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I investigate energy transfer in a donor-acceptor pair beyond weak system-bath coupling. I identify a

transition from coherent to incoherent dynamics with increasing temperature, due to multiphonon effects

not captured by a standard weak-coupling treatment. The crossover temperature has a marked dependence

on the degree of spatial correlation between fluctuations experienced at the two system sites. For strong

correlations, this leads to the possibility of coherence surviving into a high-temperature regime.
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Excitation energy transfer is a fundamental process
common to a wide variety of multisite (donor-acceptor)
systems, ranging from those in the solid state, such as
crystal impurities [1–3] and quantum dots (QDs) [4–6],
to conjugated polymers [7] and photosynthetic complexes
[8–12]. In its simplest Förster-Dexter (FD) form energy
transfer is considered to be incoherent, resulting from weak
donor-acceptor transition-dipole interactions [1]. However,
recent experimental progress in demonstrating quantum
coherent energy transfer in a number of systems
[7,10,11] has highlighted the importance of describing
transfer dynamics beyond the incoherent regime [12].
Furthermore, such systems are still embedded in a larger
host matrix, and therefore remain susceptible to couplings
to their environment [13]. The resulting interplay between
coherent and incoherent processes can fundamentally alter
the nature of the transfer dynamics, destroying quantum
coherent effects and modifying the transfer rate.

To develop a full understanding of any donor-acceptor
system it is thus crucial to establish the coherent or inco-
herent nature of the transfer process [3,14,15], and to
explore how this changes with variations in donor-acceptor
separation, system-bath coupling strengths, or tempera-
ture. For example, the recent demonstration of coherent
transfer at room temperature in conjugated polymers [7]
points to the potentially pivotal role played by correlated
dephasing fluctuations in protecting coherence in these
systems [7,10,16]. Furthermore, determining the respective
roles of coherent and incoherent processes in optimizing
energy transfer efficiency in donor-acceptor networks is
currently subject to considerable interest [17–19].

A number of methods have been put forward to deal with
the dynamics of coherent energy transfer under the influ-
ence of an external environment. A popular assumption is
that the system-bath coupling is weak [19,20], which leads
to Redfield-type dynamics involving only single-phonon
processes [21]. A modified Redfield treatment, with a
broader range of validity, has also been suggested [21,22].
For strong system-bath coupling, FD theory has been ex-
tended to account for exciton delocalization over donor and

acceptor sites [23], while the polaron transformation pro-
vides a useful tool to investigate both the weak and strong
coupling regimes [3,24,25]. The importance of non-
Markovian effects has also been studied [8,26].
To explore the criteria for coherent energy transfer in a

donor-acceptor pair in detail, I present here an analytical
theory of the transfer dynamics capable of interpolating
between the weak (single-phonon) and strong (multipho-
non) system-bath coupling regimes, and correlated to in-
dependent fluctuations, while still capturing the coherent
dynamics due to the donor-acceptor electronic coupling.
As a main result, I identify a crossover from coherent to
incoherent transfer for resonant donor-acceptor pairs with
increasing temperature, as multiphonon effects become
dominant. Such behavior cannot be derived from a weak-
coupling treatment. I show that the critical temperature at
which the crossover occurs has a pronounced dependence
on the degree of correlation between fluctuations at each
site, leading to the possibility of coherent transfer surviv-
ing at high temperatures in strongly correlated environ-
ments, where multiphonon processes are suppressed.
Consider a pair of two-level systems (j ¼ 1, 2) sepa-

rated by a distance d, with energy transfer interaction VF,
coupled linearly to a harmonic environment (@ ¼ 1):

H ¼ X
j¼1;2

�jjXijhXj þ VFðjGXihXGj þ jXGihGXjÞ

þX
k

!kb
y
kbk þ X

j¼1;2

jXijhXj
X
k

ðgjkbyk þ gj�k bkÞ:

