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ABSTRACT 

The effectiveness of ammonium bisulphite (ABS) as oxygen scavenger and the 

behaviour of H2S in brine/ABS solutions are examined. Deionised water, 1 wt% NaCl 

and 3.5 wt% NaCl with different ABS concentrations are bubbled with H2S gas, while 

the dissolved oxygen, sulphide, EH and pH are measured.  With the exception of natural 

seawater, ABS concentration much greater than 100 ppmw is needed to completely 

scavenge dissolved oxygen in all the solutions considered.  The reaction between ABS 

and H2S leads to increase in sulphide. The implications of the results for environment 

assisted cracking of oil and gas production tubings are discussed.  
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1. Introduction 

The continuing need for oil and gas exploration and production is relentless despite the 

availability of renewable sources of energy.  The production of oil and gas involves well 

completion systems which must be designed to minimise corrosion and consequential 
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repair costs.  The completion consists of a number of different sized casings inside the 

conductor used for drilling activities.  There is a gradual reduction in the size of the 

casings with increasing well depth and each casing is cemented at the base to maintain 

borehole stability.  A typical oil and gas well completion configuration is shown in 

Figure 1. Annuli (A, B, C and D) are required at the top of each casing for well 

management. The production casing may extend to a depth of 5 km below the sea bed. 

The production casing is set in place and usually cemented above the production zone 

to provide a secondary barrier to well fluid in event of production tubing failure or leak 

(see Figure 1). Liners are hung off from the bottom of the production tubing and are 

usually sealed by a liner packer (a form of elastomeric seal) to direct well fluids, i.e. oil 

and gas, through the liner bore into the production tubing.  

 

The production annulus  (i.e. annulus A in Figure 1) normally contains clear brines, e.g. 

CaCl2, NaCl, NaCl/NaBr, CaCl2/CaBr2 etc., and/or treated water (deionised, seawater 

etc.) to provide hydrostatic head against the ingress of well fluids. The brine or water is 

treated mainly with oxygen scavenger, usually biocide and corrosion inhibitor [1] to 

reduce corrosion to negligible levels. The term oxygen scavenger is partially misleading 

because many of the chemicals used for this purpose in oil and gas wells function 

mainly as passivating corrosion inhibitors in addition to scavenging of oxygen [2].  A 

number of chemicals are used as oxygen scavengers, e.g. sodium sulphite (Na2SO3), 

sodium bisulphite (NaHSO3), sodium metabisulphite (Na2S2O5), ammonium sulphite 

((NH4)2SO3.H2O) and ammonium bisulphite (NH4HSO3).   

 

ABS is one of the most commonly used oxygen scavengers in oil and gas wells 

completion and production systems.  It has the advantage over sodium bisulphite of 

being miscible with water in concentrated solution, i.e. 65% (straw coloured), at 

ambient temperatures as low as 5 oC which is typical of the North Sea (United Kingdom 

Continental Shelf) environment. Under similar conditions, sodium bisulphite would 

precipitate. Therefore this makes ABS the prominent oxygen scavenger used in the 

North Sea water systems. 
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Corrosion control is challenging without sufficient removal of oxygen and/or 

prevention of oxygen ingress into well completions. ABS is injected into the wellbore 

production annulus to scavenge any dissolved oxygen in the brine or deionised water 

(potable water) used in the well completion process or for annulus management during 

the operation phase respectively. In this application a successful treatment means 

reducing the oxygen to very low levels. Experience has shown that brine that contains 

less than 10 ppbw of dissolved oxygen is not corrosive to carbon steel casing and 

production tubing [2]. However, during oil and gas production, the brine/ABS solution 

might come into contact with hydrogen sulphide (H2S) due to acid gas (CO2 and H2S) 

ingress  from the reservoir to the annulus, e.g. via a leak path such as at the packer seal 

(Figure 1). ABS has been implicated in downhole failure of production tubing used in a 

number of high pressure – high temperature (HPHT) well completions due to acid gas 

ingress to the production annulus [3-5]; the ABS assisted failure was suggested to be 

due to ABS degradation at high temperature leading to increase in sulphide.  

