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Abstract

Mesenchymal stromal/stem cells (MSCs) are a population of stromal cells present in the bone marrow and most
connective tissues, capable of differentiation into mesenchymal tissues such as bone and cartilage. MSCs are
attractive candidates for biological cell-based tissue repair approaches because of their extensive proliferative
ability in culture while retaining their mesenchymal multilineage differentiation potential. In addition to its
undoubted scientific interest, the prospect of monitoring and controlling MSC differentiation is a crucial regu-
latory and clinical requirement. Hence, the molecular regulation of MSC differentiation has been extensively
studied. Most of the studies are in vitro, because the identity of MSCs in their tissues of origin in vivo remains
undefined. This review addresses the current knowledge of the molecular basis of differentiation of cultured
MSCs, with a particular focus on chondrogenesis and osteogenesis. Building on the information coming from
developmental biology studies of embryonic skeletogenesis, several signaling pathways and transcription fac-
tors have been investigated and shown to play critical roles in MSC differentiation. In particular, the Wnt and
transforming growth factor-f/bone morphogenetic protein signaling pathways are well known to modulate in
MSCs the molecular differentiation into cartilage and bone. Relevant to the emerging concept of stem cell niches
is the demonstration that physical factors can also participate in the regulation of MSC differentiation.
Knowledge of the regulation of MSC differentiation will be critical in the design of three-dimensional culture
systems and bioreactors for automated bioprocessing through mathematical models applied to systems biology

and network science.

Mesenchymal Stem Cells: A Brief Overview

Mesenchymal stromal/stem cells (MSCs), a subset of
stromal cells present at low frequency in most adult con-
nective tissues, have been extensively studied for their mul-
tiple differentiation capabilities. Friedenstein and colleagues
(1970) demonstrated that the bone marrow contains a rare
population of plastic-adherent cells (approximately 1 in
10,000 nucleated cells) that were able to form single-cell-
derived colonies. The adherent cell clones expanded into
round-shaped colonies composed of fibroblastoid cells, thus
leading to the term colony-forming unit—fibroblasts (CFU-f);
after proliferation some of the colonies could differentiate
into aggregates resembling small areas of bone or cartilage
(Friedenstein et al., 1970, 1976). These initial observations
were then extended by the study of CFU-f proliferative
abilities and phenotypic characteristics (Castro-Malaspina
et al., 1980; Prockop, 1997; Caplan and Bruder, 2001). These
cells were eventually defined as multipotent and able to
differentiate into osteoblasts, chondrocytes, adipocytes, and
even myoblasts.

MSC Differentiation: The Caveat of In Vitro Studies

MSCs have been studied in several species, especially
humans (Castro-Malaspina et al., 1980; Haynesworth ef al.,
1992; Bruno ef al., 2009; Yoo et al., 2009) and mice (Gindraux
et al., 2007; Sung et al., 2008). MSCs are classically derived
from bone marrow (Pittenger et al., 1999), but they have been
isolated as well from most connective tissues (da Silva
Meirelles et al., 2006), including, to mention a few, adipose
tissue (Zuk et al., 2002), periosteum (Nakahara et al., 1991; De
Bari et al., 2001a, 2006), and synovial membrane (De Bari
et al., 2001b, 2003). From the accumulating studies in the
literature, it is now apparent that MSCs, whichever their
tissue source, have ability to respond to a variety of physi-
ological or pathogenic stimuli, producing responses that in
each specific context require thorough investigation in order
to assess their biological significance and exploit any
potential clinical impact.

The differentiation of MSCs has been extensively studied,
using mainly well-established in vitro assays with culture-
expanded MSCs. Findings, therefore, have the caveat that
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they may not always be reliable and fully reproducible be-
cause of the vast heterogeneity of in vitro culture conditions
and MSC types. Indeed, MSCs are known to undergo phe-
notypic rearrangements during ex vivo manipulations, losing
expression of some markers while acquiring new ones (Jones
et al., 2002). In addition, the possibility exists that the MSC
phenotype and abilities vary between in vivo and in vitro
settings because of the removal from their natural environ-
ment and the use of chemical and physical growth conditions
that might alter their characteristics. The in vitro-obtained
data are overly dependent on culture conditions for deriva-
tion and expansion of MSC populations and, therefore, are
unlikely to be extrapolated to the native cells. Data may also
not be entirely valid across species and intraspecies. As an
example, murine MSCs differ not only from the human
MSCs, but also between strains in marker expression and
behavior in culture (Peister et al., 2004; Sung et al., 2008;
Fiorina et al., 2009). Furthermore, data showed that MSCs
from different tissues present phenotypic heterogeneity and
different growth abilities (Baksh et al., 2007; Rebelatto et al.,
2008), reflecting a tissue specificity that could be correlated to
marked biological and functional differences (De Bari et al.,
2008). Such heterogeneity could also underpin the regulation
of MSCs and their responses to external stimuli, and it could
be a main source of variation in the biological properties of
MSCs. To complicate things further, studies on MSCs have
not always been performed with primary cells but with cell
lines such as C3H10T1/2 (Shea et al., 2003; Wang et al., 2010).
This makes the reported findings not directly extrapolatable
to primary human MSCs and of complex interpretation
within the full biological picture.

