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A theory for the reliable prediction of the EPR g tensor for paramagnetic defects in solids is presented.
It is based on density functional theory and on the gauge including projector augmented wave approach
to the calculation of all-electron magnetic response. The method is validated by comparison with existing
quantum chemical and experimental data for a selection of diatomic radicals. We then perform the first
prediction of EPR g tensors in the solid state and find the results to be in excellent agreement with
experiment for the E0

1 and substitutional phosphorus defect centers in quartz.
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Electron paramagnetic resonance (EPR), also known as
electron spin resonance, is the most powerful spectroscopic
technique for the study of paramagnetic defects in solids.
Indeed, defect centers are often named directly after their
EPR spectra. Applications of EPR extend to any situation
where there are unpaired electrons, including the under-
standing of reactions involving free radicals in both bio-
logical and chemical contexts or the study of the structure
and spin state of transition metal complexes.

EPR spectra of spin 1�2 centers are made up of two con-
tributions: (i) the hyperfine parameters, which can be com-
puted from the ground state spin density, and have been
used to connect theoretical studies of defects to available
experimental data [1–6], and (ii) the g tensor. Only re-
cently have there been attempts to calculate the g tensor
in molecules from first principles using density functional
theory (DFT) [7,8]. However, these approaches are valid
only for finite systems and, thus, are not useful for the cal-
culation of the g tensor for paramagnetic defects in solids,
except possibly within a cluster approximation. In the ab-
sence of a predictive scheme, experimentally determined
g tensors are, of necessity, interpreted in terms of their
symmetry alone, leaving any remaining information unex-
ploited. A reliable, first-principles approach to the predic-
tion of g tensors in solids, in combination with structural
and energetic calculations, would access this information,
and could be used for an unequivocal discrimination be-
tween competing microscopic models proposed for defect
centers. In this Letter we describe an approach for the cal-
culation of the g tensor in extended systems, using periodic
boundary conditions and supercells.

In a previous paper [9] we have shown how to com-
pute the all-electron magnetic linear response, in finite
0031-9007�02�88(8)�086403(4)$20.00
and extended systems, using DFT and pseudopotentials.
To achieve this we introduced the gauge including projec-
tor augmented wave (GIPAW) method, which is an exten-
sion of Blöchl’s projector augmented wave (PAW) method
[10]. In Ref. [9], we used GIPAW to compute the NMR
chemical shifts in molecules and solids. Here we apply
the GIPAW approach to the first-principles prediction of
EPR g tensors for paramagnetic defects in solids. We vali-
date our theory and implementation for diatomic radicals,
for which both all-electron quantum chemical calculations
and experimental data exist. As, until now, there have been
no first-principles calculations of g tensors in solids, we
validate our method in the solid state by a direct compari-
son with experiment. In particular, we interpret, from first
principles, the EPR spectrum of the well characterized and
technologically important defects in quartz, the E0

1 and
phosphorus substitutional centers.

The g tensor is an experimentally defined quantity, aris-
ing from the recognition that the EPR spectrum can be
modeled using the following effective Hamiltonian, bi-
linear in the total electron spin S, and the applied uniform
magnetic field or nuclear spins, B and II , respectively:

Heff �
a
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X
I

S ? AI ? II . (1)

Here, and in the following, atomic units are used, a is
the fine structure constant, and the summation I runs over
the nuclei. The tensors AI are the hyperfine parameters (a
PAW based theory for its calculation has been described
elsewhere by Van de Walle and Blöchl [1,3]), and the
tensor g is the EPR g tensor.

In order to calculate the g tensor we start from the elec-
tronic Hamiltonian which includes terms up to order a3, in
the presence of a constant external magnetic field B [7,11]:
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The summations over i and j run over the electrons and HZ, HZ-KE, HSO, and HSOO are the electron Zeeman, the electron
Zeeman kinetic energy correction, the spin-orbit, and the spin-other-orbit terms, respectively:
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(3)
The constant g0 is related to ge, the electronic Zeeman
g factor in vacuum, by g0 � 2�ge 2 1�, and A�r� �
1
2B 3 r is the vector potential.

