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Analytical method for designing grating-
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We present a useful analytical method for designing grating-compensated dispersion-managed (DM) soliton
systems for any desired input pulse widths and energies. The pulse-width and chirp evolution equations de-
rived from the variational method are solved exactly to obtain the explicit analytical expressions for the length
of the dispersion map and the grating dispersion. We also extend our analytical method to design grating-
compensated DM soliton systems with loss and gain. We show that our analytically designed DM soliton sys-
tems also apply even if the chirped fiber gratings have group-delay ripples. The results obtained from our
analytical method are in good agreement with those obtained from full numerical simulations. Finally a 160-
Gbits/s transmission system is simulated with all the important higher-order effects to show the effectiveness
of our analytical design. © 2004 Optical Society of America
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1. INTRODUCTION
Growth of Internet traffic and e-commerce are demanding
high-speed transmission lines. Recent studies have dem-
onstrated that dispersion management is one of the prom-
ising techniques for high-speed data transmission in
fiber-optic links.1 Dispersion-compensating techniques
utilize compensating elements such as dispersion-
compensating fibers (DCFs), optical phase conjugation,
and chirped fiber gratings (CFGs). In terrestrial sys-
tems, many transmission lines have already been in-
stalled under ground, and the cost of upgrading such sys-
tems to dispersion-managed (DM) systems is quite
expensive. The economic and simple way is to insert
lumped dispersion compensators at amplifier locations.
CFGs are effective lumped dispersive elements because of
their compact sizes, high bandwidth times dispersion fig-
ure of merit, the capability to compensate higher-order
dispersion, low insertion loss, and the absence of nonlin-
ear effects. It has been shown that solitons exist in DM
fiber transmission systems utilizing ideal CFGs for dis-
persion compensation, and the transmission speed can be
up to 100 Gbits/s.2,3

Chirped fiber gratings (CFGs), however, have group-
delay ripples (GDR) that are the result of imperfections
formed during the fabrication of gratings. The GDR in-
duce side peaks in the pulse profile as shown in Fig. 1. In
the absence of nonlinearity, the amplitudes of these side
peaks grow each time the pulse passes through a CFG.
The side peaks cause intersymbol interference and de-
grade the transmission system performance.4,5 In CFG-
compensated DM soliton systems, the growth of these
side peaks is suppressed.6 For return-to-zero transmis-
sion experiments with CFGs as the dispersion compensa-
tor, with 10 Gbits/s over 2900 km,7 4 3 10 Gbits/s over
800 km,8 16 3 20 Gbits/s over 400 km,9 and 40 Gbits/s
over 500 km,10 have already been reported. A design for
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light traffic conditions at a 40-Gbits/s transmission with
CFGs has been investigated by numerical simulations.11

The first step to set up any DM soliton system is to de-
sign the transmission lines in terms of the dispersion map
length, fiber, and pulse parameters. To date, there is no
completely analytical method to find soliton solutions for
CFG-compensated DM soliton systems. We can, how-
ever, obtain the numerical soliton solutions by the com-
monly used numerical averaging method12,13 in which the
pulse temporal data at two extrema of the slow dynamics
in the evolution of the pulse parameter (amplitude or
width) during pulse propagation in the DM soliton system
are averaged. The averaging procedure is repeated until
a stable soliton solution of the DM soliton system is ob-
tained. This numerical averaging technique is widely
used in the design of DM soliton systems compensated by
DCFs, and it can also be used in DM soliton systems with
CFGs as dispersion compensators. The averaging
method, however, starts with an arbitrary initial pulse
width and energy, and the initial pulse may not converge
to a stable soliton solution. It is therefore difficult to ob-
tain a stable solution for the desired pulse width and en-
ergy simultaneously. In general, system engineers are
interested in designing DM soliton systems for a given bit
rate (hence the pulse width) and initial pulse energy from
the available laser source. One can use the averaging al-
gorithm to perform a massive study, but the process can
be time-consuming.

In addition to the numerical methods, an efficient way
to describe the pulse dynamics in a DM soliton system is
by variational analysis.14,15 With a suitable ansatz, one
can derive a set of ordinary differential equations (ODEs)
governing the evolution of the pulse parameters in DM
soliton systems. Typically, the set of coupled ODEs has
to be solved numerically. Numerical solutions of these
ODEs are not only useful to describe the dynamics of the
2004 Optical Society of America
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DM solitons, but also to derive the parameters of the
stable DM soliton in any given DM transmission systems.
Results can be obtained much faster by this semianalytic
method than by full simulations with the numerical aver-
aging method. Nakkeeran et al.16 presented a com-
pletely analytical procedure that used a variational ap-
proach to design DM soliton systems compensated by
DCFs. The length of the fiber segments in a two-step dis-
persion map can be calculated explicitly for any given
pulse (width and energy) and fiber (dispersion and non-
linearity) parameters. They have also shown that the
analytical design procedure can be applied to DM soliton
systems with loss and gain. Using the variational analy-
sis, Poutrina and Agrawal17 proposed design guidelines
for a given two-step DM soliton system. They can obtain
the input pulse width, chirp, and energy for any given dis-
persion map parameters in DM soliton systems. We
have shown that the variational analysis can also be ap-
plied to design DM soliton systems compensated by
CFGs.18 For a set of given parameters of a dispersion
map in any grating-compensated DM soliton system, the
required input pulse widths and energies can be found ex-
plicitly from that semianalytical design procedure. We
have also shown that, in a CFG-compensated DM soliton
system with loss and gain, we can adjust the location of
the grating in the dispersion map to a chirp-free position
and obtain the desired input pulse parameters for the
system.18 Here, we consider the inverse problem, that is,
to find the dispersion map parameters for any given fiber
and pulse parameters in such systems.

