
Theory of the growth mode for a thin metallic film on
an insulating substrate

David Fuks a,*, Simon Dorfman b,c, Yuri F. Zhukovskii d,e,
Eugene A. Kotomin d,f, A. Marshall Stoneham e

a Materials Engineering Department, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
b Department of Physics, Technion––Israel Institute of Technology, Haifa 32000, Israel

c Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
d Institute of Solid State Physics, University of Latvia, 8 Kengaraga Strasse, Riga LV-1063, Latvia

e Center for Materials Science, Department of Physics and Astronomy, University College London, Gower Strasse,

London WC1E 6BT, UK
f Max Planck Institut f€uur Festk€oorperforschung, Heisenbergstrasse, 1, Stuttgart 70569, Germany

Received 13 July 2001; accepted for publication 19 October 2001

Abstract

We have developed a novel theory predicting the growth mode of a thin metallic film on an insulating substrate. This

combines ab initio electronic structure calculations for several ordered metal/insulator interfaces (varying both coverage

and substrate lattice constant), with a thermodynamic approach based on microscopic calculations. We illustrate this

approach for Ag film deposited on MgO(001) substrate. Ab initio calculations predict high mobility of adsorbed silver

atoms on the perfect magnesia surface even at low temperatures. Our theoretical analysis clearly demonstrates that the

growth of metallic islands is predominant at the initial stage of silver deposition, which agrees with the experimental

data. � 2001 Published by Elsevier Science B.V.

Keywords: Ab initio quantum chemical methods and calculations; Equilibrium thermodynamics and statistical mechanics; Growth;

Coatings; Magnesium oxides; Silver

1. Introduction

Systems in which a metal is deposited on a ce-
ramic continue to grow in importance and in the
variety of their uses. In applications, whether as
catalysts, in recording media, in metal-matrix

composites, or in their various microelectronic
uses, the morphology of the metal is often crucial.
Yet there remain widely varying views as to the
nature of the metal–ceramic interfacial binding
and of the microscopic mechanism of metal film
growth [1–3]. The pattern (i.e., the microstructure
and morphology) of metal films deposited on ox-
ides proves to depend strongly on growth condi-
tions, especially for thin layers. The growth mode
usually falls into one of three categories: layer-
by-layer; formation of a three-dimensional (3D)
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metal island; growth to a layer and then to islands
[4]. Which mode occurs can be determined by
energetics, by kinetics, or by a mixture of these
two.
How does one predict the morphology? Even for

a single layer of metal atoms, before the traditional
growth patterns, such as island growth, are fully
established. Traditionally, there have been three
types of approach. One is a kinetic approach,
based on specific assumptions about the motion
and energetics of small clusters of metal atoms [4].
This is a powerful method at small adatom con-
centrations, where there are relatively few crucial
groupings of adatoms and processes. A second
approach, mainly used in other fields, is to draw
parallels with spinodal decomposition, and to seek
the fastest-growing instability that defines the way
to reach the most probable stable state with dif-
ferent clusters on the surface. The free energy, F
in a binary solid solution is a function of the
component concentration, c. The curve F ðcÞ may
include concave and convex parts. An alloy of
a composition corresponding to a point on the
convex part of the curve F ¼ F ðcÞ (i.e., d2F =
dc2 < 0) cannot be stable against decomposition
into a two-phase mixture. Since the range where
the curve F ðcÞ is convex may be chosen infinite-
simally small, a homogeneous solid solution is
unstable at d2F =dc2 < 0 with respect to an infini-
tesimal concentration heterogeneity within the in-
finitesimal range of concentrations, c1 < c < c2.
This instability is usually called spinodal instabil-
ity, and the corresponding decomposition reaction
is called spinodal decomposition. The line that
describes the boundary of the spinodal instability
region in the T–c diagram where d2F ðc; T Þ=dc2 ¼ 0
is called the spinodal curve. More details on
spinodal decomposition may be found in Ref. [5].
The second approach is more useful for behavior
at constant composition, whereas many experi-
ments relevant to our work vary the adatom den-
sity on a timescale which can be similar to the
timescale of the instability. We adopt a third ap-
proach, recognizing that phase diagrams are more
than a very effective way to summarize equilibrium
data. Phase diagrams provide a guide to reaching
desirable non-equilibrium structures. We shall
predict the main features of such a phase diagram.

In addition, we shall assess whether or not diffu-
sion is likely to be rate limiting.
Equilibrium growth modes are characterized

mainly by the thermodynamics of the system,
although some features may depend on kinetic
factors, such as the rate of deposition and the
competition between different surface processes.
The growth of an Ag film on an MgO(0 0 1) sub-
strate usually gives rise to 3D metallic islands [6,7]
which begin to appear at Ag coverages above some
critical value (varying from one experiment to
another from 0.1 to 0.5 ML [8,9]). However, some
low-energy-electron-diffraction studies (LEED)
found metastable layer-by-layer growth for Ag
deposited on vacuum-cleaved MgO(0 0 1) surfaces
[10,11]. A delicate energy balance between 3D
island and monolayer growth modes was also
established in recent calculations [12]. Structural
surface defects play a role in determining the
growth mechanism, since defects can markedly
increase the interface strength [13,14]. Moreover,
the initial nucleation of two-dimensional (2D) Ag
clusters at low submonolayer coverage probably
occurs at some defects on the MgO surface [9].
Whatever is the mechanism and the competing
processes, it is important to know the structures
that are most stable thermodynamically. Knowing
this, even for a metal film on a defectless oxide
substrate, identifies a limit to which the system will
finally strive, even when kinetics drives another
structure. The thermodynamic limit for the ideal
system further provides a reference system for
detailed studies of realistic, defective surfaces.
Despite much theoretical work on the adhesion

of noble and transition metals on regular MgO
substrates [15–28], using widely varying models
and computational methods, there is still a lack of
full understanding of interface formation and of
interface properties on an atomic scale. Partly this
is because there are sensitive balances between
contributions to the energy of metal on an oxide
substrate. Both of the traditional ab initio for-
malisms of Hartree–Fock (HF) and density func-
tional theory (DFT) have been used to calculate
the electronic structure explicitly. Finite-cluster
models of the metal/MgO interfaces were studied
both by HF [15,16] and DFT [17,18] methods.
Periodic slab models of the same systems have
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mainly used variants of DFT [19–24], based on
local spin density (LSD) and generalized gradi-
ent approximations (GGA) approaches. Partly
to study effects of the exact exchange in slab
calculations of Ag/MgO(0 0 1) and Ag/MgO(011)
interfaces, a series of HF calculations with a pos-
teriori electron correlation corrections (HF-CC)
was published recently [25]. Two simpler atomistic
methods, the image interaction model (IIM) and
the shell model (SM), have been successfully
applied to Ag/MgO interfaces. IIM simulations
combined image interaction calculations between
the substrate ions and a free-electron metal with a
Fermi cutoff, with HF calculations of short-range
interactions between the metal atoms and ion
cores [26]. When using the SM, containing several
hundreds of relaxed atoms, different kinds of in-
teratomic potentials have been exploited [27]. In
spite of many differences between these ab initio
and semi-empirical simulations, several common
conclusions can be drawn. The interaction between
the atoms of transition and noble metals and a de-
fect-free MgO substrate is characterized as com-
paratively weak physisorption, with the adhesion
energy smaller than 0.5 eV (theoretically deter-
mined adhesion energies are likely to exceed the
appropriate experimental values because of misfit
dislocations, which reduce the measured adhesion
energy [1]).
Concerning applicability of the kinetic Monte-

Carlo (MC) simulations to the study of the me-
tallic film growth on surfaces, readers are referred
to the book and recent review [29]. Briefly, MC
calculations are based on transferable intersite in-
teractions. These latter depend on which sites are
occupied by a particular species, unlike inter-
atomic potentials, which depend on the precise
coordinates of the atoms involved; the distinction
is significant in other contexts, such as H in metal
systems [30]. It is very difficult to derive empirical
potentials for MC simulations in our specific case
of determining the growth mode of thin metallic
films, partly because the nature of the interaction
changes as relative amount of metal increases.
Non-empirical potentials could be useful here, but
it is not a trivial task to determine or to model
even partial Ag–Ag interactions in the vicinity of a
substrate. This interaction is not the same as in the

bulk Ag, and cannot easily be obtained empirically
from experimental data for surfaces. Simple con-
siderations show that the situation is even more
dramatic. The ab initio calculations predict quite
noticeable charge redistribution even in the vicin-
ity of regular interface [14,25]. The empty sites in
the above-substrate metal layer, which is partly
filled by Ag atoms, have an effective charge. This
leads to an interaction between the empty sites (E)
themselves, and also to the interaction of E sites
with Ag atoms. Thus, partial potentials for E–E
and Ag–E interactions are also essential for MC
simulations. An analogous problem arises for the
Ag–Mg and Ag–O potentials needed for MC in-
terface simulations. In principle, one could extract
interatomic potentials from experimental data for
molecules, but these will not be the same inter-
actions as those we need. They may have little in
common with those from the bulk alloys, as noted.
Last, but not least, MC only simulates the situa-
tion that might occur if the monolayer was already
formed. As a rule, MC accounts for finite number
of interactions only in a few coordination shells
of atoms.
In this paper, we use the results of ab initio HF-

