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Abstract. The search for patterns or motifs in data represents an area
of key interest to many researchers. In this paper we present the Mo-
tif Tracking Algorithm, a novel immune inspired pattern identification
tool that is able to identify variable length unknown motifs which repeat
within time series data. The algorithm searches from a neutral perspec-
tive that is independent of the data being analysed and the underlying
motifs. In this paper we test the flexibility of the motif tracking algo-
rithm by applying it to the search for patterns in two industrial data
sets. The algorithm is able to identify a population of meaningful motifs
in both cases, and the value of these motifs is discussed.
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1 Introduction

The investigation and analysis of time series data is a popular and well studied
area of research. Common goals of time series analysis include the desire to
identify known patterns in a time series, to predict future trends given historical
information and the ability to classify data into similar clusters. These processes
generate summarised representations of large data sets that can be more easily
interpreted by the user.

Historically, statistical techniques have been applied to this problem domain.
However, the use of Immune System inspired (IS) techniques in this field has re-
mained fairly limited. In our previous work [20] an IS approach was proposed
to identify patterns embedded in price data using a population of trackers that
evolve using proliferation and mutation. This early research proved successful
on small data sets but suffered when scaled to larger data sets with more com-
plex motifs. In this paper we describe the Motif Tracking Algorithm (MTA), a
deterministic but non-exhaustive approach to identifying repeating patterns in
time series data, that directly addresses this scalability issue.

The MTA represents a novel Artificial Immune System (AIS) using principles
abstracted from the human immune system, in particular the immune memory
theory of Eric Bell [1]. Implementing principles from immune memory to be
used as part of a solution mechanism is of great interest to the immune sys-
tem community and here we are able to take advantage of such a system. The
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MTA implements the Bell immune memory theory by proliferating and mutat-
ing a population of solution candidates using a derivative of the clonal selection
algorithm [6].

A subsequence of a time series that is seen to repeat within that time series
is defined as a motif. The objective of the MTA is to find those motifs. The
power of the MTA comes from the fact that it requires no prior knowledge of
the time series to be examined or what motifs exist. It searches in a fast and
efficient manner and the flexibility incorporated in its generic approach allows
the MTA to be applied across a diverse range of problems.

Considerable research has already been performed on identifying known pat-
terns in time series [13]. In contrast little research has been performed on looking
for unknown motifs in time series. This provides an ideal opportunity for an AIS
driven approach to tackle the problem of motif detection, as a distinguishing
feature of the MTA is its ability to identify variable length unknown patterns
that repeat in a time series. In many data sets there is no prior knowledge of
what patterns exist, so traditional detection techniques are unsuitable. In this
paper we test the generic properties of the MTA by applying it to two industrial
data sets and asses its ability to find variable length unknown motifs in that
data.

The paper is structured as follows, Section 2 provides a discussion of the work
performed in the field of motif detection. An explanation of the inspiration for the
MTA is presented in Section 3 before various important terms and definitions are
introduced and the pseudo code for the MTA is described in Section 4. Section
5 presents the results of the MTA when applied to the two industrial data sets.
Section 6 describes the relevance of the MTA and suggests potential applications
before moving on to conclude in Section 7.

2 Related Work

The search for patterns in data is relevant to a diverse range of fields, including
biology, business, finance, and statistics. Work by Guan [10] and Benson [3] ad-
dresses DNA pattern matching using lookup table techniques that exhaustively
search the data set to find recurring patterns. Investigations using a piecewise
linear segmentation scheme [11] and discrete Fourier transforms [8] provide ex-
amples of mechanisms to search a time series for a particular motif of interest.
Work by Singh [17] searches for patterns in financial time series by taking a se-
quence of the most recent data items and looks for re-occurrences of this pattern
in the historical data. An underlying assumption in all these approaches is that
the pattern to be found is known in advance. The matching task is therefore
much simpler as the algorithm just has to find re-occurrences of that particular
known pattern. The search for unknown motifs is much harder problem as no
prior knowledge of the motif is available. The MTA was created to address this
specific challenge.

The search for unknown motifs is at the heart of the work conducted by
Keogh et al. Keogh’s probabilistic algorithm[4], used as a comparison to the MTA



in Section 5.1, extracts subsequences from the time series using the Symbolic
Aggregate Approximation (SAX) technique. It then hashes the subsequences into
buckets. Buckets with multiple entries represent potential motif candidates. The
sections of the time series corresponding to these subsequences are examined to
identify genuine motifs. Keogh’s Viztree algorithm[12] uses the SAX technique to
generate a set of symbol strings corresponding to sequences from the time series.
These symbol strings are filtered into a suffix tree, where each branch corresponds
to alternative symbol combinations. The suffix tree provides a visual illustration
of the motifs present as the frequency of a motif is shown by the width of the
tree branch.

Keogh’s Probabilistic and Viztree algorithms are very successful in identify-
ing motifs but they require additional parameters compared to the MTA. They
also assume prior knowledge of the length of the motif to be found. Motifs longer
and potentially shorter than this predefined length may remain undetected in
full. In addition, incorporating assumptions regarding the motif length would
appear to contradict the definition of a truly unknown motif. Work by Tanaka
[18] attempts to address this issue by using minimum description length to dis-
cover the optimal length for the motif. Fu et al. [9] use self-organising maps
to identify unknown patterns in stock market data, by representing patterns as
perceptually important points. This provides an effective solution but again the
patterns found are limited to a predetermined length.

