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Abstract. Singly-charged buckminster fullerene anions, C−
60

, are subject to a strong

intramolecular T ⊗ h Jahn-Teller (JT) effect. When such ions interact with other C−
60

ions in a solid through a co-operative JT effect, they will be subject to an additional

interaction. There are a number of different mechanisms that can cause this interaction.

However, in the molecular field approximation, all can be modelled phenomenologically

in terms of a symmetry-lowering interaction written in terms of a linear combination of

electronic operators for the h modes involved in the intramolecular JT effect. We will

consider the combined effect of this distortion and the intramolecular JT effect. We

will analyse the lowest adiabatic potential energy surface, and calculate the energies of

the resultant vibronic states. The results are shown to have a complicated dependence

on the particular combination of h modes chosen, and the energies of the resultant

vibronic states can not easily be deduced from the form of the potential alone.
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1. Introduction

Solids formed by combining C60 fullerene molecules and alkali metals to form solids

of the type AnC60 (n = 1 to 6) have a number of unusual and intriguing physical

properties. A3C60 solids show unexpected conducting and superconducting properties

[1, 2, 3], with K3C60 being superconducting at temperatures below 18K, Rb3C60 below

28K and Cs3C60 below 47K [4]. In contrast, A4C60 compounds are insulators. AC60

compounds form a polymeric structure in ambient conditions, with RbC60 and CsC60

undergoing a metal-insulator phase transition at Tc ∼ 50 K and Tc ∼ 40 K respectively

[5, 6, 7].

The structure of AnC60 solids can also vary. Many of these materials are face centred

cubic (fcc) structures, but some are body centred tetragonal (bct) and body centred

cubic (bcc) structures. The low temperature structure of AC60 is orthorhombic with an

unusually short separation of 9.1Å- 9.4Å between the centres of C60 molecules along one

of the crystallographic directions [8]. In addition, amorphous-carbon structures based

on linearly polymerized C60 molecules have been found under a pressure above 5 GPa

[9, 10]. In a cluster of A3C60 molecules at room temperature, when the fcc solid form of

C60 is maintained, the molecules rotate randomly about their lattice positions between

different orientations. In fact the rotational levels are much closer to each other than

the vibrational levels, meaning that the molecules populate the rotational levels much

more easily. However, at temperatures lower than 261K, two of the rotational degrees of

freedom freeze out, resulting in a lowering of symmetry and merohedral order [11, 12].

Similar conclusions have also been found in compounds containing C2−
60 ions [13].

Influence of the vibrational motion of the C60 molecule on the electronic motion is

known to be important in these fullerene systems. Isolated fullerene ions Cn−
60 (n = 1

to 5) are subject to an intramolecular Jahn-Teller (JT) effect of the form T ⊗ h, where

a triply degenerate electronic state T is coupled to a five dimensional vibrational mode

h [14]. The JT effect causes an instantaneous distortion of the icosahedral C60 cage to

a lower symmetry. However, there are a number of different distorted configurations

all having the same energy. Quantum-mechanical tunnelling between the equivalent

configurations restores the icosahedral symmetry in the dynamical JT effect. However,

to understand the properties of fullerene solids, it is necessary to go beyond studies of

isolated fullerene centres and to consider interactions between fullerene centres and/or

interactions with a surface. There are various possible mechanisms for producing

interactions between C60 ions in C60 solids. One factor which is believed to play a major

role in determining the contrasting behavior of A3C60, A4C60 and AC60 compounds is

the co-operative JT (CJT) interaction between the different ions [15]. As a result of

the CJT effect, different possible JT distortions are no longer equivalent and so the

dynamical JT effect does not prevail in the lattice. JT distortions of individual centres

can be locked in place and in general the lattice configuration will consist of a periodic

arrangement of statically distorted ions [16].

Various correlation mechanisms have been proposed to describe the co-operative
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interactions between JT centres, some of which involve phonons and some of which

do not. In all cases, the interaction Hamiltonian Hij between centres i and j can be

represented phenomenologically (independent of the mechanism involved) using terms

quadratic in the collective displacements Qiλ and Qjλ of the vibrationally-coupled modes

λ at sites i and j, or equivalently a form quadratic in the electronic operators σiλ and

σjλ used to describe the intramolecular JT interaction at sites i and j [15, 16]. One

way to proceed is to then use the molecular field approximation. After making some

appropriate transformations, this results in a mean-field Hamiltonian Hmf
i for site i

which is equivalent to the intramolecular JT Hamiltonian for site i plus an additional

contribution Hs = −
∑

λwλσλ, where the wλ are constants whose values depend on the

form of the interaction [16, 17]. The result for centre i is the same Hamiltonian as would

be used for an intramolecular JT effect plus an additional symmetry-lowering distortion.

The latter is sometimes referred to as a ‘strain’, although the origin of this term will

not be that of an external stress on the system [15].

