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Testing the Standard Cosmological Model

by Utane Sawangwit

PhD Thesis, July 2011

Abstract

This thesis exploits the wealth of information contained in the existing cosmological sur-

veys, and demonstrates how the use of tools such as two-point statistics permit the ex-

traction of such information. In particular, the wide-field imaging survey – the Sloan

Digital Sky Survey (SDSS) in conjunction with Luminous Red Galaxy (LRG) spectro-

scopic surveys carried out by the Two-degree-Field (2dF) and AAOmega instruments

on the Anglo-Australian telescope (AAT) are utilised here. This also includes the ob-

servations of the Cosmic Microwave Background (CMB) radiation from the Wilkinson

Microwave Anisotropy Probe (WMAP) experiment.

Combining the imaging and spectroscopic surveys, we extract three photometric LRG

samples at redshift ≈ 0.35, 0.55 and 0.7 which cover ≈ 7600 deg2 of the sky, probing a total

cosmic volume of ≈ 5.5 h−3 Gpc3. We find very little clustering evolution in these massive

early-type galaxies out to z ≃ 0.8 or nearly half the age of the Universe. The shape of the

large-scale correlation functions is consistent with a simple ‘high-peaks’ bias and linear

theory framework of the standard ΛCDM model. The new z̄ ≈ 0.7 LRG sample is then

used in the CMB-LSS cross-correlation analysis to look for the the Integrated Sachs-Wolfe

(ISW) effect as a dynamical evidence for the accelerated expansion of the Universe. The

measured zero CMB-LRG correlation is inconsistent with the ΛCDM model expectation at

2.2σ significance level. Furthermore, our rotation tests show that the previous detections

of the ISW effect may not be as significant as previously claimed.

We make independent estimates of the WMAP CMB temperature power spectra and

show explicitly how sensitive they are to the instrumental beams. We propose an al-

ternative method for determining the beam profiles by stacking radio point sources and

demonstrate its robustness via Monte Carlo simulations plus realistic point source de-

tection algorithm. Using this technique, we find significantly wider W-band beam pro-

files than the WMAP Jupiter beam analysis. We also find a tentative evidence for a

non-linearity in the WMAP radio source fluxes when compared with the ground-based

measurements. Finally, we investigate if the recently claimed timing offset in the WMAP

time-ordered data can explain the observed wider than expected beam profile.
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Chapter 1
Introduction

1.1 The Cosmological Principle

Much of modern cosmology is built upon two fundamental assumptions called the ‘Cos-

mological Principle’. The principle asserts that the Universe is homogeneous and isotropic

on sufficiently large scales. The latter has been proved to be very precise in the observa-

tions of the Cosmic Microwave Background (CMB) radiation, i.e. to about one part in

105 (once our motion relative to the CMB field has been taken into account, see below).

The observed near-perfect isotropy does not immediately imply the homogeneity without

invoking the ‘Copernican Principle’ which states that we do not occupy a unique position

in the Universe. Nonetheless, the galaxy (and the inferred underlying matter) distribution

has been shown to satisfy the homogeneity and isotropy assumption of the Cosmological

Principle on scales larger than ∼ 100 h−1 Mpc (e.g. Wu, Lahav, and Rees 1999; Sarkar

et al. 2009). However, note that arguments against the claimed homogeneity also exist

(e.g. Sylos Labini, 2011; Maartens, 2011).

The Cosmological Principle then leads to a non-static Universe, either expanding or

contracting (e.g. Weinberg, 2008). This can be derived independently from the Einstein

field equations of General Relativity (GR). In fact, the expanding Universe could have

been predicted as early as the 17th century using Newtonian physics in conjunction with

the Cosmological Principle if not for the philosophical/religious background at the time

(Coles and Lucchin, 2002). The long-held belief of the unchanging nature of the Cosmos

lingered on until the observational result of Edwin Hubble (1929). Hubble finally demon-

strated to the astronomical community that the Universe is in fact expanding by showing

that the speed at which Extra-Galactic Nebulae, now known to be galaxies like our own,

are receding is directly proportional to their distances away from us.

This then implies that all the matter in the Universe was once (∼ 14 billion years ago)

very close together in a hot dense state of the so called ‘Big Bang’ theory, a term coined

by Sir Fred Hoyle. The Big Bang theory was originally proposed by Lemâıtre (1931) in his

‘hypothesis of the primeval atom’. Using nuclear physics, the Big-Bang Nucleosynthesis

1
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(BBN) framework can be used to predict the abundance of light elements (nuclei), e.g.

Deuterium, Helium and Lithium, created during the first few minutes after the Big Bang

(Gamow, 1946). The structures we see today, e.g. galaxies, clusters of galaxy etc., were

formed via gravitational instability seeded by quantum mechanical fluctuations which

were amplified by a period of rapid expansion of the Universe called ‘Inflation’1 (Guth,

1981). However, there existed a competing model called ‘Steady State’ theory, proposed

by F. Hoyle (1948), H. Bondi and T. Gold (1948), where new matter is continuously

created as the Universe expands in order to maintain its Perfect Cosmological Principle,

i.e. the Universe which is homogeneous and isotropic in both space and time, therefore

removing the need for a singularity beginning. The Steady State theory was largely

refuted once the relic thermal radiation predicted by the Big Bang model was discovered

in 1965. Consequently, the Big Bang theory is now the framework of the mainstream

cosmological model.

For the rest of this chapter, we outline the modern cosmological paradigm, and the

techniques employed to study it. We also take this opportunity to establish the notations

and conventions which will appear later in the thesis.

1.2 Dynamics of the expanding Universe

During the 1920s and 1930s, what is now known as ‘Friedmann-Robertson-Walker’ (FRW)

metric2 was being developed independently by the cosmologist, physicist and mathemati-

cian named A. Friedmann (1922), H. P. Robertson (1935) and A. G. Walker (1936),

respectively. The FRW metric is a pillar of modern cosmology. Although it is an exact

solution of Einstein’s field equations, its form can also be derived using Newtonian physics

and the Cosmological Principle (e.g. Weinberg, 2008). The Einstein field equations are

only needed to solve for the scale factor, a(t) (also known as Robertson-Walker scale

factor). In the FRW metric, the line element is given by

ds2 = c2dt2 + a(t)2

[
dr2

1 − Kr2

R2
u

+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)

where c is the speed of light, t is the proper time, r, θ and φ are comoving spherical coor-

dinates. Ru is the ‘radius of curvature’ defined as a constant with dimensions of length.

1This was originally proposed as a solution to the flatness and horizon problems (see later).
2This is sometimes known as Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, as the solutions

originally derived by A. Friedmann was independently discovered five years later by G. Lemâıtre (1927).
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The curvature parameter K is a constant related to the spatial geometry of the Universe

and can take values

K =





−1 Open (Hyperbolic)

0 Flat (Euclidean)

1 Closed (Spherical)

(1.2)

The proper distance, dp, derived from the above metric by setting dt = 0 is dp = a(t)χ,

where χ is a comoving distance and χ = sinh−1(r), r and sin−1(r) for K = −1, 0 and 1,

respectively.

To proceed further one is required to solve for the scale factor a(t) using the Einstein

equations which relate the energy-matter content to the space-time geometry of the Uni-

verse. The problem can be greatly simplified if one assumes a homogeneous and isotropic,

i.e. Cosmological Principle, perfect fluid with equation of state p = wρc2, where p is the

pressure, ρc2 is the energy density and w is defined by the nature of that particular fluid.

The solutions are known as the Friedmann equations,

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− Kc2

R2
ua

2
, (1.3)

and
ä

a
= −4πG

3

(
ρ+

3p

c2

)
, (1.4)

where the dot denotes a derivative with respect to proper time t, G is the gravitational

constant and H is the Hubble parameter. The second equation is sometimes called the

‘Acceleration equation’. From Eq. 1.4 we see that the Universe is in the state of accelerated

expansion if the w is lower than −1/3, we shall return to discuss this below. Using the

first equation, the second equation can be re-written as

ρ̇ = −3H
(
ρ+

p

c2

)
, (1.5)

which describes the adiabatic expansion of the Universe (e.g. Coles and Lucchin, 2002).

In the Friedmann equations, the fluid can be made up of more than one component,

i.e. matter, radiation. The (energy) density is then given by the total (energy) density of

all the constituents of the Universe, ρ =
∑

i ρi. If the fluid components are non-interacting

then Eq. 1.5 can be applied to each component individually and its evolution is given by

ρ = ρ0 a
−3(1+w), (1.6)
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where ρ0 = ρ(t0)
3 is the density at the present time and w is assumed to be time-

independent in this case. In a universe which contains radiation (w = 1/3), matter/dust

(w = 0), and some exotic form of energy, says positive ‘Cosmological Constant’4 (Λ) or

sometimes called vacuum energy (w = −1), the density evolution becomes

ρ = ργ,0 a
−4 + ρm,0 a

−3 + ρΛ, (1.7)

where ρm,0 and ργ,0 are matter and radiation density at present epoch, and ρΛ ≡ Λc2/8πG.

At early times (a ≪ 1), the Universe is radiation-dominated which is then followed by

the matter-dominated and eventually Λ-dominated eras as the Universe expands. The

expression for ρ(a) can be substituted into Eq. 1.3 and the time evolution of the scale

factor can be solved directly.

1.2.1 Observables

The Hubble parameter H(t) ≡ ȧ/a (Eq. 1.3) measures the expansion rate at any given

time t. And the Hubble Law states that two points which are separated by a proper

distance dp are moving away from each other at a speed

vr =
ȧ

a
× dp (1.8)

The Hubble parameter at present time, H0, is called Hubble’s constant. The Hubble

constant is usually estimated by measuring redshift z of a distant galaxy and then ob-

taining the distance to that galaxy using ‘Standard Candles’ such as Cepheid variables

(e.g. Tanvir, Ferguson, and Shanks, 1999) and/or type Ia supernovae (SNIa) (e.g. Freed-

man et al., 2001). The latest measurement from over 600 Cepheid variables in the nearby

SNIa host galaxies observed with the Hubble Space Telescope (HST) gives the best es-

timate of H0 = 73.8 ± 2.4 km s−1 Mpc−1 (Riess et al., 2011). Throughout this thesis,

we parametrise the Hubble constant such that H0 = 100h km s−1 Mpc−1, where h is a

dimensionless constant to be determined.

Observationally, the effect of the expanding Universe is seen as the light from distant

luminous objects, usually galaxies, being stretched to higher wavelengths. The amount

of change is usually refer to as ‘redshift z’ and by definition is quantified by

3Throughout this chapter, subscript 0 denotes the value of that parameter today
4Originally introduced by Einstein (1917) as an extra constant term in order to make the solutions to

his field equations static.
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z =
λ0
λe

− 1, (1.9)

where λe is the emitted wavelength of the radiation in the object’s rest-frame and λ0

is the observed wavelength by us at present time. For a nearby galaxy, redshift can be

thought of as a result of a Doppler shift as the galaxy is moving away at speed v = cz and

the proper distance can be estimated by dp ≈ cz/H0. At higher redshift, especially at

z ≥ 1, this does not lead to a violation of Special Relativity as the receding speed is due

to the expansion of space-time itself and not the galaxy’s motion. Alternatively, redshift

can be viewed as the stretching of the wavelength embedded in an expanding space-time

continuum. Using the FRW metric, one can derive that a/λe = a0/λ0 and therefore

a =
a0

1 + z
. (1.10)

This provides a way to relate the scale factor a to the more directly observable parameter

z. Note that throughout this thesis we set a0 = a(t0) to 1.

Another useful quantity for comparing different cosmological models is the density

parameter Ω defined as ρ/ρcrit where ρcrit is the density at which the Universe is spatially

flat, i.e. K = 0. Setting K = 0 in Eq. 1.3 gives

ρcrit =
3H2

8πG
(1.11)

Substituting Eqs. 1.7, 1.10 and 1.11, Eq. 1.3 can be re-written as a function of density

parameter and redshift z,

H2(z) = H2
0

{
Ωγ,0(1 + z)4 + Ωm,0(1 + z)3 + ΩX,0(1 + z)3(1+wX ) + ΩK,0(1 + z)2

}
,

(1.12)

where Λ is replaced by an unknown fluid X with equation of state wX and ΩK,0 ≡
−Kc2/R2

uH
2
0 is the curvature density parameter. More commonly, ΩK is written as

ΩK = 1 − Ωtot, where Ωtot =
∑

i Ωi. Therefore, the Universe is said to be spatially flat if

Ωtot = 1 or open if Ωtot < 1 or closed if Ωtot > 1.

