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Abstract

In this paper we briefly discuss the problem of simulating non-adiabatic processes in systems that are usefully modelled using molec-
ular dynamics. In particular we address the problems associated with metals, and describe two methods that can be applied: the Ehrenfest
approximation and correlated electron-ion dynamics (CEID). The Ehrenfest approximation is used to successfully describe the friction
force experienced by an energetic particle passing through a crystal, but is unable to describe the heating of a wire by an electric current.
CEID restores the proper heating.
� 2008 Elsevier B.V. All rights reserved.
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1. Non-adiabatic processes

Non-adiabatic processes, as the name suggests, can be
defined by the failure of a particular approximation (the
adiabatic approximation). In this approximation, which is
very often extremely successful, the electrons are assumed
to follow the nuclei in such a way that they are always in
an eigenstate associated with the instantaneous positions
of the nuclei which are seen as merely providing an external
potential. That is, the electrons appear to be in some sense
clamped to the nuclei. This then can be used to define a set
of fixed energy surfaces corresponding to the positions of
the nuclei and to the degree of excitation of the electrons.
Non-adiabatic processes can then be thought of as those
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in which the system makes transitions between the adia-
batic energy surfaces.

The transitions between the energy surfaces can take
place because the nuclei move too quickly for the electrons
to adapt fully to the new environment generated by the dis-
placed nuclei. This is encountered during electron transfer
reactions in which the rate at which electrons move
between two sites is very low, so that they remain trapped
on one site even though the nuclei would like to drag them
over to another.

These processes are generally important when electrons
and nuclei are mutually out of equilibrium [1], in which
case non-adiabatic processes work to restore equilibrium.
This can be observed, for example, in the heating of wires
by an electric current, or the response of electrons in a
metal to a fast projectile.

Because non-adiabatic processes are often a weak cor-
rection to an underlying adiabatic process, they can be

https://core.ac.uk/display/1802101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:a.horsfield@imperial.ac.uk


A.P. Horsfield et al. / Computational Materials Science 44 (2008) 16–20 17
often successfully treated using perturbation theory. For
example, in the heating of a wire the process of the
exchange of energy between the electrons and the nuclei
is a small correction on the steady flow of the electric cur-
rent [2,3]. On the other hand, when we wish to study com-
plex systems, or where we are interested in the dynamics,
molecular dynamics (MD) is extremely useful. Thus there
is an incentive to produce MD schemes that incorporate
non-adiabatic effects.
2. Ehrenfest dynamics and surface hopping

Molecular dynamics is a simple, but remarkably power-
ful, modelling technique. In it, atoms are treated as classi-
cal particles that obey Newton’s laws of motion. These
particles then interact with one another by force laws. In
more sophisticated treatments these force laws can be
derived from an explicit treatment of the electrons. While
very flexible, this approach is usually limited to adiabatic
phenomena. The introduction of non-adiabatic processes
in fact involves a major revision of the theory.

A number of very ingenious methods for introducing
non-adiabatic processes into MD have been proposed [1].
Here we just mention two of them because of their popular-
ity and there obvious connection with conventional MD.
They also are representative of two broad categories of
method, and by comparing them we discover the advanta-
ges of each category. The methods are the Ehrenfest
approximation (in which the dynamics are continuous,
and no knowledge of electron surfaces is required before-
hand) and surface hopping (in which energy surfaces and
transitions between them are treated explicitly) [4–10]. In
both cases, the nuclei are treated as classical particles that
obey Newton’s laws. Thus they evolve according to

_R ¼ P=M ð1Þ

_P ¼ F ¼ � oV NN

oR
�
Z

oV eN

oR
qeðrÞdr ð2Þ

where R is a nuclear position, P is the corresponding
momentum, M is the mass of the nucleus, and VNN and
VeN are the nucleus–nucleus and electron–nucleus interac-
tions. qe is the electron density, and is found from the elec-
tron wavefunction U using

qeðrÞ ¼ N
Z
jUðr; r2 . . . rN Þj2dr2 . . . drN ð3Þ

where N the number of electrons. The difference between
the two methods is in the scheme used to compute the evo-
lution of the electrons. In the Ehrenfest approximation, the
electron wavefunction is obtained from the time-dependent
Schrödinger equation

i�h _U ¼ bH eðRÞU ð4Þ

where bH eðRÞ is the Hamiltonian for the electrons. For sur-
face hopping the electronic state is found from the time
independent Schrödinger equation
bH eðRÞU ¼ EðRÞU ð5Þ