In this paper we present an efficient analytical method
to design the dispersion map for a given pulse (energy and
width) and fiber (dispersion and nonlinearity) parameters
in any DM soliton communication system compensated by
CFGs. The gratings are modeled as lumped dispersion
compensators without GDR. Using a Gaussian ansatz in
the variational analysis, we derive the pulse evolution
equations. Then we obtain the analytical expressions to
calculate the grating dispersion and dispersion map
length by solving the evolution equations for the given
pulse and fiber parameters. We also extend this analyti-
cal method to design systems with loss and gain. It is
difficult to include the side peaks caused by GDR in the
variational analysis. However, because the side peaks do

Fig. 1. Temporal pulse profile of solitons in grating-
compensated DM soliton systems with GDR.
not significantly affect the dynamics of a single DM soli-
ton, our analytical procedure can be used to design DM
soliton systems compensated by CFGs with GDR.6 The
results obtained from our analytical method are in good
agreement with those obtained with the numerical aver-
aging method even in the presence of GDR in the grat-
ings. Finally, we report the transmission performance of
a 160-Gbits/s CFG-compensated DM soliton system de-
signed by the proposed analytical method.

The paper is organized as follows. In Section 2 we de-
rive the expressions of grating dispersion and dispersion
map length for given fiber and pulse parameters in loss-
less DM fiber systems. In Section 3 we extend the design
method to a lossy DM fiber system with a map length
equal to and shorter than the amplifier spacing. In Sec-
tion 4 we study the effect of GDR in DM fiber systems.
In Section 5 a 160-Gbits/s transmission system is simu-
lated with all the important higher-order effects to show
the effectiveness of our analytical design. We draw our
conclusion in Section 6.

2. METHOD FOR DESIGNING CHIRPED
FIBER GRATING-COMPENSATED
LOSSLESS DISPERSION-MANAGED
SOLITON SYSTEMS
Nakkeeran et al.16 have considered the ODEs derived
from the variational analysis14,15 of a DCF-compensated
DM soliton system. In that study, by solving the ODEs
governing the evolution of the pulse width and chirp, the
authors derived an analytic expression for the anomalous
and normal dispersion fiber lengths in terms of other fiber
(group-velocity dispersion and Kerr coefficients) and
pulse (energy, minimum, and maximum widths) param-
eters. Hence one can calculate the required dispersion
map length for the periodic evolution of a Gaussian pulse
with a given width and energy. Here we use a similar
procedure to derive the explicit analytic expressions for
the fiber length and grating dispersion in a DM soliton
system compensated by CFG.

The dynamics of a pulse propagating in an optical fiber
under the influence of the Kerr nonlinearity and periodi-
cally varying dispersion is governed by the nonlinear
Schrödinger equation:

i
]c

]z
2

b~z !

2

]2c

]t2
1 gu cu2c 5 0, (1)

where c is the slowly varying envelope of the axial elec-
trical field; and z, t, b(z), and g represent the normalized
distance, normalized time, group-velocity dispersion, and
self-phase modulation parameters, respectively. The
group-velocity dispersion parameter b(z) 5 b for z Þ (n
1 1/2)L, where n is an integer and L is the dispersion
map length. The gratings are located at z 5 (n
1 1/2)L and their actions are given by the transfer func-
tion F(v) such that cout(z, v) 5 F(v)c in(z, v), where v
is the angular frequency and c in and cout are the pulse
spectra before and after the gratings. The CFGs have
GDR that are the result of the imperfections in the grat-
ing manufacturing processes. The GDR will introduce
side peaks in the pulse profile as shown in Fig. 1.5,6
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It is difficult to include these side peaks in the pulse an-
satz of the pulse evolution equations by use of the varia-
tional principle. The effect of GDR is to modify the grat-
ing dispersion.6 The ripple period of GDR in CFGs can
be as small as 10 pm, which is much shorter than the sig-
nal bandwidth in most practical cases. When the signal
bandwidth is larger than the ripple period, the effect of
GDR is small and the effective grating dispersion is equal
to the mean grating dispersion.6 We therefore neglect
the effect of the ripples in the variational analysis. We
study the effect of GDR in Section 4. The grating filter
transfer function is modeled as

F~v! 5 expS igv2

2 D , (2)

where g is the average lumped dispersion of the grating.6

Equations (1) and (2) can be solved by the variational
method. We choose a Gaussian ansatz:

q~z, t ! 5 x1 expH 2
~t 2 x2!2

x3
2

1 iFx4~t 2 x2!2

2
1 x5~t 2 x2! 1 x6G J , (3)

where x1 , x2 , x3 , x4 , x5 , and x6 depend on z and corre-
spond to the amplitude, temporal position, width, qua-
dratic phase chirp, center frequency, and phase, respec-
tively, of the pulse. The evolution of the pulse-width and
chirp parameters in the optical fibers is given by the fol-
lowing coupled equations:

dx3

dz
5 2bx3x4 , (4)

dx4
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5 bS x4
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4
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A2gE0
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3

, (5)

where E0 5 x1
2x3 is a constant proportional to the energy

of the Gaussian pulse. In this design procedure we con-
sider that the pulse is launched at the midpoint of the fi-
ber segment, where the DM soliton has the minimum
pulse width (x3min). When the DM soliton reaches the
end of the fiber segment, the pulse breathes to the maxi-
mum pulse width (x3max) and there the pulse will enter
the CFG for dispersion compensation.

To model the effect of the CFG, we exactly solve Eq. (1)
by setting the nonlinear coefficient g 5 0 for a length of
fiber l. Then we take the fiber length to zero while keep-
ing the total dispersion *0

l b(z)dz 5 g constant. That is,
we model a CFG as a segment of an ideal fiber with zero
length and finite dispersion. The effects of CFG on pulse
width and chirp are given by

x3out
2 5 x3in

2H,

x4out 5
1

H F x4in 2 gS x4in
2 1

4

x3in
4D G ,

H 5 g2S x4in
2 1

4

x3in
4D 2 2gx4in 1 1, (6)
where y in and yout represent the values of the parameter y
at the input and the output of the grating.