The expansion history of the Universe as governed by H(z) has been the main sub-

ject of modern cosmology for the past decade or so, as this allows us to constrain the

matter-energy components of the Universe and therefore build up a picture of the Cos-

mos. Techniques which have been widely employed include the use of distance scales

estimated using Standard Candles as in the case of SNIa (e.g. Perlmutter et al., 1999;
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Riess et al., 1998, 2007) or Standard Ruler from the Baryon Acoustic Oscillation (BAO)

scales in the galaxy distributions (e.g. Blake and Glazebrook, 2003; Eisenstein et al., 2005;

Percival et al., 2010) and the Acoustic Peak scales in the CMB fluctuations (e.g. Spergel

et al., 2003, 2007; Komatsu et al., 2011). These techniques involve measuring the H(z)

in the form of either ‘Angular Diameter Distance’ (DA) or ‘Luminosity Distance’ (DL) as

a function of redshift,

DA(z) =
DL(z)

(1 + z)2
=

r

1 + z
=

c

(1 + z)H0

√
|ΩK |

fK

[
H0

√
|ΩK |

∫ z

0

dz′

H(z′)

]
(1.13)

where fK(x) = sin(x), x, or sinh(x) for closed, flat, and open models, respectively.

1.3 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) was discovered serendipitously by A. Penzias

and R. Wilson in 1964. The static background signal they found was first thought to be

caused by instrumental noise which they could not get rid of nor explain its origin. The

background ‘noise’ was estimated to have antenna temperature of 3.5 ± 1.0 K at 7.3-cm

wavelength. At the time, they were not aware of the prediction of residual cosmic radiation

made a decade and a half earlier by Alpher and Herman (1948). Based on nucleosynthesis,

Alpher and Herman estimated the present temperature of this residual radiation to be

about 5 K. Penzias and Wilson later shared their finding with Dicke, Peebles, Roll, and

Wilkinson (1965) who were building radio antenna to look for the CMB signal predicted

by their theory. The two groups published the result with its interpretation being the

relic cosmic radiation from the Big Bang as provided by the latter group.

The first successful attempt to make precise measurement of the full-sky CMB map is

the NASA’s COsmic Background Explorer (COBE; Boggess et al., 1992) mission launched

in November 1989. The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on

the COBE satellite measured the CMB spectrum between 60-600 GHz and showed that it

has a near-perfect blackbody spectrum (Mather et al., 1994; Fixsen et al., 1996). Fig. 1.1

shows the CMB spectrum measured by the COBE mission and various other experiments

made at lower wavelengths (Credit: Smoot, 1997). This provides compelling evidence that

the CMB is indeed the remnant thermal afterglow from a hot, dense, early Universe which

has been travelling towards us since the epoch of recombination5. The best-estimate of

5As the Universe expands, the temperature drops until it is cool enough, T ∼ 4000 K at z∗ ∼ 1000,
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Figure 1.1: The CMB spectrum measurements made by COBE and various other ex-

periments (Smoot, 1997, and references therein). The spectrum is well described by a

blackbody spectrum with thermal temperature T = 2.726 K. Figure credit: G. Smoot

(1997).

the CMB temperature made with the four-year COBE data is T0 = 2.725 ± 0.002 K (95

per cent CL) (Mather et al., 1999).

The Differential Microwave Radiometer (DMR) aboard the COBE satellite was de-

signed to study the CMB fluctuation on scales larger than about 7◦ (Smoot et al., 1990).

The CMB temperature map was found to be remarkably uniform once the dipole con-

tribution due to our motion relative to the CMB field (or sometimes called cosmological

rest-frame) has been subtracted (see Fig. 1.2). The lack of fluctuations for regions sepa-

rated by more than a few degrees which should have never been in causal contact in the

history of the Universe was very puzzling at the time, i.e. the horizon problem. However,

COBE DMR finally detected ≃ 10−5 fluctuations in the temperature field, i.e. rms fluctu-

ations on 10◦ scales ≃ 30 µK. The fluctuations are consistent with a Gaussian distribution

and the Harrison-Zel’dovich scale-invariant spectrum, i.e. n = 1 (see later), predicted by

inflationary models (Smoot et al., 1992). The discovery of the CMB near-isotropy or

rather the small anisotropy has been regarded as the important milestone in modern cos-

the hydrogen and helium atoms begin to form and the number of charged particles drastically reduced

leading to a decoupling of the photon-baryon fluid (Peebles, 1968; Zel’Dovich et al., 1969; Seager et al.,

2000)



1. Introduction 8

Figure 1.2: The full-sky CMB temperature fluctuation maps constructed from the four-

year COBE DMR (Bennett et al., 1996) (top) and seven-year WMAP (Jarosik et al., 2011)

(bottom) observations. Each map has been appropriately smoothed according to the

survey angular resolution. Both maps are foreground-reduced using linear combination

technique (Bennett et al., 1992; Gold et al., 2011). The foreground-reduced data used in

making the plots are publicly available at http://lambda.gsfc.nasa.gov.
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mology since the discovery of the CMB itself. The importance of CMB anisotropy lies

in the fact that these features (see Hu and Dodelson, 2002, for a pedagogical review of

CMB anisotropy) are associated with the density perturbation believed to give rise to the

structures we see today and are still free from nonlinear evolution (see below). Therefore

by studying the CMB fluctuations we can learn about the origin, evolution and nature of

the density perturbation and hence improve our understanding of cosmology.

The CMB anisotropy has since become the main arena for ‘precision cosmology’. Al-

though there were some ground-based and balloon-borne experiments, e.g. Boomerang

(Mauskopf et al., 2000), Maxima (Hanany et al., 2000), it had taken almost another

decade until another space-based mission with an improved sensitivity and angular res-

olution was launched. The Wilkinson Microwave Anisotropy Probe (WMAP; Bennett

et al., 2003a) has measured the full-sky CMB temperature maps (Fig. 1.2) with 33 times

the angular resolution and 45 times the sensitivity of the COBE DMR experiment. The

≃ 10−5 fluctuations in the CMB temperature field has been confirmed over a wide range

of angular scales (e.g. Bennett et al., 2003b; Jarosik et al., 2011).

1.3.1 The CMB angular power spectrum

To exploit the full potential of the current CMB data such as the WMAP, a full-sky

temperature map typically contains in excess of a million pixels. Thus it is much more

efficient to study the CMB anisotropy using statistical tool such as the temperature two-

point function. For the fluctuations which are believed to possess a Gaussian distribution6

due to its primordial quantum mechanical origin, all the informations can be extracted

using the two-point function. Most CMB analyses use the angular power spectrum, Cℓ,

as a tool to study the CMB anisotropy which can be directly (once all the observational

effects, e.g. beam, mask etc., have been taken into consideration) compared with theoret-

ical expectations. The theoretical models can be computed effectively using well-tested

publicly-available codes such as CMBFAST (Seljak and Zaldarriaga, 1996) and CAMB

(Lewis et al., 2000).

The temperature fluctuations, δT (n̂), on the sky can be written as a spherical harmonic

expansion,

δT (n̂) ≡ ∆T (n̂)

T0
=

∞∑

ℓ=2

m=+ℓ∑

m=−ℓ

aℓmYℓm(n̂), (1.14)

6This has been shown to be accurate to the 0.1 per cent level by Komatsu et al. (2009)
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where aℓm is a complex coefficient for each spherical harmonic Yℓm(n̂) mode. The monopole

moment (ℓ = 0) of the temperature field corresponds to the mean temperature of the

CMB, T0, which has been determined to a great accuracy by the COBE FIRAS mission

(see above). It is, however, not measured by differential experiments such as the COBE

DMR and WMAP missions and in terms of the fluctuations the monopole corresponds to

a zero-point of the temperature map. It is therefore omitted in the anisotropy study and

the above equation. The dipole moment (ℓ = 1) is the most dominant component in the

anisotropy field with amplitude 3.355± 0.008 mK measured using the seven-year WMAP

observations (Jarosik et al., 2011). This is caused by the Doppler shift arising from our mo-

tion relative to the near-isotropic CMB field towards (l, b)=(263.◦99±0.◦14, 48.◦26±0.◦03).

The dipole is usually not included in the anisotropy study due to its non-cosmological

origin and its contribution is subtracted from the temperature fluctuations field.

The angular power spectrum is then given by

Cℓ =
1

2ℓ+ 1

∑

m

|aℓm|2 (1.15)

The number of modes available for averaging each multipole moment ℓ is 2ℓ + 1. This

leads to a sampling uncertainty at low ℓ known as ‘cosmic variance’. And at small scales,

large ℓ, the measurements is limited by the instrument noise which starts to dominate at

the survey resolution. If the noise is Gaussian and its spectrum is known, the statistical

uncertainty in measuring Cℓ can be given by

∆Cℓ =

√
2

fsky(2ℓ + 1)

(
CCMB
ℓ + Cnoise

ℓ

)
, (1.16)

where fsky accounts for an incomplete sky which results from an exclusion of regions with

Galactic and extra-galactic contaminations. The incomplete sky also causes different ℓ

modes to become correlated and the estimated Cℓ will need to be corrected (e.g. Hinshaw

et al., 2003b; Chon et al., 2004).

In practice, the aℓm coefficients are evaluated using fast spherical transforms. The

C̃ℓ is then estimated from the sum given in Eq. 1.15. This method is referred to as a

‘pseudo-Cℓ’ estimator (Peebles, 1974; Hivon et al., 2002). A more elaborate method called

‘maximum-likelihood’ estimator (Hamilton, 1997; Tegmark, 1997; Bond, Jaffe, and Knox,

1998) is regarded as more optimal, i.e. more accurate, than the former (see Efstathiou,

2004, for a review on the estimation of power spectra). As the name suggests, the method

estimates a power spectrum by maximising the likelihood function given the data. This
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generally requires O(N3
d ) operations for Nd data points and for Nd ∼ 106−107 the method

becomes computationally impractical. Efstathiou (2004) proposed a ‘hybrid estimator’

where a maximum-likelihood method is employed for small ℓ’s while at large ℓ’s a pseudo-

Cℓ can be used. The author argued that the combination leads to a computationally fast,

and yet accurate and nearly optimal estimator over the full range of multipoles. In fact

this is the method utilised by the WMAP team to analyse their data (e.g. Hinshaw et al.,

2007; Nolta et al., 2009).

1.3.2 Measurements and cosmological implication

One of the main features in the CMB angular power spectrum is a series of ‘Acoustic

peaks’. The coupling between the photon and the baryon (plasma) fluid (Peebles and

Yu, 1970) prior to the recombination leads to acoustic waves which appear as a spatial

inhomogeneity in the CMB we see today. The oscillations are caused by the gravitational

collapse of the baryons due to the initial perturbations while the radiation pressure acts as

a restoring force. The temperature fluctuations correspond to the hotter or cooler regions

where the coupled fluid are compressed or rarefied. At the recombination, the oscillating

pattern are frozen and modes which are at maxima or minima are imprinted in the CMB

as a harmonic series of peaks in its angular power spectrum.

The peak spacing is set by ℓa = πDA(z∗)/s∗, where s∗ is the sound horizon, the dis-

tance sound can travel before recombination. Since the sound horizon can be confidently

determined (e.g. Hu and Dodelson, 2002), the acoustic peaks scales can be used as a set

of standard rulers to constrain cosmological parameters. The position of the first peak, in

particular, is sensitive to spatial curvature of the Universe via a geometrical projection.

The measurement, however, suffers from degeneracy with the Hubble constant H0 and

requires H0 to be measured from other experiments (see Fig. 1.3). The relative ampli-

tudes of the peaks also depend on the background cosmology, for example by increasing

baryon density the odd peaks are enhanced relative to even ones. This is because the odd

peaks correspond to the maximally compressed mode at the recombination whereas the

opposite is true for the latter and the ‘rebound’ has to work against the baryon inertia.

The measurements from high resolution CMB experiments such as Boomerang,

Maxima and WMAP have detected the acoustic peaks in the angular power spectra

out to ℓ ∼ 800. The position of the first peak has been detected at ℓ ≃ 200 which is

consistent with a spatially flat Universe (e.g. de Bernardis et al., 2000; Jaffe et al., 2001;

Spergel et al., 2003; Larson et al., 2011). As mentioned above the curvature measure-
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Figure 1.3: (left) Constraints on the cosmological parameters from WMAP data alone.

