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Highly quantitative biomarkers of neurodegenerative disease re-
main an important need in the urgent quest for disease-modifying
therapies. For Huntington’s disease (HD), a genetic test is available
(trait marker), but necessary state markers are still in development.
In this report, we describe a large battery of transcriptomic tests
explored as state biomarker candidates. In an attempt to exploit
the known neuroinflammatory and transcriptional perturbations
of disease, we measured relevant mRNAs in peripheral blood cells.
The performance of these potential markers was weak overall,
with only one mRNA, immediate early response 3 (IER3), showing
a modest but significant increase of 32% in HD samples compared
with controls. No statistically significant differences were found
for any other mRNAs tested, including a panel of 12 RNA biomar-
kers identified in a previous report [Borovecki F, Lovrecic L, Zhou J,
Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen
RV, et al. (2005) Proc Natl Acad Sci USA 102:11023–11028]. The
present results may nonetheless inform the future design and
testing of HD biomarker strategies.

state biomarker � RNA biomarker � gene expression profiling �
polyglutamine disease � neurodegenerative disease

In 1993, the Huntington’s Disease (HD) Collaborative Re-
search Group identified a simple mutation, a CAG repeat

expansion in exon 1 of the HD (or IT15) gene, to be the cause
of HD. An intense ongoing effort has attempted to elucidate the
cellular mechanisms through which this gene’s protein product,
huntingtin, evokes such a devastating neurodegenerative disor-
der. Despite its clear etiology at the genetic level, however, we
are still far from understanding the multiple processes that
determine the symptoms and fatal outcome of HD.

At the pathological level, postmortem studies of HD brain have
revealed the pronounced death of medium spiny GABAergic
projection neurons within the caudate nucleus and putamen. Al-
though the most pronounced pathology is observed in the basal
ganglia, cell death also occurs early in the cerebral cortex. In parallel
with neuronal loss, there is a sustained activation of inflammatory
processes, which manifest histologically as astrogliosis and micro-
gliosis in the neostriatum, cortex, globus pallidus, and the adjoining
white matter of HD brains (1). Microinflammation is a common
feature of many neurodegenerative disorders including Alzheimer’s
disease, Parkinson’s disease, dementia with Lewy bodies, amyotro-
phic lateral sclerosis, and prion diseases (reviewed in ref. 2). At the
molecular level, both type I and type II immune pathway involve-
ment has been observed (3), and the complement system has been
implicated in the elimination of toxic proteinaceous aggregates (4).
On the other hand, inflammatory responses mediated by glial cells
have also been hypothesized to contribute to the dysfunction and
death of neurons in neurodegenerative disorders, including HD (5,
6), and, as such, inflammation could be considered as an integral
component of the pathogenic process.

The first symptoms of HD typically appear at an age between
30 and 40 years, after which patients die within �15–20 years.

Early symptoms often comprise psychiatric abnormalities in-
cluding depression, anxiety, sleep disorders, and irritability
together with frontal and subcortical cognitive deficits. These
disease manifestations are typically followed by motor symptoms
including choreic movements, dystonia, and rigidity. Peripher-
ally, weight loss is a common feature of HD, and there is
increasing evidence of neuroendocrine dysfunction in HD (7, 8).

No therapy has been shown to delay disease onset or slow
progression in humans. Thus, there is an urgent need for clinical
trials to identify and validate such treatments. Studies in HD
model systems suggest that identifying disease-modifying com-
pounds is possible (9, 10), but screening these agents in human
trials remains challenging. In large part, this difficulty is due to
the slowness of disease progression relative to the time frame in
which a trial is conducted. The current standard for the assess-
ment of the clinical stage of HD patients is the United Hun-
tington’s Disease Rating Scale (UHDRS) (11, 12), a method
limited in sensitivity and prone to subjectivity (13). The identi-
fication of robust HD state biomarkers would thus provide
valuable assistance in objectively and sensitively monitoring
disease onset and progression, which are the prerequisites for the
validation of new therapeutic strategies. The search for biomar-
kers of HD and other neurodegenerative diseases encompasses
many technologies, including neuroimaging, proteomic, meta-
bonomic, and genomic approaches (reviewed in ref. 14).