Despite biological differences, MSCs from multiple tissue
sources share common features such as the potential to dif-
ferentiate into mesenchymal lineages and the expression of
common surface markers (Baksh et al., 2007), although even
within each tissue source, single-cell-derived clonal MSC
populations are highly heterogeneous in their proliferative
and differentiation potentials (Phinney and Prockop, 2007;
De Bari et al., 2008).

Differentiation Potency of Culture-Expanded MSCs

One of the criteria to define MSCs is their ability to dif-
ferentiate into the osteogenic, chondrogenic, and adipogenic
lineages (Dominici et al., 2006). Classically, osteogenic dif-
ferentiation of human MSCs (Jaiswal et al., 1997; Pittenger
et al., 1999) requires incubation in fetal bovine serum (FBS)-
containing medium supplemented with ascorbic acid,
B-glycerophosphate, and dexamethasone, resulting in an in-
crease in alkaline phosphatase activity and calcium deposi-
tion. The chondrogenic differentiation is performed with a
high cell-density pellet or micromass culture treated with
transforming growth factor (TGF)-f in serum-free medium;
this results in production of cartilage-specific, highly sulfated
proteoglycans and type II collagen. For adipogenic differ-
entiation, MSCs are treated with dexamethasone, insulin,
isobutyl methyl xanthine, and indomethacin (added to me-
dium containing FBS), and the differentiation is revealed by
the detection of lipid vacuoles with oil red O staining. At the
clonal level, however, not all clonal populations are able to
differentiate into all three lineages, as some MSC clones may
lack differentiation into at least one lineage (Pittenger et al.,
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1999). Subsequent studies indicated the possible existence of
a hierarchical model of differentiation, with human bone
marrow clonal MSC populations readily differentiating into
the three lineages but undergoing a sequential loss of lineage
potential with the osteogenic precursors as residual cells
(Muraglia et al., 2000).

Increasing evidence, indeed, indicates that MSC popula-
tions are heterogeneous with coexisting subsets having
varying potency; this applies to bone marrow MSCs as well
as to MSCs from other tissues. As an example, we reported
that human synovium-derived clonal MSCs were all capable
of osteogenic and chondrogenic differentiation although
with varying potency, but only 30% of the clonal populations
tested were able to differentiate into adipocytes (Karystinou
et al., 2009).

Under appropriate conditions, MSCs can also differentiate
into other mesenchymal lineages such as skeletal myocytes
and tenocytes (Wakitani et al., 1995; De Bari et al., 2003;
Hoffmann et al., 2006). MSCs have also been reported to
differentiate into nonmesenchymal lineages such as neurons
(Black and Woodbury, 2001). The clinical relevance of the
presumptive nonmesenchymal potency of MSCs is, however,
questioned because, for example, MSC-derived neuron-like
cells were unable to generate action potentials and, therefore,
to function as neurons (Hofstetter et al., 2002).

MSC-derived cartilage and bone

The “natural” mesenchymal propensity of MSCs has
prompted researchers to devote attention to the chondro-
genic and osteogenic abilities of MSCs with the clinical
prospects of developing MSC-based biological approaches to
the repair of articular cartilage and bone. The osteogenic
potential of culture-expanded MSCs (Friedenstein et al., 1976;
Ashton et al., 1985) has been studied extensively in vitro and
in vivo. The first in vivo experiments with MSCs were per-
formed with diffusion chambers loaded with culture-
expanded cells (Ashton et al., 1980). Later, the adoption of
bioscaffolds such as hydroxyapatite (HA) implanted in im-
munocompromised mice proved useful in studying MSC
osteogenic differentiation in vivo (Ohgushi and Okumura,
1990). It was possible to obtain donor MSC-derived bone by
subcutaneous implantation of HA scaffolds seeded with
human MSCs (Muraglia et al., 1998; Bluteau et al., 2008; De
Bari and Dell’ Accio, 2008; De Bari et al., 2008; Dell’ Accio et al.,
2008). Using HA-based bioscaffolds, it then became possible
to repair segmental bone defects in vivo by using autologous
MSCs, under loaded conditions, both in large animals (Kon
et al., 2000) as well as in humans in proof-of-concept studies
(Quarto et al., 2001).

The use of MSCs in clinical practice remains challenging
for issues such as the plethora of tissue sources and culture
conditions, with resulting biological variability. For instance,
human periosteum contains cells that after enzymatic release
and culture expansion display the MSC phenotype and
capacity at the single-cell level to differentiate into multi-
ple skeletal lineages including bone (De Bari et al., 2006).
Notably, in a proof-of-concept study we quantified the bone-
forming potency of matched human MSCs from synovium
and periosteum and analyzed the sources of variability in
osteogenic outcome. We identified the tissue of origin of
MSCs as the main source of variability, because MSCs from
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periosteum had significantly greater osteogenic potency than
MSCs from synovium. A second source of variability was
related to the individual donor, within each tissue. We
measured the basal expression levels of osteoblast-lineage
genes in clonal MSCs before osteogenic treatment, identified
biomarkers that correlated with osteogenic outcome, and
developed a mathematical model that predicts bone-forming
potency of clonal MSC preparations, independent of donor
and tissue source (De Bari et al., 2008). The development of
a biomarker-based model that predicts the bone-forming
potency of human MSC preparations is of considerable
clinical relevance. A similar approach is likely to increase the
consistency of therapies that employ MSCs for bone repair. It
may also facilitate the selection of individuals that qualify for
MSC-based bone repair and help identify the best source of
and preparation protocol for human MSCs. It remains to be
investigated whether the same formula can be applied suc-
cessfully to MSC-based orthotopic bone repair in a preclini-
cal model, where in addition to the properties intrinsic to the
cell preparation, other factors such as inflammation and
biomechanics will influence bone formation.