Our aim is to derive explicit analytical expressions for
the length of the fiber segment and the grating dispersion
in terms of the fiber dispersion coefficient (b), Kerr coeffi-
cient (g), maximum pulse width (x3max), minimum pulse
width (x3min), and pulse energy (E0). This can be
achieved when we solve Eqs. (4)–(6). Taking the deriva-
tive of Eq. (4) with respect to z and using Eq. (5), we ob-
tain the equation for pulse duration as

d2x3

dz2
5
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Integrating Eq. (7) with respect to x3 , we obtain
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2 S dx3

dz D 2

5
22b2

x3
2

2
A2bgE0

x3
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The constant of integration c can be evaluated directly at
the midpoint of the fiber where the pulse duration reaches
its minimum (x3min) as

c 5
2b2

x3min
2

1
A2bgE0

x3min
. (9)

The DM soliton breathes to the maximum pulse width
x3max at the input of the grating, i.e., x3in 5 x3max . From
Eq. (4), we have x4in 5 2ẋ3max /(bx3max), where ẋ3max is
the derivative of x3 with respect to z at x3
5 x3max . Then, using Eq. (8), we can express x4in as

x4in 5
2 1

bx3max
S 2 4b2

x3max
2

2
2A2bgE0

x3max
1 2c D 1/2

. (10)

In deriving Eq. (10) we used the positive root of ẋ3 from
Eq. (8) because the pulse width is increasing from the
minimum (x3min) at the midpoint of the fiber to the maxi-
mum (x3max) at the input of the grating. The function of
the grating is to reverse the input chirp while preserving
the same input pulse width, i.e., x4out 5 2x4in and x3out
5 x3in . From Eqs. (6), the grating will reverse the chirp
of the soliton without changing its width if H 5 1. With
this condition, we obtain the expression for the grating
dispersion as

g 5
2x3max

4x4in

4 1 x3max
4x4in

2
. (11)

Integrating Eq. (8) with respect to z, we find the length of
the fiber to be

L 5 2G 2
gbE0 ln~4cx3min 2 2A2gbE0!

cAc
, (12)

where
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G 5 @AcA 1 gbE0 ln~2A2cA 1 4cx3max

2 2A2gbE0!#/~2cAc !,

A 5 2cx3max
2 2 2A2bgE0x3max 2 4b2.

For a given fiber dispersion (b), Kerr nonlinearity (g),
minimum pulse width (x3min), maximum pulse width
(x3max), and pulse energy (E0), we can obtain the grating
dispersion ( g) and fiber length (L) from Eqs. (11) and (12),
respectively.

The maximum pulse width (x3max) is not a commonly
used parameter to describe the property of a DM soliton
system. Recently, it has been reported that the maxi-
mum pulse width is related to the map strength, which is
an important parameter that describes the property of a
DM soliton system.19 The map strength S is defined as

S 5
uLb 2 gu

t0
2

, (13)

where t0 5 A2 ln 2x3min is the full width at half-
maximum (FWHM) intensity pulse width. The relation
between the maximum pulse width (x3max) and map
strength (S) is

x3max 5 S RuLb 2 gu

S D 1/2

, (14)

where R 5 x3max
2/t0

2 is the breathing parameter. The
breathing of the pulse increases as the map strength in-
creases. It has been proved that, around the map
strength value of S ' S0 5 1.65, the pulse breathing pa-
rameter R equals S0 .19 Using this relationship in Eq.
(14) and then in Eq. (13), it has been derived that the
maximum and minimum pulse widths of any DM soliton
systems with a map strength of 1.65 are related as

x3max 5 ~1.65!1/2t0 5 ~1.65 3 2 ln 2 !1/2x3min . (15)

Hence, to analytically design a dispersion map with map
strength S ' 1.65, we need only the minimum pulse
width (x3min) and energy (E0) as input pulse parameters.
The maximum pulse width (x3max) can be calculated from
Eq. (15). Also, to design a dispersion map with map
strength S , 1.65 (S . 1.65), we have to consider

x3max , ~1.65 3 2 ln 2 !1/2x3min@x3max . ~1.65

3 2 ln 2 !1/2x3min#.

To illustrate the effectiveness of our analytical design
procedure for lossless DM soliton systems, we use the re-
sults obtained from our analytical design procedure as
initial conditions for the averaging method13 to find the
numerical periodic DM soliton solutions. We find that
the numerical soliton solutions of the nonlinear Schrö-
dinger equation in general converge to the same pulse
width that we used to analytically design the dispersion
map. We also checked the stability of the numerical soli-
ton solutions by propagating them over 100,000 km.

We consider a fiber dispersion of 1 ps/(km nm), a non-
linearity of 2 km21 W21, and an input width of 5 ps (which
corresponds to 40-Gbits/s transmission). The maximum
pulse widths and energies are shown in Fig. 2. Note that
the input pulse width of 5 ps is the FWHM (A2 ln 2x3min).
From Fig. 2, the maximum pulse width drops by less than
10% even when the energy increases almost threefold.
We designed the DM soliton systems with map strengths
of 1.65 (solid line) and 3 (dashed line) using the appropri-
ate maximum pulse width. Figure 3 shows the grating
dispersion and map length values of the dispersion maps
calculated from Eqs. (11) and (12), respectively. As the
pulse energy increases, the grating dispersion decreases,
but the dispersion map length increases, i.e., the anoma-
lous average dispersion of the dispersion map increases so
as to balance the increase in the nonlinear effect. The
grating dispersions and map lengths are larger for the
dispersion map with higher map strength. The input
FWHM of the numerical soliton solutions obtained for dif-
ferent energies and map strengths S in the analytically

Fig. 2. Maximum FWHMs used in the design of lossless CFG-
compensated DM soliton systems for a map strength of 1.65
(solid line) and 3 (dashed line).

Fig. 3. Grating dispersion ( g) and map length (L) obtained by
the analytical method for designing lossless CFG-compensated
DM soliton systems for a map strength of 1.65 (solid line) and 3
(dashed line).
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designed DM soliton systems are shown as solid lines in
Fig. 4. The numerical results are close to the assumed
input pulse width of 5 ps in the systems.