CC calculations on the electronic structure of a
regular Ag/MgO(0 0 1) interface as a basis for the
development of a thermodynamic scenario to un-
derstand a metal film initiation and growth mode
on an insulating support at different temperatures.
Although our general methodology was recently
briefly formulated in Ref. [31], this paper com-
plements the latter study with the essential physi-
cal background. Thus, we supplement our pilot
study [31] with the analysis of the role of different
factors in the thermodynamics of interfacial sys-
tem. This analysis demonstrates several important
aspects in modeling the coating of MgO substrate
by Ag atoms: (1) we present the results of the
calculations of adhesion energy for Ag/MgO in-
terface using different electron correlation correc-
tions (LSD- and GGA-type) and substrate models
(one- and two-side adsorption on three- and five-
layer slabs, respectively); (2) we study the charge
re-distribution for different positions of Ag atoms
atop MgO(0 0 1) surface and show that the bond-
ing mechanism for silver adlayer–magnesia sub-
strate is physisorption; (3) we calculate by means

26 D. Fuks et al. / Surface Science 499 (2002) 24–40



of direct ab initio modeling the diffusion of Ag
along the MgO surface, show its high mobility and
fast approach to the thermodynamic equilibrium
when the metallic monolayer is formed; (4) we
present the formalism that allows to make a choice
between the superstructures that may be, in prin-
ciple, formed in 2D metallic layer above the MgO
substrate; this formalism is based on the symmetry
considerations and being combined with our ab
initio results allows to predict the morphology of
2D Ag–E solid solution; (5) we prove that the
thermodynamic scenario of silver monolayer for-
mation on MgO(0 0 1) surface is a spinodal de-
composition in 2D Ag–E solid solution; (6) lastly,
we analyze the sensibility of thermodynamic pre-
dictions to the details of ab initio modeling.

2. Ab initio simulation for the ordered Ag/

MgO(001) interface

2.1. Theoretical background

In our theoretical simulation of the perfect MgO
substrate, we have considered finite-thickness slabs
with 2D periodicity. Since the Ag coverage of the
MgO(0 0 1) surface was varied from 1=4 metal
layer (1:4 coverage) to a monolayer (1:1 coverage),
we have made series of calculations for the 2�
2 extended surface unit cells of magnesia slabs.
These allow us to model four kinds of Ag struc-
tures on the Ag/MgO(0 0 1) interface, as shown in
Fig. 1. In our previous studies, we have found and
explained why silver atoms adhere preferentially to
the O-site on the MgO(0 0 1) surface [25]. Indeed,
such a metal/oxide interface configuration agrees
well with experiment [6–9]. Thus, we shall consider
Ag over O-sites on MgO as appropriate for all
four structures, which are: silver monolayer (Fig.
1a), two regular configurations of 1:2 Ag coverage
(Fig. 1b and c), and 1:4 coverage (Fig. 1d). Our
choice of the structures presented by Fig. 1b–d is
dictated by symmetry consideration (see Section
3). In constructing effective site interaction poten-
tials for thermodynamic simulations of Ag film
growth on an MgO(0 0 1) substrate, for all of these
structures we have carried out total energy opti-
mization. For the metal/oxide system, this is a 2D

optimization of the total energy EtotðaMgO; dAg–OÞ
as a function of the substrate lattice constant aMgO
and the interface distance dAg–O. For the MgO
substrate, we optimize the total energy EtotðaMgOÞ
as a function of lattice constant.
We used a periodic slab model containing either

three or five MgO(0 0 1) layers with one- and two-
side silver adhesion, respectively. As in earlier
studies on the three-layer substrate [25], we ne-
glect surface relaxation of magnesia slab, which is
known to be small [32]. For both models contain-
ing one and two Ag adlayers, the corresponding
adhesion energy per atom (Eadh) is defined ac-
cording to the universal binding energy relation
[21,25].
In our ab initio calculations we use the HF-CC

formalism as implemented in the CRYSTAL98
code [34], with a wide choice of various a poste-
riori electron correlation corrections to the total
energy. Using this method, we could describe ad-
equately a wide spectrum of properties for both
regular and defective Ag/MgO(0 0 1) interface [14,
25]. Although a standard HF approach usually
overestimate bond length and underestimate the
binding energy per chemical bond, the correlation
corrections certainly do improve quality of HF

Fig. 1. Top view of the MgO(1 0 0) surface with different su-

perstructures of Ag atoms placed atop it. Images correspond to

Ag coverages of (a) 1:1 (a regular monolayer), (b) 1:2 (a square

distribution), (c) 1:2 (a striped distribution), and (d) 1:4 (quasi-

isolated metal atoms), respectively. Directions marked as i and

and ii denote two trajectories of possible surface diffusion of Ag

atoms.
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calculations on the total energy [35]. The applica-
bility of different electron correlation functionals,
based on both GGA and LSD approximations, to
the concrete system is established by a careful
analysis of the corresponding computational data
(Tables 1–3). In the present paper, we have ana-
lyzed not only Perdew–Wang (PWGGA) correla-
tion corrections [36], as earlier, but also other
kinds of correlation functionals, both GGA-type
(Lee–Yang–Parr [37]) and LSD-type (Perdew–
Zunger [38] and Vosko–Wilk–Nusair [39]). This is
important, since we compare results of our HF-CC
calculations with other theoretical studies, ob-
tained using DFT methods based on both LSD
and GGA exchange and correlation functionals.
The basis sets (BS) for Mg, O, and Ag, and some
other computational details are the same as in our
previous papers in which we calculated the atomic
and electronic structure of defective and perfect
monolayers, and three-layer Ag/MgO(0 0 1) inter-
faces [14,25]. We use the same BS, but we have
estimated more carefully the basis set superposi-

tion errors (BSSE) for different configurations
of Ag/MgO(0 0 1) interfaces according to CRYS-
TAL98 computational scheme [34].

2.2. Results and discussion

Now we present results of the latest ab initio
calculations, going somewhat beyond our recent
simulations of the regular Ag/MgO(0 0 1) interface
[25]. These new data (Table 1) are essential for our
further thermodynamic treatment.
The value of the lattice constant for the pure

MgO(0 0 1) substrate optimized for a 2� 2 super-
cell has been found to be smaller than in our
previous calculations for the bulk unit cell. We
find this value in the range 4.09–4.15 �AA for various
correlation functionals and adhesion models, to be
compared with the previous result 4.21 �AA [25] and
with the experimental bulk value 4.205 �AA [32]. One
component of the difference comes from the sur-
face stress which like the surface tension of a liq-
uid, tends to reduce the interatomic spacing. This

Table 1

Main results of the HF-CC simulation on the Ag/MgO(0 0 1) interface

Optimized

parameters

of calcula-

tions

Different a posteriori electron correlation corrections and substrate models

Perdew–Wang GGA Lee–Yang–Parr GGA Perdew–Zunger LSD Vosko–Wilk–Nusair LSD

Three-layera Five-layer a Three-layer a Five-layer a Three-layer a Five-layer a Three-layer a Five-layer a