Here, each system has ground (excited) state jGij (jXij)
and energy �j, the system-bath couplings are given by gjk,

and the bath comprises a collection of oscillators of fre-

quencies !k and creation (annihilation) operators byk (bk).
Such a model has previously been employed in a range of
physical settings, see e.g., Refs. [2,3,8,12,14,20], and could
also represent the basic unit of a spin chain [27]. We shall

consider system-bath couplings of the form g1k ¼
jgkjeik�d=2 and g2k ¼ jgkje�ik�d=2, where position depen-

dent phases give rise to correlations between the bath-
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induced fluctuations experienced at each system site
[2,3,20]. Following Refs. [20,28], I parameterize the trans-
fer interaction as VF ¼ ½V0=ðd=d0Þ3�fðd=d0Þ, where d ¼
jdj, fðxÞ ¼ 3

ffiffiffiffiffiffiffiffiffi
�=2

p
erfðx= ffiffiffi

2
p Þ � 3xe�x2=2 accounts for

small d corrections to the dipole approximation, and d0
determines when the dipole limit is reached.

The full Hamiltonian may be decomposed into three
decoupled subspaces ½jGGi; fjXGi; jGXig; jXXi�. We are
interested in the energy transfer dynamics occurring be-
tween the single-excitation states, described by a
Hamiltonian Hsub, and we set jXGi � j0i, jGXi � j1i to
identify an effective two-state system spanning the sub-
space [14]. To move into an appropriate basis for the
subsequent perturbation theory, we apply the unitary trans-

formation H0 ¼ eSHsube
�S, where S ¼ j0ih0jPkð�kb

y
k �

��
kbkÞ þ j1ih1jPkð�kb

y
k � ��

kbkÞ, with�k ¼ g1k=!k and

�k ¼ g2k=!k. As a result, we map our system to the
polaron-transformed, spin-boson model H0 ¼ �

2�zþ
VR�x þ

P
k!kb

y
kbk þ VFð�xBx þ �yByÞ, here describ-

ing the energy transfer dynamics of our donor-acceptor
pair in the single-excitation subspace, with bath-
renormalized coupling VR ¼ BVF [3,24,25]. The Pauli
matrices, �l (for l ¼ x, y, z), are defined in
the basis fj0i; j1ig, while � ¼ �1 � �2. Bath-induced fluc-
tuations are described by Bx ¼ ð1=2ÞðBþ þ B� � 2BÞ and
By ¼ ð�i=2ÞðB� � BþÞ, where B�¼�kD½�ð�k��kÞ�
are products of displacement operators Dð��kÞ ¼
e�ð�kb

y
k
���

k
bkÞ [24]. Assuming the bath to be in thermal

equilibrium at temperature T, the correlation-dependent
renormalization of the coupling strength is determined by

B¼hB�i¼e�
R1

0
d!ðJð!Þ=!2Þ½1�Fð!;dÞ�cothð�!=2Þ, where �¼

1=kBT, with Boltzmann constant kB. Here, we define a
single-site spectral density as Jð!Þ ¼ P

kjgkj2�ð!�!kÞ,
while the factor [1� Fð!; dÞ] accounts for the degree of
spatial correlation in the fluctuations at each site. We find
Fð!; dÞ ¼ sincð!d=cÞ in three dimensions, assuming k ¼
!=c, and that Jð!Þ is isotropic.

We now write H0 ¼ H0
0 þH0

I, where H
0
I ¼ VFð�xBx þ

�yByÞ is treated as a perturbation. Provided VR is nonzero,

as assumed throughout, this procedure is suitable for ex-
ploring both single-phonon and multiphonon bath-induced
effects on the system dynamics. In cases where VR ¼ 0, we
can instead apply a related variational approach [29].
Following the standard procedure [30], we derive a
Markovian master equation describing the reduced system
dynamics in the polaron-transformed Schrödinger picture
(H.c. denotes the Hermitian conjugate) [13]:

_�0¼�i	

2
½�z;�

0��V2
F

X
l;!;!0

ð�lð!0Þ½Plð!Þ;Plð!0Þ�0�þH:c:Þ;