Although bone formation in vivo is relatively straightfor-
ward when MSCs are loaded onto matrices and then im-
planted subcutaneously in mice, the formation in vivo of
stable hyaline-like cartilage resembling articular cartilage
appears to be challenging when using MSCs. The chondro-
genic potential of MSCs is well known in vitro in high-cell-
density pellets or micromass cultures but the key question as
to whether the resulting cartilage-like tissue is stable carti-
lage or a transient cartilage template destined to be replaced
with bone in a process of endochondral ossification is unre-
solved. Using a nude mouse assay of ectopic cartilage for-
mation validated with intramuscular injection of adult
human articular chondrocytes (Dell’Accio et al., 2001), we
demonstrated that the in vitro chondrogenic potential of
synovial membrane-derived MSCs is not sufficient to pre-
dict the in vivo outcome at least in this nude mouse model,
because the synovial MSCs induced in vitro into a chon-
drocyte-like phenotype failed to form stable cartilage when
implanted in vivo (De Bari et al., 2004). Of note, Pelttari
and colleagues reported that bone marrow MSC-derived
cartilage pellets transplanted into ectopic sites in severe
combined immunodeficiency (SCID) mice underwent endo-
chondral ossification, via premature induction of chondrocyte
hypertrophy-related molecules such as type X collagen
(Pelttari et al., 2006). More recently, Scotti and colleagues
(2010) reported that human bone marrow MSCs, implanted
subcutaneously into nude mice at various stages of chon-
drogenic differentiation, formed bone only when they
had developed in vitro hypertrophic cartilage traits. The
underlying morphogenetic process was similar to limb bone
development in embryos, thus revealing the capacity of hu-
man MSCs to generate bone tissue via an endochondral
program.

Altogether, these studies suggest that the in vitro MSC-
derived neoformed cartilage-like tissue is not stable. None-
theless, they do not rule out the possibility that, as opposed
to an ectopic site, the joint environment of a cartilage defect
may instead be sufficient either to induce a stable cartilage
phenotype or stabilize the chondrocyte-like phenotype of
in vitro precommitted MSC populations. Uplift of the bone
front at the expense of the overlying articular cartilage has,
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however, been observed in osteochondral repair by bone
marrow cells (Qiu ef al., 2003).

Molecular Regulation of MSC Differentiation

Several molecules have been reported to be involved in
the regulation of MSC differentiation. In this review we focus
on the main signaling pathways involved in the modulation
of MSC differentiation but will also sketch out a concise
overview of the transcription factors and the physical pa-
rameters influencing the fate of MSCs. Because studies of
developmental biology have inspired a great deal of inves-
tigation in the MSC field, we think it will be helpful to report
key findings in embryonic skeletogenesis before discussing
the relevant pathways in MSC differentiation. Our attention
revolves mainly around the Wnt canonical pathway and the
TGEF-f superfamily pathways.

Whnt signaling and MSC differentiation

Particularly studied is the Wnt family of secreted proteins,
reported to modulate bone mass in vivo and shown as acting
directly on MSCs (Liu et al., 2009; Takada et al., 2009). Wnt
genes, a family of 19 genes in humans and mice, produce
secreted proteins that, for their involvement in cell prolifer-
ation, differentiation, and apoptosis, are crucial in embryonic
tissue development and in regeneration of adult tissues in-
cluding bone (Westendorf et al., 2004). Figure 1 shows a
schematic diagram of the canonical p-catenin-dependent
Wnt signaling pathway (for a comprehensive review see
Gordon and Nusse, 2006).

Several studies of developmental biology using mouse
genetics have revealed a critical role for Wnt in skeletogen-
esis, and particularly in the formation of cartilage and bone.
We briefly review those studies that, in our opinion, are
relevant for an understanding of the molecular regulation of
MSC differentiation.

