is to demonstrate that the newly proposed anisotropic refinement algorithm is both
competitive with the classical Hessian approach when piecewise linear elements are employed,
but also that they lead to the design of computationally efficient meshes when higher-order
polynomial degrees are exploited.

Firstly, for each polynomial degree employed, we clearly observe the superiority of em-
ploying the competitive anisotropic mesh refinement algorithm in comparison with standard
isotropic subdivision of the elements. Indeed, the error |J(u)−J(uh)| computed on the series
of anisotropically refined meshes designed using Algorithm 5.1 outlined in Section 5.7 is al-
ways less than the corresponding quantity computed on the isotropic grids. Here, we observe
that there is an initial transient whereby the error in the computed target functional decays
rapidly using the former refinement algorithm, in comparison with the latter, after which
the gradient of the convergence curves become very similar. This type of behavior is indeed
expected, since for a fixed order method, i.e., h–version, we can only expect to improve the
convergence of the error by a fixed constant, as the mesh is refined. Notwithstanding this,
we note that, for each polynomial degree employed, the true error between J(u) and J(uh)
using anisotropic refinement is around an order of magnitude smaller than the correspond-
ing quantity when isotropic refinement is employed alone. Secondly, we observe that for all

85

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Isotropic Ref.
Hessian Strategy
Competitive Refinement

Degrees of Freedom

|J
(u

)
−
J
(u

h
)|

10
4

10
−8

10
−6

10
−4

10
−2

Isotropic Ref.
Hessian Strategy
Competitive Refinement

Degrees of Freedom

|J
(u

)
−
J
(u

h
)|

(a) (b)

10
4

10
−10

10
−8

10
−6

10
−4

Isotropic Ref.
Hessian Strategy
Competitive Refinement

Degrees of Freedom

|J
(u

)
−
J
(u

h
)|

(c)

Figure 33: Advection–diffusion problem with ǫ = 10−2: Comparison between adaptive
isotropic and anisotropic mesh refinement. (a) p = 1; (b) p = 2; (c) p = 3.

polynomial degrees employed, the Hessian strategy is inferior to Algorithm 5.1, in the sense
that the error in the target functional computed using the latter strategy is always smaller
than the corresponding quantity computed using the former strategy, for a fixed number of
degrees of freedom. Indeed, even for bi-linear elements, for which the Hessian strategy has
been proposed on the basis of interpolation theory, Algorithm 5.1 leads to a 35% reduction
in the error on the final mesh in comparison with the corresponding quantity computed using
the Hessian-based approach. Similar behavior is also observed for bi-quadratic and bi-cubic
elements, though in the latter case, the Hessian strategy actually generates meshes which in
many cases are inferior to their isotropic counterparts.

In Figure 34 we show the meshes generated using both isotropic and anisotropic mesh
adaptation. For brevity, we only show the meshes for p = 1, and in the latter case employing
Algorithm 5.1. Firstly, we note that in both cases the mesh is primarily concentrated in the
vicinity of the boundary layer along x = 1, where the support of the weighting function ψ
appearing in the definition of the target functional J(·) is non-zero. Indeed, the region of the

86

(a) (b)

Figure 34: Advection–diffusion problem with ǫ = 10−2: Adaptively refined meshes for p = 1.
(a) Isotropic mesh after 5 adaptive refinements, with 2680 elements; (b) Anisotropic mesh
designed using Algorithm 5.1 after 7 adaptive refinements, with 963 elements

computational domain where the remainder of the boundary layer along x = 1 and moreover
where the boundary layer along y = 1 are located are not refined, since the resolution of
these sharp features present in the analytical solution are not important for the accurate
computation of the selected target functional, cf. [58], for example. For Algorithm 5.1, we
observe that the refinement strategy has clearly identified the anisotropy in the underlying
primal and adjoint solutions, and refined the mesh accordingly. Indeed, we observe that the
boundary layer along x = 1, 0 ≤ y ≤ 1, has been significantly refined, as we would expect,
with the elements being mostly refined in the direction parallel to the boundary. We note,
however, that some anisotropic refinement perpendicular to Γ is performed in the region of
the boundary layer in order to accurately capture the anisotropy of the adjoint solution z.

5.8.2 ADIGMA MTC3: Laminar flow around a NACA0012 airfoil

In this example, we consider the subsonic viscous flow around a NACA0012 airfoil; here, the
upper and lower surfaces of the airfoil geometry are specified by the function g±, respectively,
where

g±(s) = ±5 × 0.12 × (0.2969s1/2 − 0.126s − 0.3516s2 + 0.2843s3 − 0.1015s4).

As the chord length l of the airfoil is l ≈ 1.00893 we use a rescaling of g in order to yield
an airfoil of unit (chord) length. At the farfield (inflow) boundary we specify a Mach 0.5
flow at an angle of attack α = 2◦, with Reynolds number Re = 5000; on the walls of the
airfoil geometry, we impose a zero heat flux (adiabatic) no-slip boundary condition. This is
a standard laminar test case which has been investigated by many other authors, cf. [14, 61],
for example, and serves as one of the test cases for the EU project ADIGMA [82].

Here, we consider the estimation of the drag coefficient Cd; i.e., the target functional of
interest is given by

J(·) ≡ JCd
(·),

87

Figure 35: ADIGMA MTC3 test case: Zoom of initial mesh with 1134 elements.

10
5

10
−4

10
−3

Iso h−Refinement
Aniso h−Refinement

Degrees of Freedom

|J
C

d
(u

)
−
J

C
d
(u

h
)|

Figure 36: ADIGMA MTC3 test case: Comparison between adaptive isotropic and
anisotropic mesh refinement.

88

(a)

(b)

Figure 37: ADIGMA MTC3 test case: Anisotropic mesh after (a) 4 adaptive refinements,
with 3485 elements; (b) 8 adaptive refinements, with 10410 elements.

where JCd
(·) is defined as the adjoint consistent approximation to Cd, cf. (66).

In this example, the initial starting mesh is taken to be an unstructured quadrilateral–
dominant hybrid mesh consisting of both quadrilateral and triangular elements; here, the
total number of elements is 1134, cf. Figure 35. Here, curved boundaries are approximated
by piecewise quadratic polynomials. In Figure 36 we plot the error in the computed target
functional JCd

(·) using both an isotropic (only) mesh refinement algorithm, together with the
anisotropic refinement strategy outlined in Section 5.7. From Figure 36, we again observe
the superiority of employing the anisotropic mesh refinement algorithm in comparison with
standard isotropic subdivision of the elements. Indeed, the error |JCd

(u) − JCd
(uh)| com-

puted on the series of anisotropically refined meshes designed using the proposed algorithm
outlined in Section 5.7 is (almost) always less than the corresponding quantity computed
on the isotropic grids. Indeed, on the final mesh anisotropic mesh refinement leads to an
improvement in |JCd

(u)− JCd
(uh)| of over 60% compared with the same quantity computed

using isotropic mesh refinement. The meshes generated after 4 and 8 anisotropic adaptive
mesh refinements are shown in Figure 37. Here, we clearly observe significant anisotropic
refinement of the viscous boundary layer, as we would expect.

89

Figure 38: ADIGMA BTC0 test case at laminar conditions: Initial coarse mesh on the body
surface and the symmetry plane. The symmetry plane coloring is based on the Mach number
distribution computed on a fine mesh, [64].

5.8.3 ADIGMA BTC0: Laminar flow around streamlined body

In this final example we consider laminar flow past a streamlined three–dimensional body.
Here, the geometry of the body is based on a 10 percent thick airfoil with boundaries con-
structed by a surface of revolution, see Figure 38. The BTC0 geometry is considered at
laminar conditions with inflow Mach number equal to 0.5, at an angle of attack α = 1◦, and
Reynolds number Re = 5000 with adiabatic no-slip wall boundary condition imposed. This
test case has been defined in the EU project ADIGMA [82] to enable convergence studies.

Here, we suppose that the aim of the computation is to calculate the lift coefficient Cl; i.e.,
J(·) ≡ JCl

(·), cf. (66). In this example, the initial starting mesh is taken to be an unstructured
hexahedral mesh with 992 elements. In Figure 39 we plot the error in the computed target
functional JCl

(·) using both an isotropic (only) mesh refinement algorithm, together with the
anisotropic refinement strategy outlined in Section 5.7. From Figure 39, we again observe
the superiority of employing the anisotropic mesh refinement algorithm in comparison with
standard isotropic subdivision of the elements. Indeed, the error |JCl

(u)−JCl
(uh)| computed

on the series of anisotropically refined meshes designed using Algorithm 5.1 is always less
than the corresponding quantity computed on the isotropic grids. Indeed, on the final mesh
the true error between JCl

(u) and JCl
(uh) using anisotropic mesh refinement is over an

order of magnitude smaller than the corresponding quantity when isotropic h–refinement
is employed alone. The mesh generated after 3 anisotropic adaptive mesh refinements is
shown in Figure 40. Here, we clearly observe significant anisotropic refinement of the viscous
boundary layer, as we would expect.

90

10
5

10
−4

10
−3

10
−2

Iso h−Refinement
Aniso h−Refinement

Degrees of Freedom

|J
C

l
(u

)
−
J

C
l
(u

h
)|

Figure 39: ADIGMA BTC0 test case (laminar): Comparison between adaptive isotropic and
anisotropic mesh refinement.

6 High-order/hp–adaptive finite element methods for com-
pressible flows

Adaptive finite element methods that exploit both local polynomial–degree variation (p–
refinement) and local mesh subdivision (h–refinement) offer much greater flexibility and
improved efficiency than mesh refinement algorithms which only incorporate h–refinement
or p–refinement in isolation. Indeed, since the early analytical paper of Gui and Babuška
[48], the benefits of hp–version finite element methods have been clearly established for el-
liptic boundary value problems (see, for example, the monograph of Schwab [99]), partic-
ularly in the field of linear elasticity. The application of hp–version finite element meth-
ods to hyperbolic/nearly–hyperbolic problems is less standard, although their potential in
compressible gas dynamics was first demonstrated by J.E. Flaherty and collaborators (see
[26, 33], for example); for more recent work in this area, we refer to our series of papers
[72, 75, 77, 102, 103], for example. The argument in favour of using an hp–version finite
element method for the numerical solution of a hyperbolic/nearly–hyperbolic equation rests
on the observation that while solutions to these equations may exhibit local singularities
and discontinuities, in large parts of the computational domain the solution is typically a
real analytic function. Such large variations in the smoothness of the solution can be cap-
tured in a particularly simple and flexible manner by using a finite element method based on
discontinuous piecewise polynomials, such as the DG finite element method.

In this section we extend the error analysis developed in Section 5 for interior penalty DG
methods applied to second–order partial differential equations with nonnegative characteristic
form to the case when general finite element spaces are employed which allow for anisotropy
in possibly both the local meshsize and the local polynomial degree. The proofs of the a
priori error bounds presented in this section are based on exploiting the analysis developed

91

(a)

(b)

Figure 40: ADIGMA BTC0 test case (laminar). Anisotropic mesh after 3 adaptive refine-
ments, with 2314 elements: (a) Boundary mesh; (b) Symmetry plane.

92

in Section 5, which assumed that the underlying polynomial approximation order is uniform
over the computational mesh, together with the hp–approximation results presented in [74]
and [42].

The discussion presented in this section is a brief survey of the articles [44, 45]; see also
[49].

6.1 Model problem and discretization

In this section we briefly recall the model problem and interior penalty DG method introduced
in Section 5.1. To this end, let Ω be a bounded open polyhedral domain in R

d, d = 2, 3, and
let Γ signify the union of its (d− 1)–dimensional open edges/faces, respectively. We consider
the second–order partial differential equation with nonnegative characteristic form

Lu ≡ −∇ · (a∇u) + ∇ · (bu) + cu = f , (157)

u = gD on ΓD ∪ Γ− , (158)

(a∇u) · n = gN on ΓN , (159)

where f ∈ L2(Ω) and c ∈ L∞(Ω) are real–valued, b = {bi}d
i=1 is a vector function whose en-

tries bi are Lipschitz continuous real–valued functions on Ω̄, and a = {aij}d
i,j=1 is a symmetric

matrix whose entries aij are bounded, piecewise continuous real–valued functions defined on
Ω̄, with

ζ⊤a(x)ζ ≥ 0 ∀ζ ∈ R
d , a.e. x ∈ Ω̄ . (160)

Again, as before, we have

Γ0 = {x ∈ Γ : n(x)⊤a(x)n(x) > 0} ,
Γ− = {x ∈ Γ\Γ0 : b(x) · n(x) < 0} ,
Γ+ = {x ∈ Γ\Γ0 : b(x) · n(x) ≥ 0} .

Additionally, we assume throughout that

(c0(x))2 ≡ c(x) +
1

2
∇ · b(x) ≥ 0 a.e. x ∈ Ω . (161)

6.1.1 Meshes and finite element spaces

Let Th = {κ} be a subdivision of the (polyhedral) domain Ω into disjoint open element
domains κ constructed through the use of the mappings Qκ ◦ Fκ, where Fκ : κ̂ → κ̃ is an
affine mapping from the reference element κ̂ to κ̃, and Qκ : κ̃ → κ is a C1–diffeomorphism
from κ̃ to the physical element κ. For simplicity of presentation, throughout this section we
shall assume that κ̂ is the hypercube (−1, 1)d. The mapping Fκ defines the size and orientation
of the element κ, while Qκ defines the shape of κ, without any significant rescaling, or indeed
change of orientation, cf. Figure 27 for the case when d = 2 and κ̂ = (−1, 1)2. With this in
mind, we assume that the element mapping Qκ is close to the identity, cf. Section 5.2 for
details.

On the reference element κ̂ we define the polynomial space Q~p with respect to the
anisotropic polynomial degree vector ~p := {pi}i=1,...,d as follows:

Q~p := span{Πd
i=1x̂

j
i : 0 ≤ j ≤ pi}.

93

With this notation, we introduce the following (anisotropic) finite element space.

Definition 6.1 Let ~p = (~pκ : κ ∈ Th) be the composite polynomial degree vector of the
elements in a given finite element mesh Th. We define the finite element space with respect
to Ω, Th, and ~p by

Vh,~p = {u ∈ L2(Ω) : u|κ ◦Qκ ◦ Fκ ∈ Q~pκ
}.

In the special case when the elemental polynomial degree vector ~pκ = {pκ,i}i=1,...,d, κ ∈ Th,
is isotropic in the sense that

pκ,1 = pκ,2 = . . . = pκ,d ≡ pκ

for all elements κ in the finite element mesh Th, then we write Vh,piso
in lieu of Vh,~p, where

piso = (pκ : κ ∈ Th). Clearly, in the case when the polynomial degree is both isotropic and
uniformly distributed over the mesh Th, i.e., when pκ = p for all κ in Th, then both Vh,~p and
Vh,piso

correspond to the finite element space Vh,p introduced in Section 5.3.
With this notation, we now recall the DG discretization of (157)–(159): find uh in Vh,~p

such that

B(uh, v) = ℓ(v) (162)

for all v ∈ Vh,~p. Here, we recall that the bilinear form B(·, ·) is defined by

B(w, v) = Ba(w, v) + Bb(w, v) − Bf (v,w) − Bf (w, v) + Bϑ(w, v) ,

where

Ba(w, v) =
∑

κ∈Th

∫

κ
a∇w · ∇v dx ,

Bb(w, v) =
∑

κ∈Th

{

−
∫

κ
(w b · ∇v − cwv) dx

+

∫

∂+κ
(b · nκ)w+v+ ds+

∫

∂−κ\Γ
(b · nκ)w−v+ ds

}

,

Bf (w, v) =

∫

ΓI∪ΓD

{{a∇hw}} · [[v]] ds , Bϑ(w, v) =

∫

ΓI∪ΓD

ϑ[[w]] · [[v]] ds ,

and the linear functional ℓ(·) is given by

ℓ(v) =
∑

κ∈Th

(
∫

κ
fv dx−

∫

∂−κ∩(ΓD∪Γ−)
(b · nκ) gD v

+ ds

−
∫

∂κ∩ΓD

gD((a∇v+) · nκ) ds+

∫

∂κ∩ΓN

gNv
+ ds+

∫

∂κ∩ΓD

ϑgDv
+ ds

)

.

The discontinuity-penalization parameter ϑ is defined by ϑ|f = ϑf for f ⊂ ΓI ∪ ΓD, where
ϑf is a nonnegative constant on face f . The precise choice of ϑf , which depends on a and
the discretization parameters, will be discussed in detail in the next section.

94

κ̂
-

6x̂2

x̂1

(−1,−1)

(1, 1)

j

Fκ
κ̃

7

~bκ hκ
2

hκ
1-

6

x̃1

x̃2

j

Qκ

-

6

x1

x2

κ

Figure 41: Construction of elements via composition of affine maps and diffeomorphisms.

6.1.2 Stability analysis

In this section we will analyze the DG method (162) in two settings. In the first case, we
assume that the polynomial degrees are restricted so that they are isotropic on each element,
i.e., for all elements κ ∈ Th, ~pκ ≡ pκ, where pκ ≥ 1 is an integer; in this case uh ∈ Vh,piso

. In
the second case we admit anisotropic polynomial degrees, but restrict each element κ ∈ Th to
being an axiparallel image of the unit hypercube (up to a C1-diffeomorphism). For simplicity
of presentation, in this latter case, we assume that d = 2; however, we note that all of the
results presented in this work naturally generalise to the case d = 3, by exploiting analogous
arguments to those presented in the sequel. Thereby, in this latter setting, we have that Fκ

is an affine mapping of the form

Fκ(x̂) = Aκx̂ + bκ,

where Aκ := 1
2diag(hκ

1 , h
κ
2), with hκ

1 and hκ
2 the lengths of the edges of κ̃ parallel to the

x̃1- and x̃2-axes, respectively, bκ is a two-component real-valued vector and Qκ is a smooth
diffeomorphism as before, see Figure 41.

We now recall the definition of the function h in L∞(ΓI∪ΓD), as h(x) = min{mκ1
,mκ2

}/mf ,
if x is in the interior of f = ∂κ1 ∩ ∂κ2 for two neighboring elements in the mesh Th, and
h(x) = mκ/mf , if x is in the interior of f = ∂κ∩ ΓD, cf. Section 5.4. Similarly, we recall the
definition of the function a in L∞(ΓI ∪ ΓD) by a(x) = max{āκ1

, āκ2
} if x is in the interior of

f = ∂κ1 ∩ ∂κ2, and a(x) = āκ if x is in the interior of ∂κ ∩ ΓD.
In the case when the composite polynomial degree vector ~p is isotropic, i.e., when uh ∈

Vh,piso
, where piso = (pκ : κ ∈ Th), we introduce the function p(x) ∈ L∞(ΓI ∪ ΓD) by

p(x) = max{pκ1
, pκ2

} if x is in the interior of f = ∂κ1 ∩ ∂κ2, and p(x) = pκ if x is in the
interior of ∂κ ∩ ΓD.

With this notation, we now provide the following coercivity result for the bilinear form
B(·, ·) over Vh,piso

× Vh,piso
.

Theorem 6.2 If ϑ is defined as

ϑ|f ≡ ϑf = Cϑ
ap2

h
for f ⊂ ΓI ∪ ΓD, (163)

then there exists a positive constant C, which depends only on the dimension d, such that

B(v, v) ≥ C|||v|||2 ∀v ∈ Vh,piso
,

95

provided that the constant Cϑ is chosen such that:

Cϑ > C ′
ϑ > 0,

where C ′
ϑ is a sufficiently large positive constant.