An alternative approach is seen in the TEIRESIAS algorithm [16] which
identifies patterns in biological sequences. TEIRESIAS finds patterns of an ar-
bitrary length by isolating individual building blocks that comprise the subsets
of the pattern. These are then combined into larger patterns. The methodology
of building up motifs by finding and combining their component parts is at the
heart of the MTA. To achieve this the MTA takes an IS approach, evolving a
population of trackers that is able to detect motifs whilst making fewer assump-
tions about the data set and the potential motifs. It focuses on the search for
unknown motifs of an arbitrary length, leading to a novel and unique solution
inspired by the developmental stages leading to immunological memory in the
human immune system.

3 Long and short term memory

The flexible learning approach of the human immune system is attractive as an
inspiration, but without an adequate memory mechanism knowledge gained from
the learning process would be lost. Memory represents a key factor in the suc-
cess of the immune system. A difficulty arises in implementing a computational
immune memory mechanism however, because very little is known about the
biological mechanisms underpinning memory development[23]. Theories such as
antigen persistence and long lived memory cells[15], idiotypic networks[5], and
the homeostatic turnover of memory cells[24] have all attempted to explain the
development and maintenance of immune memory. However, all have been con-
tested. In contrast the attraction of the immune memory theory proposed by



Eric Bell is that it provides a simple, clear and logical explanation of memory
cell development. This theory highlights the evolution of two separate memory
pools, ‘memory primed’ and ‘memory revertant’[2].

The human immune system represents a successful recognition tool. It must
be able to quickly identify novel bacteria and viruses present in the system
so that it can react accordingly and retain knowledge of those encounters for
future reference. The presence of such a bacterial threat causes naive immune
cells to become activated. This activation causes a rapid increase in cell numbers,
termed proliferation. The rapidly expanding population of activated cells forms
the short lived memory primed pool. The purpose of this growing pool is to
increase the repertoire of the population. New cells created during proliferation
undergo mutation in order to diversify from their parents. The cell population
evolves in order to match potential variations in the bacteria that stimulated
their parents. A form of pattern matching is being anticipated by the system.
The activated cells circulate throughout the system and eliminate any bacteria
that they interact with.

The high death rate of memory primed cells means most will die during
circulation, however a small minority do survive and return to reach a memory
revertant state. These cells reduce their excessive activation levels, becoming
more stable, thereby lengthening their lifespan. These unique cells are able to
produce clones naturally to sustain knowledge of a bacterial experience over the
long term. These two distinct memory pools and the transfer mechanism between
them, represent a key difference to other memory theories. This methodology
provides the inspiration for memory development in our algorithm.

Through this approach one can see the immune system represents an ideal
mechanism to address motif matching problems. It evolves a population of so-
lution candidates in an attempt to match part of a novel pattern, it then mu-
tates these successful population members so that matching solutions can be
improved. More information regarding the inspiration behind the MTA can be
found in [20].

In our novel algorithm the equivalent of the short term memory primed
pool is generated using a derivative of the popular clonal selection algorithm[6]
to proliferate all successfully matched candidates. This memory pool evolves
through a process of directed proliferation and mutation, regulated through a
process of controlled cell death. This rapidly expanding population provides a
search mechanism that is able to investigate all solution alternatives quickly and
effectively. Successful candidates from the short term memory pool transfer to
the longer lived memory revertant pool. This long term memory pool is then
used to permanently store records of the solutions found.

Having briefly introduced the inspiration for the MTA, the algorithm itself
and a number of key terms and definitions used within the algorithm are defined
in the following section.



4 The Motif Tracking Algorithm

Before we can present the pseudo code for the MTA we need to define some of
the terms used by the algorithm:

Definition 1. Time series. A time series T = t1,...,tm is a time ordered set
of m real or integer valued variables. In order to identify patterns in T we break
T up into subsequences of length n using a sliding window mechanism.

Definition 2. Motif. A subsequence from T that is seen to repeat at least
once throughout T is defined as a motif. We use Euclidean distance to examine
the relationship between two subsequences C1 and C2, ED(C1, C2) against a
match threshold r. If ED(C1, C2) ≤ r the subsequences are deemed to match
and thus are saved as a motif. The motifs prevalent in a time series are detected
by the MTA through the evolution of a population of trackers.

Definition 3. Tracker. A tracker represents a signature for a motif sequence
that is seen to repeat. It has within it a sequence of 1 to w symbols that are
used to represent a dimensionally reduced equivalent of a subsequence. The
subsequences generated from the time series are converted into a discrete symbol
string. The trackers are then used as a tool to identify which of these symbol
strings represent a recurring motif. The trackers also include a match count
variable to indicate the level of stimulation received during the matching process.

Based on the above definitions, below is the MTA pseudo code with a de-
scription of its main operations. We direct the readers attention to [22] for a
more in depth description of this algorithm if further information is required.
The parameters required in the MTA include the length of a symbol s, the match
threshold r, and the alphabet size a.

MTA Pseudo Code

Initiate MTA (s, r, a)

Convert Time series T to symbolic representation

Generate Symbol Matrix S

Initialise Tracker population to size a

While ( Tracker population > 0 )

{

Generate motif candidate matrix M from S

Match trackers to motif candidates

Eliminate unmatched trackers

Examine T to confirm genuine motif status

Eliminate unsuccessful trackers

Store motifs found

Proliferate matched trackers

Mutate matched trackers

}

Memory motif streamlining



Convert Time Series T to Symbolic Representation. The MTA takes
as input a univariate time series consisting of real or integer values. Taking the
first order difference of T we look at movements between data points allowing
a comparison of subsequences across different amplitudes. To further minimise
amplitude scaling issues we normalise the time series. In our previous work [20]
the algorithm investigated motifs through consideration of each data point in-
dividually, creating a solution that was not scalable to larger data sets. In the
MTA this problem is resolved as we investigate motifs by combining individual
data points into sequences and comparing and combining those sequences to
form motifs.