Wnt and bone. Wnt proteins have a critical role in bone
development and homeostasis. Gong and colleagues (2001)
demonstrated that the osteoporosis-pseudoglioma syndrome
(OPPG), a disorder characterized by low bone mass, ocular
defects, and predisposition to fractures, was caused by a loss-
of-function mutation in the LRP5 (low-density lipoprotein
receptor-related protein-5) coreceptor. The production of
Lrp5’/ ~ mice (Kato et al., 2002) and Lrp6’/ ~ mice (Holmen
et al., 2004) allowed recapitulaton of these findings, with
phenotypes similar to that of human OPPG. When the mu-
tation of Lrp5 was involved, the disease was attributed to
decreased osteoblast proliferation. Interestingly, other mu-
tations in the same gene can have different effects. As an
example, some individuals with high bone mass density bear
a gain-of-function mutation in Lrp5 (Boyden et al., 2002;
Little et al., 2002). Many studies followed these initial reports,
indicating that loss-of-function mutations in the Lrp5 gene
could also affect bone formation via indirect mechanisms,
such as Hitrlb (5-hydroxytryptamine [serotonin] receptor-
1B)-CREB (cAMP response element-binding protein) (Yadav
et al., 2008), but also that the gain-of-function mutation in
Lrp5 may not have an effect on bone density when expressed
in mature osteoblasts (Yadav et al., 2008). It appears therefore
that Lrp5 could affect bone mass in a Wnt-independent way
and that Lrp6 could be more relevant when considering Wnt
signaling in osteoblasts. When analyzing the Wnt pathway
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involved in bone development and homeostasis, it is ap-
parent that each molecule involved can affect different fea-
tures of bone mass regulation (for a comprehensive list of
Wnt-related factors and the in vivo effects caused by them,
see the review by Hoeppner and colleagues, 2009).

Wnt and cartilage. Wnt genes and proteins also act on
cartilage differentiation, by interacting with cartilage-related
transcription factors. Day and colleagues (2005) showed that
ectopic canonical Wnt signaling led to enhanced ossification
and suppression of chondrocyte formation during skeleto-
genesis. On the other hand, during both intramembranous
and endochondral ossification, by genetic inactivation of
f-catenin they induced ectopic chondrocyte formation in
place of osteoblast differentiation.

In the same year, Hill and colleagues (2005) demonstrated
that canonical Wnt signaling was essential for skeletal line-
age differentiation, preventing transdifferentiation of osteo-
blastic cells into chondrocytes, and also that f-catenin was
crucial in determining whether mesenchymal progenitors
would become osteoblasts in the developing embryo.

Dong and colleagues (2006) investigated the molecular
mechanisms underlying canonical Wnt-mediated regulation
of chondrocyte hypertrophy, using chick sternal chon-
drocytes, and provided evidence that in chick upper sternal
chondrocytes activation of the canonical f-catenin Wnt sig-
naling pathway induces chondrocyte hypertrophy and
maturation and that Wnt/ f-catenin signaling is regulated by
TGF-f and bone morphogenetic protein (BMP)-2, and me-
diates chondrocyte hypertrophy at least partly through ac-
tivation of Runx2, a transcription factor required for bone
formation (Schroeder et al., 2005; Komori, 2010), which in
turn may induce expression of collagen type X.

Maruyama and colleagues (2010) observed endochondral
ossification in vivo in the skull of mice via knockout of Axin2,
a negative regulator of the WNT/-catenin pathway. The
activation of f-catenin cooperated with fibroblast growth
factor receptor-1 (FGFR1) to alter the lineage commitment of
MSCs to differentiate into chondrocytes. In this way, instead
of the expected intramembranous ossification, the switch in
the fate of MSCs to chondrocytes resulted in endochondral
ossification, abnormal suture morphogenesis, and fusion
with premature cranial gaps closure and a phenotype of
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FIG. 1. Schematic diagram of the ca-
nonical Wnt signaling pathway. In the
absence of Wnt ligand, p-catenin is
phosphorylated by GSK-3f and is de-
graded. On engagement of Wnt ligands
with their receptors, the cytoplasmic
degradation complex of f-catenin is
disrupted; f-catenin accumulates and
translocates into the nucleus, where it
interacts with TCF/LEF and activates
transcription of target genes. APC,
adenomatous polyposis coli protein;
CK1, casein kinase-1; Dv1, disheveled
protein; GSK-3f, glycogen synthase
kinase-3; LRP5/6, low-density lipo-
protein receptor-related protein-5/6;
P, phosphorylation; TCE/LEF, T-cell-
specific transcription factor/lymphoid
enhancer-binding factor.

craniosynostosis. These findings suggest that the WNT/
p-catenin pathway is involved in controlling the stem cell
population by regulating its renewal and proliferation, and
in modulating lineage specification, in part by setting the
balance of the FGF and BMP pathways (Maruyama et al.,
2010).

Wnt and MSCs. Attention has moved from osteoblasts to
the cells that likely originate them, the MSCs. Etheridge and
colleagues (2004) demonstrated that MSCs express a number
of Wnt ligands, including Wnt2, Wnt4, Wnt5a, Wntl11, and
Wntl6, and several Wnt receptors, including FZD2, 3, 4, 5,
and 6 as well as various coreceptors and Wnt inhibitors.
Boland and colleagues (2004) showed that during osteogenic
differentiation in vitro, MSCs upregulate a number of Wnt-
related molecules while downregulating others. Moreover,
the same authors demonstrated that MSCs could respond to
exogenous Wnt3, resulting in transient repression of osteo-
genesis. Similar results were obtained by Cho and colleagues
(2006) using human adipose-derived MSCs. Using an in vitro
differentiation culture system with human MSCs and per-
forming global gene expression profiling on undifferentiated
and differentiated MSCs, as well as on dedifferentiated cells
derived from mesenchymal lineages, Song and colleagues
demonstrated that differentiated cells could dedifferentiate
into a primitive stem cell-like stage before transdifferentiat-
ing into another cell type (Song et al., 2006). In this study, the
authors identified a list of genes that were candidate markers
of MSCs and may function to maintain stem cells in an un-
committed state or to initiate their differentiation process.
Prominent among them were the genes associated with the
Wnt pathway.