Pure MgO(0 0 1) surface

aMgO (�AA) 4.09 4.11 4.10 4.12 4.13 4.14 4.12 4.14

1:4 Ag coverage of MgO(0 0 1) surface (Fig. 1d)

aMgO (�AA) 4.09 4.10 4.09 4.11 4.13 4.13 4.13 4.14

dAgO (�AA) 2.58 2.59 2.59 2.60 2.63 2.64 2.64 2.65

Eadh (eV) 0.23 0.22 0.22 0.21 0.20 0.19 0.19 0.18

1:2 Ag coverage of MgO(0 0 1) surface (a square distribution, Fig. 1b)

aMgO (�AA) 4.08 4.10 4.09 4.10 4.12 4.13 4.12 4.13

dAg–O (�AA) 2.58 2.58 2.59 2.59 2.62 2.63 2.63 2.64

Eadh (eV) 0.23 0.22 0.22 0.21 0.20 0.20 0.20 0.19

1:2 Ag coverage of MgO(0 0 1) surface (a striped distribution, Fig. 1c)

aMgO (�AA) 4.08 4.09 4.09 4.10 4.12 4.12 4.12 4.13

dAg–O (�AA) 2.69 2.69 2.68 2.69 2.74 2.76 2.73 2.75

Eadh (eV) 0.12 0.11 0.12 0.11 0.10 0.10 0.10 0.09

1:1 Ag coverage of MgO(0 0 1) surface (Fig. 1a)

aMgO (�AA) 4.07 4.08 4.08 4.08 4.12 4.13 4.12 4.13

dAg–O (�AA) 2.55 2.56 2.56 2.56 2.60 2.61 2.61 2.61

Eadh (eV) 0.26 0.25 0.25 0.25 0.22 0.21 0.21 0.20

a Three- and five-layer magnesia slabs are used in the models of one-side and two-side silver adhesion, respectively.
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effect can be seen from the systematic differences of
about 0.02 �AA between three-layer and five-layer
systems. The interface distances between silver
atoms and substrate have been optimized using the
EtotðaMgO; dAg–OÞ function for all four structures
shown in Fig. 1. The influence of this optimization
on the energy parameters for the phases given in
Fig. 1b–d will be discussed in Section 4A. As the
Ag coverage increases from 1:4 to 1:1, the equi-
librium dAg–O distance decreases negligibly, by
<3% (Table 1) and is accompanied by the adhe-
sion energy increase by 0.03–0.04 eV. For all used
correlation functionals, the Ag adhesion energy
lies between 0.18 and 0.26 eV per adatom, showing
that we have physisorption. The adhesion energy
is even smaller (a less stable interface) for the case
of the striped 1:2 Ag coverage shown in Fig. 1c,
where dAg–O is larger than for other configura-
tions (Table 1). Using the LSD-type correlation
functionals, the equilibrium values of both aMgO
and dAg–O are found to be slightly larger, but the
corresponding values of Eadh smaller than those for
the GGA-type functionals. These trends are typi-
cal for HF-CC and DFT methods implemented
in CRYSTAL98 code [34].

The BSSE corrections [40] were found to be
quite small (0.01–0.02 eV per adatom); they are
included in results presented in Table 1. The lateral
interactions between adjacent Ag atoms are rather
small for 1:4 and even 1:2 square coverages shown
in Fig. 1b and d, respectively. This is why their
stable configurations have practically the same
values of Eadh. However, these lateral interactions
are more significant for the striped configuration
(Fig. 1c), which is clearly energetically unfavor-
able, and so has larger interfacial distances (Table
1). In the case of the two-side adhesion model, the
corresponding values of Eadh are slightly smaller,
but the equilibrium interface distances are nearly
the same as for the one-side case. This confirms
that interaction between Ag atoms positioned on
the two opposite sides of the slab is negligibly
small and that three-layer substrate slab is thick
enough for further modeling using one-side adhe-
sion model.
When simulating possible trajectories for sur-

face diffusion of silver atoms, we have used the
lowest (1:4) metal coverage where Ag atoms are
well separated. Two energetically preferable diffu-
sion trajectories are shown in Fig. 1d: (i) along the
[1 1 0] direction, beginning with silver atom placed
above substrate oxygen ion, then it hops over a
gap position to the next one over substrate O2�

ion; (ii) along the [1 0 0] direction, starting with
the same position above the substrate O2� ion,
then hopping over the substrate Mg2þ ion, Ag
atom comes again atop the next substrate oxygen
ion. We will use below the corresponding energy
barriers along these trajectories in the estimate
how Ag mobility affects the growth mode of
thin metallic film. The mean square displacement

Table 2

The internal formation energies (eV) for three superstructures shown in Fig. 1b–da

U (eV) Different a posteriori electron correlation corrections and substrate models

Perdew–Wang GGA Lee–Yang–Parr GGA Perdew–Zunger LSD Vosko–Wilk–Nusair LSD

Three-layer Five-layer Three-layer Five-layer Three-layer Five-layer Three-layer Five-layer

U1 0.552 0.518 0.566 0.474 0.433 0.408 0.426 0.409

U2 1.031 1.058 1.029 0.973 0.865 0.906 0.865 0.904

U3 0.828 0.821 0.843 0.782 0.716 0.718 0.716 0.718

a The correlation functionals are the same as in Table 1.

Table 3

The sensitivity of the Fourier transform of the mixing potentialeVV ð0Þ (eV) to the choice of the correlation corrections (the same
as in Table 1)a

Perdew–Wang

GGA

Lee–Yang–

Parr GGA

Perdew–

Zunger LSD

Vosko–Wilk–

Nusair LSD

�2.791 �2.828 �2.830 �2.944
aData for the three-layer slab at different a posteriori elec-

tron correlation corrections.
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of Ag atom could be defined in a standard way
[33]:

hr2iAg ¼ 4sD0 exp
�
� �

kT

�
; ð1Þ

where D0 expð��=kT Þ is the diffusion coefficient
depending on the migration activation barrier �
and the temperature T, D0 and k are the diffusion
pre-factor and the Boltzmann constant, respec-
tively, whereas s is the time necessary for mutual
approach and aggregation of mobile Ag atoms.
Using Eq. (1), we can compare the rate of adatom
diffusion with the rates of other processes.
The energy barrier � for the Ag atom diffusion

along the [1 1 0] direction (Fig. 1d) turns out to be
very small, about 0.05 eV (found with PWGGA
correlation corrections in our HF-CC calcula-
tions). For the alternative diffusion pathway along
the [1 0 0] direction, the diffusion barrier is higher
(	0.12 eV with the same CC), reducing the prob-

ability of this diffusion path. As a result, we predict
Ag atoms to be highly mobile, even at low tem-
peratures. If we use these activation energies � in
Eq. (1) at T 
 300 K together with a typical D0

value of 10�3 cm2 s�1 and a surface coverage of
about 0.1, we obtain a characteristic time s 
 10�6

s for diffusion-controlled aggregation of Ag atoms
on the MgO(0 0 1) surface. This value suggests a
fast process of Ag aggregation. It is interesting to
note that a small diffusion barrier for Ag atoms on
quite different Pt(1 1 1) surface was also recently
found in ab initio calculations [41].
In order to analyze the electron charge redistri-

bution in the vicinity of the interface, we have
sectioned slabs of both Ag monolayer and 1:4
layer on the MgO(0 0 1) substrate along the (1 0 0)
plane, which ii-projection is shown on Fig. 1d. The
difference electron density maps shown in Fig. 2
are drawn with respect to a superposition of in-
teracting and isolated silver and magnesia slabs.

Fig. 2. Two difference charge distribution maps (the total electron density for the Ag/MgO(0 0 1) interface minus superposition of the

same densities for isolated Ag and MgO slabs) along the (1 0 0) cross-section perpendicular to interface: (a) for monolayer silver

coverage (Fig. 1a) and (b) for 1/4 Ag adlayer (Fig. 1d). Density isolines are drawn from �1.0 to 1.0 e au�3 with an increment of 0.005
e au�3.
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There is significant electron charge redistribu-
tion in the vicinity of silver/magnesia interface
(Fig. 2), indicating a marked polarization of the
interacting Ag atom and of the nearest substrate
O2� ion. However, the charge transfer from sub-
strate to metal atoms is very small (varied between
0.06e for 1:4 and 0.04e for 1:1 coverages), whereas
the electron charge on surface Mg2þ ions remains
almost unchanged. Population analysis clearly
shows absence of any chemical bonding across the
interface. For a silver monolayer, it is an enhanced
electron density between adjacent Ag atoms, which
increases the adhesion energy [25] (Fig. 2a).