Keogh’s SAX technique [4] is used to discretise the time series. SAX is a
powerful compression tool that uses a discrete, finite symbol set to generate a
dimensionally reduced version of a time series that consists of symbol strings.
This intuitive representation has been shown to rival more sophisticated reduc-
tion methods such as Fourier transforms and wavelets [4].

Using this approach a window of size s slides across the time series T one
point at a time. Each sliding window represents a subsequence from T. The MTA
calculates the average of the values from the sliding window and converts it into
a symbol string. The user predefines the size a of the alphabet used to represent
the symbols for the time series T. As T has been normalised the breakpoints
for each alphabet character can be identified as those that generate a equal
sized areas under the Gaussian curve [4]. The average value calculated for the
sliding window is then examined against the breakpoints and converted into the
appropriate symbol. This process is repeated for all sliding windows across T to
generate m-s+1 subsequences, each consisting of symbol strings comprising one
character. Additional information on this process can be found in [22].

Generate Symbol Matrix S. The string of symbols representing a subse-
quence is defined as a word. Each word generated from the sliding window is
entered into the symbol matrix S. The MTA examines the time series T using
these words and not the original data points to speed up the search process.
Symbol string comparisons can be performed efficiently to filter out bad motif
candidates, ensuring the computationally expensive Euclidean distance calcula-
tion is only performed on those motif candidates that are potentially genuine.

Having generated the symbol matrix S, the novelty of the MTA comes from
the way in which each generation a selection of words from S, corresponding to
the length of the motif under consideration, are extracted in an intuitive manner
as a reduced set and presented to the tracker population for matching.

Initialise Tracker Population to Size a. The trackers are the primary tool
used to identify motif candidates in the time series. A tracker comprises a se-
quence of 1 to w symbols. The symbol string contained within the tracker rep-
resents a sequence of symbols that are seen to repeat throughout T.

Tracker initialisation and evolution is tightly regulated to avoid proliferation
of ineffective motif candidates. The initial tracker population is constructed of
size a to contain one of each of the viable alphabet symbols predefined by the
user. Each tracker is unique, to avoid unnecessary duplication.



Trackers are created of a length of one symbol and matched to motif can-
didates via the words presented from the stage matrix S. Trackers that match
a word are stimulated and become candidates for proliferation as they indicate
words that are repeated in T. Given a motif and a tracker that matches part of
that motif, proliferation enables the tracker to extend its length by one symbol
each generation until its length matches that of the motif.

Generate Motif Candidate Matrix M from S. The symbol matrix S con-
tains a time ordered list of all words, each containing just one symbol, that are
present in the time series T. Neighbouring words in S contain significant overlap
as they were extracted via sliding windows. Presenting all words in S to the
tracker population would result in inappropriate motifs being identified between
neighbouring words. To prevent this issue such ‘trivial’ match candidates are
removed from the symbol matrix S in a similar fashion to that used in [4].

Trivial Match Elimination (TME) is achieved as a word is only transferred
from S for presentation to the tracker population if it differs from the previous
word extracted. This allows the MTA to focus on significant variations in the
time series and prevents time being wasted on the search across uninteresting
variations.

Excessively aggressive TME is prevented by limiting the maximum number
of consecutive trivial match eliminations to s, the number of data points en-
compassed by a symbol. In this way a subsequence can eliminate as trivial all
subsequences generated from sliding windows that start in locations contained
within that subsequence (if they generate the same symbol string) but no others.
The reduced set of words selected from S is transferred to the motif candidate
matrix M and presented to the tracker population for matching.

TME speeds up the search process as it greatly reduces the number of motif
candidates compared. However, TME can result in motifs being missed during
the search. To account for this the MTA can also be run with No Trivial Match
Elimination (NTME). This generates a far more accurate search at the cost of
longer execution times.

Match Trackers to Motif Candidates. During an iteration each tracker is
taken in turn and compared to the set of words in M. Matching is performed
using a simple string comparison between the tracker and the word. A match
occurs if the comparison function returns a value of 0, indicating a perfect match
between the symbol strings. Each matching tracker is stimulated by incrementing
its match counter by 1.

Eliminate Unmatched Trackers. Trackers that have a match count >1 in-
dicate symbols that are seen to repeat throughout T and are viable motif can-
didates. Eliminating all trackers with a match count < 2 ensures the MTA only
searches for motifs from amongst these viable candidates. Knowledge of possi-
ble motif candidates from T is carried forward by the tracker population. After
elimination the match count of the surviving trackers is reset to 0.



Examine T to Confirm Genuine Motif Status. The surviving tracker pop-
ulation indicates which words in M represent viable motif candidates. However
motif candidates with identical words may not represent a true match when
looking at the time series data underlying the subsequences comprising those
words. In order to confirm whether two matching words X and Y, containing
the same symbol strings, correspond to a genuine motif we need to apply a dis-
tance measure to the original time series data associated with those candidates.
The MTA uses the Euclidean distance to measure the relationship between two
motif candidates ED(X,Y).

If ED(X,Y) ≤ r a motif has been found and the match count of that tracker is
stimulated. A memory motif is created to store the symbol string associated with
X and Y. The start locations of X and Y are also saved. For further information
on the derivation and selection of this matching mechanism please refer to [22].

The MTA then continues its search, focusing only on those words in M that
match the surviving tracker population, in an attempt to find all occurrences of
the potential motifs. The trackers therefore act as a pruning mechanism, reducing
the potential search space to ensure the MTA only focuses on viable candidates.

Eliminate Unsuccessful Trackers. The MTA now removes any unstimulated
trackers from the tracker population. These trackers represent symbol strings
that were seen to repeat but upon further investigation with the underlying
data were not proven to be valid motifs in T.

Store Motifs Found. The motifs identified during the confirmation stage are
stored in the memory pool for review. Comparisons are made to remove any
duplication. The final memory pool represents the compressed representation of
the time series, containing all the re-occurring patterns found.

