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We consider the flow of a dilute suspension of equisized solid spheres in a viscous fluid.
The viscosity of such a suspension is dependent on the volume fraction, c, of solid parti-
cles. If the particles are perfectly smooth, then solid spheres will not come into contact,
because lubrication forces resist their approach. In this paper, however, we consider par-
ticles with microscopic surface asperities such that they are able to make contact. For
straining motions we calculate the O(c2) coefficient of the resultant viscosity, due to pair-
wise interactions. For shearing motions (for which the viscosity is undetermined because
of closed orbits on which the probability distribution is unknown) we calculate the c2

contribution to the normal stresses N1 and N2. The viscosity in strain is shown to be
slightly lower than that for perfectly smooth spheres, though the increase in the O(c)
term caused by the increased effective radius due to surface asperities will counteract this
decrease. The viscosity increases with increasing contact friction coefficient. The normal
stresses N1 and N2 are zero if the surface roughness height is less than a critical value of
2.11× 10−4 times the particle radius, and then become negative as the roughness height
is increased above this value. N1 is larger in magnitude than N2.
This file is not a faithful reproduction of the paper printed in JFM; rather, errors

which were discovered after publication have been corrected here in red.
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1. Introduction

The study of suspensions of small particles has been of interest to scientists for many
years. When the particles are small enough that the suspending fluid may be assumed
to have no inertia, but not so small that Brownian motion need be taken into account,
particular progress for dilute suspensions may be made without recourse to large-scale
simulations.
In this paper we study dilute suspensions of rough spherical particles in a Newtonian

fluid. It is well known (Einstein 1906, 1911) that a very dilute suspension of spheres,
whether rough or smooth (provided the roughness is small compared to the particle
radius), behaves to first order in the small volume fraction c as a Newtonian fluid with
effective viscosity µ(1 + 5c/2), where µ is the viscosity of the suspending fluid.
The corresponding calculation at order c2 is more difficult. For perfectly smooth

spheres, Batchelor & Green (1972a,b) calculated the stresses acting in particular flows,
but the rheology of the fluid depends on the history of the bulk flow and cannot be simply
expressed for all flows. For example, in simple shear flow two particles may rotate end-
lessly around one another, causing a viscosity which is periodic in time. In axisymmetric
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straining flows, on the other hand, the O(c2) term of the viscosity is known in terms of
mobility functions, which we define later, and the total or effective viscosity for equisized
smooth spheres is

µ

(
1 +

5

2
c+

[
5

2
+

15

2

∫ ∞

2

J(s)q(s)s2 ds

]
c2 +O(c3)

)
. (1.1)

Because the calculation at O(c2) involves the interactions between pairs of particles, the
issue of microscopic particle roughness becomes important. It has been observed (Batch-
elor & Green 1972a, p. 417),

“. . . that in practice there may be departures from the theoretical formulae due
to small surface irregularities. . . ”

Perfectly smooth spheres subject to finite forces in a continuum fluid can never come into
contact because of the lubrication forces between them. However, experiments (Arp &
Mason 1977; Zeng, Kerns & Davis 1996) have shown conclusively that, for real particles
which appear smooth to the naked eye, microscopic surface asperities can cause inter-
particle contacts. These contacts break the reversibility condition which is a property
of Stokes flow, and can lead to an empty wake behind each particle in some flows. The
contacts can also (by conservation of particles) lead to surfaces, fixed relative to one
particle, on which there is a high probability of finding a second particle. These two mi-
crostructural effects are expected to have repercussions for the rheology of the suspension
containing rough particles.
The rheology at order c2 will depend on the model chosen to describe the surface

asperities of the particles and the contact between them. There are three models in com-
mon use (see, for example, da Cunha & Hinch 1996; Davis 1992): hard-sphere repulsion,
stick-rotate and roll-slip. Hard-sphere repulsion is a special case of the roll-slip model,
and experimental results shown by Zeng et al. (1996) suggest that the roll-slip model is
more realistic than the stick-rotate model. Thus, in this paper we use the roll-slip fric-
tion model (including the frictionless limit of hard-sphere repulsion) to investigate the
rheology of a dilute suspension of rough particles.
In §2 we pose the problem rigorously, and solve it as far as is possible for a general

imposed flow field. In §3 we complete the calculation for axisymmetric straining motions,
and in §4 for shear flows. Concluding remarks are given in §5.

2. Formulation of the problem

We consider a Newtonian fluid of viscosity µ, containing neutrally buoyant suspended
solid spherical particles of radius a at volume fraction c. The particles are force- and
torque-free on a macroscopic level, which is to say the only forces (other than hydrody-
namic forces) acting on individual particles are short-range and symmetrical. We allow
for contact forces between the particles, which lead to no net force acting on the system
as a whole.
When two particles come into contact, they behave according to the roll-slip model

of Davis (1992). At an interparticle surface-surface separation hc = aζ, with ζ � 1,
their approach is halted by small surface asperities. They remain in contact (with the
minimum gap between their nominal surfaces equal to hc) for as long as the net hy-
drodynamic forces acting on them are compressive. Once the hydrodynamic forces act
to separate the spheres, the contact breaks and there is no contact force; the particles
separate unhindered except by hydrodynamic forces. While the particles are in contact,
the normal contact force (the contact force acting parallel to the line of centres) on each
sphere is equal and opposite to the normal hydrodynamic force on that sphere. The in-
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teraction forces in a direction tangent to the contacting surfaces are then assumed to
be a combination of hydrodynamic forces unaffected by surface roughness and contact,
and a frictional contact force. The tangential friction force depends both on the hydrody-
namic forces and on a coefficient of friction, ν. Essentially, if the magnitude of the normal
force is large enough, then the particles roll around one another with the frictional force
balancing the hydrodynamic force at contact. Otherwise a frictional force (of magnitude
ν times the magnitude of the normal force) is exerted to oppose the relative tangential
motion, and the particles slip around each other. In the limit ν = 0, the contact force
only has a normal component and is just a hard-sphere repulsion. This model has two
dimensionless parameters, ν and ζ, with typical physical values (Smart & Leighton 1989)
of 10−3 < ζ < 10−2 and (Zeng et al. 1996) 0.1 < ν < 0.4.
The detailed description of the problem (with smooth particles) can be found in Batch-

elor (1967), pp. 246–253. Here we present only a shortened version.
The far-field velocity is imposed as the linear function

U∞ = Ω×x+ E·x, (2.1)

where Eij is a traceless and symmetric tensor. The suspension takes on this velocity only
in an average sense, as the presence of rigid particles and the interactions between them
affect the local flow.
The stress tensor at any point in the ambient fluid (with Newtonian viscosity µ) is

given by

Σij = −pδij + 2µEij +Σ
(p)
ij , (2.2)

where the particle stress (deriving from the rigidity of a particle in its interaction with
the surrounding suspension, and from interparticle forces) is summed over all particles.
The isotropic term is the pressure in the fluid, which is perturbed by the presence of the
particles (Brady 1993). Since the fluid is incompressible, however, this pressure may be
determined only up to an arbitrary constant and has no effect on the flow. We choose
not to investigate here the perturbation to it caused by the presence of the particles. We
expand the extra (particle) stress in powers of the small volume concentration, c, while
averaging over the volume of the suspension. The leading-order term (which is O(c)) is
derived from consideration of the extra dissipation caused by an isolated sphere in the
far-field flow U∞, and the O(c2) term from binary interactions between pairs of particles.
Following the work of Zinchenko (1984), we can express the extra stress as

Σ(p) = 5cµE+ 5c2µE

+
15c2µ

4πa3

∫
r≥2a

[(
Sh(x0,x0 + r)

(20/3)πµa3
− E

)
p(r)− e(x0,x0 + r)

]
dr

+
9c2

32π2a6

∫
contact

Sc(x0,x0 + r)p(r)dr +O(c3), (2.3)

in which n = r/r,

Sh = 20
3 πa3µ{(1 +K(s))E+ [(E·n)n+ n(E·n)]L(s)

+ (n·E·n)[nnM(s)− ( 23L(s) +
1
3M(s))I ]} (2.4)

is the stresslet due to the rigidity of one particle at x0 in the presence of a second particle
at x0 + r, with s = r/a, and p(r) is the pair distribution function: the probability of
finding a particle centred at x0+r given that there is a particle centred at x0 (normalised
so that p(r) → 1 as r → ∞). The term e(x0,x0 + r) is the perturbation to the rate-
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of-strain tensor at x0 caused by a single particle centred at x0 + r. It was devised by
Batchelor & Green (1972a) to make the stress integral uniformly convergent (so that it is
valid to perform the integrations in any order), and if the angle integrals are carried out
first it does not contribute to the stress. Thus, if the angle integrals are always performed
before the radial integral, we have