The utility of HD state biomarkers for clinical trials depends
not only on the sensitivity of the measure but also on the
practicality of the sampling and testing, because repeated mea-
sures are required. Focusing on the analysis of samples that can
be collected through rapid and minimally invasive procedures,
such as the collection of peripheral blood, is thus a sound
strategy from this perspective. The implementation of widely
available and financially accessible detection technologies, such
as assay by PCR, is also a desirable feature of a clinical biomarker
test.

Although the identification of a valid HD biomarker does not
necessarily depend on its connection to a central disease mech-
anism, it is attractive to explore molecular and cellular pathways
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previously implicated in disease. Transcription has been identi-
fied as a potential target of mutant huntingtin’s toxicity, and
previous transcriptomic studies of tissues from HD patients and
HD model systems have demonstrated significant and progres-
sive disease-related effects on gene expression (15–18). Here, we
report a multipartite strategy to identify an RNA biomarker for
HD in peripheral blood motivated by previous evidence for
transcriptional dysregulation and immune system involvement in
the pathogenesis of HD.

Results
Given that neuroinflammation is an established and progressive
facet of HD pathology, we hypothesized that inflammation-
related transcriptional changes might also be measured in HD
blood. To address this question, we first performed microarray
gene expression profiling analyses of lymphocyte samples from

12 moderate-stage HD patients and 10 controls (Table 1) using
U133 Human Genome 2.0 Plus arrays (Affymetrix, Santa Clara,
CA). Although gender-related differences could be identified by
using the standard criterion of RMA limma FDR P � 0.05
(Table 2), no HD-related changes met statistically robust detec-
tion on a single gene testing basis (same criterion, Table 3).
Analysis using a different normalization method and cutoff
criteria (as per ref. 17) gave qualitatively similar results [see
Materials and Methods and supporting information (SI) Tables 4
and 5]. Because our previous experience indicated that real
changes are sometimes missed by these criteria, we nonetheless
chose selected mRNAs showing top-ranked differential expres-
sion measures to carry into further testing (Table 3). Repre-
sented among those chosen were genes involved in immune
response, cell cycle, and cell death pathways.

To gain another view into possible immune-related changes,
we subjected 11 mid-stage HD and 9 control whole-blood RNA

Table 1. Human samples for gene expression analyses

HD states Female
Age range
(mean age) Male

Age range
(mean age) Total

QPCR assays for candidate biomarkers (whole-blood RNA)
Control 17 25–65 (44.9) 13 29–64 (48.6) 30
Presymptomatic* 2 26–27 (26.5) 3 31–35 (33.0) 5
Early 2 30–31 (30.5) 2 23–34 (30.0) 4
Moderate 17 25–64 (47.5) 9 38–74 (52.4) 26
Advanced 0 5 45–64 (56.8) 5

Lymphocyte RNA samples for high-density microarrays
Control 5 30–68 (49.6) 5 38–60 (47.2) 10
HD moderate 8 36–61 (46.8) 4 51–62 (56.8) 12

Human immune profiling low-density arrays (whole-blood RNA)
Control 5 35–46 (42.0) 4 45–59 (50.5) 9
HD moderate 6 35–45 (41.5) 5 43–59 (50.4) 11

Complementary analyses including presymptomatic cases can be found in SI Figs. 4–7.
*Results presented in text for manifest HD (excluding HD presymptomatic).