Proliferate Matched Trackers. Proliferation and mutation are needed to
extend the length of the tracker so it can capture more of the complete motif.
At the end of the first generation the surviving trackers, each consisting of a
word with a single symbol, represent all the symbols that are applicable to
the motifs in T. Complete motifs in T only consist of combinations of these
symbols. Therefore, these trackers are stored as the mutation template for use
by the MTA.

Proliferation and mutation to lengthen trackers will only involve symbols
from the mutation template and not the full symbol alphabet, as any other
mutations would lead to unsuccessful motif candidates. During proliferation the
MTA takes each surviving tracker in turn and generates a number of clones equal
to the size of the mutation template. The clones adopt the same symbol string
as their parent.

Mutate Matched Trackers. The clones generated from each parent are taken
in turn and extended by adding a symbol taken consecutively from the muta-
tion template. This creates a tracker population with maximal coverage of all



potential motif solutions and no duplication. This process forms the equivalent
of the short term memory primed pool identified by Bell [2, 4].

The tracker pool is fed back into the MTA ready for the next generation. A
new motif candidate matrix M consisting of words with two symbols must now
be formulated to present to the evolved tracker population. In this way the MTA
builds up the representation of a motif one symbol at a time each generation to
eventually map to the full motif using feedback from the trackers.

Given the symbol length s we can generate a word consisting of two consec-
utive symbols by taking the symbol from matrix S at position i and that from
position i+s. Repeating this across S, and applying trivial match elimination,
the MTA obtains a new motif candidate matrix M in generation two, each entry
of which contains a word of two symbols, each of length s.

The MTA continues to prepare and present new motif candidate matrix data
to the evolving tracker population each generation. The motif candidates are
built up one symbol at a time and matched to the lengthening trackers. This
flexible approach enables the MTA to identify unknown motifs of a variable
length. This process continues until all trackers are eliminated as non match-
ing and the tracker population is empty. Any further extension to the tracker
population will not improve their fit to any of the underlying motifs in T.

Memory Motif Streamlining. The MTA streamlines the memory pool, re-
moving duplicates and those encapsulated within other motifs to produce a final
list of motifs that forms the equivalent of the long term memory pool.

5 Results

Here we examine the MTA’s performance on two publicly available industrial
data sets. The MTA was written in C++ and run on a Windows XP machine
with a Pentium M 1.7 Ghz processor with 1Gb of RAM.

5.1 Steamgen Data

In this section the MTA is compared to the probabilistic motif detection algo-
rithm developed by Keogh. Keogh’s algorithm is described in detail in [4]. It has
been used as a basis for many motif detection algorithms [12, 18] and provides
an ideal comparison for the MTA. Keogh was kind enough to provide the source
code for a simplified version of his probabilistic motif detection algorithm and
this was used as our basis of comparison.

One change was made to Keogh’s source code to enable a direct comparison
with the MTA. Motif detection in this version of Keogh’s algorithm only goes as
far as matching the symbol strings of the sequences being compared. No subse-
quent comparison of the sequences underlying those symbol strings is performed
to confirm the existence of the motif. To incorporate this confirmation stage
the same Euclidean distance function used in the MTA, as described in [22], is
incorporated into Keogh’s code. This ensures only genuine motifs are reported.



The two algorithms are compared using the Steamgen data set. This is a
publicly available data set 1 used for motif detection. The data was generated
using fuzzy models [7] applied to the model of a steam generator at the Abbott
Power Plant in Champaign [14]. The Steamgen data set consists of every tenth
observation taken from the steam flow output information, starting with the first
observation. This specific selection criterion was used by Keogh and has been
followed here for the purposes of comparison. The Steamgen data set contains
960 items with significant amplitude variation and is illustrated in Figure 1.
From an initial scan by eye it is unclear whether any significant motifs exist,
representing an ideal challenge for the two algorithms.

Fig. 1. A graphical representation of the Steamgen data set.

The parameters for the MTA for this data set have been selected based on the
results of previous testing [22, 21]. An alphabet size a=6 was set in accordance
with that selected by Keogh. In addition the MTA uses a symbol size s = 10.
A bind threshold of r = 0.15 is selected to ensure only close fitting motifs are
identified. For an analysis of the sensitivity of the MTA to changes in these
parameters readers are directed to the analysis in our earlier work [22, 21].

Keogh’s algorithm requires seven parameters to be established.

1. Motif length. Defines the length of the motif searched for.
2. Number of symbols. Defines the number of symbols used to represent the

motif.
3. Alphabet size. Corresponds to the parameter a used in the MTA.
4. Mask size. Keogh’s algorithm uses random projections to generate a colli-

sion matrix to identify potential motifs (see [4] for more information). The
mask size determines how many symbols in the motif are used in the random
projection.

1 The data set can be accessed from http://homes.esat.kuleuven.be/∼tokka/



5. Projection iterations. Defines how many times the random projection
process is performed.

6. Cut-off. Defines the minimum threshold for the number of collisions in
the collision matrix in order to identify if that sequence represents a motif
candidate.

7. Bind threshold. Corresponds to the parameter r used in the MTA.

Keogh’s algorithm requires that the length of the motif be specified in ad-
vance. The algorithm is then run for each of these different lengths. For the
Steamgen data the motif length was set to 80, 70, 60, 50 and 40. To ensure the
symbol length s is consistent across both algorithms the number of symbols per
motif is calculated as the motif length divided by s = 10. An alphabet size of 6
is selected in line with the MTA. A mask size of 4 and a projection iteration of
20 were established by Keogh as suitable for this data set. Since we only want to
identify good matching motifs the cut-off was set to 20. This implies only those
motifs that match completely in all of the 20 random projections are identified
as motifs. Finally a bind threshold of 0.15 is set in accordance with the MTA.