In this paper, we will be concerned with JT effects experienced by fullerene anions

C−

60. From group theory, coupling of isolated ions to two ag and eight hg vibrational

modes is allowed. However, the coupling to the ag modes does not have any significance,

and for most purposes the coupling to the eight hg modes can be replaced by coupling

to a single effective mode [18]. Therefore, the relevant intramolecular JT effect for C−

60

is a T1u⊗hg system [14]. The nuclear coordinates Qλ thus correspond to the vibrational

mode hg. By convention, the components λ are denoted by {θ, ǫ, 4, 5, 6} [19]. We will

consider a linear intramolecular JT effect subject to an additional symmetry-lowering

distortion that can be written in terms of the electronic operators σλ relevant to the

h mode in this system. The distortion can act along the direction of any one of the

components λ, or along a linear combination of these directions. We will analyse the

shape of the lowest adiabatic potential energy surface (LAPES) in different situations

in order to understand the effect of the direction of the distortion, and investigate how

the energies of the resultant vibronic states vary with the magnitude and direction of

the distortion.

2. The Hamiltonian

The total Hamiltonian of a linear T ⊗ h JT system subject to an additional symmetry-

lowering interaction Hs is H = Hvib + Hint + Hs, where Hvib and Hint are vibrational

and electron-phonon interaction terms respectively, given by

Hvib =
1

2

∑

ν

(
P 2

λ

µ
+ µω2

HQ
2
λ

)
σo

Hint = kH

∑

λ

Qλσλ. (1)

λ is summed over the five vibrational degrees of freedom {θ, ǫ, 4, 5, 6}. Qν and Pλ are

the collective coordinates and their conjugate momenta respectively. kH is the linear

JT coupling constant, µ is the reduced mass of the system and ωH is the frequency
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of vibration. σo is the identity matrix in three dimensions. Explicitly, we can write

[14, 20, 21]

Hint =
kH

2




Qθ −
√

3Qε −
√

3Q6 −
√

3Q5

−
√

3Q6 Qθ +
√

3Qε −
√

3Q4

−
√

3Q5 −
√

3Q4 −2Qθ


 (2)

from which the definitions of the electronic interaction matrices σλ can be deduced.

When defined in this manner, kH is equivalent to the coupling constant k of Ref. [14],

and is related to the constant VH used in Ref. [21] by the relation kH = −2VH/
√

10.

2.1. Separation of coordinates

When linear JT effects only are included in the T ⊗ h problem, the LAPES contains

a four-dimensional trough of equivalent-energy points. The motion of a system subject

to this JT effect will consist of vibrations across and rotations of a distortion around

the trough, often called pseudorotations. These should not be confused with the real

rotations of the molecule. The trough has SO(3) symmetry, which is accidentally higher

than the Ih symmetry expected for the T ⊗ h problem. Due to this symmetry, it is

useful to write the Qλ in the polar form [14, 20]

Qθ = ρ

(
1

2
(3 cos2 θ − 1) cosα +

√
3

2
sin2 θ sinα cos 2γ

)

Qǫ = ρ

(√
3

2
sin2 θ cos 2φ cosα− cos θ sin 2φ sinα sin 2γ

+
1

2
(1 + cos2 θ) cos 2φ sinα cos 2γ

)

Q4 = ρ

(√
3

2
sin 2θ sinφ cosα− 1

2
sin 2θ sinφ sinα cos 2γ − sin θ cosφ sinα sin 2γ

)

Q5 = ρ

(√
3

2
sin 2θ cosφ cosα− 1

2
sin 2θ cos φ sinα cos 2γ + sin θ sinφ sinα sin 2γ

)

Q6 = ρ

(√
3

2
sin2 θ sin 2φ cosα + cos θ cos 2φ sinα sin 2γ

+
1

2
(1 + cos2 θ) sin 2φ sinα cos 2γ

)
, (3)

where ρ is the radial distance, (θ, φ, γ) are Euler angles, and α is an extra angle to

complete the five dimensional Q-space. [14, 20] For all points to be included once only,

we can choose 0 ≤ ρ <∞, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ γ ≤ 2π and 0 ≤ α < π/3.

It is also useful to rewrite the Hamiltonian H in a rotating coordinate frame by

multiplying by a rotation matrix R(γ, θ, φ) [20, 14] such that the rotated interaction



The effect of co-operative Jahn-Teller interactions on C−

60 anions 5

Hamiltonian H̃int = RHintR
−1 takes the diagonal form

H̃int =
kHρ

2




cosα−
√

3 sinα 0 0

0 cosα +
√

3 sinα 0

0 0 −2 cosα


 . (4)

From this, it can be seen that the lowest eigenvalue is lowest of all when α = 0. [14]

Also, the eigenvalue is independent of the angles θ, φ and γ, which is consistent with

the interpretation of the LAPES being a trough.

