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Abstract

We prove the convergence of an adaptive finite element method for computing the band structure of 2D

periodic photonic crystals with or without compact defects in both the TM and TE polarization cases. These

eigenvalue problems involve non-coercive elliptic operators with discontinuous coefficients. The error analysis

extends the theory of convergence of adaptive methods for elliptic eigenvalue problems to photonic crystal

problems, and in particular deals with various complications which arise essentially from the lack of coercivity

of the elliptic operator with discontinuous coefficients. We prove the convergence of the adaptive method in

an oscillation-free way and with no extra assumptions on the initial mesh, beside the conformity and shape

regularity. Also we present and prove the convergence of an adaptive method to compute efficiently an entire

band in the spectrum. This method is guaranteed to converge to the correct global maximum and minimum

of the band, which is a very useful piece of information in practice. Our numerical results cover both the cases

of periodic structures with and without compact defects.

1 Introduction

In the last years the question of convergence of adaptive methods for eigenvalue problems has received
intensive interest and a number of convergence results have appeared. The first proofs to appear
had some extra assumptions on the initial mesh and some extra marking strategies to control the
oscillations [19, 20]. Then newer proofs appeared with no extra assumptions or oscillations strategies
[7, 17, 18, 9]. The proof in this paper has been inspired by [18], which is only for elliptic eigenproblems
based on coercive bilinear forms and which makes use of the green refinement strategy to adapt the
mesh. As we shall see in Section 3 the sesquilinear form of the photonic crystals (PCs) eigenvalue
problem (1.1) is not coercive for all values of the quasimomentum κ, so an extension of the analysis
is required. The first convergence proof for PCs eigenvalue problems is in [19], however that proof
could be considered quite dated now, since it possesses an extra assumption on the initial mesh and
it is not oscillation-free. With this work we want to present a more up to date proof of convergence
for PCs which is suitable for the red-green refinement strategy, which is probably the most widely
used in practice.

PCs are constructed by assembling portions of periodic media composed of dielectric materials
and they are designed to exhibit interesting properties in the propagation of electromagnetic waves,
such as spectral band gaps. Media with band gaps have many potential applications, for example,
in optical communications, filters, lasers, switches and optical transistors; e.g. see [25, 34, 1] for
an introduction. In this paper we consider only 2D PCs, whose structure is periodic in a plane
determined by two orthogonal directions and constant in the normal direction to that plane.

The propagation of light in any kind of PCs is governed by Maxwell’s equations [28]. In 2D
PCs the 3D Maxwell’s equations reduce to a two-dimensional one-component wave equation, which

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/17875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction 2

determines either the electric field (TH mode) or the magnetic field (TE mode). Because the problem
is periodic, the Floquet transform [28, 27] can be applied to split each mode into a family of eigenvalue
problems on the primitive cell Ω [2] of the periodic medium with periodic boundary conditions.
This family is parameterized by the quasimomentum κ, which varies in the first Brillouin zone, see
Section 2. All eigenvalue problems in the family have the weak form: seek eigenpairs of the form
(λ, u) ∈ C ×H such that

∫

Ω
((∇ + iκ)v)∗A(∇ + iκ)u dx = λ

∫

Ω
Buv̄ dx in Ω, for all v ∈ H, (1.1)

where H is a Hilbert space that will be specified in Section 3, Ω is the primitive cell of the photonic
crystal and u, v are required to satisfy periodic boundary conditions. Here, the matrix-valued function
A is real symmetric and uniformly positive definite, i.e.,

∀x ∈ Ω, 0 < a ≤ ξ∗A(x)ξ ≤ a for all ξ ∈ C
2 with |ξ| = 1 , (1.2)

where ∗ denotes Hermitian transpose. The scalar function B is real and bounded above and below
by positive constants for all x ∈ Ω, i.e.,

0 < b ≤ B(x) ≤ b for all x ∈ Ω. (1.3)

In this work we will assume (as is generally the case in applications), that A and B are both piecewise
constant on Ω and we will also assume that any jumps in A and B are aligned with the meshes used
in this work. Due to the jumps of the coefficients, the eigenfunctions of (1.1) could have localized
singularities in the gradient, which could diminish the rate of convergence of finite element methods
on uniformly refined meshes.

A very popular practical numerical method for PCs is the Fourier spectral method (also called the
“plane-wave expansion method”) [33, 24, 6, 32, 31]. The overall rate of convergence for this method
of the approximate spectra to the true spectra is slow because the jumps in the dielectric destroy
the exponential accuracy which is achieved by Fourier spectral methods for smooth problems. Other
spectral methods include expansions in terms of eigenfunctions for the crystal without any defects
[13]. Semi-analytical methods which impose considerable limitations on the geometry of the crystal
are also considered [14].

We use adaptive finite element methods because they provide flexible solvers for partial differential
equation (PDE) problems and they are able to deal optimally with heterogeneous media problems.
There are already some works about finite element methods for PCs, sometimes with adaptivity
[3, 5, 10, 11, 23, 26, 36, 35, 12, 22]. However, until [22] a proper a posteriori analysis for PC
problems was missing, as far as we know.

The outline of the paper is as follows. A brief §2 describes how problem (1.1) is derived form
Maxwell’s equations and an equally brief §3 contains some basic properties of the sesquilinear form
in (1.1) and presents the a priori convergence estimates for finite element approximation of PC
eigenvalue problems. These results have been already presented in [22], they are reported here
only for clarity. In §4 some a posteriori results regarding the estimators are presented and in §5
the convergence proof of the adaptive finite element method is presented. In §6 an efficient and
convergent method to compute an entire band is presented. This method is useful in practice since
the maximum and the minimum of the computed approximation of the band converge to the true
global maximum and minimum of the band, which are useful quantities to assess the performances
of a PCs. Finally, numerical experiments illustrating the results with our method are collected in §7.
These include both results on infinite periodic structures and on periodic structures with defect. We
believe that the present paper is the first contribution to the topic of oscillation-free convergence of
adaptive finite element methods for PC applications.
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2 Photonic Crystals (PCs)

Two-dimensional PCs are interesting because they may have spectral band gaps, in other words,
monochromatic electromagnetic waves of certain frequencies may not propagate inside them. Such
crystals are much easier to fabricate than general 3D photonic crystals, while still allowing for many
important applications. Theoretical analysis for 2D PCs is significantly simpler than for 3D photonic
crystals, because a 2D PC dielectric system has two fundamental types of modes, E-polarised (TH
mode) and H-polarised (TE mode). The propagation of a monochromatic beam of light of frequency
ω inside a periodic medium of dielectric material is governed by Maxwell’s equations (in the absence
of free charges and currents):

∇×Eω = − iω
c µHω, ∇ · εEω = 0 ,

∇× Hω = iω
c εEω , ∇ · µHω = 0. (2.1)

where Eω is the electric field, Hω is the magnetic field, ε and µ are the dielectric permittivity and
magnetic permeability tensors and c is the speed of light in the vacuum. We will assume that the
medium is “orthotropic”, i.e., it has a periodic structure in a certain plane (here taken to be x− y)
and is constant in the third (z) dimension. The tensor ε = ε(x, y) then has the form

ε =





ε11 ε12 0
ε21 ε22 0
0 0 ε33



 ,

with ε12 = ε21 and with det(ε) > 0. In the rest of the work we assume the magnetic permeability µ
constant and equal to 1, as done by other authors, e.g. see [10, 5, 28].

A 2D periodic medium can be described using lattices. Any basis of vectors {r1, r2} for R
2

generates a lattice ℓ := {R ∈ R
2 : R = n1r1 + n2r2 , n1, n2 ∈ Z}. We may think of elements in ℓ

equivalently as either vectors in R
2 or as points in the 2D plane. Clearly ℓ is a group under vector

addition, with the neutral element 0. The primitive cell (more precisely the Wigner-Seitz primitive
cell [2]) for ℓ is defined to be the set Ω of all points in R

2 which are closer to 0 than to any other
point in ℓ. When Ω is translated through all R ∈ ℓ, we obtain a covering of R

2 with overlapping of
measure 0.

The reciprocal lattice [2] for ℓ is the lattice ℓ̂ generated by a basis {k1,k2}, chosen to have the
property

ri.kj = 2πδi,j , i, j = 1, 2 . (2.2)

Suitable formulae for {k1,k2} are

k1 =
2πSr2

r1.(Sr2)
, k2 =

2πSr1

r2.(Sr1)
, where S =

[

0 1
−1 0

]

.

Clearly (2.2) implies that exp(iK · R) = 1 for all R ∈ ℓ and all K ∈ ℓ̂. The primitive cell for the
reciprocal lattice is called the first Brillouin zone [2] which we denote here by K.