Starting from the Hamiltonian of Eq. (2), we can expand
the total energy in powers of a, up to O�a3�, using pertur-
bation theory. In the resulting expansion, the term bilinear
in Si and B is identified as the first term of Eq. (1). This
term can be rewritten within the formalism of spin polar-
ized DFT to obtain an explicit expression for the g tensor:

g � ge 1 DgZ-KE 1 DgSO 1 DgSOO � ge 1 Dg ,
(4)

where ge � geI, I being the identity matrix, and
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Here " denotes the majority spin channel and r
�0�
" �r�,

T
�0�
" , and V

�0�
ks,"�r� are the unperturbed electron probability

density, kinetic energy, and Kohn-Sham potential of the
"-spin channel, respectively. j

�1�
" �r� is the electronic charge

current linearly induced by the constant magnetic field B
in the "-spin channel. Finally, B�1��r� is the magnetic field
produced by the total induced current, �j�1�

" �r� 1 j
�1�
# �r��,

which we correct for self-interaction by removing the
contribution from the current of the unpaired electron,
�j�1�

" �r� 2 j
�1�
# �r��.

We can interpret the physical origin of deviation of the
g tensor from its value in vacuum. The spin-other-orbit
correction, DgSOO, describes the screening of the external
field B by the induced electronic currents, as experienced
by the unpaired electron. The unpaired electron itself is
not at rest and in the reference frame of the unpaired elec-
tron the electric field due to the ions and to the other elec-
trons is Lorentz transformed so as to appear as a magnetic
field. The interaction between the spin of the unpaired
electron and this magnetic field results in the spin-orbit cor-
086403-2
rection, DgSO [12]. Finally, the electron Zeeman kinetic
energy correction, DgZ-KE, is a purely kinematic relativis-
tic correction.

Equations (5)–(7) show that the evaluation of the g
tensor requires, besides ground state quantities, the linear
magnetic response currents j�1��r�. Mauri, Pfrommer, and
Louie [13] showed how to calculate the magnetic response
of a system of electrons in an infinite insulating crystal, and
our recent paper [9] reformulated this so as to be strictly
valid for nonlocal pseudopotentials, and to reproduce the
valence all-electron currents even within the pseudization
core region. An accurate description of the all-electron
currents in the core regions is essential for the evaluation
of the SO term, Eq. (6). Indeed, the dominant contribution
to the integral in Eq. (6) comes from the core region as a
result of the divergence of V

�0�
ks �r� at the nuclei.

Using our GIPAW approach to the calculation of the
all-electron magnetic response using pseudopotentials,
described in detail in Ref. [9], we break the SO term into
three parts which derive from the three GIPAW contribu-
tions to the induced current, Eq. (34) of Ref. [9]:

DgSO � Dgbare
SO 1 DgDd

SO 1 Dg
Dp
SO . (8)

The Dgbare
SO term is evaluated from Eq. (6) using a spin

dependent version of the j
�1�
bare�r� of Ref. [9] and a local

Kohn-Sham potential consisting of a sum of the self-
consistent contribution to the local potential and the local
parts of the pseudopotentials.

The diamagnetic correction term DgDd
SO can be evalu-

ated from the ground state valence pseudo wave functions
jC̄

�0�
o,"� using the following expression:
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(9)

The summation o is over occupied states. The projec-
tor functions jp̃I,n� are defined in Ref. [9] and satisfy
� p̃I,n j f̃I0,m� � dI,I 0dn,m, where jf̃I,n� are a set of pseudo
partial waves corresponding to the all-electron partial
waves jfI,n�. The projector weights eI

n,m are given by the
086403-2



VOLUME 88, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 25 FEBRUARY 2002
following atom centered integrals:

eI
n,m � 2
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(10)

The potentials V �r� and Ṽ �r� in Eqs. (10) and (11) are the
screened atomic all-electron and local channel pseudopo-
tentials, respectively.