Proof: The proof follows in an analogous fashion to Theorem 5.6; see [49] for details. �

We end this section by establishing the coercivity of the bilinear form B(·, ·) over Vh,~p ×
Vh,~p, assuming for simplicity that d = 2 and that each element κ ∈ Th is an axiparallel image
of the unit hypercube (up to a C1-diffeomorphism).

In this setting the mesh function h in L∞(ΓI ∪ ΓD) defined above, may be equivalently
written as h(x) = min{hκ

j , h
κ′

j }, if x is in the interior of f = ∂κ ∩ ∂κ′ for two neighboring

elements κ, κ′ in the mesh Th, and f̃ = Q−1
κ (f) is parallel to the x̃i–axis, i, j = 1, 2, i 6= j;

h(x) = hκ
j , if x is in the interior of f = ∂κ ∩ ΓD and f̃ = Q−1

κ (f) is parallel to the x̃i–axis,
i, j = 1, 2, i 6= j. In a similar fashion, we define pa in L∞(ΓI∪ΓD) by pa(x) = max{pκ,j, pκ′,j}
for κ, κ′ as above; pa(x) = pκ,j if x is in the interior of a boundary face as above. In this
case coercivity of B(·, ·) over Vh,~p × Vh,~p can again be shown.

Theorem 6.3 For a mesh Th consisting only of axiparallel images of the unit square (up to
a C1-diffeomorphism), if ϑ is defined as

ϑ|f ≡ ϑf = Cϑ
ap2

a

h
for f ⊂ ΓI ∪ ΓD, (164)

then there exists a positive constant C, which depends only on the dimension d, such that

B(v, v) ≥ C|||v|||2 ∀v ∈ Vh,~p,

provided that the constant Cϑ is chosen such that:

Cϑ > C ′
ϑ > 0,

where C ′
ϑ is a sufficiently large positive constant.

Proof: See Georgoulis [41]. �

Remark 6.4 Theorem 6.3 implies that the direction perpendicular to the face of interest is
the important one for ensuring stability. Indeed, in the case of anisotropic diffusion, it is also
the case that only diffusion perpendicular to the face need be considered, see Georgoulis [41].

6.2 hp-Error bounds on the hypercube

In this section we now consider the generalization of the approximation results stated in
Section 5.5 in the h–version case, to the hp–setting. As above, we first consider the case
when isotropic polynomials are employed on general finite element meshes consisting of ten-
sor product elements, i.e., hypercubes, before dealing with the situation where anisotropic
polynomial degrees are exploited.

96

6.2.1 Isotropic polynomials degrees

In this section, we first consider the case when the local elemental polynomial degree vector
~pκ is constant, i.e., when pκ,1 = pκ,2 = . . . = pκ,d for all κ in Th. To this end, we recall the
following notation for the orthogonal L2–projection operator introduced in Section 5.5. On
the reference element κ̂, we define Π̂p to denote the orthogonal projector in L2(κ̂) onto the
space of polynomials Qp(κ̂); i.e., given that v̂ ∈ L2(κ̂), we define Π̂pv̂ by

(v̂ − Π̂pv̂, ŵ)κ̂ = 0

for all ŵ ∈ Qp(κ̂), where (·, ·)κ̂ denotes the L2(κ̂) inner product. Similarly, we define the
L2-projection operators Π̃p and Πp on κ̃ and κ, respectively, by the relations

Π̃pṽ := (Π̂p(ṽ ◦ Fκ)) ◦ F−1
κ , Πpv := (Π̃p(v ◦Qκ)) ◦Q−1

κ ,

for ṽ ∈ L2(κ̃) and v ∈ L2(κ), respectively.
With this notation, we now quote the hp–analogue of Lemma 5.9.

Lemma 6.5 Let κ̂ be the unit d-hypercube, and let f̂ denote one of its faces. Given a function
v̂ ∈ Hk(κ̂), the following error bounds hold

‖v̂ − Π̂pv̂‖L2(κ̂) ≤ C

ps
|v̂|Hs(κ̂), 0 ≤ s ≤ min(p + 1, k),

|v̂ − Π̂pv̂|H1(κ̂) ≤ C

ps−3/2
|v̂|Hs(κ̂), 1 ≤ s ≤ min(p+ 1, k),

‖v̂ − Π̂pv̂‖L2(f̂) ≤ C

ps−1/2
|v̂|Hs(κ̂), 1 ≤ s ≤ min(p + 1, k),

|v̂ − Π̂pv̂|H1(f̂) ≤ C

ps−5/2
|v̂|Hs(κ̂), 2 ≤ s ≤ min(p + 1, k),

where C is a constant dependent only on the dimension d.

Proof: A proof can be found in Houston, Schwab and Süli, [74]. �

Rescaling Lemma 6.5 to the physical element we easily attain the following result, cf.
Theorem 5.20 in the h–version setting.

Lemma 6.6 Using the notation of Lemma 5.9, there exists a positive constant C, which

97

depends only on the dimension d such that:

‖v − Πpv‖L2(κ) ≤ C

ps

[∫

κ̃
Ds

κ̃(ṽ,Σκ, Uκ) dx̃

]1
2

, 0 ≤ s ≤ min(p + 1, k), (165)

|v − Πpv|H1(κ) ≤ C

ps−3/2
|σd,κ|−1

×
[∫

κ̃
Ds

κ̃(ṽ,Σκ, Uκ) dx̃

] 1
2

, 1 ≤ s ≤ min(p + 1, k), (166)

‖v − Πpv‖L2(f) ≤ C

ps−1/2
|σd,κ|−1/2

×
[∫

κ̃
Ds

κ̃(ṽ,Σκ, Uκ) dx̃

] 1
2

, 1 ≤ s ≤ min(p + 1, k), (167)

|v − Πpv|H1(f) ≤ C

ps−5/2

∣
∣
∣
∣

mf

mκ

∣
∣
∣
∣

1
2

|σd,κ|−1

×
[∫

κ̃
Ds

κ̃(ṽ,Σκ, Uκ) dx̃

] 1
2

, 2 ≤ s ≤ min(p+ 1, k). (168)

Proof: The same arguments from Corollary 5.10 and Lemma 5.16 can be applied to the
results from Lemma 6.5 in order to achieve the results. �

Remark 6.7 Considering once again isotropic elements and bearing in mind Remark 5.19,
we see that Lemma 6.6 shares exactly the same convergence results in terms of both hκ and
p as Lemma 4.3 of [50]. Indeed, all four results from Lemma 6.6 show h-optimal conver-
gence rates, with the errors in the L2–norm exhibiting p-optimal convergence; however, both
H1–bounds are p–suboptimal, with (166) and (168) suboptimal by p1/2 and p, respectively.
hp–optimal convergence rates have been shown for alternative projection operators, see for
example Georgoulis [41], however, as noted in Section 5.5, the L2–projector is required in the
sequel in order to derive a priori bounds for the error in the computed target functional.

6.2.2 Anisotropic polynomial degrees

In this section we consider the 2–dimensional axiparallel setting, where anisotropic polynomial
degrees are admissible. Before we embark with the error analysis, we present some results
taken from [42] regarding the approximation error of the orthogonal L2-projection operator
onto the finite element space Vh,~p. All the proofs of the following results can be found in [42].

Let û ∈ L2(Î), with Î ≡ (−1, 1). We define the L2-orthogonal projector π̂p on Î in a
standard fashion by means of truncated Legendre series (see, e.g., [99]). With this definition,
for κ̂ ≡ (−1, 1)2 we write Π̂~p : L2(κ̂) → Q~p(κ̂), with composite polynomial degree vector
~p = (p1, p2), by

Π̂~p := (π̂1
p1

⊗ I)(I ⊗ π̂2
p2

),

where π̂1
p1

and π̂2
p2

denote the one-dimensional L2-projection operators defined above, with
the superscripts 1, 2 indicating the directions in which the one-dimensional projectors are
applied, respectively, and ⊗ the standard functional tensor product.

98

Definition 6.8 Let ũ : κ̃ → R and u : κ → R and assume that there exist mappings Fκ :
κ̂→ κ̃, Qκ : κ̃→ κ as above. We define the L2-projection operator Π̃~p on κ̃, with ~p = (p1, p2)
being the composite polynomial degree vector, by the relation

Π̃~pũ := (Π̂~p(ũ ◦ Fκ)) ◦ F−1
κ , for ũ ∈ L2(κ̃),

where, as before, Π̂~p denotes the L2-orthogonal projection onto the reference element κ̂. More-
over, we define the L2-orthogonal projection operator Π~p on κ, with ~p = (p1, p2), by

Π~pu := (Π̃~p(u ◦Qκ)) ◦Q−1
κ , for u ∈ L2(κ).

We introduce some notation which we shall use in the approximation estimates below.
We define

Φ(p, s, h) :=

(
(p− (s − 1))!

(p+ (s − 1))!

)(
h

2

)2(s−1)

, (169)

where p and s are integers such that 1 ≤ s ≤ p. Let JQκ =
(
(JQκ)ij

)

i,j=1,2
denote the

Jacobi matrix of Qκ, which is assumed to be a (smooth) diffeomorphism. In the following
approximation estimates for the L2-projection error, the generic non-negative constants Cκ,
C1

κ, and C2
κ, κ ∈ Th, are assumed to be dependent on Qκ but not on the elemental polynomial

degree or the affine map Fκ. Moreover, we assume that C1
κ and C2

κ, κ ∈ Th, are of the form

C1
κ :=

{
1, if Qκ = id,

C(JQκ), otherwise,

C2
κ :=

{
0, if Qκ = id,

C(JQκ), otherwise,

where C(JQκ) is a generic positive constant depending on JQκ only. Finally, we define ∂κ̂1 :=
(−1, 1) × {±1}, ∂κ̂2 := {±1} × (−1, 1), ∂κ̃i := Fκ(∂κ̂i) and ∂κi := Qκ(∂κ̃i), for i = 1, 2.

The following interpolation estimates then hold.

Lemma 6.9 Let u ∈ Hk(κ), for k ≥ 2; then, for ũ := u ◦Qκ, ~p = (p1, p2) and p1, p2 ≥ 1, we
have

‖u− Π~pu‖2
L2(κ) ≤ CκM

0
κ , (170)

where

M0
κ :=

2∑

i=1

Φ(pi, si, hi)

(
hi

2pi

)2

‖∂̃si

i ũ‖2
L2(κ̃), (171)

and

‖∂i(u− Π~pu)‖2
L2(κ) ≤ C1

κM
1
κ,i + C2

κM
1
κ,j, (172)

with

M1
κ,i := piΦ(pi, si, hi)‖∂̃si

i ũ‖2
L2(κ̃) + Φ(pj, sj , hj)‖∂̃sj−1

j ∂̃iũ‖2
L2(κ̃), (173)

where i, j = 1, 2, i 6= j, 1 ≤ si ≤ min{pi + 1, k}, for i = 1, 2, and ∂̃i is the partial derivative
in the x̃i-direction in the x̃1x̃2-plane.

99

Lemma 6.10 Let u ∈ Hk(κ), with k ≥ 1; then we have

‖u− Π~pu‖2
L2(∂κi)

≤ CκM
0
∂κ,i, (174)

with

M0
∂κ,i := Φ(pj , sj, hj)

hj

2pj
‖∂̃sj

j ũ‖2
L2(κ̃) + Φ(pi, si, hi)

hi

hj

hi

2pi
‖∂̃si

i ũ‖2
L2(κ̃)

+
(pj

pi
+ 1
)

Φ(pi, si, hi)
hj

2pj
‖∂̃si−1

i ∂̃j ũ‖2
L2(κ̃),

with i, j = 1, 2, i 6= j, 1 ≤ si ≤ min{pi + 1, k}, and pi ≥ 1, for i = 1, 2.

Lemma 6.11 Let u ∈ Hk(κ), with k ≥ 2; then the following error estimates hold:

‖∂i(u− Π~pu)‖2
L2(∂κi)

≤ C1
κM

1
∂κ,i + C2

κM
2
∂κ,i, (175)

‖∂j(u− Π~pu)‖2
L2(∂κi)

≤ C1
κM

2
∂κ,i + C2

κM
1
∂κ,i, (176)

with

M1
∂κ,i := Φ(pi, si, hi)

2pi

hi

(

pi
hi

hj
‖∂̃si

i ũ‖2
L2(κ̃) +

(

1 +
pi

pj

)hj

hi
‖∂̃si−1

i ∂̃j ũ‖2
L2(κ̃)

)

+Φ(pj, sj, hj)
2pj

hj
‖∂̃sj−1

j ∂̃iũ‖2
L2(κ̃), (177)

for i, j = 1, 2, i 6= j, 1 ≤ si ≤ min{pi + 1, k}, pi ≥ 1, i = 1, 2, and

M2
∂κ,i := p2

jΦ(pj, sj , hj)
2pj

hj
‖∂̃sj

j ũ‖2
L2(κ̃) + pjΦ(pi, si, hi)

2pj

hj
‖∂̃si−1

i ∂̃j ũ‖2
L2(κ̃), (178)

for 2 ≤ si ≤ min{pi + 1, k}.

Proof: For each of the lemmata 6.9-6.11 full proofs can be found in Georgoulis [42]. In
each case, the idea is to split up the L2-projection operator on the reference element into
a tensor-product composition of one-dimensional L2-projectors and apply one dimensional
results (for example, see Schwab [99]); scaling back to the physical element then completes
the proof. �

Remark 6.12 By using Stirling’s formula

n! ∼
√

2πnn+1/2e−n, n > 0, (179)

we see that for p ≥ 1,
Φ(p, s, h) ≤ C(s)p−2(s−1)h2(s−1). (180)

Thus, if we consider isotropic polynomial degrees in the results from the Lemmata 6.9-6.11
and apply (180) we return to the same asymptotic results in terms of p as for Lemma 6.6.
Considering also isotropic h, that is hκ

1 ∼ hκ
2 , then we recover the same approximation results

from Harriman et al. [50].

100

We shall now consider the case where the functions we are approximating are analytic.
In this case we shall see that the L2 projection provides p–exponential convergence, a very
desirable property, which improves on the merely algebraic convergence in p witnessed above.
To this end, we state the following result from [49, 41].

Lemma 6.13 Let u : κ → R have an analytic extension to an open neighbourhood of κ̄.
Also, let p, s, and n be positive integers such that

0 ≤ n ≤ s := αp + n ≤ p,

with 0 < α < 1. Then the following bounds hold

Φ(p, s+ 1, h)‖∂s+1
i ∂m

j u‖2
L2(κ) ≤ Cuh

2spmin{3,n+ 5
2
}e−rp|κ|,

Φ(p, s+ 1, h)‖∂s
i ∂

m
j u‖2

L2(κ) ≤ Cuh
2spmin{3,n+ 5

2
}e−rp|κ|,

where m ∈ {0, 1} and r, Cu > 0 are constants that depend on n and u, with i, j ∈ {1, 2} for
i 6= j, and |κ| denotes the Lebesgue measure of the domain κ.

We notice that the results of Lemmas 6.9-6.11 all include terms of the form

Φ(p, s, h)‖∂s−1
i u‖2

L2(κ) or Φ(p, s, h)‖∂s
i ∂ju‖2

L2(κ),

and hence Lemma 6.13 can be used to show that, for an analytic function u, the L2-projector
achieves p-exponential convergence in both the L2-norm and H1 semi-norm on the element
and the element boundary.

6.3 A priori error analysis

On the basis of the approximation results developed within the previous section, we now
proceed to derive a priori error bounds for general linear target functionals J(·) of the solution.
To this end, we first consider the case when isotropic polynomial degrees are employed, i.e.,
when uh ∈ Vh,piso

. In this case, along with the assumption that the element volumes satisfy
the bounded local variation condition (147), we also assume bounded local variation of the
polynomial degrees, i.e., there exists a constant C9 > 1, such that for any pair of elements κ
and κ′ sharing a (d−1)-dimensional face

C−1
9 < pκ/pκ′ < C9. (181)

Theorem 6.14 Let Ω ⊂ R
d be a bounded polyhedral domain, Th = {κ} a subdivision of Ω,

such that the elemental volumes and polynomial degrees satisfy the bounded local variation
conditions (147) and (181), respectively. Then, assuming that conditions (161), (117), and
(129) on the data hold, and u|κ ∈ Hkκ(κ), kκ ≥ 2, for κ ∈ Th, and z|κ ∈ H lκ(κ), lκ ≥ 2, for
κ ∈ Th, then the solution uh ∈ Vh,piso

of (162) obeys the error bound

|J(u) − J(uh)|2

≤ C

∑

κ∈Th

1

σ2
d,κ

{

α

p
2(sκ−3/2)
κ

+
β2σd,κ

p
2(sκ−1/2)
κ

+
(β1 + γ1)σ

2
d,κ

p2sκ
κ

}
∫

κ̃
Dsκ

κ̃ (ũ,Σκ, Uκ) dx̃

×

∑

κ∈Th

1

σ2
d,κ

{

α

p
2(tκ−3/2)
κ

+
β2σd,κ

p
2(tκ−1)
κ

+
(β1 + γ2)σ

2
d,κ

p2tκ
κ

}
∫

κ̃
Dtκ

κ̃ (z̃,Σκ, Uκ) dx̃

 ,

101

for 2 ≤ sκ ≤ min(pκ + 1, kκ) and 2 ≤ tκ ≤ min(pκ + 1, lκ), where α|κ = āκ̃, β1|κ =
‖c + ∇ · b‖L∞(κ), β2|κ = ‖b‖L∞(κ), γ1|κ = ‖c/c0‖2

L∞(κ), γ2|κ = ‖(c + ∇ · b)/c0‖2
L∞(κ), for

all κ ∈ Th. Here, C is a constant depending on the dimension d and the parameters Ci,
i = 1, . . . , 9.

Proof: The proof is analogous to that for Theorem 5.23; however, here, we pick ǫκ = p2
κ/σd,κ

and use the interpolation results from Lemma 6.6 together with the discontinuity penalisation
term defined by

ϑ|f = Cϑ
ap2

h
.

�

Remark 6.15 Let us now discuss some special cases of the general error bound derived in
Theorem 6.14. To this end, for simplicity, we assume uniform orders pκ = p, sκ = s, tk = t,
kκ = k, lκ = l, s, t, k, l integers for all κ ∈ Th, and uniform isotropic elements with mesh
size h. In the diffusion dominated case, Theorem 6.14 indicates that the error in computed
target functional may be bounded as follows

|J(u) − J(uh)| ≤ C
hs+t−2

ps+t−2
p |u|Hs(Ω)|z|Ht(Ω) (182)

≤ C
hs+t−2

pk+l−2
p ‖u‖Hk(Ω)‖z‖Hl(Ω), (183)

where 2 ≤ s ≤ min(p + 1, k) and 2 ≤ t ≤ min(p + 1, l). We note that in the transition from
(182) to (183) the generic constant C has increased by a factor of (k− 1)k−2(l− 1)l−2. This
error bound is optimal with respect to h but suboptimal in p by one order, cf. [50]. For the
strictly hyperbolic case (a ≡ 0), the error bound in Theorem 6.14 becomes

|J(u) − J(uh)| ≤ C
hs+t−1

ps+t−1
p1/2 |u|Hs(Ω)|z|Ht(Ω)

≤ C
hs+t−1

pk+l−1
p1/2 ‖u‖Hk(Ω)‖z‖Hl(Ω).

This bound is once again optimal in h, but suboptimal in p by p1/2, cf. [77].