(1)

where !, !0 2 f0;�	g, 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4V2

R

q
, �lð!Þ ¼


lð!Þ=2þ iSlð!Þ, and we have decomposed the system
operators as �̂lðtÞ ¼

P
!Plð!Þe�i!t [30]. The rates


lð!Þ ¼ e�!=2
Z 1

�1
d�ei!�hBy

l ð�� i�=2ÞBlð0Þi; (2)

are Fourier transforms of the bath correlation functions

hBy
x ð�� i�=2ÞBxð0Þi ¼ ðB2=2Þðe �’ð�Þ þ e� �’ð�Þ � 2Þ; (3)

hBy
y ð�� i�=2ÞByð0Þi ¼ ðB2=2Þðe �’ð�Þ � e� �’ð�ÞÞ; (4)

defined in terms of the phonon propagator [24]

�’ð�Þ ¼ 2
Z 1

0
d!

Jð!Þ
!2

½1� Fð!; dÞ� cos!�

sinhð�!=2Þ ; (5)

while Slð!Þ ¼ Im
R1
0 d�ei!�hBy

l ð�ÞBlð0Þi. The most inter-

esting dynamics of the model can now be explored by
considering two limiting cases: that of resonant donor
and acceptor, in which the interplay between coherent
and incoherent processes is most evident, and that of large
energy mismatch, often encountered in practice.
Resonant.—The resonant case is of particular impor-

tance as it demonstrates most clearly how bath-induced
fluctuations can fundamentally alter the nature of the en-
ergy transfer process. As we shall see, in the high-
temperature regime, multiphonon dephasing effects can
become dominant, giving rise to a crossover from low-
temperature coherent dynamics to a high-temperature in-
coherent process. Setting � ¼ 0, we derive from Eq. (1) a
set of Bloch equations governing the time evolution of the
system state. Taking an initial state �0ð0Þ ¼ jXGihXGj, a
single excitation in the donor, and transforming out of the
polaron frame, we solve for the subsequent donor-acceptor
population dynamics, h�zit ¼ TrSð�z�ðtÞÞ, to find

h�zit ¼ e�ð�1þ�2Þt=2
�
cos

�t

2
þ ð�2 � �1Þ

�
sin

�t

2

�
; (6)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8VRð2VR þ Þ � ð�1 � �2Þ2

p
. Here,

�1 ¼ V2
F

�
2
xð0Þ þ 
yð2VRÞ ð1þ 2Nð2VRÞÞ

ð1þ Nð2VRÞÞ
�
; (7)

�2 ¼ 2V2
F
xð0Þ; (8)

 ¼ 2V2
F½Syð2VRÞ � Syð�2VRÞ�, and Nð!Þ ¼ ðe�! �

1Þ�1. The coherent-incoherent transition thus occurs at

8VRð2VR þ Þ ¼ ð�1 � �2Þ2: (9)

We shall return to the crossover shortly. First, let us
consider the dynamics in the weak system-bath coupling
limit. In this case, we expand Eqs. (3) and (4) to first order
in �’ð�Þ, hence keeping only single-phonon contributions.

We then find �2 � 0, and thus a damping rate ~�1 ¼
�Jð2 ~VRÞ½1� Fð2 ~VR; dÞ� coth� ~VR. Here, ~VR ¼ ~BVF,

where we expand ~B � B0½1�
R1
0 d! Jð!Þ

!2 ½1� Fð!; dÞ��
ðcoth�!=2� 1Þ�, with vacuum term B0 ¼
e�

R1
0
d!ðJð!Þ=!2Þ½1�Fð!;dÞ�

. From Eq. (6), we find that the
system performs damped coherent oscillations: h�zit ¼
e�~�1t=2½cosð~�t=2Þ � ð~�1=~�Þ sinð~�t=2Þ�, with frequency
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~� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 ~V2