In both cases R refers to the instantaneous position of
the nuclei. Because the nuclei move they introduce a time
dependence into the evolution of the electrons. If nothing
further were done, then surface hopping would reduce to
the adiabatic approximation, where the electrons remain
always in a given state that follows the nuclei instanta-
neously. However, when the nuclei move to a position at
which two energy surfaces are close in value, then a hop
between those surfaces is permitted with finite probability.
If the hop succeeds, the nuclei continue to move on the new
surface until a new transition is allowed.

A key practical difference between these two methods is
that for surface hopping you need to know what the energy
surfaces are, whereas they are sampled automatically by
the Ehrenfest approximation. This is important in metallic
systems were the surfaces are closely spaced, and it is thus
hard to keep track of them, and is not even clear if one sur-
face alone is being sampled by the moving nuclei. Thus, for
metallic systems Ehrenfest appears very attractive. We note
in passing, that there is a modified version of surface hop-
ping that has been applied to systems with continuous dis-
tributions of levels [10]. However, it is not widely used.

Unfortunately, the Ehrenfest approximation does not
reproduce all transitions between surfaces properly (surface
hopping is often considerably better). This is a consequence
of the fact that the nuclei only see the average smoothed
out density of the electrons instead of experiencing scatter-
ing by individual particles. This is clear from Eq. (2) where
we see that the force on the nuclei depends only on the elec-
tron density.

Thus the two main schemes that are straightforward
extensions of MD do not provide the functionality that
we seek. Correlated electron-ion dynamics is a scheme for
correcting the Ehrenfest method to restore the full elec-
tron-nuclear interactions in a systematic way, while hold-
ing onto the ability to study metals in a straightforward
manner. Before we discuss this approach we consider some
work we have done in which the Ehrenfest approximation
has been very successful, and some other work in which it
gives incorrect answers.
3. Application of Ehrenfest dynamics

3.1. Success: radiation damage

The successful application is of the drag force on a fast
ion produced by the electrons as it passes through a crystal.
This is an important effect in several situations, though the
motivation in this case is the desire to understand the
damage caused by fast neutrons to the structures that
surround the plasma in a hydrogen fusion power plant.
The hydrogen fuel with the lowest ignition temperature
(4.5 � 107 K) is a mixture of deuterium and tritium. The
energy producing reaction is D + T ? He + n. The helium
nucleus and neutron have energies of 3.5 and 14.1 MeV,
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respectively. When the neutron collides with the wall of the
blanket around the plasma it kicks out an atom which
could acquire an energy as high as 1.9 MeV. It is this ion
that experiences the drag force.

In our simulation we studied a relatively low energy
particle (2 keV). We start with a box of 2016 stationary
copper atoms with periodic boundary conditions. To this
we add an additional atom in a tetrahedral interstice. The
electrons are described by a simple tight binding model
with a single s-type orbital on each atom [11]. The initial
electron state is the lowest free energy state for a canonical
electron temperature of 1000 K. Charge self-consistency is
treated locally to each site through a Hubbard-U term
(U = 7 eV). At time t = 0 the interstitial is given a kick of
2 keV in the [1 0 0] direction. Then a 180 fs simulation is
performed in the Ehrenfest approximation using the pro-
gram ICED (imperial college Ehrenfest dynamics), with a
time step of 0.05 fs.

The simulation was analysed by monitoring several
quantities. At regular intervals we computed the difference
between two energies (DE): that generated by the Ehrenfest
simulation and that obtained by finding the Born–Oppen-
heimer energy (the electronic internal energy at the
canonical temperature of 1000 K) corresponding to the
instantaneous nuclear positions. This gives a measure
of the non-adiabatic heating of the electrons which pro-
duces the drag force on the fast moving atoms. We also
observed the charge redistribution amongst the atoms.
We find that there is a propagating front that is depleted
of electrons, with the resulting excess electrons accumulat-
ing in the wake of the incident particle.