If we explicitly write Pλ = −i~ ∂/∂Qλ, the vibrational Hamiltonian in the five-

dimensional polar coordinates becomes

Hvib =

[
− ~

2

2µρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+

1

2
µω2

Hρ
2 +

L̂2

6µρ2

]
σo (5)

where L̂2 is the usual angular momentum operator

L̂2 = −~
2

[
1

sin θ

∂

∂θ

(
sin θ

∂

θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (6)

The transformed Hamiltonian for the additional distortion Hs is a complicated result

involving θ, φ and γ. However, we can make the approximation that mixing between

the different APESs due to the additional distortion can be neglected. This gives us the

contributions

Wθ =
1

4
wθ(1 + 3 cos 2θ)

Wǫ =

√
3

2
wǫ sin2 θ cos 2φ

W4 =

√
3

2
w4 sin 2θ sinφ

W5 =

√
3

2
w5 sin 2θ cosφ

W6 =

√
3

2
w6 sin2 θ sin 2φ (7)

from each of the component ν. Therefore, the equation that gives the LAPES takes the

form [
− ~

2

2µρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+

L̂2

6µρ2
+ Ueff

]
Ψg = EgΨg (8)

where Ψg and Eg are the rovibronic (rotational+vibronic) wave function and the energy

of the LAPES respectively and Ueff is the effective potential

Ueff =
µω2

H

2
ρ2 − kHρ+

∑

λ

Wλ. (9)

The wave function Ψg at a given point (ρ, θ, φ, γ) can be written as a product of

electronic (ψg), vibrational (χ) and rotational wave functions (ψR)

Ψg = ψg(θ, φ) × χ(ρ) × ψR(θ, φ), (10)
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where we already know that [21]

ψg(θ, φ) =




sin θ cosφ

sin θ sin φ

cos θ


 . (11)

The vibrational wave function then satisfies the equation [21]
[
− ~

2

2µ

∂2

∂ρ2
− ~

2

µρ

∂

∂ρ
+

1

2
µω2

Hρ
2 − kHρ

]
χ(ρ) = Evibχ(ρ). (12)

and the rotational part is governed by the equation
(

L̂2

6µρ2
+Wν

)
ψR(θ, φ) = ERψR(θ, φ). (13)

Equations (12) and (13) are coupled through the coordinate ρ so can not be solved

independently.

Taken on its own, (12) represents a displaced harmonic oscillator at radius ρT =

kH/(µω
2
H), whose solutions can be written in terms of Hermite Polynomials. It is a

reasonable assumption that the rotational motion and the additional distortion will not

change the radius of the trough and hence this solution to the vibrational equation. We

can therefore set ρ = ρT in (13) and solve it independently from (12).

3. Solutions to the rotational differential equations

In order to understand the effects of the additional distortion, it is first useful to look

at the effective potential Ueff evaluated at ρ = ρT for distortions in different directions

ν. From this, we can see that a distortion in the θ direction will cause a maximum

energy-lowering of −|wθ|/2 for wθ positive or −|wθ| for wθ negative. Furthermore, as

Wθ only contains the angle θ, the minimum-energy points occur for all values of φ (for

both signs of wθ). Physically, this means that a θ–type distortion will result in one of the

two pseudorotations being converted into a vibration. However, distortions in the other

four directions of coordinate space (ν = ǫ, 4, 5, 6) all cause a maximum energy lowering

of −
√

3|wν|/2, independent of the sign of wν . Also, the minimum-energy points occur

for specific values of θ and φ, which physically means that both pseudorotations have

been converted into vibrations.

3.1. Distortion in θ direction

When we consider a distortion in the θ direction only, we find that for wθ > 0, a

minimum in Ueff occurs at θ = π/2 and a maximum at θ = 0. For wθ < 0, this situation

is reversed with the minimum occurring at θ = 0 and the maximum at θ = π/2. The

depth of the minimum increases as the magnitude of the JT coupling kH increases.

Separated solutions to Eq. (13) can be sought in terms of a product of functions

Θ(θ) and Φ(φ) of the angles θ and φ respectively. A general form for the rotational wave

function ψR will then be a linear combination of the products. From the Equation in φ
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and knowledge (from the analysis of Ueff ) that we do not expect |ψ2
R| to depend upon

φ, we deduce that Φ(φ) can be represented by terms proportional to exp (imφ), with m

being an integer.