R � ~�2
1

q
, where 4 ~VR > ~�1 to be consistent with

the original expansion.
Under what circumstances is a weak-coupling approxi-

mation appropriate? To address this question it is useful to
consider an explicit form for the spectral density. As an
illustration, we choose Jð!Þ ¼ A!3, describing, for ex-
ample, acoustic phonon induced dephasing with a coupling
strength A [20,24,31]. Here, we keep a cutoff frequency!c

only in the vacuum terms. From Eq. (5) we obtain

�’ð�0Þ¼’0

�
sech2�0 � tanhðx��0Þþ tanhðxþ�0Þ

2x

�
; (10)

where we scale the time as �0 ¼ ��=�, and define the
dimensionless parameters ’0 ¼ 2�2A=�2 ¼ T2=T2

0 and

x ¼ �d=c� ¼ T=Td. Importantly, we can now identify
two distinct temperature scales that determine whether
single-phonon or multiphonon processes are relevant: T0,
set by A [24]; and Td, which is inversely proportional to the
separation, and is therefore correlation dependent.

Let us consider two cases. (i) When x 	 1 (T 	 Td,
weak fluctuation correlations), it can be shown from
Eq. (10) that’0 alone is suitable as an expansion parameter
in the bath correlation functions. Hence, ’0 
 1 defines
the single-phonon regime in this case, most easily satisfied
for large separation d, small A, and low T. (ii) When x 

1, the strongly-correlated case most easily satisfied for
small d, we expand Eq. (10) to second order in x to give
�’ð�Þ � ’0x

2½ð1� 4tanh2�0Þ=3þ tanh4�0�. Now, ’0x
2

plays the role of an expansion parameter in the correlation
functions, with the single-phonon rate valid for ’0x

2 
 1.
However, since x is already assumed small in this case, it is
clear that the single-phonon rate can be used at least up to
’0 � 1, and is therefore valid over a much larger range of
temperatures and/or coupling strengths than in case (i). The
system is thus far better protected from the adverse effects
of the environment when the fluctuations are highly corre-
lated, and hence multiphonon processes can be suppressed
up to much higher temperatures. This is shown in the inset
of Fig. 1, where the damping rate in Eq. (6) is plotted
against temperature for strong correlations, leading to a
single-phonon rate valid beyond T=T0 ¼ 1.

Turning now to the high-temperature regime, the rates
are estimated by expanding �’ð�Þ about � ¼ 0, where it is
strongly peaked. Keeping terms up to �2 order we find

�1 � 2�2 � 2�
V2
FB

2
0e

2’0=3e’0ð2xcsch2x�1Þ=x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�’0ðx� sech2x tanhxÞ=xp ; (11)

valid for 2�VR < 1, with B2
0 ¼ e��4x2=ð’0þ�2x2Þ, where

� ¼ !c=�kBT0. Further,  � 0 in this limit, hence � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16V2

R � �2
1=4

q
� i�1=2 in Eq. (6), giving h�zit � e��1t.

Thus, in the high-temperature resonant case, the transfer is
incoherent, at a rate �1 given in Eq. (11).

The transition between these two regimes, from coherent
to incoherent dynamics, is particularly important as it

allows us to assess up to what critical temperature quantum
coherent effects might be observed. As we have seen, the
weak-coupling dynamics is expected to be coherent;
hence, the crossover generally occurs in the high-
temperature regime, where Eq. (11) is valid. Then,
Eq. (9) simplifies to 8VR ¼ �1, with the transfer being
coherent for 8VR > �1. We use this condition to define a
critical temperature, Tc, above which the dynamics be-
comes incoherent. From Eq. (11) we find the implicit
equation

T2
c ¼ T0

VFB0e
5’c=6e’cðcothxc�2 tanhxc�1=xcÞ=2xc

4kB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðxc � sech2xc tanhxcÞ=xc

p ; (12)

where ’c¼T2
c=T

2
0 and xc¼Tc=Td. It is clear that Tc will

vary in a nontrivial way as a function of donor-acceptor
separation, through the dependence of Eq. (12) on xc, B0,
and VF. Again, we consider two limits. (i) As the separa-
tion becomes large, the ‘‘correlation’’ temperature be-
comes unimportant (Td ! 0) and Tc varies only weakly
with separation through VF. (ii) At very small separations
the rates �1 and �2 tend to zero, while VR ! VF. Hence, in
this limit, Tc diverges, as we expect; for complete fluctua-
tion correlation the system behavior is always coherent,
with no crossover to incoherent dynamics regardless of the
temperature.
To illustrate this behavior, in the main part of Fig. 1 we