Keogh’s algorithm is run with No Trivial Match Elimination NTME to pro-
vide a detailed search for motifs of the lengths specified. These represent the
benchmark motifs that are compared to those found my the MTA.

Keogh’s algorithm finds no motifs exist if the motif length is 80. A motif
‘M1’, consisting of two sequences at locations 65 and 873, is found when the
motif length falls to 70. With a length of 60 two additional motifs are found.
The first is located at positions 69 and 877 and the second is found at positions
77 and 885. These motifs represent partial subsets of M1 and do not reflect new
motifs in the data. A motif length of 50 uncovers five different motifs, however,
once again these all reflect partial subsets of M1. With a motif length of 40
Keogh’s algorithm identifies 75 different motifs and some of these are distinct
from M1.

However, many of the 75 motifs correspond to similar motif patterns that
are offset. For example, one motif is found at location 79 and 887 while the next
is found at 80 and 888. These sequences represent the same motif. In the MTA
this issue is resolved by streamlining the memory pool. Such a mechanism is not
available in Keogh’s algorithm. Instead for the purposes of comparison the list
of 75 motifs is manually condensed and the best fitting motif is kept to represent
each motif pattern. All offset duplicates are eliminated. This reduces the number
of unique motifs of length 40 from 75 to 15. These benchmark motifs are listed
in Table 1.

In just one run the MTA generates a similar list of motifs. With NTME
the MTA finds one motif of length 70, located as positions 67 and 875. This is
consistent with motif M1 found by Keogh, offset by just two data points. The
sequences representing this motif are illustrated in Figure 2. A dominant motif
is clearly evident in the Steamgen data set and it has been found by Keogh’s
algorithm and the MTA.

The MTA finds eleven motifs with lengths varying between 40 and 50. These
are directly comparable to the fifteen motifs found by Keogh’s algorithm. A large



Table 1. The motifs of length 40 detected in the Steamgen data set using Keogh’s probabilistic
algorithm. Locations of the motifs along with the degree of similarity are reported.

Motif ID. Location 1. Location 2. Euclidean Distance.

1 79 887 0.92

2 52 356 1.40

3 392 641 1.94

4 232 296 2.22

5 227 339 1.98

6 569 785 2.06

7 10 234 1.63

8 1 337 2.29

9 98 450 2.03

10 366 754 2.12

11 525 917 1.93

12 386 802 2.31

13 464 896 2.07

14 454 910 2.22

15 153 769 2.43

Fig. 2. The sequences corresponding to motif M1 in the Steamgen data, as identified
by the MTA at locations 67 and 875



number of other motifs of lengths less than 40 are also identified. These motifs
are now compared to the fifteen benchmark motifs listed in Table 1. For example,
benchmark motif 6 from Keogh’s algorithm occurs at locations 569 and 785 with
a length of 40. Motif 11 from the MTA occurs at location 563 and 779 with a
length of 45. The MTA identifies the same approximate motif as Keogh except
it is longer and offset by 6 data points. The process is repeated for the MTA
with TME and for Keogh’s algorithm with TME. The results are presented in
Table 2.

Table 2. A comparison of the motifs detected by Keogh’s probabilistic algorithm against those found
by the MTA, for the fifteen motifs identified in Table 1.

MTA Keogh
NTME TME TME

Motif Found Length Found Length Found Length
Error Error Error

1 Yes 0 Yes 0 Yes 0

2 Yes 0 Yes 0 Yes 0

3 Yes 0 Yes -10 Yes 0

4 Yes 0 Yes 0 Yes 0

5 Yes -10 Yes -10 Yes 0

6 Yes 0 Yes 0 Yes 0

7 Yes 0 Yes 0 No -40

8 Yes -3 Yes -3 No -40

9 Yes -10 Yes -10 No -40

10 Yes -6 No -40 No -40

11 Yes -10 Yes -10 No -40

12 Yes 0 Yes 0 No -40

13 Yes 0 Yes 0 No -40

14 Yes 0 Yes -10 No -40

15 Yes 0 Yes -10 No -40

-39 -103 -360

Table 2 shows the MTA identifies all fifteen benchmark motifs when NTME is
used. However, the length errors indicate that five of the motifs are shorter than
the lengths established by Keogh’s algorithm. For example, motif 8 is 37 data
points long rather than 40. The flexibility of the MTA means that even though
the full length of 40 is not recognised the MTA still recognises a significant
proportion of these motifs. It can also identify motifs with lengths that are
not divisible by the symbol size. Such features are not possible with Keogh’s
algorithm. In total the MTA missed 39 data points or 6.5% of the total length
of all fifteen motifs.

With TME activated the MTA identifies fourteen of the fifteen benchmark
motifs. Motif 10 is lost during the search. The length errors indicate that seven
motifs are perfect matches to the benchmark motifs whilst the remainder repre-
sent only partial matches. The discrepancy in the length of the partially detected
motifs amounts to 103 data points or 17.17% of the total motif length. In con-
trast Keogh’s algorithm only finds six of the fifteen motifs if TME is used. Those
six are found with 100% accuracy however all knowledge of the remaining motifs
is lost. This occurs because of the severe nature of TME in Keogh’s approach.



The MTA limits the maximum number of consecutive trivial matches to the
length of the symbol s. This ensures neighbouring motifs with the same symbol
representation are not eliminated and can be compared. In contrast Keogh’s
algorithm eliminates all consecutive trivial matches, causing motifs to be lost.