 

The interaction between ABS and H2S yields sulphuric acid (Eqns (1) and (2)): 

   

4NH4HSO3 + 3H2S  →  4NH4HS + 3H2SO4     (1) 

 

4NH4HSO3 + 4NaCl + H2S  →  4NH4Cl + 3H2SO4 +2Na2S   (2) 

 

Strong acids are aggressive towards steel even in anaerobic conditions. In order to 

understand the competing effects of oxygen scavenging and acidification more 

quantitatively and the consequent effect on failure due to corrosion, an investigation of 

sulphide concentration in this solution is required. Material qualification for production 

tubing e.g. super duplex stainless steel is usually based on brine chemistry, acid gas 

partial pressure and designated stress to establish immunity or susceptibility to 

environment assisted cracking (EAC) in the environment. The addition of other sulphur 

species may lead to susceptibility to EAC in an environment that it would otherwise be 

immune. 
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An assessment of the degradation associated with the corrosion of a material requires a 

knowledge and understanding of the characteristics of the environment. The focus of 

the current work is not on the corrosion behaviour or mechanisms of oil and gas 

tubulars but on the understanding of the service or operation induced changes in the 

environment that aids corrosion. It is generally assumed within the oil and gas industry 

that the addition of 100 ppmw of ABS is sufficient to completely scavenge dissolved 

oxygen in all types of aqueous solutions used in production annulus.  Although this 

assumption may be true for seawater, there is no evidence that this suggested 

minimum level of ABS needed to completely scavenge oxygen is valid for other types of 

aqueous solutions used in the production annulus.  The objectives of the current work 

are two-fold: (i) to determine the minimum concentration of ABS required to 

completely scavenge oxygen in deionised water, 1 wt% NaCl and 3.5 wt% NaCl 

solution, and (ii) to assess the effect of H2S gas on various concentrations of ABS in 

these solutions.  

 

2. Experimental Procedures 

There is currently no National Institute of Standards and Technology (NIST) buffer or 

standard for determining sulphide levels in acid gas mixtures. Although it is recognised 

that acid gas mixtures are usually encountered in hydrocarbon reservoirs, ABS/brine 

solutions were bubbled with H2S gas only in this study. The solutions considered were: 

deionised water, 1 wt% NaCl and 3.5 wt% NaCl. The ABS concentrations in each type of 

solution were 0, 100, 500 and 1000 ppmw.   

 

Reagent grade NaCl (supplied by Fisher Scientific) was used to prepare the 1 wt% NaCl 

and 3.5 wt% NaCl. The ABS (supplied by Baker Petrolite) concentration was varied in 

the range 0 to 12000 ppmw in each solution and the dissolved oxygen and pH level, at 

each concentration of ABS, were measured using an Orion† dissolved oxygen probe and 

a Russell pH glass bodied electrode (Russell pH, KDCW11) respectively. A magnetic 

stirrer was engaged prior to and during measurement of dissolved oxygen to ensure 
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the dissolved oxygen concentration was representative of the bulk solution.  All flasks, 

glassware, measuring cylinders etc. used for the experiments were carefully cleaned 

with distilled water and oven dried to prevent cross contamination.  

 

All experiments were carried out using the test loop shown in Figure 2 which was 

located in a fume cupboard. A combined electrochemical technique and visual 

observation approach was used in the test program to take measurements and observe 

chemical reactions.  

 

The reaction vessel (Figure 2) was almost completely filled with the test solutions then 

closed to prevent air contamination. The reaction cell consisted of the respective 

solution and a gas tight rubber stopper with access holes for electrodes, thermometer, 

and gas inlet and outlet tubes. Fitted into the stopper were all the pre-calibrated 

electrodes for dissolved oxygen, sulphide, EH and pH. The temperature was regulated at 

25 oC with a circulating water bath surrounding the reaction vessel (Figure 2).  The 

manometer was filled with saturated brine before the test started to ensure positive 

pressure (1 atmosphere) was maintained in the test loop. 