The closed model, i.e. ΩK < 0, cannot be ruled out if the low H0 values are allowed, due

to geometric degeneracy. However, when combining with other observations the Universe

is very close to being spatially flat (small error ellipse on Ωtot = 1 line). Figure credit:

Larson et al. (2011). (right) The constraints on cosmological parameters from combining

the latest WMAP, HST, BAO and SNIa data. Figure adapted from Komatsu et al. (2009)

ment has a degeneracy with H0. This is demonstrated by the left panel of Fig. 1.3 for

the seven-year WMAP observations (Larson et al., 2011). If a flat prior on the curvature

parameter is set, the best-fit is H0 = 53+13
−15 km s−1 Mpc−1. However, when combined

with other dataset, H0, BAO and SNIa, the constraint on Ωtot becomes much stronger

and closer to 1. The best-fit baryon density, ωb ≡ Ωbh
2, is ≃ 0.022 in good agreement

with the observations of light element abundances (Copi et al., 1995) and the Big-Bang

nucleosynthesis (although see Steigman 2006 and Fields and Sarkar 2010 for a more recent

review).

The measurements from large-scale structure (LSS) (e.g. Tegmark et al., 2004; Cole

et al., 2005; Eisenstein et al., 2005) are consistent with matter density Ωm,0 ≃ 0.27 where

∼ 80 per cent of the matter is non-baryonic dark matter called ‘Cold Dark Matter’ (CDM).

These provide a compelling argument for the existence of some unknown form of energy

termed ‘Dark Energy’ (DE) with ΩDE,0 ≃ 0.73 required to obtain the critical density. The

SNIa measurements (e.g. Riess et al., 1998; Perlmutter et al., 1999) have provide geomet-

rically inferred evidence that the Universe is currently in the accelerated expansion phase.

This then suggest that the DE equation of state w has to be lower than -1/3. In fact, most

observations suggest that wDE ≃ −1 and so far no time-dependence has been detected

(e.g. Filippenko, 2004; Riess et al., 2007; Percival et al., 2010; Komatsu et al., 2011), i.e.
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consistent with cosmological constant Λ. This emerging ‘Standard Cosmological Model’

is also known as the flat ΛCDM model. Although the model has been remarkably suc-

cessful in explaining many independent observations, it also contains several fundamental

and astrophysical problems (e.g. Weinberg, 1989; Carroll, 2001; Shanks, 2005). This is

discussed in more detail below.

1.3.3 The Integrated Sachs-Wolfe effect

The secondary anisotropy which arises from the interaction between the CMB photons

with the intervening gravitational potential is called the ‘Integrated Sachs-Wolfe’ (ISW)

effect (Sachs and Wolfe, 1967). As the CMB photons traverse through the time-varying

gravitational potential, the associated temperature perturbation is given by

δISWT (n̂) ≡ ∆ISW
T (n̂)

T0
= −2

∫ z∗

0
dz

1

c2
∂Φ

∂z
(n̂, z) (1.17)

where Φ is the gravitational potential which is related to the matter density fluctuation,

δ ≡ δρ/ρ̄, via Poisson equation,

∇2Φ(n̂, z) = 4πGa2ρm(z) δ(n̂, z) (1.18)

The ISW temperature anisotropy in the direction n̂ on the sky is the sum of all tempera-

ture changes ∝ ∂ [δ(n̂, z)/a] /∂z along the line of sight from the surface of last scattering.

In the linear regime (δ ≪ 1), the perturbations grow independently of their comoving spa-

tial scale (e.g. Peebles, 1980), i.e. δ(n̂, z) = D(z)δ(n̂, 0) where D(z) is the linear growth

factor (see later) and therefore

δISWT (z) ∝ d

dz

[
D(z)

a

]
(1.19)

For a spatially flat Universe with Ωm = 1, D(z) is equal to a(z) hence the temperature

anisotropy due to the ISW effect is expected to be zero. This is because the Universe

expands as fast as the perturbations grow and the energy gained by a CMB photon when

entering the gravitational well is exactly cancelled by the work done in climbing out at

later time. However, in a Universe which is dominated by Λ, the accelerated expansion

means that the potential decays much faster than the structure growth and the photon

end up with a temperature boost as it leaves the potential well. The detection of the

ISW effect would provide a direct dynamical evidence for the accelerated expansion of

the Universe unlike the geometrical inference of the SNIa measurements. Unfortunately,
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the ISW contribution is only . 10 per cent of the primary anisotropy for ℓ & 10 due to the

projection effect (Hu and Dodelson, 2002) and the Cℓ measurements suffer from cosmic

variance at low ℓ’s (Eq. 1.16). Crittenden and Turok (1996) proposed that the ISW effect

can be studied by cross-correlating the CMB to the foreground large-scale structure tracer

instead. Previous attempts to detect the ISW effect are discussed in Chapter 3 as well as

the detailed theoretical prediction for a CMB-LSS cross-correlation analysis.

1.4 Large-Scale Structures

Unlike the CMB, the local large-scale structures (LSS), e.g. galaxies, groups and clusters

of galaxies, are observed to be very clumpy (see Fig. 1.4). This stark contrast can be

reconciled in the framework of ‘gravitational instability’ where the density fluctuations

can grow in time provided that the stabilising pressure caused by the collapse is negligible

(e.g. Silk, 1968; Peebles and Yu, 1970). The condition can easily be satisfied once the

matter becomes dominant (zeq ≃ 3200) and especially after the epoch of recombination

(z∗ ≃ 1100). The initial perturbations responsible for the CMB temperature fluctuations

are the overdense seeds needed for the formation of self-gravitating regions which further

accrete more matter and thus becoming even denser. This then results in the instability

which lead to a gravitational collapse of an initially perturbed region to a gravitationally

bound objects.

The Cold Dark Matter (CDM) is now believed to be the key ingredient for structure

formation. The argument for the existence of the CDM which dominates the matter

content needed to grow the inhomogeneity in the LSS observed today was made by a

number of authors, e.g. Blumenthal et al. (1982); Peebles (1982). As the BBN predicts

the baryon density to be far too low to grow the density fluctuation over ∼ 104 (as given

by the upper limits on CMB fluctuations at the time) from the end of recombination to

now. The presence of dark matter was originally postulated by Zwicky (1937) to explain

the ‘missing mass’ problem in the rotation curve of galaxies in clusters if Newtonian

gravity theory is assumed to hold on such scales. The emerging ‘standard’ CDM (SCDM)

model (Davis et al., 1985; White et al., 1987) assumes a flat Universe with Ωm,0 = 1

and h = 0.5. In the early 1990s, the measurements of galaxy clustering (e.g. Maddox

et al., 1990; Efstathiou et al., 1990a) found that the model under-predicts large-scale

amplitudes. The attempts to ‘resuscitate’ the SCDM model ranging from lowering the

primordial spectral index and the Hubble constant to n ≃ 0.8 − 0.9 and h ≃ 0.4 − 0.45
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Figure 1.4: The galaxies distribution from various redshift surveys, illustrating the large-

scale structure of the Universe. (top) the 2dFGRS targetting galaxies brighter than bJ =

19.45. Credit: the 2dFGRS collaboration (Colless et al., 2001). (bottom) Compilation of

various redshift surveys targeting different classes of objects, galaxies, LRGs and QSOs,

out to z = 1 in the Northern Galactic Cap. Credit: Peter Weilbacher for the 2SLAQ

collaboration.
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(White et al., 1995) to reducing the matter density Ωm,0 ≃ 0.3, i.e. shape parameter

Γ ≃ 0.2, and are thus called the ‘open’ CDM (OCDM) model. Given our historical

hindsight, the solution proposed by Efstathiou et al. (1990b) who argued that the spatial

geometry of the Universe should remain flat by having extra energy density in the form

of cosmological constant with ΩΛ ≃ 0.7 closely corresponds to the modern cosmological

paradigm, i.e. the ΛCDM model.

In the standard ΛCDM model, the initial perturbations are assumed to follow a Gaus-

sian random field which originated from quantum mechanical fluctuations in the hot,

dense, early Universe. The period of rapid expansion called ‘Inflation’ (Guth, 1981)

amplifies these primordial infinitesimal fluctuations to physical scales. Most inflation

models predict the fluctuations to have a scale-invariant Harrison-Zel’dovich spectrum,

i.e. P (k) ∝ kn with spectral index7 n = 1 and k = 2π/r is the comoving wavenumber.

At later time, the primordial power spectrum is modified by the growth of structures. In

the Linear Theory framework, the power spectrum at present epoch is given by

P (k, z = 0) = AknT 2(k), (1.20)

where T (k) is the transfer function which can be determined for the different components

of the cosmic fluid using fitting formulae or solving Einstein-Boltzmann equation (e.g. Sel-

jak and Zaldarriaga, 1996; Eisenstein and Hu, 1998; Lewis et al., 2000). The amplitude A

is a normalisation factor conventionally determined by setting the rms density fluctuation

within a sphere of radius 8 h−1 Mpc, σ8, to the value constrained by observations,

σ28 =
1

2π2

∫
∞

0
k2P (k)w(kr)2dk, (1.21)

where w(kr) is the window function, given by (e.g. Peebles, 1980)

w(kr) = 3
sin(kr) − kr cos(kr)

(kr)3
, (1.22)

for a spherical top-hat function and r = 8 h−1 Mpc. The linear power spectrum at

any intermediate redshift z is given by P (k, z) = D2(z)P (k, 0), where D(z) is the linear

growth factor which can be computed from an approximation formula given by Carroll

et al. (1992).

7Current constraint from CMB observations on the spectral index is n ≃ 0.95−0.96 (e.g. Larson et al.,

2011).
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The density fluctuations grow linearly, δ(z) = D(z)δ0, until δ & 1, i.e. non-linear

regime, the self-gravitating regions (see above) then collapse once the fluctuation reach

the critical overdensity (δc ≡ 1.686 for spherical collapse). The collapse continues until it

reaches virial equilibrium. The virialised structures are called ‘haloes’ of dark matter and

their distribution function is generally described by Press-Schechter theory (Press and

Schechter, 1974). These haloes provide potential wells for gas (baryon) to form stars and

galaxies. The haloes then grow hierarchically via merging (e.g. Lacey and Cole, 1993).

The galaxies residing in the merged haloes are also expected to merge with one another

and thus building up more massive galaxies as the time past. However, the real situation

may be more complicated than this simple picture (see later). Therefore one can learn

about the matter distribution by using galaxies as a biased tracer of LSS via galaxy

clustering. Their clustering evolution is also used as a tool to study galaxy evolutionary

models in conjunction with other tools such as the galaxy Luminosity Function (LF;

Schechter 1976).

1.4.1 Galaxy clustering

The commonly used statistical tool for studying galaxy clustering is the two-point func-

tion. In the Gaussian random field, the second moment, i.e. variance, contains all the in-

formation of that fluctuation field. This is of course the same argument made in §1.3.1 for

the CMB angular power spectrum. Unlike the CMB observation where one only looks at

the surface of last scattering, the galaxy distributions can be obtained in three-dimension

(see Fig. 1.4). Their distances away from us are usually determined by a redshift survey,

where one either targets certain classes of objects, e.g. Luminous Red Galaxy (LRG;

Eisenstein et al. 2001; Cannon et al. 2006; Ross et al. 2008b), Quasi-Stellar Object (QSO;

Shanks et al. 2000; Croom et al. 2009), Emission-Line Galaxy (ELG; Drinkwater et al.

2010), Lyman-Break Galaxy (LBG; Bielby et al. 2011), or all the galaxy populations with

apparent magnitude brighter than certain limit (York et al., 2000; Colless et al., 2001).

The power spectrum, P (k), has been mentioned above to explain the growth of density

perturbation without giving the definition. Here, it is given in terms of the density

fluctuations observed in the galaxy distributions. The galaxies are not exact tracers of

large-scale structure. This is indicated by the luminosity dependence (e.g. Norberg et al.,

2002b; Zehavi et al., 2005b) and different clustering for different types of galaxies. In fact,

galaxies are said to be a ‘bias’ tracer of the matter distribution. In the linear regime,

i.e. large scales and δ ≪ 1, the bias factor is approximately scale-independent and one
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can relate the observed galaxy number density, δg ≡ ng/n̄g − 1, to the underlying matter

fluctuations as

δg(x) = b δm(x), (1.23)

where b is the linear bias factor and x is the comoving coordinate in the density field. It

is sometimes more convenient to compare the measurements made in Fourier space to the

linear theory prediction. The spatial density fluctuations can be Fourier transformed,

δ(k) =

∫
δ(x) exp(ik · x) d3x, (1.24)

where k is the comoving wavevector of a given Fourier mode. The power spectrum is then

given by

〈δ(k) δ(k′)〉 ≡ (2π)3 δDirac(k− k′)P (k), (1.25)

where δDirac is the Dirac-δ function and k = |k|. The correlation function ξ(r) is also

widely used to study the clustering in configuration space and is defined such that

ξ(r) ≡ 〈δ(x)δ(x + r)〉 (1.26)

where r = |r| is a comoving separation between any two regions in the density field.