Σ(p) = 5cµE+ 5c2µE+
9c2

16π2a6

∫
contact

Sc(x0,x0 + r)p(r) dr

+
15c2µ

4πa3

∫
r≥2a

[K(s)E+ [(E·n)n+ n(E·n)]L(s)

+ (n·E·n)[nnM(s)− ( 23L(s) +
1
3M(s))I ]

]
p(r) dr +O(c3), (2.5)

The unfamiliar third term (derived in appendix B), ignoring the isotropic part, is

Sc(x0,x0 + r) = 1
2as[1−A(s)](F c·n)(nn− 1

3 I)

+1
4as[1−B(s)− 2(yh11 + yh12)](F cn+ nF c − 2nn(F c·n)). (2.6)

The coefficient outside the integral of the force dipole is simply n2, where n is the number
density 3c/4πa3. The hydrodynamic functions A, B, J , K, L and M , as well as xg

αβ , y
g
αβ

and yhαβ , have been thoroughly investigated in previous work (see, for example, Kim &
Karrila 1991).
Before we can make further progress in identifying the pair-distribution function (the

major piece of missing information from the formulation above), we need to find the rela-
tive velocities of two particles at specific relative positions, and the force acting between
them if they are in contact. In this way we use a trajectory-style analysis to calculate
the pair-distribution function. This ability is the major reason why this calculation is
easier than the corresponding problem in which Brownian motion is not neglected (see,
for example, Brady & Morris 1997). We consider the interaction between two spheres,
as specified above, labelled 1 and 2. We place particle 1 instantaneously at the origin of
the linear flow field U∞ of (2.1), and particle 2 at r. The dimensionless centre-to-centre
vector is s = r/a, with modulus s. The particles make contact at s = sc ≡ 2 + ζ (where
ζ is the dimensionless roughness height). Throughout this paper, we denote the value of
a mobility function at this separation as X∗ = X(s = sc).

2.1. Velocities

2.1.1. Particles not in contact

We define the mobility functions A and B via the equations governing the motion of
the centre of particle 2 relative to the centre of particle 1:

dr

dt
= V = as[Ω×n+ (1−B(s))E·n+ (B(s)−A(s))(n·E·n)n]. (2.7)

The mobilities K, L and M are defined by the stresslet produced by particle 1 in the
presence of particle 2, given by (2.4), and all of the mobility functions are given in Kim
& Karrila (1991).

2.1.2. Particles in rolling contact

If we take the fluid velocities on the surface of the particles to be

u1 = U1 + ω1×x, (2.8)

u2 = U2 + ω2×(x− as), (2.9)
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then the condition for rolling motion (no relative motion at the point of contact, x =
ascn/2) is

U2 = U1 +
1
2asc(ω1 + ω2)×n. (2.10)

The velocities of the two particles may also be derived from the grand mobility matrix
formulation (see, for example, Kim & Karrila 1991). The external flow field and the
contact forces and torques acting on each particle are combined to give the velocities. In
this case, if the contact force acting on particle 1 is F c then the contact force on particle
2 is −F c and the torques are both ascn×F c/2.
Substitution of the resulting forms for the velocities into (2.10) and some manipulation

yields the two conditions

β1(I− nn)·F c = −µa2β2(I− nn)·E·n (2.11)

and

β3F c·n = µa2sc(1−A∗)n·E·n, (2.12)

where the constants βi, which derive from the scalar two-sphere mobility functions, are
given in Appendix A.
The relative velocity of the two particles is

V r = asc[Ω×n+ β4(I− nn)·E·n], (2.13)

and we can also compute the contact stresslet, using (2.6), and neglecting the term
(1 − A∗)2/β3 which is O(ζ) for solid spheres (and asymptotically small even for liquid
drops):

Scr = µa3
β2β5

4β1
[(I− nn)·E·nn+ n(I− nn)·E·n]. (2.14)

2.1.3. Particles in slipping contact

For two particles in slipping contact, the normal contact force is the same as it would be
for rolling, but the tangential force, while in the same direction, is limited in magnitude
by ν times the magnitude of the normal force:

(I− nn)·F c = −ν(n·F c)
(I− nn)·E·n
|(I− nn)·E·n|

. (2.15)

For simplicity, we assume that the coefficients of rolling and slipping friction are the
same. Substituting the normal force from (2.12), we obtain

F c = µa2
sc(1−A∗)

β3
(n·E·n)

[
n−ν

(I− nn)·E·n
|(I− nn)·E·n|

]
. (2.16)

We can deduce the relative velocity of slipping contact:

V s = asc

[
Ω×n+

{
1−B∗+

νβ6(n·E·n)
|(I− nn)·E·n|

}
(I− nn)·E·n

]
. (2.17)

We can also (as for rolling) compute the contact stresslet, neglecting terms of O(ζ):

Scs = +µa3
sc(1−A∗)β5ν

4β3
(n·E·n)

{
(I− nn)·E·nn+ n(I− nn)·E·n

|(I− nn)·E·n|

}
. (2.18)

The form of the friction model is such that the physical boundary between rolling and
slipping motion is given by the position at which the relative velocity of the two spheres
would be the same in rolling and slipping:

(1−B∗ − β4)|(I− nn)·E·n| = −νβ6(n·E·n). (2.19)
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2.2. Pair distribution function

The pair distribution function p(r) is defined as the probability of finding a particle
centred at position r given that the test particle (particle 1) is centred at the origin.
Because this function depends on the flow history, little can be ascertained about it
without specifying the flow field.
In general, for each specific flow there will be five distinct regions of space in which to

determine the probability distribution. These are:
(i) the bulk of space, for which the particle trajectories are unaffected by microscopic

particle roughness and the probability distribution is the same as for the same flow
containing smooth spheres;
(ii) the empty wake behind the particle of interest;
(iii) that part of the surface s = sc on which two particles are in rolling contact;
(iv) that part of the surface s = sc on which two particles are in sliding contact; and
(v) a surface in space separating region (i) from the empty wake (ii), if such a wake

exists.
In each of these regions, the probability distribution is governed by the Liouville equa-
tion (Batchelor & Green 1972a) (which is the high-Péclet-number form of the Smolu-
chowski equation):

∇·[p(r)V (r)] = 0. (2.20)

The pair distribution function may be known for part or all of the bulk region. It
was shown by Batchelor & Green (1972a) that, for any material point which has come
from infinity during the history of the flow, and has not been involved in a contact, the
probability density at that point may be expressed as

p(r) = q(s), (2.21)

in which s = r/a,

1/q(s) = (1−A(s))φ3(s), (2.22)

φ(s) = exp

[∫ ∞

s

A(s′)−B(s′)

1−A(s′)

ds′

s′

]
, (2.23)

and q(s) → 1 as s → ∞. To find the probability density in any other region requires us
first to specify the imposed flow field.

3. Axisymmetric straining flow

Our first flow field is a straining motion, U∞ = E·r, and we specify

E =

 E 0 0
0 E 0
0 0 −2E

 . (3.1)

The case E > 0 is an axisymmetric straining motion with fluid entering along the z-
direction and leaving in the (x,y)-plane. In the case E < 0, the fluid enters in the
(x,y)-plane and leaves in the z-direction. We define θ to be the angle subtended with the
z-axis.
The trajectories swept out by the centre of particle 2 (relative to the centre of particle

1) are shown schematically in figure 1. Note that, when the trajectory for smooth spheres
reaches the boundary s = 2+ ζ, it is deflected. Outside the limiting trajectory αγ, along
which the two particles just come into contact (at β), the behaviour of the system is
exactly as it would be for perfectly smooth spheres.
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Figure 1. Trajectories of the centre of particle 2 relative to the centre of particle 1 in axisym-
metric straining flow. When E > 0 (biaxial expansion) the z-axis of symmetry is vertical in
the diagram; when E < 0 (uniaxial expansion or biaxial contraction) it is horizontal. In either
case the pattern of trajectories is made three-dimensional by rotation about the z-axis. The
dimensionless roughness height ζ is inflated for illustrative purposes.

The contact point β subtends an angle θ0 with the z-axis; this angle is where n·E·n = 0,
i.e. θ0 = arctan (21/2). Along trajectories which would, for smooth spheres, have the two
spheres passing within a gap width less than ζ of each other, the particles come into
contact and the model of Davis (1992) is used to determine the behaviour of the doublet
of contacting particles. The particles remain in contact while they are in the compressive
quadrant of the flow, and as they pass into the extensional quadrant of the flow they
will separate, behaving as smooth spheres once the contact is over. It is important to
note the “shadow” region in the wake of particle 1 (shaded in figure 1), which exists
because the particle-particle contacts support compressive but not tensile forces; the
pair density function p will be zero in this region. On its border (trajectory βγ) there
will be a high density of particles; this (two-dimensional) sheet region contains all the
trajectories of particles which, in the smooth case, would have given trajectories in the
(three-dimensional) shadow region.