This experiment shows TME causes a deterioration in the detection accuracy
of both the MTA and Keogh’s algorithm. This is not surprising as TME trades
off detection accuracy in order to improve the efficiency of the search. Efficiency
is measured in terms of execution time and the number of times the algorithm
has to return to the original time series to access subsequences for comparison
during the motif confirmation stage. With NTME the MTA takes approximately
161 seconds to run and requires 157,785 data accesses. TME reduces execution
time by 97.49% to 4.036 seconds and the number of data accesses by 88.22% to
just 18,592. TME therefore creates a much faster, but less accurate solution.

Keogh’s algorithm is considerably faster than the MTA if NTME is used.
Each execution run only takes between two to three seconds. This is achieved due
to the simpler search operation that is performed and use of Matlab rather than
C++ to code the algorithm. This creates a big advantage for Keogh’s solution
as it can produce results nearly instantaneously. However, Keogh’s algorithm
assumes prior knowledge of the motif length and has to be rerun for different
motif lengths. The MTA only needs to be run once.

To test the completeness of these results it is important to establish whether
the MTA can find any motifs not found by Keogh’s algorithm. Review of the
MTA motifs highlights two that do not correspond to any of the benchmark
motifs listed in Table 1. These motifs are listed in Table 3.

Table 3. Motifs in the Steamgen data set found by the MTA but missed by Keogh’s
detection algorithm.

Motif Symbolic Length. Location Euclidean
Representation 1 2 Distance

1 cbec 40 218 418 1.95

2 eccd 40 275 546 2.57

Recalculating the Euclidean distance for each of these motif sequences con-
firms that they are valid motifs and should have been found by Keogh’s ap-
proach. The only explanation for their omission is that the Euclidean distance
calculation was never performed on these sequences. This would only occur if
the sequences comprising the two motifs had different symbol strings and as a
result were dismissed as non matching based on their symbolic representation.

To validate this theory the symbol strings relating to motifs 1 and 2 in Table
3 are re-assessed. Using the SAX technique [22] the sequences corresponding
to motif 1 translate in Keogh’s approach to the strings ebce for location 218
and dbce for location 418. The symbol for the first frame of each sequence
differs. Even though the PAA values at the start of each sequence are similar



(0.433622 and 0.410164) they are located on either side of the boundary point
0.43 to generate a different symbol. Because of this Keogh’s algorithm rejects
the sequences as non matching and the motif is missed.

The same issue occurs for motif 2. Although the PAA values underlying the
sequences are similar on two occasions they lie on either side of the boundary
points. This generates different symbol strings (cebd and bebe) for the two
sequences. The sequences are rejected by Keogh’s algorithm as non matching
and the motif is missed.

This issue does not occur for the MTA because it uses a different method
to generate symbols. The MTA uses a global transformation. It normalises the
whole time series first and then calculates the PAA values using a sliding win-
dow on that data. In contrast Keogh’s algorithm uses a local transformation,
normalising only across the sequences being compared. It appears in this case
that normalising over a smaller range makes Keogh’s approach more susceptible
to inappropriate symbol representations, but this problem could also effect the
MTA.

This highlights a weakness of the symbolic representation as closely matching
sequences can be inappropriately dismissed if they lie close to the boundary
points. A potential resolution is to allow neighbouring symbols to match each
other as well as themselves. For example b could be allowed to match a, b, and
c. This solution has already been adopted by Keogh [4].

However, this approach significantly increases the number of sequences that
match in the symbol domain. Even with perfectly matching symbol sequences
the underlying data can be quite disparate and reflect a non match. Increasing
the match potential of symbol strings would dramatically increase the number
of data accesses required in order to dismiss these sequences. This exponentially
increases execution time. The benefit of a dimensionally reduced data set, de-
rived from the symbolic representation, would be undermined. Furthermore, this
matching mechanism would directly conflict with the proliferation and mutation
mechanisms used in the MTA. A more appropriate solution would be to simply
rerun the search with different alphabet sizes and the issue would be avoided.

5.2 Power Demand Data

In the second scenario the MTA is tested on the power demand data set [21].
This is a publicly available data set 1 containing 35,040 data values. Each data
point represents the average power demand (in Kilo Watts) for each 15 minute
interval during 1997 for the ECN research centre in the Netherlands [19].

Power demand rises when the research centre is open on week days but drops
during evenings and weekends, as illustrated in Figure 3. The nature of these
repeating cycles suggest that the data will contain a large number of motifs.
Hypothetically motifs should exist for each working hour, each working day,
each five day week, each working month and each weekend etc. These motifs
should also occur with a consistent periodicity.

1 The data can be obtained from www.cs.ucr.edu/∼eamonn/TSDMA/



The MTA is used to find motifs in this power demand data and to identify
inconsistencies in the periodicity of those motifs [21]. The inconsistencies could
be indicative of potential anomalies in the data such as bank holidays or periods
where the research centre had to close unexpectedly. These disturb the regularity
of the motif sequence repeats and could be of value to a user of this data.

In 1997 the 28th and 31st of March were bank holidays in the Netherlands.
As each data point equates to a fifteen minute interval these bank holidays relate
to locations 8,352 and 8,640 in the data. To examine the ability of the MTA to
identify these two bank holidays, 5,000 consecutive data items from location
5,000 to 10,000 were extracted as a subset for investigation by the MTA. This
subset was selected rather than the whole data set because of the huge number
of motifs that exist in the full data. Using the smaller subset we can test a proof
of concept that the MTA can be used as a form of basic anomaly detection as
well as a motif identification tool.

An alphabet size a = 6 is selected based on results of previous testing [22,
21]. The symbol size is increased to s = 250 due to the increased size of the
power demand data set. A small match threshold of r = 0.04 is selected to
ensure the motifs are a close match for each other. An analysis of the sensitivity
of the MTA to changes in these parameters is outside the scope of this particular
analysis.