 
Nitrogen gas (99.999% purity) was bubbled at 200 – 250 ml/minute through the frit in 

the reaction vessel to deaerate the solution and vented into the fume cupboard through 

the vent port in the test loop. After approximately one hour, the dissolved oxygen probe 

was used to confirm the test solution was oxygen free before H2S gas was then 

introduced at 100 ml/minute. Whilst bubbling, the H2S gas was diverted to the 

manometer. The saturated brine levels in the manometer were maintained to ensure 

pressure was maintained at 1 atmosphere in the test cell. Sulphide, EH and pH 

measurements were continuously recorded at 15 seconds interval after H2S gas 

bubbling commenced using a computerised data logger.   

 

The experiments on the determination of the concentration of ABS required to 

completely scavenge oxygen were carried out three times while the experiments to 
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assess the effect of H2S gas on various concentrations of ABS were carried out twice on 

nominally identical solutions, to check for repeatability. 

 

The reliability of the readings depends on accurate calibration of the measuring 

equipment.  All the instruments used in this study were calibrated according to the 

manufacturer’s recommended guidelines and buffer solutions. In particular, the 

sulphide electrode was calibrated using potassium hydrogen phthalate (0.05 M 

KHC8H4O4) solution in deionised water to obtain a pH 4.01 buffer solution; the sulphide 

concentration in ppmw was obtained from the measured potential by Nernst 

equation [6]   

 

E  = E0 + Q log (A)        (3) 

 

where E is the measured electrode potential in mV, E0 (= 908.4 mV ) is the reference 

potential, A  is the level of sulphide in solution in mol/litre (1 mol/l = 32064 ppmw S2¯), 

and Q (= 32 mV/decade) is the gradient of E versus log (A) curve.   

 

  

3.  RESULTS AND DISCUSSION 

3.1 Effect of ABS on dissolved oxygen 

The effect of ABS concentration on the dissolved oxygen (without N2 bubbling) and the 

pH of deionised water are shown in Figure 3 for three identically prepared solutions.  

The pH of the three nominally identical solutions was identical to within less than 1% 

and the dissolved oxygen was identical to within 3% for the range of ABS concentration 

considered.  Similar level of consistency in the measurements was obtained for the 

repeated tests on the 1 wt% NaCl, 3.5 wt% NaCl and natural seawater.  Consequently, 

for clarity, only a representative result of each variable for each of the test solutions is 

presented in the rest of the paper.  
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The effect of ABS concentration on the dissolved oxygen and the pH of all the test 

solutions is shown in Figure 4. Both the dissolved oxygen and pH decrease with 

increasing ABS concentration in deionised water, 1 wt% NaCl, 3.5 wt% NaCl and 

natural seawater (North Sea).  

 

The pH of the natural seawater was 8 whilst it was slightly less than 7 for deionised 

water (6.9) and 1 wt% NaCl (6.8) and slightly above 7 for 3.5 wt% NaCl (7.3). A 

significant reduction in pH occurred after 100 ppmw ABS was added but little change in 

pH at ABS doses greater than 2000 ppmw; the pH range was between 4.8 and 5.2 for all 

solutions at 2000 ppmw ABS and greater. Note that the pH of undiluted ABS was 4.6. 

 

A significant amount of ABS was required to scavenge the oxygen in deionised water, 

1 wt% NaCl and 3.5 wt% NaCl (see Figure 4a). The average minimum concentration of 

ABS required for complete removal of dissolved oxygen in the test solutions is shown in 

Figure 5.  It is generally assumed within the oil and gas industry that the addition of 

100 ppmw of ABS is sufficient to completely scavenge aqueous solutions used in the 

production annulus.  The present study shows that this is only the case for natural 

seawater.   It should be noted though that the seawater used in this study did not 

contain hypochlorite, biocides etc. that can affect the performance of oxygen scavengers 

in water injection systems [1, 7]. The reaction between oxygen and sulphite based 

scavengers involves a chain (propagation process) mechanism [1], which means they 

are very sensitive to temperature and the presence of other dissolved species. 