In other words, power spectrum and correlation function are Fourier transforms of each

other,

ξ(r) =
1

(2π)3

∫
P (k) exp(−ik · r) d3k, (1.27)

and r is related to the wavenumber k by r = 2π/k. For a homogeneous and isotropic

density field the equation can be reduced to (e.g. Lahav and Suto, 2004)

ξ(r) =
1

2π2

∫
P (k)k2

sin kr

kr
dk. (1.28)

In practice, the correlation function is estimated by counting the numbers of galaxy

pairs separated by a given distance relative to a set of uniformly distributed random

samples. The random sample or ‘random catalogue’ is constructed such that its spatial

selection function mimics the real data except the clustering information. Various es-

timators have been proposed including a commonly used ‘minimum-variance’ estimator

proposed by Landy and Szalay (1993). In Chapter 2, the choice of estimators is discussed
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in more detail. If redshift information for individual galaxy is not available, the angu-

lar correlation function, w(θ), can be measured instead. The ξ(r) can be inferred if the

redshift distribution of the galaxy sample is known (see Chapter 2).

The galaxy correlation function is related to the matter correlation via the linear

bias factor such that ξg(r) = b2 ξm(r). Measurements of galaxy ξ(r) have found that

for 0.1 . r . 10 h−1 Mpc the real-space8 correlation function can be described by a

power-law ξ(r) = (r/r0)
−γ where r0 ≃ 5 − 6 h−1 Mpc is the correlation length of galaxy

clustering and γ ≃ 1.7 − 1.8 (e.g. Shanks et al., 1989; Zehavi et al., 2002; Hawkins et al.,

2003). Beyond r ≃ 10−15 h−1 Mpc the correlation function has a much steeper slope and

quickly goes to zero. The scale-independent linear bias is a good approximation down

to r ∼ 3 h−1 Mpc, i.e. the ξg(r) appears to have the same shape as ξm(r). However

at small scales, the naive linear bias assumption is not sufficient to explain the relation

between ξg(r) and ξm(r) as the galaxies are more likely to trace the clustering of dark

matter haloes at the quasi-linear regime. In the non-linear regime, N -body simulations

have been used to calibrate a formula to compute non-linear power spectra from linear

P (k) given a background cosmology (Smith et al., 2003).

Another approach for describing the galaxy bias at quasi- and non-linear scales is

through the ‘Halo Occupation Distribution’ (HOD) model (see Cooray and Sheth, 2002,

for a review). Recently, the formalism became very popular and is now almost a standard

way of analysing galaxy correlation function. The measurements are normally fitted to a

HOD model with certain ways of parametrising the numbers of galaxies a dark matter halo

can host as a function of its mass. The galaxies within a halo are usually distinguished

into central and satellite galaxies. The satellite galaxies are distributed in a halo according

to the halo profile. The correlation function at small scales is dominated by the galaxy

pairs within the same halo whereas at large scales it corresponds to galaxy pairs in two

separate haloes. The HOD parameters that best describe the ξ(r) measurements can be

used to make predictions (either via N -body simulations or analytic approach) which can

be compared to, for example, the clustering of similar type of objects at a later time and

therefore provides an insight into the galaxy evolution (e.g. White et al., 2007; Seo et al.,

2008; Wake et al., 2008).

8As opposed to the redshift-space correlation function ξ(s) where the slope at small scales is flattened

due to random peculiar motion and large-scale clustering amplitude is boosted due to the structure

coherent infall (e.g. Hawkins et al., 2003; Ross et al., 2007).
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Figure 1.5: The correlation function ξ(s) measured from the 2dFGRS galaxy catalogue

(Colless et al., 2001), z̄ ≃ 0.35 LRG (Eisenstein et al., 2005) and the combined QSO

sample at z̄ ≃ 1.5 (Sawangwit et al., 2011b). The amplitude of the z̄ ≃ 0.35 LRG

measurement is lowered by a factor of 2.2 to match the linear theory prediction for the

combined QSO sample at the intermediate scales. The solid line is the standard ΛCDM

model with (Ωm, ΩΛ)=(0.27,0.73), h = 0.7, fbaryon = 0.167 and n = 0.95. The dashed

line is the ‘no-wiggle’ version of the model (Eisenstein and Hu, 1998).

1.4.2 Baryon Acoustic Oscillations

One of the most interesting features in the large-scale distribution of LSS is the ‘Baryon

Acoustic Oscillations’ (BAO). The same physics that gives rise to the acoustic peaks in

the CMB power spectrum is also responsible for the BAO in the matter distribution. In

a correlation function the series of peaks appear as a single BAO bump at the sound

horizon scale, ≃ 105 h−1 Mpc, due to the excess clustering caused by the perturbation

ripples (solid line in Fig. 1.5). However, the level of the BAO bump in the background

matter density field is expected to be very small in the LSS. This is because after the

photon-baryon decoupling the baryons can freely follow the dark matter perturbations

which are very smooth on large scales so the BAO ripples are smeared by the dominant

dark matter field (e.g. Eisenstein and Hu, 1998).

The BAO scales can be used as a standard ruler to measure the matter-energy content

of the Universe as well as the dark energy equation of state (e.g. Blake and Glazebrook,
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2003). The first clear detection of the BAO bump was made by Eisenstein et al. (2005)

by measuring the correlation function of z̄ ≃ 0.35 LRG (Fig. 1.5) observed by the Sloan

Digital Sky Survey (SDSS) survey. And it has been confirmed by different groups of

authors using later SDSS dataset. Current measurements are in good agreement with a

low matter density Universe, Ωm,0 ≈ 0.27 and only ≈ 15 − 20 per cent of which is in the

form of ordinary matter (e.g. Eisenstein et al., 2005; Percival et al., 2010). An example of

cosmological parameter constraints from combining BAO measurement with the WMAP

observations is given in the right panel of Fig. 1.3.

1.5 Problems with the ΛCDM paradigm

The impressive apparent agreement of many cosmological observations (as outlined above)

leads to the so-called ‘concordance model’. Dictated by the terms given to its dominant

constituents, the model is called ‘flat ΛCDM model’. The model can be minimally de-

scribed by six parameters, namely physical dark matter density (Ωch
2), physical baryon

density (Ωbh
2), dark energy density (ΩΛ), scalar spectral index (ns), curvature fluctua-

tion amplitude (∆2
R) and reionization optical depth (τ) (e.g. Spergel et al., 2003; Komatsu

et al., 2011).

However, the model has several fundamental and astrophysical problems (e.g. Shanks,

2005, and references therein). Firstly, the model heavily relies on two pieces of undiscov-

ered physics, i.e. the Λ and the CDM. The latter is sometimes viewed as an extension

of the standard model of particle physics however the weakly interacting massive par-

ticle candidates are yet to be directly detected in the laboratory or elsewhere (Aprile

et al., 2010). The problem with cosmological constant is twofold; a) the fine-tuning prob-

lem where its extreme smallness requires that the observed ρΛ is 1 part in 10120 of the

vacuum energy expected from quantum zero-point energy and yet non-zero (e.g. Wein-

berg, 1989; Copeland et al., 2006) and b) the cosmic coincidence problem, i.e. why this

astonishingly small vacuum energy starts to dominate at almost the same time we hap-

pen to be observing. The explanation for these problems often resorts to the anthropic

principle (e.g. Efstathiou, 1995; Susskind, 2003; Peacock, 2007), even then the counter

arguments can often be made against such an approach (e.g. Tegmark and Rees, 1998;

Starkman and Trotta, 2006; Mersini-Houghton and Adams, 2008). To many cosmologists,

the anthropic reasoning is scientifically unsatisfactory. Other solutions proposed to solve

the late-time accelerated expansion problem ranges from a hypothetical time-dependent
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and spatially inhomogeneous energy field called ‘Quintessence’ (e.g. Caldwell, Dave, and

Steinhardt, 1998) to models based on a large-distance modification of gravity whether it

be a braneworld model (e.g. DGP model; Dvali, Gabadadze, and Porrati, 2000) or an

f(R) gravity model (e.g. Carroll et al., 2004), and the possibility of a ‘backreaction’ of the

cosmological perturbation due to the homogeneity assumption in the FRW metric (e.g.

Kolb et al., 2006). Apparently, none of these proposed models is as successful as the flat

ΛCDM model.

There are also several astrophysical problems faced by the model which are mostly

related to the hierarchical galaxy formation in the CDM framework. For example, the

predicted CDM profile is too cuspy to explain the rotation curves of the dark matter

dominated galaxies, i.e. low surface brightness galaxies (Moore et al., 1999b). The well-

known ‘missing satellites problem’ is another example where the model (via high resolution

N -body simulation; e.g. Moore et al. 1999a; Springel et al. 2008) produces too many

dark matter substructures in galactic sized haloes as well as too high maximum circular

velocities than the observations expected in the Local Group (e.g. Klypin et al., 1999;

Martin et al., 2008; Watkins et al., 2009). These first two problems may in fact be related

through the true nature of dark matter. Recently, it has been suggested by Lovell et

al. (2011) that if the dark matter is warm rather than cold then these problems can be

alleviated as the power at high wavenumbers is significantly reduced due to free streaming.

The bright end of galaxy luminosity function shows a sharp ‘knee’ feature and a flat slope

at faint end (e.g. Blanton et al., 2001; Norberg et al., 2002a) whereas hierarchical galaxy

formation predicts a near power-law mass function (Benson et al., 2003). To reconcile

with the observations, ‘feedback’ processes (supernova feedback for faint end and AGN

feedback for bright end) needed to suppress star formation are introduced in the semi-

analytic model (e.g. Bower et al., 2006). However, the real question is whether the amount

of energy needed in these feedback processes can be realistically met. Another example

worth mentioning is the galaxy ‘downsizing problem’ where the CDM model predicts that

the most massive systems form last, i.e. the most massive galaxies are expected to grow

rapidly via mergers after z ≈ 1 (e.g. De Lucia et al., 2006). However, observationally, the

most massive galaxies appear old and the bulk of recent star formation have taken place

only in the intermediate mass galaxies (e.g. Cowie et al., 1996; Kodama et al., 2004).

To reconcile with observations, the massive galaxies have to accumulate their masses via

‘dry’ merging of gas-poor systems where no new significant star formation is allowed to

happen in order for them to appear old. Furthermore, the AGN feedback is still needed
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to prevent further gas cooling and star formation in these massive haloes as mentioned

above.

There are also observational results which are at odds with the current cosmological

paradigm. For example, the strong lensing of the background faint QSOs in the 2dF QSO

redshift survey (2QZ) by foreground galaxies, groups and clusters of galaxies implied

a high Ωm and/or strong anti-bias than the ΛCDM model suggests (Croom and Shanks

1999; Myers et al. 2003, 2005; Guimarães et al. 2005; Mountrichas and Shanks 2007). The

similar strong lensing signal has also been observed in an independent spectroscopic bright

QSO sample, the Hamburg-ESO Survey, by Nollenberg and Williams (2005). However,

note that an analysis of a photometric QSO sample from the SDSS by Scranton et al.

(2005) has suggested that the lensing result may be compatible with the standard ΛCDM

prediction when analysed in conjunction with the HOD framework. More examples of

the observational evidence which indicate that Ωm may be higher than 0.3 are reviewed

by Shanks (2005).

It may be fair to say that most of the astrophysics problems discussed above arise from

our incomplete understanding of complex gas physics in galaxy formations. By tackling

these issues we would develop a more complete picture of the subject and it is likely that

some of the issues can be addressed by a more complicated galaxy formations model (see

Baugh, 2006, for a review). However, the fundamental problems highlighted earlier are

the most serious and one should balance the successes of the standard cosmological model

against these problems. It is therefore scientifically prudent that we continue to confront

the standard model with new observations and re-tests of the old ones.