For example, if ℓ is generated by {e1, e2} (where ei are the standard basis vectors in R
2), then

Ω = [−0.5, 0.5]2, ℓ̂ is generated by {2πe1, 2πe2} and the first Brillouin zone is K = [−π,+π]2.
When ε is orthotropic the application of the Floquet transform splits each one of the polarized

modes TE and TH into a direct sum of a family of scalar eigenvalue problems in the parameter κ ∈ K
on the primitive cell Ω with periodic boundary conditions [28]:

(∇ + iκ) · (∇ + iκ)u+
ω2

κ

c2
Bu = 0 , where B := ε33 , (2.3)
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for the so called TH-polarization and

(∇ + iκ) · A(∇ + iκ)u+
ω2

κ

c2
u = 0 , where A :=

1

ε11ε22 − ε212

(

ε11 ε12
ε21 ε22

)

, (2.4)

for the so called TE-polarization. Both (2.3) and (2.4) may be written in the abstract form

(∇ + iκ) · A(∇ + iκ)u+ λκBu = 0 on Ω, κ ∈ K , (2.5)

which should be understood in the weak form.

3 Eigenvalue problems and a priori convergence results

The results in this section have already been presented in [22], but for sake of completeness they
are presented again below. Throughout L2

B(Ω) denotes the usual space of square integrable complex
valued functions which we shall equip with the weighted norm

‖f‖0,B = b(f, f)1/2 , b(f, g) :=

∫

Ω
Bfḡ dx . (3.1)

H1(Ω) denotes the usual space of complex valued functions in L2(Ω) with square integrable gradient
and H1

π(Ω) denotes the functions f ∈ H1(Ω) which satisfy periodic boundary conditions on ∂Ω , e.g.
for Ω = [−0.5, 0.5]2 then

f((−0.5, y)) = f((0.5, y)) , f((x,−0.5)) = f((x, 0.5)) , with x, y ∈ [−0.5, 0.5] .

H1
π(Ω) is equipped with the usualH1-norm ‖f‖1. We will also use fraction spaces H1+s(Ω), s ∈ [0, 1].

Finally we denote by ‖ · ‖∞ the standard norm of L∞(Ω). On occasions we may want to restrict
these norms to a measurable subset S ⊆ Ω, in which case we write ‖f‖0,B,S , ‖f‖1,S , etc.

Since aκ(·, ·) is Hermitian, the eigenvalues are real and problem (1.1) can be rewritten as: seek

eigenpairs of the form (λj , uj) ∈ R ×H1
π(Ω) such that

aκ(uj, v) = λj b(uj , v) , for all v ∈ H1
π(Ω)

‖uj‖0,B = 1

}

(3.2)

where

aκ(u, v) :=

∫

Ω
((∇ + iκ)v)∗A((∇ + iκ)u) dx , (3.3)

and

b(u, v) :=

∫

Ω
u v dx .

The sesquilinear for aκ(·, ·) is bounded in H1
π(Ω) and non-negative, [22, Lemma 3.1] i.e.,

aκ(u, v) ≤ Ca‖u‖1‖v‖1, for all u, v ∈ H1
π(Ω) and aκ(u, u) ≥ 0 . (3.4)

Moreover, since aκ(·, ·) is Hermitian, the spectrum of (3.2) is real and it is also non-negative since
0 ≤ aκ(u, u) = λ b(u, u) = λ , for any solution of (3.2).

However, the analysis of (3.2) is complicated by the fact that the problem is not coercive for all
values of κ and to deal with that, we introduce a new sesquilinear form related to aκ(·, ·) which is
coercive for all κ ∈ K. The same approach has already been used in [22, 19].

Definition 3.1: We define the shifted sesquilinear form

(u, v)κ,A,B := aκ(u, v) + σ b(u, v) , for all u, v ∈ H1
π(Ω) ,

where σ = (maxκ∈K |κ|2a/b) + 1. We also define ‖f‖κ,A,B = (f, f)
1/2
κ,A,B on H1

π(Ω). Consequently, we

define the norm ‖u‖2
κ,A,B = (u, u)κ,A,B.
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In [22, Theorem 3.3] the coercivity of the shifted sesquilinear form is proved, i.e.,

‖u‖2
κ,A,B = (u, u)κ,A,B ≥ ca‖u‖

2
1, for all κ ∈ K, u ∈ H1

π(Ω) , (3.5)

where ca = min{a/2, b} and also there it is proved that for any value of the quasimomentum κ ∈ K,
the sesquilinear form (·, ·)κ,A,B is continuous with continuity constant Ca,b, which depends on a, b
and on the diameter of K:

(u, v)κ,A,B ≤ Ca,b‖u‖1‖v‖1, for all u, v ∈ H1
π(Ω). (3.6)

Now we introduce the discrete version of (3.2). Let Tn , n = 1, 2, . . . denote a family of conforming
and periodic triangular meshes on Ω. These meshes may be computed adaptively. We also assume
that the meshes Tn are shape regular, i.e., there exists a constant Creg independent of n such that

Hτ ≤ Creg ρτ , for all τ ∈ Tn, (3.7)

where Hτ is the diameter of element τ and ρτ is the diameter of its largest inscribed ball in the same
element τ . We define

Hmax
n := max

τ∈Tn

{Hτ}.

On any mesh Tn we denote by V p
n the finite dimensional space of complex continuous functions

which are affine polynomials of order less or equal p on each element τ ∈ Tn. For problem (3.2)
the space V p

n ⊂ H1
π(Ω). The discrete formulation of problem (3.2) is: seek eigenpairs of the form

(λj,n, uj,n) ∈ R × V p
n such that

aκ(uj,n, vn) = λj,n b(uj,n, vn) , for all vn ∈ V p
n

‖uj,n‖0,B = 1

}

(3.8)

We also introduce shifted versions of problems (3.2) and (3.8): seek eigenpairs of the form
(ζj, uj) ∈ R ×H1

π(Ω) such that

aκ(uj, v) + σ b(uj , v) = ζj b(uj , v) , for all v ∈ H1
π(Ω)

‖uj‖0,B = 1 ,

}

(3.9)

Seek eigenpairs of the form (ζj,n, uj,n) ∈ R × V p
n such that

aκ(uj,n, vn) + σ b(uj,n, vn) = ζj,n b(uj,n, vn) , for all vn ∈ V p
n

‖uj,n‖0,B = 1 .

}

(3.10)

The following is self-evident:

Proposition 3.2: The eigenpairs of (3.2) and (3.9) are in one-one correspondence. In fact, (uj , λj)
is an eigenpair of (3.2) if and only if (uj, ζj), with ζj = λj + σ, is an eigenpair of (3.9). Similarly
(uj,n, λj,n) is an eigenpair of (3.8) if and only if (uj,n, ζj,n), with ζj,n = λj,n + σ, is an eigenpair of
(3.10).

It follows from (3.5) that all eigenvalues of (3.9) and all N = dimV p
n eigenvalues of (3.10) are

positive. We can order them as 0 < ζ1 ≤ ζ2 . . . and 0 < ζ1,n ≤ ζ2,n . . . ≤ ζN,n. Moreover, we know
(see [40, §6.3]) ζj,n → ζj, for any j, as Hmax

n → 0 and (by the minimum-maximum principle - see e.g.
[40, §6.1]) that ζj,n is monotone decreasing, i.e.,

ζj,n ≥ ζj,m ≥ ζj , for all j = 1, . . . , N, and all m ≥ n . (3.11)

Now, by Proposition 3.2, it follows that λj,n → λj , for any j, as Hmax
n → 0 and λj,n is monotone

decreasing i.e.,

λj,n ≥ λj,m ≥ λj , for all j = 1, . . . , N, and all m ≥ n . (3.12)

The distance of an approximate eigenfunction from the true eigenspace is a crucial quantity in
the convergence analysis for eigenvalue problems especially in the case of non-simple eigenvalues.
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Definition 3.3: Given a function v ∈ L2
B(Ω) and a finite dimensional subspace P ⊂ L2

B(Ω), we define:

dist(v,P)0,B := min
w∈P

‖v − w‖0,B .

Similarly, given a function v ∈ H1
π(Ω) and a finite dimensional subspace P ⊂ H1

π(Ω), we define:

dist(v,P)κ,A,B := min
w∈P

‖v − w‖κ,A,B ,

where ‖ · ‖κ,A,B is defined in Definition 3.1.

