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THE NUMBER OF SIMPLICIAL NEIGHBOURLY
d-POLYTOPES WITH 443 VERTICES

A. ALTSHULER anp P. McMULLEN

Abstract. In this paper is proved a formula for the number of simplicial neigh-
bourly d-polytopes with d + 3 vertices, when d is odd.

§1. Introduction. A d-polytope P is k-neighbourly if every subset of k vertices
of P is the set of vertices of a face of P. (We refer the reader to Griinbaum [1967,
particularly §5.4 and §6.3] or McMullen-Shephard [1971, Chapter 3] for the
terminology employed here.) The cyclic polytopes C(v,d) (v = d + 1) provide
examples of polytopes which are neighbourly (that is, n-neighbourly, n = [$d]);
the only d-polytopes which are k-neighbourly for k > n are the simplices. The
importance of the simplicial neighbourly d-polytopes with v vertices lies in the fact,
conjectured by Motzkin [1957] and proved by McMullen [1970], that, among all
d-polytopes with v vertices, they, and only they, have the maximal number of faces
of each dimension.

The cyclic polytopes, with their relatively simple structure, have been thoroughly
investigated. For the literature about cyclic polytopes prior to 1967, the reader
should consult Griinbaum [1967]; for more recent results, we mention Altshuler
[1971; 1973] and Shephard [1968] (see also McMullen—Shephard [1971, §2.3 (vi)]).
Rather surprisingly, however, very little has been published about the structure of
the other neighbourly polytopes; almost all the known information can be found in
Griinbaum [1967, §7.2]. In particular, it is shown there that, if d is even, all
neighbourly d-polytopes are simplicial, while if d is odd, for each v > d + 2 there
are neighbourly d-polytopes with v vertices which are not simplicial.

Let b,(v,d, k) denote the number of simplicial k-neighbourly d-polytopes with
v vertices (so that ¢,(v,d) = b,(v,d, 1)). The known information about the most
interesting case k = n (= [4d]) can be summarized as follows:

Ifd = 2n, b(v,d,n) = lifandonlyifd +1 <v<d+3,andifd = 2n + 1,
b(v,d,n) = lifand onlyifd + 1 € v < d + 2 (Griinbaum [1967, §§7.2 and 7.3]);
b,8,4,2) = 3 (Griinbaum-Sreedharan [1967]); and b9, 4,2) = 23 (Altshuler-
Steinberg [1973]).

The main purpose of this paper is to prove:

THEOREM 1. Forn = 1,

b(2n + 4,2n + 1,n) = 207D 4 T p(h). 20t m

4(n + 2—5 hln+2
h odd

where ¢ is Euler’s function.
§2. Gale diagrams. Let P be a simplicial neighbourly (2n + 1)-polytope with

2n + 4 vertices. The combinatorial properties of P are faithfully reflected by those
of its contracted standard Gale diagram P. (In matters of terminology concerning
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Gale diagrams, we shall follow McMullen-Shephard [1971, §3.4].) P consists of
2n + 4 points (counted according to multiplicity) distributed on the unit circle S in
E2. P has an odd number, k say, of diameters (that is, diameters of S containing
points of P), and points of P on adjacent diameters occur at opposite ends.

The neighbourliness of P is equivalent to there being at least n + 1 points of P
on each side of every diameter (Griinbaum [1967, Exercise 7.3.7]). Thus, each
diameter of P contains either one or two points of P, and (since the total number of
points is even), the number, / say, of 2-diameters (that is, with two points of P) is
also odd. Moreover, since equal numbers of points of P on 2-diameters must lie on
cither side of each 2-diameter, we see that adjacent 2-diameters carry their points of
P at opposite ends (compare the description of the Gale diagram of the unique
neighbourly 2n-polytope C(2n + 3, 2n) with 2n + 3 vertices). Finally, this implies
that adjacent 2-diameters are separated by an even number of 1-diameters.

The converse is clear: any Gale diagram with 2» + 4 points with an odd number
of 2-diameters, of which adjacent pairs are separated by an even number of
1-diameters, is the Gale diagram of a simplicial neighbourly (2n + 1)-polytope with
2n + 4 vertices.