3. Thermodynamic theory

3.1. Formalism

Now we develop a statistical thermodynamic
approach as the next step in theoretical modeling
of the Ag monolayer formation on the MgO(0 0 1)
surface. This formalism we shall combine with our
ab initio atomistic calculations discussed in Sec-
tion 2. As follows from our microscopic study, a
series of first-principles calculations [16–21,25],
and experimental data [6–9], (1) Ag atoms prefer
the sites above oxygen ions in the adlayer coating
on MgO(0 0 1), rather than above Mg2þ ions; and
(2) the equilibrium distance between the Ag ad-
layer and magnesia surface is essentially indepen-
dent of the concentration of adsorbed Ag atoms.
These circumstances allow us to study the forma-
tion of Ag film as a 2D system consisting of Ag
atoms and ‘‘empty sites’’. This system is formed on
a planar lattice placed above the MgO(0 0 1) sub-
strate; the sites of this lattice are situated above
oxygen ions, and the lattice is immersed in the field
of the electronic charge distribution created by the
magnesia surface. The adatom monolayer struc-
ture with some sites of 2D lattice occupied by Ag
atoms could be described as 2D ‘‘solid solution’’,
Ag–E, which is formed by Ag atoms and empty
site quasi-particles, E. The thermodynamics of
such solid solution may be formulated with the
help of the effective mixing site interactions po-
tential

eVV ð~rr;~rr0Þ ¼ VAg–Agð~rr;~rr0Þ þ VE–Eð~rr;~rr0Þ � 2VAg–Eð~rr;~rr0Þ;
ð2Þ

where VAg–Agð~rr;~rr0Þ, VE–Eð~rr;~rr0Þ, and VAg–Eð~rr;~rr0Þ are
the effective site interactions potentials between
silver atoms, between quasi-particles, and between
silver atoms and quasi-particles, respectively;~rr and
~rr0 are the positions of the sites in 2D lattice. The
mixing site interactions potential (2) describes the
interactions in such a 2D system in the field of
semi-bulk MgO terminated by a free (0 0 1) surface.
The atomic fractions of Ag atoms or of E quasi-

particles in this 2D solution can be determined in
the usual way. The total number of particles in this
system is conserved, being equal to the number of
2D lattice sites. This simplifies the application of
a traditional thermodynamic theory of substitu-
tional solid solutions, when, let us say, Ag atoms
substitute for E quasi-particles. The analysis of
thermodynamic stability of this 2D solid solution
becomes a study of the ordering and/or decom-
position tendencies in such a binary system on the
2D Ising lattice, and the stability may be consid-
ered in terms of the phase diagram of 2D-alloy.
This method of investigation has been used for
different systems, including single crystal surfaces,
magnetic systems, systems with long-range repul-
sive interactions or purely attractive interactions
(see, for example Ref. [42,43], and references
therein). We shall use the concentration wave
(CW) approach, developed in Ref. [44]. This
theory has several advantages over other statisti-
cal theories of alloys. One advantage is that CW
theory uses Fourier transforms of interatomic
interaction potentials that are site interactions
potentials in our case. Thus, it accounts formally
interactions in all coordination shells, and does
not make the common approximation of the first
or the first and the second neighbor interactions,
i.e. the nearest neighbors approximation.
In this theory the distribution of atoms A in a

binary alloy is described by a single occupation
probability function nð~rrÞ. This function gives the
probability of finding the atom A (Ag) at the site~rr
of the crystal lattice. The configurational part of
the free energy of formation of 2D solid solution
per atom is given by
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F ¼ 1

2N

X
~rr;~rr0;~rr 6¼~rr0

eVV ð~rr;~rr0Þnð~rrÞnð~rr0Þ

þ kT
X
~rr

fnð~rrÞ ln½nð~rrÞ�

þ ½1� nð~rrÞ� ln½1� nð~rrÞ�g: ð3Þ
The summation in Eq. (3) is performed over the
sites of the 2D Ising lattice. The function nð~rrÞ,
which determines a distribution of solute atoms in
an ordering phase, may be expanded in Fourier
series. It is presented as a superposition of CWs,

nð~rrÞ ¼ cA þ 1
2

X
js;s

½Qð~kkjsÞei
~kkjs~rr þ Q�ð~kkjsÞe�i

~kkjs~rr�; ð4Þ

where cA is concentration of particles A (Ag in our
case), ei

~kkjs~rr is a CW, kjs is a non-zero wave vector
defined in the first Brillouin zone of the disordered
binary alloy, the index fjsg enumerates the wave
vectors in the Brillouin zone, that belong to the
star s, and Qð~kkjsÞ is a CW amplitude. As shown in
Ref. [43], all Qð~kkjsÞ are linear functions of long-
range-order (LRO) parameters of superlattices
that may be formed on the basis of the Ising lattice
of the disordered solid solution:

Qð~kkjsÞ ¼ gscsðjsÞ: ð5Þ
Here gs are LRO parameters, and cs jsð Þ are coef-
ficients that determine the symmetry of the occu-
pation probabilities nð~rrÞ (the symmetry of the
superstructure) with respect to a rotation and re-
flection symmetry operations. The LRO parame-
ters are defined in such a way that, in a completely
ordered state, where nð~rrÞ are either unity or zero
on all lattice sites f~rrg, all parameters gs should
be equal to unity. This requirement completely
defines the constants cs jsð Þ. The definition of the
LRO parameters coincides with the conventional
definition in terms of the occupation probabilities
of sites in the different sublattices. Substitution of
Eqs. (4) and (5) into the first term of Eq. (3) gives
the internal energy of formation per atom for the
ordering superstructure in a form

U ¼ 1
2
eVV ð0Þc2A þ 1

2

X
js;s

g2sc
2
s jsð ÞeVV ð~kkjsÞ; ð6Þ

where eVV ð~kkjsÞ is the Fourier transform of the mix-
ing site interactions potential and eVV ð0Þ is the same
for the vector ~kkjs equal to zero. Eqs. (3) and (6)

define the Helmholtz free energy and the internal
energy of ordering phases with respect to the ref-
erence state. We are emphasizing that the advan-
tage of the expression (6) in the use of Fourier
transforms that makes possible to include long-
range interactions associated with a substrate
strain.

3.2. Application to 2D solid solution Ag–E on
(001)MgO surface

In simulations of a coverage of MgO(0 0 1)
surface by a layer of Ag atoms, we have chosen the
2D-structures given in Fig. 1. The case in Fig. 1a
corresponds to cA ¼ 1: full surface coverage; there
are no CWs in this structure. According to Eq. (4)
occupation probabilities for the 2D lattice struc-
tures shown in Fig. 1b–d could be calculated after
carrying out vectors~kkjs . The superstructure vectors
~kkjs define positions of additional X-ray reflections
that appear within the disorder–order transfor-
mation of the binary system. This transformation
leads from a disordered state on the Ising lattice
to an ordered or partly ordered state. The vectors
determine new unit translations in the reciprocal
lattice arising from the reduction of the translation
symmetry caused by the ordering. These vectors
describe the structures, which have the minimum
of V ð~kkÞ from the symmetry considerations. To
choose these vectors, the Lifshitz criterion [45] is
used. According to this criterion the point group
of the vector ~kkjs contains the intersecting elements
of symmetry. The ordering of the disordered Ag–E
solid solution on the 2D lattice in structures dis-
played in Fig. 1b and c is described by only one
vector ~kkjs . The superstructure vector ~kk1 ¼ 2p=
að1; 0Þ defines the structure displayed in Fig. 1b.
The structure shown in Fig. 1c is defined by the
vector ~kk21 ¼ ð2p=aÞ ð1=2Þ; ð1=2Þð Þ, while the struc-
ture shown in Fig. 1d is described by the combi-
nation of three CWs with vectors ~kkjs :

~kk1 ¼
2p
a
1; 0ð Þ; ~kk21 ¼

2p
a

1

2
;
1

2

� �
; and

~kk22 ¼
2p
a

�
� 1

2
;
1

2

�
:

The occupation probabilities for structures shown
in Fig. 1 are
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n1ð~rrÞ ¼ cð1ÞA þ 1
2
gei2px; ð7Þ

n2ð~rrÞ ¼ cð2ÞA þ 1
2
geipðxþyÞ; ð8Þ

n3ð~rrÞ ¼ cð3ÞA þ 1
4
g1 e

i2px þ 1
4
g2 e

ipðyþxÞ�
þ eipðy�xÞ� ð9Þ

where n1, n2, and n3 correspond to Fig. 1b–d, re-
spectively. In Eqs. (7)–(9) x and y are the coordi-
nates of the lattice sites of the Ising lattice and
should be substituted in the lattice parameter
units. Stoichiometric compositions of these or-
dering 2D phases are cð1ÞA ¼ cð2ÞA ¼ 1=2, and
cð3ÞA ¼ 1=4. It is easy to check by direct substitution
of coordinates of the Ising lattice sites that for
displayed structures in absolutely ordered states
and stoichiometric compositions the occupation
probabilities are equal to unity in the sites where
Ag atoms are placed and are equal to zero in the
empty sites. The internal energies of formation for
these phases are respectively
Fig. 1b:

U1 ¼ 1
2
eVV 0ð Þc2 þ 1

8
eVV ð~kk1Þg2; ð10Þ

Fig. 1c:

U2 ¼ 1
2
eVV 0ð Þc2 þ 1

8
eVV ð~kk2Þg2; ð11Þ

Fig. 1d:

U3 ¼ 1
2
eVV ð0Þc2 þ 1

32
eVV ð~kk1Þg21 þ 1

16
eVV ð~kk2Þg22: ð12Þ

It may be shown that the value of the Fourier
transform of the mixing site interactions potential,
V ð~kkjÞ, is the same for different vectors~kkj belonging
to the same star of vectors (in Eqs. (11) and (12)

the notation V ð~kk2Þ ¼ V ð~kk21Þ ¼ V ð~kk22Þ is used). The
last superstructure is described by two LRO pa-
rameters. As it was mentioned in the Section 2, the
total energies of these superstructures were calcu-
lated by means of the ab initio HF-CC method.