3.1. Calculation of the pair-distribution function

The domain of interest can be divided up into three types of regions for calculation of the
pair density p. First we have forbidden regions. These volumes have p = 0, and are given
by the ‘excluded volume’ region s < 2 + ζ and the shadow region (region (ii) of §2.2).
Second, we have the volume (region (i) of §2.2) in which the probability is just as it would
be if the spheres were perfectly smooth. This region is all of s > 2 + ζ, except for the
shadow region and its border. Finally, we have surface regions of high probability density,
which result from particle-particle contact. In effect, these surfaces are where the excess
probability density from the forbidden regions is to be found. On each such surface, we
have a surface pair density function to describe the motion of the particles. The first
surface (region (iii)) is part of the compressive quadrant of the boundary s = 2 + ζ, on
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which the particles are in rolling contact and we have surface density P r. In the rest
of the compressive quadrant (region (iv)), the particles are in slipping contact, and we
have surface probability density P s. The third surface is the outer border of the shadow
region (region (v)), given by rotating the curve βγ and its reflection in the (x,y)-plane
about the z-axis. On this sheet, we have a pair density P sh . All three of these surface
densities have dimensions of length (volume per area).

3.1.1. Bulk region

In the bulk, all the trajectories have come from infinity, and so (2.21) gives

p(s) = q(s) (3.2)

for s > 2 + ζ, except in the shadow region or on its border.

3.1.2. Contact regions

We note that there is a flux of particle pairs onto the compressive quadrant of the sur-
face s = sc ≡ 2+ ζ; the dimensionless flux is given by q(sc)Vr(sc). The radial component
of the relative velocity is

Vr = as(1−A)(n·E·n), (3.3)

and thus, since the surface densities P r (and P s) are defined by the Liouville balance
equation, we have

∇s·[P rV r] = −q(s)Vr = −ascφ
−3(sc)n·E·n, (3.4)

where ∇s·u is the surface divergence of u, which may be expressed as

∇s·u =
1

as sin θ

∂(sin θuθ)

∂θ
(3.5)

if u = uθeθ. Substituting the form of E into (2.17) and (2.13), we obtain the relative
velocities of the two particles when in rolling and slipping contact, respectively:

V r = 3aβ4scE sin θ cos θeθ, (3.6)

V s = ascE[3(1−B∗) sin θ cos θ±νβ6(1− 3 cos2 θ)]eθ, (3.7)

with the upper sign corresponding to the case E > 0.
There is a critical value of θ at which slipping begins. In the case E > 0 we have purely

rolling motion for θ < θ+c , while for θ > θ+c there is some slipping. If E < 0 the rolling
occurs for θ > θ−c . The critical angle in each case is given by the point where the two
velocities are identical (2.19):

3(β4 +B∗ − 1) sin θ±c cos θ±c = ±νβ6(1− 3 cos2 θ±c ), (3.8)

within the limits

0 < θ+c < θ0 < θ−c < π/2. (3.9)

In the rolling region, we solve (3.4) with velocity (3.6) to obtain

P r =
asc

3β4φ3(sc)
, (3.10)

in which we have neglected the general solution P r = sin−2 θ cos−1 θ because it generates
an unphysical surface source at θ = 0 (for E > 0) and θ = π/2 (for E < 0). In the
slipping region we solve (3.4) with velocity (3.7) for the probability

P s =
asc sin θ cos θφ

−3(sc)

[3(1−B∗) sin θ cos θ±νβ6(1− 3 cos2 θ)]
. (3.11)
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In this case, the coefficient of the complementary solution is shown to be zero by matching
P r and P s at θ = θc.

3.1.3. Sheet region

The surface bordering the shadow region is given, in polar coordinates, as

s3 sin2 θ cos θ = Ccrφ
3(s), Ccr = 2(27)−1/2s3cφ

−3(sc). (3.12)

In this region, we can once more use the Liouville equation:

∇s·[P shV ] = 0, (3.13)

with the gradient taking place along the sheet surface, and, because the particles are no
longer in contact, the relative velocity of the two particles is

V = as[(1−B(s))E·n+ (B(s)−A(s))(n·E·n)n]. (3.14)

The upstream boundary condition is

P sh
0 = P s

θ0 =
asc

3φ3(sc)(1−B∗)
. (3.15)

Equation (3.13) may be thought of as governing the flow of a fluid whose density at
each point is given by P sh . Then (3.13) is a condition of mass conservation of this fluid,
and equivalently we may state that the flux of this fluid through each s-station in unit
time is independent of s. Integrating between two arbitrary values of s and applying
the divergence theorem, it may be shown that P sh |V |s sin θ is constant. Applying the
upstream boundary condition, and noting that 1−B∗ > 0, we may write

P sh |V |s sin θ =
2a2s3c

(27)1/2φ3(sc)
|E|. (3.16)

3.2. Form of the extra stress

We seek to evaluate the integrals in (2.5). As discussed in §2, the term in (2.3) involving
e(x0,x0 + r) may be neglected provided that the angular integrations are carried out
before the radial integration. We note that the axial symmetry of the flow and various

regions implies that Σ
(p)
11 = Σ

(p)
22 and Σ

(p)
ij = 0 if i 6= j. Since the pressure of the entire

system is arbitrary because of the incompressibility condition, and does not affect the
flow of the suspension, we neglect isotropic terms and consider only the deviatoric part
of the extra stress. The condition tr(Σ) = 0 then requires Σ11 = − 1

2Σ33, and so the
deviatoric stress is a scalar multiple of the global rate of strain:

Σij = 2µ∗Eij , (3.17)

where µ∗ is the effective viscosity of the suspension. We can sum the contributions from
all our regions, to express the result as

µ∗ = µ
(
1 + 5

2c+ c2
[
5
2 + kbulk + kroll + kslip + ksheet

]
+O(c3)

)
, (3.18)

which is sufficient to specify all of the deviatoric stress components.

3.2.1. Bulk region

We start with the contribution from the bulk, in which Sc = 0 and p(r) = q(s):

kbulk = − 15

8πa3

∫
bulk

(
−2K(s) + [−4 cos2 θ]L(s)

+ (1− 3 cos2 θ)[cos2 θM(s)− ( 23L(s) +
1
3M(s))]

)
q(s)dr. (3.19)
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Carrying out the angle integrals yields

k±bulk =
15

2

∫ ∞

sc

J± ∓ υ±
[
K + 1

3 (υ
2
± + 1)L+ 1

6

(
9
5υ

4
± − 2υ2

± + 1
)
M
]
q(s)s2ds, (3.20)

in which the upper sign corresponds to E > 0,

J+(s) = K(s) + 2
3L(s) +

2
15M(s), J−(s) = 0, (3.21)

and

υ±(1− υ2
±) = Ccrφ

3(s)/s3, 0 < υ+ < 3−1/2 < υ− < 1. (3.22)

3.2.2. Rolling surface

The next contribution comes from that part of the compressive contact region in which
the spheres are in rolling contact. Using (2.3) and (2.14),

Σ
(p)
roll =

15c2µ

4πa3

∫
roll

P r [K(s)E+ [(E·n)n+ n(E·n)]L(s)

+ (n·E·n)[(nn− 1
3 I)M(s)− 2

3L(s)I ]
]
dS

+
9c2µ

16π2a3
1
4 (β2β5/β1)

∫
roll

[((I− nn)·E·nn+ n(I− nn)·E·n)]P r dS. (3.23)

This region is given by 0 < θ < θ+c and π − θ+c < θ < π for E > 0, which gives double
the contribution from the 0 < θ < θ+c region, and θ−c < θ < π − θ−c for E < 0, which
gives double the contribution from the region θ−c < θ < π/2, and the volume integral
was converted to a surface integral by posing

P r = pdr = apds

in the immediate vicinity of the rolling surface. Thus dS = a2s2 sin θ dθ dφ.
Now we substitute our calculated probability, (3.10), to obtain

k±roll =
3β2β5s

3
c

2560πβ1β4φ3(sc)
[30C±

1 + 10C±
3 − 3C±

5 ]

+
s3c

192β4φ3(sc)
[10C±

1 (48K∗ + 28L∗ + 5M∗) + 5C±
3 (8L∗ +M∗) + 9C±

5 M∗], (3.24)

in which we have denoted X∗ ≡ X(sc) for X = K, L or M , and

C+
n = 1− cosnθ+c , C−

n = cosnθ−c . (3.25)

3.2.3. Slipping surface

The next contribution we consider comes from the rest of the contact surface, i.e. the
region of slipping, which is equivalent to twice the region θ+c < θ < θ0 = arctan (21/2) if
E > 0 and twice θ0 < θ < θ−c if E < 0. Using (2.18) and (3.11), the analysis proceeds as
in the rolling case to obtain

kslip = +
9s4c

32πφ3(sc)

ν(1−A∗)β5

β3
[I±2 − 3I±4 ]

+
5s3c

4φ3(sc)
[(6K∗ + 2L∗ +M∗)I±1 + 6(L∗ −M∗)I±3 + 9M∗I±5 ], (3.26)
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where X∗ = X(sc), as before, and

I±n =


±
∫ θ0

θ±
c

sin2 θ cosn θ dθ

[3(1−B∗) sin θ cos θ±νβ6(1− 3 cos2 θ)]
for n odd,∫ θ0

θ±
c

sin3 θ cosn θ dθ

[3(1−B∗) sin θ cos θ±νβ6(1− 3 cos2 θ)]
for n even.