By applying the change of variable x = cos θ, the equation in Θ becomes

d2Θ(x)

dx2
− 2x

1 − x2

dΘ(x)

dx
+

[
2aθ(1 − 3x2) + cθ

1 − x2
− m2

(1 − x2)2

]
Θ(x) = 0, (14)

with aθ = 3µwθρ
2
T /(2~

2) and cθ = 6µρ2
TERθ/~

2. This is a standard differential equation

whose solutions are spheroidal functions. The spheroidal functions can be expressed as

a linear combination of Associated Legendre polynomials Pm
l , where l and m are the

usual angular momentum quantum numbers [22]. Therefore, for any given value of m,

we can write[22]

ψR(θ, φ) =
∞′∑

s=0,1

Cm
s Y

m
m+s(θ, φ). (15)

where s = l −m and the prime indicates that the sum is from zero except for m = 0

where the sum is from 1. The Y m
m+s are spherical harmonics and the Cm

s are coefficients

whose values can be found recursively after solving a transcendental equation for the

eigenvalues [22]. Different solutions exist for odd and even values of l. Also, the

transcendental equation results in multiple solutions for each given value m. The

solutions for a given value of m will be labeled in order of increasing energy by an

index n, where n = 0 corresponds to the state with lowest energy.

To render the solutions physical, we require that Ψg be periodic under the

transformations θ → π + θ and φ → φ + 2π [20]. Under this transformation, ψg

changes sign, so to preserve the overall sign of Ψg, ψR and consequently Θ(θ) should

change sign. As in the T ⊗ h problem with no distortion, l must be odd to satisfy the

above conditions. Furthermore, for the wavefunctions to satisfy these conditions and be

physically acceptable requires that m be odd for wθ > 0 and even for wθ < 0.

The wavefunctions can be computed numerically for specific values of kH and wθ.

Convergence is achieved by including the first 25 terms in the sum over s. For the

lowest states (i.e. with m = 1 for wθ > 0 and m = 0 for wθ < 0), |ψR|2 is found to

be a Gaussian-like function of θ centred over the position of minimum energy. The

wavefunction becomes much more strongly localised around the position of minimum

energy at strong JT coupling than at weak coupling. For example, with wθ = 0.5~ωH,

|ψR|2 is approximately a Gaussian with standard deviation σ ≈ 0.52 for kH = ~ωH ,

whereas σ is less than half this at ≈ 0.24 for kH = 10~ωH. This behaviour is to be

expected as the potential minimum will be deeper for stronger JT couplings.

3.2. Distortion in ǫ, 4, 5 or 6 directions

The minima in Ueff for distortions in directions ν = 4, 5 and 6 are at the same depth

as minima in the ǫ direction for an equivalent magnitude distortion. It is therefore

sufficient to consider the effects of Wǫ only. For the rotational wave function to be
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physically acceptable and to be invariant under the transformations φ → φ + 2π and

θ → θ + π, we require m to be odd for an ǫ–type distortion of either sign. It should be

noted that m must also be odd for a 6–type distortion, but that it must be even for a

4 or 5–type distortion.

Unlike with a θ-type distortion, minima in Ueff for an ǫ-type distortion occur at

particular values of φ as well as particular values of θ. More specifically, they occur at

θ = π/2, and φ = {π/2, 3π/2} for wǫ > 0 and at φ = {0, π} for wǫ < 0. The form of the

potential for wǫ < 0 is exactly the same as that for a positive value of wǫ of the same

magnitude except for a displacement of the values of φ by π/2. Therefore, the expected

rotational wave functions will also be identical except for the displacement of φ values,

and the energies of the rotational wave functions will be exactly the same. This means

that it is only necessary to consider the magnitude of wǫ and not its sign.

The differential equation for a distortion in the ǫ direction is non-separable, unlike

for the θ direction. However, we can still seek a solution in the form of a linear

combination of products of functions Φ(φ) and Θ(θ). To determine the form of those

functions, we note that the term Wǫ can be written in terms of the spherical Harmonics

Y ±2
2 (θ, φ) as:

wǫ

√
3

2
sin2 θ cos 2φ = wǫ

√
2π

15
(Y −2

2 (θ, φ) + Y 2
2 (θ, φ)). (16)

The conditions on Φ are such that we seek a solution of the form

ΨR =
∑

s

Cm
s P

m
m+s (cos θ)

{
sinmφ wǫ > 0

cosmφ wǫ < 0
(17)

where the Cm
s are coefficients to be determined. We can substitute this and Eq. (16) into

Eq. (13), multiply by Y m′
∗

l′ and integrate over θ and φ. The integrals can be expressed

in terms of Wigner 3j–symbols (or Clebsch-Gordan coefficients) which vanish unless

l = l′ or l = l′ ± 2, and m′ = m± 2. This defines recursion relations, which will not be

explicitly written here due to their complex form.

The rotational wave functions can again be computed numerically. In this case,

50 terms are required to ensure convergence. Results for |ψR|2 are given in Figs. 3.2(a)

and 3.2(b) for kH = ~ωH and wǫ = ±0.5~ωH respectively. As expected, maxima in the

lowest rotational function occur at angles giving minima in Ueff . The average of |ψR|2
also occurs at these minima for the next-lowest rotational function. It should be noted

that Wθ could have been written in terms of Y 0
2 (θ, φ) and solved in the same manner

as the ǫ term, although this was not done as the differential equation has well-known

solutions.