4. Application to the Ag/MgO(001) interface

4.1. Analysis of the phase competition

We choose the reference state energy in a con-
ventional way (see, for example, Ref. [46]) as the
energy of a heterogeneous mixture of components

of the Ag–E solid solution. In our case it is calcu-
lated as the sum of weighted (according to atomic
fraction) total energies per lattice site for the
‘‘empty’’ lattice and the lattice filled by Ag atoms
above the same MgO slab. Keeping in mind that in
absolutely ordered state all LRO parameters in
Eqs. (10)–(12) are equal to unity, we obtained from
the HF-CC calculations using PWGGA corre-
lation functional and three-layer slab model of
magnesia substrate (Table 1) the following values:
U1 	 0:552 eV, U2 	 1:031 eV, and U3 	 0:828 eV.
To clarify the effect of the correlation functionals
on energy differences for the ordered phases that
define the phase competition, we performed also
additional calculations with different electron cor-
relation corrections mentioned in Section 2. The
results are shown in Table 2. The dispersion in the
calculated energies does not exceed 25% for any
of these quite different correlation corrections, and
this consistency is enough for our qualitative con-
clusions about mechanisms of thin film growth
mode. As follows from Table 2 the thickness of
the underlying magnesia slab also does not affect
significantly. As may be seen from Table 2 the
energies U1, U2 and U3 calculated for optimized
lattice parameter of the 3L or 5L slab and for
the optimized distance between Ag layer and sub-
strate change only a little for each of investigated
correlation corrections models. For example, for
PWGGA model U1 changes in 6%, while the
changes in U2 and U3 are even less significant. The
main result remains unchanged: all three energies
U1, U2, and U3 are always positive (for all investi-
gated models of correlation corrections and for
optimized lattice parameter of the 3L and 5L
slabs). This means that the states represented by the
phases considered (Fig. 1b–d) have a higher energy
than the reference state. Thus the decomposition of
Ag–E solid solution should occur. All considered
phases are unstable with respect to decomposition,
they are unfavorable as compared with the hete-
rogeneous mixture of components in Ag–E. The
diffusion of Ag atoms along the surface cannot
stabilize these phases. Even the most favorable
absolutely ordered phases are unstable. Any jump
of Ag atoms from their ‘‘regular’’ sites to ‘‘irregu-
lar’’ sites in Ag–E ordered phase will result in
partial disorder. This process will make these
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phases less favorable, and the solid solution will
decompose. On the other hand, if the diffusion that
held in disordered solid solution will lead to for-
mation of some ordered regions in Ag–E with the
Ag–E phases considered in Fig. 1b–d, they will be
thermodynamically unstable and should decom-
pose. Thus the coupling of two Ag atoms with the
loss of symmetry cannot lead to the stabilization of
the phases given by Eqs. (7)–(9). It worth to men-
tion that the energy of the considered phases is
calculated in terms of Fourier transforms of inter-
atomic potentials VAg–Ag, VAg–E, and VE–E. The en-
ergy of phases, and thus the potentials, are defined
in the field of the underlying MgO substrate slab
with (0 0 1)-terminated surface. The same poten-
tials determine the energy barriers in Ag adatom
diffusion. In this sense we have self-consistency in
the definition of the energy characteristics of the
phases and the energy barriers for Ag adatom dif-
fusion that were presented in Section 2.2.
At the same time, the obtained data allow us to

calculate the energy parameter needed to describe
the decomposition in Ag–E solid solution. Solving
Eqs. (10)–(12) for the parameters eVV ð0Þ, eVV ð~kk1Þ, andeVV ð~kk2Þ we get eVV ð0Þ 	 �2:791 eV for PWGGA
correlation functional and three-layer magnesia
slab. For the five-layer slab with the same corre-
lation corrections we get eVV ð0Þ 	 �2:604 eV that as
compared with aforementioned result obviously
demonstrates that three-layer slab is enough for
thermodynamic predictions—the variation of the
energy parameter is about 7%. This result proves
also that the polarization effects are small in the
case of Ag/MgO system. In these calculations we
have assumed that energy parameters eVV ð0Þ, eVV ð~kk1Þ,
and eVV ð~kk2Þ are concentration-independent. This
assumption is based mainly on the results of the
diffuse X-ray scattering data for the alloys (see
Ref. [47]). Table 3 illustrates the sensitivity of the
key energy parameter, Fourier transform of the
mixing potential eVV ð0Þ, to the choice of correlation
functionals used in the calculations with three-
layer MgO slab. It is well seen that eVV ð0Þ does not
vary by more than 10% when different correlation
corrections are used.
The condition nð~rrÞ ¼ cA ¼ constant corre-

sponds to the case of disordered 2D solid solution
when all LRO parameters in Eqs. (6)–(8) are equal

to zero. Substitution of nð~rrÞ ¼ cA into Eq. (2) gives
the free energy of this solution

F cð Þ ¼ 1

2
eVV 0ð Þc2 þ kT c ln c½ þ 1ð � cÞ ln 1ð � cÞ�;

ð13Þ
where we have omitted the index A. From the
simple thermodynamic consideration, it follows
that an equilibrium phase diagram remains un-
affected if the free energy given by Eq. (13) is
replaced by

F cð Þ ¼ � 1
2
eVV 0ð Þc 1ð � cÞ

þ kT c ln c½ þ 1ð � cÞ ln 1ð � cÞ�: ð14Þ

This expression includes the chemical potential
term, and is more convenient because of its sym-
metry with respect to c ¼ 1=2. The 2D phase dia-
gram of the Ag–E disordered solid solution
calculated with Eq. (14) is given in Fig. 3. It has
the miscibility gap, and the decomposition reac-
tion takes place because the obtained valueeVV ð0Þ < 0.

4.2. Phase diagram for 2D solid solution

The calculated phase diagram represents the
case of the limited solid solubility in a binary 2D

Fig. 3. The calculated phase diagram of the Ag–E 2D solid

solution. The bold line is a solvus and the dashed line is a

spinodal. The existence of the solid solution is assumed in the

given temperature range. The system is single-phase above the

solvus line (point 1), and decomposes into two-phase state

below the spinodal line (point 2) at temperature T 0. A line at T 00

illustrates conditions leading to increase of Ag contents in a

phase with low silver concentration and to decrease of Ag

contents in silver-enriched phase. At T 00 a fraction of Ag-

enriched phase decreases in comparison with T 0.
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Ag atom-quasi-particle solution. The solvus is
shown in Fig. 3 by the solid line, and the dashed
line describes the spinodal. The solubility curve is
determined by the necessary minimum condition
dF cð Þ=dc ¼ 0. The spinodal curve is given by the
equation d2F cð Þ=dc2 ¼ 0. According to the sug-
gested model, the two-phase region is symmetric
with respect to concentration c ¼ 1=2. This follows
from the assumption that energy parameter is
concentration independent. To analyze the de-
composition in the solid solution, let us start from
the point 1 on Fig. 3. This point represents the
high-temperature state of a metal monolayer with
an equilibrium concentration of Ag atoms c0 at the
temperature T0. This is a single-phase state, cor-
responding to the disordered solid solution in the
monolayer, when Ag atoms randomly occupy
the sites of the 2D lattice atop oxygen ions of
the MgO(0 0 1) surface. Cooling of the system to
temperature T 0 takes us to the state shown by
point 2, below the spinodal.
After annealing at this new temperature T 0 the