We find that the excess electron energy (DE) grows line-
arly with time at about 0.4 eV/fs (see Fig. 1). This is consis-
tent with the usual expression for the viscous drag force
ðF drag ¼ �c _RÞ which results in the power provided by the
ions to the electrons ð�F drag

_RÞ being equal to c _R2, which
is proportional to the total kinetic energy of the atoms.
As the fraction of the total energy transferred to the
electrons is small, the average kinetic energy of the atoms
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Fig. 1. The variation of the increase in electronic energy with time during
the course of the simulation.
can be treated as roughly constant, and hence we have a
constant rate of power supply to the electrons.

As the interstitial passes neighbouring atoms, the neigh-
bours are kicked off their lattice sites. These neighbours
then collide with their neighbours. A parabolic positively
charged wavefront of displaced atoms is formed as the
interstitial slows (see Fig. 2).

These simulations are successful as the process that is
suppressed by the Ehrenfest approximation (the spontane-
ous emission of phonons by excited electrons) is not impor-
tant for the friction forces. However, for the Joule heating
of a wire by an electric current this is the most important
process.

3.2. Failure: Joule heating

The simulation of heating in nanowires by Ehrenfest
dynamics has been described in detail elsewhere [12,13],
and only a very brief summary is given here. The simula-
tions were of a wire one atom thick, with the electrons
described by a simple type binding model with one s-orbital
per atom. Open boundaries were used to allow a current
flow, with the two leads offset by a given voltage. One atom
in the middle of the wire was permitted to move, and its
kinetic energy was monitored as a function of time (see
Fig. 3). It was given an initial kinetic energy corresponding
to 400 K. We found that at small biases (below 1 V) the
atom cooled down, but for high voltages it heated up. This
is qualitatively correct, except that the threshold voltage
should be about the quantum of vibration of the central
atom (0.05 V) instead of 1 V as observed. So, to model
heating in a wire we clearly need an improved scheme.
Fig. 2. A snapshot of the atoms at 75 fs. The interstitial started at the left
of the picture. The red coloured atoms are positively charged, while the
blue coloured atoms are negatively charged. Note the front does not have
a positive and negative charged side, rather electrons are pushed out into
the bulk faster than the speed of the front. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article).



Fig. 3. This plot shows the variation in the kinetic energy of the mobile
atom at the centre of the wire as a function of time and applied bias. For
low voltages (below 1 V) we see that the amplitude of oscillation of the
atom decreases over time, whereas for sufficiently high voltages (above
1 V) it increases slowly. Note that the voltage at which we find the onset of
heating is much too large: it should be of the order of the quantum of
vibration of the atom which is about 0.05 eV.
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4. Correlated electron-ion dynamics

To obtain the correct heating we need to relax the mean
field approximation used in Ehrenfest dynamics. However,
we wish to retain the classical structure of the nuclear
dynamics, so we start from the exact Ehrenfest equations
(not to be confused with the approximation) which are

_R ¼ P=M ð6Þ

_P ¼ F ¼ �Tr
o bH
oR

q̂

( )
ð7Þ

where now R and P are the average positions and momenta
of the nuclei, bH is the complete Hamiltonian for the com-
bined system of electrons and nuclei, and q̂ is the corre-
sponding density matrix. The trace (Tr) is simply the
integral over all electronic and nuclear coordinates. The
density matrix is found from the wavefunction W(Rr) using
q(Rr, R