Quarto and colleagues (2010) reported that Wnt3a has
differential effects when using different in vitro models and
an in vivo model of bone regeneration; the effects were de-
pendent on the dose as well as the differentiation state of the
recipient cell. When added to undifferentiated MSCs, Wnt3a
inhibited osteogenic differentiation. By contrast, when added
to calvarial osteoblasts, Wnt3a at high doses had an inhibi-
tory effect in cells from juvenile mice but induced bone
production in cells from adult animals, as assessed by alka-
line phosphatase activity and alizarin red mineralization
assay. The defect repair was influenced once again both by
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the Wnt3a dose and by the age of the animal, mimicking the
in vitro results. These findings are in accordance with pre-
vious investigations (Kahler and Westendorf, 2003; Kahler
et al., 2006, 2008; Eijken et al., 2008), showing that the effect of
canonical Wnt signaling on osteogenesis is influenced by the
differentiation stage of target cells. Overall, canonical Wnt
signaling appears to stimulate the differentiation of MSCs
committed to osteogenic lineage, while it inhibits the termi-
nal differentiation of mature osteoblasts.

In a study on the effects of Wnt inhibitors on MSC chon-
drogenesis, Im and Quan (2010) found that in pellet cultures
of human MSCs, inhibitors of the Wnt pathway promoted
early chondrogenesis of MSCs, but they lacked a synergistic
effect with TGF-f in the longer term culture, and therefore
did not provide an ultimately enhancing role in the cartilage
tissue engineering of MSCs.

The Wnt family and their requlation by microRNAs. Increas-
ing attention has been devoted to the interaction between
microRNAs and the classical differentiation pathways. Al-
though many of such studies are on osteoblasts and not on
undifferentiated MSCs, the results are relevant as they could
be translated to primary MSC cultures and, possibly, to
in vivo scenarios. It was reported that the microRNA miR-29a
is induced by canonical Wnt signaling and can potentiate
Wnt signaling (Kapinas et al., 2010). The microRNA miR-
125b inhibited osteoblastic differentiation and proliferation
(Mizuno et al., 2008). After it was demonstrated that miR-27
could influence adipogenesis and myogenesis (Feng et al.,
2009; McDaneld et al., 2009), Wang and Xu (2010) reported
that the miR-27 microRNA is also able to interfere with the
differentiation of a fetal osteoblastic cell line through Wnt
signaling modulation, by accumulation of f-catenin and re-
pression of adenomatous polyposis coli protein (APC) ex-
pression.

FIG. 2. Schematic diagram of the
transforming growth factor (TGF)-

TGF-8 superfamily signaling pathways
and MSC differentiation

The TGF-f superfamily consists of many growth factors
and morphogens that have roles in developmental skeleto-
genesis and postnatal skeletal homeostasis. The TGF-f
superfamily of ligands includes bone morphogenetic pro-
teins (BMPs), growth and differentiation factors (GDFs), anti-
miillerian hormone (AMH), Activin, Nodal, and TGF-f (Piek
et al., 1999; Derynck and Miyazono, 2008). Here, we con-
centrate on the TGF-f and BMP families, and on the effects
that they exert on the skeletal system and on MSCs (see Fig. 2
for a schematic representation of the TGF-f and BMP sig-
naling pathways).

TGF-f family. The expression of growth factors of the
TGEF-$ superfamily has been described in embryonic bone
and cartilage development as well as during adult bone re-
pair (Hogan, 1996; Horner et al., 1998), and the chondro/
osteo-stimulatory /modulatory effects of the TGF-fis as well
as the BMPs have been well established in embryonic and
adult mesenchymal cells (Johnstone et al., 1998; Mackay et al.,
1998; Denker et al., 1999; Barry et al., 2001; Majumdar et al.,
2001; Noth et al., 2002; Sekiya et al., 2002). In particular, TGF-
p has been used for years in in vitro assays of cartilage mi-
cromasses or pellets starting from culture-expanded MSCs
(Mackay et al., 1998; Pittenger et al., 1999), and has become a
requirement for these chondrogenesis assays. TGF-f pro-
motes cartilage-specific gene expression through intracellular
signaling cascades involving SMAD proteins, the mitogen-
activated protein (MAP) kinases, p38, extracellular-signal
regulated kinase (ERK)-1, and c-Jun N-terminal kinase (JNK)
(Lutz and Knaus, 2002; Schmierer and Hill, 2007).