equilibrium two-phase state of the solid solution is
obtained. The thermodynamic mechanism of the
formation of this state is a decomposition of the
single-phase state into the two-phase state. This
two-phase state is a mixture of two random solid
solutions in the Ag–E system. One phase is an
extremely dilute solid solution of metal atoms,
randomly distributed on the lattice sites with the
equilibrium concentration c1 (phase 1). The second
phase is also a random solid solution of the same
type as the first one, but with extremely high
concentration of Ag atoms, c2 (phase 2). Thus, the
two-phase state represents the mixture of the
phases: one is highly enriched with Ag, whereas
the second one is depleted of Ag atoms. The rel-
ative fraction of the phase 2 in a two-phase mix-
ture is defined by the lever rule, and is equal to
ðc0 � c1Þ=ðc2 � c1Þ, whereas the fraction of the
phase 1, with its smaller concentration of Ag
atoms, is much higher, and is equal to ðc2 � c0Þ=
ðc2 � c1Þ. If the solubility regions are narrow, we
shall have a very small fraction of the phase 2.
Nevertheless, this phase has to exist. The two-
phase state that corresponds to the temperature T 0

and atomic fraction c0 is characterized therefore
as Ag-rich regions which are immersed in a 2D

monolayer lattice with few Ag atoms and many
empty sites randomly distributed over the rest of
the surface. These small Ag-rich regions are also
random solid solutions (Ag–E), but the concen-
tration of Ag in them is very large and the number
of empty sites correspondingly small.
The lever rule makes it possible to find the

‘‘volume’’ fraction of the phases co-existing at
each alloy composition if the equilibrium phase
diagram is known. Making use of this rule, it is
easy to understand the changes in the structure
of the two-phase state. When the temperature in-
creases from T 0 to T 00 the point c1 in the Fig. 3
moves to the right and c2 moves to the left. This
will decrease the fraction of the Ag clusters, i.e. the
fraction of the phase enriched by Ag, and increase
simultaneously the fraction of the extremely dilute
Ag–E solid solution. At the same time the atomic
fraction of Ag atoms in clusters decreases, that
means the increase of the empty sites in these
clusters.
Let us consider now the case when after cooling

from the temperature T01 (points 1 or 3 in Fig. 4) to
the temperature T 0

1 the system comes to the region
of the phase diagram between the solvus and the
spinodal (points 2 or 4 in Fig. 4). It is easy to see
from Eq. (14) that the condition d2F cð Þ=dc2 > 0 is
satisfied in this region of the phase diagram. For
all points c0 inside this interval the curve F ðc0Þ
is concave, and this condition means that the

Fig. 4. A part of the phase diagram of Fig. 3 enlarged in the

vicinity of the concentration corners. The system is metastable

between the solvus and spinodal lines with respect to nucleation

and growth of metal clusters. See description of marks in the

text.
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homogeneous solid solution is stable with respect
to infinitesimal heterogeneity. Indeed, if d2F cð Þ=
dc2 > 0 it is always possible to choose an infini-
tesimal region of concentrations c01 < c0 < c02 in the
vicinity of the point c0, where d2F cð Þ=dc2 > 0, i.e.
where the curve F ðcÞ is concave. This curve lies
below the straight line connecting the points
fc01; F ðc01Þg and fc02; F ðc02Þg. Therefore the homo-
geneous single-phase alloy is more stable than a
mixture of two phases having infinitesimally dif-
ferent compositions.
If a homogeneous alloy characterized by the

condition d2F cð Þ=dc2 > 0 at the point c is unstable
with respect to the formation of the two-phase
mixture with ca and cb phase compositions that are
substantially different from the alloy composition,
the alloy is stable nevertheless with respect to in-
finitesimally small composition heterogeneity. This
is a metastable alloy, and the described situation
corresponds to the points 2 and 4 in Fig. 4. The
decomposition reaction in this case should involve
the formation of finite composition heterogeneity
and follow the nucleation-and-growth mechanism.
A small increase of the atomic fraction of Ag be-
yond the value c3 (see Fig. 4) to the right from the
solvus curve will leave the Ag–E solid solution in
single-phase state. The system will also remain in
single-phase state if the temperature T is changed
to bring the ‘‘alloy’’ to the state above the solvus.
Thus, following our discussion, we can formu-

late a simple thermodynamic rule for the process-
ing of the Ag coating on an MgO(0 0 1) surface.
The Ag-rich clusters will be obtained at low Ag
coverage if the process is such that, at the end, the
system exists in the region of the phase diagram
between the solvus and spinodal with subsequent
decomposition into a two-phase state. A more-
or-less ‘‘monolayer’’ state will be obtained if, at
the end, the system finds itself in the region below
the spinodal on the phase diagram. In the first
case, further coating by Ag will lead to the growth
of 3D silver clusters on the substrate surface, since
those clusters existing already in a monolayer serve
as nuclei for such a growth. At the same time,
the thermodynamic stability conditions prohibit
the 2D growth of clusters already existing in a
monolayer. In the second case, if the system exists
below the spinodal in Fig. 4 (with a high atomic

fraction of Ag atoms), a low-quality quasi-mono-
layered structure may be formed. The coverage
will have almost uniform structure, but be a two-
phase state, nevertheless. This is illustrated by the
picture in the right round frame in Fig. 5. At very
high temperatures, coating by Ag atoms will leave
the system in a one-phase state, namely a dis-
ordered Ag–E solid solution with a high concen-
tration of Ag atoms. During the process, if the
fraction of Ag atoms is very high, one may expect
the formation of a single-phase state that is pre-
sented by a good monolayer. This monolayer is a
random Ag–E solid solution but with very high
fraction of Ag atoms (and thus, a small fraction of
empty sites). It is difficult to reach the thermody-
namic equilibrium in this single-phase state at low
temperature because the solubility region at rather
low temperature T 0

1 in Fig. 4 is extremely narrow.
At the same time, if the necessary thermodynamic
conditions are satisfied, the metal monolayer may
grow up. Then the formation of the next mono-
layer above the first, stable layer may begin. This
will develop as a layer-by-layer growth process.
We would like to emphasize that the same growth
mechanism may also be realized for high Ag cov-
erage if the system is below the spinodal. In this
case, however, the ‘‘monolayer’’ will not be uni-
form enough. It will not have the structure of well-
separated Ag clusters, nor will it be a one-phase
state.

Fig. 5. Phase diagram for the Ag film growth on the MgO(0 0 1)

substrate at low temperature. The round frames show the typ-

ical morphology for spinodal (under the dashed curve) and

cluster (between the solid and dashed curves) decompositions.

Black areas are Ag, grey ones are MgO. Temperatures are in

units of k=jeVV ð0Þj. See description of the marks in the text.
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Fig. 5 could be used for a better understanding
of our predictions for the silver film growth on
magnesia substrate. When covering the MgO(0 0 1)
surface by Ag atoms with a fixed deposition rate,
at T ¼ T1 in Fig. 5, we start at very low coverages
with the random Ag distribution over the surface
(point 1). At metal concentrations above fractions
of percent we move already into the region 2 of a
metastable solid solution, where very small metal
clusters are formed. Further increases of a metal
coverage bring us to the point 3, representing pre-
dominant range of Ag concentrations, where in the
equilibrium the system is in a two-phase state.
If the system passes from this region into a

single-state mode, with randomly distributed Ag
atoms of increasing concentration, it has a small
chance to remain in this state also close to c ¼ 1.
This would result in a metal layer-by-layer growth
mode. However, the most probable scenario is that
the system will decompose into two phases, with
fast Ag cluster nucleation in the region of point 4.
If so, the further increase of silver concentration
would lead only to the growth of Ag clusters
(probably 3D) serving as nuclei for further aggre-
gation. The decomposition reaction in this case
involves the formation of finite composition het-
erogeneity and follows the nucleation-and-growth
mechanism. Particles of the Ag-rich phase that are
formed in this region of the phase diagram are well
separated. They have low connectivity and may be
considered as isolated Ag clusters. This situation is
typical for decomposition of binary dilute solid
solution with limited solubility [48,49]. It is very
likely that this results in growth of 3D metal is-
lands.

4.3. Comparison with experimental data

The kinetics of the single-phase decomposition
is controlled mainly by long-range diffusion of
single silver atoms into metal clusters. As we esti-
mated above, the characteristic time for silver
atom diffusion and aggregation on a lattice cov-
ered by one percent of Ag at 100 K turns out to be
as short as 10�6 s, so that makes efficient Ag ag-
gregation to be a very fast process. Note that the
nucleation and growth kinetics have been dis-
cussed intensively in the literature, see, e.g., Ref.