(3.27)

3.2.4. Sheet region

The final contribution to our integral comes from the sheet which separates the bulk
and shadow regions:

Σ
(p)
sheet =

15c2µ

4πa3

∫
sheet

(
S(x0,x0 + r)

(20/3)πµa3
− E

)
P shdS, (3.28)

with S defined in (2.4), the conversion to a surface integral being

dS = a2|V | sin θ
Vs

sdsdφ, P sh = p(r)adθ (3.29)

and the integral being carried out along the sheet surface

s3 sin2 θ cos θ = Ccrφ
3(s) ≡ 2s3cφ

3(s)φ−3(sc)/27
1/2. (3.30)

This surface is described by cos θ = υ±(s), with υ±(s) given by (3.22). We have

ksheet =
15

4πa3

∫
sheet

(
K(s) + 2 cos2 θL(s)

− 1
2 (1− 3 cos2 θ)[cos2 θM(s)− ( 23L(s) +

1
3M(s))]

)
P shdS. (3.31)

Now the probability is given by (3.16), and the relative velocity along the line of centres
may be expressed as

Vs = dr/dt = as[(1−A(s))n·E·n] = aEs(1−A(s))(1− 3 cos2 θ). (3.32)

Thus,

k±sheet =
5s3c

31/2φ3(sc)

∫ ∞

sc

[
K + 1

3 (3υ
2
± + 1)L+ 1

6 (3υ
2
± − 1)2M

] ds

s(1−A)|1− 3υ2
±|

.

(3.33)

3.3. Summary of viscosity results

Throughout this section, the upper sign corresponds to E > 0 and the lower to E < 0.
The viscosity is given by

µ± = µ
[
1 + 5

2c+ k±c
2 +O(c3)

]
, (3.34)

in which

k± = 5
2 + k±bulk + k±roll + k±slip + k±sheet (3.35)

and the individual terms are given by (3.20), (3.24), (3.26) and (3.33).

3.3.1. Comparison with drops

In order to check our work as far as possible, we compare our results with a similar
calculation for spherical drops which come into contact due to their interfacial mobility
but are not allowed to coalesce (Zinchenko 1984, equation (2.12)). If we put ν = 0,
then there is no tangential friction between the particles and their interaction should be
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Figure 2. Plots of the c2 viscosity coefficients (a) k+ and (b) k− against the friction coefficient
ν for ζ = 10−7, 10−5, 10−3 and 10−2 (top to bottom). Figure modified from original paper.

similar to that between two drops. The information that the spheres are fluid or solid is
contained in the form of the mobilities, and so if we set sc = 2 without using any other
information, we should have the correct form for two fluid drops.
The critical angles become θ+c = 0, θ−c = π/2. The C±

n terms used in our expressions
all become zero, and, if we denote (I±j )′ = (31/2)I±j /(1−B∗), then

(I+1 )′ = (31/2 − 1)/3, (I−1 )′ = 1/3,
(I+2 )′ = 2(21/2)/27, (I−2 )′ = (2(21/2)− 3(31/2))/27,
(I+3 )′ = (3(31/2)− 1)/27, (I−3 )′ = 1/27,
(I+4 )′ = 2(21/2)/45, (I−4 )′ = 2(21/2 − 31/2)/45,
(I+5 )′ = (9(31/2)− 1)/135, (I−5 )′ = 1/135.

(3.36)

Our viscosity result becomes

k± =
5

2
+

20

φ3(2)(1−B∗)

[
J∗
± ∓ 1

31/2
(
K∗ + 4

9L
∗ + 4

45M
∗)]

+
40

31/2φ3(2)

∫ ∞

2

[
K +

(
υ2
± + 1

3

)
L+ 1

6 (3υ
2
± − 1)2M

] ds

s(1−A)|1− 3υ2
+|

+
15

2

∫ ∞

2

{
J± ∓ υ±

[
K + 1

3 (υ
2
± + 1)L+ 1

6 (
9
5υ

4
± − 2υ2

± + 1)M
]}

q(s)s2ds, (3.37)

which agrees with Zinchenko’s work when we note that
• Zinchenko’s + corresponds to our −, and vice versa
• For solid spheres, Zinchenko’s α = 1.

Both (3.37) and Zinchenko’s (2.12) may be further simplified for the case of fully smooth,
solid spheres by noting that φ(s) → ∞ as s → 2 for solid spheres, and υ+ = 0, υ− = 1,
yielding equation (5.6) of Batchelor & Green (1972a),

k± =
5

2
+

15

2

∫ ∞

2

J(s)q(s)s2ds. (3.38)

3.3.2. Numerical results and discussion

An example set of results is shown in figure 2, with k± plotted against ν for four
sample values of ζ. As expected, the limit ζ → 0 is that of smooth spheres, for which
k+ = k− = ksmooth ≈ 6.9, independent of ν. Batchelor & Green (1972a), Zinchenko
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(1984) and Kim & Mifflin (1985) reported ksmooth = 7.6, 7.0 and 7.1, respectively, with
the small differences due to the accuracies of the mobility functions employed. The latter
two are thought to be the most accurate, and our result is 6.9, using a combination
of the mobility data from Kim & Mifflin (1985) and far- and near-field asymptotics.
Unsurprisingly, the viscosities increase with increasing friction coefficient, ν. The viscosity
is always lower for rough spheres than for smooth ones, with the effect being more marked
for larger roughness heights and for lower coefficients of friction.
In figure 3, we plot the individual contributions to the overall viscosity coefficient.

Figure 3(a) shows the reduction caused by the excluded region 2 < s < sc, expressed as
a negative term,

kexc = − 15
2

∫ sc

2

J(s)q(s)s2 ds = 15
2

∫ ∞

sc

J(s)q(s)s2 ds− ksmooth ,

representing the isotropic part of the contribution from the bulk region for rough spheres
minus that for smooth spheres. This reduction is relatively large in magnitude, reaching
−1.1 at ζ = 10−2. Because both the excluded volume region and the smooth-sphere
probability distribution are spherically symmetric and do not depend on the sign of E,
kexc is independent of the sign of E. The contribution shown in figure 3(b) from the sheet
and wake regions combined contains the remainder of the contribution from the bulk (a
negative contribution from the empty wake, kwake = kbulk − (ksmooth + kexc)) added to
the sheet region, which gives a positive contribution. The combination of the two terms
is always negative.
Figures 3(c,d ) show the contribution to the dissipation from the rolling and slipping

contact regions, respectively. Because they are derived from the particle contacts, the
dissipation values depend on ν as well as ζ. The dissipation due to rolling increases as
ν increases, primarily because the area of the contact surface in which rolling occurs
increases. Similarly, the dissipation due to the slipping region decreases with increasing
ν. Although these two contributions are roughly the same order of magnitude, as the
friction coefficient increases, the increase in dissipation in the rolling region dominates
over the decrease in the slipping region. This is to be expected: addition of a source
of dissipation (friction) to the problem increases the overall dissipation and hence the
viscosity.
The lowest viscosity (i.e., the greatest deviation from the smooth-sphere viscosity) for

a specific roughness height is at ν = 0, the limit in which all contact motion is slipping.
In figure 2 we observe that, as ν increases, the curves asymptote to a value lower than
the smooth limit. Thus, in figure 4 we plot the limits of k± for ν = 0 and ν → ∞ over a
broad range of ζ.
We observe that, in all four cases (ν → 0 and ν → ∞, E > 0 and E < 0) the results are

qualitatively similar, yielding a viscosity considerably lower than that for smooth spheres.
In all cases, the viscosity for ν → ∞ is higher than that for ν → 0 and the viscosity for
E < 0 is lower than that for E > 0. For very small roughness heights we can see that, as
expected, all four viscosity coefficients converge to the same value ksmooth ≈ 6.9; however,
the difference is significant even for ζ = 10−6 (for which a particle of 0.1mm radius is
molecularly smooth), and so roughness is expected always to play a rôle.
There is another possible effect of surface asperities on the viscosity of the suspension.