0
r
0
) = W(Rr)W*(R

0
r
0
) where R is a nuclear coordinate

and r is an electronic coordinate.
The difference between Eqs. (7) and (2) is that the wave-

function in Eq. (7) is for both electrons and nuclei, and not
just for electrons. We now make the key approximation,
namely that the nuclear wavefunctions are localised about
the mean position R. This enables us to make a Taylor
expansion about the mean position. We write the total
Hamiltonian as a sum of the nuclear kinetic energy and
the remainder bH ¼ bT N þ bH eðbRÞ, and get

bH eðbRÞ ¼ bH eðRÞ þ ðbR � RÞ o
bH eðRÞ
oR

þ 1

2
ðbR � RÞðbR � RÞ

� o
2 bH eðRÞ
oRoR

þ � � � ð8Þ
Substituting Eq. (8) into Eq. (7) gives

_P ¼ �Tre q̂e

o bH eðRÞ
oR

( )
� Tre l̂

o2 bH eðRÞ
oRoR

( )
þ � � � ð9Þ

where the trace is taken over electronic coordinates and

q̂e ¼ TrN q̂f g

l̂ ¼ TrN ðbR � RÞq̂
n o

k̂ ¼ TrN ðbP � P Þq̂
n o

ð10Þ

and the trace has been taken only over nuclear coordinates.
Thus the first term in Eq. (9) is just that used in the Ehren-
fest approximation, and the second term corrects this by
including microscopic correlations between the electrons
and nuclei.

As with the Ehrenfest approximation we obtain our
electronic matrices from equations of motion. We start
from the quantum Liouville equation ði�h _̂q ¼ ½ bH ; q̂�Þ, and
by combining with Eqs. (8) and (10) we obtain

i�h _̂qe ¼ ½ bH eðRÞ; q̂e� þ
o bH eðRÞ

oR
; l̂

" #
þ � � � ð11Þ

i�h _̂l ¼ ½ bH eðRÞ; l̂� þ
k̂
M
þ � � � ð12Þ

We note two things: we see that the equation of motion
for q̂e is that for the Ehrenfest approximation plus correc-
tions that include information about correlations; we have
a hierarchy of coupled equations that needs to be truncated
(there is an infinite set of equations, with only the first two
shown above).

The lowest order scheme involves dropping all correla-
tion matrices (l, k, etc.). This gives back the Ehrenfest
approximation. The next level of approximation is to drop
second order and higher correlations, so we keep q̂e, l and
k. This produces the correct rate of heating for a cold wire,
but does not include the scattering by excited nuclei. This is
discussed at length in our previous work [14,15,1,16]. We
just note the following conclusions drawn from the calcula-
tions. Because the nuclei are treated as quantum objects,
they have two contributions to their kinetic energy. There
is a classical contribution from the average momentum
P ðP 2=2MÞ, and there is a quantum contribution from fluc-
tuations about that average. The quantum contribution to
the heating is much larger than the classical (indeed the
small classical contribution contributes net cooling in our
simulations). By adding higher order correlations we are
able to compute the change in conductivity of the wire that
occurs once the applied bias is sufficient to cause excitation
of nuclear vibrations [17,16].

4.1. The future of CEID

In the above we have glossed over the problem of trun-
cating the hierarchy in a robust manner. To produce a sta-
ble set of equations of motion this has to be handled with
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care. Recently, the CEID formalism has been reworked to
allow a systematic truncation that converges reliably to the
exact answer as higher order correlations are included. The
central idea is to project the nuclear degrees of freedom on
to a basis set (harmonic oscillator wavefunctions), and then
determine the equations of motion of the resulting expan-
sion coefficients. The procedure is somewhat different from
that described above, but the new expansion coefficients
can in fact be related to the moments discussed above in
a straightforward manner. This new approach has enabled
us to model difficult systems with rather strong electron-
phonon on coupling.

5. Conclusions

Thus, in summary, a new scheme for modelling systems
in which there is irreversible exchange of energy between
electrons and nuclei has been presented. It builds on the
success of the Ehrenfest approximation, adding to it those
corrections needed to re-establish microscopic correlations
between electronic and nuclear dynamics. This allows us
not only to simulate processes dominated by the excitation
of electrons by energetic nuclei (such as friction in radia-
tion damage) but also processes dominated by spontaneous
emission of phonons (such as Joule heating). Recent devel-
opments of the theory make it possible to study cases with
strong electron–phonon interactions. This method, as it
does not require explicit knowledge of Born–Oppenheimer
energy surfaces, is especially useful for metallic systems,
and those with open boundaries.
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