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We describe potentials which act as approximate cloaks for matter waves. These potentials are derived

from ideal cloaks for the conductivity and Helmholtz equations. At most energies E, if a potential is

surrounded by an approximate cloak, then it becomes almost undetectable and unaltered by matter waves

originating externally to the cloak. For certain E, however, the approximate cloaks are resonant,

supporting wave functions almost trapped inside the cloaked region and negligible outside.

Applications include dc or magnetically tunable ion traps and beam switches.
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Introduction.—A fundamental problem is to describe the
scattering of waves at energy E by a potential VðrÞ, as
governed by the time-independent Schrödinger equation;
the related inverse problem consists of determination of V
from scattering data or from boundary measurements. In
this Letter, for a generic energy E, we construct sequences
VE
n , n ¼ 1; 2; 3; . . . ; of bounded potentials which act as

approximate quantum cloaks: for any potential V0 whose
support (where it is nonzero) is surrounded by the support
of VE

n , the scattering amplitude of V0 þ VE
n goes to zero

asymptotically in n, so that V0 is undetectable by matter
waves at energy E. The potentials VE

n are centrally sym-
metric, layered, and supported in a spherical annulus fr1 �
r � r2g in R3, with spatial oscillations of increasing am-
plitude as r & r1 and decreasing layer thickness as n ! 1
so that their local (resp., long range) effect on wave propa-
gation becomes stronger (resp., weaker) as n increases. For
generic E, the potential V0 þ VE

n has a negligible effect on
matter waves originating outside of its support. Alterna-
tively, for E close to special values, VE

n allows the core
fr � r1g to support almost trapped states and be used to
form traps for ions (here denoting any charged particles),
almost invisible to external matter waves. An approximate
version of the dichotomy regarding ideal cloaks for the
Helmholtz equation ([1] Thm. 1) holds: If E is sufficiently
separated from all interior eigenvalues, then, with high
probability, the approximate cloak keeps particles of en-
ergy E from entering the cloaked region, see Figs. 1 (right,
red) and 2 (left); on the other hand, for E close to an
eigenvalue, the cloaked region supports almost trapped
states, accepting and binding such particles, leading to a
new type of ion trap cf. Figs. 1 (right, blue) and 2 (right)
and formula (4).

Recently, Zhang, et al., [2], using ideas from transfor-
mation optics [3,4], described an ideal quantum mechani-
cal cloak at any fixed energy E and proposed a physical
implementation. The construction starts with a homoge-

neous, isotropic mass tensor m̂0 and zero potential, and
subjects this pair to the singular transformation (1) below.
The resulting m̂, V yield a Schrödinger equation that is in
fact the Helmholtz equation for the corresponding singular
Riemannian metric and thus covered by the analysis of
cloaking in [1]. The treatment there shows that potentials
within the cloaked region are undetectable by exterior
measurements, whether far- or near-field, and that finite
energy waves must satisfy the perfectly reflective
Neumann boundary condition on the inside �� of the
cloaking surface. The cloaking mass tensor m̂ is highly
heterogeneous and anisotropic (infinitely so at �þ), mak-
ing such a quantum cloak challenging to construct, with
ultracold atoms in an optical lattice proposed in [2] as a
possible realization.
The approach in this Letter is to forgo the perfect

functioning of the ideal quantum cloak, and to describe

FIG. 1 (color). Left: The radial profile of the potential VE
n over

a typical layer 1:5< r < 1:51. The potential VE
n in fR ¼

1:005 � r � 2g is obtained by repeating similar profiles, with
increasing amplitudes as r & R. Right: Rec on a segment
fðx; 0; 0Þ: 0 � x � 3g for the same cloaking potential VE

n and
two different cloaked V0’s. For the red curve, E is not close to an
interior eigenvalue and c is produced by an incoming plane
wave. For the blue curve, E ¼ E�;R

1 is the smallest Dirichlet

eigenvalue on B3 and c is an almost trapped state.
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sequences of bounded potentials VE
n , n ¼ 1; 2; 3; . . . ;

which act as approximate cloaks with respect to m̂0, thus
not requiring extreme conditions to realize. The failure to
cloak perfectly is in fact a controllable feature that can be
taken advantage of for applications described below. The
VE
n are found by means of isotropic transformation optics, a

technique we introduce for avoiding the singular and an-
isotropic behavior, difficult to physically realize, of mate-
rial parameters that commonly occur in transformation
optics-based designs [4–6]; more details and proofs can
be found in [7].