§3. The proof of the theorem. We have reduced the proof of the theorem to the
problem of enumerating the Gale diagrams characterized in the last section. With
each such Gale diagram, we associate a labelling of the vertices of a regular polygon
with an odd number of sides, as follows. If there are ! 2-diameters, let them be
numbered D,, ..., D, in cyclic order. Suppose that there are 2(m; — 1) 1-diameters
between D, and D;., (i = 1,...,1l; D;,, = D,). Then we label the vertices of an
I-gon in cyclic order m,, ..., m,, noticing that, if the Gale diagram has k diameters
in all,

mi=1 % 20 = )+l = HE =D+ 2 =nt2.

-

To each isomorphism type of Gale diagram we are considering corresponds precisely
one equivalence class of such labelled regular polygons under orthogonal trans-
formations, and conversely.

It is therefore enough to count the number of essentially distinct ways of attaching
to the vertices of regular I-gons (I = 1, 3, ...) positive integer labels totalling n + 2.
But this problem is just a straight-forward application of the well-known theorem of

Polya [1937]. Indeed, the answer is implicit in the formula for 2; (in case s is odd),
n+2

given on page 169; it is the coefficient of x"72 in
1 xk k
kgd 2 0 =90 —xH)*-r t 5k Z‘f’(h) x")"/"}
x(1 + x) ¢( )

T 20— 2x%) | w&da

which is the number given in the statement of the theorem.

§4. Further results and conjectures. An immediate consequence of Theorem 1



THE NUMBER OF SIMPLICIAL NEIGHBOURLY d-POLYTOPES WITH d+ 3 VERTICES 265

is that
lim b,2n + 4,2n + 1,n) = o0.

n-oo

It is reasonable to suppose that the following is also true.

CONJECTURE 1. For everyr > 3,
}im b(d +r,d, [4d]) = o0.

Another result following easily from Theorem 1 is:

THEOREM 2,
im b(2n+4,2n + 1,n)
o c2n+4,2n+1)

For, in Griinbaum [1967, §6.3] is given Perles’ formula for ¢,(d + 3, d) (which
can be proved by a method very similar to that of §3). In cased = 21 + 1, we have

2 ¢(h) 2(2n+4)/h

cn+4,2n+1) =2 —(n+2)+8( T2

Thus,
1
n+4,2n+1) 22" - (n+2) + —— .22t = o (say).
n+2

On the other hand, since 3,4+, ¢(h) = n + 2, we easily see that

b2n + 4,2n + 1, n) < 2M@=1/21 4 3 on+2
= 2l=1)/21 4 on

(More careful estimates lead to the bound 2") Since

. ols=1)/2]1 4 an
lim R =0,

n—o o,
this proves the theorem.

There is an obvious conjectural generalization of Theorem 2, along the lines of
Conjecture 1. However, we shall propose instead two stronger generalizations; we
shall state them as conjectures, although we do not wish to commit ourselves too
firmly to belief in them.

CONIJECTURE 2. For each fixedr = 3 and k >

mnmw+n¢k+n
ivw  b@+Td R

= 0.

CONIECTURE 3. For each fixedr = 3 and k >

ﬁmmu+n¢Bﬂ—k+D
d»o b(d +r,d, [3d] — k)

In case r = 2, the appropriate limits are 1 and k/(k + 1) respectively.

= 0.
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§5. Remarks. Theorem 2 could be proved without using Theorem 1; from the
description of star-diagrams in Griinbaum [1967, §6.2], together with the upper-
bound theorem (McMullen [1970]), one can easily obtain

b(2n + 4,2n + 1,n) < 21,

which of course, leads to Theorem 2. However, Theorem 2 perhaps takes on a fuller
significance when viewed in the light of the consequence of Theorem 1 mentioned in §4.

A brief remark about the origins of this paper is appropriate. The result of
Theorem 1 (in a somewhat different formulation) is due to the first author, while the
second author provided the briefer proof presented here. We wish to thank Professor
C. A. Rogers for putting us in contact, and thus making our collaboration possible.
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