Now let λj be any eigenvalue of problem (3.2) for some value κ ∈ K and let E(λj) denote the span
of all corresponding eigenfunctions. In [22, Lemma 4.3] it is proved that for any computed eigenpair
(λj,n, uj,n) of (3.8) the two distances are minimized by the same eigenfunction in the continuous
eigenspace or in other words:

‖uj,n − uj‖0,B = dist(uj,n, E1(λj))0,B , (3.13)

if and only if
‖uj,n − uj‖κ,A,B = dist(uj,n, E1(λj))κ,A,B , (3.14)

where E1(λj) = {u ∈ E(λj) : ‖u‖0,B = 1}.
To conclude this section we state the a priori convergence results proved in [22]: Suppose 1 ≤ j ≤

dimV p
n . Let λj be an eigenvalue of (3.2) for some value of κ ∈ K and with corresponding eigenspace

E(λj) of dimension R + 1 > 0 and let (λj,n, uj,n) be an eigenpair of (3.8) for the same value of κ.
Then

(i) For all n,
|λj − λj,n| ≤ (dist(uj,n, E1(λj))κ,A,B)2; (3.15)

(ii) For sufficiently small Hmax
n ,

dist(uj,n, E1(λj))0,B ≤ C1(H
max
n )sdist(uj,n, E1(λj))κ,A,B ; (3.16)

(iii) For sufficiently small Hmax
n ,

dist(uj,n, E1(λj))κ,A,B ≤ C2(H
max
n )s . (3.17)

Where s depends on the regularity of the continuous eigenfunctions, i.e., E(λj) ⊂ H1+s(Ω) and the
constants C1, C2 depend on the distances between the eigenvalues λℓ, with ℓ = 1, . . . , j, the constant
Creg in (3.7), on the bounds a, a, b, b in (1.2), (1.3) and the ellipticity of the problem.

4 A posteriori error estimator

In this section we are going to introduce two a posteriori error estimators, both based on residuals.
The difference between the two is the presence of some weights depending on A. It has been shown
numerically in [22] that the presence of these weights improve sensibly the rate of convergence of the
method especially for quasimomentum κ 6= 0. The same idea has been already explored in [4] for a
more simple class of problems.

The main results in this section are the upper bound for the residual and the stability of the
error estimator, i.e., Theorem 4.6, Corollary 4.7, Theorem 4.9 and Corollary 4.10. These results are
used in Section 5 to prove the convergence of the adaptive method.

From the applications point of view, it is very important that the error estimators are reliable
and efficient. The reliability ensures that the actual error is always smaller than the error estimators
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multiplied by a constant (ignoring higher order terms). On the other hand the efficiency ensures
that the a posteriori error estimators are proportional to the actual error (plus higher order terms).
So together these results shows that the actual error, which is unknown, and the error estimators,
which are computable, are linked together in a linear way casting some confidence on the numerics.
The proofs of reliability and efficiency for both error estimators are in [22] for p = 1, but the analysis
can be easily extended to higher p.

Notation 4.1: From now on, we write A . B when A/B is bounded by a constant independent of
Hn. The notation A ∼= B means A . B and A & B.

The a posteriori error estimators ηj,n and η̃j,n are defined as a sum of element residuals and
edge residuals, which are all computable quantities. We denote by Fn the set of all the edges of the
elements of the mesh Tn, and we assume to have already chosen an ordering and a preorientated
unit normal vector ~nf for each f ∈ Fn. Moreover we denote by Hf the length of the face f . Also
we denote by Fn(τ) the faces of the element τ ∈ Tn and furthermore, we denote by τ1(f) and τ2(f)
the elements sharing f ∈ Fn. To simplify the notation, we define the functional [·]f as follow:

Definition 4.2: We can define for any function g : Ω → C and for any f ∈ Fn

[g]f (x) :=

(

lim
x̃∈τ1(f)

x̃→x

g(x̃) − lim
x̃∈τ2(f)

x̃→x

g(x̃)

)

, with x ∈ f .

Definition 4.3 (Standard a posteriori residual): The definition of the residual estimator ηj,n involves
two functionals: the functional RI(·, ·), which expresses the contributions from the elements in the
mesh:

RI(u, λ)(x) :=
(

(∇ + iκ) ·A(∇ + iκ)u + λBu
)

(x), with x ∈ int(τ), τ ∈ Tn,

and the functional RF (·), which expresses the contributions from the edges of the elements:

RF (u)(x) :=
[

~nf ·A(∇ + iκ)u
]

f
(x), with x ∈ int(f), f ∈ Fn .

(Recall that the jumps of the coefficients are assumed to be aligned with the meshes.) Then the
residual estimator ηj,n for the computed eigenpair (λj,n, uj,n) is defined as:

ηj,n :=

{

∑

τ∈Tn

η2
j,n,τ

}1/2

, (4.1)

where

ηj,n,τ :=

{

H2
τ ‖RI(uj,n, λj,n)‖2

0,τ +
∑

f∈Fn(τ)

Hf‖RF (uj,n)‖2
0,f

}1/2

.

Definition 4.4 (Modified a posteriori residual): The residual estimator η̃j,n for the computed eigenpair
(λj,n, uj,n) is defined as:

η̃j,n :=

{

∑

τ∈Tn

η̃2
j,n,τ

}1/2

, (4.2)

where

η̃j,n,τ :=

{

H2
τα

−1
τ ‖RI(uj,n, λj,n)‖2

0,τ +
∑

f∈Fn(τ)

Hfα
−1
f ‖RF (uj,n)‖2

0,f

}1/2

,

and where ατ := Amax|τ , αf := max{Amax|τ1(f), Amax|τ2(f)} , and Amax denotes the maximum
eigenvalue of A. This error estimator has been introduced for the first time in [4].
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To simplify the notation we define for any subset of elements S ⊂ Tn

η2
j,n,S :=

∑

τ∈S

η2
j,n,τ , η̃2

j,n,S :=
∑

τ∈S

η̃2
j,n,τ .

Furthermore, let introduce the residual of (3.2).

Definition 4.5: For all v ∈ H1
π(Ω) we define the residual of the variational formulation as

〈Res(v), w〉 := aκ(v,w) − Λ(v) b(v,w) , for all w ∈ H1
π(Ω) ,

where Λ(v) is the Raileight quotient of v.

Recall the Scott-Zhang quasi-interpolation operator [38] In : H1(Ω) → V p
n , which satisfies, for

any v ∈ H1(Ω):

‖v − Inv‖0,τ . Hτ‖v‖1,ω(τ), and ‖v − Inv‖0,f . H
1

2

f ‖v‖1,ω(f) , (4.3)

where ω(τ) (respectively ω(f)) denotes the union of all elements sharing at least a vertex with τ
(resp. f).

Theorem 4.6 (Upper bound for the residual): Let (λj,n, uj,n) be a computed eigenpair, then we have
that

‖Res(uj,n)‖(H1
π(Ω))′ := sup

06=w∈H1
π(Ω)

|〈Res(uj,n), w〉|

‖w‖κ,A,B
. ηj,n .

Proof. From the definition of Res(uj,n) we have that if wn ∈ V p
n then

〈Res(uj,n), wn〉 = 0 .

So for all w ∈ H1
π(Ω) we have that

〈Res(uj,n), w〉 = 〈Res(uj,n), w − wn〉 ,

where wn is the projection of w on V p
n using Scott-Zhang projection operator. Then by integration

by parts and using (4.3) we have:

〈Res(uj,n), w〉 =
∑

τ∈Tn

(

∫

τ
−RI(uj,n, λj,n)(w − wn) dx+

1

2

∫

∂τ
RF (uj,n)(w − wn) ds

)

.
∑

τ∈Tn

ηj,n,τ‖w‖1,ω(τ) . ηj,n‖w‖1 ,

where the hidden constant in the last inequality may depend on the minimum angle in the mesh.
Finally, the result is achieved using (3.5) that shows ‖w‖1 . ‖w‖κ,A,B.

Corollary 4.7: Let (λj,n, uj,n) be a computed eigenpair, then we have that

‖Res(uj,n)‖(H1
π(Ω))′ := sup

06=w∈H1
π(Ω)

|〈Res(uj,n), w〉|

‖w‖κ,A,B
. η̃j,n .
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Proof. Since ηj,n and η̃j,n are equal up to multiplication by a constant (independent of the mesh),
the result is straightforward.

In order to prove the stability of the error estimators, we are going to use bubble functions, which
are in general smooth and positive real valued functions with compact supports and bounded by 1 in
the L∞ norm. We define for any edge f the set ∆f , which is the union of the two elements sharing
f . In particular we need for any element τ a real-valued bubble function ψτ with support in τ which
vanishes on the edges of τ and for any edge f , we need a real-valued bubble function ψf that vanishes
outside the closure of ∆f . In [41, Lemma 3.3], such bubble functions ψτ , ψf are constructed using
polynomials. Moreover, it is proven in [41] that ψτ , ψf satisfy the following properties:

Proposition 4.8: There are constants, which only depend on the regularity of the mesh Tn and on the
value p, such that the inequalities on an element τ

‖v‖0,τ . ‖ψ1/2
τ v‖0,τ , (4.4)

|ψτv|1,τ . H−1
τ ‖v‖0,τ , (4.5)

and on a edge f

‖ω‖0,f . ‖ψ
1/2
f ω‖0,f , (4.6)

|ψf ω|1,∆f
. H

−1/2
f ‖ω‖0,f , (4.7)

‖ψf ω‖0,∆f
. H

1/2
f ‖ω‖0,f , (4.8)

hold for all τ ∈ Tn, all f ∈ Fn, for all polynomials v ∈ V p
n and for all polynomials ω = v′|f for some

v′ ∈ V p
n .

