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A DICE PROBABILITY PROBLEM

P. McMULLEN

Abstract. Two different approaches to a probability problem involving convex
polytopes lead to a geometric proof of an integral geometric result about mixed
surface areas. The proof can be modified to cover the corresponding results about
mixed volumes.

1. Introduction. W. J. Firey has informally posed the following problem: What is
the most probable way that two dice which encounter each other randomly will
meet? As we shall see, the only ways they can meet with positive probability are
vertex against face or edge against edge; the latter turns out to be more likely.

The main interest of this paper, however, is not in the solution of this problem,
but in the fact that there are two approaches to the solution. The first is integral
geometric, and the second is more directly geometric. When we compare these
approaches, we find that we have a geometric proof of a fairly important integral
geometric formula involving the mixed surface areas of convex bodies. A slight
modification of the argument proves the similar formula for mixed volumes.

2. Formulation of the problem. We consider the following general problem. Let
P and Q be w-polytopes (^-dimensional convex polytopes) in E", and let T be a
rigid motion of E" (say xT = x3> + t, where $ e SOn is a rotation, and t e E" is a
translation vector), such that P and QT touch. (Thus we are considering only the
relative positions of P and Q.) We see that this occurs precisely when

t e bd(P - <2d>).

For, since P n QT # 0 , we have t e P — Q<&. However, since int P n int QT = 0,
P and QT are separated by a hyperplane, with normal u say, and their support
functions satisfy

h(P, u) = - h{QT, - u) = - h{Q<& +t, - u).
Hence

so that t e bd(P - Q<&), as claimed.
This suggests that the appropriate measure to use is \ldtdQ>, where dt is the

(n — l)-dimensional surface area measure (with t e bd(P — Q<5)), and d<& is the
invariant (Haar) measure on SOn (normalized, say, so that the total measure of SOn

is 1). Notice that this measure is rigid motion invariant, in the sense that if A is any
fixed rigid motion, and <& is any set of rigid motions T such that P and QT touch,
then the same measure is assigned to 'S and to the corresponding set A"1 ^A of rigid
motions T' for which PA and QAT' touch. (In the last section but one, we shall make
further remarks, which provide even more justification for using this measure.)

Firey's original problem can now be generalized, and stated in the following form:
" Given two n-polytopes P and Q in E", what is the measure of the set of rigid
motions T such that P and QT touch, a p-face of P against a q-face of Q, for each
p and q?"
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3. The first solution. We first observe that those rotations <5> for which a facet of
P — g $ is the sum of a p-face of P and a g-face of — Q<&, for some p and q with
p + q ^ n, form a set of measure 0 in SOn. Thus, if p + q ^ n, P and QF will
touch with a p-face of P against a q-face of QT with probability 0. So, we may
henceforth assume that P and QT are in relatively general position. In this case, for a
fixed rotation O, the translations t corresponding to faces of P — Q<& of dimension
less than n — 1 also form a set of zero measure. In other words:

LEMMA. The only encounters of P and QT with positive probability are where a
p-face of P meets a q-face of Q, with p + q — n — 1.

Now, for fixed <t>, the surface area of P — Q<S> is

S(P - Q) £
P=o \ p

where S{Aia), B(b\ ...) means the mixed surface area of A taken a times, B taken b
times, and so on. Furthermore, when P and QT are in relatively general position,
the term (";1)S(P(p), ( - QO)^"*""") is the total area of those facets of P - Q<&
which are the sum of a p-face of P and an (n — p — l)-face of — Q<S>. That is, this
term measures the encounters of P and QT, with a p-face of P against an (n - p — 1)-
face of QF.

This already answers the case of two congruent cubes in E3 with which we began.
For, we have (if n — 3)

S(P, - 2

[see Bonnesen-Fenchel, 1934, 52]; in fact, we have strict inequality, since P and
— QQ> are not homothetic, being in relatively general position. Thus, if
S(P) = S(Q) = S ( - 6$), we have S(P, - QQ) > S(P), and so

2S(P, - GO) > S(P) + S(Q).