Once again we return to the case of axiparallel elements; in this setting, we consider a
slight variation concerning the bounded local variation conditions on the element sizes and
polynomial degrees which we assumed for the proof of Theorem 6.14. Indeed, here we now
assume that there exist ρi and δi, for i = 1, 2, such that

ρ−1
i ≤ pκ

i /p
κ′

i ≤ ρi, (184)

δ−1
i ≤ hκ

i /h
κ′

i ≤ δi, (185)

i = 1, 2, for all pairs of neighbouring elements κ and κ′.

Theorem 6.16 Let Ω ⊂ R
2 be an axiparallel polygonal domain, Th = {κ} a subdivision of Ω

into axiparallel images of the 2-hypercube, such that the bounded local variation conditions,

102

(184) and (185), hold. Then, assuming that conditions (161), (117), and (129) on the data
hold, and u|κ ∈ Hkκ(κ), kκ ≥ 2, for κ ∈ Th, and z|κ ∈ H lκ(κ), lκ ≥ 2, for κ ∈ Th, then the
solution uh ∈ Vh,~p of (162) obeys the error bound

|J(u) − J(uh)|2 ≤ C
(∑

κ∈Th

2∑

i=1

Φ(pκ
i , s

κ
i , h

κ
i) max

(m,n)∈A

{(pκ
j

pκ
i

)m(hκ
i

hκ
j

)n}

×
(
ακp

κ
i +

hκ
i

pκ
i

β2 +
(hκ

i

pκ
i

)2
(β1 + γ1)

)
|u|2sκ

i ,κ,i

)

×
(∑

κ∈Th

2∑

i=1

Φ(pκ
i , t

κ
i , h

κ
i) max

(m,n)∈A

{(pκ
j

pκ
i

)m(hκ
i

hκ
j

)n}

×
(
ακp

κ
i + hκ

i β2 +
(hκ

i

pκ
i

)2
(β1 + γ2)

)
|z|2tκi ,κ,i

)

,

with A = {(0, 0), (0, 1), (0, 2), (−1, 0), (−1, 1)(1, 2), (2, 1), (2, 2)}, and

|w|r,κ,i :=
(

‖∂̃r
iw‖2

L2(κ̂) +
(hκ

j

hκ
i

)2
‖∂̃r−1

i ∂̃jw‖2
L2(κ̂)

)1/2
,

for 2 ≤ sκ
i ≤ min(pκ + 1, kκ) and 2 ≤ tκi ≤ min(pκ + 1, lκ), where α|κ = āκ̃, β1|κ =

‖c+ ∇ · b‖L∞(κ), β2|κ = ‖b‖L∞(κ), γ1|κ = ‖c/c0‖2
L∞(κ), γ2|κ = ‖(c+ ∇ · b)/c0‖2

L∞(κ), for all
κ ∈ Th. Here, C is a constant depending on the parameters δi, ρi, i = 1, 2.

Proof: Inequality (151) is also applicable in this case, by rearranging the terms we obtain

|J(u) − J(uh)|2 ≤ C

∑

κ∈Th

{

āκ̄

(

‖∇η‖2
L2(κ) +

āκ̄

ϑ
‖∇η‖2

L2(∂κ) +
ϑ

āκ̄
‖η‖2

L2(∂κ)

)

+β2

(

ǫ−1
κ ‖∇η‖2

L2(κ) + ‖η‖2
L2(∂κ)

))

+ (β1 + γ1) ‖η‖2
L2(κ)

})

×

∑

κ∈Th

{

āκ̄

(

‖∇w‖2
L2(κ) +

āκ̄

ϑ
‖∇w‖2

L2(∂κ) +
ϑ

āκ̄
‖w‖2

L2(∂κ)

)

β2

(

ǫκ‖w‖2
L2(κ) + ‖w‖2

L2(∂κ)

)

+ (β1 + γ2) ‖w‖2
L2(κ)

})

.

≡ C

∑

κ∈Th

Iκ
1,η + Iκ

2 + Iκ
3

×

∑

κ∈Th

Iκ
1,w + Iκ

4 + Iκ
5

 .

For term Iκ
1,η (similarly Iκ

1,w) we first split into contributions from the faces ∂κi and ∂κj , such
that

Iκ
1,η ≤ āκ̄

(

‖∇η‖2
L2(κ) +

2∑

i=1

āκ̄

ϑ
‖∇η‖2

L2(∂κi)
+

ϑ

āκ̄
‖η‖2

L2(∂κi)

)

.

103

Then, employing the interpolation result from Lemma 6.9 we obtain

‖∇η‖2
L2(κ) ≤ C

2∑

i=1

(

pκ
i Φ(pκ

i , s
κ
i , h

κ
i)‖∂̃sκ

i

i ũ‖2 + Φ(pκ
i , s

κ
i , h

κ
i)‖∂̃sκ

i −1
i ∂̃j ũ‖2

)

≤ C

2∑

i=1

pκ
i Φ(pκ

i , s
κ
i , h

κ
i)

1 +

(

hκ
i

hκ
j

)2

 |u|2sκ
i
,κ,i

≤ C

2∑

i=1

pκ
i Φ(pκ

i , s
κ
i , h

κ
i) max

n={0,2}

(

hκ
i

hκ
j

)n

|u|2sκ
i ,κ,i.

By using the definition of the discontinuity penalization term ϑ from (164), the results of
Lemma 6.11 and utilizing the bounded local variation conditions, we also see that

2∑

i=1

āκ̄

ϑ
‖∇η‖2

L2(∂κi)

≤ C
2∑

i=1

Φ(pκ
i , s

κ
i , h

κ
i)

(

hκ
j

(pκ
j)2

[

2(pκ
i)2

hκ
j

‖∂̃sκ
i

i ũ‖2 +

(

pκ
i h

κ
j

h2
i

(

1 +
pκ

i

pκ
j

)

+
(pκ

j)2

hκ
j

)

‖∂̃sκ
i −1

i ∂̃jũ‖2

]

+
hκ

i

(pκ
i)2

[
(pκ

i)3

hκ
i

‖∂̃sκ
i

i ũ‖2 +
pκ

i

hκ
i

‖∂̃sκ
i −1

i ∂̃j ũ‖2

])

≤ C

2∑

i=1

pκ
i Φ(pκ

i , s
κ
i , h

κ
i)

(
pκ

j

pκ
i

)−1

+ 1 +

(

hκ
i

hκ
j

)2

 |u|2sκ
i
,κ,i

≤ C

2∑

i=1

pκ
i Φ(pκ

i , s
κ
i , h

κ
i) max

(m,n)∈A1

(
pκ

j

pκ
i

)m
(

hκ
i

hκ
j

)n

|u|2sκ
i ,κ,i,

where A1 = {(0, 0), (0, 2), (−1, 0)}.
Similarly, by using Lemma 6.10 we obtain:

2∑

i=1

ϑ

āκ
‖η‖L2(∂κi) ≤ C

2∑

i=1

pκ
i Φ(pκ

i , s
κ
i , h

κ
i) max

(m,n)∈A2

(
pκ

j

pκ
i

)m
(

hκ
i

hκ
j

)n

|u|2sκ
i ,κ,i,

where A2 = {(1, 2), (2, 2)}. Hence, it follows that

Iκ
1,η ≤ C

2∑

i=1

pκ
i Φ(pκ

i , s
κ
i , h

κ
i) max

(m,n)∈A

(
pκ

j

pκ
i

)m
(

hκ
i

hκ
j

)n

|u|2sκ
i ,κ,i,

and

Iκ
1,w ≤ C

2∑

i=1

pκ
i Φ(pκ

i , ti, h
κ
i) max

(m,n)∈A

(
pκ

j

pκ
i

)m
(

hκ
i

hκ
j

)n

|z|2tκi ,κ,i.

104

For terms Iκ
2 and Iκ

4 we make the selection ǫκ = maxi=1,2((p
κ
i)2/hκ

i) and using the same
techniques as above we achieve:

Iκ
2 ≤ β2

2∑

i=1

hκ
i

pκ
i

Φ(pκ
i , s

κ
i , h

κ
i) max

(m,n)∈A3

(
pκ

j

pκ
i

)m
(

hκ
i

hκ
j

)n

|u|2sκ
i ,κ,i,

Iκ
4 ≤ β2

2∑

i=1

hκ
i Φ(pκ

i , t
κ
i , h

κ
i) max

(m,n)∈A4

(
pκ

j

pκ
i

)m
(

hκ
i

hκ
j

)n

|z|2tκi ,κ,i,

where A3 = {(0, 0), (0, 1), (−1, 1)} and A4 = {(0, 0), (0, 1), (2, 1), (2, 2)}.
A simple use of Lemma 6.9 also yields

Iκ
3 ≤ (β1 + γ1)

2∑

i=1

(
hκ

i

pκ
i

)2

Φ(pκ
i , s

κ
i , h

κ
i)|u|2sκ

i ,κ,i,

Iκ
5 ≤ (β1 + γ2)

2∑

i=1

(
hκ

i

pκ
i

)2

Φ(pκ
i , t

κ
i , h

κ
i)|w|2tκi ,κ,i.

Combining the results for terms I1-I5 completes the proof. �

Remark 6.17 Upon application of Stirling’s formula for the factorials arising in the defini-
tion of Φ, as in Remark 6.12, it can be shown that the error estimate stated in Theorem 6.16
is h-optimal and slightly p-suboptimal (by one order of p). This is in complete agreement
with the results presented for the isotropic case in [50].

When the analytical solution of both the primal and adjoint problems are sufficiently smooth,
then it can be shown that the error converges to zero at an exponential rate with respect to
the local (directional) polynomial degrees. More precisely, we state the following result.

Corollary 6.18 Let Ω ⊂ R
2 be a bounded polyhedral domain, T = {κ} a 1-irregular subdivi-

sion of Ω, such that the mesh parameters satisfy the bounded local variation conditions (184)
and (185). Then, assuming that conditions (161), (117), and (129) hold, and that u, z are
analytic functions on a neighbourhood of Ω, the solution uh ∈ Vh,~p of (162) obeys the error
bound

|J(u) − J(uh)|2 ≤ C(α, β1, β2, γ1, γ2) ×
(∑

κ∈T

2∑

i=1

e−ripκ
i Nκ

i

)(∑

κ∈T

2∑

i=1

e−qipκ
i Nκ

i

)

,

where

Nκ
i :=

(
hκ

i

)2sκ
i |κ̃| max

(m,n)∈A

{(
pκ

i

)4−m(
pκ

j

)m
(hκ

i

hκ
j

)n}

,

ri, qi are positive constants depending on the domain of analyticity of u and z, respectively,
and | · | denotes the two-dimensional Lebesgue measure of a (measurable) subset of Ω; the
set A and the data-related constants α, β1, β2, γ1, and γ2 are as in the statement of Theorem
6.16.

105

Proof: The result follows simply after applying Lemma 6.13 to

Φ(pκ
i , s

κ
i , h

κ
i)|u|2sκ

i ,κ,i = Φ(pκ
i , s

κ
i , h

κ
i)
(

‖∂̃si

i u‖2
L2(κ̂) +

(hκ
j

hκ
i

)2
‖∂̃si−1

i ∂̃ju‖2
L2(κ̂)

)

,

and similarly to

Φ(pκ
i , t

κ
i , h

κ
i)|z|2tκi ,κ,i = Φ(pκ

i , t
κ
i , h

κ
i)
(

‖∂̃ti
i z‖2

L2(κ̂) +
(hκ

j

hκ
i

)2
‖∂̃ti−1

i ∂̃jz‖2
L2(κ̂)

)

.

�

The a priori error analysis developed in this section clearly shows that in the case when
the Sobolev regularity of the primal solution u, or the adjoint solution z exceed the polynomial
degree of the approximating solutions it will be more beneficial to increase the polynomial
degree rather than decreasing the size of the mesh. Indeed, in the case when both u and z
are real analytic functions polynomial enrichment can lead to exponential convergence. The
construction of an automated procedure which is capable of computationally estimating the
smoothness of both u and z is the subject of the following section.

6.4 hp–Adaptivity on isotropically refined meshes

Recalling the measurement problem stated in Sections 4.1 & 5.7: the aim of the computation
is to design an appropriate “optimal” finite element space Vh,~p such that

|J(u) − J(uh)| ≤ TOL ,

where TOL > 0 is a given user-defined tolerance. By optimal we mean that the above error
control should be attained using a minimal number of degrees of freedom. For simplicity,
in this section we first consider the case when both the underlying finite element mesh Th

and the polynomial distribution are isotropic; thereby, uh ∈ Vh,piso
. The extension to general

anisotropic finite element spaces will be considered in the following section.
Following the discussion presented in Sections 4.1 & 5.7, we exploit the a posteriori error

bound (154) with z replaced by a suitable numerical approximation, denoted by z̄h. Thereby,
in practice we enforce the stopping criterion

∑

κ∈Th

|η̄κ| ≡ R|Ω|(uh, z̄h − zh) ≤ TOL . (186)

If (186) is not satisfied, then the elements are marked for refinement/derefinement according
to the size of the (approximate) error indicators |η̄κ|.

Once an element has been selected for refinement/derefinement the key step in the design
of such an (isotropic) hp–adaptive algorithm is the local decision taken on each element κ
in the computational mesh as to which refinement strategy (i.e., h-refinement via local mesh
subdivision or p-refinement by increasing the degree of the local polynomial approximation)
should be employed on κ in order to obtain the greatest reduction in the error per unit cost.

The a priori estimates developed in the previous section clearly indicate that if either u
or z are smooth then a high polynomial degree is preferable to a small mesh size, whereas
if u and z are both nonsmooth then a small mesh size should be utilized, cf. [50, 79]. With

106

this in mind, should an element be selected for refinement and both u and z are nonsmooth,
we perform a mesh subdivision, otherwise polynomial enrichment is exploited. Similarly,
if an element is flagged for derefinement, then if neither u nor z are smooth we carry out
a p-derefinement, else an h-derefinement is undertaken. Of course, since u and z are in
general unknown analytically, the local smoothness of these solutions cannot be determined.
Motivated by the lack of precise information about the local regularity of the analytical
solutions u and z, various algorithms have been developed in the literature with the aim
to identify those parts of the computational domain where a given function w, say, may be
perceived as being ‘smooth’ and regions where w is ‘non-smooth’. Below we provide a brief
review of existing methods which have been developed within the literature.

• Use of a priori information. For a linear elliptic boundary–value problem with piece-
wise analytic coefficients, forcing functions and boundary data, on a computational
domain Ω with a piecewise analytic boundary surface ∂Ω, the solution will be an an-
alytic function everywhere, except in the neighbourhood of singularities in the data.
Thereby, h–refinement may be employed in those elements in the computational do-
main whose closures contain such singularities, with p–refinement performed elsewhere.
This approach has been employed by Owens and co-workers, for example; cf. [106, 24].

• Type–parameter. In this strategy it is assumed that on each element κ in the compu-
tational mesh on Ω, one has a local refinement indicator ηκ(uh,p, hκ, pκ) (not adjoint-
based), which depends on the numerical approximation uh,p, the local mesh-size hκ and
the local polynomial degree pκ. To highlight the dependence of the numerical solution
on the polynomial degree p, we have explicitly included p as an additional subscript.
Then, assuming that ηκ(uh,p−1, hκ, pκ−1) 6= 0, the perceived smoothness of the solution
may be estimated using the ratio

ζκ = ηκ(uh,p, hκ, pκ)/ηκ(uh,p−1, hκ, pκ − 1),

cf. Adjerid et al. [2] and Gui & Babuška [48], for example. If ζκ ≤ γ, 0 < γ < 1, the
error is decreasing as the polynomial degree is increased, indicating that p–enrichment
should be performed. On the other hand, if ζκ > γ then the element κ is subdivided.
Here, γ is referred to as a type–parameter [48].

• Predicted error reduction. A very closely related technique to the type–parameter strat-
egy is based on refining each element κ in the computational mesh according to the
refinement history of κ; cf. [88]. To this end, a predicted (local) error indicator ηpred

κ

is computed on the basis of the elemental error indicator ηκ calculated on the previous
mesh, together with a priori estimates of the expected decay of ηκ after the refinement
step has been performed, assuming that the underlying analytical solution is locally
smooth. If the error indicator computed on the new mesh is larger than ηpred

κ , then κ
is subdivided; otherwise p–enrichment is performed, cf., also, [67].

• ‘Texas 3–step’. This strategy was first introduced by J.T. Oden and co-workers [93];
here, the smoothness of the solution to the underlying partial differential equation is
not directly taken into account. Step 1 involves initialising various parameters, as well
as setting intermediate and final error tolerances TOLI and TOLF , respectively. Then,
keeping the polynomial degree fixed, in Step 2 the mesh is adaptively h–refined in order

107

to ensure that the error (measured in some appropriate norm) is less than TOLI . In the
final third step, the mesh is kept fixed, while the local polynomial degrees are increased
to achieve the final error tolerance TOLF . For related work, we refer to the articles
[25, 92], and the references cited therein.

• Mesh optimisation strategy. In this strategy an optimal refinement is determined for
each element in the mesh by directly employing results from approximation theory.
More precisely, a reference solution û is computed on a refined finite element space,
where all the elements have been uniformly refined and the polynomial degree p has
been globally incremented by one. Then, on each element κ in the original finite ele-
ment mesh, elemental norms of the projection error between û and some suitable finite
element projection Π(û) may be computed; here, the error is computed by projecting
û onto a finite element space employing the original mesh, but with a local polynomial
degree p+ 1, as well as on a sequence of finite element spaces corresponding to a local
h–refinement of κ that results in the same increase in the number of degrees of freedom
as the p–enrichment. The optimal refinement of κ is then chosen to be the one which
leads to the smallest projection error; elements in the mesh are then refined based on
those that will lead to the greatest decrease in the projection error per degree of free-
dom. This strategy was first introduced by Rachowicz et al. [96]; see also [32, 101] for
more recent work.

• Decay rate of Legendre expansion coefficients. Mavriplis [87] proposed determining
whether the solution is locally smooth or non-smooth by calculating the decay rate of the
Legendre expansion coefficients of the solution. More precisely, writing ai, i = 0, 1, . . .,
to denote the ith Legendre coefficient in a one–dimensional expansion of the solution, it
is assumed that ai ∼ Ce−σi, where C and σ are constants determined by a least–squares
best fit. In [87], p–refinement was employed when σ > 1; otherwise h–refinement was
used.

• Local regularity estimation. Here, the idea is to directly approximate the local Sobolev
regularity index kκ of the (unknown) analytical solution on each element κ in the
computational mesh; then p–refinement is performed on elements where kκ > pκ + 1,
otherwise h–refinement is employed. This strategy was first proposed by Ainsworth &
Senior [4] in the context of norm control for second–order elliptic problems. In [4], the
local Sobolev regularity index kκ was estimated by employing a local error indicator
ηκ which was computed by solving a series of local problems with different polynomial
degrees; kκ could then be extracted by employing local a priori error bounds for ηκ.
Extensions of this method to linear and nonlinear hyperbolic problems were considered
in the series of papers [77, 102, 103].

For related work on the design of a posteriori error indicators for hp–adaptive finite
element methods, we refer to [90], and the references cited therein; see also [66] for the devel-
opment of hp–adaptive methods in the context of the Galerkin boundary element method.

Stimulated by the last two strategies, in this section we outline a technique for assessing
local smoothness. By monitoring the decay rate of the sequence of coefficients in the Legendre
series expansion of a square–integrable function u, we develop a strategy for estimating the
size of the Bernstein ellipse of u on a given interval in one–dimension, thereby determining
whether u is analytic.