1.6 This thesis

In this thesis, we present results from using observational tools commonly employed in

studying cosmology and galaxy evolution. These are, as outlined above, the galaxy clus-

tering as a biased tracer of the LSS, the CMB temperature power spectrum and the

CMB-LSS cross-correlation. In Chapter 2, we perform a clustering analysis of photo-

metrically selected samples of Luminous Red Galaxy (LRG) at three different average

redshifts. The sample selection functions are calibrated by spectroscopic redshift surveys

where their redshift distributions are then used to infer the 3D clustering information.

The samples at different redshifts where each one covers a large area and contains a

large number of objects provide a unique opportunity for studying clustering evolution



1. Introduction 24

of massive early-type galaxies and to search for the BAO signal. The latter can be used

to inform the ongoing or upcoming photometric surveys such as the Panoramic Survey

Telescope & Rapid Response System (Pan-STARRS; Chambers 2009), the Large Synoptic

Survey Telescope (LSST; Ivezic et al. 2008) projects where the photometric-redshift or

colour-magnitude selected LRG sample can be used as a biased tracer for the LSS and

BAO studies.

In Chapter 3, we review previous claims of the detections of the ISW effect and present

a new measurement using the LRG sample at z̄ ∼ 0.7, the redshift where one expects the

ISW signal-to-noise to be maximised (Douspis et al., 2008). The sample is also located at

the redshift close to where the transition from a decelerated to an accelerated expansion

is believed to occur and thus should present an interesting opportunity for a new test

of the ISW effect. We then perform a robustness test on the new results as well as the

previously claimed ISW detections which, as mentioned above, is very important as the

direct dynamical evidence for dark energy.

In Chapter 4, we make independent estimates of the CMB temperature power spectra

using publicly available data from the WMAP collaboration. We investigate the angular

power spectrum sensitivity to the instrumental beam profiles. We then make an inde-

pendent beam profile measurements using radio point sources detected by the WMAP

team as well as the sources detected at other frequency bands made by ground-based

telescopes. The robustness tests of the technique used is also presented. And the initial

impact on the final WMAP power spectrum is then briefly investigated.

In Chapter 5, we review the effect of the WMAP beam asymmetry and investigate

the claim of the existence of timing offset in the WMAP time-ordered data to see if it can

produce a wider beam profile observed in Chapter 4. We construct the on-sky beam maps

from the WMAP scan strategy and the Jupiter beam maps. To test the hypothesis, the

induced timing offset is left uncorrected in the map-making process and the results are

tested against the 2D stacked temperature maps around the radio point sources. Finally,

Chapter 6 presents the conclusions and summarise our findings as well as the future

prospects of using LSS and CMB to study and further our understanding of the Universe.



Chapter 2
LRG angular

correlation functions

2.1 Introduction

The galaxy two-point function whether in its correlation function or power spectrum form

has long been recognised as a powerful statistical tool for studying Large-Scale Structure

(LSS) of the Universe (Peebles, 1980). In an isotropic and homogeneous Universe, if

the density fluctuation arises from a Gaussian random process, the two-point correlation

function, ξ(r), and its Fourier transform, P (k), contains a complete description of such

fluctuations. It has been used to measure the clustering strength of galaxies in numerous

galaxy surveys (see e.g. Groth and Peebles 1977; Shanks et al. 1989; Baugh and Efstathiou

1993; Ratcliffe et al. 1998a) and the observed ξ(r) is reasonably well represented by a

power-law of the form ξ(r) = (r/r0)
−1.8 over a large range of scales, ≈ 100 h−1 kpc –

10 h−1 Mpc, where r0 is approximately 5 h−1 Mpc.

More recently, large galaxy redshift surveys have become available (SDSS:York et al.

2000, 2dFGRS:Colless et al. 2001) and these surveys provide a perfect opportunity to

exploit the two-point function as a tool to constrain cosmological parameters (Hawkins

et al., 2003; Cole et al., 2005; Eisenstein et al., 2005; Tegmark et al., 2006; Percival

et al., 2007) which in turn provides an excellent test for our current understanding of the

Universe and the processes by which the LSS were formed.

In the past, when galaxy redshift surveys were less available, the angular correlation

function, w(θ), was heavily utilised in the analysis of imaging galaxy samples. The spatial

correlation function, ξ(r), can be related to w(θ) via Limber’s equation (Limber, 1953),

alternatively w(θ) can be inverted to ξ(r) using Lucy’s iterative technique (Lucy 1974),

both approaches providing a means to recover the 3–D clustering information numerically.

Even today, galaxy imaging surveys still tend to cover a bigger area of the sky and occupy

a larger volume than redshift surveys and therefore could offer a route to a more accurate

25
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estimation of the correlation function and power spectrum (see e.g. Baugh and Efstathiou

1993). One of the disadvantages of using w(θ) is the dilution of the clustering signal from

projection and hence any small-scale/sharp feature which might exist in the 3–D clustering

may not be observable in w(θ).

As mentioned above, the correlation function at small to intermediate scales can be

approximately described by a single power-law which also results in a power-law w(θ)

but with a slope of 1 − γ. However with larger sample sizes, recent analyses of galaxy

distributions start to show a deviation from a simple power-law (Zehavi et al. 2005b;

Phleps et al. 2006; Ross et al. 2007; Blake et al. 2008, see also Shanks et al. 1983). This

poses a challenge for a physical explanation and understanding of non-linear evolution of

structure formation. Several authors attempted to fit such correlation function using a

halo model framework (e.g. Cooray and Sheth, 2002) invoking a transition between 1–

and 2– halo terms which occurs at ≈ 1 h−1 Mpc where the feature is observed. This

distance scale could potentially be used as a ‘standard ruler’ in tracking the expansion

history of the Universe, provided that its physical origin is well understood and the scale

can be accurately calibrated.

Another feature in the correlation function predicted by the standard ΛCDM model

is the ‘Baryon Acoustic Oscillations’ (BAO). BAO arise from sound waves that propa-

gated in the hot plasma of tightly coupled photons and baryons in the early Universe. As

the Universe expands and temperature drops below 3000 K, photons decouple from the

baryons at the so called ‘epoch of recombination’. The sound speed drops dramatically

and the oscillatory pattern is imprinted on the baryon distribution as well as the tempera-

ture distribution of the photons which approximately 13 billions years after the Big Bang

is revealed as the acoustic oscillations in the temperature anisotropies of the CMB. The

equivalent but attenuated feature exists in the clustering of matter, as baryons fall into

dark matter potential wells after the recombination. In recent years, the acoustic peak

scale in the LSS has been proposed as a potential ‘standard ruler’ (e.g. Blake and Glaze-

brook, 2003; Glazebrook et al., 2007; McDonald and Eisenstein, 2007) for constraining

the Dark Energy equation of state (w = p/ρc2) and its evolution.

For the BAO approach to the study of Dark Energy to yield a competitive result,

a large survey of several million galaxies is generally required (Blake and Glazebrook

2003; Seo and Eisenstein 2003; Parkinson et al. 2007; Angulo et al. 2008). A galaxy

spectroscopic redshift survey would requires a substantial amount of time and resources.

An alternative route which will enable a quicker and larger area covered is through the use
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photometric redshift (photo–z hereafter) at the expense of the ability to probe the radial

component directly. The photo–z errors are worse than spectroscopic redshift errors, but

this can be compensated by a larger survey and deeper imaging.

The potential of the distribution of Luminous Red Galaxies (LRGs) as a powerful

cosmological probe has long been appreciated (Gladders and Yee 2000; Eisenstein et al.

2001). Their intrinsically high luminosities provide us with at least two advantages, one

being the ability to observe such a population out to a greater distance whilst the other

is the possibility of detecting the small overdensity of the BAO in matter distribution

at ≈ 100 h−1 Mpc owing to their high linear bias1. In addition, their typically uniform

Spectral Energy Distributions (SEDs) allow a homogeneous sample to be selected over

the volume of interest. Moreover, the strong 4000 Å break in their SEDs make them

an ideal candidate for the photometric redshift route or even a colour-magnitude cut as

demonstrated by the success of the target selection algorithm of three LRG spectroscopic

follow-ups using SDSS imaging. In fact, the first clear detection of the BAO in the galaxy

distribution came from the analysis of LRG clustering at low redshift (Eisenstein et al.,

2005).

Here we shall present new measurements of the angular correlation functions deter-

mined from colour selected LRG samples. We shall show that this route provides redshift

distribution, n(z), widths that are close to the current photo–z accuracy, with none of

the associated systematic problems. Indeed, one of our aims is to assess the efficiency

of this route to BAO measurement compared to a full 3–D redshift correlation func-

tion. This possibility arises because the n(z) width that we obtain is comparable to the

≈ 100 h−1 Mpc scale of the expected acoustic peak. It is important therefore to assess

how much this ‘colour-cut’ route can compete with spectroscopic redshifts and indeed

photometric redshifts in terms of the BAO detection efficiency.

A similar clustering analysis measuring w(θ) of LRGs with photo–z’s has been carried

out by Blake et al. (2008). Equipped with a higher-redshift LRG selection algorithm whose

effectiveness has been tested with the new LRG spectroscopic redshift survey, VST-AAΩ

ATLAS pilot run (Ross et al., 2008b), our approach is an improvement over Blake et al.

(2008) as it probes an almost four times larger cosmic volume and we extend the analysis

to large scales to search for the BAO peak.

1This is the well known luminosity dependant bias as shown observationally by e.g. Norberg et al.

(2002b); Zehavi et al. (2005b) and is expected in hierarchical clustering cold dark matter universe (Benson

et al., 2001).
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Table 2.1: Summary of the properties of LRG samples used in this study.

Sample z̄ Number Density Magnitude (AB)

(deg−2)

SDSS 0.35 106 699 ≈13 17.5 ≤ rpetro < 19.5

2SLAQ 0.55 655 775 ≈85 17.5 < ideV < 19.8

AAΩ 0.68 800 346 ≈105 19.8 < ideV ≤ 20.5

The layout of this chapter is as follows. An overview of the galaxy samples used

here is given in §2.2. §2.3 describes the techniques for estimating the angular correlation

functions and their statistical uncertainties. We then present the correlation results in

§2.4. In §2.5, the clustering evolution of these LRGs are discussed. We then investigate a

possibility of the acoustic peak detection in the w(θ) from the combined sample in §2.6.

We then discuss the future wide-field photo–z LRG surveys designed to study BAO in

§2.6. Finally, summary and conclusions of our study are presented in §2.7.

2.2 Data

The galaxy samples used in this study were selected photometrically from SDSS DR5

(Adelman-McCarthy et al., 2007) imaging data based on three LRG spectroscopic redshift

surveys with z̄ ≈ 0.35, 0.55 and 0.7 (Eisenstein et al., 2001; Cannon et al., 2006; Ross

et al., 2008b). In summary, these surveys utilised a crude but effective determination

of photometric redshift as the strong 4000 Å feature of a typical LRG spectral energy

distribution (SED) moves through SDSS u, g, r, i, and z bandpasses (Fukugita et al.,

1996; Smith et al., 2002). In each survey, a two-colour system (either g− r versus r− i or

r − i versus i− z) suitable for the desired redshift range was used in conjunction with r

or i-band magnitude to select luminous intrinsically red galaxies. The method employed

by these surveys has been proven to be highly effective in selecting LRGs in the target

redshift range. The full selection criteria will not be repeated here but a summary of the

algorithms and any additional criteria will be highlighted below (see Eisenstein et al. 2001;

Cannon et al. 2006; Ross et al. 2008b for further details). Redshift distributions, n(z),

of the LRGs from the spectroscopic surveys utilised in this work are shown in Fig. 2.1.

The LRG samples corresponding to the above n(z) have been carefully selected to match

our selection criteria hence these n(z) will be assumed in determining the 3–D correlation
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Figure 2.1: Normalised redshift distributions, n(z), of the three LRG spectroscopic sur-

veys used as the basis for selection criteria in this study. The word ‘normalised’ above

and hereafter refers to the fact that the area under the curve n(z) has been set to one.

functions, ξ(r), from their projected counterparts, w(θ), via the Limber (1953) equation.

All magnitudes and colours are given in SDSS AB system and are corrected for ex-

tinction using the Galactic dust map of Schlegel, Finkbeiner, and Davis (1998). In our

analysis, we shall only use the galaxy samples in the most contiguous part of the survey,

i.e. the northern Galactic cap (NGC). All colours described below refer to the differences

in ‘model’ magnitudes (see Lupton et al., 2001, for a review on model magnitudes) unless

otherwise stated.