3. METHOD FOR DESIGNING CHIRPED
FIBER GRATING-COMPENSATED
DISPERSION-MANAGED SOLITON
SYSTEMS WITH LOSS AND GAIN
A. Dispersion-Managed Soliton Systems with Amplifier
Spacing that is the Same as the Dispersion Map
Length
The analytical method to design CFG-compensated loss-
less DM soliton systems described in Section 2 can be ex-
tended to design systems with losses and periodic ampli-
fication. In this subsection we elaborate on the
analytical procedure to design DM soliton systems with
the amplifier spacing equal to the length of the dispersion
map. Here we consider a DM soliton system that con-
sists of anomalous dispersion fiber and normal dispersion
gratings for dense data packing.2,3 The same analytical
design procedure can also be used to design a DM soliton
system that consists of normal dispersion fiber and
anomalous dispersion gratings. We assume that the am-
plifiers are located at the middle of the fiber spans in the
dispersion maps because the resulting DM solitons are
more stable.20

To detail the analytical design procedure for lossy DM
soliton systems, we divide the dispersion map into two
sections. The first section consists of half of the anoma-
lous dispersion fiber with length L in1/2 followed by half of
the grating with dispersion g in1/2 and the second section
consists of the other half of the grating with dispersion
g in2/2 followed by the remaining half of the fiber with
length L in2/2 as shown in Fig. 5(a). The label E in1 and
E in2 are, respectively, the input pulse energies of the first
and second sections. It is well known that the average
dispersion of the DM soliton system is related to the en-
ergy of the DM soliton.21,22 In the lossless case, the input
energy of the DM soliton is available throughout the dis-
persion map. So the grating at the midpoint of the fiber
contributes the same average dispersion to each section of

Fig. 4. FWHM of the DM solitons obtained from the numerical
averaging method at the middle of the fibers versus pulse energy
E0 for lossless DM soliton systems.
the dispersion map. The same average dispersion is bal-
anced by the same input pulse energy in both sections of
the dispersion map. Hence the fiber length in the first
section (i.e., the section of the fiber before the grating) and
the second section (i.e., the section of the fiber after the
grating) of the dispersion map is the same and equal to
L/2 where L is the dispersion map length. In the pres-
ence of losses, the input pulse energy decays exponen-
tially. The average energy available in the second sec-
tion of the dispersion map is less than that in the first
section. It is therefore necessary to adjust the average
dispersion of the two sections of the dispersion map ac-
cording to the locally available average pulse energy in
lossy DM soliton systems. This can be done when we
shift the location of the grating in such a way that the lo-
cal average dispersion before and after the grating follows
the decrease in the pulse energy.

The analytical design of these two sections of the lossy
dispersion map is achieved by the following two-step pro-
cedure:

(i) Calculate the fiber length and grating dispersion
values of each section by use of the desired pulse and fiber
parameters as in a lossless system. Note that the input
energy of the pulse used for the second section is the re-
maining energy after the optical losses in the first section.

(ii) Adjust the average dispersion of each section by
means of modifying the grating dispersion such that the
ratio between the energy and the average dispersion of
the respective section are the same.

For the first section, we calculate the grating disper-
sion g in1 and fiber length L in1 as a lossless case using Eqs.
(11) and (12), respectively, with the given input pulse en-
ergy (E in1), minimum pulse width (x3min), and maximum
pulse width (x3max) or the map strength (S) value. Hence
the average dispersion of the first section of the disper-
sion map will be ba1 5 ( g in1 1 L in1b)/L in1 . The average
pulse energy in the first section with length L in1/2 of the
lossy system will be

Fig. 5. Schematic of grating-compensated DM soliton systems
with the dispersion map length equal to the amplifier spacing.
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Ea1 5
1

~L in1/2!
E

0

L in1/2

E in1 exp~2az !dz, (16)

where a is the loss coefficient of the fiber. Because of the
power loss in the fibers, the input pulse energy will not be
available for the pulse dynamics throughout a section of
fiber. Figure 5(b) shows the available pulse energy along
the dispersion map. The dotted lines are the average en-
ergy in each section. Thus the average dispersion of the
first section should be decreased accordingly. This can be
achieved when we appropriately modify the value of the
grating dispersion. To achieve this, we keep the ratio be-
tween the average pulse energy and the average local dis-
persion in the first section the same for both the lossless
and the lossy case:

Fig. 6. Grating dispersion ( g) obtained by the analytical method
for the design of lossy CFG-compensated DM soliton systems
with the amplifier spacing equal to the map length for S
5 1.65 (solid line) and 3 (dashed line).

Fig. 7. FWHM of the solitons at the beginning of the dispersion
maps versus pulse energy E in for lossy DM soliton systems.
Map strength of (a) 1.65 and (b) 3. Solid and dashed curves rep-
resent the results obtained in the designed DM soliton systems
without and with GDR in the gratings, respectively.
E in1

ba1
5

Ea1

ba18
(17)

where E in1 is the input pulse energy in the lossless case
and ba18 is the average dispersion in the lossy case.
Thus the new modified grating dispersion of the first sec-
tion of the dispersion map g1 5 (L in1/2)(ba18 2 b).

We follow the same procedure in the second section of
the dispersion map. The pulse energy at the beginning of
the second section is E in2 5 E in1 exp@2a(Lin1/2)#. Here
we did not include any splicing losses, but one can include
the splicing losses and calculate the input pulse energy
available for the second section of the dispersion map.
The grating dispersion ( g in2/2) and map length (L in2/2) in
the second section can be calculated with Eqs. (11) and
(12) from the pulse energy (E in2), the same minimum

Fig. 8. Schematic of grating-compensated DM soliton systems
with the dispersion map length shorter than the amplifier spac-
ing. The grating dispersion ḡ is ( i51

4 gi/4 and the fiber length L
is ( i51

4 (Li1 1 Li2)/4.

Fig. 9. Maximum FWHMs used in the design of lossy CFG-
compensated DM soliton systems for a map strength of 1 (dotted
line, lower), 1.65 (solid line), and 3 (dashed line).
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pulse width (x3min), and the maximum pulse width
(x3max). Hence the average dispersion of the second sec-
tion under the lossless assumption will be ba2 5 ( g in2
1 bL in2)/L in2 . Considering the fiber length of the sec-
ond section to be L in2/2, we calculate the average energy
(Ea2) in the lossy second section of the dispersion map as

Ea2 5
1

~L in2/2!
E

0

L in2/2

E in2 exp~2az !dz. (18)

We take loss into account by adjusting the average disper-
sion of the second section. The modified grating disper-
sion g2 5 (L in2/2)(ba28 2 b), where ba28 5 ba2Ea2 /
E in2 .