 

Natural seawater contains a range of constituents not present in deionised water or 

synthetic NaCl solutions, for example, transition metal ions like cobalt, which can 

improve the performance of ABS as an oxygen scavenger [2]. This is supported by the 

above findings which show that considerably greater ABS concentrations are required 

to remove dissolved oxygen in deionised water and synthetic brines. Further, greater 

addition of oxygen scavenger led to a decrease in pH, which reduces the efficiency of 

scavenging as indicated by Snavely [8] for sulphite based scavengers below pH 7.  

 



8 

 

As the ABS concentration increases, the reduction in redox potential (EH) becomes less 

significant, as indicated in Figure 6. The highest rate of EH reduction is observed for the 

first 100 ppmw ABS (for which there is a similar significant decrease in pH), with a 

more gradual reduction in EH with further increases in ABS concentration. ABS is a 

reducing agent, typical of many oxygen scavengers [2], the bisulphite ion being oxidised 

to bisulphate: 

 

2HSO3 (aq) + O2 (aq)  2HSO4 (aq).      (4) 

 

In this reaction, sulphur is oxidised (S(IV)  S(VI) + 2e ) and the oxygen is reduced 

(O2(aq) + 2e   O2 (aq)) in formation of sulphate. The drop in the rate of conversion of 

O2(aq) to O2  at higher ABS concentrations may be attributed to the increasing scarcity of 

O2(aq) in these more heavily dosed ABS systems. It is important to note also that pH has 

an important influence on the electrochemical stability of the various sulphur species, 

which has an impact on electrochemical potential. However, the results of the current 

experiment have shown that pH remains relatively constant at between 4.8 and 5.4 

above very low additions (100 ppmw) of ABS.  

 

3.2 Effect of H2S on sulphide in NaCl/ABS solution 

A reliable quantitative measurement and qualitative assessment of sulphide requires 

strictly controlled environmental conditions. Complete oxygen removal and oxygen 

ingress was prevented during all the experimental work to prevent formation of other 

sulphur compounds. In addition to electrochemical measurements (dissolved oxygen, 

sulphide, EH and pH) an important aspect of the testing was visual observation of the 

solutions prior to and during H2S bubbling. The dissolved oxygen probe was used to 

measure dissolved oxygen levels in solution during the deaeration phase only, whilst all 

the other measurements were recorded simultaneously at intervals during the H2S 

bubbling phase. Recall that complete deaeration was achieved by the addition of 

nitrogen gas. 

 



9 

 

The pH, sulphide concentration and oxidation reduction potential, EH, for two 

nominally identical solutions of deionised water containing 1000 ppmw ABS are shown 

in Figure 7. Note that H2S bubbling started after about 40 mins from the start of the test; this 

corresponded to when there was complete deaeration.  The good level of consistency in the 

measurements shown in Figure 7 was also obtained for the other solutions considered 

in part of the current study. Hereafter, only representative results of the pH, sulphide 

concentration and EH for each of the test solutions is presented.  

 

The pH from the start of deaeration is shown in Figure 8 for all the solutions. The 

arrows in Figure 8 indicate the moment when H2S was introduced, which corresponds 

to the end of deaeration. After deaeration, the pH of ABS-free deionised water, 1 wt% 

NaCl and 3.5 wt% NaCl solutions were 7.4, 7.88 and 7.98 respectively.  The pH of the 

ABS-free solutions increased with increasing level of deaeration due to decrease in 

solution conductivity with deaeration. During H2S gas bubbling, the pH of the ABS-free 

deionised water decreased until the termination of the test.  As indicated in 

equation (1), this is due to the formation of an acidic solution. 