Table 2. Probe sets detecting gender effects in high-density microarray analysis

Probe set ID P (nominal) FDR P log2 FC Gene symbol Gene title

201909�at 4.38E-12 2.99E-08 5.35 RPS4Y1 Ribosomal protein S4, Y-linked 1
205000�at 3.24E-14 2.96E-10 4.30 DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked
206700�s�at 2.33E-11 1.38E-07 4.01 SMCY Smcy homolog, Y-linked (mouse)
223646�s�at 2.53E-11 1.38E-07 2.73 CYorf15B Chromosome Y open reading frame 15B
223645�s�at 2.51E-12 1.96E-08 2.39 CYorf15B Chromosome Y open reading frame 15B
214131�at 3.39E-09 1.43E-05 2.29 CYorf15B Chromosome Y open reading frame 15B
228492�at 6.01E-11 2.74E-07 2.13 USP9Y Ubiquitin specific peptidase 9, Y-linked (fat facets-like, Drosophila)
204409�s�at 3.44E-11 1.71E-07 2.04 EIF1AY Eukaryotic translation initiation factor 1A, Y-linked
205001�s�at 7.53E-09 2.94E-05 2.02 DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked
206624�at 7.54E-07 1.96E-03 1.51 USP9Y Ubiquitin specific peptidase 9, Y-linked (fat facets-like, Drosophila)
232618�at 1.95E-07 5.93E-04 1.49 CYorf15A Chromosome Y open reading frame 15A
236694�at 2.18E-05 4.58E-02 0.97 CYorf15A Chromosome Y open reading frame 15A
204410�at 7.60E-06 1.73E-02 0.88 EIF1AY Eukaryotic translation initiation factor 1A, Y-linked
208067�x�at 3.19E-08 1.16E-04 0.61 UTY Ubiquitously transcribed tetratricopeptide repeat gene, Y-linked
244482�at 2.19E-06 5.44E-03 0.51 EIF1AY Eukaryotic translation initiation factor 1A, Y-linked
230760�at 2.26E-07 6.49E-04 0.45 ZFY Zinc finger protein, Y-linked
1570360�s�at 1.22E-07 3.92E-04 0.37 DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked
211149�at 2.81E-06 6.67E-03 0.33 UTY Ubiquitously transcribed tetratricopeptide repeat gene, Y-linked
216342�x�at 2.17E-05 4.58E-02 �0.32 LOC390183//LOC442162 Similar to 40S ribosomal protein S4, X isoform
213876�x�at 5.19E-07 1.42E-03 �0.75 U2AF1L2 U2 small nuclear RNA auxiliary factor 1-like 2
224589�at 3.45E-08 1.18E-04 �3.01 XIST X (inactive)-specific transcript
224590�at 1.98E-17 5.42E-13 �5.20 XIST X (inactive)-specific transcript
214218�s�at 4.46E-17 8.12E-13 �5.46 XIST X (inactive)-specific transcript
221728�x�at 2.18E-18 1.19E-13 �5.72 XIST X (inactive)-specific transcript
227671�at 4.74E-15 5.19E-11 �6.23 XIST X (inactive)-specific transcript
224588�at 4.01E-15 5.19E-11 �7.15 XIST X (inactive)-specific transcript
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samples (Table 1) to a panel of 90 PCR-based immune marker
assays (see Materials and Methods and SI Table 6). In this
analysis, three assays (for IL-1b, COX-2, and TGF-b mRNAs)
showed differences between HD and control samples and were
carried into a second round of testing.

Quantitative PCR (QPCR) assays to measure RNA targets
identified by both lymphocyte microarray and immune marker
panel screens were then applied to a larger cohort of whole-
blood samples from individuals representing presymptomatic,
early, moderate, and advanced HD (see Table 1 and Materials
and Methods). Fig. 1 shows the relative expression values for
manifest HD versus controls from this enlarged sample set (for
additional analyses, see SI Fig. 4). Only one RNA showed a mean
expression difference; the expression of IER3 showed a 32%
increase in HD versus controls.