Cascading the two sections will result in the dispersion
map of a grating-compensated lossy DM soliton system
with the amplifier spacing the same as the dispersion
map length. The total length of the dispersion map is
(L in1 1 L in2)/2 with L in1/2 . L in2/2 and a grating disper-
sion g 5 g1 1 g2 as shown in Fig. 5(c).

To show the effectiveness of our method in designing
grating-compensated lossy DM soliton systems, we repeat
the calculations done in Fig. 4 but include a loss of coeffi-
cient a 5 0.2 dB/km. We appropriately chose the x3max
value in the range between 7.42 and 7.11 ps for S
5 1.65 and 11.09 and 10.36 ps for S 5 3, respectively.
For a map strength of 1.65, the length of the first section
(L in1/2) and length of the second section (L in2/2) are cal-
culated to be in the range of 8.34–8.85 km and 8.28–8.8
km, respectively. For S 5 3, the values of L in1/2 and
L in2/2 are in the range of 15.16–16.22 km and 14.41–
13.94 km, respectively. Figure 6 shows the calculated
grating dispersion ( g) of the dispersion map. The effect
of pulse energy on the grating dispersion and map length
in the lossy case are similar to the lossless case. Both the
grating dispersion and the map length values are larger
in the higher map strength cases. The solid curves in
Figs. 7(a) and 7(b) represent the numerical results for a
map strength of 1.65 and 3, respectively. The numerical
results are within 6% of the targeted pulse width of 5 ps.

DM soliton systems with the map length equal to the
amplifier span are useful for low- and moderate-speed op-
tical communications. For high-speed communications,
short dispersion maps are needed.23–25 Hence there will
be more than one dispersion map in an amplification
span.

B. Dispersion-Managed Soliton Systems with Amplifier
Spacing Longer than Dispersion Map Length
Moubissi et al. proposed an analytical method to design
DM soliton systems compensated by DCFs with many dis-
persion maps between the amplifiers.26 For any given
pulse width, energy, and fiber dispersion, the fiber lengths
in each map can be individually calculated. The lengths
of the fiber segments are different for different dispersion
maps within each amplification span. Here we extend
their method to the design described in Subsection 3.A to
obtain dense DM soliton systems with identical disper-
sion maps. Such systems make implementation easier.

From Fig. 3, the dispersion map length (L) does not
vary significantly even for a large variation in the input
pulse energy (E0). Thus, from the first dispersion map
length and a given amplification distance, we can esti-
mate the required number of dispersion maps (m) within
one amplification span. For each dispersion map, we ap-
ply the analytical design procedure described in Subsec-
tion 3.A as shown in Fig. 8(a). We then average the dis-
Table 1. Fiber Lengths of the Dispersion Mapsa

E in
(pJ)

Map 1 Map 2 Map 3 Map 4 Map 5

L11
(km)

L12
(km)

L21
(km)

L22
(km)

L31
(km)

L32
(km)

L41
(km)

L42
(km)

L51
(km)

L52
(km)

S 5 1
0.01 4.195 4.187 4.180 4.175 4.170 4.167 4.164 4.161 4.159 4.157
0.02 4.233 4.216 4.202 4.191 4.182 4.174 4.168 4.163 4.159 4.156
0.03 4.274 4.247 4.226 4.209 4.195 4.184 4.174 4.167 4.161 4.155
0.04 4.316 4.279 4.250 4.227 4.208 4.193 4.180 4.170 4.162 4.155
0.05 4.360 4.312 4.275 4.245 4.221 4.202 4.186 4.174 4.163 4.155

S 5 1.65
0.01 6.910 6.888 6.873 6.861 6.853 6.847
0.02 6.965 6.920 6.888 6.865 6.849 6.837
0.03 7.023 6.953 6.904 6.870 6.845 6.827
0.04 7.083 6.987 6.920 6.874 6.840 6.817
0.05 7.146 7.021 6.936 6.877 6.836 6.806

S 5 3
0.01 12.554 12.484 12.446 12.424
0.02 12.643 12.499 12.422 12.379
0.03 12.735 12.514 12.397 12.333
0.04 12.833 12.529 12.372 12.288
0.05 12.935 12.543 12.346 12.241

a Obtained by the analytical method for designing lossy CFG-compensated DM soliton systems with the amplifier spacing longer than the dispersion map
length.



Kwan et al. Vol. 21, No. 4 /April 2004 /J. Opt. Soc. Am. B 713
persion map lengths and grating dispersions within an
amplifier span to obtain the final map length (L) and grat-
ing dispersion (ḡ), i.e.,

L 5
1

m (
i51

m

~Li1 1 Li2!, (19)

ḡ 5
1

m (
i51

m

gi , (20)

where Lij , i 5 1,..., m and j 5 1,2 is the fiber length of
the jth section of the ith dispersion map within an ampli-
fier span, and gi is the grating dispersion of the ith dis-
persion map. Figures 8(b) and 8(c), respectively, show
the schematic diagrams of the intermediate and final
grating-compensated lossy DM soliton systems with four
dispersion maps between the amplifiers.

Table 2. Grating Dispersions of the Dispersion
Mapsa

E in
(pJ)

Map 1
g1

(ps/nm)

Map 2
g2

(ps/nm)

Map 3
g3

(ps/nm)

Map 4
g4

(ps/nm)

Map 5
g5

(ps/nm)

S 5 1
0.01 29.767 29.775 29.781 29.784 29.787
0.02 29.719 29.735 29.747 29.754 29.759
0.03 29.673 29.699 29.716 29.727 29.735
0.04 29.625 29.662 29.685 29.700 29.711
0.05 29.577 29.624 29.654 29.674 29.686

S 5 1.65
0.01 216.163 216.144 216.133
0.02 216.142 216.104 216.083
0.03 216.120 216.063 216.033
0.04 216.095 216.021 215.983
0.05 216.068 215.979 215.932

S 5 3
0.01 229.486 229.329
0.02 229.543 229.227
0.03 229.600 229.124
0.04 229.658 229.021
0.05 229.714 228.914

a Obtained by the analytical method for designing lossy CFG-
compensated DM soliton systems with the amplifier spacing longer than
the dispersion map length.