[4]. In the previous paragraphs, we have described
the spinodal decomposition of the Ag–E dilute
solid solution in the low-temperature region. If
we look at the E-rich side of phase diagram, we
can describe the data from real experiments [10]
in terms of decomposition. The analogous decom-
position pattern was observed in the Ag-rich side
of the diagram [6]. Electron micrographs presented
in both Fig. 6a in Ref. [10] and Fig. 1 in Ref. [6]
indeed visualize a spinodal decomposition pre-
dicted by our theory. It means that in these ex-
periments substrates were kept at temperatures
below the spinodal for Ag–E 2D solid solution.
These microstructures are typical for traditional
spinodal decomposition morphology (see, e.g.,
Figs. 2 and 3, and Fig. 6 in Ref. [49] as well as Fig.
4-38a in [48]). Lastly, Fig. 6b in Ref. [10] shows the
metal cluster formation region. According to our
approach, in this case the system is in the region of
the phase diagram located between the solvus and
the spinodal. Our approach, combining thermo-
dynamics with ab initio calculations, is supported
also by the conclusions of Ref. [50]. The experi-
mental data reported there confirm that thin 2D
Ag films grown at room temperature evolve
rapidly toward an island structure when raising
the temperature just above room temperature. In
terms of our phase diagram in Fig. 5, this means
that the system transfers from the region below the
spinodal to the region between the spinodal and
the solvus.
We do understand, of course, that the model

depicted for the formation of the metal coating is
strongly over-simplified, and that the real equilib-
rium pattern in the silver film growth on the sur-
face of magnesia might be more complicated. First
of all, the mean-field approximation used in our
theory, does not account for some fine peculiarities
of the phase formation, including the correlation
effects (the readers are referred to the special lit-
erature devoted to this question [51]). The ap-
proximation of pairwise interactions is implicit in
our study, even though many-body interactions
may play an important role changing the relative
energetics of the phases that compete in the phase
diagram. Several additional factors may also affect
the conditions of the phase formation in the
above-studied 2D solid solution. Among them is
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3% misfit in the lattice parameters of the pure Ag
and the bulk MgO. This means it is necessary to
take account for the elastic part of the energy in
the minimization of the free energy of 2D-alloy
formed at the Ag layer atop the MgO(0 0 1) sur-
face. The structure of the alloy in this case may
become more complicated.
It may include some 2D analog of the Guinier–

Preston zones that may be formed as in the case
of small misfit in 3D metallic alloys [48]. Lattice
strains may lead to the formation of strain-mod-
ulated structures complicating the morphology of
the 2D structures formed in the monolayer. The
geometry of the substrate surface underlying the
monolayer coating may change the effective field in
which the 2D-film is embedded. In this case the
phase diagram may change, including, for exam-
ple, formation of ordered phases that will be fa-
vorable with respect to the disordered system or
to the decomposition process. The same may
happen when the surface of the substrate is alloyed
by additional elements, or includes vacancies or
extended defects. Each of the above-mentioned
factors needs to be the subject of a special inves-
tigation. Nevertheless, the approach in terms of
the phase diagrams may be still extremely fruitful
in understanding the main trends in the equilib-
rium pattern formation in the metallic monolayers
growing on the insulating surfaces.

5. Conclusions

In this paper, we have developed a novel ther-
modynamic formalism based on ab initio calcula-
tions for ordered metal/oxide interfaces. This
needs calculations of the metal superstructures
with low surface coverages. A novel approach
being applied to the Ag/MgO system has enabled
us to predict the conditions when the metal atom
distribution should be random or when metal
atoms aggregate into clusters, and to estimate
metal density in such clusters. We proved that for
Ag/MgO, in principle, a monolayer metal film
could grow via the spinodal decomposition. Our
ab initio calculations of the migration barrier for
silver atoms moving atop MgO(0 0 1) surface al-
lowed to demonstrate their high mobility which

makes metal island formation via nucleation-and-
growth mechanism almost unavoidable. Although
the growth kinetics is very dependent on the de-
position rate of Ag atoms on the surface our study
may be considered as complementary to the kinetic
approach to the problem [4] in the limit of low
deposition rate when the thermodynamic ap-
proach should work. We definitely showed that
different types of growth modes of thin metallic
films on oxide substrates may be treated in the
framework of the single theory of decomposition
in 2D solid solution. In our specific case of silver
adlayer on magnesia substrate this manifests as the
spinodal decomposition of the solid solution of Ag
atoms and empty sites. Our paper gives a new
understanding of different growth modes with
the sole mechanism. In contradiction to other ap-
proaches, our theory accounts for the bonding not
only between Ag atoms but also between Ag atoms
and different atoms of the substrate. Moreover, it
accounts for the type (crystallography) of the
surface where the thin metallic film grows on. This
conclusion follows directly from our statement of
the problem—the 2D solid solution of Ag atoms is
treated explicitly in the field produced by specific
surface of the underlying ceramic.
To clarify the effect of the correlation correc-

tions on the relative energies for some ordered
phases, which define the phase competition we
performed HF-CC calculations with different
electron correlation functionals (LSD- and GGA-
type) and compared the obtained results. We have
shown that variation of the formation energies for
considered phases does not exceed 25%, which
does not affect the qualitative conclusions. We
discussed also the sensitivity of the key energy
parameter—Fourier transform of the mixing po-
tential eVV ð0Þ to the choice of correlation function-
als. The effect of correlation corrections on the
value eVV ð0Þ is less than 10%. The sign of eVV ð0Þ is
also remains the same confirming our conclusion
about the physisorption mechanism of the for-
mation of silver monolayer.
We have used both one-side adsorption model

of the Ag/MgO(0 0 1) interface with different silver
coverages of three-layer substrate slab and the
two-side silver adsorption over both sides of five-
layer MgO(0 0 1) slab. We have analyzed different
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structural and electronic properties of both models
and did not find essential differences between
them. Influence of artificial dipole layer on inter-
face properties is rather negligible.
A novel theory could be applied to many metal/

insulator systems, which would permit the pre-
diction of the conditions for a random metal atom
distribution, or for metal atom aggregation into
clusters, as well as to estimate the metal density in
such clusters. Our approach has several advanta-
ges as compared with the usual kinetic MC simu-
lations for similar problems:

1. The mixing Ag–E quasi-particle potential is de-
fined in the external field of the substrate. Thus,
we account effectively the charge re-distribution
effects when the Ag layer grows above some
specific plane of magnesia substrate.

2. Use of the mixing site interactions potential,
V ð~rr;~rr0Þ, allows one to avoid the problem of ex-
plicit definition of the pair site interactions po-
tentials, VAg–Ag, VE–E and VAg–E, because V ð~rr;~rr0Þ
is already the necessary combination of those
potentials and is the only quantity needed for
thermodynamic theory developed in our paper.

3. The same is true for the Ag–Mg and Ag–O po-
tentials that are necessary for MC simulations
of the Ag film growth on MgO substrate. It
could be possible to extract such interatomic
potentials from the corresponding experimental
data for the molecules, but these interactions
differ from the same potentials for Ag adatoms.
Our mixing energy for the 2D system, on the
other hand, is based on an optimization proce-
dure which takes account of the interactions de-
termined in the field of the underlying substrate.

4. As a rule, the MC method accounts the atomic
interaction in a very limited number of coordi-
nation shells. In our approach we use directly
the Fourier transforms of the mixing potentials.
It means that the interaction includes contribu-
tions from all coordination shells.

Summing up, in this paper we have suggested a
new physical approach that allows to explain the
effect of external conditions on a growth mode
of thin metal films on insulating substrates. This
approach is based on the ab initio calculations

combined with thermodynamic study of the sta-
bility of 2D solid solution ‘‘metal atom–empty
site’’. For a particular Ag/MgO(0 0 1) interface,
this is the spinodal decomposition. This explains
a non-trivial situation observed experimentally.
Depending on the temperature and concentration
of metal atoms, the metal film could grow as a
monolayer or as metal clusters. As we show, this is
defined by the condition of metal coverage growth
above or below the spinodal line.

Acknowledgements

DF and SD are thankful to G. Borstel and D.E.
Ellis for kind hospitality and fruitful discussions.
YZ highly appreciates creative atmosphere at the
Centre for Materials Science at UCL, London,
during his stay there. Authors thank J.H. Harding,
E. Heifets, P.W.M. Jacobs and J. Maier for stim-
ulating discussions as well as B. Herschend for
preparation of Fig. 2. This study was partly sup-
ported by a British–Latvian Royal Society col-
laborative grant and by European Centre of
Excellence for Advanced Materials Research and
Technology (contract no ICA1-CT-2000-7007).
SD acknowledges the support of the KAMEA
program.