Exploiting our previous data on gene expression in the HD brain
(18), we next investigated whether genes differentially expressed in

brain tissues would also show HD-related changes in peripheral
blood. Among mRNAs with statistical cutoff criterion of P � 0.001
for differential expression in HD caudate (32 cases, pathologic
grade 0–2) versus control (32 samples, age- and gender-matched),
we selected seven RNAs that could be reliably detected in 1- to 5-ng
whole-blood RNA samples. Despite their dysregulation in HD
brain, none of the seven interrogated candidates: CD44 antigen
(CD44), NADH dehydrogenase (ubiquinone) 1 �-subcomplex, 2
(NDUFB2), neurogranin (NRGN), protein phosphatase 3, cata-
lytic subunit, �-isoform (PPP3CA), protein kinase C �1
(PRKCB1), solute carrier family 14 (urea transporter), member 1
(SLC14A1), and zinc finger and BTB domain containing 16
(ZBTB16), showed differential expression in peripheral blood
samples from individuals with HD (Fig. 2 and SI Fig. 5).

We also examined the ability of a previously identified set of
RNA biomarkers (17) to discriminate between HD and control

Table 3. Candidate RNA biomarkers identified from human lymphocyte microarray data

Pathway Gene title Gene symbol Probe set log2 FC P (nominal)*

Immune response Major histocompatibility complex, class II, DQ � 1 HLA-DQA1 212671�s�at �1.114 0.0091
Immune response Tumor necrosis factor (TNF superfamily, member 2) TNF-a 207113�s�at 1.229 0.0437
Immune response Interleukin 8 IL8 211506�s�at 1.038 0.0636

202859�x�at 1.018 0.2921
Immune response Aquaporin 9 AQP9 205568�at 0.562 0.1662
Immune response Interleukin 1, � IL1B 205067�at 1.954 0.0370

39402�at 1.747 0.0491
Immune response Tumor necrosis factor receptor superfamily,

member 17
TNFRSF17 206641�at �0.411 0.0690

Cell cycle/cell death BCL2-like 1 BCL2L1 1569067�at 0.258 0.0002
206665�s�at 0.357 0.1303
212312�at 0.338 0.1563
215037�s�at 0.375 0.1595

Cell cycle/cell death MAX dimerization protein 1 MDX1 226275�at 0.801 0.0544
228846�at 0.469 0.1181

Cell cycle/cell death Nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, �

NFKBIA 201502�s�at 0.923 0.0690

231699�at 0.132 0.0966
Cell cycle/cell death Disabled homolog 2, mitogen-responsive

phosphoprotein (Drosophila)
DAB2 201279�s�at 0.596 0.0748

201278�at 0.460 0.0821
210757�x�at 0.478 0.1286
201280�s�at 0.508 0.1766

Cell cycle/cell death Absent in melanoma 2 AIM2 206513�at �0.541 0.0534
Cell cycle/cell death Immediate early response 3 IER3 201631�s�at 1.428 0.0197
Cell cycle/cell death Purinergic receptor P2X, ligand-gated ion channel, 1 P2RX1 210401�at 0.590 0.0059

1569346�a�at 0.193 0.1413
Cell cycle/cell death Peptidylprolyl isomerase F (cyclophilin F) PPIF 201490�s�at 0.514 0.0436

201489�at 0.616 0.0589
Cell cycle/cell death Dual-specificity phosphatase 1 DUSP1 201044�x�at 0.560 0.1112

226578�s�at 0.268 0.1120
Cell cycle/cell death Protein phosphatase 1, regulatory (inhibitor)

subunit 15A
PPP1R15A 37028�at 0.982 0.0325

202014�at 0.904 0.0362
Transcription Early growth response 1 EGR1 201694�s�at 1.259 0.1181

227404�s�at 1.119 0.1690
201693�s�at 0.587 0.2592

Miscellaneous MutL homolog 3 (Escherichia coli) MLH3 214525�x�at 0.657 0.0488
217216�x�at 0.484 0.1026
204838�s�at 0.706 0.1199

Miscellaneous Trophoblast-derived noncoding RNA TncRNA 224566�at 0.841 0.0044
224565�at 0.429 0.0080
214657�s�at 1.011 0.0101
238320�at 1.010 0.0151
234989�at 0.487 0.2052