The evaluation of the paramagnetic correction term
Dg

Dp
SO is more involved as it requires the first order linear

response wave functions. However, the required evaluation
can be described by analogy with the calculation of para-
magnetic correction to the NMR chemical shifts, s

Dp
GIPAW,

replacing the weights fI
n,m in Eq. (60) of Ref. [9] by
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where L is the angular momentum operator.
The electron Zeeman kinetic energy correction term

DgZ-KE is evaluated by combining a straightforward PAW
correction with the quantity evaluated from the ground
state pseudo valence wave functions using Eq. (5). In this
work the SOO term is evaluated from the induced field
B�1��r� derived from the bare induced current, and the spin
density due to the pseudo wave functions. It is expected
that a full GIPAW treatment would result in only minor
corrections since (i) the SOO term is small in comparison
to the SO term, and (ii) both the induced field and the spin
density do not diverge at the nuclei.

To validate our new expressions for the evaluation of
the g tensor, and our implementation of them into a paral-
lelized plane-wave pseudopotential code, we compare with
the all-electron gauge including atomic orbital (GIAO)
DFT results obtained by Schreckenbach and Ziegler [7]
for a series of diatomic radicals. We use their calculated
bond lengths for the dimers, but approximate the isolated
dimers by using large supercells. Troullier-Martins pseu-
dopotentials [14] and the (spin polarized) generalized gra-
dient approximation due to Perdew et al. [15] (GGA-PBE)
are used throughout our calculations. Table I shows the
excellent agreement between our two approaches. The ex-
ception is the AlO radical, for which we obtain much closer
agreement with experiment. The otherwise close agree-
ment between these two very different approaches sug-
gests a technical rather than fundamental problem in the
GIAO calculation for AlO. Comparison with experiment
is made through Table 2 of Ref. [7], while acknowledging
that most measurements are performed in solid matrices,
which strongly influence the g tensor (most notably the
Dgk components), and that the experimental errors are of
the order of several hundred parts per million (ppm).
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TABLE I. Calculated Dg tensors, in parts per million (ppm),
for diatomic molecules. For comparison with Ref. [7] we omit
(in this table only) the SOO contribution to our calculations. A
100 Ry plane-wave cutoff is used.

Dgk Dg�

Molecule GIPAW SZ [7] GIPAW SZ [7]

H1
2 239 239 241 242

CO1 2134 2138 23223 23129
CN 2138 2137 22577 22514
AlO 2141 2142 22310 2222
BO 269 272 22363 22298
BS 280 283 29901 29974
MgF 249 260 22093 22178
KrF 2340 2335 61 676 60 578
XeF 2333 2340 157 128 151 518

Finally, by analyzing the different contributions, includ-
ing the SOO term, we found that in all dimers apart from
H1

2 , the SO term accounts for more than 90% of TrDg�3,
and that the paramagnetic correction term Dg

Dp
SO accounts

for the overwhelming majority of the SO term.
To further validate our approach to the calculation of the

g tensor and to apply it for the first time in the solid state,
we study two defects of a quartz.

The E0
1 center is associated with a positively charged

oxygen vacancy, with the unpaired electron on a Si dan-
gling bond. As in previous calculations [2,3,17], we model
the defect with a 71 atom (24 Si and 47 O), positively
charged (11) hexagonal supercell. We use the theoreti-
cal GGA-PBE lattice parameters (which are 1% larger
than in experiment) and relax the atoms. For the struc-
tural optimization we use a G only k-point sampling and
a plane-wave cutoff of 50 Ry. The resulting relaxed struc-
ture is very close to that of Ref. [3]. The EPR g tensor is
calculated using our relaxed structure, a plane-wave cutoff
of 70 Ry and 4 inequivalent k points. In Table II we com-
pare our theoretical g tensor with the experimental results
[16], finding excellent agreement.