The change in the maximum radius of each sphere may cause extra dissipation in the
O(c) term, which is caused by the dissipation around each particle in isolation. By the
minimum dissipation theorem, the dissipation caused by any rough particle with maxi-
mum diameter 2a(1+ ζ) is bounded above by the dissipation caused by a smooth sphere
with exactly that diameter. We therefore assume this value (the sphere has effective ra-
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Figure 3. The contributions to the c2 viscosity coefficient k± from the (a) excluded volume, (b)
sheet and wake, (c) rolling contact and (d ) slipping contact regions of the straining flow. Since
the contributions from the excluded region s < sc, the sheet and the wake are independent of
ν, parts (a) and (b) are plotted against ζ. In part (b) the upper curve is for E > 0 and the lower
for E < 0. Parts (c) and (d ) are plotted against ν for ζ = 10−2, 10−3, 10−5 and 10−7 from top
to bottom, and the contributions for E < 0 are solid curves where those for E > 0 are dotted.
Parts (c) and (d) are modified from the original paper.
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Figure 4. Plot of the c2 viscosity coefficient k± against the dimensionless roughness height ζ in
the limits ν → 0 (no friction) and ν → ∞ (no slipping). The curves for E > 0 (biaxial expansion)
are solid for ν = 0 and short dashed for ν → ∞; the curves for E < 0 (uniaxial expansion) are
long dashed for ν = 0 and dot-dashed for ν → ∞. Figure modified from original paper.
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dius aeff = a(1 + ζ)) as a worst case, in order to estimate the maximum effect of this
dissipation. The effective volume concentration, which is proportional to a3eff , increases
by a factor of 1 + 3ζ for ζ � 1. Thus, our full adjusted viscosity becomes

µ± = µ
[
1 + 5

2c(1 + 3ζ) + k±c
2 +O(c3)

]
. (3.39)

The two terms which change the viscosity from the smooth sphere case are

∆µ± = cµ
[
15
2 ζ + (k± − ksmooth)c

]
, (3.40)

and so the O(c2) correction due to roughness is dominant for small roughness heights
and/or large particle concentrations. For illustration, we choose a roughness height of
ζ = 2× 10−3 and a friction coefficient ν = 0.25, which are typical of values measured for
glass and plastic spheres (Smart & Leighton 1989; Smart et al. 1993; Zeng et al. 1996).
In this case, k+ − ksmooth = −0.15 and k− − ksmooth = −0.7, so that the O(c2) term is
more important if c > 0.1 for the biaxial expanding flow and c > 0.021 for the biaxial
contracting flow (bear in mind that the O(c) term in (3.40) is an upper limit). These
constraints both fall within the restriction of the analysis to dilute suspensions.

4. Simple shear flow

4.1. Introduction

For our second study, we consider simple shear flow, given in the absence of particles by
U∞ = (γ̇y, 0, 0); that is, (2.1) with

Ω = 1
2 γ̇(0, 0, −1), (4.1)

E = 1
2 γ̇

 0 1 0
1 0 0
0 0 0

 . (4.2)

We assume that γ̇ > 0 throughout this section, with the symmetry of the problem
providing the results for γ̇ < 0: if γ̇ → −γ̇ then Σ12 → −Σ12, and the other stress terms
are unchanged, and so the viscosity and normal stresses are unchanged.
Let us consider simple shear flow containing two spheres, one of which is centred at

the origin. The relative trajectories (Zinchenko 1984) are given by

y2 = a2φ2(s)[ξ2 +Ψ(s)], z = aφ(s)ξ3, (4.3)

in which

Ψ(s) =

∫ ∞

s

B(s′)s′ ds′

(1−A(s′))φ2(s′)
(4.4)

and φ(s) is as defined in (2.23). Along each individual trajectory, ξ2 and ξ3 are constant.
We use the Cartesian coordinates (x, y, z) given above in parallel with spherical polar

coordinates (s, θ, φ) given by

x = as cos θ, (4.5)

y = as sin θ cosφ, (4.6)

z = as sin θ sinφ. (4.7)

Using these coordinates, we note the following equalities:

n·E·n = γ̇ sin θ cos θ cosφ, (4.8)
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(a)

α

β

γ

δ

(b)

Figure 5. Trajectories in the (x, y) plane of the centre of particle 2 relative to particle 1 in
shear flow, (a) when all closed orbits pass within the contact surface, and (b) when some closed
orbits are entirely outside the contact surface. The bold trajectory represents symbolically the
trajectory dividing closed orbits from open trajectories. The dotted circles represent the contact
surface s = sc ≡ 2 + ζ. The shaded region represents forbidden areas where there will be no
particles once the flow is well-established; and on the edge of this region there may be a high
density of particles.

(I− nn)·E·n = 1
2 γ̇

 sin θ cosφ(1− 2 cos2 θ)
cos θ(1− 2 sin2 θ cos2 φ)
−2 sin2 θ cos θ sinφ cosφ

 . (4.9)

In the absence of surface irregularities, there are two types of relative trajectories:
• Open trajectories which arrive from infinity and depart to infinity
• Closed trajectories or cycles. These form the symmetric region

s2 sin2 θ cos2 φ < φ2(s)Ψ(s). (4.10)

The pair density function is not known for the closed orbits, and so the O(c2) viscosity
correction is indeterminate (Batchelor & Green 1972a).
When the surfaces of the spheres exhibit surface irregularities, however, the pattern of

relative trajectories is more complicated. Typical surface asperities have height around
10−3–10−2 of a particle radius (Smart & Leighton 1989). For two spheres interacting in
the (x,y)-plane, this size is large enough that all the closed orbits in that plane will be
affected by contact, and so their symmetry will be broken and the indeterminacy they
cause is abolished. This scenario is illustrated in figure 5(a).
On the other hand, when the two particles are initially offset in the z-direction, the

region of the contact surface which intersects with the sheet of trajectories of sphere 2 is
much smaller (sometimes nonexistent), and there will be entire closed trajectories which
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pass outside it. This case is shown in figure 5(b). It is important to note that both of these
streamline patterns can occur simultaneously in the same flow. Indeed, for any roughness
height large enough to break some closed trajectories, there will be both patterns in the
same flow, as there are closed orbits whose distance of closest approach is arbitrarily
large. This means that the viscosity is always undetermined (as discussed in §4.2).
If the height of the surface asperities is very small (i.e. the particles are exceptionally

smooth), it is possible for all of the contact surface to fall within the region of closed
trajectories. This case occurs when the minimum distance of approach of the trajec-
tory dividing closed orbits from open trajectories is greater than the roughness height.
Mathematically, it requires that

φ2(sc)Ψ(sc) > s2c , (4.11)

and we have determined (using a numerical interpolation) that this inequality is satisfied
when ζ < 2.110×10−4. This roughness height is much smaller than typically encountered,
and so it is reasonable to expect that there will be some open trajectories which intersect
the contact surface. In this case, as discussed by Rampall, Smart & Leighton (1997), the
probability distribution may be calculated in the plane of shear, and so the viscosity of
a monolayer suspension of spheres may be calculated exactly. However, if the roughness
height is smaller than the distance of closest approach (ζ < 2.110 × 10−4), then the
surface roughness has no effect, the analysis of Batchelor & Green (1972a) is still valid,
and the normal stress differences are zero.

4.2. Calculation of the pair-distribution function

In order to calculate the probability distribution p in simple shear flow, we must consider
the following regions of the flow:
• the bulk of the flow: trajectories which originate at infinity and either reach the

contact surface or depart to infinity without ever intersecting the contact surface
• closed orbits which do not intersect the contact surface
• the shadow region in which no particles can be found because of contacts which

exert compressive but not tensile forces; here p(r) = 0
• the rolling region of the contact surface
• the slipping region of the contact surface
• the border of the shadow region.

The first two of these regions correspond to region (i) of §2.2; the probability density
there is unaffected by particle friction.
Unfortunately, the probability distribution is not known on the closed orbits. This

fact prevents us, as it prevented Batchelor & Green (1972a) and Zinchenko (1984), from
calculating exact viscosity values in this flow unless some distribution is assumed at a
given instant in time. To demonstrate the problem of undetermined probabilities in the
closed-orbit region, we have chosen two plausible distributions for smooth spheres. In the
first case, we take the probability distribution to be p(r) = q(s) everywhere, a distribution
which is continuous at the edge of the region of closed orbits. As shown by Batchelor &
Green (1972a), the c2 viscosity coefficient in this case is k = 2.5 + 7.5

∫
Jqs2 ds ≈ 6.9.