Since the integrals of the left and right sides over SO3 measure, respectively, the
edge against edge and vertex against face encounters, we at once conclude:

THEOREM 1. Let P and Q be 3-polytopes in E3 with the same surface area. If P
and G are randomly placed so that they touch, they are strictly more probable to do so
edge against edge than vertex against face.

The general problem can also be solved without difficulty, using a result of
Hadwiger [1957, cf. 6.2.4]. For, we have:

THEOREM 2.

S(B)
son

where B is the unit ball in E".

Notice that S(KW, B^- ' -1)) = nWn_r(K), where Wn_r(K) is the (n - r)-th
Quermassintegral of K. In particular, in case n = 3, S(K, B) = 2n w(K), where
w(K) is the mean width of K. We therefore deduce:
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THEOREM 3. The probabilities that two congruent cubes in E3 touching randomly
will meet edge against edge and vertex against face are in proportion 2>n : 8.

4. The second solution. The integral geometric formula of the last section, from
which the solution to our problem follows, depends upon a characterization (also
due to Hadwiger [1957, 6.1.10]) of the Quermassintegrals. In this section we shall
use our probabilistic interpretation to point the way to a geometric proof of the
formula of Theorem 2.

As before, let P and Q be «-polytopes in E". We consider those rigid motions
F of E", such that P and QT touch, with a particular p-face F of P against a particular
(n — p - l)-face GT of QT. We must be careful to measure these rigid motions in
the same way as before; that is, we first measure, for a fixed rotation O, the appro-
priate set of translations / (belonging to F — GO), and then integrate over SOn.

So, let us first fix O (and, again, we assume that P and QT are in relatively
general position). The possible translations t run through the facet F — GO of
P — gO, as we have just remarked, and the area of F — GO is the product of their
respective p- and (n — p — l)-dimensional volumes VP(F) and Kn_p_1(G) by a
factor which depends only upon the relative orientation of afff and aif (— GO) in
the hyperplane H = aif (F — GO). We now integrate over all the rotations O. We
can split the possible rotations into three stages: rotating the hyperplane Hl —
aff (F u GT) parallel to H about F (or aff F) while still supporting P, rotating the
(n - p - l)-flat affGE in Hu and rotating QT about GT, while ensuring that H t

supports QT. (This factorization is not unique, but the integration we shall now
perform is independent of the choice of rotations as factors.) The first and third
stages give us terms proportional to the external (n — p)- and (p + l)-dimensional
angles yn-p(F, P) of P at F and yp+1(G, Q) of Q at G, respectively, while the second
gives a term depending only on the dimension p (of aff .F), and not on the particular
faces F and G. That is, the total measure of these rigid motions is

KP VP(F) Vn-p_,{G)yn_p(F, P)yp+1(G, Q).

Summing over all p-faces F of P and (n — p — l)-faces G of Q gives us a total of

' P} V CFn IV v (G O\V (G\\ — 1 W (P\W COV

that is, a term proportional to the product of the respective Quermassintegrals
Wn-p{P) and WP+1(Q). (The above expressions for the Quermassintegrals can be
deduced from, for example, Hadwiger [1957, 6.1.8 (48).]) Since we have already
evaluated this term as an integral in §3, we see that we have found an alternative
proof of Theorem 2. (The value of the constant Xp can be found by using the con-
tinuity of the Quermassintegrals, and substituting P = Q — B, the unit ball.)

5. A generalization. The foregoing naturally raises the question of the existence
of a direct proof of the most general integral geometric formula of this type (Hadwiger
1957,6.2.4).