The P2 defect center is neutral and associated with a
fourfold coordinated P atom, substituting for a Si atom.
The center exists as two variants at low temperature
(,140 K) in quartz, labeled P2�I� in the ground state
and P2�II� in the excited state [18]. Only recently have
these P defect centers been examined using DFT based
total energy approaches [4,6]. However, up until now,
the connection with experiment has been made using the

TABLE II. Calculated Dg tensors for our model E0
1 defect, and

corresponding experimental data [16].

Principal values Principal directions
GIPAW (ppm) Expt. (ppm) GIPAW Expt.

u f u f

2651 2530 110.0± 223.5± 114.5± 227.7±

22255 21790 142.3± 341.6± 134.5± 344.4±

22481 22020 120.4± 121.1± 125.4± 118.7±
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TABLE III. Calculated total energies, with respect to our
lowest energy configuration. For nontetrahedral configurations,
OPO indicates the largest O-P-O angle after the relaxation,
and OSiO the corresponding angle in the unrelaxed a-quartz
structure. With l and s we specify whether the two SiO bonds
forming in the OSiO angle are short or long in the unrelaxed
structure. The number of symmetry equivalent structures is Nc .
We report our assignment of the experimental centers based on
the comparison of Table IV.

SiO OSiO OPO Nc Energy (meV) Species

Tetrahedral configuration 1 730
ls 108.8± 147.4± 2 243
ss 108.9± 155.4± 1 178
ll 109.5± 157.6± 1 79 P2�I�
ls 110.4± 155.1± 2 0 P2�II�

hyperfine parameters alone, and the two variants of the
defects, P2�I� and P2�II�, have not been distinguished
theoretically.

Using the method described above, and a supercell of
72 atoms, 5 distinct total energy local minima are found
as a function of the initial configuration, Table III. The
configuration with the highest energy corresponds to a
symmetric relaxation with the P remaining tetrahedrally
coordinated, and O-P-O angles of about 109±. In the 4
other configurations the P atom moves off-center, open-
ing up one of the 6 O-P-O angles, which reaches a value
of about 150±. We computed the EPR g tensors for our
two lowest energy structures and compare them with the
experimental results [18] in Table IV. Again, we obtain
an excellent agreement between theory and experiment,
which confirms that the two lowest energy theoretical
structures correspond to the two lowest energy experimen-
tal structures. However, the comparison between g tensors
shows that the energy ordering between the P2�I� and
P2�II� species is not correctly described by theory. This is
not surprising given the small energy separation between
the two configurations. This is expected to be sensitive to
both the size of the supercell and the use of approximated
DFT functionals.

To summarize, we have calculated the EPR g tensor for
a paramagnetic defect in an extended solid for the first
time and find our results to be in excellent agreement with
experimental results for the E0

1 defect. On applying the
method to the P2 defect, we show that comparison with
experimental g tensors can provide structural information
where the accuracy of DFT for energetics is insufficient.
Combined with the calculation of hyperfine parameters
[1–6], we expect that our GIPAW based first-principles
approach to the prediction of EPR g tensors will be of great
use in the assessment of models proposed for less well
characterized paramagnetic defects, and add significantly
to the tools available to the electronic structure community.

C. J. P. thanks the Université Paris 6 and the Université
Paris 7 for support during his stay in Paris. The calcula-
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TABLE IV. Calculated Dg tensors for our model P2 defect
centers, and corresponding experimental data [18].

Principal values Principal directions
GIPAW (ppm) Expt. (ppm) GIPAW Expt.

u f u f

Configuration P2�I�
1249 900 65.0± 90.0± 64.8± 90.0±

2980 21100 90.0± 0.0± 90.0± 0.0±

23414 23200 25.0± 270.0± 25.2± 270.0±

Configuration P2�II�
1146 1100 47.1± 13.1± 46.5± 11.8±

2824 21000 99.0± 94.7± 101.1± 91.1±

23454 23200 135.7± 355.4± 134.4± 350.1±

tions were performed at the IDRIS supercomputing center
of the CNRS and on Hodgkin (SGI Origin 2000) at the
University of Cambridge’s High Performance Computing
Facility.
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