Table 3. Average Values of Map Length
and Grating Dispersiona

Energy
E in
( pJ)

S 5 1 S 5 1.65 S 5 3

L (km) ḡ (ps/nm) L (km) ḡ (ps/nm) L (km)
ḡ

(ps/nm)

0.01 8.343 29.779 13.744 216.147 24.954 229.407
0.02 8.369 29.743 13.775 216.110 24.971 229.385
0.03 8.398 29.710 13.807 216.072 24.989 229.362
0.04 8.428 29.677 13.840 216.033 25.011 229.340
0.05 8.459 29.643 13.874 215.993 25.032 229.314

a Obtained from our analytical method in lossy CFG-compensated DM
soliton systems.
As an illustration, we consider the example discussed
in Fig. 4 and include a loss with the coefficient a
5 0.2 dB/km. Here we study three different map
strengths: 1, 1.65, and 3. We use the same fiber disper-
sion value of 1.18 ps/(km nm) for all three map strengths,
and the resulting dispersion maps have three different
dispersion map lengths. We use different maximum
pulse widths for the three different map strengths as
shown in Fig. 9. For the same map strength, the pulse
undergoes less breathing when the pulse energy in-
creases, i.e., the maximum pulse width decreases because
of the increase in the nonlinear effect. Tables 1 and 2
show the fiber lengths and grating dispersions calculated
from the analytical method described in Subsection 3.A,
respectively. We consider an amplification span of
around 40–50 km, so the number of dispersion maps per
amplifier span will be 5, 3, and 2 and the amplification
distance will be approximately 42, 42, and 50 km, respec-
tively, for the map strengths of 1, 1.65, and 3. Table 3
shows the average map lengths and grating dispersions
for the three map strengths. The grating dispersion is
slightly reduced when the pulse energy is increased. The
magnitude of the grating dispersion is larger for a higher
map strength. To check the validity of our analytical
method, we use the numerical averaging method to deter-
mine the numerical DM soliton solutions using the
Gaussian pulse @x1 exp(2t2/x3min

2), where x1
5 (E in /x3min)1/2] as the initial condition. Solid, dotted,
and dashed lines in Fig. 10 show the results obtained
from the numerical averaging method for map strengths
of 1, 1.65, and 3, respectively. The solid and dotted lines
are within 3% whereas the dashed line is 9% from the ex-
pected value of 5 ps. We note that the difference in ac-
curacy is not due to fewer (two) maps used in an amplifier
span. We also considered another design for a map
strength of 3 using a fiber dispersion of 2.94 ps/(km nm)
that resulted in four dispersion maps per amplifier span.
The results are nearly the same as the dashed line in Fig.
10. The reason for the larger deviation in higher map
strength is that the Gaussian ansatz is a good approxima-
tion to the core of the DM solitons for lower map

Fig. 10. FWHM of the solitons at the beginning of the disper-
sion maps versus pulse energy E in for lossy DM soliton systems.
Solid (lower), dotted, and dashed lines represent the results for
map strengths of 1, 1.65, and 3, respectively.
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strengths of 1 and 1.65, but not for a high map strength,
hence pulse energy.3,19

4. EFFECT OF GROUP-DELAY RIPPLES IN
CHIRPED FIBER GRATING-COMPENSATED
DISPERSION-MANAGED SOLITON
SYSTEMS
In the analytical design, we did not consider the GDR in
the CFGs and did not include the side peaks in the Gauss-
ian ansatz because of the mathematical complexity. The
amplitudes of the side peaks, however, decrease exponen-
tially along the tails of the pulse. The pulse energy
mostly concentrates in the central peak rather than the
side peaks of the DM solitons. The significance of the

Fig. 11. FWHM of the DM solitons obtained from the numerical
averaging method at the beginning of the dispersion maps versus
pulse energy E in for lossy DM soliton systems. Crosses and
circles are data points for the designed DM soliton system with-
out and with GDR in the gratings, respectively. The ripple am-
plitude and period of the GDR are 5 ps and 0.064 nm.

Fig. 12. Effect of GDR in the gratings for lossy DM soliton sys-
tems. (a) FWHM of the DM solitons versus ripple amplitude for
a constant ripple period of 0.064 nm. (b) FWHM of the DM soli-
tons versus ripple period for a constant ripple amplitude of 5 ps.
The pulse energy is 0.13 pJ.
side peaks is small for the dynamics of single DM soliton
propagation in CFG-compensated DM soliton systems.
In general, the structure of the GDR in CFG is quite
complex.27 For simplicity we assume a sinusoidal form of
GDR in all the simulations that involve GDR in the
gratings.6 In this section, we first study the effect of
GDR on the designed CFG-compensated DM soliton sys-
tems for different initial pulse energies. We launch the
same Gaussian pulses used in the analytically designed
systems but with GDR in the gratings and obtain the DM
soliton solutions by the numerical averaging method. We
find that the numerical results are in good agreement
with the analytical results, except for the cases of large
ripple amplitude and period. Finally, we show the evolu-
tion of the Gaussian ansatz in the analytically designed
system with GDR over 10,000 km. The pulse parameters
deviate somewhat from the initial parameters but the
core of the pulse remains close to the Gaussian ansatz.

In the absence of loss, we launch the same Gaussian
pulse in the analytically designed systems in Section 2.
We choose GDR with an amplitude of 5 ps and a period of
0.064 nm in most studied cases. In a real grating, the
amplitude can be as low as 1.5 ps and the dominant pe-
riod is 0.06 nm.4,27 The dashed lines in Fig. 4 represent
the numerical results for GDR. The numerical results in
the case of gratings with GDR (dashed lines) are close to
that without GDR (solid lines). Thus our analytical
method is also useful to design DM soliton systems in the
presence of GDR in gratings when loss is negligible.