THEOREM 4.

r . . . . . . 1
Kn_r(jP) WXQ).

so,,
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To construct such a proof, we modify slightly the argument of the previous
section. As we saw, the first stage of measuring the rotations involved rotating a
supporting hyperplane Ht about a p-face F. That is, to within a constant, we
evaluated

J iu = Ky.n_p(F, P) Vp(F),
a(F, P)

where <T(JF, P) is the (n — p — l)-dimensional spherical image of F, the unit vector
u (normal to Ht) varies over a(F, P), and the measure is the usual spherical
(« — p — l)-dimensional measure. Suppose, instead, we multiply by the support
function h(P, u) of P before integrating. Summing over all p-faces F of P, the
corresponding term involving P is now

"(F, P)

proportional to the (n — p — l)-st Quermassintegral of P.
On the other hand, the integrand on the left side in the statement of Theorem 2

is transformed into

S/KP, U)S(F - GO) = fiV(p(p+i\ ( - e$)("-p-1),

where the sum is taken. over the (finitely many) facets F — G<1> (with dim F = p,
dim G = n — p — 1) of P — QQ>, and u is the corresponding normal vector. If we
now put r = p + 1 and replace Q by — Q, we obtain Theorem 4. (As before, we
evaluate the constant of proportionality by setting P — Q = B.)

6. Remarks. The results of §§4 and 5 (that is, the geometric proofs of Theorems
2 and 4) are clearly independent of their probabilistic interpretation in Theorems
1 and 3. So, to this extent, the possibly arbitrary choice of our probability measure
is irrelevant. However, the fact that the measure is rigid motion invariant would
seem to justify the choice, and in this section we shall produce further evidence in
its favour.

We argue in the spirit of Firey [1972]. Suppose, instead of demanding that P
and QT touch, we require that the (euclidean) distance between them be at most some
positive number r\. This time, for a fixed rotation 0>, the translations t run through
the shell

((P - Q(D) + i/B)\int (P -

The volume of this shell is
f/S(P - 2<5) + O(t]2).

Moreover, if P and QT are in relatively general position, the term

corresponds to the case when the distance between P and QT is attained by a point
in a p-face of P and a point in an (n — p — l)-face of QT. If we divide through by r\,
we conclude that the relative measures (which are now positive) of all such rigid
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motions are proportional to

SOn

with a remainder term 0{rf) corresponding to the cases where the closest points of
P and QT belong to faces whose dimensions sum to less than n — 1. As we allow r\
to tend to zero (and so the closest points to tend to coincidence), we obtain the
probabilistic measure introduced in §2.

7. An alternative problem. Professor C. A. Rogers, on reading the foregoing,
suggested the following alternative problem, which in some ways represents a more
realistic physical situation. We take the point of view of, say, a nuclear physicist.
One of our polytopes Q, with a particular orientation 0 , is designated as a target,
and the other P, oriented by *F, is projected towards Q in a fixed direction u. We
ask what proportion of all their encounters occur with a p-face of P against a
g-face of Q.

Surprisingly, perhaps, the answer is the same as that to our original problem.
For, we vary our shots by means of a translation vector v orthogonal to u; we shall
then have an encounter, if, and only if,

ve(py -e©)nu,

where IT,, denotes orthogonal projection in direction u. If we make our usual
assumption that P^¥ and Q@ are in relatively general position, then the point of
contact for a particular such v will be v + Xu, where

X = max {\x | v + \m e P*F - Q®}.

Thus those encounters with a p-face of P against a g-face of Q correspond to points
in faces f P - G0 (dim F = p, dim G = q) of P*P — QQ visible from direction u.
Moreover, the measure of the appropriate translations v is the area of the projection
(F4r* — G0) n u of this face, which is zero unless p + q = n — 1.

We now apply Cauchy's integral formula [see Hadwiger, 1957, 6.1.5] concerning
surface area. Instead of varying ¥ and 0 , we replace u by iW'1, and vary ¥ , while
(for the moment) keeping $ = O1!*"1 fixed. We integrate the area of

( P * - Q0) n u = ((P - g<&) V) Uu

with respect to *P over SOn, to obtain a constant multiple of S(P — QO); as before,
the term

corresponds to those encounters with a p-face of P*P against an (« — p — l)-face of
Q@, and so integrating with respect to 0 yields us the same relative probabilities as
in our original problem.
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