*FDR P � 0.05 for all.
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states in our sample cohort. PCR amplification efficacy of the
previously published assays was tested, showing excellent results
(efficiencies between 90% and 100%, data not shown). From this
standard curve, input amounts of total blood RNA were chosen
based on the linear range of each assay. As depicted in Fig. 3,
however, these marker RNAs did not show differential expres-
sion across HD and control samples. To exclude the possibility
that the nondetection of expression differences was due to a
difference in the RNA preparation procedure, all assays were
repeated with a new set of blood samples subjected to two
different incubation periods in the RNA-stabilizing reagent, and
these RNA extractions were carried out by another subset of
investigators in a different laboratory. Despite these modifica-

tions, no differences were observed between samples from HD
and control individuals (SI Table 7 and SI Fig. 6). Moreover,
biological replicate samples subjected to independent processing
showed minimal differences in expression measures (�10% for
all assays; SI Fig. 7). Thus, we conclude that biological, and not
technical, factors underlie the differences between our results
and those previously reported.

Discussion
New disease-modifying therapeutic agents are desperately
needed for Huntington’s and other neurodegenerative diseases.
To optimize the process for testing new candidate therapies,
however, clinical trials will need to be able to implement
sensitive and reliable disease biomarker measures. Blood is an
obvious tissue of choice for molecular biomarker development
because of its easy access and rapid renewability. In the present
study, we explored the possibility that mRNA readouts from
human blood could serve as reliable indicators of HD clinical
status.

Although a previous study showed that transcriptomic blood
biomarkers are robust in tracking HD progression (17), our
findings do not support this conclusion. Using a similar sample
size and the same QPCR primer pairs, we saw no differential
expression between manifest HD and control samples in any of
12 previously reported marker RNAs. Among the many addi-
tional RNA assays tested, only one detected a difference be-
tween manifest HD and control samples, and this difference was
relatively small (32% increase in IER3). Although IER3 could
be considered an interesting candidate marker for a variety of
reasons (including a trend to track with HD status, as shown in
SI Fig. 4), our expectation is that the small fold change observed
in its expression offers little potential to provide sensitive disease
monitoring. Nevertheless, IER3 is the top candidate RNA
marker in the present study, and it would be reasonable to

Fig. 1. Relative expression values of candidate biomarker RNAs identified by lymphocyte microarray or whole-blood immune panel gene expression screens.
Error bars represent SEM. white, control samples; gray, manifest HD samples (classified as early, moderate, and advanced HD in Table 1). *, nominal P value �0.05.

Fig. 2. Relative expression values of candidate biomarker RNAs identified by
HD brain gene expression data. Error bars represent SEM. white, control
samples; gray, manifest HD samples (classified as early, moderate, and ad-
vanced HD in Table 1).
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consider additional analyses of its expression, particularly in
longitudinal HD patient samples.

We were surprised that the examination of immune cell and
inflammatory pathway RNAs in peripheral blood cells appeared
to be of such little use in detecting or tracking HD. Neuroin-
flammation is a seemingly uniform and progressive feature of
HD brain pathology (5, 6), and one might have expected the
corresponding compartment of immune cells in the periphery to
indicate this effect. On the other hand, high interindividual
variabilities in blood RNA levels have been observed (19).
Specific non-HD conditions known to influence blood gene
expression, such as anemia, infectious disease, and psychoactive
drugs, were ruled out as causes for high interindividual variabil-
ity in our study, however. Moreover, variability imparted by
extreme values in a minority of cases is unlikely to account for
the finding that the difference between mean values of the HD
and control groups is close to zero (i.e., there is not even a clear
trend to be distinguished between HD and control values).

We do not have specific data to explain the inability of a
previously identified blood RNA biomarker set to discriminate
between HD and control samples in our cohort. We have,
however, ruled out known biological causes, specific technical
issues with RNA preparation or QPCR, and insufficient sample
size. The present findings suggest that some patient populations
may not be amenable to monitoring by using these indicators and
thus emphasize a need for further validation of these biomarkers
before their widespread use in clinical trials.