In lossy DM soliton systems with the map length the
same as the amplification distance, we study the effect of
GDR in gratings using the same initial Gaussian pulse as
that in Subsection 3.A. The dashed curves in Figs. 7(a)
and 7(b) show the numerical results obtained by the av-
eraging method for map strengths of 1.65 and 3, respec-
tively. The numerical results are within 6% of the as-
sumed width, 5 ps. Thus the proposed design can be

Fig. 13. Effect of ripple period and amplitude of the gratings on
the ratio of the energy in the central peak (Ec) to total energy (E)
for lossy DM soliton systems. (a) Energy ratio versus ripple pe-
riod for a constant ripple period of 0.064 nm. (b) Energy ratio
versus ripple amplitude for a constant ripple amplitude of 5 ps.
The pulse energy is 0.13 pJ.



Kwan et al. Vol. 21, No. 4 /April 2004 /J. Opt. Soc. Am. B 715
applied to lossy systems with GDR when the map length
equals the amplification distance.

For the systems with the amplifier spacing longer than
the map length, we choose the systems with a map
strength of 1.65 where the DM soliton is close to a Gauss-
ian profile.19 We choose the minimum pulse width to be
5 ps @(2 ln 2x3min)1/2# for 40-Gbits/s transmission and the
input pulse energies (E in) to range from 0.08 to 0.13 pJ.
The fiber dispersion is 1.651 ps/(km nm) and the nonlin-
earity is 2 km21 W21. The different input maximum
pulse widths to achieve different input pulse energies are
between 7.5 and 7.44 ps. From the analytical design, the
map length for these input parameters ranges from 9.91
to 10 km and the grating dispersion ranges from 215.91
to 215.73 ps/nm. We use four dispersion maps so that
the amplification distance will be ;40 km.

We then introduce GDR with an amplitude of 5 ps and
period of 0.064 nm in the gratings.6 We launch the
Gaussian ansatz x1 exp(2t2/x3min

2), where x1
5 (E in /x3min)1/2 in the analytically designed CFG-
compensated DM soliton systems with and without GDR
and perform numerical averaging13 to obtain the stable
DM soliton solutions. Figure 11 shows the pulse widths
versus pulse energies of the numerical solutions.
Crosses and circles are data points corresponding to the
cases without and with GDR in the gratings, respectively.
The pulse widths of the numerical soliton solutions are
close to 5 ps even in the presence of GDR. Because the
energy of the side peaks is much smaller than that of the
central peak, the change in the pulse width due to the
change in the energy of the central peak is small.

Next we study the effect of different ripple amplitudes
and periods on our analytically designed CFG-
compensated DM soliton systems. We fix the pulse en-
ergy (E in) and pulse width (x3min) to be 0.13 pJ and 5 ps,
respectively. The ripple amplitude and period are varied
from 0 to 8 ps and 0 to 0.11 nm, respectively. Because the
ripple amplitude of the GDR can be as low as 1.5 ps and

Fig. 14. Effect of GDR in the gratings for lossy DM soliton sys-
tems. (a) Percentage of energy difference for a constant ripple
period of 0.064 nm. (b) Percentage of energy difference for a
constant ripple amplitude of 5 ps. The FWHM of the DM soli-
tons is 5 ps.
the dominant ripple period is 0.06 nm,27 we choose the
maximum value of the ripple amplitude and period in our
study to be 8 ps and 0.11 nm, respectively. The relative
phase between the GDR and pulse spectrum is chosen to
be p.6 Figures 12(a) and 12(b) show the pulse widths of
the DM solitons versus ripple amplitude and period, re-
spectively. The ripple period and amplitude are kept con-
stant as 0.064 nm and 5 ps in Figs. 12(a) and 12(b), re-
spectively.

We observe that the pulse width of the DM soliton in-
creases when the ripple amplitude or the ripple period in-
creases. For the cases studied, the effective dispersion of
the CFGs is almost the same as the grating dispersion be-
cause of the small ratio between the ripple period and the
pulse spectral bandwidth.6 As the ripple period or am-
plitude increases, the energy in the side peaks of the DM
soliton increases. Figure 13 shows the ratio between the
energy of the central peak (Ec) and that of the whole
pulse (E). Thus the nonlinear effect is slightly reduced
as more energy is transferred from the central peak to the
side peaks resulting in pulse broadening. If we keep the
same pulse energy (width), the pulse width (energy) will
increase as the ripple amplitude or period increase. The
change in pulse width is up to ;6% in Figs. 12(a) and
12(b). For the pulse energy of 0.13 pJ the numerical av-

Fig. 15. Evolution of a Gaussian ansatz in the analytically de-
signed CFG-compensated DM soliton system with GDR. The
ripple amplitude and period are 5 ps and 0.064 nm, respectively.
The pulse shapes are taken just after every five amplifiers.

Fig. 16. Slow dynamics of the pulse width of the Gaussian an-
satz propagating in the analytically designed DM soliton system
with a ripple amplitude of 5 ps and a period of 0.064 nm in CFGs.
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eraging method does not give stable DM solitons for a
ripple amplitude beyond 8 ps or a ripple period longer
than 0.11 nm.

Using the numerical averaging method, we also obtain
the pulse energies for a fixed stable input pulse width of 5
ps and different values of ripple amplitude (0–8 ps) and
period (0–0.11 nm) in the analytically designed DM soli-
ton system. The energy of the numerical DM soliton for
the ideal grating case is ;0.133 pJ at the amplifier loca-
tion. The required pulse energy increases when the
ripple amplitude or period increases. The percentage in-
crease in energy as a function of ripple amplitude and pe-
riod are shown in Figs. 14(a) and 14(b), respectively. Be-
cause of the relative amount of energy in the central peak
of the DM soliton decreases as the ripple amplitude or pe-
riod increases, the DM soliton requires larger energy for
the same pulse width. The results demonstrate that our
analytical design is effective if the CFGs have small
ripple amplitude and short ripple period.