 

The initial level of dissolved oxygen in the solutions containing various concentrations 

of ABS (100, 500 and 1000 ppmw) is summarised in Table 1. Some deaeration was still 

necessary to ensure the solution was oxygen free before H2S was introduced. When H2S 

bubbling commenced (after complete deaeration) there was a decrease in pH in all 

solutions; the extent of which corresponded with the level of ABS in the solution. 

However, the decrease in pH was only temporary (see Figure 8). As indicated in 

equation (2), although the reaction results in an acidic solution the pH stabilises due to 

the formation of sodium sulphide (Na2S), the alkalinity of which counteracts the effects 

of sulphuric acid. The solution with the highest concentration of ABS experienced the 

lowest pH and the longest extended period before increase in pH was observed. 

Consequently, it is shown that ABS had more effect on the pH of all the solutions than 

H2S.  
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ABS is routinely used in the oil and gas industry to scavenge dissolved oxygen in brines 

used in well completions.  ABS is a corrosive liquid because of the low pH it generates 

in the formation of reaction products. As metabisulphite is oxidised to metabisulphate in 

the presence of oxygen, the acidification effects of metabisulphate produces sulphuric acid.  

In the current experiment the aqueous medium was deaerated completely. If the 

scavenging reaction does not proceed to completion, sulphite and oxygen can coexist in 

treated water and brine [2] further exacerbating oxygen corrosion risk in well 

completion production casing usually made of carbon steel and stress corrosion 

cracking risk in well completion production tubing which is usually made of duplex 

stainless steels. 

 

3.3  Oxidation reduction potential (EH) 

The redox potential in all the solutions considered is shown in Figure 9. The sulphide 

and bisulphite in the solutions with ABS form a couple that results in a reducing 

environment that continued until test termination. The addition of H2S gas into the 

solutions with 100 ppmw ABS led to a significant decrease in EH, followed by 

precipitation of sulphur in the NaCl (1 and 3.5 wt%) solutions and subsequent minimal 

change in EH. Whereas, in the solutions with 500 and 1000 ppmw ABS there was an 

initial decrease in EH during precipitation of sulphur (see Figure 8), followed by a 

further decrease until termination of the test. Overall the change in EH in the 100 ppmw 

ABS/H2S solutions was not significant after precipitation compared to the 500 and 

1000 ppmw ABS/H2S solutions where significant change in EH occurred after 

precipitation. It appeared from visual observation that there was more elemental 

sulphur in the NaCl solutions during precipitation. The precipitation occurred sooner as 

the ABS concentration in the NaCl solutions increased and for a longer period. The tests 

were terminated when the change in EH was negligible. The EH continued to decrease 

until the termination of the test in the ABS free solution.   
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3.4 Sulphide 

Similar to the pH and EH measurements the sulphide measurements in the solution 

under consideration followed the same trend (Figure 10).  Note that there was no 

increase in sulphide in the ABS-free solutions; thus this has been omitted from 

Figure 10. An increase in sulphide was recorded in all solutions with ABS; however the 

increase in sulphide was measured sooner in all solutions with 100 ppmw ABS 

compared to those with 500 and 1000 ppmw ABS due to minimal precipitation. Recall 

that H2S bubbling was carried out at 100 ml/min for all the solutions considered.  The 

rate of increase of sulphide with continued bubbling of the H2S was found to be 

approximately 10 ppbw/min, independent of the chloride and ABS concentrations in 

the solution (see Figure 10). 

 

When H2S was bubbled through all the solutions with ABS included, a white turbidity of 

sulphur was seen after a short period.  Depending on equilibrium conditions, sulphur 

may exist in various oxidation states in aqueous complex species (see Table 2). If 

equilibrium were attained, only H2S, HS¯¯, S2¯¯, S, HSO4¯¯ and SO42¯¯ ought to be found in 

solution according to the Pourbaix diagram for sulphur and water at 25 oC for ideal 

solutions [9], see Figure 11. In acid solutions, the total sulphide is present mainly in the 

form of H2S but as the pH increases the principle species present is HS¯¯ and only in very 

basic solution does the total sulphide exist mainly in the form of free sulphide ion (S2¯¯) .   