108

0
1−1

aρ

bρ

cρ

Figure 42: Bernstein ellipse on the interval [−1, 1].

6.4.1 hp–extension control

In this section we are concerned with determining whether a given scalar function u is locally
analytic on an interval Ij = (xj−1, xj); here, Ij may be thought of as a given element in
a one–dimensional finite element mesh. To address this question, we observe the fact that
Legendre coefficients of analytic functions decay to zero at an exponential rate. To describe
this precisely, we associate to a function v, defined on the reference domain Î = (−1, 1), its
Bernstein ellipse Êρ with foci x = ±1 and radius ρ = (aρ + bρ)/cρ ≥ 1, where aρ and bρ are
the lengths of the semi–major and semi–minor axes, respectively, and cρ is equal to half the
length of the interval Î, i.e., cρ = 1, cf. Figure 42. We remark that ρ = 1 corresponds to
the degenerate case of aρ = 1, bρ = 0 and Êρ = [−1, 1]; thereby, v is singular in Î. With this
notation, we have the following result.

Theorem 6.19 Let z 7→ v(z) be analytic in the interior of Êρ, ρ > 1, but not in the interior
of any Êρ′ with ρ′ > ρ. Then the Legendre series

v(z) =

∞∑

i=0

biLi(z) , bi =
2i+ 1

2

∫ 1

−1
v(z)Li(z) dz (187)

converges absolutely and uniformly on any closed set in the interior of Êρ and diverges in the
exterior to Êρ. Moreover,

1

ρ
= lim sup

i→∞
|bi|1/i . (188)

Conversely, if (bi)i≥0 is a sequence satisfying (188) with some ρ > 1, then the Legendre series
(187) converges absolutely and uniformly on any closed set inside of Êρ to an analytic function
z 7→ v(z) satisfying (187)–(188). The series diverges in the exterior of Êρ.

Proof: See Davis [31], Theorem 12.4.7, for details. �

This result can be localised to the interval Ij = (xj−1, xj). To this end, we need the

family
{

L
[j]
i (x)

}∞

i=0
of L2(Ij)–orthogonal polynomials. Using the orthogonality properties of

the Legendre polynomials, we find that

L
[j]
i (x) = (1/hj)

1/2 Li ((x−mj)/hj) ,

109

where hj = (xj − xj−1)/2 and mj = (xj−1 + xj)/2. By the completeness of
{

L
[j]
i (x)

}∞

i=0
in

L2(Ij), we may write

u(x)|Ij
=

∞∑

i=0

a
[j]
i L

[j]
i (x) , where a

[j]
i =

2i+ 1

2

∫

Ij

u(x)L
[j]
i (x) dx . (189)

With this notation, the analogue of Theorem 6.19 on the interval Ij holds verbatim; in
this case the elemental Bernstein ellipse Êρj

has foci at xj−1, xj and radius ρj = (aj + bj)/hj ,
where aj ≥ hj and bj are the lengths of the semi-major and semi-minor axes, respectively.
Moreover, with the elemental Legendre coefficients of u being defined as in (189), if u is
analytic in the interior of Êρj

, but not in the interior of any Êρ′j
with ρ′j > ρj , the elemental

Bernstein radius satisfies
1

ρj
= lim sup

i→∞

∣
∣
∣a

[j]
i

∣
∣
∣

1/i
(190)

with some ρj > 1. This result suggests that

θj =
1

ρj
, (191)

is a measure of size of the domain of analyticity of u relative to the interval Ij . Thereby, we
deduce that 0 ≤ θj ≤ 1; θj = 0 corresponds to an entire analytic function, whereas θj = 1
corresponds to functions with singular support in Ij , cf. [68, p. 42].

In practice, we must compute an approximation of θj (or, equivalently, of ρj) based on

the available local Legendre coefficients a
[j]
i , i = 0, 1, . . . , pj , of u in Ij . Indeed, motivated by

(190), one possible approach would be to approximate θj by θ̂j = |a[j]
pj |1/pj . This definition

may not provide a suitably accurate approximation to θj , particularly for functions whose
Legendre series expansion have repeating patterns of zero coefficients (occurring, for example,
for functions which are locally symmetric or antisymmetric about the midpoint of Ij or for
functions which have lacunary series expansions), since only the highest computed Legendre
coefficient is included into the criterion.

Thereby, we consider an alternative approach which takes into account all of the computed
Legendre coefficients on Ij. To this end, employing (190) we deduce that if u is analytic in

Ij and all subsequences of the sequence
{

|a[j]
pj |1/pj

}

converge to the same limit 1/ρj , then

|a[j]
i | ∼ (1/ρj)

i, as i → ∞. This implies that log |a[j]
i | ∼ i log(1/ρj), as i → ∞. We compute

an approximate value for θj by fitting the slopemj in | log |a[j]
i || = imj+bj by linear regression

to the already computed log |a[j]
i | for i = 0, 1, . . . , pj (note that for pj ≥ 1 there are at least

two Legendre coefficients of u per element available). Indeed, the slope mj of the regression

line of the data {i, yi = | log |a[j]
i | |}pj

i=0 is computed by

mj = 6
2
∑pj

i=0 iyi − pj
∑pj

i=0 yi

(pj + 1) ((pj + 1)2 − 1)
;

thereby, the following approximation θ̂j to θj may be determined:

θ̂j = e−mj . (192)

110

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

Figure 43: Mixed hyperbolic–elliptic problem. Profile of ε along y = 0.5, 0 ≤ x ≤ 1.

With this approximation, we can computationally determine the smoothness of a function.
The extension of this analyticity estimation procedure to higher–dimensions is based on the
application of these techniques in each coordinate direction on a reference element, assuming
that a quadrilateral/hexahedral finite element mesh has been employed. For the case of
triangular and tetrahedral meshes, we refer to [35]

6.5 Numerical Experiments

In this section we present some numerical experiments to highlight the performance of a goal–
oriented hp–refinement algorithm, based on estimating the local smoothness of the primal
and adjoint solutions by assessing their local analyticity using the algorithm outlined above.

6.5.1 Mixed hyperbolic–elliptic problem

In this first example we investigate the performance of the hp–adaptive strategy outlined
in Section 6.4 for the interior penalty DG method applied to a mixed hyperbolic–elliptic
problem with discontinuous boundary data. We let a = ε(x)I, where

ε =
δ

2
(1 − tanh((r − 1/4)(r + 1/4)/γ)) ,

r2 = (x− 1/2)2 + (y − 1/2)2 and δ ≥ 0 and γ > 0 are constants. Suppose, furthermore, that
b = (2y2 − 4x+ 1, 1 + y), c = −∇ · b and f = 0.

The characteristics associated with the hyperbolic part of the operator enter the com-
putational domain Ω from three sides of Γ, namely through the vertical edges placed along
x = 0 and x = 1 and the horizontal edge along y = 0; the characteristics exit Ω through
the horizontal edge along y = 1. Thus, on the inflow part of Γ we prescribe the following
boundary condition:

u(x, y) =

1 for x = 0 , 0 < y ≤ 1 ,
sin2(πx) for 0 ≤ x ≤ 1 , y = 0 ,

e−50y4

for x = 1 , 0 < y ≤ 1 .

This is a variant of the test problem presented in [78]. We note that, with δ > 0 and
0 < γ ≪ 1, the diffusion parameter ε will be approximately equal to δ in the circular region

111

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Point of

interest

Figure 44: Mixed hyperbolic–elliptic problem. DG approximation to the primal problem on
a 129 × 129 mesh with piecewise bilinear elements (piso = 1).

defined by r < 1/4, where the underlying partial differential equation is uniformly elliptic.
In this example, we set δ = 0.05 and γ = 0.01; a cross section of ε along 0 ≤ x ≤ 1, y = 1/2
is shown in Figure 43. As r is increased beyond 1/4, ε rapidly decreases through a layer
of width O(γ); for example, when r > 0.336 we have ε < 10−15, so from the computational
point of view ε is zero to within rounding error; in this region, the partial differential equation
undergoes a change of type becoming, in effect, hyperbolic. Thus we shall refer to the part of
Ω with r > 1/4+O(γ) as the hyperbolic region, while the set of points in Ω with r ≤ 1/4 will
be called the elliptic region. [Of course, strictly speaking, the partial differential equation is
elliptic in the whole of Ω̄.] Furthermore, Figure 44 depicts the numerical approximation to
(157)–(159) using the interior penalty DG method on a uniform 129 × 129 uniform square
mesh with piso = 1.

Here, we suppose that the aim of the computation is to calculate the value of the analytical
solution u at the point of interest x = (0.43, 0.9), i.e.,

J(u) = u(0.43, 0.9);

cf. Figure 44. The true value of the functional is given by J(u) = 0.704611313375.
We first study the performance of our adaptive strategy with h–refinement only, and

piso = 1. In Table 10 we show the number of nodes, elements and degrees of freedom (DoF)
in Vh,piso

, the true error in the functional |J(u) − J(uh)|, the computed a posteriori error
bound (154) and the corresponding effectivity index θ. Here, we see that the quality of
the computed a posteriori error bound is extremely good. Indeed, even on relativity coarse
meshes, the bound is reliable; moreover, the effectivity index θ shows that R|Ω|(uh, z̄h − zh)
overestimates the true error in the computed functional by a consistent factor as the finite
element space Vh,piso

is enriched.
In Figure 45 we show the mesh generated after 9 adaptive mesh refinement steps. Here,

we see that the mesh is largely concentrated in the neighborhood upstream of the point

112

Nodes # Elements # Dof |J(u) − J(uh)| ∑

κ∈Th
|η̄κ| θ

81 64 256 7.645e-02 6.597e-02 0.86
119 94 376 2.554e-02 6.331e-02 2.48
206 169 676 9.897e-04 5.640e-02 56.99
357 295 1180 1.323e-03 2.180e-02 16.48
638 538 2152 5.743e-04 8.900e-03 15.50
1053 898 3592 4.959e-04 3.936e-03 7.94
1728 1525 6100 1.453e-04 1.678e-03 11.55
2883 2548 10192 9.295e-05 8.622e-04 9.28
4848 4390 17560 6.002e-05 4.232e-04 7.05
8049 7309 29236 3.323e-05 2.234e-04 6.72
13048 11947 47788 1.562e-05 1.192e-04 7.63

Table 10: Mixed hyperbolic–elliptic problem. Adaptive algorithm using h–refinement

Figure 45: Mixed hyperbolic–elliptic problem. h–mesh after 9 refinements, with 8049 nodes,
7309 elements and 29236 degrees of freedom; here, |J(u) − J(uh)| = 3.323 × 10−5.

113

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 46: Mixed hyperbolic–elliptic problem. Adjoint solution.

Nodes # Elements # DoF |J(u) − J(uh)| ∑

κ∈Th
|η̄κ| θ

81 64 576 1.924e-02 3.330e-02 1.73
99 76 740 1.056e-02 1.085e-02 1.03
162 130 1451 1.006e-02 2.290e-02 2.28
241 193 2483 7.400e-04 2.385e-03 3.22
302 244 3776 3.760e-05 2.754e-04 7.32
323 262 4777 1.270e-05 1.026e-04 8.08
396 325 6916 9.896e-06 2.245e-05 2.27
487 403 9941 1.224e-06 6.466e-06 5.28
577 481 13528 4.656e-07 1.163e-06 2.50
713 601 19855 2.449e-07 2.582e-07 1.05
960 820 31019 1.574e-08 3.202e-08 2.03
1313 1132 47406 6.531e-10 2.154e-09 3.30

Table 11: Mixed hyperbolic–elliptic problem. Adaptive algorithm using hp–refinement

114

0 50 100 150 200

10
−8

10
−6

10
−4

10
−2

h−Refinement
hp−Refinement

|J
(u

)
−
J
(u

h
)|

sqrt(Degrees of freedom)

Figure 47: Mixed hyperbolic–elliptic problem. Comparison between h– and hp–adaptive
mesh refinement

of interest, together with some almost uniform refinement of the circular region enclosing
the part of the computational domain where the underlying partial differential equation is
elliptic. We remark that some refinement of the mesh in the region where the discontinuities
enter Ω from (0, 0) and (1, 0), as well as the steep layer entering from the right–hand side
boundary has also occurred, though these features of the analytical solution still remain
largely unresolved.

The design of the mesh is closely related to the structure of the underlying adjoint solution,
since the weighting terms involving the difference between the (approximated) adjoint solution
z̄h and zh multiply the computable residual terms involving the numerical solution uh in the
definition of the local error indicator |η̄κ|, cf. (153) with z replaced by z̄h. From Figure
46, we see that in the hyperbolic region of the computational domain above the region of
ellipticity, the adjoint solution consists of a single ‘spike’ originating from the point of interest
which is transported upstream along the single characteristic passing through x = (0.43, 0.9).
At the boundary of the circular region where the partial differential equation undergoes a
change of type from ‘hyperbolic’ to elliptic, the spike in the adjoint solution is ‘diffused
out’. Consequently, the domain of dependence of the point of interest consists of the single
characteristic passing through x = (0.43, 0.9), the circular region where the underlying partial
differential equation is elliptic, together with the part of the computational domain enclosed
by the intersection of the inflow boundary Γ− and the two extreme characteristics emanating
from the circular elliptic region.

Let us now turn our attention to hp–adaptivity; in Table 11 we show the performance
of the proposed adaptive finite element algorithm employing hp–refinement. Here, we again
see that the quality of the computed a posteriori error bound (154) is extremely good in the
sense that it overestimates the true error in the computed functional by a factor of about 1–8.
In Figure 47 we plot |J(u) − J(uh)|, using both h– and hp–refinement against the square–
root of the number of degrees of freedom on a linear–log scale. We see that after the initial

115

1 (1%)

2 (1%)

3 (3%)

4 (10%)

5 (36%)

6 (35%)

7 (14%)

Figure 48: Mixed hyperbolic–elliptic problem. h– and hp–meshes after 11 refinements, with
1313 nodes, 1132 elements and 47406 degrees of freedom; here, |J(u)−J(uh)| = 6.531×10−10.

116

Elements # Dof JCdp
(u) − JCdp

(uh)
∑

κ∈Th
η̄κ θ1

∑

κ∈Th
|η̄κ| θ2

448 7168 -0.4844E-02 -0.4411E-02 0.910 0.4453E-02 0.919
562 10252 -0.1197E-02 -0.1111E-02 0.928 0.1126E-02 0.940
685 14912 -0.5029E-03 -0.4631E-03 0.921 0.4707E-03 0.936
784 19360 -0.3923E-03 -0.3685E-03 0.939 0.3749E-03 0.956
838 23928 -0.1541E-03 -0.1433E-03 0.930 0.1500E-03 0.973
970 31780 -0.7443E-04 -0.6990E-04 0.939 0.7720E-04 1.04
1018 38132 -0.3061E-04 -0.2893E-04 0.945 0.3295E-04 1.08
1045 45616 -0.3010E-04 -0.2770E-04 0.921 0.3009E-04 1.00
1120 56684 -0.7940E-05 -0.7772E-05 0.979 0.9242E-05 1.16
1201 73200 -0.2481E-05 -0.2341E-05 0.944 0.3868E-05 1.56

Table 12: ADIGMA MTC1 test case: hp–Refinement algorithm based on an initial structured
quadrilateral mesh.

transient, the error in the computed functional using hp–refinement becomes (on average) a
straight line, thereby indicating exponential convergence of J(uh) to J(u); this occurs since z
is a real analytic function in the regions of the computational domain where u is not smooth
and vice verse. Figure 47 also demonstrates the superiority of the adaptive hp–refinement
strategy over the standard adaptive h–refinement algorithm. On the final mesh the true error
between J(u) and J(uh) using hp–refinement is over 4 orders of magnitude smaller than the
corresponding quantity when h–refinement is employed alone.

Figure 48 depicts the primal mesh after 11 adaptive mesh refinement steps. For clarity, we
show the h–mesh alone, as well as the corresponding distribution of the polynomial degree on
this mesh and the percentage of elements with that degree. We see that some h–refinement of
the primal mesh has occurred in the region of the computational domain upstream of the point
of interest, as well as in the circular region where the underlying partial differential equation
changes type. Once the h–mesh has adequately captured the structure of the primal and
adjoint solutions, the hp–adaptive algorithm performs p–refinement elsewhere in the domain
of dependence of the point of interest.

6.5.2 ADIGMA MTC1: Inviscid flow around a NACA0012 airfoil

In this section we consider the performance of the goal–oriented hp–refinement algorithm out-
lined above for the ADIGMA MTC1 test case: inviscid compressible flow around a NACA0012
airfoil with inflow Mach number equal to 0.5, at an angle of attack α = 2◦. Here, we suppose
that the aim of the computation is to calculate the pressure induced drag coefficient Cdp; i.e.,
J(·) ≡ JCdp

(·). In Tables 12 & 13 we show the performance of the proposed adaptive finite
element algorithm employing hp–refinement based on exploiting a structured and unstruc-
tured (hybrid) starting mesh, respectively. In each case, we show the number of elements and
degrees of freedom (Dof) in Vh,piso

, the true error in the functional JCdp
(u) − JCdp

(uh), the
computed error representation formula

∑

κ∈Th
η̄κ, the approximate a posteriori error bound

∑

κ∈Th
|η̄κ|, and their respective effectivity indices θ1 =

∑

κ∈Th
η̄κ/(JCdp

(u) − JCdp
(uh)) and

θ2 =
∑

κ∈Th
|η̄κ|/|JCdp

(u) − JCdp
(uh)|. Here, we see that the quality of the computed error

representation formula is extremely good, with θ1 ≈ 1 even on very coarse meshes.

117

Elements # Dof JCdp
(u) − JCdp

(uh)
∑

κ∈Th
η̄κ θ1

∑

κ∈Th
|η̄κ| θ2

365 5816 -0.1570E-01 -0.1276E-01 0.813 0.1292E-01 0.823
476 8612 -0.4385E-02 -0.3488E-02 0.795 0.3522E-02 0.803
530 11540 -0.8699E-03 -0.7229E-03 0.831 0.7335E-03 0.843
593 14556 -0.2288E-03 -0.2052E-03 0.897 0.2174E-03 0.950
650 18756 -0.6131E-04 -0.5476E-04 0.893 0.5862E-04 0.956
728 24456 -0.2285E-04 -0.2043E-04 0.894 0.2254E-04 0.986
809 30104 -0.8102E-05 -0.7065E-05 0.872 0.9337E-05 1.15
839 36188 -0.3086E-05 -0.2655E-05 0.860 0.4745E-05 1.54
881 45428 -0.1620E-05 -0.1456E-05 0.899 0.3153E-05 1.95
923 55592 -0.4111E-06 -0.4111E-06 1.00 0.1690E-05 4.11

Table 13: ADIGMA MTC1 test case: hp–Refinement algorithm based on an initial unstruc-
tured hybrid mesh.

100 200 300 400 500 600
10

−6

10
−5

10
−4

10
−3

10
−2

h−Refinement
hp−Refinement

|J
C

d
p
(u

)
−
J

C
d
p
(u

h
)|

sqrt(Degrees of freedom)
(a)

100 200 300 400 500
10

−6

10
−5

10
−4

10
−3

10
−2

h−Refinement
hp−Refinement

|J
C

d
p
(u

)
−
J

C
d
p
(u

h
)|

sqrt(Degrees of freedom)
(b)

Figure 49: ADIGMA MTC1 test case: Comparison between adaptive hp– and h–mesh re-
finement. (a) Structured initial mesh; (b) Unstructured initial mesh.