Biomarker identification strategies beyond those based on
blood RNA also provide hope that universally applicable tests
can be developed. These range from structural imaging, to novel
clinical and cognitive testing batteries, to proteomic and meta-
bonomic assays. A combinatorial use of these indicators may in
fact be the most rational strategy for sensitive and universal
disease assessment (20). Thus, there is still room for optimism
that these emerging new approaches will be able to improve on
standard clinical readouts for the monitoring of future thera-
peutic trials.

Materials and Methods
Human Subjects. Subjects were recruited through the HD Multi-
disciplinary Clinic of the National Hospital for Neurology and
Neurosurgery, London, U.K. Blood samples were collected from
patients who had tested positive for the HD genetic mutation.
Control subjects were partners and spouses of HD patients,
at-risk individuals who tested negative for the HD mutation, and
healthy individuals from the general population. Premanifest
HD mutation carriers were identified according to the absence
of diagnostic motor abnormalities on the Unified Huntington’s
Disease Rating Scale (12). Patients with motor abnormalities
were defined as having early, moderate, or advanced disease by

using the total functional capacity (TFC) scale (13–7, early; 6–3,
moderate) (21) assessed by experienced clinical raters.

All participants gave informed written consent, and the study
protocol received the approval of local and national ethics review
boards. Subjects with concomitant CNS disorders, significant
medical comorbidity, known liver dysfunction, recent alcohol or
substance abuse, and those taking medications or supplements
suspected or known to interfere with the experimental methods
used were excluded.

Sample Collection. All samples were collected between 2 and 4
pm. For microarray expression profiling, blood samples were
collected in EDTA Vacutainer tubes (BD, Oxford, U.K.) and
fractionated within 2 h by density gradient centrifugation using
a standard technique to obtain mononuclear cells, predomi-
nantly lymphocytes (�90%) (22).

Blood samples for PCR analyses of whole-blood gene expres-
sion were collected directly into PAXgene RNA tubes (Qiagen,
Valencia, CA), incubated at room temperature for 2 h, and then
frozen to �80°C before extraction. To investigate possible
effects of room-temperature incubation time and freezing on
RNA quality and gene expression profiles, we obtained samples
from an additional set of patients and controls; for these samples,
2 PAXgene RNA tubes of blood were collected from each
individual, after which one was incubated at room temperature
for 2 h and to �80°C and the other was extracted after 24 h
without freezing (see SI Table 7).

Samples included in the reported analyses are summarized in
Table 1.

Microarray Gene Expression Profiling. Lymphocyte samples from 12
moderate stage HD patients and 10 controls were processed for
gene expression analysis by using Affymetrix U133 Human
Genome 2.0 Plus arrays. Four micrograms of total RNA were
converted into biotinylated cRNA, and hybridization, washing,
and staining were conducted according to the GeneChip Ex-
pression Analysis protocol (Affymetrix). Data were analyzed by
using the Bioconductor software package (www.bioconductor.
org). Quality control for microarrays used the method of ref. 23,
with a median NUSE cutoff of 1.05. Gene expression was
quantified by robust multiarray analysis (24, 25) using the affy
package (26), and differential gene expression was determined
from empirical Bayes moderated t-statistics calculated with the
limma package (27). An alternate analysis with normalization
performed with the MAS5 algorithm for normalization and a
classic two-sided t test for statistical testing is presented in SI
Tables 4 and 5.

RNA Isolation. For microarrays, RNA was isolated by using
TRIzol (Invitrogen, Carlsbad, CA) following the manufacturer’s

Fig. 3. Relative expression values of genes identified by ref. 17. Error bars represent SEM. white, control samples; gray, manifest HD samples (classified as early,
moderate, and advanced HD in Table 1).
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protocol, followed by RNeasy column cleanup and ethanol
precipitation.