3.3. Distortion in other directions

So far, we have considered symmetry-lowering distortions in the directions of coordinate

space we have defined to be θ, ǫ, 4, 5 and 6. However, it is obviously possible to have

distortions in directions that are a linear combination of these directions. The general
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Figure 1. (Color online) Plots the square of the rotational wavefunction, |ψR|2, for

(a) the ground state, and (b) the next-lowest state with kH = ~ωH and with an ǫ–type

distortion wǫ = 0.5~ωH.

case with a distortion in a linear combination of all five directions is complicated due

to the high dimensionality of the problem. Therefore, we will only consider distortions

in a linear combination of two of the basic directions above. This will be sufficient to

illustrate the complexity of the problem.

We will consider a (dimensionless) combination

Eνλ = Wν cos β/wν +Wλ sin β/wλ (18)

of two different distortions for all pairs of values of ν and λ taken from the set

{θ, ǫ, 4, 5, 6}. Calculating the minimum in the energy of this factor as the angles θ

and φ are varied allows us to examine the effect of varying the contribution from two

different distortions for a fixed overall magnitude of distortion. We find that the results

fall into four categories. Firstly, the energy of the combinations Wǫ–W6, W4–W5, W4–

W6 and W5–W6 are all independent of the mixing angle β, taking the value −
√

3/2

found for the separate components {ǫ, 4, 5, 6}. However, the same is not true for other

combinations of these four directions. For ν = ǫ and λ = 4, the minimum energy is

a minimum of
√

3 cosβ/2 and the value of Eνλ with φ = π/2 and tan 2θ = 2 tanβ,

as shown in Fig. 2(a). For ν = ǫ and λ = 5, the minimum energy is a minimum of

−
√

3 cosβ/2 and the value of Eνλ with φ = π/2 and tan 2θ = −2 tanβ. The result is
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Figure 2. Variation in Eνλ (dimensionless units) as a function of the angle β for (a)

ν = ǫ and λ = 4 (results for λ = 5 are the same if the x-axis runs from β = π to 3π),

(b) ν = θ and λ = ǫ or 6, (c) ν = θ and λ = 4 or 5.

the same as in Fig. 2(a) but where the x–axis is taken to run from β = π to β = 3π

rather than from β = 0 to π.

As we have already found that the results for a distortion in the direction θ are

different to those in the other four directions we have considered, it is not surprising

that the results when a θ–type distortion is mixed with a distortion in another direction

are also different. For combinations ν = θ and λ = ǫ or 6, the minimum energy for a

given mixing angle β is the minimum of {cosβ, cos(β+2π/3), cos(β+4π/3)}, as shown

in Fig. 2(b). The remaining cases are those of ν = θ and λ = 4 and 5. Here, the result

is the minimum root of Eνλ with tan 2θ = 2 tanβ/
√

3, as shown in Fig. 2(c).
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One feature of all of our results is that the energy change due to a distortion of

magnitude w always lies between −w/2 and −w. The maximum energy change of −w
occurs for a θ–type distortion with wθ negative, as well as for certain other combinations

of our basic distortion directions. Similarly, the smallest energy change for a fixed

magnitude of distortion w occurs for a θ–type distortion with wθ positive and other

combinations of directions.

The results above show that the topology of the APES when uniaxial distortions are

applied is rather complex. However, this is not obvious without a detailed examination

of the potential energy terms. Linear JT coupling alone produces a trough of equal

minimum-energy points that can be mapped onto the surface of a two-dimensional

sphere [14]. However, as we have seen, the effect to the sphere of different symmetry-

lowering distortions are far from equivalent.

4. Energies of rovibronic states

To understand how the T ⊗h JT system behaves under a symmetry-lowering distortion,

we have to evaluate the total energy of the system. In general, this can be written as

Eh =

∫
Ψ′

g(θ
′, φ′γ′)HΨg(θ, φγ)dΩdΩ

′

∫
Ψ′

g(θ
′, φ′γ′)Ψg(θ, φγ)dΩdΩ′

(19)

where Ψ
′

g and Ψg are the total wave functions on the LAPES given by Eq. (10), evaluated

at different points on the trough of minimum-energy points, and dΩ = sin θdθdφ and

dΩ′ = sin θ′dθ′dφ′ are elements of volume. The numerator and denominator are therefore

both four dimensional integrals.

In order to display the results, it is convenient to define a coupling constant

KH = kH

√
~/µωH, which has dimensions of energy. Also, in order to distinguish the

effects of the additional distortion from the effect of the JT coupling alone, rather than

considering Eh alone it is more useful to look at the term (Eh+EJT )/~ωH where [14, 21]

EJT = K2
H/(2~ωH) is the JT energy, i.e. the energy of the lowest point on the LAPES

when no additional distortion is present.