 

Heunisch [10] noted that when the pH dips below about 6, generally after the 

HSO3 /HS  mole ratio has been exceeded and excess HSO3¯¯ ion is added, a finely 

divided, white precipitate of elemental sulphur forms and will not redissolve on 

standing. It has also been reported that elemental sulphur is formed predominantly 

from the sulphide-sulphite system in acidic solutions where the sulphide is present in 

excess [11]. From Figures 8 and 9, the onset of precipitation (i.e. presence of sulphur) 

coincides with the occurrence of the minimum pH which then increases thereafter and 

stabilises; this is consistent with Heunisch’s results.  
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There will always be the same total amount of sulphur species in each solution but the 

amount present as sulphide and sulphur will vary with the pH (Figure 8)[2,12]. There 

was more sulphide in the deionised water compared to the 1 wt% NaCl and 3.5 wt% 

NaCl solutions (Figure 10). In deionised water the sulphur was mainly in solution as 

bisulphide, see equation (1), whereas in the NaCl solutions it appears that there was 

less sulphide in solution (being less milky by visual observation) and more sulphur 

precipitated as the concentration of ABS increased from 100 to 1000 ppmw.  Table 3 

shows the results of the tests in 3.5 wt% NaCl solution with 1000 ppmw ABS and H2S 

gas bubbling after deaeration. Note the initial increase in the absolute sulphide 

potential, then a decrease before a steady increase. This trend was observed in all 

solutions (deionised water, 1 and 3.5 wt% NaCl) with ABS especially when 500 or 

1000 ppmw was added to the test solution. The pH followed a similar trend (Figure 8) 

i.e. an initial decrease followed by an increase. The initial decrease in sulphide was due 

to the initiation of precipitation (opalescence) and low pH. When the bubbling with H2S 

gas starts, it lowers the pH, which will decrease the sulphide present in the solution as 

more sulphur, in HS¯¯ and H2S species forms in addition to the precipitate. The initial 

decrease in pH also coincides with where the solution started to turn milky, i.e. 

precipitation. The beginning of precipitation was stronger and quicker in line with 

higher concentration of ABS in all solutions.   The precipitation was observed when the 

measured EH and pH values were in the range 300 ≤ EH ≤ 100 and 4 ≤ pH ≤ 6 

respectively; this is included in the Pourbaix diagram shown in Figure 11.  The 

experimental results indicate a transition from H2S to S in the solutions; this is 

consistent with the white turbidity observed in the experiment.  

 

Elemental sulphur is only stable under mildly oxidising to mildly reducing conditions at 

a pH below 8. The measured pH (Figure 8) and EH (Figure 9) of the ABS-H2S solutions 

(with 500 and 1000 ppmw ABS) for deionised water, 1 wt% NaCl and 3.5 wt% NaCl 

solutions in the current study correspond to the area of the Pourbaix diagram which 

predicts stable H2S and sulphur precipitation (Figure 11).  
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Since the amount of sulphur present in the sulphide form is very pH dependent, this is 

most likely the cause of sulphide being measured in the sample containing ABS. The 

addition of H2S to the solutions with ABS only results in momentary change in the pH of 

the solutions, which allows for sulphide to be present in a condition when it otherwise 

would not be. Precipitation of sulphur was more obvious in the 1 wt% NaCl and 

3.5 wt% NaCl solutions plus ABS albeit actual measured sulphide was less compared to 

the deionised water solutions (Figure 12). It appears that sulphur stayed more in 

solution as sulphide in the deionised water compared to 1 wt% NaCl and 3.5 wt% NaCl 

solution.  