In the second case, we assume that the region of closed orbits is well-stirred initially,
so that p = 1 inside this region. As time passes, the probability distribution within the
region of closed orbits will fluctuate, but effectively it will oscillate about this value.
Therefore it is reasonable to consider a distribution in the outer region which has settled
down to its long-term value of p = q, while the closed-orbit region instantaneously has
p = 1. This distribution gives an instantaneous coefficient of k ≈ 5.9. Since the difference
between these two situations is comparable to the change in the c2 viscosity coefficient
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due to roughness obtained for extensional flow, we cannot hope to deduce definitive
information about the effect of surface roughness on the shear viscosity by performing
further calculations. Indeed, these calculations would entail a considerable amount of
work for conclusions which would be uncertain at the very best.
However, as we shall see, the normal stresses N1 = Σ11 −Σ22 and N2 = Σ22 −Σ33 are

unaffected by the probability distribution on the closed orbits. We may calculate them
without making any further assumptions.

4.2.1. Bulk region

In the first region described above, the fact that the particles are not smooth has no
effect on the flow, and the particle trajectories are coming from infinity, and so (2.21)
applies. The velocity in the first region is given by (2.7), and so the flux of pairs from
this region onto the contact surface is given by

q(sc)Vr(sc) = aq(sc)sc(1−A(sc))(n·E·n). (4.12)

In the region of closed orbits, however, the argument used by Batchelor & Green (1972a)
can only give us

p(r) = C(ξ2, ξ3)q(s), (4.13)

where ξ2, ξ3 are the invariants of (4.3), and no information is available about the form
of C(ξ2, ξ3) unless other effects (such as Brownian motion or longer range forces) are
included.

4.2.2. Contact surface

On the rolling portion of the contact surface, the relative velocity of the two spheres
is given by (2.13), and that for slipping is given by (2.17). The boundary between rolling
and slipping is the point at which the velocity is the same by either mechanism (2.19):

(1−B∗ − β4)|(I− nn)·E·n| = −νβ6(n·E·n), (4.14)

which turns out, for realistic values of ν (ν ≤ 0.5, say), to encompass a very small region
of the contact surface. Most of the contact surface, therefore, is a slipping region. In
particular, the boundary condition P c = 0 on the edge of the forbidden region must be
applied to the edge of the slipping region.
Unfortunately, the form of |(I − nn)·E·n|, when expressed in terms of the angles θ

and φ, is sufficiently complicated that the partial differential equation which results from
the Liouville equation in this case cannot be solved analytically. In turn, the boundary
conditions for the rolling region are not known analytically, so that region must also be
investigated numerically.
Here, we give the pair of equations which must be solved numerically. To construct

them, first we substitute E, Ω and n into the forms of V (2.13, 2.17). We express all the
quantities in trigonometric terms and use X = sinφ and Y = sin θ, substituting into the
Liouville equation

∇·[P cV ] = −asγ̇φ−3(sc) sin θ cos θ cosφ, (4.15)

to obtain

∂

∂X
(P cX[1− α(X,Y )])− ∂

∂Y
(P cY [1− (1− 2Y 2)α(X,Y )]) = −4aφ−3(sc)Y

2, (4.16)

in which

α(X,Y ) =

{
β4 for rolling
1−B∗−νβ6Y/|f(X,Y )| for slipping

(4.17)
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and

f2(X,Y ) =
[(1− 2Y 2)2 +X2Y 2(3− 4Y 2)]

4(1−X2)(1− Y 2)
. (4.18)

This equation is solved numerically in the region

{0 ≤ X ≤ 1; 0 ≤ Y ≤ 1} ∩ {Y 2(1−X2) > φ2(sc)Ψ(sc)/s
2
c}

using the method of characteristics, with boundary condition P c = 0 on the edge of the
forbidden region, where Y 2(1−X2) = φ2(sc)Ψ(sc)/s

2
c . The solution can be extrapolated

to the rest of the contact surface using symmetry considerations.

4.2.3. Border of the shadow region

The border of the shadow region may consist of
• closed orbits, on which we cannot determine the probability density without ad hoc

assumptions (figure 5b), and
• two surfaces in the wake of sphere 1, of finite extent in the y and z directions, and

semi-infinite in the x-direction (figure 5a).
We consider only the case when the latter two surfaces exist (though there will also be
closed orbits), since the results when there are only closed orbits are exactly the same as
for smooth spheres.
In a similar manner to that used in §3, we note that, since there is no flux of probability

onto or off the sheet, the Liouville equation is equivalent to mass conservation on the
sheet. We parametrise the sheet using the trajectory length, l, and the azimuthal angle
at the point of detachment, φ̃. We also define a quantity dh to be the length element on
the sheet perpendicular to the velocity.
We consider a narrow band of trajectories leaving the sphere, and integrate the Liou-

ville equation (3.4), with velocity (2.7) over the section of the surface they pass through
between leaving the sphere and having travelled a dimensionless distance l. We apply the
divergence theorem, noting that the contribution from edges parallel to V is zero, and
using n = V /|V | on the remaining edges and the upstream boundary conditions,

P sh |V |dS = 1
2a

2P sh
0 s3c(2−B∗)γ̇| cos φ̃ dφ̃|dl. (4.19)

Now, since dl is the length element parallel to V , we have dl/dt = |V | and of course
ads/dt = Vs. Now |Vs| = |V ·n| = γ̇(1−A)|xy|/as, so

P sh dS =
P sh
0 a4s3c(2−B∗)s| cos φ̃ dφ̃ ds|

2(1−A)|xy|
. (4.20)

Now the value P sh
0 is equal to the value of P c (which is calculated numerically) at θ = π/2.

Because the upstream boundary condition is only known numerically, this equation, like
that in §4.2.2, may only be used in numerical calculations. However, once the probability
has been calculated on the contact surface, P sh

0 is known and therefore P sh dS may be
found without further integration.
We need information about the shape of the sheet in order to express x and y as a

function of s and φ̃. We use the form of the trajectories (4.3), and, applying the initial
condition x = 0, y = as cos φ̃ at s = sc to determine ξ2 and ξ3, we obtain

x2

a2s2
= 1− φ2(s)

φ2(sc)

s2c
s2

+
φ2(s)

s2
[Ψ(sc)−Ψ(s)], (4.21)

y2

a2s2
=

φ2(s)

φ2(sc)

s2c
s2

cos2 φ̃− φ2(s)

s2
[Ψ(sc)−Ψ(s)]. (4.22)
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4.3. Calculation of the normal stresses

Using (2.5–2.6) and (4.2) we can show that the normal stresses N1 = Σ11 − Σ22, N2 =
Σ22 − Σ33 will be given by

N1 =
15c2µγ̇

4π

∫
r≥2a

n1n2(n
2
1 − n2

2)M(s)p(r)
dr

a3

+
9c2µγ̇

32π

∫
contact

β5

[
(F c·n)
µγ̇πa2

(n2
1 − n2

2)−
F c
1n1 − F c

2n2

µγ̇πa2

]
p(r)

dr

a3
+O(c3), (4.23)

N2 =
15c2µγ̇

4π

∫
r≥2a

n1n2[L(s) + (n2
2 − n2

3)M(s)]p(r)
dr

a3

+
9c2µγ̇

32π

∫
contact

β5

[
(F c·n)
µγ̇πa2

(n2
2 − n2

3)−
(F c

2n2 − F c
3n3)

µγ̇πa2

]
p(r)

dr

a3
+O(c3), (4.24)

and the contribution to the integrals from e is zero. We express the sub-terms of these
expressions as

Ni =
15c2µ|γ̇|

4π

(
N̂ i

bulk + N̂ i,S
contact + N̂ i

sheet

)
+

9c2µ|γ̇|
32π

N̂ i,D
contact +O(c3), (4.25)

where i = 1 or 2.

4.3.1. Bulk region

In the bulk, F = 0 since the particles are not in contact, and the contributions to the
normal stresses are thus

N̂1
bulk =

∫
r≥2a

n1n2(n
2
1 − n2

2)M(s)p(r)ds, (4.26)

N̂2
bulk =

∫
r≥2a

n1n2{L(s) + (n2
2 − n2

3)M(s)}p(r)ds. (4.27)

Throughout the bulk, we have

p(r) = C(ξ2, ξ3)q(s), (4.28)

in which C ≡ 1 except on closed orbits. Now s is an even function of n1, whereas the
integrand in each case is an odd function of n1. Thus the contribution from any trajectory
along which n1 is symmetrically positive and negative must be zero. This case includes
any closed orbits and also the unbounded trajectories which do not intersect the contact
surface.
The only nonzero contribution is therefore from the region of trajectories entering from

infinity and intersecting the contact surface. Because they are coming from infinity, these
trajectories satisfy (2.21). This region can be expressed as

{xy < 0}∩
{
y2 + z2 ≤ a2φ2(s)

[
s2c

φ2(sc)
−Ψ(sc) + Ψ(s)

]}
∩{y2 ≥ a2φ2(s)Ψ(s)}, (4.29)

which becomes

{sin θ cos θ cosφ < 0} ∩
{
sin2 θ ≤ φ2(s)

s2

[
s2c

φ2(sc)
−Ψ(sc) + Ψ(s)