In this paper, we will only consider the ground vibrational state with different

rotational levels, although the calculations can be extended to higher vibrational states.

In this case, we can extract out the zero-point energy for zero vibronic coupling and

write
Eh + EJT

~ωH

=
5

2
+

3K2
H

4
I(KH , w), (20)

with

I(KH , w) =

∫
Z3e

3K
2

H

4
(Z2−1)eim(φ′

−φ)ψ
′

RψRdΩdΩ
′

∫
Ze

3K2

H

4
(Z2−1)eim(φ′−φ)ψ′

RψRdΩdΩ′

− 1 (21)

for a given rotational state. Z is the electronic overlap between two points on the trough

given by:

Z = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ). (22)
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ψ′

R and ψR are the rotational wave functions at points (θ′, φ′, γ′) and (θ, φ, γ) respectively.

I(KH , w) can be evaluated for specific values of m.

As an alternative to the calculation above, low-lying energy levels can be found

numerically using a recursive Lanczos technique. [23, 24, 25, 26, 27] An advantage of

this method is that it automatically includes both rotational and vibrational excitations.

However, applying this technique to our system brings technical problems. To avoid

degenerate ‘repeated’ eigenvectors, the number of starting vectors must be set to fifteen

or more, but when this is done computational problems arise. We will not consider this

method any further in this paper.

4.1. Distortion in the θ direction

First of all we will consider results for the rotational states associated with the ground

vibrational state in the limit when the θ-type distortion tends to zero in order to confirm

that our method gives results consistent with previous work. In this limit, we expect

to obtain states which are degenerate at an energy of 1.5~ωH in strong JT coupling,

representing the presence of three vibrations and two (pseudo)rotations. In zero JT

coupling, we expect energies of 2.5~ωH , 3.5~ωH , 4.5~ωH etc, [21] corresponding to a

five-dimensional harmonic oscillator. Each curve will have a degeneracy l = 2m + 1,

where l is odd, such that the lowest curve is for l = 1, the next curve for l = 3 etc.

For any given value of m, we can calculate rotational levels for the zero distortion

case using our θ–type rotational wave functions by setting the distortion to zero.

Fig. 3(a) shows the value of (Eh +EJT )/~ωH for the first three rotational states (n = 0,

1 and 2) as calculated using either the wave functions appropriate to positive wθ and

with m = 1, or using the wave functions appropriate to negative wθ and with m = 0. It

can be seen that the results do indeed show the behavior that we expect in this limit.

Note that results have not been given for KH/~ωH < 1 as the wave functions are not

appropriate for weak JT couplings. However, our results for KH/~ωH = 1 are consistent

with results for states tending to the expected limits of 2.5~ωH, 3.5~ωH and 4.5~ωH as

KH → 0.

Next we consider the effects of a θ–type distortion. This will lift the m-fold

degeneracy of the rotational levels. Figs. 3(b) and 3(c) give results for the lowest three

rotational levels (n = 0 to 2) of the set m = 0 for wθ < 0, and the set m = 1 for wθ > 0.

In the latter case, m = −1 gives identical results to m = 1. Fig. 3(b) gives the results for

a weak distortion of |wθ| = 0.5~ωH , and Fig. 3(c) gives the results for a strong distortion

of |wθ| = 5~ωH . As expected, the results with a distortion are lower than those with no

distortion. Furthermore, the lowering for wθ < 0 is approximately twice the lowering for

wθ > 0. This is also expected from the potential Ueff , which shows that the minimum

is lowered twice as much for a negative distortion as it is for a positive distortion of the

same magnitude. This result is easiest to observe in Fig. 3(c) where the effects of the

distortion are much larger than in Fig. 3(b).

While the difference in energy between the results with positive and negative
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Figure 3. (Color online) Plot of (Eh +EJT )/(~ωH) versus KH/~ωH for a distortion

applied in the θ direction for (a) no symmetry-lowering distortion (wθ → 0), (b) weak

distortion (wθ = ±0.5~ωH), and (c) strong distortion (wθ = ±5~ωH). In all plots, the

solid lines are rotational levels n = 0, the dashed lines are for n = 1 and the dot–dash

lines are for n = 2. The lowest three (blue) lines for KH/~ωH = 10 are the m = 0

levels for negative wθ, and the highest three (black) lines are the m = ±1 levels for

positive wθ.