 

4.  Implications for corrosion in oil and gas well completion systems 

The results of this investigation showed the formation of sulphur and sulphide in 

NaCl/ABS mixed with H2S gas. The amount of sulphur and sulphide is found to be a 

function of the pH, which in turn depends on the ABS concentration. This has major 

implications for the corrosion behaviour of oil and gas completion tubulars where the 

ingress of H2S into the production annulus containing brine solution is not uncommon. 

 

The measurements performed by Brunner et al. [13] showed that sulphur solubility in 

H2S gas decreases with decrease in temperature and pressure. If there was H2S gas 

ingress into the annulus (due to packer damage) of a well completion, the gas stream 

will cool down and the pressure will drop as it rises in the annulus. It is conceivable 

therefore that sulphur may be deposited on the tubing. Kolts [14] found elemental 

sulphur increased the risk of crevice attack in corrosion resistant alloys including DSS. 

Mahmoud [15] and Ueda et al. [16] concluded that pitting and crevice corrosion 

occurred at surface areas of high nickel alloys that had been in direct contact with 

elemental sulphur in the presence of chlorides.  Coyle [17] also found that the presence 

of sulphur increases the susceptibility of high nickel alloys to SCC. 

 

In HPHT well completions the solubility of H2S and CO2 will be affected by pressure and 

temperature. The solubility of gases increases with increasing pressure. Henry's law 

states that under ideal conditions, the solubility of a gas in a liquid is directly 
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proportional to the pressure of that gas above the surface of the solution. Henry’s law is 

limited to dilute systems at low pressures. Therefore at HPHT conditions the non-

ideality of gases begins to affect solubility [18]. Nelson et al. [19] showed that the 

Henry’s law over predicts the concentration of dissolved H2S in water above 10.3 MPa 

(103 bar) and determined that the ensemble Henry’s law is the most accurate 

description of gas-liquid equilibrium at high pressure. Although the tests in the current 

study were carried out at 1 atmosphere and 25 oC it is surmised that if the 

concentration of the H2S at HPHT is reproduced correctly in a laboratory test, the 

reaction products between ABS and H2S should be similar. 

 

5. Conclusions 

The aqueous reaction of ABS (various concentrations) in deionised water, 1 wt% NaCl 

and 3.5 wt% NaCl and H2S has been investigated. Through the course of the 

experiments, sulphide was measured in solutions that included ABS. Increase in 

sulphide was not measured in blank solutions in all experiments. Nevertheless, the 

main conclusions are as follows: 

 

1. Although it is generally assumed within the oil and gas industry that the 

addition of 100 ppmw ABS is sufficient to completely scavenge aqueous 

solutions used in the production annulus, a concentration of 100 ppmw ABS or 

less does not scavenge the dissolved oxygen to less than 10 ppbw in deionised 

water, 1 wt% NaCl and 3.5 wt% NaCl solutions.  This new finding would enable a 

more effective use of ABS as oxygen scavenger to mitigate corrosion in oil and 

gas completion systems.  

2. There is a relationship between the amounts of sulphide measured and ABS 

concentration in all H2S solutions at low pH.  The sulphide level increases as the 

ABS concentration increases. 

3. In all solutions the level of precipitation of sulphur increased as the ABS 

concentration increased. 
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4. There were more sulphides in deionised water set of solutions with ABS, i.e. 100, 

500 and 1000 ppmw ABS compared to 1 wt% NaCl and 3.5 wt% NaCl solutions 

with similar concentration of ABS.  

5. Though less sulphide was measured in the NaCl solutions compared to 

deionised water solutions, sulphur was more discernable in line with increase in 

ABS concentration (100 to 1000 ppmw ABS) in NaCl solutions.  

6. In ABS/H2S solutions, the ABS behaved like a pH buffer in solution due to 

relatively constant pH of the solutions during H2S bubbling until the termination 

of the test.  