]}
∩ {sin2 θ cos2 φ ≥ φ2(s)

s2
Ψ(s)}. (4.30)
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This region only exists if Ψ(sc)φ
2(sc) ≤ s2c , i.e. if there is an intersection between the

contact surface and the open trajectories. As discussed in §4.1, this case corresponds to
the reasonable constraint ζ > 2× 10−4.
Performing the integral over φ first and then over θ, the first integral (4.26) becomes

N̂1
bulk =

−4

3φ3(sc)
(s2c − φ2(sc)Ψ(sc))

3/2×∫ ∞

sc

M(s)

(1−A(s))s3

[
s2 + φ2(s)

(
−s2c

φ2(sc)
− 2Ψ(s) + Ψ(sc)

)]
ds, (4.31)

and the second integral (4.27)

N̂2
bulk =

−4

15φ3(sc)
(s2c − φ2(sc)Ψ(sc))

3/2×∫ ∞

sc

{
M(s)φ2(s)

(1−A(s))s3

[
s2c

φ2(sc)
+ 5Ψ(s)−Ψ(sc)

]
+

5L(s)

s(1−A(s))

}
ds. (4.32)

4.3.2. Contact surface

In the contact region we have calculated P c numerically, and so the total stress con-
tributions N̂ i,S

contact and N̂ i,D
contact must also be calculated numerically. As for strain,

we convert the volume integrals to surface integrals using P c = apds. We substitute
(4.8) and (4.9) into (2.14) and (2.18) for the force dipole. Substituting the definition
dS = a2s2c sin θ dθ dφ and using the variables we introduced for calculating the probabil-
ity, X = sinφ, Y = sin θ, we obtain

N̂1,S
contact = −2M∗s2c

∫ 1

−1

∫ 1

0

Y 2(1− 2Y 2 + Y 2X2)
P c

a
dY dX, (4.33)

N̂2,S
contact = −2s2c

∫ 1

−1

∫ 1

0

Y 2(L∗ + Y 2(1− 2X2)M∗)
P c

a
dY dX, (4.34)

N̂1,D
roll =

2β2β5

πβ1
s2c

∫ 1

−1

∫ 1

0

Y 2(1− 2Y 2 + Y 2X2)
P c

a
dY dX, (4.35)

N̂2,D
roll =

β2β5

πβ1
s2c

∫ 1

−1

∫ 1

0

Y 2(2Y 2(1− 2X2)− 1)
P c

a
dY dX, (4.36)

N̂1,D
slip = +

2(1−A∗)β5

πβ3
s3cν

∫ 1

−1

∫ 1

0

Y 3

f(X,Y )
(1− 2Y 2 + Y 2X2)

P c

a
dY dX, (4.37)

N̂2,D
slip = +

(1−A∗)β5

πβ3
s3cν

∫ 1

−1

∫ 1

0

Y 3

f(X,Y )
(2Y 2(1− 2X2)− 1)

P c

a
dY dX, (4.38)

with f(X,Y ) as defined in (4.18), so that

f2(X,Y ) =
|(I− nn)·E·n|2

γ̇2(1−X2)(1− Y 2)
. (4.39)

4.3.3. Border of the shadow region

On the sheet surface, the particles are not in contact, and so there is no contribution
to the stress from the contact force dipole. Therefore (4.26) and (4.27) hold, as they did
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in the bulk. On the sheet (4.20) holds, and so we have∫
sheet

[. . .]p(r)dr =

∫
sheet

[. . .]P sh dS (4.40)

= 1
2a

4s3c(2−B∗)

∫
sheet

[. . .]
P sh
0 (φ̃)s

|xy|
| cos φ̃dφ̃| ds

(1−A(s))
, (4.41)

giving us, since xy = a2s2n1n2 > 0 in the relevant region,

N̂1
sheet =

s3c(2−B∗)

2

∫
sheet

(n2
1 − n2

2)M(s)
P sh
0 (φ̃)

a

| cos φ̃ dφ̃|ds
s(1−A(s))

, (4.42)

N̂2
sheet =

s3c(2−B∗)

2

∫
sheet

{L(s) + (n2
2 − n2

3)M(s)}P
sh
0 (φ̃)

a

| cos φ̃ dφ̃|ds
s(1−A(s))

. (4.43)

The components of n are given by (4.21) and (4.22), and the integrals are carried out
numerically.

4.4. Summary of numerical normal stress results

At order c in this calculation, the stress is Newtonian (with an enhanced viscosity), and
so the normal stress differences are zero to O(c). They appear at order c2, because of
roughness.

4.4.1. Comparison with drops

In the case ν = 0 (which is in many ways similar to the case of liquid spheres) the
contact probability distribution can be calculated analytically, and is given by

P ∗ =
asc

3(1−B∗)φ3(sc)

{
1−

[
s2cB

∗ + 2(1−B∗)φ2(sc)Ψ(sc)

s2c(B
∗ + 2(1−B∗) sin2 θ cos2 φ)

]3/2}
. (4.44)

The angle integrals may then be carried out analytically, and (after considerable algebra)
we obtain

N̂1 = Φ(2Y − 10Z)M∗ + (Y − sin5 τ)I, (4.45)

N̂2 = Φ(8ZM∗ − 2Y(L∗ +M∗)) +
(
4 sin5 τ/5− 2Y

)
I, (4.46)

where N̂i = Ni/c
2µ|γ̇|,

Y = sin3 τ/3 + cos3 τ(τ − tan τ), (4.47)

Z = (2−B∗)[sin5 τ/5 + cos3 τ(3τ/2− tan τ − sin 2τ/4)]/[6(1−B∗)], (4.48)

sin2 τ = 2(1−B∗)[s2c − φ2(sc)Ψ(sc)]/[s
2
c(2−B∗)], (4.49)

I =
4s5c

3φ5(sc)

(
2−B∗

2(1−B∗)

)5/2 ∫ ∞

s=sc

M(s)φ2(s) ds

s3(1−A(s))
, (4.50)

and

Φ =
2s3c

3(1−B∗)φ3(sc)

(
2−B∗

2(1−B∗)

)3/2

, (4.51)

which matches the results of Zinchenko (1984) in the limit sc → 2, if the solid sphere
mobility functions are substituted into his expression in place of the fluid droplet mobil-
ities. For further verification of the numerical work, a simple program to calculate this
result was written and gives results which agree with those from the general code.
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Figure 6. The negative scaled normal stresses plotted against the dimensionless roughness

height for ν = 0, with the solid and dotted lines representing −N̂1 and −N̂2 respectively.
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Figure 7. The dependence of the normal stress differences, N̂1 (solid line) and N̂2 (dotted line),
on the friction coefficient, ν, for a physically plausible value of the roughness height, ζ = 3×10−3.
Figure modified from original paper.

4.4.2. Numerical results

We calculated the two normal stress factors N̂i, which depend only on ζ and ν. Using
(4.25), these are

N̂i =
15

4π

(
N̂ i

bulk + N̂ i,S
contact + N̂ i

sheet

)
+

9

16π
N̂ i,D

contact . (4.52)

In figure 6 we plot N̂1 and N̂2 against ζ for the slipping or hard-sphere limit ν = 0. In
each case, both normal stress differences are negative, with N̂1 having the larger modulus.
Below the critical roughness height ζ = 2.11× 10−4, no open trajectories intersect with
the contact surface, and so no normal stresses are generated. The results show a strong
decrease in the normal stresses as ζ is increased from this critical value.
In figure 7 we plot the two scaled normal stress differences against the friction coeffi-

cient, ν, for a typical value of the roughness height, ζ = 3×10−3. The dependence of the
stresses on ν is rather weak for both N̂1 and N̂2; as ν is increased from 0 to 0.5 (with
likely physical values being around 0.1–0.4), the size of N̂1 decreases by 15% and that of
N̂2 by 13%.
In figure 8, we take our sample value ν = 0.3 and plot the different contributions to
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Figure 8. The contributions to the scaled normal stresses, plotted against the dimensionless

roughness height, with fixed ν = 0.3. The solid and dotted lines are for N̂1 and N̂2 respectively,

with the upper curves being the contact contribution to N̂1 and the bulk and sheet regions

contribution to N̂2, and vice versa for the lower curves. Figure modified from original paper.

the normal stresses against ζ. In all cases, the contribution from the bulk is positive,
and that from the sheet negative, so we show instead their sum, which indicates which
is more important. We observe that there is a competition between the effect of the
contact region and that of the rest of the flow. For the first normal stress difference, the
majority of the flow causes a negative contribution with the contact contribution smaller
and positive, whereas, for the second normal stress difference, the contact contribution
is negative and dominates over the smaller, but positive, contribution from the rest of
the flow.