For PCR analyses, RNA was isolated by using the PAXgene
Blood RNA kit (PreAnalytiX, Hombrechtikon, Switzerland)
according to the manufacturer’s protocol (omitting the optional
final incubation at 65°C) and stored at �80°C. To remove
residual salt contamination, RNAs were ethanol-precipitated in
the presence of glycogen (3.5 �g per sample). RNA quality was
assessed on a Bioanalyzer 2100 (Agilent Technologies, Palo Alto,
CA). Only highly intact RNAs with a RNA integrity number of
�7 were used for reverse transcription.

Reverse Transcription and Real-Time PCR Analyses. Reverse tran-
scription was performed by using the High Capacity cDNA
Archive kit (Applied Biosystems), following the manufacturer’s
protocol and using 2 �g of each RNA sample in a reaction
volume of 100 �l. After an initial 10 min at 25°C, reverse
transcription was conducted at 37°C for 120 min. The resulting
cDNA was stored at �20°C. Quantitative real-time PCR exper-
iments were performed with a 7900HT Fast Real-Time PCR
System from Applied Biosystems. Each assay sample was run in
triplicates alongside its reference assay (on the same plate).
Samples comprised those listed in Table 1.

TaqMan Gene Expression Assays (Applied Biosystems) were
used according to the manufacturer’s recommendations. Cycling
parameters comprised an initial polymerase activation step (10
min at 95°C), followed by 2-step cycling for 40 cycles (15 sec at
95°C and 60 sec at 60°C). Ten-microliter reactions were com-
posed of TaqMan Fast Universal Master Mix without AmpErase
UNG and cDNA inputs equivalent to the following amounts of
total RNA: 1 ng (AIM2, ACTB, AQP9, CD44, DAB2, DUSP1,
HLA-DQA1, MXD1, NFKBIA, PPIF, PPP1R15A, PPP3CA,
NRGN, RPLP, SLC14A1, TncRNA, ZBTB16; 2 ng (COX-2,
IL-1b, IL-8, TNF-a, BCL-XL, TGF-b, and HPRT); 5 ng (IER3,
P2RX1, EGR1, MLH3, TNFRSF17, ACTB, PRKCB1,
NDUFB2, and HPRT). Ct values were normalized to RPLP (1 or
2 ng) or HPRT (5 ng), respectively.

A subset of samples (Table 1) was run on TaqMan Low-
Density Array Human Immune Profiling Arrays. cDNA samples
equivalent to 100 ng of total RNA were loaded in TaqMan
Universal Master Mix without AmpErase UNG in each fill port.

For Immune Profiling Array assays, 28S ribosomal RNA served
as the reference.

SYBR green assays (for ANXA1, MARCH7, CAPZA1,
HIF1A, SUZ12, P2Y5, PCNP, ROCK1, SF3B1, SP3, TAF7, and
YPEL5) were performed by using oligonucleotide primer pairs
described in ref. 17. Ten-microliter reactions were composed of
300 nM primer, Power SYBR green Master Mix (Applied
Biosystems), and cDNA inputs equivalent to 1 ng of total RNA.
Cycling parameter comprised an initial polymerase activation
step (10 min at 95°C), followed by a 2-step cycling for 40 cycles
(15 sec at 95°C and 1 min at 60°C). Relative expression values
were normalized to �-actin or 28S ribosomal RNAs; use of either
reference yielded comparable results.

Statistical Analyses. Primer efficiencies were evaluated by running
standard curves with input amounts ranging between 10 pg and
10 ng by using the following equation: Ex �10(�1/slope) �1. The
relative expression values (V) of target genes were calculated by
the �Ct method corrected for amplification efficiencies as
described (28).

V �
�1 � Ereference�

�Ctreference�

�1 � E target�
�Cttarget�

Using ANOVA, we tested for differences in mean relative
expression values between HD manifest and control groups (or,
alternatively, among three groups: controls, presymptomatic/
early, and moderate/advanced, or four groups: controls, pre-
symptomatic, early, moderate/advanced; see SI Figs. 4–6). A
preliminary analysis explored gender and age as additional
factors, but no significant age effect was detected for any of the
genes analyzed by QPCR (significance level 0.05), and only one
gene (MLH3) showed a significant difference between women
and men that was independent of HD status.
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