118

(a)

(b)

Figure 50: ADIGMA MTC1 test case: hp–Mesh distribution. (a) Structured initial mesh
after 9 adaptive refinements; (b) Unstructured initial mesh after 7 adaptive refinements.

In Figure 49 we plot the error in the computed target functional JCdp
(·), using both

h– and hp–refinement against the square–root of the number of degrees of freedom on a
linear–log scale in the case of both a structured and unstructured initial mesh. In both
cases, we see that after the initial transient, the error in the computed functional using hp–
refinement becomes (on average) a straight line, thereby indicating exponential convergence
of JCdp

(uh) to JCdp
(u). Figure 49 also demonstrates the superiority of the adaptive hp–

refinement strategy over the standard adaptive h–refinement algorithm. In each case, on
the final mesh the true error between JCdp

(u) and JCdp
(uh) using hp–refinement is almost 2

orders of magnitude smaller than the corresponding quantity when h–refinement is employed
alone.

Finally, in Figure 50 we show the hp–mesh distributions based on employing a structured
and unstructured initial mesh after 9 and 7 adaptive refinement steps, respectively.

119

100 200 300 400 500 600

10
−5

10
−4

10
−3

10
−2

h−Refinement
hp−Refinement

|J
C

d
(u

)
−
J

C
d
(u

h
)|

sqrt(Degrees of freedom)
(a)

100 150 200 250 300 350 400 450 500

10
−4

10
−3

h−Refinement
hp−Refinement

|J
C

d
(u

)
−
J

C
d
(u

h
)|

sqrt(Degrees of freedom)
(b)

Figure 51: ADIGMA MTC3 test case: Comparison between adaptive hp– and h–mesh re-
finement. (a) Structured initial mesh; (b) Unstructured initial mesh.

6.5.3 ADIGMA MTC3: Laminar flow around a NACA0012 airfoil

Finally, we consider the ADIGMA MTC3 test case: laminar compressible flow around a
NACA0012 airfoil with inflow Mach number equal to 0.5, at an angle of attack α = 2◦, and
Reynolds number Re = 5000 with adiabatic no-slip wall boundary condition imposed on the
airfoil geometry. Here, we suppose that the aim of the computation is to calculate the drag
coefficient Cd; i.e., J(·) ≡ JCd

(·).
In Figure 51 we plot the error in the computed target functional JCd

(·), using both h–
and hp–refinement against the square–root of the number of degrees of freedom on a linear–
log scale in the case of both a structured and unstructured initial mesh. As before, in both
cases, we see that after the initial transient, the error in the computed functional using hp–
refinement becomes (on average) a straight line, thereby indicating exponential convergence of
JCd

(uh) to JCd
(u). Figure 51 also demonstrates the superiority of the adaptive hp–refinement

strategy over the standard adaptive h–refinement algorithm. In each case, on the final mesh
the true error between JCd

(u) and JCd
(uh) using hp–refinement is over an order of magnitude

120

(a)

(b)

Figure 52: ADIGMA MTC3 test case: hp–Mesh distribution. (a) Structured initial mesh
after 8 adaptive refinements; (b) Unstructured initial mesh after 7 adaptive refinements.

smaller than the corresponding quantity when h–refinement is employed alone.
In Figure 52 we show the hp–mesh distributions based on employing a structured and

unstructured initial mesh after 8 and 7 adaptive refinement steps, respectively. In each case
we observe that some h–refinement has been undertaken in the vicinity of the boundary layers
as we would expect. However, once the h–mesh has adequately captured the structure of the
primal and adjoint solutions, the hp–adaptive algorithm subsequently performs p–refinement.

6.6 Anisotropic hp–mesh adaptation

In this section, we now consider the general case of automatically generating anisotropi-
cally refined computational meshes, together with an anisotropic polynomial degree distri-
bution. With this in mind, once an element has been selected for refinement/derefinement
a decision is first be made whether to carry out an h-refinement/derefinement or p-enrich-
ment/derefinement based on the technique developed in Section 6.4, whereby the analyticity
of the solutions u and z is assessed by studying the decay rates of their underlying Legendre

121

p1+1

p2

Vh,~p1

p1

p2+1

Vh,~p2

p1+1

p2+1

Vh,~p3

(a) (b) (c)

Figure 53: Polynomial Enrichment in 2D: (a) & (b) Anisotropic Enrichment; (c) Isotropic
Enrichment.

coefficients. An approximation of the first few Legendre coefficients of u and z are readily
obtained from the approximate solutions uh and z̄h, respectively, and hence a measure of the
smoothness of the respective solutions is available for minimal computational effort.

Once the h– and p–refinement flags have been determined on the basis of the above
strategy, a decision regarding the type refinement to be undertaken — isotropic or anisotropic
— must be made. Motivated by the work in Section 5.7, we employ a competitive refinement
technique, whereby the “optimal” refinement is selected from a series of trial refinements. In
the h–version setting, we again exploit the algorithm outlined in Section 5.7.

For the case when an element has been selected for polynomial enrichment we consider
the p–version counterpart of Algorithm 5.1 and solve local problems based on increasing the
polynomial degrees anisotropically in one direction at a time by one degree, or isotropically
by one degree. Figure 53 provides a visualisation of the local finite element spaces in two-
dimensions, where the original polynomial degree vector on the element of interest is p =
[p1, p2]. More precisely, we consider the following strategy.

Algorithm 6.1 This algorithm represents the p–version of Algorithm 5.1 above. Given an
element κ in the computational mesh Th (which has been marked for p–refinement), we write
Vh,~p(κ) to denote the local finite element space defined over κ consisting of (continuous)
polynomials of composite degree ~p. With this notation, we first construct the local finite
element spaces Vh,~pi

(κ), i = 1, 2, 3, based on enriching ~p according to Figures 53(a), (b)
and (c), respectively. On each finite element space Vh,~pi

(κ), i = 1, 2, 3, we compute the
approximate error estimators

Rκ,i(uh,i, z̄h,i − zh) ≡ η̄κ,i,

for i = 1, 2, 3, respectively. Here, uh,i, i = 1, 2, 3, is the DG approximation to (157)–(159)
computed on the finite element space Vh,~pi

(κ), i = 1, 2, 3. Similarly, z̄h,i denotes the DG
approximation to z computed on Vh,~pi+pinc

(κ), i = 1, 2, 3, respectively, with polynomials of
degree ~pi + pinc.

The element κ is then refined according to the subdivision of κ which satisfies

min
i=1,2,3

|ηκ| − |Rκ,i(ūh,i, z̄h,i − zh)|
#dofs(Vh,~pi

(κ)) − #dofs(Vh,~p(κ))
,

where #dofs(Vh,~pi
(κ)), i = 1, 2, 3, and #dofs(Vh,~p(κ)) denotes the number of degrees of free-

dom in the local finite element spaces Vh,~pi
(κ), i = 1, 2, 3, and Vh,~p(κ), respectively.

122

Initialize Grid,
Th,0

Compute
uh and z̄h

Compute
Error Estimate,

P

κ∈Th
|η̄κ|

Smooth Grid

Stop

Estimate
Smoothness

of u and z on κ

Perform
Algorithm 6.1

Perform
Algorithm 7.1

Estimate
Smoothness

of u and z on κ

Perform
h–derefinement

Perform isotropic
p-derefinement

P

κ∈Th
|η̄κ| < TOL

Element selected
for refinement

Element selected
for derefinement

u and z

u and z

non-smooth

non-smooth

u or z

u or z

smooth

smooth

Otherwise

Yes

No

Otherwise,
loop over elements

All Elements
Considered

Figure 54: Anisotropic hp–adaptive algorithm.

123

For clarity, the fully anisotropic hp-adaptive algorithm presented above can be viewed as
a flowchart in Figure 54.

In the following section we shall study the performance of the adaptive anisotropic hp–
refinement algorithm combining Algorithm 5.1 with Algorithm 6.1.

6.7 Numerical experiments

In this section we present some experiments to assess the numerical performance of the
proposed hp–anisotropic adaptive algorithm.

6.7.1 Singularly perturbed advection–diffusion problem

We consider the following (singularly perturbed) advection–diffusion problem equation

−ε∆u+ ux + uy = f,

for (x, y) ∈ (0, 1)2, where 0 < ε≪ 1 and f is chosen so that

u(x, y) = x+ y(1 − x) + [e−1/ε − e−(1−x)(1−y)/ε] [1 − e−1/ε]−1, (193)

cf. Section 5.8.1. Here, we suppose that the aim of the computation is to calculate the value
of the (weighted) mean-value of u over the computational domain Ω, i.e.,

J(u) =

∫

Ω
uψ dx,

where the weight function ψ is chosen as follows:

ψ(x, y) = 4(1 − 2y)(1 − e−α(1−x) − (1 − e−α)(1 − x))

+4y(y − 1)(e−α(1−x)(α− (1 − e−α)).

Setting α = 100 gives rise to a strong boundary layer in the analytical solution z to the
corresponding adjoint problem along the boundary x = 1 and a weaker boundary layer along
y = 0.

Here, we compare the performance of the anisotropic hp-refinement adaptive strategy
outlined in the previous section with a (standard) isotropic hp–refinement strategy, and an
h–anisotropic/p–isotropic refinement algorithm based on employing Algorithm 5.1 to decide
the anisotropy in the mesh. In both of these two latter strategies, the decision to perform
either h– or p–refinement/derefinement is again based on estimating the local analyticity of
the primal and adjoint solutions u and z, cf. Section 6.4. In all cases, we begin with a uniform
(square) mesh with 17 points in each coordinate direction and assign a uniform polynomial
degree vector ~p = [2, 2] on each element.

In Figures 55(a) & (b) we plot the (square root of the) degrees of freedom employed in
the finite element space Vh,~p against the error in the computed target functional J(·), for ε =
10−2, 10−3, respectively, using each of the three hp–mesh refinement algorithms defined above.
Firstly, we note that in all cases, the convergence lines are (on average) straight, indicating
exponential rates of convergence have been achieved using all three refinement strategies for
each ε, cf. [44]. Secondly, for each ε, we observe that the computed error, for a given number
of degrees of freedom, employing the h–isotropic/p–isotropic strategy is always inferior to

124

50 60 70 80 90

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Iso hp−Refinement
Aniso h−/Iso p−Refinement
Aniso hp−Refinement

(Degrees of Freedom)
1
2

|J
(u

)
−
J
(u

h
)|

(a)

40 60 80 100 120 140

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iso hp−Refinement
Aniso h−/Iso p−Refinement
Aniso hp−Refinement

(Degrees of Freedom)
1
2

|J
(u

)
−
J
(u

h
)|

(b)

Figure 55: Advection–diffusion problem. Comparison between adaptive hp–refinement strate-
gies: (a) ε = 10−2; (b) ε = 10−3.

the algorithm employing h–anisotropic/p–isotropic refinement. Similarly, this latter strategy
is inferior to exploiting the h–anisotropic/p–anisotropic refinement algorithm outlined in the
previous section. Indeed, for ε = 10−2, after the final refinement step, the anisotropic hp–
strategy yields over two orders of magnitude improvement over the h–anisotropic/p–isotropic
case and nearly 4 orders of magnitude improvement over the isotropic hp–method. For
ε = 10−3, the anisotropic hp–strategy yields around seven orders of magnitude improvement
in the error in the computed target functional J(·) after the final refinement step, for the
same number of degrees of freedom, in comparison to the isotropic hp–refinement strategy,
and two orders of magnitude improvement over the h–anisotropic/p–isotropic refinement
algorithm. In this latter case, we note that the anisotropic hp–refinement algorithm and the
h–anisotropic/p–isotropic strategy perform equally well during the first few refinement steps,
since only h–adaptation is undertaken. However, as soon as p–enrichment is required the use
of anisotropic polynomial degrees becomes clearly advantageous. In contrast, in the former
case when ε = 10−2, we observe an immediate improvement when employing anisotropic

125

2 (71%)

3 (16%)

4 (9%)

5 (4%)

2 (76%)

3 (19%)

4 (5%)

5 (0%)

(a) (b)

Figure 56: Advection–diffusion problem. Anisotropic hp-meshes after 4 refinement steps,
with 316 elements and 3767 degrees of freedom: (a) px and (b) py, for ε = 10−2.

hp–adaptivity.
Figure 56 shows the resultant hp–mesh distribution after 4 anisotropic hp–refinement

steps for ε = 10−2; here, Figures 56(a) and (b) show the polynomial degrees employed in
the x– and y–directions, respectively. We observe that anisotropic h–refinement has been
employed in order to resolve the right–hand side boundary layer and anisotropic p-refinement
has been utilized further inside the computational domain. In particular, we notice that
the polynomial degrees have been increased to a higher level in the x–direction, than in the
orthogonal direction, as we would expect. Quantitatively similar hp–mesh distributions are
generated for ε = 10−3; for brevity, we omit these results.

6.7.2 Mixed hyperbolic–elliptic problem

In this second example we investigate the performance of the proposed hp–anisotropic refine-
ment algorithm applied to a mixed hyperbolic–elliptic problem with discontinuous boundary
data. To this end, we let Ω = (0, 2) × (0, 1), a = ε(x)I, where ε = (1 − tanh(100(r1 −
0.12)(r1 + 0.12)))(1 − tanh(100(r2 − 0.12)(r2 + 0.12)))/1000 , r1 = x− 1.3 and r2 = y − 0.3.
Furthermore, we set

b =

{
(y, 1 − x)⊤ if x < 1,
(1, 1/10)⊤ if x ≥ 1,

c = 0, and f = 0. On the inflow boundary Γ−, we select u(x, y) = 1 along y = 0, 1/8 <
x < 3/4, and u(x, y) = 0, elsewhere. This is a variant of the test problem presented in [69].
We note that the diffusion parameter ε will be approximately equal to 3.6 × 10−3 in the
square region (1.18, 1.42) × (0.18, 0.42), where the underlying partial differential equation is
uniformly elliptic. As (x, y) moves outside of this region, ε rapidly decreases through a layer
of width O(0.1); for example, when x = 1.3 and y > 0.7 we have ε < 10−15, so from the
computational point of view ε is zero to within rounding error; in this region, the partial
differential equation undergoes a change of type becoming, in effect, hyperbolic. Thus, we

126

(a)

(b)

Figure 57: Mixed hyperbolic–elliptic problem: (a) Primal solution (b) Dual solution.

shall refer to the part of Ω containing this square region (including a strip of size O(0.1))
as the elliptic region, while the remainder of the computational domain will be referred to
as the hyperbolic region. (Strictly speaking, the partial differential equation is elliptic in the
whole of Ω̄.) Figure 57(a) shows the analytical solution to the primal problem.

Here, we suppose that the aim of the computation is to calculate the value of the
(weighted) outflow advective flux along x = 2, 0 ≤ y ≤ 1, i.e., J(u) =

∫ 1
0 (b ·n)u(2, y)ψ(y) dy,

where the weight function, in a modification to [43], is

ψ(y) =

{
(tanh(50(y − 7/40)) + 1)/2 y < 17/40,
(tanh(−50(y − 27/40)) + 1)/2 y ≥ 17/40;

see Figure 57(b) for the corresponding adjoint solution. The true value of the functional is
given by J(u) = 0.324999805677598.

Once again we compare this anisotropic hp–refinement strategy outlined in Section 6.6
with both an hp–isotropic algorithm and an h–anisotropic/p–isotropic refinement strategy, cf.
Section 6.7.1. In all cases the starting hp–mesh distribution is a uniform 17×9 grid, consisting
of uniform square elements, with the uniform polynomial degree distribution p = [2, 2] on
each element.

127

20 40 60 80 100 120 140 160

10
−12

10
−10

10
−8

10
−6

10
−4

Isotropic hp−Refinement
Aniso h−/Iso p−Refinement
Aniso hp−Refinement

(Degrees of Freedom)
1
2

|J
(u

)
−
J
(u

h
)|

Figure 58: Mixed hyperbolic–elliptic problem: Comparison between adaptive hp–refinement
strategies.

In Figure 58 we plot the (square root of the) degrees of freedom employed in the finite
element space Vh,~p against the error in the computed target functional J(·), using each of
the three hp–mesh refinement algorithms defined above, namely hp–isotropic refinement,
h–anisotropic/p–isotropic refinement, and hp–anisotropic refinement. As in the previous
example, we note that in all cases, after an initial transient, the convergence lines are (on
average) straight, indicating exponential rates of convergence have been achieved using all
three refinement strategies. Similarly, we again observe that the computed error, for a given
number of degrees of freedom, employing the h–isotropic and p–isotropic strategy is always
inferior to the algorithm employing h–anisotropic and p–isotropic refinement, which is in
turn inferior to hp–anisotropic refinement algorithm. Evidently the majority of improvement
over the hp–isotropic strategy is due to employing anisotropic h–refinement, cf. the previous
example when ε = 10−3, yet in the asymptotic regime the hp–anisotropic strategy consistently
shows around an order of magnitude improvement in the error for the same number of degrees
of freedom, when compared with the h–anisotropic/p–isotropic refinement strategy.

Finally, Figures 59(a) and (b) show the resultant computational mesh and polynomial
degree distribution in the x– and y–directions, respectively, after 8 steps of our hp–anisotropic
refinement strategy. Here, we see that the majority of h–refinement has taken place primarily
along the layer of the analytical solution u emanating from the point (x, y) = (3/4, 0). In
other regions p–enrichment has been favoured; indeed there is a marked difference between the
polynomial degrees employed in the x– and y–directions, with the majority of elements having
had no p–enrichment in the x–direction, while most element have had some p–enrichment in
the y–direction. The p–enrichment in the x–direction has been concentrated in the left half
of the domain as this is where layers in the primal and adjoint solutions run parallel to the
y–axis, while for the same reason p–enrichment in the y–direction is concentrated in the right
portion of the computational domain.

128

2 (67%)

3 (16%)

4 (10%)

5 (5%)

6 (1%)

(a)

2 (40%)

3 (23%)

4 (19%)

5 (12%)

6 (5%)

(b)

Figure 59: Mixed hyperbolic–elliptic problem. Anisotropic hp–meshes after 8 refinement
steps, with 410 elements and 6338 degrees of freedom: (a) px and (b) py.

6.7.3 ADIGMA MTC3: Laminar flow around a NACA0012 airfoil

In this section we again consider the ADIGMA MTC3 test case: laminar compressible flow
around a NACA0012 airfoil with inflow Mach number equal to 0.5, at an angle of attack
α = 2◦, and Reynolds number Re = 5000 with adiabatic no-slip wall boundary condition
imposed on the airfoil geometry. Here, we suppose that the aim of the computation is to
calculate the drag coefficient Cd; i.e., J(·) ≡ JCd

(·).
In Figure 60 we plot the error in the computed target functional JCd

(·), using a variety of
h–/hp–adaptive algorithms against the square–root of the number of degrees of freedom on a
linear–log scale in the case when an unstructured initial mesh is employed. In particular, here
we consider the performance of the following adaptive mesh refinement strategies: isotropic
h–refinement, anisotropic h–refinement, isotropic hp-refinement, anisotropic h–/isotropic p–
refinement, and anisotropic hp–refinement. Here, we clearly observe that as the flexibility of
the underlying adaptive strategy is increased, thereby allowing for greater flexibility in the
construction of the finite element space Vh,~p, the error in the computed target functional of
interest is improved in the sense that the error in the computed value of JCd

(·) is decreased
for a fixed number of degrees of freedom. However, we point out that in the initial stages
of refinement, all of the refinement algorithms perform in a similar manner. Indeed, it is
not until the structure of the underlying analytical solution is resolved that we observe the
benefits of increasing the complexity of the adaptive refinement strategy. Finally, we point out
that the latter three refinement strategies incorporating p–refinement all lead to exponential

129

100 150 200 250 300 350 400 450 500

10
−4

10
−3

Iso h−Refinement
Aniso h−Refinement
Iso hp−Refinement
Aniso h−/Iso p−Refinement
Aniso hp−Refinement

|J
C

d
(u

)
−
J

C
d
(u

h
)|

sqrt(Degrees of freedom)

Figure 60: ADIGMA MTC3 test case: Comparison between different adaptive refinement
strategies.