Theorem 4.9 (Stability of the standard error estimator): For any mesh Tn and for any (λj,n, uj,n) eigen-
pair computed on Tn, we have that

ηj,n,τ . (Hτ (λj,n + σ + 1) + 1)‖uj,n‖κ,A,B,ω(τ) , for all τ ∈ Tn , (4.9)

and that
ηj,n . Cηj

, (4.10)

where the constant Cηj
depends on the index j and on Hmax

0 .

Proof. Let wτ = ψτRI(uj,n, λj,n), where ψτ is a bubble function with support in the interior of the
element τ , then from (4.4):

‖RI(uj,n, λj,n)‖2
0,τ . ‖ψ1/2

τ RI(uj,n, λj,n)‖2
0,τ =

∫

τ
RI(uj,n, λj,n)wτ dx

=

∫

τ

(

(∇ + iκ) · (A(∇ + iκ)uj,n) + λj,n uj,nB
)

wτ dx

=

∫

τ
−A(∇ + iκ)uj,n · (∇− iκ)wτ + λj,n uj,n B wτ dx

=

∫

τ
−A(∇ + iκ)uj,n · (∇− iκ)wτ − σ uj,n B wτ dx

+

∫

τ
σ uj,n B wτ + λj,n uj,n B wτ dx ,
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where we used integration by parts. Then using Cauchy Schwarz, (3.5), the fact that ψτ ≤ 1 and
(4.5) we have

‖RI(uj,n, λj,n)‖2
0,τ ≤ ‖uj,n‖κ,A,B,τ‖wτ‖κ,A,B,τ + (λj,n + σ)‖uj,n‖0,B,τ‖wτ‖0,B,τ

.
(

(H−1
τ + 1)‖uj,n‖κ,A,B,τ + (λj,n + σ)‖uj,n‖0,τ

)

‖RI(uj,n, λj,n)‖0,τ

.
(

H−1
τ + λj,n + σ + 1

)

‖uj,n‖κ,A,B,τ ‖RI(uj,n, λj,n)‖0,τ . (4.11)

Now, let wf = ψfRF (uj,n), where ψf is a bubble function of the face f and with support ∆f ,
then from (4.6):

‖RF (uj,n)‖2
0,f . ‖ψ

1/2
f RF (uj,n)‖2

0,f =

∫

f
RF (uj,n)wf ds

=

∫

∆f

RI(uj,n, λj,n)wf dx+ aκ(uj,n, wf ) − λj,nb(uj,n, wf ) ,

where we used integration by parts. Then using Cauchy Schwarz and (4.11) we have

‖RF (uj,n)‖2
0,f ≤ ‖RI(uj,n, λj,n)‖0,∆f

‖wf‖0,∆f
+ ‖uj,n‖κ,A,B,∆f

‖wf‖κ,A,B,∆f

+ (λj,n + σ)‖uj,n‖0,∆f
‖wf‖0,∆f

.
(

H−1
τ + λj,n + σ + 1

)

‖uj,n‖κ,A,B,∆f
‖wf‖0,∆f

+ ‖uj,n‖κ,A,B,∆f
‖wf‖κ,A,B,∆f

+ (λj,n + σ)‖uj,n‖0,∆f
‖wf‖0,∆f

.

Finally using (4.7) and (4.8) we have

‖RF (uj,n)‖2
0,f .

(

H
−1/2
f +H

1/2
f + (λj,n + σ +H−1

τ )H
1/2
f

+ (λj,n + σ)H
1/2
f

)

‖uj,n‖κ,A,B,∆f
‖RF (uj,n)‖0,f . (4.12)

So, putting together (4.11) and (4.12) we got

η2
j,n,τ . (Hτ (λj,n + σ + 1) + 1)2‖uj,n‖

2
κ,A,B,ω(τ) ,

that is (4.9).
In order to prove (4.10) we just have to sum (4.9) over all elements in Tn and we use (3.15),

(3.17) and the minimum-maximum principle (3.12):

η2
j,n . (Hmax

n (λj,n + σ + 1) + 1)2‖uj,n‖
2
κ,A,B = (Hmax

n (λj,n + σ) + 1)2(λj,n + σ)

. (Hmax
n (λj + (Hmax

n )2s + σ + 1) + 1)2(λj + (Hmax
n )2s + σ)

≤ (Hmax
0 (λj + (Hmax

0 )2s + σ + 1) + 1)2(λj + (Hmax
0 )2s + σ) .

Corollary 4.10: For any mesh Tn and for any (λj,n, uj,n) computed eigenpair using Tn, we have that

η̃j,n,τ . (Hτ (λj,n + σ + 1) + 1)‖uj,n‖κ,A,B,ω(τ) , for all τ ∈ Tn ,
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and that
η̃j,n . Cη̃j

,

where the constant Cη̃j
depends on the considered eigenvalue and on Hmax

0 .

Proof. Since ηj,n and η̃j,n are equal up to multiplication by a constant (independent of the mesh),
the result is straightforward.

5 Convergence

In this section we prove the convergence of the adaptive finite element method for both eigenvalue
and eigenfunctions. In order to make the proof working, we need some mild assumptions on the
subdivision strategy for elements and on the marking strategy.

Algorithm 1 Convergent adaptive algorithm

(λj,n, uj,n,Tn) := ConvAFEM(κ,T0, j)
n = 0
repeat

Compute the j-th eigenpair (λj,n, uj,n) with quasimomentum κ on Tn

Compute ηj,n,τ for all τ ∈ Tn

Mark the elements using the marking strategy
Refine the mesh Tn and construct Tn+1

n = n+ 1
until

Algorithm 2 Adaptivity algorithm

(λj,n, uj,n,Tj,n) := AFEM(κ,T0, j, θ, tol,maxn)
n = 0
repeat

Compute the j-th eigenpair (λj,n, uj,n) with quasimomentum κ on Tn

Compute ηj,n,τ for all τ ∈ Tn

Mark the elements using the marking strategy (Definition 5.2)
Refine the mesh Tn and construct Tn+1

n = n+ 1
until ηj,n ≤ tol OR n ≥ maxn

More precisely we use the so called “red-refinement” procedure to refine the marked elements,
which consists in splitting the marked elements in four smaller elements. This procedure could
generate a non-conforming mesh due to the presence of hanging nodes. To recover the conformity,
the closure of the mesh is computed, i.e, all the elements with a hanging node on one of their edges
are split in two smaller elements using the “green-refinement” strategy. Let introduce the following
notation: all the meshes before the application of the closure are denoted with a tilde, e.g. T̃n,
instead all the conforming meshes resulting from the application of the closure are denote as before,
e.g. Tn.

Let’s explain in more detail the refinement procedure, which is the standard red-green refinement
which keeps the refined meshes shape regular. The initial mesh T0 is assumed to be conforming and
we also set T̃0 ≡ T0. Then during the first iteration of Algorithm 1 the marking procedure marks
some elements of T0 to be refined, all the marked elements and all the elements with more than one
marked neighbors are refined using the “red-refinement” strategy. The resulting mesh T̃1 could be



5 Convergence 12

not conforming since there could be some hanging nodes, but there are no elements with more than
1 hanging node. After the application of the closure to T̃1, a conforming mesh T1 results.

From the second iteration on of Algorithm 1 the refining procedure is more complicated because
in order to keep the mesh shape regular, the closure have to be undone before the refinement is
applied. So, without loss in generality let suppose that n ≥ 2, then the marks on the elements of Tn

are passed on the elements of T̃n for which we can distinguish two different cases:

1. All elements τ̃ ∈ T̃n that are also marked elements in Tn, are marked;

2. All elements τ̃ ∈ T̃n that have been split in two children elements by the closure and such that
at least one of their two children is marked, are marked.

Then the “red-refinement” strategy is applied to the marked elements of T̃n and to all elements with
more than one refined neighbors, resulting in the mesh T̃n+1. Finally the application of the closure
to T̃n+1 gives us Tn+1.