The performance of the MTA is assessed across ten execution runs. The
motifs generated along with the average execution times and standard deviation
for these runs are reported. The algorithm is run with Trivial Match Elimination
(TME) and No Trivial Match Elimination (NTME) for comparison.

With NTME the MTA identifies seventeen motifs in the power demand data
set. These motifs range in length from 250 to 1,373 data points. Ten of the
seventeen motifs have a length equal to or greater than 500. Motifs shorter than
500 have been dismissed from the analysis for the sake of clarity, leaving the ten
motifs seen in Table 4.

Table 4. Motifs detected in the Power Demand data set using MTA with NTME.

Motif ID Length Frequency Locations

1 1,258 3 0. 1,339. 2,009.

2 1,373 3 252. 1,598. 3,609.

3 1,000 4 252. 1,598. 2,269. 3,608.

4 1,005 3 926. 2,269. 3,608.

5 973 4 0. 1,339. 2,010. 4,026.

6 826 2 2,657. 3,423.

7 598 7 0. 666. 1,338. 2,010. 2,681. 3,449. 4,025.

8 500 7 327. 992. 1,665. 2,337. 2,912. 3,681. 4,366.

9 519 6 452. 1,118. 1,791. 2,461. 3,805. 4,479.

10 500 5 148. 818. 1,499. 2,162. 4,182.



Table 4 shows a degree of overlap exists between the motifs. This is unsur-
prising given the nature of the power demand data. Motif 2 is the longest motif
found by the MTA. It repeats three times across the data set and covers 4,092
(81.8%) of the 5,000 data points. The three occurrences of motif 2 (A, B and C)
are illustrated in Figure 3.

Fig. 3. Motif 2 from the power demand data set. The three repetitions of motif 2 are
highlighted A, B and C.

Each occurrence of motif 2 lasts 1,373 data points which corresponds to
approximately 2 weeks. The first two occurrences of motif 2 (A and B) occur back
to back. Given this information one could hypothesise that the third occurrence
(C) of motif 2 should occur directly after the completion of B. The hypothetical
C should start near position 2,944 and end near position 4,317. However, the
MTA finds C does not actually occur until point 3,609. The start of C is delayed
by 665 data points (6.9 days). This indicates a potential anomaly exists in the
data between points 2,944 and 4,317 as it was rejected as a match to motif 2.
Apart from this region motif 2 encompasses the majority of the rest of the power
demand data set.

Motif 7 has the highest frequency of all the motifs found by the MTA. It
occurs seven times in the data set with a length of 598 data points (6.2 days).
The seven occurrences of motif 7 labelled A to G are illustrated in Figure 4.
Each occurrence of motif 7 encompasses two days where no power was required
followed by four working days when the research centre required power. This
motif is seen to occur regularly and covers 83.3% of the 5,000 data points.

Reviewing the intervals between each of the occurrences of motif 7 provides
valuable insight into the data. B occurs 666 data points or 6.9 days after the start
of A. The intervals between B, C, and D are also approximately seven days. This
indicates that motif 7 occurs on a weekly basis. However, the interval between E
and F is eight days, whilst that between F and G is only six days. The delay of



Fig. 4. Motif 7 from the power demand data set. The seven repetitions are highlighted
A to G.

F by one day causes a disruption in the consistent periodicity of motif 7. If the
periodicity of one week had been maintained F would have occurred from point
3,352 to 3,949. This suggests that an anomaly exists in the region 3,352 to 3,949
as it was rejected as a match to motif 7.

As each data point represents a fifteen minute interval the anomalous regions
highlighted by motifs 2 and 7 translate to actual dates during 1997. Motif 2
suggests an anomaly occurred between the 23rd of March and the 7th of April.
Motif 7 narrows this period to between the 28th of March and the 3rd of April.
Earlier we stated two bank holidays did occur during these periods, on the 28th
and on the 31st of March. The anomalies detected by the MTA are consistent
with the bank holidays that occurred during 1997.

Reviewing Table 4 motif 6 is seen to relate to this anomalous period. Graphed
in Figure 5 motif 6 encompasses the only two sequences (A and B) that corre-
spond to the working weeks that include a bank holiday. A includes the bank
holiday Friday on the 28th of March and B includes the bank holiday Monday
on the 31st 1997. This shows that as well as identifying patterns that relate to
normal working weeks, the MTA can also identify separate motifs for the weeks
that include bank holidays.

The experiment is now re-run using Trivial Match Elimination TME and the
MTA finds 16 motifs. To assess the impact of TME these motifs are compared
to those in Table 4 using the following criteria and the results are presented in
Table 5.

1. Motif Found. Is the motif found when TME is used?

2. Frequency Error. Records the discrepancy in the frequency of the motif
found with TME compared to that found with NTME.



Fig. 5. Motif 6 from the power demand data set. The two repetitions of motif 6 are
highlighted A and B.

3. Length Error. Records the discrepancy in the length of the motif found
with TME compared to that found with NTME. This is also reported as a
percentage of the NTME motif length.

4. Location Error. Records the maximum discrepancy in the location of the
motif occurrences found with TME compared with NTME. This value is also
reported as percentage of the NTME motif length.

Table 5. Impact on detection accuracy, with respect to the ten motifs from Table 4,
by activating TME

Motif Found Freq. Error Length Error Location Error

1 Yes 0 -8 -0.6% 10 0.8%

2 Yes 0 -11 -0.8% 23 1.7%

3 Yes 0 -250 -25.0% 62 6.2%

4 Yes 0 -255 -25.4% 62 6.2%

5 Yes 0 -223 -22.9% 10 1.0%

6 Yes 0 -37 -4.5% -4 -0.5%

7 Yes 0 -98 -16.4% 11 1.8%

8 Yes 0 0 0.0% 30 6.0%

9 Yes -2 +231 44.5% 25 4.8%

10 Yes 0 0 0.0% 61 12.2%

With TME the MTA identifies all ten of the motifs found with NTME.
However, the detection accuracy of the MTA suffers with TME. TME causes
the MTA to miss two repetitions of motif 9. The correct frequency is identified
for the remaining nine motifs.