References

[1] M.W. Finnis, J. Phys. Cond. Mat. 8 (1996) 5811.

[2] C. Noguera, Physics and Chemistry at Oxide Surfaces,

Cambridge University Press, Cambridge, 1996.

[3] C.T. Campbell, Surf. Sci. Rep. 27 (1997) 1.

[4] J.A. Venables, G.D.T. Spiller, M. Hanb€oocken, Rep. Prog.
Phys. 47 (1984) 399;

J.A. Venables, Phys. Rev. B 36 (1987) 4153;

J.H. Harding, A.M. Stoneham, J.A. Venables, Phys. Rev.

B 57 (1998) 6715.

[5] M. Hillert, Phase Equilibria, Phase Diagrams and Phase

Transformations: Their Thermodynamic Basis, Cambridge

University Press, Cambridge, 1998.

[6] A. Trampert, F. Ernst, C.P. Flynn, H.F. Fishmeister, M.

R€uuhle, Acta Metall. Mater. 40 (1992) S227.

[7] M.-H. Schaffner, F. Patthey, W.-D. Schneider, Surf. Sci.

417 (1998) 159.

[8] O. Robach, G. Renaud, A. Barbier, Phys. Rev. B 60 (1999)

5858.

D. Fuks et al. / Surface Science 499 (2002) 24–40 39



[9] P. Stracke, S. Krischok, V. Kempter, Surf. Sci. 473 (2001)

86;

J.H. Larsen, J.T. Ranney, D.E. Starr, J.E. Musgrove, C.T.

Campbell, Phys. Rev. B, in press.

[10] T. Harada, M. Asano, Y. Mizutani, J. Cryst. Growth 116

(1992) 243.

[11] F. Didier, J. Jupille, Surf. Sci. 307–309 (1994) 587.

[12] A.M. Stoneham, J.H. Harding, Acta Mater. 46 (1998)

1155.

[13] A.V. Matveev, K.M. Neyman, I.V. Yudanov, N. R€oosch,
Surf. Sci. 426 (1999) 123.

[14] Yu.F. Zhukovskii, E.A. Kotomin, P.W.M. Jacobs, A.M.

Stoneham, Phys. Rev. Lett. 84 (2000) 1256;

Yu.F. Zhukovskii, E.A. Kotomin, P.W.M. Jacobs, A.M.

Stoneham, J.H. Harding, J. Phys. Cond. Mat. 12 (2000) 55.

[15] N.C. Bacalis, A.B. Kunz, Phys. Rev. B 32 (1985) 4857.

[16] A.M. Ferrari, G. Pacchioni, J. Phys. Chem. 100 (1996)

9032.

[17] G. Pacchioni, N. R€oosch, J. Chem. Phys. 104 (1996) 7329;

I.V. Yudanov, S. Vent, K.M. Neyman, G. Pacchioni, N.

R€oosch, Chem. Phys. Lett. 275 (1997) 245.
[18] N. Lopez, F. Illas, N. R€oosch, G. Pacchioni, J. Chem. Phys.

110 (1999) 4873.

[19] U. Sch€oonberger, O.K. Andersen, M. Methfessel, Acta

Metall. Mater. 40 (1992) S1.

[20] C. Li, R. Wu, A.J. Freeman, C.L. Wu, Phys. Rev. B 48

(1993) 8317.

[21] J.R. Smith, T. Hong, D.J. Srolovitz, Phys. Rev. Lett. 72

(1994) 4121.

[22] R. Benedek, M. Minkoff, L.H. Yang, Phys. Rev. B 54

(1996) 7697.

[23] J. Goniakowski, Phys. Rev. B 57 (1998) 1935, 58 (1998)

1189.

[24] V. Musolino, A. Selloni, R. Car, Phys. Rev. Lett. 83 (1999)

3242.

[25] E. Heifets, Yu.F. Zhukovskii, E.A. Kotomin, M. Caus�aa,
Chem. Phys. Lett. 283 (1998) 395;

Yu.F. Zhukovskii, E.A. Kotomin, P.W.M. Jacobs, A.M.

Stoneham, J.H. Harding, Surf. Sci. 441 (1999) 373;

Yu.F. Zhukovskii, E.A. Kotomin, D. Fuks, S. Dorfman,

A. Gordon, Surf. Sci., in press.

[26] D.M. Duffy, J.H. Harding, A.M. Stoneham, Philos. Mag.

A 67 (1993) 865;

Acta Metall. Mater. 43 (1995) 1559.

[27] J. Purton, S.C. Parker, D.W. Bullett, J. Phys. Cond. Mat.

9 (1997) 5709.

[28] J.A. Venables, Introduction to Surface and Thin Film

Processes, Cambridge University Press, Cambridge, 2000.

[29] D. Frenkel, B. Smit, Understanding Molecular Simula-

tions, Academic Press, San Diego, 1996;

I.K. Kamilov, A.K. Murtazaev, Kh.K. Aliev, Phys.

Uspekhi 42 (1999) 689.

[30] A.M. Stoneham, in: P. Jena, C.B. Satterthwaite (Eds.),

Electronic Structure and Properties of Hydrogen in Metals,

Plenum Press, New York, 1983.

[31] D. Fuks, S. Dorfman, E.A. Kotomin, Yu.F. Zhukovskii,

A.M. Stoneham, Phys. Rev. Lett. 85 (2000) 4333.

[32] M. Caus�aa, R. Dovesi, C. Pisani, C. Roetti, Surf. Sci. 175
(1986) 551.

[33] E.A. Kotomin, V.N. Kuzovkov, Modern Aspects of

Diffusion Controlled Reactions, Elsevier, Amsterdam,

1996.

[34] V.R. Saunders, R. Dovesi, C. Roetti, M. Caus�aa, N.M.

Harrison, R. Orlando, C.M. Zicovich-Wilson, CRYS-

TAL98 User Manual, University of Turin, 1999.

[35] M. Caus�aa, A. Zupan, Int. J. Quant. Chem.: Quant. Chem.
Symp. 28 (1994) 633;

M. Towler, A. Zupan, M. Caus�aa, Comput. Phys. Com-

mun. 98 (1996) 181.

[36] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.

[37] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.

[38] J.P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048.

[39] S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980)

1200.

[40] R.W. Grimes, C.R.A. Catlow, A.M. Stoneham, J. Phys.

Cond. Mat. 1 (1989) 7367.

[41] K.A. Fichthorn, M. Scheffler, Phys. Rev. Lett. 84 (2000)

5371.

[42] E. Bauer, in: W. Schommers, P. von Blanckenhagen (Eds.),

Structure and Dynamics of Surfaces II, Phenomena,

Models and Methods, Springer-Verlag, Berlin, 1987, p.

115.

[43] G.H. Gilmer, in: R. Vanselow, R. Howe (Eds.), Chemistry

and Physics of Solid Surfaces, Springer-Verlag, Berlin,

1984, p. 297.

[44] A.G. Khachaturyan, Theory of Structural Transforma-

tions in Solids, Wiley, New York, 1983.

[45] E.M. Lifshitz, Fiz. Zh. 7 (1942) 61, 7 (1942) 251;

L.D. Landau, E.M. Lifshitz, Statistical Physics, second ed.,

Pergamon Press, Oxford, 1978, English edition translated

from Russian by J.B. Sykes and M.J. Kearsley.

[46] L. Kaufman, H. Bernstein, Computer Calculations of

Phase Diagrams, Academic Press, New York, 1970.

[47] S.V. Semenovskaya, Phys. Status Solidi b 64 (1974) 291;

S.V. Semenovskaya, D.M. Umidov, Phys. Status Solidi

b 64 (1974) 627;

S. Semenovskaya, A.G. Khachaturyan, Phys. Rev. B 51

(1995) 8409, 54 (1996) 7545.

[48] C.N.R. Rao, K.J. Rao, Phase Transitions in Solids,

McGraw-Hill, New York, 1978.

[49] J.W. Cahn, J. Chem. Phys. 42 (1965) 93.

[50] P. Guenard, G. Renaud, B. Vilette, M.-H. Yang, C.P.

Flynn, Scripta Metall. Mater. 31 (1994) 1221.

[51] D. Fuks, Z. Phys. B 104 (1997) 481.

40 D. Fuks et al. / Surface Science 499 (2002) 24–40