The effect of co-operative Jahn-Teller interactions on C−

60 anions 14

distortions can be explained by examining Ueff , the absolute values of the energies

can not be explained without performing the detailed calculation. Also, Ueff does not

explain why the results for different values of n with a distortion do not reach the

same value as each other in strong JT coupling until much larger values of KH/~ωH

than with no distortion. These features can be attributed to changes in the form of the

rotational wave function. The effect of the distortion is to select out a circle of minimum-

energy points characterized by the angle φ for a fixed value of θ (namely θ = π/2 for

wθ > 0 and θ = 0 for wθ < 0), whereas for no distortion all values of the angle θ

also result in the minimum energy. Therefore one of the two pseudorotations for zero

distortion is converted into a vibration with a strong distortion. As a consequence, there

is a significant change in the rotational wave function as the strength of the distortion

increases, from one which is not localised in θ to one which is. In the strong distortion

limit, the wave function is really one for a vibration in this coordinate rather than a

function for a rotation.

The energies in Fig. 3 were calculated by integrating over all points {θ, φ} that

form the trough of minimum-energy points with no distortion. However, as θ is fixed

at a specific value for a strong distortion, a good approximation to the energy for large

distortions can be obtained if we fix θ to this value and only integrate over φ. This

reduces the integrals from four dimensions to two. When this is done, we find that the

results are very similar to those with the full four-dimensional integrals. For example,

results for |wθ| = 5~ωH only differ by ≈ 0.01~ωH . Hence a good approximation to the

energies for a strong distortion can be found by integrating over two dimensions only.

4.2. Distortion in directions {ǫ, 4, 5, 6}

As mentioned in Section 3.2, the minimum in Ueff for a distortionWν is at the same value

for all directions ν = ǫ, 4, 5 and 6, and also at the same value irrespective of the sign of

wν . As a consequence, we expect the energies of the rovibronic states to be the same

for all of these cases. In fact, this provides a useful check on the method of calculation.

From our calculations, we find agreement to at least 10−5
~ωH for distortions wν with

the different values of ν above, and for equivalent positive and negative distortions.

As mentioned previously, only states with m even are allowed for the w4 and w5-

type strains, whereas m must be odd for wǫ and w6-type strains. Fig. 4 shows the

average energy of the lowest three rotational states of the lowest allowed value of m,

namely for m = ±1 for ν = ǫ or 6 and m = 0 for ν = 4 or 5. The upper (dashed blue)

results are for a weak distortion of |wν | = 0.5~ωH, and the lower (solid black) results

are for a strong distortion of |wν| = 5~ωH . As expected, Fig. 4 shows that the effect of

a stronger distortion is larger than that of a weaker distortion.

For a strong distortion in the θ direction, we found that a good approximation to

the energies Eh can be obtained by integrating over the angles that define the minimum-

energy points only. The same is true here, although the result is even simpler as the

minimum in energy occurs for fixed angles θ and φ. Therefore it is not necessary to
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Figure 4. Plot of (Eh + EJT )/(~ωH) versus KH/~ωH for a distortion wν where

ν = ǫ, 4, 5 or 6. The lower (solid black) curves are the lowest three energies for the

lowest allowed value of m and wν/~ωH = ±5, and the upper (dashed blue) curves are

the corresponding energies for wν/~ωH = ±0.5.

evaluate any integrals at all.

4.3. Comparison of different directions of distortion

We can investigate the effect of different distortions further by plotting results at a fixed

coupling constant KH as a function of the magnitude of the distortion. Fig. 5 shows

results for KH/~ωH = 10. The solid line is for wθ positive, the dot-dashed line is for wθ

negative, and the dashed line is for |wν|/~ωH with ν = ǫ, 4, 5 or 6.
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Figure 5. Plot of (Eh + EJT )/(~ωH) versus |wν |/~ωH for a distortion wν where

ν = ǫ, 4, 5 or 6. The solid curve is for wθ positive, the dot-dash line is for wθ negative,

and the dashed line is for |wν |/~ωH with ν = ǫ, 4, 5 or 6.

The results can be interpreted as follows. As already stated, there is a two-

dimensional trough of minimum-energy points in the APES when there is no distortion.

[14] The motion of the system consists of a pseudorotation (i.e. a rotation of a distortion)

in two directions around the trough, and vibrations in three directions perpendicular to
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the trough. When a small θ-type distortion is introduced, a circle of points on this sphere

of minimum-energy points will become lower in energy than the other points, producing

a shallow one-dimensional trough. One of the two pseudorotations will then become

a hindered rotation, whereby a distortion still rotates but there is a preference for a

particular distortion. As the strength of the distortion increases further, the hindered

rotation will turn into a vibration about the minimum-energy point. However, other

points on the APES will still influence the overall motion at these strengths. When the

distortion becomes very strong, the motion will consist entirely of four vibrations and a

pseudorotation. Further increases in the strength of the distortion lower the energy of

the one-dimensional trough, but will not alter which points contribute to the motion.

When a small distortion in any of the directions ǫ, 4, 5 or 6 is introduced, a

single point on the sphere of minimum-energy points will become lower in energy than

the other points, producing a shallow potential well. Both of the pseudorotations will

become hindered rotations, which turn into vibrations as the strength of the distortion

increases further. Further increases in the strength of the distortion lower the energy

of the potential well but, as with the θ-type distortion, will not alter which points

contribute to the motion.