The length errors in Table 5 indicate that, in seven of the ten cases, TME
causes a shortening in the identified motif length. The most significant losses
relates to motifs 3, 4 and 5, all of which were shortened by approximately 25%
(220 to 250 data points). The remaining losses appear relatively minor and in
one case TME results in a lengthening of the motif found. Overall however the
motifs found using TME are only partial subsets of those found using NTME.

In nine out of ten cases the location errors show the motif starting positions
found with TME are located after those found with NTME. The MTA misses the
earlier start location, causing the motif length to fall. The sequences do reflect
the same motif but the start locations are offset.

The errors in frequency, length and location indicate that TME causes a
decline in the detection accuracy of the MTA. This is to be expected given TME
sacrifices detection accuracy in order to speed up the search. Table 6 presents
the average execution time and the number of accesses that are required back
to the original time series for the ten runs with NTME and with TME. The
standard deviation for those times is also highlighted to three decimal places.

Table 6. Efficiency comparison of NTME and TME using the power demand data set

AvExecution Time Data Accesses
Seconds S.D.

NTME 3,639.87 241.327 4,885,096

TME 11.78 1.748 25,417

The MTA takes just 11.8 seconds to run with TME compared to over an hour
with NTME. TME reduces the number of data accesses from over 4.8 million
to just 25,417. Processing time is reduced by 99.68% while the number of data
accesses is reduced by 99.48% with TME.

Given these efficiency improvements the lower detection accuracy for TME
may be acceptable depending on the preferences of the user. The facility to
use either TME or NTME provides the user with two alternative approaches
that trade off accuracy versus efficiency, offering a flexible solution to the motif
detection problem.

6 MTA Applications

The MTA represents a novel, abstract algorithm to identify unknowns motifs
in a time series dataset in an intuitive and efficient manner. The population of
motifs generated by the MTA is a potentially very useful resource that other
algorithms could easily take advantage of.

Clustering and wavelet algorithms are usually seeded with random data upon
initialisation. An alternative approach would be to seed these algorithms with the
motif population generated by the MTA. The motifs represent known patterns



that re-occur in the data set therefore giving the algorithms a head start in their
analysis.

The motif generation process also represents a unique compression mecha-
nism. The original time series is compressed to a reduced set representing the
recurrent patterns in the data. This reduced set may be sufficient to provide a
simple visual summary of the full data set.

Technical analysts working in the stock market use known and accepted
patterns when analysing stock market performance. Such patterns include the
‘head and shoulders’ and ‘cup and handle’ patterns. The MTA could be applied
to such stock market data and the motifs generated compared to these well
established patterns. This analysis may be able to highlight other patterns that
may also be of interest alongside those that are generally accepted.

A key potential application of the MTA would be to act as a support tool for
forecasting. Executing the MTA on historical data would generate a population
of motifs. When live data is received this information could represent a partial
motif. Using principles from natural language one could compare the partial
motif against the motif population and hypothesise the future direction or value
for the data. For example, suppose the MTA was run on historical stock price
data. The resulting motifs reflect reoccurring patterns in that data. Supposing
the last five days of live data translated to the word e. Analysis of all the motifs
that include the symbol e could then be used to assess the probability that
a particular trend is reoccurring. This could provide additional information to
assess which direction the market is heading.

7 Conclusion

Motifs and patterns are key tools for use in data analysis. By extracting motifs
that exist in data we gain some understanding as to the nature and characteris-
tics of that data. The motifs provide an obvious mechanism to cluster, classify
and summarise the data, placing great value on these patterns. Whilst most
research has focused on the search for known motifs, little research has been
performed looking for variable length unknown motifs in time series. The MTA
takes up this challenge, building on our earlier work to generate a novel immune
inspired approach to evolve a population of trackers that seek out and match
motifs present in a time series. The MTA uses a minimal number of parameters
with minimal assumptions and requires no knowledge of the data examined or
the underlying motifs, unlike other alternative approaches. Previous issues of
scalability were addressed by using a discrete, finite symbol set to generate a
dimensionally reduced version of the time series for investigation.

The MTA was evaluated using two industrial data sets and the algorithm was
able to identify a motif population for each. Tests involving the steamgen data
showed the MTA could identify a motif population that approximates closely to
the motifs found using a derivative of the motif detection algorithm developed
by Keogh. It was also able to find motifs not found by this alternative approach.



From the power demand data set the MTA was able to identify intuitive
motifs that provided valuable insight into the nature of the data set. Irregularities
in the motif periodicity indicated the existence of anomalies in the data. These
correlated with the existence of bank holidays which disrupted the regularity of
the motifs. In addition the MTA was able to successfully identify separate motifs
corresponding to the bank holidays and those relating to normal working weeks.

The ability to identify anomalies in motifs that occur with a consistent pe-
riodicity could have direct relevance for numerous other applications. A prime
example includes medical applications which record and monitor heart rates and
breathing patterns. The ability to find anomalies in this type of data could prove
extremely beneficial.

In both data sets the use of trivial match elimination was seen to reduce the
detection accuracy of the MTA as discrepancies in the motif length, location and
frequency are introduced. This deterioration is compensated for by a significant
improvement in overall efficiency as the execution time and the number of data
accesses are dramatically reduced if TME is used.

The ability to identify a population of truly “unknown” and meaningful mo-
tifs using minimal assumptions and a limited number of parameters ensures the
the MTA offers a valuable contribution to an area of research that at present
has received surprisingly little attention.
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