After the demonstration of the crucial role of the cell adhesion
protein, N-cadherin, and Wnt signaling in mesenchymal

f and bone morphogenetic protein
(BMP) signaling pathways. On en-
gagement of the ligands with their
corresponding receptors, receptor
SMADs are phosphorylated and
form a complex with SMAD4, which
enters the nucleus and interacts with
transcription factors (TFs) to modu-
late gene transcription. SMAD?2 and
SMAD3 mediate TGF-f signaling,
whereas SMAD1, SMAD5, and
SMADS mediate BMP signaling. The
inhibitory SMAD6 and SMAD? are
also shown. BMPRI/II, BMP recep-
tors I and II; TGFSRI/II, TGF-f re-
ceptors I and II.
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condensation and chondrogenesis (Fischer et al., 2002), Tuli
and colleagues (2003) demonstrated that TGF-fi; treatment
initiates and maintains chondrogenesis of MSCs through the
differential chondrostimulatory activities of p38, ERK-1, and
to a lesser extent, JNK. This resulted in the modulation of N-
cadherin expression levels, WNT-7A gene expression, and the
consequent Wnt-mediated signaling through the intracellular
p-catenin pathway, with control of the condensation and early
steps of MSC chondrogenesis.

BMP family. BMPs are involved in the developmental and
homeostatic processes of the bone and cartilage, as well as of
other tissues (Katagiri and Miyazono, 2008). BMPs are
characterized by a complex transduction pathway, based on
their signaling through SMAD proteins 1, 5, 8, and 4 (re-
viewed in Xiao et al. [2007] and in Miyazono et al. [2010]).
BMPs are capable of inducing, in adult rodents, ectopic
cartilage and bone formation, mimicking embryonic endo-
chondral bone formation.

BMPs are important morphogens regulating chon-
drogenesis and skeletogenesis during normal embryonic
development (Hogan, 1996). Individual BMPs exhibit
distinct expression patterns in skeletal elements. Bmp-2 is
expressed in areas surrounding the initial cartilage conden-
sations, periosteal and osteogenic zones, whereas Bmp-4 is
expressed in perichondrium. Bmp-6 is expressed in pre-
hypertrophic chondrocytes. High levels of Bmp-7 mRNA
have been observed in the perichondrium, but its expression
is absent in the zones of joint formation (Zhao et al., 2002;
Sekiya et al., 2005).

The effects of BMPs on MSCs have been investigated in
several studies. Rickard and colleagues (1994) demonstrated
that rat bone marrow MSCs cultured in the presence of BMP-
2 increased osteoblastic markers such as alkaline phospha-
tase activity and expression of osteocalcin. This effect was
strengthened when culturing MSCs with BMP-2 and dexa-
methasone together. Several other studies analyzed the effect
of BMP-2, along with other factors, on the proliferative and
osteogenic abilities of primary or immortalized MSCs and/
or osteoblasts (Wang et al., 1993; Hanada et al., 1997; Lecanda
et al., 1997; Jorgensen et al., 2004). In 1999, Denker and col-
leagues observed that the addition of BMP-2 to C3H10T1/2
mesenchymal cells in micromass cultures enhanced the ap-
pearance of chondrocytes. The effect of BMP-2 was appar-
ently modulated by N-cadherin, a Ca2+—dependent adhesion
molecule (Haas and Tuan, 1999). The addition of BMP-6 to
micromass cultures of human bone marrow MSCs enhanced
cartilage formation compared with controls in a time- and
dose-dependent fashion (Sekiya et al., 2001).

In a study in micromass culture, Sekiya and colleagues
(2005) compared the chondrogenic effect of BMP-2, BMP-4,
and BMP-6 on human bone marrow MSCs and observed that
the most potent chondroinductor was BMP-2. Analyzing
microarray data from the micromasses cultured with the
various BMPs, the authors found that only the MSCs cul-
tured with BMP-2 expressed the cartilage synthesis-related
genes with the correct pattern and time sequence.

Using human MSCs from periosteum, we detected ex-
pression of BMP receptors and confirmed the chondrogenic
effect of BMPs in micromass. However, BMP-2, BMP-4,
BMP-7, and GDF-5/CDMP-1 (cartilage-derived morphoge-
netic protein-1) were poorly chondrogenic in comparison
with TGF-f; (De Bari et al., 2001a).
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BMP2 signaling can influence the Wnt pathway through
interaction between f-catenin and N-cadherin. Treatment of
the mesenchymal cell line C3H10T1/2, in micromass culture
with lithium chloride, a mimetic of canonical Wnts that acts
by inhibiting glycogen synthase kinase (GSK)-3f serine/
threonine phosphorylation activity, significantly inhibited
BMP-2 stimulation of chondrogenesis (Fischer et al., 2002),
and decreased the levels of N-cadherin protein and mRNA,
probably affecting mesenchymal condensation (see also
Tuan, 2003), a process characterized by increased cell density
and cell—cell adhesion and critical in the initiation of chon-
drogenic differentiation. In 2005, Modarresi and colleagues
(2005) found that normal levels of N-cadherin expression
were essential, in micromass pellet cultures, to obtain proper
temporal MAP kinase and BMP-2 regulation of chondrogenic
genes such as type II collagen, aggrecan, and Sox9.

Eyckmans and colleagues (2010) highlighted a require-
ment for BMP and Wnt signaling in bone formation when
using human periosteum-derived MSCs seeded onto calcium
phosphate carriers and implanted ectopically in immune-
deficient mice. The inhibition of endogenous BMP and Wnt
signaling by overexpression of the secreted antagonists
Noggin and Frzb, respectively, abrogated osteoinduction.