The red and the green subdivision strategies satisfy the following properties: any element τ is
subdivided into elements τ ′1, · · · , τ

′
nτ

such that

τ = τ ′1 ∪ · · · ∪ τ ′nτ
,

|τ | = |τ ′1| + · · · + |τ ′nτ
| ,

∃ s > 0, s < 1 : s|τ | ≤ |τ ′i | ≤ s|τ | ,

for all i = 1, · · · , nτ , with nτ = 2 for the green refinement and nτ = 4 for the red.
The algorithm that we use in practice is Algorithm 2, where the only difference with Algorithm 1

is the presence of the stopping condition that stops the computation either when the number of
iterations has exceeded maxn ∈ N or when the estimation of the error ηj,n is below a positive
tolerance tol ∈ R. We use the same algorithms also with the a posteriori error estimator η̃j,n.

In order to prove the convergence we need the following weak assumption on the marking strategy
which has been already used in [18]:

Assumption 5.1: We assume that the marking strategy is such that at least one element of Tn holding
the largest value for the error estimator is marked for refinement.

In all numerics we use the following marking strategy that clearly satisfies the assumption:

Definition 5.2 (Marking Strategy): Given a parameter 0 < θ < 1, the procedure is: mark the elements
in a minimal subset Mn of Tn such that

ηj,n,Mn ≥ θ ηj,n . (5.1)

Also when the “modified” error estimator η̃j,n is used, an analogous marking strategy is employed.

Before presenting the most technical results, we would like to show that for fixed j the sequence
of computed eigenvalues {λj,n}n∈N always converges to a point λj,∞ and that within the sequence
of computed eigenfunctions {uj,n}n∈N there is a converging subsequence that converges to the point
uj,∞. What here is missing in order to have a complete convergence result for the adaptive finite
element method (AFEM) is the proof that the limit pair (λj,∞, uj,∞) is an eigenpair of the continuous
problem. This is what is proved in the rest of the section.

Theorem 5.3 (Convergence of a subsequence): For any sequence of meshes {Tn}n∈N generated by Al-
gorithm 1 for a given j, we have that there exists λj,∞ such that the sequence of computed eigenvalues
λj,n converges to λj,∞ ≥ 0 when n goes to infinity. Moreover, there is a subsequence {uj,nm}m∈N0

of
the sequence of corresponding eigenfunctions {uj,n}n∈N0

that converges to a function uj,∞ ∈ H1
π(Ω),

with ‖uj,∞‖0 = 1.
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Proof. We know already that the sequence {λj,n}n∈N0
is bounded from below by 0 and that it is a

non-increasing sequence. Then we can conclude that the limit exists and we denote it by λj,∞.
From problem (3.8) we have that

‖uj,n‖
2
κ,A,B = aκ(uj,n, uj,n) + σ b(uj,n, uj,n) = (λj,n + σ) b(uj,n, uj,n) = λj,n + σ , (5.2)

which implies that the sequence {‖uj,n‖
2
κ,A,B}n∈N0

converges to λj,∞+σ. Therefore we have that the

sequence {uj,n}n∈N0
is bounded in H1

π(Ω). Then there exists a subsequence {uj,np}p∈N0
converging

weakly to a function uj,∞ ∈ H1
π(Ω) respect to the norm of ‖·‖κ,A,B. Using the fact that the imbedding

H1
π(Ω) ⊂ L2(Ω) is compact, there is a subsequence of {uj,np}p∈N0

, which we denote {uj,nm}m∈N0
,

such that
uj,nm → uj,∞ in L2(Ω) . (5.3)

Since ‖uj,nm‖κ,A,B is a subsequence of ‖uj,n‖κ,A,B, we have that ‖uj,nm‖κ,A,B → ‖uj,∞‖κ,A,B. This
together with (5.3), gives us

uj,nm → uj,∞ in H1
π(Ω) .

Definition 5.4: Considering the sequence of meshes {T̃n}n∈N0
constructed using Algorithm 1, we define

T̃ +
n := {τ ∈ T̃n : τ ∈ T̃m,∀m ≥ n} ,

the set of all elements that are never refined again and

T̃ 0
n := T̃n \ T̃ +

n ,

the set of elements that are going to be refined. We also introduce

Ω+
n := ∪τ∈T̃ +

n
ω(τ) ,

and
Ω0

n := ∪τ∈T̃ 0
n
ω(τ) .

We introduce the mesh size function H̃n ∈ L∞(Ω) associated with the mesh T̃n such that for
any point x in the interior of τ , with τ ∈ T̃n, H̃n(x) = H̃τ . Since the function H̃n is not uniquely
defined on the edges of the mesh, we are going to restrict its domain to Ω/Σ̃n, where Σ̃n is the
skeleton of the mesh T̃n, which has 2-dimensional Lebesgue measure zero. Moreover the limiting
skeleton Σ̃∞ = ∪n∈NΣ̃n has 2-dimensional Lebesgue measure zero, too, so it is straightforward to see
that, thanks to the applications of the refinement procedures, for any point x ∈ Ω/Σ̃∞ the sequence
{H̃n(x)}n∈N0

is monotonically non-increasing and bounded from below by 0. So we can define for
any point x ∈ Ω/Σ̃∞:

H̃∞(x) := lim
n→∞

H̃n(x) .

The next lemma has been already proved in [30, Lemma 4.3] for a conforming sequence of meshes.
The fact that the sequence {T̃n}n∈N0

is constituted by non-conforming meshes has no effect on the
proof itself.

Lemma 5.5: Considering the sequence of mesh size functions {H̃n}n∈N0
and its pointwise limit H̃∞

we have that
lim

n→∞
‖H̃n − H̃∞‖∞,Ω = 0 .
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Lemma 5.6: Denoting by XΩ0
n

the characteristic function of Ω0
n we have that

lim
n→∞

‖H̃nXΩ0
n
‖∞ = 0 .

Proof. For any τ ∈ T 0
n we have by definition that

H̃∞ ≤ s1/2H̃n ,

in τ . Then in τ
H̃n ≤ α(H̃n − H̃∞) ,

with α = 1/(1 − s1/2). Since τ ∈ T 0
n is arbitrary and also taking into account the shape regularity

that impose to neighbors elements similar sizes, this implies

‖H̃nXΩ0
n
‖∞ ≤ ‖α(H̃n − H̃∞)XΩ0

n
‖∞ ≤ α‖H̃n − H̃∞‖∞ ,

which converges to 0 by the previous lemma.

Lemma 5.7 (Decay of the estimator on marked elements): Let {uj,nm}m∈N0
be the convergent subse-

quence of {uj,n}n∈N0
as in Theorem 5.3. Then,

lim
m→∞

maxτ∈Mnm
ηj,nm,τ = 0 .

Proof. Let τmax ∈ Mnm be the element where the maximum is reached. So we have from Theo-
rem 4.9:

ηj,nm,τmax . ‖uj,nm‖κ,A,B,ω(τmax) ≤ ‖uj,nm − uj,∞‖κ,A,B,Ω + ‖uj,∞‖κ,A,B,ω(τmax) .

We already know that the first term on the rhs tends to zero from Theorem 5.3. Also the second
term tends to zeros since Lemma 5.6 and Assumption 5.1

|ω(τmax)| . H2
τmax ≤ H̃2

τ̃max ≤ ‖H̃nmXΩ0
nm

‖2
∞,Ω → 0 ,

where the element τ̃max is the element in T̃nm either that coincides with τmax or the element that
contains τmax in the case that τmax has been split by the closure procedure.

Theorem 5.8 (Weak convergence of the residual): Let {uj,nm}m∈N0
be the convergent subsequence of

{uj,n}n∈N0
as in Theorem 5.3. Then,

lim
m→∞

〈Res(uj,nm), v〉 = 0 , for all v ∈ H1
π(Ω) .

Proof. Let’s start proving the result for v ∈ H2(Ω) ∩H1
π(Ω). Let k ∈ N0 and nm > k then we have

T̃ +
k ⊂ T̃ +

nm
⊂ T̃nm .