Finally, we study the evolution of the Gaussian ansatz
in analytically designed DM soliton systems compensated
by CFGs. We choose a Gaussian pulse with a duration of
5 ps (corresponding to 40-Gbits/s transmission) and pulse
energy (E in) of 0.13 pJ. For the DM soliton system, we
choose a map strength of 1.65, the maximum FWHM as
7.44 ps, and fiber dispersion as 1.65 ps/(km nm). The cal-
culated map length is ;10 km and the grating dispersion
is approximately 215.73 ps/nm. We introduce ripples
with amplitude and period of 5 ps and 0.064 nm, respec-
tively. The ripple period is chosen as 0.064 nm.4,27 Fig-
ure 15 shows the evolution of the Gaussian pulse over
10,000 km. The pulse core shape does not deviate much
from the initial Gaussian profile. The final pulse has a
peak intensity of ;29 mW (;30.6 mW for the initial
Gaussian pulse) and has side peaks induced by the GDR.
The separation between the side peaks is 125 ps and the
percentage of the pulse energy transferred to the side
peaks of the pulse after propagating for 10,000 km is
;5%. Figure 16 shows the slow dynamics of the pulse
width along the propagation distance. The small fluctua-
tions of the pulse width are caused by the interaction be-
tween the DM soliton and the dispersive waves because
the initial pulse is not an exact DM soliton solution. For
comparison the pulse width of the DM soliton solution ob-
tained with the numerical averaging method is ;5.1 ps
and has an energy of 0.13 pJ.

5. ANALYTICALLY DESIGNED 160-GBITS/S
DISPERSION-MANAGED FIBER SYSTEM
PERFORMANCE WITH HIGHER-
ORDER EFFECTS
To show the effectiveness of our analytical design for prac-
tical DM soliton systems we examine the evolution of a
32-bit pseudorandom sequence in a single channel at 160
Gbits/s over 8000 km. We consider a fiber dispersion of 1
ps/(km nm), a nonlinearity of 2 km21 W21, an input pulse
width of 1.25 ps, and energy (E in) of 0.03 pJ. We choose
the map strength to be 1.65 for minimum pulse interac-
tion, which corresponds to a maximum FWHM of 1.9 ps.
Using these input parameters in Eq. (12) we calculate the
lossless dispersion map length L as 1.02 km. The loss co-
efficient of fibers is 0.2 dB/km. We consider an amplifi-
cation span of around 40 km, so the number of dispersion
maps between amplifiers will be 40. Thus the final map
length (L) and grating dispersion (ḡ) are calculated with
Eqs. (19) and (20) as 1.012 km and 21 ps/nm, respec-
tively. The amplifier noise figure is considered to be 4.5
dB. We use 50 sets of random sequences for both bit se-
quence and amplifier noise. For high-speed transmis-
sion, we include the third-order dispersion of 0.1 ps3/km
and 20.1 ps3 in the fiber and the grating sections, respec-
tively. The third-order dispersion of the grating is con-
sidered in such a way as to compensate the third-order
dispersion in fibers.28 We also include the intrapulse Ra-
man scattering with the response time of 3 fs.29 A
Gaussian filter with a bandwidth of 1.6 THz whose cen-
tral frequency is upshifted by 18.3 GHz is placed after
each amplifier to reduce the timing jitter and suppress
the soliton self-frequency shift.30 Each amplifier has a
gain of 8.2 dB to compensate the power loss in fibers and
filter. Figure 17(a) shows the intensity (solid) and timing
(dashed) Q factors along the propagation distance. The
Q factors are derived in linear units for which the value
Q 5 6 (dotted line) corresponds to a bit-error ratio of
1029. The timing detection window is chosen to be 70%
of the bit window. The eye diagram of a random se-
quence after 7400 km of transmission at which Q 5 6 is
shown in Fig. 17(b). Figures 7(a) and 7(b) show an excel-
lent performance over transoceanic distance with the ana-
lytically designed grating-compensated DM soliton sys-
tems. Moreover, it demonstrates the utility of our
analytical design in high-speed long-haul CFG-
compensated optical fiber transmission systems.

6. DISCUSSION AND CONCLUSION
The results obtained in this paper will be valid in all cases
where the Gaussian ansatz is a good approximation for
the soliton solutions of the DM systems compensated by
CFGs.15,19 For a large map strength (.4) or systems
with large energy soliton solutions (.0.2 pJ), the Gauss-
ian ansatz is not a good approximation and we find a
large deviation between the analytical results and the nu-
merical results. We also observed that the effect of
ripples decreases with the pulse width because the ratio

Fig. 17. (a) Intensity (solid curve) and timing (dashed curve) Q
factors versus propagation distance. The dotted line shows the
value of Q 5 6. (b) Eye diagram of a particular random se-
quence after 7400 km.
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of spectral bandwidth to ripple period increases with the
spectral bandwidth for a fixed ripple period.

In this paper we have used anomalous dispersion fiber
and a normal dispersion grating because one can pack the
signal closer in such systems.31 Our analytical method
can be applied to design DM soliton systems consisting of
normal dispersion fibers and anomalous dispersion grat-
ings as well. Finally, the design is not limited to CFGs; it
can be used for any dispersion compensators that have
lump dispersion, without nonlinearity and power loss.

In conclusion, we have presented an analytical method
for designing grating-compensated DM soliton systems.
We have explicitly derived the expressions for dispersion
map length and grating dispersion by solving the evolu-
tion equations of pulse width and chirp obtained from the
variational analysis. Using our design method, one can
obtain the map length and grating dispersion for the de-
sired bit rate, pulse energy, and fiber dispersion. We
have also described the analytical procedures to design
lossy DM soliton systems having a dispersion map length
equal to or shorter than the amplifier spacing. The re-
sults obtained from our analytical design methods are in
good agreement with that from the numerical averaging
method even in the presence of GDR. The evolution of
the Gaussian pulse used in the analytically designed DM
soliton system shows little deviation over transoceanic
distance. Thus our design procedure is a useful tool to
design CFG-compensated DM soliton systems even with
GDR. The effectiveness of our analytical method has
been supported by the good transmission system perfor-
mance of the analytically designed 160-Gbits/s CFG-
compensated DM soliton system.
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