Hereafter we shall refer to the photometrically selected sample (not to be confused

with the spectroscopic sample from which they are associated) at average redshift of 0.35,

0.55 and 0.7 as the ‘SDSS LRG’, ‘2SLAQ LRG’ and ‘AAΩ LRG’, respectively.

2.2.1 SDSS LRG

The sample used here is similar to the target sample of the recently completed SDSS-LRG

spectroscopic survey which contains ≈ 100 000 spectra and cover over 1 h−3 Gpc3. These

objects are classified as LRGs on the basis of their colours and magnitudes following

Eisenstein et al. (2001, E01 hereafter). The sample is approximately volume-limited up

to z ≈ 0.38 and spans out to z ≈ 0.5. The selection is done using (g−r) and (r−i) colours

coupled with r-band Petrosian (1976) magnitude system. The algorithm is designed to
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Figure 2.2: The colour-colour plot of SDSS LRG cut I and II showing their positions

on the gri colour plane compared to the predicted colour-colour locus (observer frame)

of typical early-type galaxies as a function of redshift (see text for more details). Each

solid circle denotes the redshift evolution of the colour-colour tracks at the interval of 0.1

beginning with z = 0.1 (bottom left).

extract LRGs in two different (but slightly overlapped) regions of the gri colour space and

hence using two selection criteria (Cut I and Cut II in E01) as naturally suggested by the

locus of early-type galaxy on this colour plane (see Fig. 2.2). The tracks shown in Fig.

2.2 were constructed using a spectral evolution model of stellar populations (Bruzual and

Charlot, 2003) with output spectra mimicking a typical SED of the LRGs. The stellar

populations were formed at z ≈ 10 and then evolve with two different scenarios, namely a)

passive evolution of an instantaneous star formation (single burst), and b) exponentially

decayed star formation rate (SFR) with e-folding time of 1 Gyr. Solar metallicity and

Salpeter (1955) Initial Mass Function (IMF) were assumed in both evolutionary models.

We used the same colour-magnitude selection as that described by E01 but with

additional restriction on the r-band apparent magnitudes of the objects, i.e. rpetro > 17.5.

This is due mainly to two reasons, a) to separate out the objects with z < 0.2 because Cut

I is too permissive and allows under-luminous objects to enter the sample below redshift

0.2 as also emphasised by E01, and b) to tighten the redshift distribution of our sample

while maintaining the number of objects and its average redshift (see Fig. 2.3).

The selection criteria mentioned above also has another star-galaxy separation algo-
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Figure 2.3: The number of objects as a function of redshift from SDSS LRG spectroscopic

redshift survey also shown is the subset of Cut I and II with additional magnitude cut,

rpetro > 17.5, applied.

rithm apart from the pipeline PHOTO classification (Lupton et al., 2001). This was done

by setting a lower limit on the differences in r-band point-spread function (PSF) magni-

tudes and model magnitudes as most galaxies populate the upper part of rPSF − rmodel

space compared to the foreground star of similar apparent magnitude. The algorithm

has been proven to be quite effective (less than 1 per cent stellar contamination) for this

range of redshift and magnitude although Cut II needs a more restrictive threshold,

rPSF − rmodel > 0.5 as compared to 0.3 for Cut I.

In practice, the LRG sample described here can be extracted from the SDSS DR5 imag-

ing database using the SQL query by setting the flag PRIMTARGET to GALAXY RED.

This yields a catalogue of approximately 200 000 objects which after applying the addi-

tional magnitude cut mentioned above, becomes 106 699 objects and results in the sky

surface density of about 13 objects per square degree.

2.2.2 2SLAQ LRG

The 2dF-SDSS LRG and Quasar Survey (2SLAQ) is the spectroscopic follow-up of inter-

mediate to high redshift (z > 0.4) LRGs from photometric data of SDSS DR4 (Adelman-

McCarthy et al., 2006) using the two-degree Field (2dF) instrument on the Anglo-Australian

Telescope (AAT). This survey is now completed and contains approximately 13 000 bona
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fide LRGs in two narrow equatorial strips covering 180 square degrees with over 90 per cent

having redshift 0.45 < z < 0.8. The primary sample of the survey (Sample 8, Cannon

et al. 2006;C06 hereafter) was selected using (g − r) versus (r − i) colours and ‘de Vau-

couleurs’ i-band magnitude (17.5 < ideV < 19.8). The colour selection of Sample 8 is

similar to that of Cut II which utilises the upturn of the early-type galaxy locus in gri

colour plane and hence is immune against the confusion with the late-type galaxy locus

at higher redshift (see Fig. 2 in E01) but the scattering up in colour of interlopers from

lower redshift and contamination of M-stars can also affect the accuracy of the selection.

The latter could be prevented by using a similar method for star-galaxy separation as

described in the last section but in this case we used the i-band magnitude rather than

the r-band. Following C06, two criteria were used,

ipsf − imodel > 0.2(21 − ideV) (2.1)

and

radiusdeV(i) > 0.2, (2.2)

where radiusdeV(i) is de Vaucouleurs radius fit of the i-band photometry. As reported by

C06, approximately 5 per cent of the cool dwarf M-star is still present in their sample and

we shall assume this value when correcting for the dilution of the correlation signal due

to the uncorrelated nature of foreground stars and the LRGs. In this work, we only use

Sample 8 as this provides us with a narrower n(z) and higher average redshift than the

whole 2SLAQ sample.

A sample of 655 775 photometrically selected LRG candidates (≈ 5 per cent stellar

contamination) is returned by the SDSS DR5 ‘Best Imaging’ database when the Sample 8

selection criteria is used in the SQL query from table GALAXY. Objects with BRIGHT or

SATURATED or BLENDED but not DEBLENDED flags are not included in our sample.

2.2.3 AAΩ LRG

The AAΩ-AAT LRG Pilot observing run was carried out in March 2006 by Ross et al.

(2008b, and reference therein) as a ‘Proof of Concept’ for a large spectroscopic redshift

survey, VST-AAΩ ATLAS, using the new AAOmega instrument on the AAT. The survey

was designed to target photometrically selected LRGs out to z ≈ 1.0 with the average

redshift of 0.7. The target sample was observed in three 2-degree fields including the

COSMOS field (Scoville et al., 2007), the COMBO-17 S11 field (Wolf et al., 2001), and
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2SLAQ d05 field (Cannon et al., 2006).

We follow the survey main selection criteria, 19.8 < ideV ≤ 20.5 together with the riz

colour cuts as described by Ross et al. (2008b). In summary, the cut utilises the upturn of

the early-type galaxy colour-colour locus similar to that used by 2SLAQ and SDSS LRG

surveys. The turning point of the track on the riz colour plane occurs at z = 0.6 − 0.7

as the 4000 Å feature moves from the SDSS r to i band whilst this happens at z ≈ 0.4

in the gri case. The selection technique has been proven to work reasonably well by the

observed redshift distribution. This is further confirmed by the ongoing AAT–AAΩ LRG

project, the down-sized version of the VST–AAΩ ATLAS survey, designed to observed

several thousands of LRG redshifts for photo–z calibration and a clustering evolution

study. The n(z) (Fig. 2.1) used in inferring the 3–D clustering information also includes

≈ 2000 AAΩ LRG redshifts taken during the run in June 2008.

As emphasised by Ross et al. (2008b), the stellar contamination in the sample can

be readily reduced to ≈ 16 per cent by imposing star-galaxy separation in the z-band

without any significant loss of the genuine galaxies. Although the level of contamination

could be further reduced by using near-infrared photometry, we do not attempt it here

as there is no infrared survey that covers the entire SDSS DR5 NGC sky with similar

depth. Therefore we shall use the quoted contamination fraction when correcting the

measured w(θ) for the same reason mentioned in §2.2.2. Since no expression for star-

galaxy separation is given in Ross et al. (2008b), here such a procedure is performed

using an equation defining the dashed line in their Fig. 3,

zpsf − zmodel > 0.53 + 0.53(19.0 − zmodel) (2.3)

Applying the above selection rules on the ‘Best Imaging’ data of the SDSS DR5 yields a

photometric sample of 800 346 high-redshift LRG candidates with the sky surface density

of approximately 110 objects per square degree. As with the 2SLAQ LRG sample, objects

with BRIGHT or SATURATED or BLENDED but not DEBLENDED flags are discarded

from our sample.

2.3 Estimating w(θ) and its error

2.3.1 Optimal estimator and techniques

The two-point correlation function, ξ(r), measures the excess probability of finding a pair

of objects separated by distance r relative to that expected from a randomly distributed
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process. The joint probability of finding two objects of interest (in this case the LRGs)

in the volume elements δV1 and δV2 separated by a distance r is given by

δP (r) = n2 [1 + ξ(r)] δV1δV2 (2.4)

where n is the number space density of the sample. In practice, redshift of individual

object is required to estimate the separation between a given pair. However if such redshift

information is not available as in this study, the sky projected version, w(θ), can be used

to analyse the clustering property of the sample instead. The 2D equivalent of Eq. 2.4 is

δP (θ) = ℵ2 [1 + w(θ)] δΩ1δΩ2 (2.5)

where ℵ is the surface density of the objects and δP (θ) is now the joint probability of

finding two objects in solid angle δΩ1 and δΩ2 separated by angle θ.

Two possible routes for estimating w(θ) are the pixelisation of galaxy number over-

density, δg = δn/n̄ and pair counting. The pixelisation approach usually requires less

computation time but its smallest scale probed is limited by the pixel size. We choose to

follow the latter. To calculate w(θ) using the pair counting method, one usually gener-

ates a random catalogue whose angular selection function is described by the survey. The

number of random points are generally required to be 10 times the number of objects or

more. This is necessary to reduce the shot noise. Our random catalogue for each sample

has ≈ 20 times the number of LRGs in SDSS and 10 times for 2SLAQ and AAΩ-pilot

(see next section for details on how this was achieved).

We compute w(θ) using the minimum variance estimator of Landy and Szalay (1993).

It is also an unbiased estimator (Mart́ınez and Saar, 2002) for 2PCF as it can be reduced to

the exact theoretical definition of 2PCF, i.e. a variance of density fluctuation in Gaussian

field, ξ(r) = 〈δ(x)δ(x + r)〉. The form of this estimator is

wLS(θ) = 1 +

(
Nrd

N

)2 DD(θ)

RR(θ)
− 2

(
Nrd

N

)
DR(θ)

RR(θ)
(2.6)

whereDD(θ) is the number of LRG-LRG pairs with angular separation within the angular

bin centres at θ. DR(θ) and RR(θ) are the numbers of LRG-random and random-random

pairs, respectively. Nrd/N ratio is required for normalisation. Nrd is the total number of

random points and N is the total number of LRGs. We use a logarithmic bin width of

∆ log(θ/arcmin) = 0.176 for θ = 0.1′ to 50′ and a linear bin width of 20′ at scales larger

than 50′.
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The uncertainty in the number density of the sample could lead to a bias in the

estimation of w(θ) when using Landy-Szalay estimator especially at large scale where the

amplitude is small and hence we also utilise the Hamilton (1993) estimator, given by

wHM(θ) =
DD(θ) ·RR(θ)

DR(θ)2
− 1 (2.7)

which requires no normalisation. We used the Hamilton estimator to cross-check our wLS

for each sample and found the difference given by the two estimators to be negligible in

all three samples.

For the purpose of determining statistical uncertainty in our measurement, three meth-

ods of estimating the errors are considered. The first method is the simple Poisson error

given by

σPoi(θ) =
1 + w(θ)√
DD(θ)

(2.8)

For the second method, field-to-field error, we split the sample into 24 subfields of approxi-

mately equal size. These subfields are large enough for estimating the correlation function

up to the scale of interest. This is simply a standard deviation of the measurement in

each subfield from the best estimate and is calculated using

σ2FtF(θ) =
1

N − 1

N∑

i=1

DRi(θ)

DR(θ)
[wi(θ) − w(θ)]2 (2.9)

where N is the total number of subfields, wi(θ) is a measurement from the ith subfield

and w(θ) is measured using the whole sample. The deviation of the angular correlation

function computed in each subfield is weighted by DRi(θ)/DR(θ) to account for their

relative sizes.