As a consequence of the above interpretation, we expect curves of energy against

the strength of the distortion to become linear for strong distortions in any direction,

with a negative gradient (to indicate that increasing the distortion strength lowers

the energy) whose magnitude is closely related to the value of the energy lowering

due to the distortion terms. From Section 3.3, we can see that this would predict

gradients of −0.5 and −1 for positive and negative θ–type distortions respectively, and

of −
√

3/2 ≈ −0.866 for an ǫ–type distortion. Fig. 5 shows that for strong distortions,

the variation in energy is indeed linear, with gradients of −0.485, −1.285 and −0.588 for

the three cases above respectively. This indicates that, for sufficiently large distortions,

there is indeed a correlation between the gradients and the energy lowering due to the

distortion terms.

5. Conclusion

In this paper, we have examined a linear T ⊗ h JT system subject to an additional

symmetry-lowering distortion that can be written in terms of the electronic operators

σλ used to describe the intramolecular JT interaction. Physically, this situation could

represent a single C−

60 ion subject to an external stress. However, a situation which

is likely to be of much greater practical importance is a cluster or continuous solid of

interacting C−

60 ions, such as found in the AC60 alkali-doped fullerides (where A is an

alkali metal). In a molecular field approximation, the effect on a given C−

60 ion of co-

operative JT interactions with other C−

60 ions can be modelled using such terms. The

co-operative interactions will result in real distortions of the icosahedral (Ih) cage of the

C60 molecule to a lower symmetry.

There is currently much interest in the use of C60 and its derivatives adsorbed onto
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surfaces, where there is the possibility of transferring some of the unique properties of

C60 to a solid interface. This could have important technological implications relating

to coatings and other surface modifications [28]. Being able to control the properties

of organic materials leads to the possibility of exploitation in future nanostructured

devices, with potential applications ranging from electronics to medicine [29]. In

general, the interaction of a C60 anion with a surface will also lead to a distortion

of a system. It has therefore been suggested that surface interactions could be written

(again phenomenologically), at least to a first approximation, in terms of an expansion

in the σλ for an h mode, which would result in a similar symmetry-lowering distortion

to that used to describe co-operative JT effects [30]. However, to do this, the relevant

operators must have a symmetry appropriate to that of both the adsorbed molecule and

of the surface. This will depend upon the symmetry of the site at which the molecule

is adsorbed. Therefore, it may or may not be appropriate for a real situation. If this

is not the case for a given surface interaction, then it will be necessary to construct an

alternative form for Hsλ. Nevertheless, an analysis similar to that used here could then

follow.

The results of our calculations give the change in energy of the vibronic states of

the C−

60 ion due to the introduction of symmetry-lowering terms. It might be hoped

that the results could be predicted, at least approximately, from the rather simpler

analysis of the effective potential, Ueff . However, this is not found to be the case due

to significant changes in the form of the wave function when a distortion is introduced.

It is nevertheless possible to simplify the calculations for strong distortions by only

integrating over angles that result in minimum-energy positions (for a θ-type distortion)

or by evaluating the energy at fixed angles (for an ǫ, 4, 5 or 6-type distortion).

Distortions related to the normal mode displacements of an h mode are possible

in five different mutually-orthogonal directions, or in any linear combination of those

directions. In the linear E ⊗ e JT system, the LAPES contains a trough of equivalent

minimum-energy points, known as the Mexican hat potential. It has previously been

found that when an additional distortion is applied, the results do not depend upon

the direction of the distortion [31]. As the linear T ⊗ h problem also contains a trough

of minimum-energy points, it might be expected that results for distortions in different

directions would also be equivalent. However, this is found to be not the case. A

distortion in the θ direction is different from that along any of the other four symmetry

directions (ǫ, 4, 5 and 6), which are however equivalent amongst themselves. Also, a

distortion in the positive θ direction is different to that in a negative θ direction, whereas

for the other four directions the results do not depend on the sign of the distortion.

When a linear combination of the five symmetry directions is considered, a complex

set of results is obtained, with energies ranging from that of the positive θ-direction

to that of the negative θ-direction. The rich nature of the results arises from the high

dimensionality of the problem. Care must be taken when extrapolating results from

simpler physical situations involving lower dimensions. The icosahedral symmetry of

the C60 molecule is the highest point-group symmetry found in nature. Our results are



The effect of co-operative Jahn-Teller interactions on C−

60 anions 18

an example of where the high symmetry produces features not seen in systems of lower

symmetry. Other cases where the high symmetry produces unexpected results includes

the H ⊗ h JT system, where non-simple reducibility of the product H ⊗ H can result

in a singlet ground state rather than the expected five-fold state [32, 33].
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