Figure 61: ADIGMA MTC3 test case: h–/px–mesh distribution after 5 adaptive anisotropic
hp–refinements, with 2200 elements and 52744 degrees of freedom.

130

Figure 62: ADIGMA MTC3 test case: h–/py–mesh distribution after 5 adaptive anisotropic
hp–refinements, with 2200 elements and 52744 degrees of freedom.

convergence of JCd
(uh) to JCd

(u).
Figures 61 & 62 show the resultant hp–mesh distribution when employing anisotropic hp–

refinement after 5 adaptive steps; here, Figures 61 & 62 show the (approximate) polynomial
degrees employed in the x– and y–directions, respectively. We observe that anisotropic h–
refinement has been employed in order to resolve the boundary layer and anisotropic p-
refinement has been utilized further inside the computational domain. In particular, we
notice that the polynomial degrees have been increased to a higher level in the orthogonal
direction to the curved geometry, as we would expect.

131

7 Application of error estimation and adaptation to complex

flows

In this section the adjoint-based error estimation and mesh refinement algorithms described
in Section 4 are applied to complex flows, including three dimensional laminar flows, as well
as two and three dimensional turbulent flows. In addition to isotropic refinement, cf. Section
4.5, here we will also use anisotropic mesh refinement. However, here we do not employ the
anisotropic mesh refinement algorithm developed in Section 5; instead, we exploit a simpler
but still effective anisotropic indicator described the following.

The mesh refinement indicators derived in Sections 4.1 and 4.4 provide only information
regarding which elements should be refined in order to improve the accuracy of the resulting
solution. As these error indicators do not include any directional information, an additional
anisotropic indicator is needed in order to decide whether splitting just a subset of an ele-
ment’s edges and thus modifying the child elements’ aspect ratios is preferable over splitting
all edges. In the latter case the refinement is isotropic in the sense that child elements inherit
the aspect ratio of the mother element. The jump indicator considered here was introduced
in [85, 86] for two-dimensional flows. For completeness, we recall the most relevant details
and their extension to three-dimensional problems, see [64].

One of the most characteristic features of DG methods is the possible discontinuity of
its discrete solutions. In fact, a discrete solution may have jumps across the faces between
neighboring elements, whereas it is smooth inside each element. These jumps allow some
flexibility in approximating the local properties of the solution. In smooth parts of the
solution these jumps tend to zero with successive mesh refinement as the approximate solution
is enhanced, i.e., as the error decays. Based on this observation it seems justified to assume
that a large jump indicates a larger error as compared to a smaller jump. In view of an
anisotropic evaluation a large jump over a face indicates that the mesh size perpendicular to
this face is too coarse to sufficiently resolve the solution. In this sense inter–element jumps
can be used to derive an anisotropic indicator, that uses information which is specific to the
numerical method used to solve the problem. Near discontinuities of the solution, like shocks,
the jumps might not tend to zero under mesh refinement. However, in this case a large jump
detects this discontinuity and suggests a refinement improving the resolution orthogonal to
this feature, which is indeed the correct behavior. Thus, the inter-element jumps can be used
as an indicator in both smooth and non-smooth regions of the solution.

In order to obtain directional information, the average jump Ki of a function φ over the
two opposite faces f j

i , j = 1, 2, perpendicular to one coordinate direction i on the reference
element can be evaluated as

Ki =

∑2
j=1

∣
∣
∣

∫

fj
i
[φ] ds

∣
∣
∣

∑2
j=1 meas(f j

i)
, i = 1, 2, 3, (194)

where [φ] = φ+ − φ− denotes the jump of a scalar function φ. Equation (194) provides three
distinct values for each element; let Km denote the maximum value of Ki, i = 1, 2, 3. We
want to refine along each direction l in which the average jump is not considerably smaller
than Km. In order to quantify considerably, we introduce a threshold factor θ > 1. Thus we
refine along each direction l for which

θ Kl > Km, l = 1, 2, 3. (195)

132

Depending on the relative sizes of the average jumps in the individual directions, several
cases may occur, see Figure 63. If the jump is particularly large in one direction, the element

x̂1x̂1
x̂2x̂2

x̂3x̂3

x̂1x̂1
x̂2x̂2

x̂3x̂3

x̂1x̂1
x̂2x̂2

x̂3x̂3

x̂1x̂1
x̂2x̂2

x̂3x̂3

x̂1x̂1
x̂2x̂2

x̂3x̂3

x̂1x̂1
x̂2x̂2

x̂3x̂3

x̂1x̂1
x̂2x̂2

x̂3x̂3

Figure 63: Possible anisotropic and isotropic refinement cases on the 3d reference element.

will be refined only along that direction. If the jump in one direction is particularly small,
whereas the other two values are of a similar size, the element will be refined along the other
two directions. If all the three average jumps have a similar size, then isotropic refinement
will be undertaken.

If the solution function is vector–valued, as is the case for the flow equations, the jump
of a scalar function φ in Equation (194) has to be replaced by an appropriate norm of the
vector of jumps, for example, the L2-norm.

The empirical threshold factor θ > 1 has to be chosen large enough to ensure that
only those elements are flagged for anisotropic refinement, which are located near strong
anisotropic features, otherwise the error would not be reduced sufficiently. On the other hand,
however, a smaller value of θ allows more elements to be treated anisotropically, thereby lead-
ing to a reduced number of total elements. Numerical experiments indicate that θ = 5.0 is a
good choice for a range of test problems.

We note that the anisotropic indicators (194) can be used in combination with adjoint-
based as well as with residual-based indicators. In contrast to anisotropic indicators which
are based on approximation estimates and which include second and possibly higher order
derivatives the jump indicators do not rely on the existence of higher order derivatives, see
[85, 86] for a more detailed discussion on derivative indicators. For the same reason the
jump indicators can easily be extended to the case of hp-refined meshes. Finally, the jump
indicators are extremely cheap; in particular, they do not require additional local primal
and adjoint problems to be solved as required for evaluating error estimates for each of the
different refinement cases, see Section 5.

7.1 ADIGMA BTC0: Laminar flow around streamlined body

First, we consider a streamlined three-dimensional body based on a 10 percent thick airfoil
with boundaries constructed by a surface of revolution, see Figure 64. It consists of an
elliptical leading edge and straight lines. The BTC0 geometry is considered at laminar
conditions with inflow Mach number equal to 0.5, at an angle of attack α = 1◦, and Reynolds
number Re = 5000 with adiabatic no-slip wall boundary condition imposed. The geometry

133

Figure 64: ADIGMA BTC0 test case at laminar conditions: Initial coarse mesh on the body
surface and the symmetry plane. The symmetry plane coloring is based on the Mach number
distribution computed on a fine mesh, [64].

and the flow is relatively simple. In fact, this test case has been defined in the EU project
ADIGMA [82] to enable convergence studies. A reference drag coefficient value of JCd

(u) =
0.063176 has been obtained by performing high order computations on fine meshes.

We note that in all subsequent computations the boundary of the curved body is approx-
imated using piecewise bi-quadratic polynomials where the additional points required for
defining these polynomials are obtained from a CAD representation of the BTC0 geometry.
Similarly, also the new points on the boundary required during local mesh refinement near
the body are taken from the CAD representation.

The aim of the following computations is to efficiently approximate the drag coefficient on
a sequence of locally refined meshes. To this end, we perform the error estimation algorithm
described in Section 4.1 on locally refined meshes adapted using the adjoint-based indicators
(79) where the adjoint problem (76) is connected to the drag coefficient (51). The first
sequence of locally refined meshes is based on isotropic mesh refinement, i.e., upon refinement
each hexahedral element is isotropically subdivided into eight hexahedral sub-elements. In
Table 14 we collect the number of elements, the number of degrees of freedom (DoF) of
uh ∈ Vh,1, the true error JCd

(u) − JCd
(uh) in the drag coefficient, the estimated error

R(uh, z̄h−zh) =
∑

κ∈Th
η̄κ, (78), and the quotient θ = R(uh, z̄h−zh)/ (JCd

(u) − JCd
(uh)) of

the estimated and the true error, which is also called the effectivity index. First of all, we see
that on all meshes the sign of the error is predicted correctly. On the coarsest three meshes
the error estimates are not particularly accurate, which is indicated by an effectivity index θ
in the range of [0.64, 2.7]. However, as the mesh is refined the effectivity index θ converges
to one.

Table 15 collects the corresponding data on a sequence of anisotropically refined meshes.
Here, on each element depicted for local refinement by the adjoint-based indicators the
anisotropic jump indicator (194) is used to determine which of the seven different refine-
ment cases shown in Figure 63 are applied. Here, we see that the error estimation behaves
very similar to the one described for the sequence of the isotropically refined meshes in Table
14; in particular, the effectivity of the error estimation does not deteriorate on anisotropically
refined meshes.

134

Elements # DoF JCd
(u) − JCd

(uh)
∑

κ∈Th
η̄κ θ

768 30720 -9.817e-04 -6.548e-04 0.67
1853 74120 1.737e-03 4.690e-03 2.70
4744 189760 -8.099e-04 -5.146e-04 0.64
12304 492160 -5.007e-04 -4.732e-04 0.95
32282 1291280 -2.825e-04 -2.743e-04 0.97
81688 3267520 -1.063e-04 -1.064e-04 1.00

Table 14: ADIGMA BTC0 test case (laminar): Adaptive algorithm for the accurate approx-
imation of the drag coefficient, Cd, on a sequence of isotropically refined meshes, [64].

Elements # DoF JCd
(u) − JCd

(uh)
∑

κ∈Th
η̄κ θ

768 30720 -9.817e-04 -6.548e-04 0.67
1366 54640 1.081e-03 4.096e-03 3.79
2700 108000 -8.711e-04 -5.759e-04 0.66
5518 220720 -5.386e-04 -5.067e-04 0.94
11483 459320 -3.374e-04 -3.261e-04 0.97
23773 950920 -1.886e-04 -1.868e-04 0.99

Table 15: ADIGMA BTC0 test case (laminar): Adaptive algorithm for the accurate approx-
imation of the drag coefficient, Cd, on a sequence of anisotropically refined meshes, [64].

Finally, Figure 65(a) plots the error in the drag coefficient |JCd
(u) − JCd

(uh)| against
the number of elements for a sequence of globally refined meshes, the sequence of adjoint-
based isotropic refined meshes, see Table 14, and the sequence of adjoint-based anisotropic
refined meshes, see Table 15. Comparing the histories of global and adjoint-based isotropic
refinement we see in Figure 65 that for this test case the adjoint-based refinement leads to
meshes with a factor of about 5 less elements for a specific accuracy in the drag coefficient
when compared to global refinement. Moreover, we see that there is another factor of about 2
in the mesh sizes required for a specific accuracy for the anisotropic algorithm when compared
to the isotropic adjoint-based mesh refinement.

A comparison of the resulting meshes for the two refinement algorithms is given in Figure
66. As anisotropic features are not particularly strong and the initial mesh already shows
some anisotropy, the overall effect of anisotropic refinement seems rather weak. However, we
note that the strong stretching of some cells along the body with small edge length orthogonal
to the flow is too pronounced in the initial mesh. During isotropic refinement this aspect ratio
is inherited to all child elements. The anisotropic refinement algorithm can modify aspect
ratios, however, and it does so in this test case, but in contrast to initial expectations it is
reducing aspect ratios in order to find the mesh best fitted to the (quite isotropic) problem
at hand, which in this case is a more isotropic mesh. In addition to that, other parts of the
adapted mesh show the more common case of elements which have a larger aspect ratio in
the anisotropic case.

The error estimates in Tables 14 and 15 can be used to enhance the computed drag
coefficients JCd

(uh) as follows: J̃Cd
(uh) := JCd

(uh) + R(uh, z̄h − zh). For smooth solutions
such enhanced target quantities can be expected to converge to the true value with higher
order of convergence than the original values JCd

(uh). This is confirmed in Figure 65(a)

135

 1e-04

 0.001

 1000 10000 100000

number of elements

global
adjoint-based isotropic
adjoint-based anisotropic

|C
d
−

C
re

f
d
|

 1e-06

 1e-05

 1e-04

 0.001

 1000 10000 100000

number of elements

global
adj iso
adj aniso
adj iso + error est.
adj aniso + error est.

|C
d
−

C
re

f
d
|

(a) (b)

Figure 65: ADIGMA BTC0 test case (laminar): Convergence of the error in the drag co-
efficients JCd

(uh) for global in comparison to adjoint-based isotropic and anisotropic mesh
refinement. Additionally, b) shows the errors of the enhanced drag coefficients J̃Cd

(uh) =
JCd

(uh) + R(uh, z̄h − zh) for the adjoint-based isotropic and anisotropic mesh refinement,
[64].

Figure 66: ADIGMA BTC0 test case (laminar): Adapted surface meshes after five adaptation
cycles: top: isotropic refinement, bottom: anisotropic refinement, [64].

which repeats the convergence histories of Figure 65(b) in a different scale and additionally
shows the histories of the errors of the enhanced drag coefficients J̃Cd

(uh). In fact, from the

136

third coarsest mesh onwards the enhanced drag coefficients are significantly more accurate
than the original values JCd

(uh) and converge with higher order.

7.2 ADIGMA BTC3: Laminar flow around delta wing

As a second test case we consider a laminar flow around a delta wing. The delta wing has
a sloped and sharp leading edge and a blunt trailing edge. A similar case has previously
been considered in [81]. The geometry of the delta wing can be seen from the initial surface
mesh in Figure 67(a). The delta wing is considered at laminar conditions with inflow Mach

(a) (b)

Figure 67: Laminar delta wing: a) initial surface mesh: Top, bottom and side view of the
half delta wing with straight leading edges, b) solution plot showing streamlines and a Mach
number isosurface over the left half of the wing as well as Mach number slices over the right
half, [64].

number equal to 0.3, at an angle of attack α = 12.5◦, and Reynolds number Re = 4000
with isothermal no-slip wall boundary condition imposed on the wing geometry. This is the
ADIGMA BTC3 test case as defined in the EU project ADIGMA [82]. As the flow passes
the leading edge it rolls up, creates a vortex and a secondary vortex. The resulting vortex
system remains over long distances behind the wing, see Figure 67(b).

By performing high order computations on fine meshes the following reference values of
the force coefficients have been obtained: JCd

(u) = 0.16608 and JCl
(u) = 0.34865. In the

following we will compare the performance of the adjoint-based mesh refinement algorithm
for the accurate approximation of the drag and lift coefficients with both a residual-based
strategy and global mesh refinement. Additionally, for the local mesh refinement strategies
we will compare isotropic against anisotropic mesh refinement.

Let us first consider the lift coefficient; performing the error estimation and adjoint-based
mesh refinement algorithm with the adjoint problem connected to the lift coefficient, we
collect the data of the sequence of isotropically refined meshes in Table 16. Here we see that
already on the coarse meshes the error estimation is quite accurate and it improves as the
mesh is refined. A similar behavior is also seen for anisotropic mesh refinement, cf. Table 16,
where the error estimation is slightly more accurate than in the isotropic case.

137

Elements # DoF JCl
(u) − JCl

(uh)
∑

κ∈Th
η̄κ θ

3264 130560 -2.686e-02 -2.022e-02 0.75
8346 333840 -1.639e-02 -1.232e-02 0.75
22647 905880 -9.017e-03 -7.867e-03 0.87
60524 2420960 -4.537e-03 -4.715e-03 1.04

Table 16: Laminar delta wing: Adaptive algorithm for the accurate approximation of the lift
coefficient on a sequence of isotropically refined meshes, [64].

Elements # DoF JCl
(u) − JCl

(uh)
∑

κ∈Th
η̄κ θ

3264 130560 -2.686e-02 -2.022e-02 0.75
6347 253880 -1.767e-02 -1.470e-02 0.83
14108 564320 -8.855e-03 -7.405e-03 0.84
32331 1293240 -4.605e-03 -4.612e-03 1.00

Table 17: Laminar delta wing: Adaptive algorithm for the accurate approximation of the lift
coefficient on a sequence of anisotropically refined meshes, [64].

Figure 68(a) plots the error in the lift coefficient |JCl
(u)−JCl

(uh)| against the number of
elements for various refinement strategies: global mesh refinement, residual-based isotropic
and anisotropic mesh refinement, as well as adjoint-based isotropic and anisotropic mesh re-
finement. We notice that lift coefficients of a specific accuracy are obtained with less elements
for residual-based mesh refinement than for global mesh refinement where this advantage in-
creases for increasing accuracy requirements. Furthermore, there is a significant decrease of
the number of elements required for a specific accuracy when comparing adjoint-based against
residual-based refinement. Additionally, in case of adjoint-based mesh refinement Figure
68(a) plots the errors of the enhanced lift coefficients J̃Cl

(uh) := JCl
(uh) + R(uh, z̄h − zh).

We note that already on the coarsest mesh the enhanced lift coefficient is almost as accu-
rate as the lift coefficients on the finest adjoint-based refined mesh. Finally, we see that
anisotropic mesh refinement always performs better than isotropic mesh refinement. In fact,
anisotropic adjoint-based refinement requires about half the number of elements for almost
the same accuracy than the corresponding isotropic refinement.

Finally, we consider the drag coefficient. Tables 18 and 19 collect the data of the se-
quences of, respectively, the isotropically and anisotropically adjoint-based refined meshes.
In both cases we see a analogous behavior to that described for the lift coefficient. Finally,
Figure 68(b) plots the errors for global refinement, residual-based refinement (isotropic and
anisotropic), adjoint-based refinement (isotropic and anisotropic) and the errors of the en-
hanced lift coefficients. Here, we again observe behavior very similar to that described for
the lift coefficient above.

Adapted meshes for the six different combinations of error indicators and isotropic or
anisotropic refinement are presented in Figure 69.

All plots are given for the last data point in the errors plots in Figure 68, so the accuracy
for the relevant target functional values is comparable. The outstanding effect is clearly the
resolution of the vortex in the cut-plane behind the wing for the residual-based refinement
indicator and the corresponding lack of resolution in this area in the case when goal-oriented
refinement is employed. It is quite obvious that the global flow field is better resolved using

138

 0.001

 0.01

 10000 100000

number of elements

global
res iso

res aniso
adj iso

adj aniso
adj iso + error est.

adj aniso + error est.

|C
l
−

C
re

f
l
|

 0.001

 0.01

 10000 100000

number of elements

global
res iso

res aniso
adj iso

adj aniso
adj iso + error est.

adj aniso + error est.

|C
d
−

C
re

f
d
|

(a) (b)

Figure 68: Laminar delta wing: Convergence of the error in the a) lift and b) drag coefficients
J(uh) for global in comparison to residual-based (isotropic and anisotropic) and to adjoint-
based (isotropic and anisotropic) mesh refinement. Additionally, the errors of the enhanced
force coefficients J̃(uh) = J(uh) + R(uh, z̄h − zh) on the sequences of adjoint-based mesh
refinement are given, [64].