5. Concluding Remarks

We have investigated the rheology to O(c2) of a dilute suspension of rough spheres.
Because the stress in the suspension is dependent on the flow history, the calculation
cannot be carried out for general flows. Instead, we have investigated two steady flows:
axisymmetric straining, and shear.
In a steady axisymmetric straining flow, the stress is Newtonian and can be represented

by a scalar viscosity. In such flows, the effect of particle contacts due to surface roughness
is always to lower the O(c2) coefficient of the viscosity from the value 6.9 for smooth
spheres. The effect of increasing the coefficient of friction is to increase the total viscosity.
Although a high coefficient of friction tends to induce rolling (rather than slipping)
motion when the particles are in contact, which reduces the lubrication stresses, the
rolling causes extra dissipation elsewhere in the flow, and the net effect of adding this
additional mechanism of dissipation is to raise the total viscosity relative to frictionless
contact. Note that the lowering of the viscosity in a dilute suspension due to particle
contact is an effect which we would not expect to see in a concentrated suspension. If
many spheres were interacting closely, the interparticle contacts and friction would likely
increase the overall viscosity, and possibly cause ‘jamming’ earlier than would be seen
for smooth spheres.
In shear flow, the viscosity cannot be uniquely determined, because of closed orbits of

two particles which continue indefinitely unless some other effect is taken into account.
However, if the roughness height is above a critical value ζ = 2.11× 10−4, there are non-
zero normal stress differences which may be determined despite the closed orbits. These
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normal stress differences are negative for physical values of the roughness height, with
N2 slightly smaller in magnitude than N1. They depend only weakly on the coefficient
of friction, ν.
As the concentration increases, three-particle and even many-particle interactions will

become important, and we would expect that the sheet and wake regions might be
destroyed. However, the contact regions would be relatively unaffected by the presence
of other particles. In straining flows, the viscosity-lowering effect of the excluded volume
dominates the remaining contributions (see figure 3) and so the viscosity at moderate
concentrations will likely still be lower than that for smooth spheres, though the effect
may be less marked. However, at yet higher concentrations when a dilute theory is not
applicable, we expect the viscosity to rise as discussed above, so that there is some critical
concentration above which our results are not qualitatively useful. In shear, on the other
hand, both the bulk and the contact contributions are significant, and so increasing the
concentration even a moderate amount would likely have a marked effect on the normal
stresses. If the contribution from contact does indeed remain unchanged, then N1 will
remain negative but smaller in magnitude, whereas it is possible that N2 could change
sign. However, recent simulations carried out by Foss & Brady (2000) indicate that both
normal stresses remain negative as the concentration increases, so perhaps the dilute
asymptotics are more robust than one might suspect.
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Appendix A. Definition of the constants βi
We use the definitions of the two-sphere mobility functions given in Kim & Karrila

(1991) to define the constants βi as

β1 = 2a(ya11 − ya12)−2a2sc(y
b
11 − yb12)− 1

2a
3s2c(y

c
11 + yc12), (A 1)

β2 = sc[B
∗ − 1 + 2(yh11 + yh12)], (A 2)

β3 = 2a(xa
11 − xa

12), (A 3)

β4 = 2(yh11 + yh12) + a2(β2/β1)[(y
b
11 − yb12)− 1

2asc(y
c
11 + yc12)], (A 4)

β5 = sc[B
∗−1 + 2(yh11 + yh12)], (A 5)

β6 = (sc(1−A∗)/β3)[2a(y
a
11 − ya12)/sc + a2(yb11 − yb12)]. (A 6)

They are all evaluated at s = sc and specifically defined to be dimensionless, and they
are positive in the limit ζ → 0.
For the numerical integrations of §§3 and 4, we need numerical forms of the mobilities

at all separations. Kim & Mifflin (1985) presented a collocation method for calculation
of the resistance functions for two equal solid spheres in Stokes flow. They have made
available their code, along with tables presenting the results at forty equidistant points
from s = 2.1 to s = 6.0. We used the code to extend the range of these tables. From
the resistance functions thus defined, we calculated the mobility functions A, B, J , K,
L and M . In the region s < 2.0025, the near-field asymptotic forms (from those given in
Kim & Karrila 1991) were used, and in the region s > 6, the far-field. The function φ(s)
was calculated by numerical integration in the main region from 2.0025 to 6.0, with the
far-field and near-field integrations being performed analytically.

Appendix B. Derivation of the form of the stresslet

We consider the average stress in a suspension consisting of fluid (F ), individual spheres
which are force-free (S) and pairs of spheres (P ) which exert equal and opposite forces
on each other:

〈σij〉 =
1

V

∫
VF+VS+VP

σij dV (B 1)

=
1

V

∫
VF

σij dV +
1

V

N∑
α=1

∫
Sα

σij dV +
1

V

M∑
β=1

∫
Pβ

σij dV (B 2)

Here σij is the local stress tensor at a point, and its average 〈σij〉 over the whole volume
is the total stresslet which must be averaged over particle configurations to give Σij .
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Note that in a solid, σij =
1
2∇k(σikxj + σjkxi) and eij = 0, so

〈σij〉 − 〈p〉δij − 2µ〈eij〉

=
1

V

N∑
α=1

∫
Sα

1
2∇k(σikxj + σjkxi) dV +

1

V

M∑
β=1

∫
Pβ

1
2∇k(σikxj + σjkxi) dV (B 3)

=
1

V

N∑
α=1

∫
Sα

1
2 (σikxj + σjkxi)nk dS +

1

V

M∑
β=1

∫
Pβ

1
2 (σikxj + σjkxi)nk dS (B 4)

We then consider one of the pairs Pβ . Each sphere is in equilibrium, that is, the net force
acting on it is zero. Thus, the hydrodynamic force balances the contact force on each
sphere, yielding∫

Pβ

1
2 (σikxj + σjkxi)nk dS =

∫
Pβ

1
2 (σ

H
ikxj + σH

jkxi)nk dS +

∫
Pβ

1
2 (σ

C
ikxj + σC

jkxi)nk dS,

(B 5)
in which σC is the contribution from the contact force and σH is the hydrodynamic stress
balancing it. If the pair Pβ consists of two spheres Sαm centred on xαm for m = 1, 2,

∫
Pβ

1
2 (σikxj + σjkxi)nk dS =

2∑
m=1

∫
Sαm

1
2 (σ

H
ik(xj − xαm

j ) + σH
jk(xi − xαm

i ))nk dS

+
2∑

m=1

∫
Sαm

1
2 (σ

C
ik(xj − xαm

j ) + σC
jk(xi − xαm

i ))nk dS. (B 6)

Now the stress distribution owing to the contact stress on sphere 1 (which exerts a force
F on the fluid at a point xC = 1

2 (x
α1 + xα2)) is σC

ijnj = Fiδ(x − xC). A similar form
(with the force reversed) holds for sphere 2, giving

∫
Pβ

1
2 (σikxj + σjkxi)nk dS =

2∑
m=1

∫
Sαm

1
2 (σ

H
ik(xj − xαm

j ) + σH
jk(xi − xαm

i ))nk dS

+ 1
2 [Fi(x

α2
j − xα1

j ) + Fj(x
α2
i − xα1

i )]. (B 7)

The first of these terms is simply the sum of two stresslets, one for each sphere, centred
on the sphere, arising due to the change in motion engendered by the contact force.
As such, by the linearity of Stokes flow it is equivalent to the sum of two independent
stresslets. The first is the stresslet caused by an equivalent pair of force-free particles in
the ambient flow. The second is the stresslet caused by the particles owing to the contact
forces and torques acting on them, in a fluid which is otherwise quiescent.
We deduce that the total stresslet generated by a pair of particles at 0 and r is given

by that in the absence of contact forces (given by Batchelor & Green 1972a) plus an
extra contribution (neglecting isotropic terms) of

D = 2DH + 1
2 (F cr + rF c − 2(F c·r)I), (B 8)

where F c is the force exerted by particle 1 on the fluid, equal and opposite to that
exerted by particle 2, and the term DH is simply the stresslet generated by the forces
and torques acting on one of the two spheres in a quiescent fluid. It is multiplied by 2 for
the contributions from both particles of the pair. It can be found easily from the mobility
formulation for relative motion of two spheres in a quiescent fluid (Kim & Karrila 1991,
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page 179):

DH = (g12 − g11)·F c + (h11 + h12)·T . (B 9)

Thus, the contribution from each individual particle, Sc, is half the deviatoric part of the
stresslet given in (B 8), and since T = −1

2F c×r, and r = ascn, after some manipulation
we find

Sc(x0,x0 + r) = 1
2as[1−A(s)](F c·n)(nn− 1

3 I)

+1
4as[1−B(s)− 2(yh11 + yh12)](F cn+ nF c − 2nn(F c·n)) (B 10)

as in (2.6).