The third method is the jackknife resampling. This is a method of preference in a

number of correlation studies (see e.g. Scranton et al., 2002; Zehavi et al., 2005a; Ross

et al., 2007). The jackknife errors is computed using the deviation of w(θ) measured from

the combined 23 subfields out of the 24 subfields. The subfields are the same as used

for the estimation of field-to-field error above. w(θ) is calculated repeatedly, each time

leaving out a different subfield and hence results in a total of 24 measurements. The

jackknife error is then

σ2JK(θ) =

N∑

i′=1

DRi′(θ)

DR(θ)
[wi′(θ) − w(θ)]2 (2.10)
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where wi′(θ) is now an angular correlation function estimated using the whole sample

except the ith subfield and DRi′(θ)/DR(θ) is approximately 23/24 with slight variation

depending on the size of resampling field.

The w(θ) measured from a restricted area are known to suffer from a negative offset

called ‘integral constraint’, ic, which tends to force the fluctuation on the scales of the

survey to zero (Groth and Peebles, 1977), i.e. west(θ) = w(θ)− ic. The integral constraint

can be estimated from the random pair counts drawn from the same angular selection

function (§2.3.2) as the data (see e.g. Roche and Eales, 1999);

ic =
ΣRR(θ)wmodel(θ)

ΣRR(θ)
, (2.11)

where we assume our fiducial ΛCDM model (see §2.4.2) for wmodel. The ic for the SDSS,

2SLAQ and AAΩ-LRG samples are 4×10−4, 1.5×10−4 and 8×10−5, respectively. These

are much smaller than the w(θ)’s amplitudes in the angular ranges being considered in

this paper, as expected given the large sky coverage of the SDSS data.

It is well known that the correlation function bins are correlated which could affect the

confidence limit on the parameter estimation performed under the assumption that each

data point is independent. Comparison of the estimated error using the field-to-field and

jackknife techniques to the simple Poisson error can give a rough estimate of the deviation

from the independent point assumption. This is plotted in Fig. 2.4 which shows that the

assumption is valid on small scales where Poisson error is a fair estimate of the statistical

uncertainty. However the same cannot be said on large scales where the data points are

correlated and the independent point assumption no longer holds. At these scales, such

statistical uncertainty is likely to be dominated by edge-effects and cosmic variance.

Fig. 2.4 also shows that the errors estimated using field-to-field and jackknife method

are in good agreement at all angular scales except for 2SLAQ and AAΩ samples where

the jackknife errors are slightly smaller towards the large scales but still agree within 10

per cent. The errors quoted in later sections are estimated using the jackknife resampling

method.

The covariance matrix allows the correlation between each bin to be quantified and

can be used in the fitting procedure to de-correlate the separation bins. We calculate the

covariance matrix from the jackknife resampling using

Cij = (N − 1)〈[w(θi) − w(θi)] · [w(θj) − w(θj)]〉 (2.12)
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Figure 2.4: The ratio of jackknife to Poisson and field-to-field errors on the measurements

of w(θ). The open diamonds, triangles and solid circles give the error ratios of w(θ)

estimated from SDSS, 2SLAQ, and AAΩ LRG, respectively.

where w(θj) is the mean angular correlation function of all the jackknife subsamples in

the jth bin. The measured variance, σ2, is the diagonal element of the covariance matrix,

Cii. Note that the difference between w(θj) and w(θ) estimated using the whole sample

is negligible. We then proceed to compute the ‘correlation coefficient’, rij, defined by

rij =
Cij√

Cii · Cjj

(2.13)

Fig. 2.5 shows the correlation coefficients for the three samples which are strongly cor-

related at the largest scale considered and less at small scales confirming the simple

correlation test using Poisson errors. Note that for the purpose of model fitting in the

large-scale sections (§2.4.2, 2.4.3 and 2.6) where a more stable covariance matrix is re-

quired, we increase the number of resampling fields to 96 sub-regions with approximately

equal area. The size of these sub-regions are also big enough for the largest scale be-

ing considered in this paper. The correlation coefficients constructed from these 96 JK

resampling are shown in Fig. A.1 for the three LRG samples.

We use the kd-trees code (Moore et al., 2001) to minimise the computation time

required in the pair counting procedure. The angular correlation function is estimated

using the method described above and then corrected for stellar contamination which

would have reduced the amplitude by a factor (1 − f)2, where f is the contamination
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Figure 2.5: The correlation coefficients, rij , showing the level of correlation between each angular separation bin for SDSS, 2SLAQ,

and AAΩ LRG (left to right). Note that for each sample we only show rij up to the angular separation corresponds to ≈ 20 h−1 Mpc

where later we shall attempt to fit power-law forms to the measured w(θ)’s.
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Figure 2.6: An equal area Aitoff projection of a random catalogue described in §2.3.2.

The red/grey highlighted regions indicate the areas where adjacent stripes are overlapped.

Note that the shading is purely diagrammatic to show the overlap regions and is unrelated

to galaxy density.

fraction for each sample given in §2.2.

2.3.2 Constructing random catalogues

In order to calculate the angular correlation function accurately, a random catalogue is

required. This catalogue consists of randomly distributed points with the total number

at least 10 times that of the data. Each random point is assigned a position in Right

Ascension (RA) and Declination (DEC). Since our sample spans a wide range in DEC (see

Fig. 2.6 for the SDSS DR5 sky coverage), care must be taken to keep the surface number

density constant assuming the survey completeness is constant and uniform throughout.

Only the random points that satisfy the angular selection function of the survey as defined

by the mask are selected.

The mask is constructed from ‘BEST’ DR5 imaging sky coverage given2 in the survey

coordinate (λ, η) and stripe number. The sky is drift scanned in a strip parallel to

η and two strips are required to fill a stripe (York et al., 2000). Each stripe is 2.5◦

wide and their centres are separated by 2.5◦. In addition to the ‘BEST’ sky coverage

mask, we also exclude regions in the quality ‘holes’ and regions defined as ‘BLEEDING’,

‘BRIGHT STAR’, ‘TRAIL’ and ‘HOLE’ in the ‘mask’ table given by the SDSS database.

The final mask is applied to both our data and random catalogues.

2http://www.sdss.org/dr5
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Note that further away from the survey equator (RA2000 = 185◦), the adjacent stripes

become overlapped which account for almost 20 per cent of the sky coverage. The ‘BEST’

imaging database only keep the best photometry of the objects which have been detected

more than once in the overlap regions. At the faint magnitude limit of our sample,

this could lead to a higher completeness in the overlap region and introduces bias in

the estimated correlation function. This issue has also been addressed by Blake et al.

(2007). They compared the measurement from the sample which omits the overlap region

against their best estimate and found no significant difference. We follow their approach

by excluding the overlap regions and re-calculating the angular correlation function of

our faintest apparent magnitude sample, AAΩ-LRG, where the issue is expected to be

the most severe. We found no significant change compared to our best estimate using the

whole sample.

2.3.3 Inferring 3–D clustering

The angular correlation function estimated from the same population with the same

clustering strength will have a different amplitude at a given angular scale if they are at

different depths (redshifts) or have different redshift selection functions, φ(z). Therefore

in order to accurately compare the clustering strengths of different samples inferred from

w(θ), one needs to know the sample φ(z). Even if the redshifts of individual galaxies are

not available, their 3–D clustering information can be recovered if the sample redshift

distribution, n(z), is known. The equation that relates the spatial coherence length, r0,

to the amplitude of w(θ) is usually referred to as Limber’s equation.

Recently, the accuracy of Limber’s equation has been called into question. This is due

to the assumption made for Limber’s approximation that the selection function, φ(z),

varies much more slowly than ξ(r) in addition to the flat–sky (small angle) approxima-

tion. It was shown by Simon (2007) that such an assumption would lead to w(θ) being

overestimated at large angle where the breakdown scale becomes smaller for narrower

φ(z) (see Fig. 2.7). Here, we shall use the relativistic generalisation of Limber’s equation

suggested by Phillipps et al. (1978) but without the approximation mentioned above.

Following Phillipps et al. (1978) for the comoving case,

w(θ) =

∫
∞

0 dz1f(z1)
∫
∞

0 dz2f(z2)ξ(r)[∫
∞

0 dzf(z)
]2 (2.14)

The source’s radial distribution, f(z), is simply given by the galaxy selection function,
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Figure 2.7: The angular correlation function computed using the exact (dashed-lines) and

Limber approximation (solid-lines), derived using a power-law, ξ(r) = (r/r0)−γ where

r0 = 10 h−1 Mpc and γ = 1.8 with the SDSS LRG n(z) for the thin lines and much

narrower n(z) (±0.01 centred at z = 0.35) for the thick lines.

φ(z), as

f(z) ≡ χ2(z)
dχ(z)

dz
nc(z)φ(z) (2.15)

where χ is the radial comoving distance, nc(z) is the comoving number density of the

sources and r = r(θ, z1, z2) is a comoving separation of the galaxy pair. We shall assume

a spatially flat cosmology (see §2.4.2) hence

r ≡
√
χ2(z1) + χ2(z2) − 2χ(z1)χ(z2) cos θ (2.16)

Note that Eq. 2.14 can also be used to relate a non-power-law spatial correlation function

to w(θ) unlike the conventional power-law approximation of Limber’s equation (Phillipps

et al., 1978).

Fig. 2.7 shows w(θ) computed using Eq. 2.14 (dashed lines) compared to the con-

ventional Limber’s approximation (solid lines) for a power-law ξ(r) with clustering length

10 h−1 Mpc and γ = 1.8. The effect of a much narrower redshift distribution (thick lines)

is also shown where the break scale becomes smaller and the power-law slope of w(θ)

asymptotically approaches that of ξ(r), agreeing with the finding of Simon (2007). We

shall use Eq. 2.14 together with the known n(z) to infer the 3–D spatial clustering of the
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LRGs.

2.4 Results

2.4.1 Power-law fits

We first look at the angular correlation function measured from the LRG sample at scales

less than 1◦ corresponding to approximately 20 h−1 Mpc where previous studies suggested

that the spatial 2PCF can be described by a single power-law of the form ξ(r) = (r/r0)−γ

(typically γ = 1.8) and a single power-law w(θ) with slope 1 − γ is expected (see Fig.

2.7). However in this study, we find a deviation from a single power-law with a break in

the slope at ≈ 1 h−1 Mpc in all three samples (less significant for the SDSS LRG). The

measurement has a steeper slope at small scales (< 1 h−1 Mpc) and is slightly flatter on

scales up to ≈ 20 h−1 Mpc where it begins to drop sharply (see Fig. 2.8 and Fig. 2.9). The

inflexion feature at ≈ 1 h−1 Mpc has also been reported in the spatial and semi-projected,

wp(σ), correlation function by many authors (e.g. Zehavi et al., 2005a; Phleps et al., 2006;

Ross et al., 2007; Blake et al., 2008) and detections go back as far as Shanks et al. (1983).

We shall return to discuss these features in the halo model framework (§2.4.3).

If we first consider w(θ) at scales smaller and larger than the break point separately,

each can be approximately described by a power-law with a slope of ≈ −1.15 (γ = 2.15),

and ≈ −0.83 (γ = 1.83), respectively. A more detailed analysis is performed by fitting

a set of models to the measured w(θ) using a chi-squared minimisation method with the

full covariance matrix constructed from the jackknife resampling (see §2.3.1). This allows

us to quantify the significance of the deviation from the single power-law by comparing

its goodness of fit to a double power-law. We proceed by calculating

χ2 =
N∑

i,j=1

∆w(θi)C
−1
ij ∆w(θj) (2.17)

where N is the number of angular bins, ∆w(θi) is the difference between the measured

angular correlation function and the model for the ith bin, and C
−1
ij is the inverse of

covariance matrix.

The single power-law fit is of the form w(θ) = (θ/θ0)(1−γ). We also recover the spatial

clustering length, r0, and its slope through the fitting via Eq. 2.14. For a double power-

law, the fitting procedure is performed separately at the scales smaller and larger than

θb, corresponding to ≈ 1 h−1 Mpc for all three samples (see Fig. 2.9). The largest scale
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Figure 2.8: The angular correlation function measured from the three LRG samples. The

solid lines are the projection of best-fit double power-law ξ(r) with r0 and γ given in Table

2.2 for each sample. The break scales occur at approximately a few arcminutes depending

on the average redshift of the sample. This corresponds to a comoving separation of

≈ 1 h−1 Mpc (see Fig. 2.9).

considered in the fitting for all cases is ≈ 20 h−1 Mpc where a steeper drop-off of w(θ) is

observed.