Inverse scattering and conductivity cloaks.—There is an
enormous literature on unique determination of a potential
V from scattering of plane waves at energy E by the
Schrödinger equation ð�r2 þ VÞc ¼ Ec , as encoded in
the scattering amplitude. Equivalently, for compactly sup-
ported V, one may consider the near-field measurements of
wave functions at the boundary @� of a larger region�, as
encoded in the Dirichlet-to-Neumann (DN) operator,
�E

Vðc j@�Þ ¼ @�c j@� where � is the normal of @� [8].
Ideal cloaking gives highly singular examples of non-
uniqueness, but in order to construct approximately cloak-
ing potentials, we first need to recall the ideal electrostatic
cloaking of [9]. For simplicity, we describe the cloak on
B3 � B1, with BR ¼ fr � Rg denoting the central ball of
radius R in R3 so that the cloaking surface, the interface
between the cloaked and uncloaked regions, is � ¼ fr ¼
1g. Subjecting a homogeneous, isotropic conductivity�0 to
a singular transformation, we constructed certain singular
heterogeneous and anisotropic conductivity tensor fields
on B3 � B1 which, when augmented by any conductivity
bounded above and below on B1, results in a total conduc-
tivity on B3 giving the same electrostatic boundary mea-
surements as �0. (For related results in dimension two, see
[10,11].) The same construction, applied to the electric per-
mittivity and magnetic permeability rather than the con-
ductivity, was used to propose an electromagnetic (EM)
cloak [4], and a microwave realization of a variant of that
design reported [12]. Ray-based cloaking for 2D was pro-

posed in [5], while potentials transparent for rays are in
[13].
Let F ¼ ðF1; F2; F3Þ: B3 � f0g ! B3 � B1 be the sin-

gular transformation, for r ¼ ðx1; x2; x3Þ 2 R3,

~r ¼ FðrÞ ¼ r; 2< r � 3;

FðrÞ ¼
�
1þ r

2

�
r

r
; r � 2;

(1)

which results in the transformed version of �0 on B3 � B1,
augmented for simplicity by 2�0 on B1,

�1 ¼ F��0; r 2 B3 � B1;

�1 ¼ 2�0; r 2 B1:
(2)

F� denotes the change-of-variables action of F on tensors,

ðF��Þjkð~rÞ ¼ 1

det½@Fj

@xk
�

X3
p;q¼1

@Fj

@xp
@Fk

@xq
�pq

��������r¼F�1ð~rÞ
:

The ideal cloak �1 has a singularity at �, both in that one
of the eigenvalues (corresponding to the radial direction)
tends to 0 as r & 1, and that there is a jump across �,
within which �1 is nonsingular. Aside from the radius of
the outer ball and the factor 2 in the second part of (2),�1 is
the conductivity introduced in [9] and shown to be indis-
tinguishable from �0, vis-a-vis boundary measurements at
@B3 of electrostatic fields.
Consider also the corresponding acoustic equation,

@ið�ij
1 @juÞ þ Ea1u ¼ 0; a1 ¼ ðdet½�ij

1 �Þ�1; (3)

where we consider �1 as a mass density and a1 as a bulk
modulus. Then, using measurements at @B3 of acoustic

waves of frequency
ffiffiffiffi
E

p
, the pair �1, a1 is indistinguishable

from �0, a0 ¼ 1 [1,14–16]. The waves u within the
cloaked region have a simple description ([1] Thm. 1).
Either (I) if E is not a Neumann eigenvalue of the cloaked
region, then u must vanish there; or (II) if E is an eigen-
value, then u can be an associated eigenfunction there,
while possibly vanishing on B3 � B1. The Dirichlet eigen-
values and eigenfunctions of (3) on B3 can be separated

into (Eþ;1
j , uþj ) and (E

�;1
j , u�j ), j ¼ 1; 2; 3; . . . , with uþj and

u�j supported in B3 � B1 and B1, resp.

Approximate cloaks and failure of cloaking.—For 1<
R � 2, let �R be given by the same formulae as in (2), but
applied on B3 � BR and BR, resp., and similarly for aR in
(3). Observe that for each R> 1, �R and aR are non-
singular; however, their lower (resp., upper) bounds go to
0 (resp., 1) as R & 1. (Similar truncations of EM cloaks
have been studied in [11,17,18].)
When �1, a1 are replaced by �R, aR, there is a decom-

position similar to the one above for (3), with eigenvalues

and eigenfunctions (Eþ;R
j , vþ

j ) and (E�;R
j , v�

j ) concentrat-

ing in B3 � B1 and B1, resp., and E�;R
j converging to E�;1

j

as R ! 1. The solution of the boundary value problem

FIG. 2 (color). Left: Rec in B3 for c resulting from an
incident plane wave. E is not near an interior Neumann eigen-
value; the matter wave passes unaltered. Moiré pattern is an
artifact. Right: An excited almost trapped state. E ¼ E�;R

j is an

energy close to a Neumann eigenvalue of B1, for which the ideal
cloak supports an trapped state.
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@ið�ij
R@jvÞ þ EaRv ¼ 0 on B3, vj@B3