Other signaling molecules in MSC differentiation

Other factors are known to influence the differentiation of
MSCs. Many of them also interact, at different levels, with
the Wnt and/or TGF-/BMP pathways. One of those factors,
fibroblast growth factor (FGF)-2, has been shown to promote
cell proliferation and to maintain the MSC population in a
prolonged undifferentiated state (Martin et al., 1997). Ng and
colleagues (2008) studied the transcriptional profiling of
MSCs and of MSC-derived differentiated cells in order to
identify the factors implied in the differentiation processes
in vitro. From their analysis, the authors highlighted three
pathways, centered on TGF-f, FGF-2, and platelet-derived
growth factor (PDGF), which proved to be important in the
growth and essential in the differentiation of MSCs. Fur-
thermore, the authors were able to grow MSCs using a
combination of these growth factors in culture, under serum-
free conditions.

PDGF has been shown to inhibit osteogenic differentiation
(Gruber et al., 2004; Kratchmarova et al., 2005). In an elegant
study, Kratchmarova and colleagues found that the osteo-
genic differentiation of human MSCs is stimulated by epi-
dermal growth factor (EGF) but not PDGF. They used mass
spectrometry-based proteomics to compare proteins that
were tyrosine phosphorylated in response to EGF and PDGF.
More than 90% of these signaling proteins were used by both
ligands, whereas the phosphatidylinositol-3-kinase (PI3K)
pathway was activated exclusively by PDGF, implicating it
as a possible control point. Indeed, chemical inhibition of
PI3K in PDGF-stimulated cells removed the differential effect
of the two growth factors, conferring full differentiation
effect onto PDGF.

Ng and colleagues (2008) showed that inhibition of PDGF
signaling resulted, instead, in fewer osteocytes and the ab-
sence of mineralized bone nodules, implying that under
specific conditions PDGF may be required for correct oste-
ogenic differentiation. Tokunaga and colleagues (2008)
studied the effects of the i receptor for PDGF, PDGFR-f, by
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specific PDGFR-f gene deletion using Cre-loxP technology.
Depletion of PDGFR-f in MSCs decreased the mitogenic and
migratory responses and enhanced osteogenic differentia-
tion. In a mouse model of bone fracture, depletion of
PDGEFR-$ significantly increased the ratio of woven bone to
callus. The effects of PDGFR-o on osteogenic differentiation
were instead very subtle. PDGFR-f could therefore represent
an important target for bone tissue engineering.

MSCs express EGF receptor (EGFR)/ErbB-1, and EGF
exerts mitogenic activity on MSCs (Krampera et al., 2005;
Tamama ef al., 2006). The role of EGFR signaling in bone is
not well understood, with contrasting results having been
discerned. Loss of EGFR signaling has been reported to ac-
celerate chondrocyte and osteoblast differentiation in mice,
suggesting that EGFR signaling negatively regulates bone
cell differentiation (Sibilia et al., 2003). Satomura and col-
leagues reported that after transplantation of human MSC-
loaded HA scaffolds, the MSCs able to form bone were
found to have consistently low expression of EGFR com-
pared with those MSCs not forming bone, although indi-
vidual variability could not be disregarded (Satomura et al.,
1998). Activation of EGFR is also associated with enhanced
proliferation of the stem/progenitor cell compartment with
no impairment of differentiation (Krampera et al., 2005;
Tamama et al., 2006), or even enhancement of differentiation
(Kratchmarova et al., 2005). A reversible EGF-driven en-
hancement of in vitro osteogenic differentiation was de-
scribed when incubating MSCs with tethered EGF (Platt ef al.,
2009), probably due to a consistent and continuous interac-
tion between EGF and its receptor. This finding in particular
could lead to the development of novel bioscaffold-based
tissue-engineering approaches exploiting the tethering of
active substances, such as EGF, that are never released from
the bioscaffold itself and are therefore constantly available to
induce an otherwise reversible differentiation process.

Other signaling molecules are involved in the chondro/
osteogenic differentiation pathways. Scotti and colleagues
(2010) linked the in vivo endochondral ossification obtained
in ectopic implants in nude mice of in vitro-engineered
human MSCs to the regulation of Indian hedgehog (IHH) as
an upstream signal through its receptor Patched1 (PTCHI),
and GLI1 as mediator of IHH signal transduction. All these
genes were either not expressed or expressed at low levels
in culture-expanded MSCs, whereas their expression levels
were markedly increased in the early hypertrophic and
even more in the late hypertrophic constructs, indicating
that the processes leading to endochondral ossification are
equally regulated by the activation and/or upregulation of
the signaling pathways involved in endochondral bone
formation during embryonic limb skeletogenesis (Karsenty,
2008).

Transcription factors in MSC differentiation

Many transcription factors (TFs) intervene in the control
and regulation of the differentiation pathways of MSCs.
Once again, the developmental studies have provided an
educational platform for investigations of the roles in MSC
differentiation of those transcription factors that have been
reported to be key regulators of embryonic skeletogenesis. In
particular, the main transcription factors intervening in os-
teogenic differentiation are CBFA-1/Runx2 and Osterix
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(Osx), known to be required for bone formation during de-
velopment (Schroeder et al., 2005; Komori, 2010), whereas
Sox9 is a transcription factor required for cartilage formation
(Akiyama et al., 2004; Quintana et al., 2009). It must be said,
however, that developmental studies have addressed in
great detail the formation of cartilage that undergoes hy-
pertrophy and is replaced with bone during endochondral
ossification of limb development, whereas the molecular
machinery underlying the formation of stable articular car-
tilage remains to be defined.