Elements # DoF JCd
(u) − JCd

(uh)
∑

κ∈Th
η̄κ θ

3264 130560 -1.174e-02 -9.594e-03 0.82
8549 341960 -6.492e-03 -5.566e-03 0.86
22885 915400 -3.688e-03 -3.223e-03 0.87
61868 2474720 -1.942e-03 -1.941e-03 1.00

Table 18: Laminar delta wing: Adaptive algorithm for the accurate approximation of the
drag coefficient on a sequence of isotropically refined meshes, [64].

Elements # DoF JCd
(u) − JCd

(uh)
∑

κ∈Th
η̄κ θ

3264 130560 -1.174e-02 -9.594e-03 0.82
6600 264000 -7.118e-03 -6.464e-03 0.91
14215 568600 -3.615e-03 -3.230e-03 0.89
32621 1304840 -1.967e-03 -1.928e-03 0.98

Table 19: Laminar delta wing: Adaptive algorithm for the accurate approximation of the
drag coefficient on a sequence of anisotropically refined meshes, [64].

139

(a) (b)

(c) (d)

(e) (f)

Figure 69: Laminar delta wing: Adapted meshes, a) and b): four adaptation steps with
the residual indicator, isotropic and anisotropic, c) and d): three adaptation steps with the
adjoint-based indicator for the lift coefficient Cl, isotropic and anisotropic, e) and f): three
adaptation steps with the adjoint-based indicator for the drag coefficient Cd, isotropic and
anisotropic, [64].

140

(a)

(b)

(c)

Figure 70: Laminar delta wing: Mesh after 4 isotropic residual-based refinement steps. (a)
Distant view; (b) Close up view; (c) Mach number distribution. The vortex is resolved till
the outflow boundary. Result of the PADGE code [57].

141

Figure 71: Laminar delta wing: Mach number distribution on mesh after 4 isotropic residual-
based refinement steps. Result of the PADGE code [57].

the former type of indicator, whereas the resolution of this prominent vortex does not strongly
influence the target functional values, as both the pressure at the wall and the skin friction
are only weakly dependent on the downstream vortex evolution. Thus, investing more in the
near-wall refinement, the adjoint-based refinement indicators are capable of creating more
efficient meshes for the approximation of a given target functional. In contrast to that, the
residual-based indicator is particularly well suited for resolving the overall flow field. In
Figure 69(a) we see that the vortex system is well resolved in a cut-plane not too far behind
the wing. Moreover, the vortex is well resolved over a significantly longer distance. In fact,
the distant and close up view of the mesh depicted in Figures 70(a)&(b) shows that refinement
along the path of the vortex is undertaken up to the outflow boundary. This way the vortex
is kept and resolved until the outflow boundary, see Figure 69(c).

7.3 ADIGMA BTC1: L1T2 high-lift configuration

In this section we consider a turbulent flow around a typical high-lift configuration, the
L1T2 three-element airfoil. The geometry of this configuration is outlined in Fig. 73(a).
In particular, we consider a turbulent flow at Mach number M = 0.197, Reynolds number
Re = 3.52·106 and an angle of attack α = 20.18◦. This case has been documented extensively
in the literature, see e. g. [37, 65]. In particular, there is data of two wind tunnel experiments
available, see [89]; in the sequel we refer to this data as experiment 1 and experiment 2.
Furthermore, this test case has been considered as test case BTC1 in the EU project ADIGMA
[82].

In the following computations based on the PADGE code [57] a DG discretization of
the RANS-kω equations is used which represents a slight modification of the BR2 scheme
proposed in [13]. In particular, we use the derived variable lnω instead of ω itself. Further-
more, we impose specific limitations of the turbulence variables. Whereas k is simply kept
non-negative, the variable ω is bounded from below by a local, i.e., pointwise minimal ω0

value derived from the realizability of the Reynolds stresses, see [13]. At wall boundaries we
use Menter’s boundary condition for ω, where the first wall boundary layer grid spacing y1

142

Figure 72: L1T2 high lift configuration: Coarse grid of 4740 curved elements.

is chosen such that y+
1 , i.e., the first y+ = y1

uτ

ν value, is in the range of one.
First, we compare numerical results generated by the PADGE code with results generated

by the well validated finite volume code TAU [100] as well as with experimental data. The
PADGE computations were performed with polynomial degrees p = 3 and p = 4, each on the
same quadrilateral mesh with 4 740 curved elements, see Figure 72. This mesh emerged from
an original 75 840 element mesh by two agglomeration steps. The curved mesh representation
in this case is realized by piecewise quartic approximation based on extra point data which
have been extracted from the original mesh. Reference results have been produced on the
original mesh by means of the TAU code.

Figure 73(b) shows the pressure distribution over each of the airfoil elements, i.e., slat,
main element and flap. Here, we see that the output by the PADGE code is in a good
agreement with the experimental data and with only minor differences compared to the
TAU reference results. Furthermore, Figure 73(c) shows the comparison for the skin friction
distribution. Whereas there are still considerable differences between the computed skin
friction distribution for p = 3, the result for p = 4 is overall in a good agreement with the
TAU reference computation. We note that the p = 4 computation took nearly the same
number of degrees of freedom as the TAU code.

In the following, we investigate the performance of the adjoint-based and the residual-
based mesh refinement for this test case. Starting with p = 1 solution on the coarse mesh of
4 740 curved elements, we first consider the adjoint-based refinement targeted at efficiently
approximating the lift coefficient Cl. In Figure 74(a) we compare the convergence of Cl for
the global, the residual-based and the adjoint-based mesh refinement. We see that with the
adjoint-based refinement the Cl value converges significantly faster to the Cl reference value
than when residual-based or global mesh refinement are employed. Furthermore, we see that
using the error estimation on the adjoint-based refined meshes for computing enhanced lift
values J̃Cl

(uh) = JCl
(uh) + R(uh, z̄h − zh) further improves the Cl value. In Figure 74(b)

we see the respective plot for the Cd value. Figure 76 and Figure 77 show the final

143

(a)

0 1

-10

-5

0

0 1

-2

-1

0

1
0 1

-18

-12

-6

0

Slat Main element Flap

c p

x/l x/lx/l

(b)

0 0.2 0.4 0.6 0.8 1 1.2

-0.04

-0.02

0

0.02

0.04

-0.1 0 0.1

0

0.02

0.04

TAU
PADGE, p = 3
PADGE, p = 4

c f

x

(c)

Figure 73: a) Geometry of the L1T2 three-element airfoil. b) Pressure distributions for each
L1T2 airfoil element computed by PADGE (solid line) compared to reference results by TAU
(dotted) and data of experiment 1 (open symbols) and experiment 2 (filled), c) Comparison
of computed skin friction distributions with details of the slat region, [57].

 3.55

 3.6

 3.65

 3.7

 3.75

 3.8

 3.85

 3.9

 3.95

 4

 4.05

 10000 100000 1e+06

cl

dofs per equation

p1 global ref.
p1 residual-based ref.
p1 adjoint-based ref.

p1 adjoint-based ref. + error est.
cl_ref-0.01

cl_ref
cl_ref+0.01 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 10000 100000 1e+06

cd

dofs per equation

p1 global ref.
p1 residual-based ref.
p1 adjoint-based ref.

p1 adjoint-based ref. + error est.
cd_ref+0.001

cd_ref
cd_ref-0.001

(a) (b)

Figure 74: L1T2 high lift configuration: a) lift, JCl
(uh), values on globally and on residual-

based refined meshes; JCl
(uh) and the enhanced values, JCl

(uh)+R(uh, z̄h −zh), on adjoint-
based refined meshes vs. number of degrees of freedom; b) the respective plot for the drag,
JCd

(uh), values. Result of the PADGE code [57].

144

Figure 75: L1T2 high lift configuration: Isotropically residual-based refined mesh of 127536
elements. Result of the PADGE code [57].

145

Figure 76: L1T2 high lift configuration: Isotropically adjoint-based refined mesh of 60519
elements for the efficient approximation of Cl. Result of the PADGE code [57].

146

Figure 77: L1T2 high lift configuration: Isotropically adjoint-based refined mesh of 60381
elements for the efficient approximation of Cd. Result of the PADGE code [57].

147

Figure 78: L1T2 high lift configuration: Anisotropically adjoint-based refined mesh of 63085
elements for the efficient approximation of Cd. Result of the PADGE code [57].

isotropically refined meshes (including zooms of slat and flap) when using adjoint-based
refinement targeted at the lift and drag coefficients Cl and Cd, respectively. In both cases
we see that the mesh has been refined in the neighborhood of the line which separates the
recirculation zone behind the slat from the flow which passes between the slat and the main
element. We see some refinement in the wake of the slat, main and flap. Furthermore,
the shear line emanating from the lower right kink of the main element has been refined.
Finally, clearly visible in the middle plot of the Cd targeted mesh in Figure 77, the mesh
has been refined in the neighborhood of the stagnation line of the main element. We note
that, similarly, though not as clearly visible in the given plots, the stagnation lines of the
slat and flap are refined. Here, the adjoint solution indicates that the exact position of the
stagnation points, as well as the flow upstream of them is particularly important for an
accurate prediction of the aerodynamic force coefficients. In comparison to that, in the final
residual-based refined mesh shown in Figure 75, we see that more refinement took place in the
overall flow field. Also the wakes of slat, main and flap are significantly more refined than in
the adjoint-based refined meshes. Finally, we see that no particularly pronounced refinement
has been performed at the stagnation lines, which is in clear contrast to the adjoint-based
refined meshes in Figures 76 and 77.

We recall, that the meshes in Figures 75, 76 and 77 have been obtain using isotropic
refinement. In particular, cell aspect ratios and anisotropies present in the original mesh,
see Figure 72, are preserved under isotropic refinement. As can be seen in the figures, while
required for more resolution orthogonal to the airfoil geometry isotropic refinement leads to
an over-refinement in tangential direction. Also anisotropies introduced in the coarse block-
structured mesh which do not match solution anisotropies are preserved through isotropic
refinement, although not physically motivated and being of a degrading effect on the solution
process and accuracy. In contrast to that, in Figure 78, which shows a anisotropically adjoint-
based refined mesh for the target Cd, we see that due to the anisotropic mesh refinement the
elements in a distance to the airfoil have reached a more or less isotropic shape which matches
the isotropic behavior of the solution in that region. Also, in the boundary layer anisotropic
refinement has been performed which matches the solution behavior better than isotropic
mesh refinement.

148

Figure 79: ADGIMA BTC0 test case at turbulent conditions: The coarse mesh with 6656
curved elements. The edges are given by polynomials of degree 4.

7.4 ADIGMA BTC0: Turbulent flow around streamlined body

In this section we consider the ADIGMA BTC0 test case at turbulent flow conditions. In
particular, we consider the streamlined body at a Mach number M = 0.5, an angle of attack
α = 5◦, and a Reynolds number Re = 10 ·106 with adiabatic noslip wall boundary conditions.
Reference values JCl

(u) = 0.006612 and JCd
(u) = 0.0085646 have been obtained based on

higher order computations on very fine grids. The starting mesh of this computation, see
Figure 79, has 6656 curved elements. The edges are given by polynomials of degree 4 created
by taking additional points from the nested finer grids with straight elements.

First we consider the adjoint-based refinement targeted at efficiently approximating the
lift coefficient Cl. In Table 20 we collect the number of elements, the number of degrees
of freedom (DoF) of uh ∈ Vh,1, the true error JCl

(u) − JCl
(uh) in the drag coefficient, the

estimated error R(uh, z̄h − zh) =
∑

κ∈Th
η̄κ, (78), and the effectivity index, i.e., quotient

θ = R(uh, z̄h − zh)/ (JCl
(u) − JCl

(uh)) of the estimated and the true error. First of all, we
see that on all meshes the sign of the error is predicted correctly. Furthermore, we see that
the estimated error is remarkably close to the true error which can also be seen from the
quotient θ being close to one.

In Figure 21 we collect the respective data for the adjoint-based refinement targeted at
the drag coefficient Cd. Here, we see a similar or even slightly increased accuracy of the error
estimation as compared to the lift coefficient in Table 20.

In Figure 80(a) we compare the convergence of Cl for the global, the residual-based and the
adjoint-based mesh refinement. We see that within the first refinement step the Cl value for
the adjoint-based refinement converges as fast as for the residual-based refinement but both
significantly faster than global mesh refinement. However, from the second refinement step
onwards the Cl values for the adjoint-based mesh refinement are significantly more accurate
than for both residual-based and global mesh refinement.

Furthermore, we see that the error estimation on the adjoint-based refined meshes, already
shown in Table 20, further improves the Cl value. In fact, computing the flow solution and its
adjoint on the coarsest mesh results in an enhanced Cl value, J̃Cl

(u) = JCl
(u)+R(uh, z̄h−zh),

149

Elements # DoF JCl
(u) − JCl

(uh)
∑

κ∈Th
η̄κ θ

6656 186368 -1.321e-02 -1.310e-02 0.99
16778 469784 -2.096e-03 -2.104e-03 1.00
42699 1195572 -3.572e-04 -3.210e-04 0.90
108940 3050320 -1.686e-04 -1.830e-04 1.08

Table 20: ADGIMA BTC0 case at turbulent conditions: Error estimation for the Cl value.

Elements # DoF JCd
(u) − JCd

(uh)
∑

κ∈Th
η̄κ θ

6656 186368 -1.148e-02 -1.080e-02 0.94
16631 465668 -1.943e-03 -1.924e-03 0.99
41320 1156960 -4.497e-04 -4.263e-04 0.95
102087 2858436 -2.022e-04 -2.022e-04 1.00

Table 21: ADGIMA BTC0 case at turbulent conditions: Error estimation for the Cd value.

which almost coincides with the reference value. Figure 80(b) shows the corresponding error
plot. Here we see that the enhanced Cl value already on the coarsest mesh is more accurate
than the prescribed ADIGMA tolerance TOLCl

= 0.001 and is even more accurate than the
Cl value on the finest adjoint-based, residual-based and globally refined mesh. Also, we see
that for a stricter convergence criterion, there is an increasing gain from using adjoint-based
refinement in comparison to residual-based and global mesh refinement.

Figure 81(a) and (b) we see the corresponding plots for the Cd value. Here, we see that
the enhanced Cd value meets the ADIGMA criterion, TOLCd

= 0.0003, already on the coarsest
mesh.

Finally, in Figure 82 we show the final adapted meshes for the adjoint-based and the
residual-based mesh refinement. Here, we see that the adjoint-based refinement is mainly
concentrated near the airfoil; indeed, the wake is almost unresolved. This corresponds to the
fact, that the flow solution in and near the boundary layer is significantly more important
for obtaining accurate aerodynamic force coefficients than the flow solution in the wake. In
contrast to that the residual-based indicators which are targeted at resolving all flow features
also refines elements in the vicinity of the wake.

7.5 ADIGMA CTC4 (modified): Subsonic turbulent flow around DLR-F6
wing-body configuration without fairing

In this final example we consider a turbulent flow at Mach number M = 0.5, a Reynolds
number Re = 5 · 106 at an angle of attack α = −0.141 around the DLR-F6 wing-body
configuration without fairing. This is a modification of the DPW III test case, where a fixed
angle of attack has been assumed instead of a given target lift. Also, the Mach number has
been reduced from originally M = 0.75 to M = 0.5 in order to ensure the flow is subsonic.

The original DPW mesh of 3239552 hexahedral elements has been agglomerated twice
resulting in a coarse mesh of 50618 hexahedral elements. The additional points of the original
mesh have been used to define 50618 curved elements where the curved lines are represented
by quartic polynomials. After some regularization this fifth order mesh has been used in a
residual-based and an adjoint-based mesh refinement algorithm.

150

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 1e+06 1e+07

cl

degrees of freedom

global
residual-based
adjoint-based

adjoint-based + error est.
cl_ref+cl_tol

cl_ref
cl_ref-cl_tol

 1e-05

 1e-04

 0.001

 0.01

 1e+06 1e+07

|c
l-c

l_
re

f|

degrees of freedom

global
residual-based
adjoint-based

adjoint-based + error est.
cl_tol

(a) (b)

Figure 80: ADGIMA BTC0 test case at turbulent conditions: (a) lift, JCl
(uh), values on

globally and residual-based refined meshes; JCl
(uh) and the enhanced values, JCl

(uh) +
R(uh, z̄h − zh), on adjoint-based refined meshes vs. number of degrees of freedom; b) the
respective error plot. Result of the PADGE code [57].

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 1e+06 1e+07

cd

degrees of freedom

global
residual-based
adjoint-based

adjoint-based + error est.
cd_ref+cd_tol

cd_ref
cd_ref-cd_tol

 1e-05

 1e-04

 0.001

 0.01

 1e+06 1e+07

|c
d-

cd
_r

ef
|

degrees of freedom

global
residual-based
adjoint-based

adjoint-based + error est.
cd_tol

(a) (b)

Figure 81: ADGIMA BTC0 test case at turbulent conditions: (a) drag, JCd
(uh), values on

globally and residual-based refined meshes; JCd
(uh) and the enhanced values, JCd

(uh) +
R(uh, z̄h − zh), on adjoint-based refined meshes vs. number of degrees of freedom; b) the
respective error plot. Result of the PADGE code [57].

151

(a)

(b)

(c)

Figure 82: ADGIMA BTC0 test case at turbulent conditions: (a) Mesh after 3 adjoint-based
refinement steps with target Cl; (b) Mesh after 3 adjoint-based refinement steps with target
Cd; (c) Mesh after 4 residual-based refinement steps. Result of the PADGE code [57].

152

In Figure 83 we see the surface mesh and the cp distribution on the wing on the coarse
mesh of 50618 curved elements. In Figure 84 we see the respective plots for a mesh of 582350
curved elements after 4 residual-based mesh refinement steps. The cp distribution on the
whole wing-body configuration and the mesh on the symmetry plane of the latter mesh are
shown in Figure 85. Finally, Figure 86 shows an example of an adjoint-based refined mesh;
here for the target quantity Cl, together with the adjoint solution connected to the Cl value.

Acknowledgements

The authors are grateful to Joachim Held, Tobias Leicht, and Florian Prill, as well as to
Edward Hall, Manolis Georgoulis, and Stefano Giani for their contributions to the subject of
these lecture notes. We note that the PADGE code [57] is based on a DLR modified version
of the deal.II library [11, 10]. The first author gratefully acknowledges the partial financial
support of the President’s Initiative and Networking Fund of the Helmholtz Association of
German Research Centres. Both authors acknowledge the partial financial support of the
European project ADIGMA [82].

153

Figure 83: DLR-F6 wing-body configuration: Coarse mesh of 50618 curved elements. a)
Surface mesh of wing; b) cp distribution on wing. Result of the PADGE code [57].

154

Figure 84: DLR-F6 wing-body configuration: Mesh of 582350 curved elements after 4
residual-based mesh refinement steps. a) Surface mesh of wing; b) cp distribution on wing.
Result of the PADGE code [57].

155

Figure 85: DLR-F6 wing-body configuration: cp distribution on mesh of 582350 curved
elements after 4 residual-based mesh refinement steps. Result of the PADGE code [57].

(a)

(b)

Figure 86: DLR-F6 wing-body configuration: Mesh of 202314 curved elements after two
adjoint-based mesh refinement steps targeted at Cl. a) Surface mesh; b) density adjoint
distribution, i.e., first comp. of discrete adjoint solution z̄h. Result of the PADGE code [57].

156

References

[1] R. Adams. Sobolev spaces. Academic Press, New York, 1975.