¼ f, has an eigen-

function expansion

vðrÞ ¼ X
�

X1
j¼1

�Z
@B3

f
@v�

j

@�
dS

� v�
j ðrÞ

E� E�;R
j

: (4)

An approximate version of dichotomy (I)-(II) holds for
approximate acoustic cloaks: When E is not equal to any

E�;1
j , one can show the DN operators for the �R, aR

converge to that for�1, a1 asR ! 1; physically, this means
that the boundary measurements of pressure and the nor-
mal component of the particle velocity for the approximate
cloaks tend to those for the ideal cloak, which are them-
selves the same as for �0, a0. However, if E is close to

some E�;R
j , the corresponding term in (4) may dominate

the others, in which case the solution v, having a large
coefficient of v�

j , concentrates in B1. Since v�
j cannot

vanish identically in B3 � B1, both the near-field measure-
ments on the boundary @B3 and the far-field patterns differ
noticeably from those corresponding to �0, a0. This inte-
rior resonance corresponds to an acoustic wave almost
trapped within the cloak.

Isotropic transformation optics.—A well-known phe-
nomenon in effective medium theory is that homogeniza-
tion of isotropic material parameters may lead, in the
small-scale limit, to anisotropic ones [19]. We exploit
this, using ideas from [20,21], to approximate the aniso-
tropic, almost cloaking �R by isotropic conductivities �R;�

so that for " > 0, the pairs �R;�, aR also function as

approximate acoustic cloaks [7]. The �R;�ðrÞ are layered

and spatially highly oscillating. (In the context of EM
cloaking, thin concentric layers of homogeneous, isotropic
media were considered in [22,23].)

Approximate Schrödinger cloaks.—The gauge transfor-
mation c ¼ ffiffiffiffi

�
p

u reduces the acoustic equation (3), with
nonsingular isotropic conductivity� ¼ �R;� in place of the

anisotropic �1, and aR in place of a1, to the Schrödinger
equation at the same energy E, ð�r2 þ VE

R;�Þc ¼ Ec ,

where VE
R;� ¼ r2ð ffiffiffiffi

�
p

R;�Þ=
ffiffiffiffi
�

p
R;� þ Eð1� a1=2R ��1

R;�Þ. As

�R;� is highly oscillatory, V
E
R;� consists of a layered pattern

of concentric central potential barriers and wells of in-
creasing amplitudes and decreasing widths as " & 0. The
radial profile of the potential over one spherical layer is in
Fig. 1 (left). The boundary measurements of solutions of
these Schrödinger equations at @B3 coincide with those for
the corresponding acoustic equations. By the convergence
of the acoustic equations, we can choose R & 1, � & 0 so
that the boundary measurements for these Schrödinger
equations converge to those for the acoustic equation (3)
at energy E, which in turn are the same as for the
Schrödinger equation in free space. The nonresonant case
is summarized by:

Approximate quantum cloaking. Let V0 be a bounded
potential on B1, and E be neither a Dirichlet eigenvalue of
the free Hamiltonian �r2 on B3 nor a Neumann eigen-

value of�r2 þ V0 on B1. Then, there exists a sequence of
cloaking potentials VE

n on B3 such that the DN operators
�E

V0þVE
n
! �E

0 as n ! 1. I.e., at energy E, the potential

V0 þ VE
n is indistinguishable by near-field measurements,

asymptotically in n, from the zero potential; a similar result
holds for far-field patterns. V0 is thus approximately
cloaked when surrounded by VE

n .
As any specific measurement device has a limited pre-

cision, this means that it is possible to design a potential to
cloak an object within from any single-particle measure-
ments made using that device at energy E.
Numerics.—We use analytic expressions to compute the

wave function c for an incident plane wave with c incðxÞ ¼
aeikr� ~d. The computations are made without reference to

physical units, using a ¼ 1, E ¼ 0:5, k ¼ ffiffiffiffi
E

p
. The cloak is

based on R ¼ 1:005, corresponding to an anisotropy ratio
of �R at �R ¼ fr ¼ Rg of 4� 104. In the simulations, we
use a cloak consisting of 20 homogenized layers inside and
30 homogenized layers outside �R. Inside the cloak, we
have located a centrally symmetric step potential, WðxÞ ¼
cinn�½0;0:9�ðrÞ�. The cloaking potential VE