Let vnm the Lagrange interpolation of v, so using Theorem 4.6 we have:

|〈Res(uj,nm), v〉| = |〈Res(uj,nm), v − vnm〉| .
∑

τ∈Tnm

ηj,nm,τ‖v − vnm‖κ,A,B,ω(τ) . (5.4)

Using the relation between the elements of the two meshes Tnm and T̃nm we can rewrite (5.4) as

|〈Res(uj,nm), v〉| .
∑

τ̃∈T̃nm

ηj,nm,τ̃‖v − vnm‖κ,A,B,ω(τ̃) , (5.5)
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where either ηj,nm,τ̃ is the same as ηj,nm,τ if the two elements τ and τ̃ coincide or η2
j,nm,τ̃ = η2

j,nm,τ1
+

η2
j,nm,τ2

is the sum of the residuals of the two elements τ1, τ2 in Tnm in which τ̃ has been split during
the closure of the mesh. Then

|〈Res(uj,nm), v〉| .
∑

τ̃∈T̃nm

ηj,nm,τ̃‖v − vnm‖κ,A,B,ω(τ̃)

=
∑

τ̃∈T̃ +

k

ηj,nm,τ̃‖v − vnm‖κ,A,B,ω(τ̃) +
∑

τ̃∈T̃nm\T̃ +

k

ηj,nm,τ̃‖v − vnm‖κ,A,B,ω(τ̃)

. ηj,nm,T̃ +

k
‖v − vnm‖κ,A,B,Ω+

k
+ ηj,nm,T̃nm\T̃ +

k
‖v − vnm‖κ,A,B,Ω0

k
,

where we used also the fact that Ωo
nm

⊂ Ωo
k since T +

k ⊂ T +
nm

. So form Theorem 4.9 we have that
ηj,nm,T̃nm\T̃ +

k
≤ ηj,nm ≤ Cηj

, then using interpolation estimates and the fact that in the interior of

any τ ∈ Tnm H̃nm ≤ H̃k we have:

|〈Res(uj,nm), v〉| . (ηj,nm,T̃ +

k
Hmax

nm
+ Cηnm

‖H̃kXΩ0
k
‖∞)‖v‖2 .

So for any ǫ > 0 we have that we can choose the k introduced before such that by Lemma 5.6 we
have:

Cηj
‖H̃kXΩ0

k
‖∞ ≤ ǫ .

On the other hand by Assumption 5.1

ηnm,T̃ +

k
≤ (#T̃ +

k )1/2maxτ̃∈T̃ +

k
ηj,nm,τ̃ ≤ (#T̃ +

k )1/2maxτ∈T +

k
ηj,nm,τ

≤ (#T̃ +
k )1/2maxτ∈Mnm

ηnm,τ .

So we can choose a K > k such that for all nm > K we have from Lemma 5.7:

ηnm,T̃ +

k
≤ ǫ .

Finally, since H2 is dense in H1
π, we can extend the result.

Theorem 5.9: Under the same assumptions as in Theorem 5.3, we have that the limiting pair (λj,∞, uj,∞)
is an eigenpair of the problem:

aκ(uj,∞, v) = λj,∞b(uj,∞, v) , for all v ∈ H1
π(Ω)

‖uj,∞‖0,B,Ω = 1 .

}

(5.6)

Proof. Denoting with {uj,nm}m∈N0
the converging subsequence in Theorem 5.3, we have

|〈Res(uj,∞), v〉| = |〈Res(uj,∞) − Res(uj,nm), v〉 + 〈Res(uj,nm), v〉|

≤ |aκ(uj,∞ − uj,nm, v)| + |b(λj,∞uj,∞ − λnmuj,nm, v)| + |〈Res(uj,nm), v〉|

≤ ‖uj,∞ − uj,nm‖κ,A,B‖v‖κ,A,B + ‖λj,∞uj,∞ − λnmuj,nm‖0,B‖v‖0,B + |〈Res(uj,nm), v〉| .

which converges to 0 thanks to Theorem 5.3 and Theorem 5.8.
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Theorem 5.10 (Convergence result): For any j, let {λj,n, uj,n}n∈N0
denote the whole sequence of com-

puted eigenpairs obtained with Algorithm 1. Then there exists an eigenvalue λ of the continuous
problem (3.2) such that

lim
n→∞

λj,n = λ ,

and
lim

n→∞
dist(uj,n, E(λ))κ,A,B = 0 .

Proof. Taking λ := λ∞ and by Theorem 5.3 we have that limn→∞λj,n = λ, also from Theorem 5.9 we
can conclude that λ is an eigenvalue of (3.2). In order to prove limn→∞ dist(uj,n, E(λ))κ,A,B = 0 we
argue by contradiction. Supposing that the result were not true, then there would exist a subsequence
{uj,nr}m∈N0

of {uj,n}n∈N0
such that

dist(uj,nr , E(λ))κ,A,B > ǫ , ∀r ∈ N0 , (5.7)

where ǫ is a positive real number.
Then applying the same arguments as in Theorem 5.3 and in Theorem 5.9, we would be able

to extract a subsequence {uj,nm}m∈N0
of {uj,nr}m∈N0

converging to some function u′j,∞ which would
still be in the eigenspace E(λ) since the corresponding sequence of eigenvalues converges to λ. Now
we have a contradiction because there is a subsequence of {uj,nm}m∈N0

converging into E(λ) even if
(5.7).

Remark 5.11: Theorem 5.10 shows that a sequence of computed eigenvalues converges to a true
eigenvalue λ, but it doesn’t show to what eigenvalue the sequence converges. Suppose the pathological
case where the initial mesh T0 is orthogonal to the eigenspace E(λj) for some j ≤ dimV p

0 , also
suppose that all meshes in the sequence {Tn}n∈N are orthogonal to E(λj). In this case running
Algorithm 1 or Algorithm 2 with such an index j generates a sequence of computed eigenvalues λj,n

that approximate some eigenvalues higher in the spectrum than λj and also the sequence would
converge to some eigenvalue higher in the spectrum than λj . Such situations will not occur if the
initial mesh T0 is fine enough such that all eigenspaces of eigenvalues λ1, . . . , λj are well represented
in V p

n with the correct multiplicity.

6 An efficient and convergent method to compute the bands

It is very common in practice the need to compute the extrema of a band in the spectrum. For
example, in presence of a gap in the spectrum, the minimum of the band above the gap and the
maximum of the band below the gap will define the size of the gap. Also when the supercell framework
[39] is used to search for trapped modes, the extrema of the band corresponding to a trapped mode,
will assess the quality of the computation. If the band is too wide, the supercell should be increased
in order to obtain more accurate results [22, Section 7]. The global extrema of a band are not easy
to find, all methods to search for them based on Newton method could converge to local extrema
and not to the global ones, for some starting points. Instead a method that computes and converges
to the whole band would not suffer of this drawback.

The most trivial way to try to approximate an entire band in the spectrum is to choose as many
values of quasimomentum κ as possible and for each value of κ run Algorithm 2 starting from the
same initial mesh. This method is very inefficient because, from the theory, [8, 28] it is clear that
the bands in the spectrum are continuous, in the sense that each eigenvalue as a function of κ is
continuous. So, it is reasonable to suppose that, for close values of κ, the corresponding eigenvalues
in the same band are very close, too. Moreover, the adaptive method should produce very similar
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meshes for close enough values of κ. This suggests a more efficient way to approximate bands, in
which information from consecutive runs of Algorithm 2 for different values of κ are shared.

In this section we are going to describe such an efficient method to compute bands in the spectrum.
By efficient we mean that this method needs fewer mesh refinements to reach the same approximation
of a band over a set of values of quasimomentum κ, compared to Algorithm 1 applied to each value
of κ in the set individually. Moreover, we are going to show that the sequence of approximated bands
Cj,m computed with our efficient method converges to the true band Cj.

Let G0 be a conforming and shape regular mesh of triangles constructed on the reduced first
Brillouin zone Kred, which is a subset of K [2, 25]. We can restrict to Kred because it comes from the
theory that the extrema of any band over K are also reached in Kred. In the following we are going
to construct a sequence of meshes on Kred starting with the mesh G0 and where Gm+1 is the resulting
mesh after all the elements in Gm have been refined as described in Figure 1. It is important to
understand that the meshes Gm are different from the meshes Tn, since the formers are subdivision
of the reduced first Brillouin zone Kred, while Tn are subdivision of the primitive cell Ω. Moreover,
we denote by Nm the set of all the nodes in the mesh Gm and with N∞ =

⋃

m≥0 Nm.

Fig. 1: A reference element of a mesh Gm split in 9 elements of Gm+1.

Let’s introduce the notation (λκ
j,m, u

κ
j,m) and T κ

m to denote the computed eigenpair of index j and
the mesh used to compute it for the value of the quasimomentum κ ∈ Nm. Thanks to the particular
refining procedure that we have adopted for Gm, each point κ ∈ Nm+1 has a unique “father” κ′ ∈ Nm,
where the father of the node κ is the node κ′ closest to κ in the reference element. In the case that
κ ∈ Nm+1 ∩Nm then the father is κ′ ≡ κ. The relation is explained graphically in Figure 2.
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Fig. 2: A refined reference element of a mesh Gm, where the black dots are the “father” nodes and
the white dots are the “children”. The thick lines link the children to their fathers.