plot the crossover temperature, shown separating the co-
herent and incoherent regimes, as a function of donor-
acceptor separation. The divergence of Tc at small d im-
plies that coherent dynamics can survive at elevated tem-
peratures when strong fluctuation correlations suppress
multiphonon effects, consistent with recent experimental
observations [7]. Further, the change in Tc behavior from
small to large separations can provide information on the
correlation length of the bath. Specifically, once the dis-
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FIG. 1 (color online). Main: Regimes of resonant energy trans-
fer for varying temperature (T=T0) and scaled donor-acceptor
separation. The line T ¼ Tc, given by Eq. (12), divides the
coherent (lower) and incoherent (upper) cases. Inset: Resonant
damping rate versus T=T0 evaluated numerically (black, solid
line), and by single-phonon (blue, dashed line) and high-
temperature (red, dotted line) analytical approximations. Here,
Td=T0 ¼ 10. Parameters: !c=kBT0 ¼ 5 and V0=kBT0 ¼ 1.
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tance dependence of Tc becomes weak there is no longer
significant correlation between fluctuations at each site.

To give Fig. 1 a relevant experimental context, we now
estimate T0 and Td for two closely-spaced semiconductor
QDs, as realized experimentally in Ref. [5], which could be
brought into resonance by applying an external electric
field. Typically, deformation potential coupling to acoustic
phonons dominates exciton dephasing in such samples
[20]. A simple model [31] allows an estimate of A ¼
0:032 ps2 in this case, implying T0 � 9:6 K. Taking c ¼
5110 ms�1 [20] and a dot separation d ¼ 4:5 nm [5], we
find Td � 2:8 K. Setting V0=kBT0 ¼ 1 and d=d0 ¼ T0=Td

then implies the reasonable values V0 � 0:8 meV and
d0 � 1:3 nm [20], respectively. From Fig. 1 we then obtain
a crossover temperature of Tc � 30 K, below which we
expect the energy transfer dynamics to display signatures
of coherence. In fact, in Ref. [5] temperatures of around 4–
40 K were explored, which should therefore be a promising
range over which to observe both coherent and incoherent
transfer dynamics in QD samples.

Off resonant.—It is also important to examine the dy-
namics when the donor and acceptor are far off resonant
with each other, such that VF=� 
 1. This can occur quite
naturally, for example, in QD samples due to the nature of
their growth. Furthermore, the recent weak-coupling the-
ory of Ref. [20] predicts a single transfer rate in the off-
resonant regime, and thus provides a means to assess the
validity of our theory in this limit. As in the resonant case,
we derive a set of Bloch equations from Eq. (1), this time
expanding the resulting expressions to second order in
VF=�. We find system dynamics well approximated by
h�zit � e��t � ð1� e��tÞ tanhð��=2Þ, describing inco-
herent energy transfer from the initially excited donor to

the acceptor at a rate � ¼ V2
F
½1þ2Nð�Þ�
½1þNð�Þ� ½
xð�Þ þ 
yð�Þ�.

Taking the weak-coupling limit of � by retaining only

single-phonon terms, we find ~� � ð4� ~V2
R=�

2ÞJð�Þ�
½1� Fð�; dÞ� cothð��=2Þ, consistent with Ref. [20] once
renormalization of VR has been included there. In the
opposite, high-temperature limit (kBT 	 �), we again
find h�zit � e��t, with � ¼ �1 of Eq. (11).

Summary.—I have presented an analytical theory of
excitation transfer in a correlated environment, showing
that for resonant donor and acceptor, a crossover from
coherent to incoherent transfer is expected as multiphonon
effects begin to dominate. The theory outlined here opens
up intriguing possibilities for further study of the role of
coherence in the transfer dynamics of larger arrays, such as
photosynthetic complexes [17–19]. For example, it enables
one to address the important question of how the transfer
efficiency changes in such systems when crossing from the
coherent to incoherent regime.
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