During development, chondrogenesis is controlled by in-
teractions between Sox9 and the Wnt/f-catenin signaling
pathway. Either overexpression of Sox9 or inactivation of
f-catenin in chondrocytes of mouse embryos in vivo pro-
duced a similar phenotype of dwarfism with decreased
chondrocyte proliferation, delayed hypertrophic chon-
drocyte differentiation, and endochondral bone formation
(Akiyama et al., 2004). Furthermore, either inactivation of
Sox9 or stabilization of f-catenin in chondrocytes also re-
sulted in a similar phenotype of severe chondrodysplasia.
Sox9 markedly inhibited activation of f-catenin-dependent
promoters and stimulated degradation of f-catenin. Of note,
a physical interaction between f-catenin and the C-terminal
trans-activation domain of Sox9 was demonstrated.

Dong and colleagues (2006) observed upregulation of
type X collagen (coll0al) and Runx2 mRNA by viral over-
expression of Wnt8c and Wnt9a, thereby inducing chon-
drocyte hypertrophy. Wnt8c and Wnt9a strongly inhibited
mRNA levels of Sox9 and type II collagen (col2al). They also
found that Wnt8c further enhanced BMP-2-induced expres-
sion of Runx2 and coll0al, whereas Wnt8c and Wnt9a in-
hibited TGF-f-induced expression of Sox9 and col2al. By
overexpressing f-catenin, the authors upregulated Runx2,
coll0al, and alkaline phosphatase (AP) mRNA levels while
they inhibited col2al transcription; Wnt8c and f-catenin also
acted at protein levels, inducing production of Runx2 in
chondrocytes. These results link activation of the canonical
Wnt signaling pathway with chondrocyte hypertrophy and
maturation through the transcription factors Runx2 and
Sox9.

Klees and colleagues (2005) found that adhesion of cul-
tured MSCs to laminin-5 activated ERK, leading to phos-
phorylation of Runx2/CBFA-1. Majumdar and colleagues
(2001) observed that in MSCs placed in alginate beads and
cultured in serum-free medium with BMP-2 and BMP-9 there
was increased expression of Sox9 accompanied by an in-
crease in expression of mature chondrocyte markers such as
type II collagen.

It has been reported that RUNX2 and SOX9 physically
interact in MSCs and that SOX9 can inhibit the trans-activa-
tion of RUNX2. In addition, RUNX2 exerts reciprocal inhi-
bition on SOX9 trans-activity. SOX9 induced degradation of
RUNX2, which was proteasome independent but phos-
phorylation dependent, and required the presence of the
RUNX2 C-terminal domain, which contains a nuclear ma-
trix-targeting sequence. Furthermore, SOX9 was able to de-
crease the level of ubiquitinated RUNX2 and direct RUNX2
to the lysosome for degradation. SOX9 also directed f-
catenin for lysosomal breakdown (Cheng and Genever,
2010). Thus, the reciprocal regulation between SOX9 and
RUNX2, downstream of signaling pathways, will have ob-
vious consequences on MSC fate.
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Physical factors in MSC differentiation

MSCs also interact physically with the surrounding envi-
ronment. Examples are numerous; here we cite but a few.
The first line of interaction for MSCs is with the extracellular
environment, be it plastic, a resorbable bioscaffold, or a more
rigid structure. Seminal in this sense is the study by Engler
and colleagues (2006), showing that the extracellular matrix
can control stem cell fate, inducing seeded MSCs toward
osteogenesis or chondrogenesis depending on its physical
properties. More recently, it was reported that manipulation
of the membrane potential of cultured MSCs can influence
their fate and differentiation (Sundelacruz et al., 2008, 2009).
These findings open up unprecedented avenues for the reg-
ulation of MSC differentiation in regenerative medicine us-
ing physical factors, without the use of exogenous growth
factors.

Conclusion

There is an increasing amount of data on the molecular
regulation of MSC differentiation, and this review has ad-
dressed only some of them (for a schematic overview see Fig.
3). As already discussed previously, a caveat of the in vitro
studies relates to the known variability that is at least in part
due to culture conditions and the MSC type used. Therefore,
a priority in the MSC field is the standardization of isolation
and culture expansion. This will minimize variability of
outcome and will also allow proper comparison of studies.
Nonetheless, the availability of standardized in vitro assays
employing primary human MSCs has huge scientific and
clinical potentials. The use of reporter assays for assessment
of net signaling activation, three-dimensional culture sys-
tems, and bioreactors with sensors monitoring MSC activity
will allow rapid progression from basic science to auto-
mated, highly controlled cell-bioprocessing methods moni-
tored via mathematical models through technological
advances in systems biology and network science. With this
view, the investigation of MSC “omics” as well as of the
influence of the surrounding niches and contained signaling
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molecules is of paramount importance. A deep knowledge of
the mechanisms underlying MSC differentiation will be
paramount for the successful development of consistent
MSC-based products in tissue engineering and regenerative
medicine.
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