n and the energy

E are the same in all figures, but we vary the constant cinn.
In Fig. 1 (right, red) and Fig. 2 (left), we have cinn ¼
�98:5, and c is the wave produced by an incoming plane
wave. In Fig. 1 (right, blue), with cinn ¼ þ1:858, and in
Fig. 2 (right), with cinn ¼ �71:45, there is no incoming
wave, but rather an excited almost trapped state in the
cloaked region.
Applications: Almost trapped states and ion traps.—A

version of the dichotomy for approximate acoustic cloaks
described above also holds for approximate quantum
cloaks, since the u and c waves are equivalent by the
gauge transformation. As a consequence, given an energy
E, the approximate quantum cloak may be such that E
either is or is not an eigenvalue for the ideal cloak. This
results in B1 becoming either (I’) an almost cloaked region
that with a high probability does not accept energy E
particles from outside�; or (II’) a trap that supports almost
trapped states, which correspond to a particle at energy E
trapped in B1 with high probability. A design of either type
could possibly be implemented by an array of ac and dc
electrodes with total effective potential approximating VE

n

for large n [24]. This leads to a new type of trap for ions,
differing from, e.g., the Paul [25], Penning [26], or
Zajfman [27] traps, and justified on the level of quantum
mechanics. Furthermore, the trap may be made tunable by
including a dc electrode in the trapped region, correspond-
ing to a Coulomb V0; varying the charge changes whether
or not E is an eigenvalue of �r2 þ V0 and thus which of
(I’) or (II’) holds. Alternatively, one can switch between
(I’) and (II’) by application of homogeneous magnetic
fields; see below.
Topological ion traps.—The basic construction outlined

above can be modified to make the wave function on B1

behave as though it were confined to a compact, boundary-
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less three-dimensional manifold, topologically but not
metrically the three-dimensional sphere, S3. By suitable
choice of metric, the energy level E can have arbitrary
multiplicity for the interior of the resulting trap, allowing
one to implement physical systems mimicking matter
waves on abstract spaces. As the starting point, one uses
not the original cloaking conductivity �1 (the single coat-
ing construction), but rather a double coating ([1] Sec. 2),

which we denote here by �ð2Þ. This is singular from both
sides of �, and in the EM cloak setting corresponds to
coating both sides of � with metamaterials. (See [7]
Fig. 7.) By [1] Sec. 3.3, the finite energy solutions of the
resulting Helmholtz equation on B3 split into direct sums
of waves on B3 � B1, as for�1, and waves on B1 which are
identifiable with eigenfunctions of the Laplace-Beltrami

operator �r2
g on (S3, g) with eigenvalue

ffiffiffiffi
E

p
. If one takes

g to be the standard metric on S3, then nonground states
are highly degenerate, while a generic choice of g yields
nondegenerate energy levels [28]. On the other hand, by
suitable choice of g, any finite number of energy levels and
degeneracies can be specified [29], allowing traps support-
ing almost trapped states at energy E of arbitrary
degeneracy.

Magnetically tunable quantum beam switch.—Consider
a beam of ions of energy E, leaving an oven and traversing
a tube T ¼ f0 � � � �0; 0 � � � 2�; 0 � z � Lg (in cy-
lindrical coordinates). Treating the ions as matter waves,
place in T several almost trapping traps of the type de-
scribed above, centered at points zj, j ¼ 1; 2; . . . ; N on the

z-axis, forming a potential VðrÞ ¼ P
N
j¼1 V

E
n ðr� ð0; 0; zjÞÞ.

The techniques above may be applied to the Schrödinger
equation with magnetic potential AðrÞ on a region �,

½�ðr þ iAÞ2 þ V�c ¼ Ec on �;

�E
V;AðfÞ ¼ @�c j@� þ iðA � �Þf on @�: (5)

We design the traps so that, in the absence of a magnetic
field, or for small field strengths, the traps act as cloaks and
thus the ions pass through T unhindered. However, if a
homogeneous magnetic field is then applied to the tube,
chosen so that the magnetic Schrödinger operator has E as
a Neumann eigenvalue inside each trap, then there is a
large probability that an ion passing the jth trap will bind to
that trap. If N is large enough, then the probability that any
ion traveling the length of T will become bound is�1, and
T thus functions as a magnetically controlled switch for the
beam of ions.

Magnified magnetic fields.—For a homogeneous mag-
netic field with linear magnetic potential A, one can obtain
a sequence of electrostatic potentials Wn for which

limn!1�E
Wn;A

¼ �E
0; ~A

, with ~A singular at a point. I.e., in

the presence of a homogeneous magnetic field, the Wn

produce far- or near-field measurements that tend, as n !
1, to those of the zero electrostatic potential in the pres-

ence of a magnetic field blowing up at a point, giving the
illusion of a locally singular magnetic field [7].
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