Our efficient method to approximate bands is illustrated in Algorithm 3. This algorithm works
in two stages A and B. In the stage A, which is the external repeat-until loop with counter m,
the algorithm constructs the sequence of meshes Gm on the reduced first Brillouin zone Kred. At
each iteration a finer mesh Gm+1 is constructed refining the previous mesh Gm using the refinement
procedure illustrated in Figure 1. Moreover, each iteration of stage A constructs an approximation
Cj,m of the band of interest using stage B, which is described next. In the stage B, which is the inner
for-all-do loop, many sequences of adapted meshes on the primitive cell Ω are constructed, each
sequence corresponds to a different node κ ∈ Nm. The purpose of this stage is to apply our AFEM
to approximate the eigenpair of interest for each value of the quasimomentum κ ∈ Nm starting from
the last adapted mesh constructed for the father of κ during the previous iteration of stage A. To
this end we define the function FatherMesh which takes as argument a point κ ∈ Nm and it returns
the mesh T κ′

m−1 which is the finest mesh generated by the AFEM procedure at the previous iteration
where κ′ is the father of κ. Any run of Algorithm 3 may consist in many iterations of stages A and
B. The Algorithm 3 is efficient in approximating bands, since, for each node κ ∈ Nm, the adaptive
procedure, which is used to further improve the approximation of the eigenpair, starts from the
already adapted mesh for the father node from the previous iteration of stage A. In this way we take
advantage of the fact that eigenpairs in the same band for close values of the quasimomentum are
very close, too.

Finally, we have to define some parameters in order to use Algorithm 3. These parameters are:
θ, which have already been introduced for Algorithm 2 to tune the marking strategy; an integer
value maxit greater than 0, which sets the maximum number of refinements and which plays the
same role of maxn in Algorithm 2; an initial mesh T0 on the primitive cell Ω; an initial mesh G0 on
Kred; another integer value maxm greater than 0; and finally a finite sequence {tols} of length maxm

of real values, where 0 < tols+1 < tols < · · · < tol0, which prescribe the wanted tolerance for the
approximated band Cm, for each iteration of stage A.
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Algorithm 3 Efficient method to compute bands

Cj,m := Band(G0,T0,maxm, {tols}, θ, j,maxit)
for all κ ∈ N0 do

T κ
0 := T0

Cj,0(κ) := 0
end for

m = 0
repeat

for all κ ∈ Nm do

(λκ
j,m+1, u

κ
j,m+1,T

κ
m+1) = AFEM(κ,FatherMesh(κ), j, θ, tolm,maxit)

Cj,m+1(κ) := λκ
j,m+1

end for

Refine the mesh Gm and construct Gm+1

m = m+ 1
until m ≥ maxm

Algorithm 3 is convergent in the sense that, if its outer repeat-until loop is run infinitely many
times, Cm will converge to the true band. To prove this statement we are going to suppose to be able
to run Algorithm 3 with maxm = ∞ and with tolm values forming a strictly monotone decreasing
sequence converging to 0, in this way the outer loop of Algorithm 3 becomes an infinite loop.

Let Wm be the finite dimensional space of elementwise linear functions on the mesh Gm, and W∞

the limit of Wm when m goes to infinity. The computed bands Cj,m in Algorithm 3 are function in
Wm satisfying the relation

Cj,m+1(κ) := λκ
j,m+1 , ∀κ ∈ Nm .

The next lemma is straightforward, since it is an application of Theorem 5.10.

Lemma 6.1: For any κ ∈ N∞ and under the assumption that the initial mesh T0 is fine enough as in
Remark 5.11, we have that Cj,m(κ) converges to the true value Cj(κ).

Proof. Let’s assume that m is the minimum value such that κ ∈ Nm, then in view of Algorithm 3
with maxm = ∞ we have that the subroutine AFEM is applied infinitely many times to the point
κ. This is equivalent to apply Algorithm 1 to the point κ, then the convergence of Cj,m(κ) ≡ λκ

j,m to
Cj(κ) ≡ λκ

j comes as a consequence of Theorem 5.10.

Theorem 6.2 (Convergence to the true band): Under the assumption that the initial mesh T0 is fine
enough as in Remark 5.11, we have that the sequence of computed bands Cj,m constructed by
Algorithm 3 with maxm = ∞ converges to the true band C.

Proof. For any κ ∈ N∞ let us denote by m′ the minimum value such that κ ∈ Nm′ . Now, using
Lemma 6.1, we have that the sequence formed by Cj,m(κ), for any m ≥ m′, converges to Cj(κ) when
m goes to infinity. So this implies that, for any κ ∈ N∞, Cj,m(κ) converges to Cj(κ). Because the set
of points N∞ is dense in Kred, we conclude that Cj,m converges pointwise almost everywhere to Cj.
Furthermore, Cj is a continuous function, as well as all the functions in the sequence Cj,m ∈ Wm, so
the pointwise convergence on a dense set of points is enough to imply the uniform convergence.

The central result of this section comes straightforwardly from the previous theorem:

Theorem 6.3 (Convergence of the extrema): Under the assumption that the initial mesh T0 is fine
enough as in Remark 5.11, we have that:

lim
m→∞

max
κ∈Nm

Cm = max
κ∈Kred

C ,
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and
lim

m→∞
min

κ∈Nm

Cm = min
κ∈Kred

C .

7 Numerics

In this section we show some numerical results related to the TE case mode computed using Algo-
rithm 2 and Algorithm 3. We assume that A is piecewise constant and B = 1, this leads typically to
localized singularities in the gradient of the eigenfunctions at corner points of the interface between
different values of A.

The results below are computed using linear elements. The algorithms have been implemented
in Fortran90 with the auxiliary of ARPACK [29] to compute the eigenpairs and of the HSL library
[37] to solve linear systems within the ARPACK solver.

7.1 TE case problem on periodic medium

We first consider the TE problem for a periodic medium with square inclusions. The unit cell is the
unit square with a square inclusion of side 0.5 centered inside it. We choose A to take the value 1
inside the inclusion and the value 0.05 outside it. This is a realistic example, since expected jumps
in ε of real PCs are of this order.

It has already been shown in [22] that the “modified” error estimator performs better than the
“standard” one in terms of number of degrees of freedom (DOFs) versus |λj − λj,n|. Now we want
to explore the convergence aspects of these a posteriori error estimators.

So, in order to understand the convergence rate of the method, we would like to test numerically
if the decay of the error for eigenvalues can be well approximated by the following formula:

|λj − λj,n| ≤ Cγ2n , (7.1)

where n is the iterations counter in Algorithm 2 and C and γ are constants. This formula comes from
[20] where it has been shown to hold for standard elliptic problems with discontinuous coefficients and
using a slightly different adaptive algorithm, which is not oscillation-free. For a sequence of computed
eigenpairs on a sequence of adapted meshes either using the “standard” or the “modified” error
estimator we estimate numerically the quantity γ using the formula: γ :=

√

|λj − λj,n|/|λj − λj,n−1|.
In Table 1 and Table 2 we present the computed values of γ for both the “standard” and the
“modified” error estimator for two different values of the quasimomentum κ. The approximated
eigenvalues for both values of the quasimomentum belong to the second band in the spectrum, which
is strictly positive for all values of quasimomentum. As can be seen the values of γ for the two error
estimators are very similar, even if the “modified” one needs less DOFs to reach the same accuracy,
compared to the “standard” one. This is another clue that the “modified” error estimator performs
better.
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ηj,n η̃j,n

n |λj − λj,n| #DOFs γ |λj − λj,n| #DOFs γ

1 0.0584 400 - 0.0584 400 -

2 0.0543 434 0.9643 0.0425 486 0.8535

3 0.0414 535 0.8732 0.0330 640 0.8808

4 0.0314 728 0.8707 0.0231 900 0.8374

5 0.0232 1071 0.8597 0.0139 1356 0.7756

6 0.0155 1584 0.8183 0.0105 1772 0.8669

7 0.0103 2039 0.8140 0.0080 2406 0.8755

8 0.0083 2722 0.8963 0.0058 3437 0.8525

9 0.0064 3764 0.8785 0.0039 4958 0.8213

10 0.0049 5331 0.8784 0.0027 6458 0.8287

11 0.0028 7342 0.7568 0.0022 8358 0.8979

12 0.0022 9593 0.8820 0.0017 11101 0.8831

13 0.0018 12626 0.9012 0.0013 15277 0.8613

14 0.0014 16997 0.8859 0.0009 20688 0.8234

15 0.0011 22833 0.8836 0.0006 26334 0.8460

16 0.0006 29583 0.7715 0.0005 33218 0.9013

17 0.0005 37643 0.8830 0.0004 42896 0.8850

18 0.0004 48507 0.8947 0.0003 56756 0.8619

19 0.0003 63516 0.8911 0.0002 74796 0.8398

Tab. 1: Values of γ for κ = (0, 0) with θ = 0.5.
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ηj,n η̃j,n