 

ABS is routinely used in the oil gas industry to scavenge dissolved oxygen in brines 

used in well completions or deionised water (potable water) used in the production 

annulus for well management in the operation phase. In the presence of H2S, the 

bisulphite is reduced to sulphide and sulphur thus ABS should be included in material 

qualification test programs of production tubing especially where H2S presence is 

identified. Oxygen scavengers without a sulphite component should be considered for 

use in well completions production annulus during the operation phase. However, if no 

suitable alternative exists then ABS concentration should not exceed 100 ppmw in 

solution (with chloride less than 0.1 wt% NaCl) and all the oxygen scavenged. 
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deionised water containing 1000 ppmw of ABS.  H2S bubbling commenced 

after complete deaeration at about 40 mins after the start of the tests.   

 

Figure 8  The pH during deaeration and H2S bubbling (arrows indicate where H2S 

bubbling starts). (a) Deionised water, (b) 1 wt% NaCl, (c) 3.5 wt% NaCl. 

Continuous line arrows indicate where H2S bubbling starts and dashed 

arrows indicate the onset of precipitation. 
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Figure 9  Oxygen reduction potential, EH, during deaeration and H2S bubbling.  

(a) Deionised water, (b) 1 wt% NaCl, and (c) 3.5 wt% NaCl.                     

Continuous line arrows indicate where H2S bubbling starts and dashed 

arrows indicate the onset of precipitation. 

 

Figure 10  Sulphide concentrations after the start of H2S bubbling in (a) deionised 

water, (b) 1 wt% NaCl, and (c) 3.5 wt% NaCl.  Arrows indicate where H2S 

bubbling starts. 

 

Figure 11  Pourbaix EH – pH diagram for sulphur water system at 25 oC and 

1 atmosphere (Adapted from [9]). The shaded region represents 

experimental measurements for the test solutions: 3.5 wt% NaCl + 1000 

ppmw ABS, 1 wt%  NaCl + 1000 ppmw ABS, 3.5 wt% NaCl + 500 ppmw ABS, 

deionised water + 1000 ppmw ABS, and 1 wt% NaCl + 500 ppmw ABS. 

 

Figure 12   The sulphide concentration in various solutions after termination of test. 
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Table 1:  Initial level of dissolved oxygen before further deaeration with nitrogen gas 

Solution ABS Concentration (ppmw) 
100 500 1000 

Deionised Water [ppbw] 5740 5720 5990 
1 wt% NaCl [ppbw] 5750 5830 5150 
3.5 wt% NaCl  [ppbw] 4440 4510 4100 
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Table 2: Sulphur species 

Sulphur Oxidation 
Number 

Formula Name 

+6 SO42¯¯ Sulphate 
+5 S2O62¯¯ Dithionate 
+4 SO2 Sulphur dioxide 
+4 SO32¯¯ Sulphite 

+2.5 S4O62¯¯ Tetrathionate 
+2 S2O32¯¯ Thiosulphate 
0 S Sulphur 

-⅔ S32¯¯ Polysulphides 
-1 S22¯¯ Polysulphides 
-2 S2¯¯ Sulphide 
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Table 3:  Test data for 3.5 wt% NaCl with 1000 ppmw ABS  added 

Activity Time 
(Minutes) 

Dissolved 
Oxygen 
(ppbw) 

 

pH S (mV) Comments 

Before 
deaeration 

0 4100 4.486   
21 0 4.502   
37 0 4.575   

H2S bubbling 
starts  

47 0 4.569 -407.3  
52 0 4.574 -425.9  
57 0 3.825 -394.1 Opalescence starts 
61 0 3.755 -390.3 Opalescence increases 
65 0 3.728 -392.8 
68 0 3.900 -405.3 
74 0 4.204 -423.3 
82 0 4.853 -487.9 
89 0 4.938 -502.6 
94 0 4.943 -516.4 
97 0 4.916 -519.7 

100 0 4.882 -522.6 
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