[2] S. Adjerid, M. Aiffa, and J. E. Flaherty. Computational methods for singularly perturbed sys-
tems. In Analyzing multiscale phenomena using singular perturbation methods (Baltimore, MD,
1998), volume 56 of Proc. Sympos. Appl. Math., pages 47–83. Amer. Math. Soc., Providence,
RI, 1999.

[3] A selection of experimental test cases for the validation of CFD codes, 1994.

[4] M. Ainsworth and B. Senior. An adaptive refinement strategy for hp–finite element computa-
tions. Appl. Numer. Math., 26:165–178, 1998.

[5] J. D. Anderson, editor. Fundamentals of Aerodynamics. McGraw-Hill, 3rd edition, 2001.

[6] T. Apel. Anisotropic finite elements: Local estimates and applications. Advances in Numerical
Mathematics, Teubner, Stuttgart, 1999.

[7] D. Arnold, F. Brezzi, B. Cockburn, and L. Marini. Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.

[8] I. Babuška and M. Suri. The hp–version of the finite element method with quasiuniform meshes.
M2AN Mathematical Modeling and Numerical Analysis, 21:199–238, 1987.

[9] G. Baker, W. Jureidini, and O. Karakashian. Piecewise solenoidal vector fields and the Stokes
problem. SIAM J. Numer. Anal., 27(6):1466–1485, 1990.

[10] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – A general purpose object oriented finite
element library. ACM Transactions on Mathematical Software, 33(4), Aug. 2007.

[11] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II Differential Equations Analysis Library,
Technical Reference. http://www.dealii.org/, 6.2 edition, 2009. First edition 1999.

[12] R. F. Bass. Diffusion and Elliptic Operators. Spinger–Verlag, New York, 1997.

[13] F. Bassi, A. Crivellini, S. Rebay, and M. Savini. Discontinuous Galerkin solution of the Reynolds-
averaged Navier-Stokes and k−ω turbulence model equations. Computers & Fluids, 34:507–540,
2005.

[14] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier-Stokes equations. J. Comp. Phys., 131:267–279,
1997.

[15] F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2d Euler
equations. J. Comp. Phys., 138:251–285, 1997.

[16] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the compressible Navier-
Stokes equations. In B. Cockburn, G. Karniadakis, and C.-W. Shu, editors, Discontinuous
Galerkin Methods, volume 11 of Lecture Notes in Comput. Sci. Engrg., pages 197–208. Springer,
2000.

[17] F. Bassi and S. Rebay. Numerical evaluation of two discontinuous Galerkin methods for the
compressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 40:197–207, 2002.

[18] C. Baumann. An hp–adaptive discontinuous Galerkin FEM for computational fluid dynamics.
PhD thesis, TICAM, UT Austin, Texas, 1997.

[19] C. Baumann and J. Oden. A discontinuous hp finite element method for the Euler and Navier-
Stokes equations. International Journal for Numerical Methods in Fluids, 31:79–95, 1999.

157

[20] C. Baumann and J. Oden. An adaptive-order discontinuous Galerkin method for the solu-
tion of the Euler equations of gas dynamics. International Journal for Numerical Methods in
Engineering, 47:61–73, 2000.

[21] R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods:
Basic analysis and examples. East–West J. Numer. Math., 4:237–264, 1996.

[22] R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. Technical re-
port, Universität Heidelberg, Heidelberg, Germany, 1996. Preprint 1, Interdisziplinäres Zentrum
für Wissenschaftliches Rechnen.

[23] R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in
finite element methods. Acta Numerica, 10:1–102, 2001.

[24] C. Bernardi, N. Fiétier, and R. G. Owens. An error indicator for mortar element solutions to
the Stokes problem. IMA J. Numer. Anal., 21(4):857–886, 2001.

[25] K. Bey, A. Patra, and J. T. Oden. hp-version discontinuous Galerkin methods for hyper-
bolic conservation laws: a parallel adaptive strategy. Internat. J. Numer. Methods Engrg.,
38(22):3889–3908, 1995.

[26] R. Biswas, K. D. Devine, and J. Flaherty. Parallel, adaptive finite element methods for conser-
vation laws. Appl. Numer. Math., 14:255–283, 1994.

[27] W. Cao. On the error of linear interpolation and the orientation, aspect ratio, and internal
angles of a triangle. SIAM J. Numer. Anal., 43(1):19–40, 2005.

[28] M. Castro-Dı́az, F. Hecht, B. Mohammadi, and O. Pironneau. Anisotropic unstructured mesh
adaption for flow simulations. Int. J. Numer. Methods Fluids, 25:475–491, 1997.

[29] G. Chiocchia. Exact solutions to transonic and supersonic flows. Technical Report AR-211,
AGARD, 1985.

[30] P. Ciarlet. The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.

[31] P. J. Davis. Interpolation and approximation. Blaisdell Publishing Co. Ginn and Co. New
York-Toronto-London, 1963.

[32] L. Demkowicz, W. Rachowicz, and P. Devloo. A fully automatic hp-adaptivity. In Proceedings
of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01)
(Uppsala), volume 17(1-4), pages 117–142, 2002.

[33] K. D. Devine and J. E. Flaherty. Parallel adaptive hp–refinement techniques for conservation
laws. Appl. Numer. Math., 20(4):367–386, 1996.

[34] V. Dolejsi. On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes
equations. Int. J. Numer. Meth. Fluids, 45:1083–1106, 2004.

[35] T. Eibner and J. M. Melenk. An adaptive strategy for hp-FEM based on testing for analyticity.
Comput. Mech., 39(5):575–595, 2007.

[36] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods for
differential equations. In A. Iserles, editor, Acta Numerica, pages 105–158. Cambridge University
Press, 1995.

[37] I. Fejtek. Summary of code validation results for a multiple element airfoil test case. 28th AIAA
fluid dynamics conference, 1997. AIAA Paper 97-1932.

[38] K. J. Fidkowski and D. L. Darmofal. A triangular cut-cell adaptive method for high-order
discretizations of the compressible Navier-Stokes equations. J. Comput. Physics, 225:1653–1672,
2007.

158

[39] K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal. p-multigrid solution of high-order
discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comp.
Phys., 207(1):92–113, July 2005.

[40] L. Formaggia and S. Perotto. New anisotropic a priori error estimates. Numer. Math., 89:641–
667, 2001.

[41] E. Georgoulis. Discontinuous Galerkin methods on shape-regular and anisotropic meshes.
D.Phil. Thesis, University of Oxford, 2003.

[42] E. Georgoulis. hp–version interior penalty discontinuous Galerkin finite element methods on
anisotropic meshes. Int. J. Numer. Anal. Model., 3:52–79, 2006.

[43] E. Georgoulis, E. Hall, and P. Houston. Discontinuous Galerkin methods for advection–diffusion–
reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput., 30(1):246–271,
2007.

[44] E. Georgoulis, E. Hall, and P. Houston. Discontinuous Galerkin methods on hp–anisotropic
meshes I: A priori error analysis. Int. J. Comp. Sci. Math., 1(2-3):221–244, 2007.

[45] E. Georgoulis, E. Hall, and P. Houston. Discontinuous Galerkin methods on hp–anisotropic
meshes II: A posteriori error analysis and adaptivity. Appl. Numer. Math., 59(9):2179–2194,
2009.

[46] E. Georgoulis and A. Lasis. A note on the design of hp–version interior penalty discontinuous
Galerkin finite element methods for degenerate problems. IMA J. Numer. Anal., 26(2):381–390,
2006.

[47] M. Giles and N. Pierce. Adjoint equations in CFD: duality, boundary conditions and solution
behaviour. AIAA, 97-1850, 1997.

[48] W. Gui and I. Babuška. The h, p and h–p versions of the finite element method in 1 dimension.
Part III. The adaptive h–p version. Numer. Math., 49:659–683, 1986.

[49] E. J. C. Hall. Anisotropic Adaptive Refinement For Discontinuous Galerkin Methods. PhD
thesis, Department of Mathematics, University of Leicester, 2007.

[50] K. Harriman, P. Houston, B. Senior, and E. Süli. hp–Version discontinuous Galerkin methods
with interior penalty for partial differential equations with nonnegative characteristic form. In
C.-W. Shu, T. Tang, and S.-Y. Cheng, editors, Recent Advances in Scientific Computing and
Partial Differential Equations. Contemporary Mathematics Vol. 330, pages 89–119. AMS, 2003.

[51] R. Hartmann. Adaptive FE Methods for Conservation Equations. In H. Freistühler and G. War-
necke, editors, Hyperbolic Problems: theory, numerics, applications: eighth international con-
ference in Magdeburg, February, March 2000, volume 141 of International series of numerical
mathematics, pages 495–503. Birkhäuser, Basel, 2001.

[52] R. Hartmann. Adaptive Finite Element Methods for the Compressible Euler Equations. PhD
thesis, University of Heidelberg, 2002.

[53] R. Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for the compress-
ible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 51(9–10):1131–1156, 2006.

[54] R. Hartmann. Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J.
Numer. Anal., 45(6):2671–2696, 2007.

[55] R. Hartmann. Multitarget error estimation and adaptivity in aerodynamic flow simulations.
SIAM J. Sci. Comput., 31(1):708–731, 2008.

159

[56] R. Hartmann. Numerical analysis of higher order discontinuous Galerkin finite element meth-
ods. In H. Deconinck, editor, VKI LS 2008-08: CFD - ADIGMA course on very high order
discretization methods, Oct. 13-17, 2008. Von Karman Institute for Fluid Dynamics, Rhode
Saint Genèse, Belgium, 2008.

[57] R. Hartmann, J. Held, T. Leicht, and F. Prill. Discontinuous Galerkin methods for compu-
tational aerodynamics – 3D adaptive flow simulation with the DLR PADGE code. Aerospace
Science and Technology, 2009. Submitted.

[58] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods for
nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput., 24:979–1004, 2002.

[59] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods for the
compressible Euler equations. J. Comput. Phys., 183(2):508–532, 2002.

[60] R. Hartmann and P. Houston. Goal-oriented a posteriori error estimation for multiple target
functionals. In T. Y. Hou and E. Tadmor, editors, Hyperbolic problems: theory, numerics,
applications, pages 579–588. Springer, 2003.

[61] R. Hartmann and P. Houston. Symmetric interior penalty DG methods for the compressible
Navier–Stokes equations I: Method formulation. Int. J. Num. Anal. Model., 3(1):1–20, 2006.

[62] R. Hartmann and P. Houston. Symmetric interior penalty DG methods for the compressible
Navier–Stokes equations II: Goal–oriented a posteriori error estimation. Int. J. Num. Anal.
Model., 3(2):141–162, 2006.

[63] R. Hartmann and P. Houston. An optimal order interior penalty discontinuous Galerkin dis-
cretization of the compressible Navier–Stokes equations. J. Comput. Phys., 227(22):9670–9685,
2008.

[64] R. Hartmann and T. Leicht. Error estimation and anisotropic mesh refinement for 3d aerody-
namic flow simulations. J. Comput. Phys., 2009. Submitted.

[65] A. Hellsten. New Two-Equation Turbulence Model for Aerodynamics Applications. Technical
Report Report No. A-21, Helsinki University of Technology, Laboratory of Aerodynamics, 2004.

[66] N. Heuer, M. E. Mellado, and E. P. Stephan. hp–Adaptive two–level methods for boundary
integral equations on curves. Computing, 67(4):305–335, 2001.

[67] V. Heuveline and R. Rannacher. Duality-based adaptivity in the hp-finite element method. J.
Numer. Math., 1(2):95–113, 2003.

[68] L. Hörmander. The Analysis of Linear Partial Differential Operators I: Distributional Theory
and Fourier Analysis. Springer–Verlag, 1990.

[69] P. Houston, E. Georgoulis, and E. Hall. Adaptivity and a posteriori error estimation for DG
methods on anisotropic meshes. In G. Lube and G. Rapin, editors, Proceedings of the Interna-
tional Conference on Boundary and Interior Layers (BAIL) - Computational and Asymptotic
Methods. 2006.

[70] P. Houston, J. Mackenzie, E. Süli, and G. Warnecke. A posteriori error analysis for numerical
approximations of Friedrichs systems. Numerische Mathematik, 82:433–470, 1999.

[71] P. Houston, R. Rannacher, and E. Süli. A posteriori error analysis for stabilised finite element
approximations of transport problems. Comput. Meth. Appl. Mech. Engrg., 190(11-12):1483–
1508, 2000.

[72] P. Houston, D. Schötzau, and T. P. Wihler. An hp-adaptive mixed discontinuous Galerkin
FEM for nearly incompressible linear elasticity. Comput. Methods Appl. Mech. Engrg., 195(25-
28):3224–3246, 2006.

160

[73] P. Houston, C. Schwab, and E. Süli. Stabilized hp–finite element methods for first–order hyper-
bolic problems. SIAM J. Numer. Anal., 37:1618–1643, 2000.

[74] P. Houston, C. Schwab, and E. Süli. Discontinuous hp-finite element methods for advection–
diffusion–reaction problems. SIAM J. Numer. Anal., 39:2133–2163, 2002.

[75] P. Houston, B. Senior, and E. Süli. Sobolev regularity estimation for hp–adaptive finite element
methods. In F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, editors, Numerical Mathematics and
Advanced Applications ENUMATH 2001, pages 631–656. Springer, 2003.

[76] P. Houston and E. Süli. Local mesh design for the numerical solution of hyperbolic problems.
In M. Baines, editor, Numerical methods for Fluid Dynamics VI, ICFD, pages 17–30, 1998.

[77] P. Houston and E. Süli. hp–Adaptive discontinuous Galerkin finite element methods for hyper-
bolic problems. SIAM J. Sci. Comput., 23:1225–1251, 2001.

[78] P. Houston and E. Süli. Stabilized hp-finite element approximation of partial differential equa-
tions with non-negative characteristic form. Computing, 66:99–119, 2001.

[79] P. Houston and E. Süli. Adaptive finite element approximation of hyperbolic problems. In
T. Barth and H. Deconinck, editors, Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics. Lect. Notes Comput. Sci. Engrg., volume 25, pages 269–344.
Springer, 2002.

[80] W. Huang. Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys.,
1(2):276–310, 2006.

[81] C. M. Klaij, J. J. W. van der Vegt, and H. van der Ven. Space–time discontinuous Galerkin
method for the compressible Navier-Stokes equations. J. Comput. Phys., 217(2):589–611, 2006.

[82] N. Kroll. ADGIMA – A European project on the development of adaptive higher-order varia-
tional methods for aerospace applications. 47th AIAA Aerospace Sciences Meeting, 2009. AIAA
2009-176.

[83] G. Kunert. A posteriori error estimation for anisotropic tetrahedral and triangular finite element
meshes. PhD thesis, TU Chemnitz, 1999.

[84] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular value decomposition.
SIAM J. Matrix Anal. Appl., 21:1253–1278, 2000.

[85] T. Leicht. Anisotropic mesh refinement for discontinuous Galerkin methods in aerodynamic flow
simulations. Diploma thesis, Dresden University of Technology, 2006.

[86] T. Leicht and R. Hartmann. Anisotropic mesh refinement for discontinuous Galerkin methods in
two-dimensional aerodynamic flow simulations. Int. J. Numer. Meth. Fluids, 56(11):2111–2138,
April 2008.

[87] C. Mavriplis. Adaptive mesh strategies for the spectral element method. Comput. Methods
Appl. Mech. Engrg., 116(1-4):77–86, 1994. ICOSAHOM’92 (Montpellier, 1992).

[88] J. Melenk and B. Wohlmuth. On residual-based a posteriori error estimation in hp-FEM. Adv.
Comp. Math., 15:311–331, 2001.

[89] I. R. M. Moir. Measurements on a two-dimensional aerofoil with high-lift devices. AGARD
Advisory Report 303, Advisory Group for Aerospace Research & Development, Neuilly-sur-
Seine, 1994. Test case A2.

[90] P. K. Moore. Applications of Lobatto polynomials to an adaptive finite element method: A pos-
teriori error estimates for hp–adaptivity and grid-to-grid interpolation. Numer. Math., 94:367–
401, 2003.

161

[91] J. Oden, I. Babuška, and C. Baumann. A discontinuous hp-finite element method for diffusion
problems. J. Comput. Phys., 146:491–519, 1998.

[92] J. T. Oden and A. Patra. A parallel adaptive strategy for hp finite element computations.
Comput. Methods Appl. Mech. Engrg., 121(1-4):449–470, 1995.

[93] J. T. Oden, A. Patra, and Y. S. Feng. An hp-adaptive strategy. In A. Noor, editor, Adaptive,
Multilevel and Hierarchical Computational Strategies, pages 23–46. ASME Publications, 1993.

[94] O. Oleinik and E. Radkevič. Second Order Equations with Nonnegative Characteristic Form.
American Mathematical Society, Providence, R.I., 1973.

[95] S. Prudhomme, F. Pascal, J. Oden, and A. Romkes. Review of a priori error estimation for
discontinuous Galerkin methods. TICAM Report 00-27, University of Texas, 2000.

[96] W. Rachowicz, L. Demkowicz, and J. Oden. Toward a universal h–p adaptive finite element
strategy, Part 3. Design of h–p meshes. Comput. Methods Appl. Mech. Engrg., 77:181–212, 1989.

[97] H. Schlichting and E. Truckenbrodt. Aerodynamics of the Airplane, volume 1. McGraw-Hill,
1979.

[98] R. Schneider and P. Jimack. Toward anisotropic mesh adaptation based upon sensitivity of a
posteriori estimates. Technical Report 2005.03, School of Computing, University of Leeds, 2005.

[99] C. Schwab. p- and hp-FEM – Theory and Application to Solid and Fluid Mechanics. Oxford
University Press, Oxford, 1998.

[100] D. Schwamborn, T. Gerhold, and R. Heinrich. The DLR TAU-code: Recent applications in re-
search and industry. In P. Wesseling, E. Oñate, and J. Périaux, editors, Proceedings of European
Conference on Computational Fluid Dynamics ECCOMAS CDF 2006, Delft The Netherland,
pages 91–100, 2006.

[101] P. Šoĺın and L. Demkowicz. Goal-oriented hp-adaptivity for elliptic problems. Comput. Methods
Appl. Mech. Engrg., 193(6-8):449–468, 2004.

[102] E. Süli, P. Houston, and C. Schwab. hp–Finite element methods for hyperbolic problems. In
J. Whiteman, editor, The Mathematics of Finite Elements and Applications X, pages 143–162.
Elsevier, 2000.

[103] E. Süli, P. Houston, and B. Senior. hp–Discontinuous Galerkin finite element methods for
nonlinear hyperbolic problems. Int. J. Numer. Methods Fluids, 40(1-2):153–169, 2002.

[104] E. Süli, C. Schwab, and P. Houston. hp–DGFEM for partial differential equations with nonnega-
tive characteristic form. In B. Cockburn, G. Karniadakis, and C.-W. Shu, editors, Discontinuous
Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Sci-
ence and Engineering, Vol. 11, pages 221–230. Springer, 2000.

[105] L. N. Trefethen and I. D. Bau. Numerical linear algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.

[106] J. Valenciano and R. G. Owens. An h-p adaptive spectral element method for Stokes flow. Appl.
Numer. Math., 33(1-4):365–371, 2000.

[107] J. van der Vegt and H. van der Ven. Space-time discontinuous Galerkin finite element method
with dynamic grid motion for inviscid compressible flows, I. General formulation. J. Comp.
Phys., 182:546–585, 2002.

[108] K. G. van der Zee. An H1(P h)-coercive discontinuous Galerkin formulation for the Poisson
problem: 1-d analysis. Master’s thesis, TU Delft, 2004.

162