n |λj − λj,n| #DOFs γ |λj − λj,n| #DOFs γ

1 0.0505 400 - 0.0505 400 -

2 0.0473 436 0.9685 0.0363 502 0.8483

3 0.0391 586 0.9086 0.0276 749 0.8721

4 0.0319 850 0.9041 0.0176 1092 0.7983

5 0.0244 1223 0.8747 0.0122 1398 0.8342

6 0.0158 1686 0.8032 0.0091 1910 0.8599

7 0.0090 2296 0.7576 0.0071 2818 0.8846

8 0.0082 3220 0.9517 0.0054 3816 0.8695

9 0.0071 4480 0.9333 0.0036 4984 0.8200

10 0.0057 5820 0.8969 0.0026 6228 0.8504

11 0.0040 7622 0.8357 0.0020 9134 0.8744

12 0.0025 9748 0.7924 0.0016 12505 0.8999

13 0.0022 12883 0.9247 0.0012 16186 0.8750

14 0.0019 17383 0.9478 0.0009 20162 0.8370

15 0.0016 22344 0.9168 0.0006 24200 0.8652

16 0.0012 27970 0.8726 0.0005 32822 0.8673

17 0.0008 35172 0.8195 0.0004 44932 0.9016

18 0.0006 42886 0.8216 0.0003 57553 0.8861

19 0.0005 55426 0.9354 0.0002 71512 0.8491

Tab. 2: Values of γ for κ = (π, π) with θ = 0.5.

In Figure 3 we depict the mesh coming from the fourth iteration of Algorithm 2 with θ = 0.5.
As can be seen the corners of the inclusion are much more refined than the rest of the domain.
In Figure 4 we depict the eigenfunction corresponding to the eigenvalue in the second band of the
problem with quasimomentum κ = (0, 0).

7.2 TE mode problem on supercell

The spectra of periodic media are characterized by band gaps, but, for many applications, the
employment of media with band gaps is not enough. Commonly it is necessary to create eigenvalues
inside the gaps in the spectra of the media. The importance of these eigenvalues is due to the fact
that electromagnetic waves, which have frequencies corresponding to these eigenvalues, may remain
trapped inside the defects [14, 16] and they decay exponentially away from the defects. The common
way to create such eigenvalues is by introducing a localized defect in the periodic structures [16, 15].
Such localized defects do not change the bands of the essential spectrum [15, Theorem 1].

In the next set of experiments we continue to work with the TE case problem and we shall use
the “supercell method” [39] to compute the modes arising from the defect. The supercell method
takes the defect problem (which is no longer periodic) and approximates it by a “nearby problem”
in which the defect is surrounded by a finite number of layers of the original periodic medium, which
is then truncated and repeated periodically, so that we get a new artificial periodic problem where
each cell has a defect surrounded by some periodic layers.

We shall compute defect modes for the problem introduced in §7.1 using a supercell with two
layers of periodic structure surrounding the defect, as in Figure 5. This new medium (since it is
again infinitely periodic) could have new bands in its spectrum due to the defect. However it is also
known that as the number of periodic layers increases, the bands in the gaps shrink exponentially
quickly to the eigenvalues of the original defective material [39].



7 Numerics 23

Fig. 3: A refined mesh coming from the adaptivity FEM for the TE mode problem with κ = (0, 0)
and using η̃j,n.
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Fig. 5: The structure of the supercell used for the computations.
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Fig. 4: The eigenfunction of the eigenvalue in the second band of the TE mode problem with quasi-
momentum κ = (0, 0).

Fig. 6: An adapted mesh for a trapped eigenvalue of the TE case problem on a supercell with quasi-
momentum κ = (0, 0).
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Fig. 7: A picture of the eigenfunction trapped in the defect of the TE case problem on a supercell
with quasimomentum κ = (0, 0).

We have already reported in [22] that also in the supercell setting the “modified” error estimator
works better than the “standard” one in terms of number of degrees of freedom (DOFs) versus
|λj − λj,n|, so the results below are mainly about the convergence of the method for trapped modes
in supercell structures.

In Figure 6 we depict the mesh coming from the fourth iteration of Algorithm 2 with θ = 0.5.
As can be seen there is a lot of refinement around the defect, especially around the corners of the
inclusions. Away from the defect there is just a bit of refinement which is again around the corners
of the inclusions, the reason why the refinement is so concentrated in the defect and the reason
why the corners of the inclusions away from the defect seem to not show important singularities, is
because the trapped mode has a fast decay outside the defect that flattens down the singularities that
it encounters, see Figure 7, where we depict the eigenfunction corresponding to the mode trapped
inside the defect that we have computed.

Also in the supercell setting we can compute numerically the values of γ as in (7.1) in order to
better understand the convergence of the method. The computed values are reported in Table 3 and
Table 4 using both error estimators and for two values of the quasimomentum. As before, also in
this setting, the values of γ for the two error estimators are very similar, even if the “modified” one
needs less DOFs to reach the same accuracy, compared to the “standard” one. This is another clue
that the “modified” error estimator performs better.
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ηj,n η̃j,n

n |λj − λj,n| #DOFs γ |λj − λj,n| #DOFs γ

1 0.0228 10000 - 0.0228 10000 -

2 0.0178 10180 0.8836 0.0162 10480 0.8432

3 0.0148 10873 0.9111 0.0126 11378 0.8814

4 0.0118 12116 0.8935 0.0091 12850 0.8487

5 0.0084 14160 0.8414 0.0065 14808 0.8453

6 0.0061 17128 0.8527 0.0048 19350 0.8592

7 0.0046 22784 0.8744 0.0037 25562 0.8734

8 0.0036 30364 0.8830 0.0027 33366 0.8627

9 0.0026 40791 0.8544 0.0019 43964 0.8364

10 0.0018 54071 0.8297 0.0013 59826 0.8351

11 0.0013 72860 0.8451 0.0010 79716 0.8864

12 0.0010 97840 0.8825 0.0008 105876 0.8661

13 0.0008 130455 0.8638 0.0006 137420 0.8583

Tab. 3: Values of γ for κ = (0, 0) with θ = 0.5 for the supercell problem.

ηj,n η̃j,n

n |λj − λj,n| #DOFs γ |λj − λj,n| #DOFs γ

1 0.0164 10000 - 0.0164 10000 -

2 0.0143 10346 0.9345 0.0119 10620 0.8502

3 0.0140 10864 0.9882 0.0095 12101 0.8932

4 0.0122 11804 0.9358 0.0067 14221 0.8428

5 0.0106 13367 0.9320 0.0051 18184 0.8700

6 0.0091 15950 0.9265 0.0037 23310 0.8489

7 0.0080 19553 0.9354 0.0028 31076 0.8770

8 0.0066 24075 0.9077 0.0022 41046 0.8763

9 0.0053 31329 0.8982 0.0015 55164 0.8421

10 0.0044 39981 0.9149 0.0011 74861 0.8580

11 0.0032 50614 0.8430 0.0008 98964 0.8447

12 0.0027 66315 0.9179 0.0006 131051 0.8901

13 0.0022 84636 0.9125 0.0005 170567 0.8617

Tab. 4: Values of γ for κ = (π/5, π/5) with θ = 0.5 for the supercell problem.

7.3 Computation of the band of a trapped mode

Finally, we present some numerical results using Algorithm 3 to approximate the band of the trapped
mode already analysed in this section. We are going to compare the results from Algorithm 3 against
the results from Algorithm 2 applied to each considered value of the quasimomentum and always
starting from the same mesh. In particular we are interested in comparing the computational costs
of these two approaches in terms of number of mesh refinements #ref.

The starting mesh G0 for Algorithm 3 contains just one element (i.e., 3 nodes) as big as Kred for
the considered supercell. In this numerical experiment we are going to construct just one refinement
of G0, namely G1 which contains 10 nodes, i.e., we set maxm = 1. Moreover, we set maxit = 20
and θ = 0.5 Also for Algorithm 2 applied to each node of G1 we are going to set maxit = 20 and
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θ = 0.5. To make the comparison fair both algorithms start form the same mesh T0 and the same
final tolerance for the residuals is set for both of them which are called tol1 in Algorithm 3 and tol
in Algorithm 2.

In Table 5 we collected the results for two different final tolerances of 0.3 and 0.15 which roughly
correspond to |λκ

j −λ
κ
j,n| = 0.005 and |λκ

j −λ
κ
j,n| = 0.001 for all considered values of κ. The difference

between the number of refinements is a clear indication of the efficiency of Algorithm 3.

Algorithm 3 Standard adaptivity

{tols} #ref tol #ref

0.4 0.3 45 0.3 68

0.3 0.15 97 0.15 123

Tab. 5: Comparison between Algorithm 3 and the standard adaptive method, both applied to the
band of the trapped mode for the TE case problem on a supercell.
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