In Fig. 2.9, the best-fit power-laws for all three samples are shown. The summary of

the best-fit parameters are given in Table 2.2. Eq. 2.14 and 2.17 are then used to find

the spatial clustering lengths and slopes that best describe our w(θ) results. The best-fit

clustering slopes from r0-γ analysis using Limber’s equation are in good agreement with

that from θ0-γ and hence we only report the latter in Table 2.2. If we require a continuity

in the double power-law ξ(r) at the break scale, such a scale can be constrained by the

pair of best-fit r0-γ’s for each sample. From Table 2.2, the double power-law break for the

SDSS, 2SLAQ and AAΩ samples are then at 2.2, 1.9 and 1.3 h−1 Mpc, respectively (see

§2.5.2 for further discussion of the possible small-scale evolution of ξ(r)). By assuming

the 1 h−1 Mpc break instead of aforementioned values, the w(θ) is underestimated by

≈ 10 per cent for the SDSS case (less for the other two samples) which is only localised to

around θb. The clustering length (single power-law), r0, ranges from 7.5 to 8.7 h−1 Mpc,

consistent with highly biased luminous galaxies. Single power-law fits to the data can be

ruled out at high statistical significances. While the double power-law give better fits to
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Figure 2.9: The angular correlation function with the best-fit single (red dashed line) and double (blue solid line) power-law for the

SDSS, 2SLAQ and AAΩ LRGs. Lower panels show the fitting residuals for the single (circles) and double (triangles) power-law.
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Table 2.2: Parameters for the power-law fits to the angular correlation function derived from three LRG samples. The best-fit

parameters given are defined such that w(θ) = (θ/θ0)
1−γ and ξ(r) = (r/r0)−γ . The parameters for the best-fit double power-law

are given in two rows where the θ < θb result is given in the top row. Also given are the corresponding 1σ error for each parameter.

Sample z̄ ng Single power-law Double power-law

(h3 Mpc−3) θ0(
′) γ r0(h

−1 Mpc) χ2
red θ0(

′) γ r0(h−1 Mpc) χ2
red

SDSS 0.35 1.1 × 10−4 1.69 ± 0.03 2.07 ± 0.01 8.70 ± 0.09 16.2 1.57 ± 0.05 2.19 ± 0.03 7.35 ± 0.08 2.2

1.05 ± 0.09 1.85 ± 0.04 9.15 ± 0.16

2SLAQ 0.55 3.2 × 10−4 0.87 ± 0.01 2.01 ± 0.01 7.50 ± 0.04 57.5 0.83 ± 0.01 2.16 ± 0.01 6.32 ± 0.03 3.9

0.60 ± 0.03 1.84 ± 0.02 7.78 ± 0.05

AAΩ 0.68 2.7 × 10−4 0.57 ± 0.01 1.96 ± 0.01 7.56 ± 0.03 42.8 0.56 ± 0.01 2.14 ± 0.01 5.96 ± 0.03 3.4

0.38 ± 0.02 1.81 ± 0.02 7.84 ± 0.04
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the data than the single power-law, their χ2
red values indicate that such a model is still not

a good fit to the data, given the small statistical errors. Nevertheless, to first order, the

double power-law fits provide a good way of quantifying the spatial clustering strength of

the samples via the use of Limber’s equation.

The best-fit slopes at small scales show a slight decrease with increasing redshift, simi-

lar to that found by Wake et al. (2008). The SDSS LRG sample is more strongly clustered

than the rest as expected. This is simply because the SDSS LRG sample is intrinsically

more luminous than the 2SLAQ and AAΩ LRG samples and is not an indication of

evolution.

The galaxy number density (see Table 2.2) are calculated from the unnormalised

n(z), assuming the redshift distribution from the spectroscopic surveys as described in

§2.2. This is galaxy pair-weighted by n2(z) (see e.g. Ross and Brunner, 2009)

ng =

∫
dz

H(z)n(z)

Ωobscχ2(z)
× n2(z)

/∫
dz n2(z) (2.18)

where Ωobs is the observed area of the sky, χ(z) is the comoving distance to redshift z and

c is the speed of light. The samples’ pair-weighted average redshifts determined in the

similar manner as ng are consistent with their median redshifts and are given in Table

2.2.

To this end, we cut back the faint magnitude limit of 2SLAQ and AAΩ LRG’s to

ideV < 19.32 and 20.25, respectively. These cuts are imposed in order to select the

samples of galaxies whose comoving number densities are approximately matched to that

of the SDSS LRG. The K + e corrected i-band absolute magnitudes of these samples are

presented in Fig. 2.10. We see that their absolute magnitudes are also approximately

matched. This would then allow us to roughly constrain the evolution of LRG clustering

up to z ≈ 0.68 (see §2.5). A summary of the properties of these samples and the best-fit

parameters are given in Table 2.3. The measured w(θ)’s are shown in Fig. 2.11a.

As expected, the amplitudes of the brighter cut 2SLAQ and AAΩ samples (denoted by

2SLAQ∗ and AAΩ∗ hereafter) are higher than the original sample. In its raw form, w(θ)

measured from 2SLAQ∗ increases relative to 2SLAQ more than AAΩ relative to AAΩ*,

due to the narrower redshift distribution of the 2SLAQ∗ sample. However, if we perform

a double power-law fit to these results, the large-scale, & 1 h−1 Mpc, clustering lengths

are very similar and agree within ≈ 1σ statistical error. To first order these large-scale

clustering lengths are also consistent with that of the SDSS LRG’s. We shall investigate

the clustering evolution of these LRG samples further in §2.5.
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Figure 2.10: Top: The i-band absolute magnitude distribution of the spectroscopic LRG

catalogues. All photometry is galactic-extinction corrected using dust map of Schlegel,

Finkbeiner, and Davis (1998) and K + e corrected to z = 0 using the Early-type galaxy

templates from Bruzual and Charlot (2003). Bottom: The distribution of the absolute

magnitude after applying a faint limit cut to 2SLAQ and AAΩ LRG in order to match

the comoving number density of the SDSS LRG.



2
.
L
R
G

a
n
g
u
la
r
c
o
r
r
e
la
t
io
n

fu
n
c
t
io
n
s

4
8

Table 2.3: Properties and the best-fit parameters for double power-law of w(θ) measured from the SDSS-density matched samples.

Sample number magnitude z̄ ng Double power-law

(h3 Mpc−3) γ r0(h
−1 Mpc) χ2

red

2SLAQ∗ 182 841 17.5 < ideV < 19.32 0.53 1.2 × 10−4 2.25 ± 0.02 6.33 ± 0.04 2.1

1.80 ± 0.02 8.88 ± 0.08

AAΩ∗ 374 198 19.8 < ideV < 20.25 0.67 1.1 × 10−4 2.20 ± 0.02 6.25 ± 0.03 1.7

1.76 ± 0.03 9.08 ± 0.06
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2.4.2 Comparison of the clustering form to the standard ΛCDM model

We shall compare our w(θ) measurements to the predictions of the standard ΛCDM model

in the linear perturbation theory of structure growth framework along with the non-linear

correction. For the theoretical models, we first generate matter power spectra, using

the ‘CAMB’ software (Lewis, Challinor, and Lasenby, 2000). In the case of non-linear

correction, the software has the ‘HALOFIT’ routine (Smith et al., 2003) implemented.

Such matter power spectra, Pm(k, z), are then output at the average redshift of each

sample. The matter correlation function, ξm(r), is then obtained by Fourier transforming

these matter power spectra using

ξm(r) =
1

2π2

∫
∞

0
Pm(k)k2

sin kr

kr
dk (2.19)

Under the assumption that galaxies trace dark matter haloes, the galaxy correlation

function, ξg(r), is related to the underlying dark matter by the bias factor, bg, via

b2g =
ξg(r)

ξm(r)
(2.20)

Therefore the bias factor is expected to be a function of scale unless galaxies cluster in

exactly the same manner as the dark matter does at all scales. However, at large scales,

i.e. the linear regime, the bias factor is approximately scale–independent over almost a

decade of scales (Verde et al., 2002; Ross et al., 2008a).

Although we found the clustering lengths and hence the amplitude of ξ(r) to be very

similar for the SDSS, 2SLAQ∗ and AAΩ∗ samples, the evolution in the dark matter

clustering means that the linear bias could be a strong function of redshift as we shall

see in the next section where we investigate the clustering evolution in more detail. The

evolution of structures in linear theory framework is described by the linear growth factor,

D(z), (e.g. Peebles 1984; Carroll et al. 1992) such that

δ(r, z) = D(z)δ(r, z = 0), (2.21)

recall that ξ(r) = 〈δ(r1) δ(r2)〉, where r = |r1 − r2|, then

ξm(r, z) = D2(z)ξm(r, 0) (2.22)

The linear growth factor is unity at the present epoch, by definition, and decreases

as a function of redshift. The ξm(r, z) therefore decreases as the redshift increases hence

given that the number-density/luminosity matched samples have similar ξg(r) amplitudes,

suggesting that the bias increases as a function of redshift.
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We proceed by projecting the predicted ξm(r) using Eq. 2.14. Our fiducial models

assume a ΛCDM Universe with ΩΛ = 0.73, Ωm = 0.27, fbaryon = 0.167, σ8 = 0.8,

h = 0.7 and ns = 0.95. The linear bias factor is then estimated by fitting the matter

w(θ) to our measurements for the comoving separation of ≈ 6–60 h−1 Mpc, using the

full covariance matrices. Although the lower limit of 6 h−1 Mpc may appear low for the

linear regime, the non-linear correction at these scales is still very small and to first order

the shape of linear theory prediction is consistent with the data3. The best-fit linear bias

(χ2
red) for SDSS, 2SLAQ∗, AAΩ∗, 2SLAQ and AAΩ samples are 2.09 ± 0.05 (1.2), 2.20 ±

0.04 (0.65), 2.33 ± 0.03 (0.66), 1.98 ± 0.03 (0.53) and 2.07 ± 0.02 (1.2), respectively. The

measured biases are consistent with the results from other authors. For example, Tegmark

et al. (2006) analysed P (k) of SDSS LRG and found b(z = 0.35) = 2.25 ± 0.08 for the

best-fit σ8 = 0.756 ± 0.035 and for our fiducial σ8 this becomes b = 2.12 ± 0.12. Ross

et al. (2007) found 2SLAQ LRG b = 1.66 ± 0.35 using redshift-space distortion analysis.

Padmanabhan et al. (2007) , using C(ℓ) of SDSS+2SLAQ photo-z sample, found that

b(z = 0.376) = 1.94 ± 0.06 and b(z = 0.55) = 1.8 ± 0.04 (assumed σ8 = 0.9), for our

fiducial σ8 these are b = 2.18 ± 0.07 and b = 2.02 ± 0.05, respectively.

Fig. 2.11b shows the full scaling of of the w(θ)’s, accounting for their survey differ-

ences. First, the w(θ) of the SDSS, and 2SLAQ∗ samples scaled in the angular direction

according to their average redshifts and relative to the AAΩ∗ sample. The amplitudes are

then scaled to obtain a fair comparison for samples with different redshift distributions.

This is done by taking the relative amplitudes of the projections of a power-law ξ(r) of the

same clustering strength but projected through different n(z) widths. Since the observed

large-scale clustering lengths are very similar, ≈ 9 h−1 Mpc, the scaled w(θ)’s in these

ranges agree reasonably well. The figure also shows the best-fit biased non-linear model

for the AAΩ∗ sample. Our w(θ) shapes in the ranges 6 . r . 60 h−1 Mpc can be de-

scribed very well by linear perturbation theory in the standard flat ΛCDM Universe (see

the χ2
red for the best-fit bias factor given above). However, at smaller scales the theory

underestimates the clustering amplitude, as expected for early-type galaxies. As we shall

see in §2.4.3 that the reason for this may lie in the details of how the LRGs populate their

dark matter halo hosts.

3Note that changing the lower limit of the fitting to 10 h−1 Mpc does not significantly change the

best-fit bias nor the reduced χ2.
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Figure 2.11: (a): The angular correlation function measured from the SDSS LRG and the

brighter magnitude limit samples drawn from 2SLAQ and AAΩ sample (symbols). The

solid lines are the projection of the best-fit double power-law ξ(r) with the parameters

shown in Table 2.3. For comparison, the dot-dashed and dashed lines are w(θ) measured

from the whole 2SLAQ and AAΩ samples, respectively. (b): Same as (a) but now scaled

to AAΩ depth and taking into account the relative amplitude due to the different n(z)

widths (see text for more details).
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2.4.3 Halo model fits

We fit the halo model (e.g. Peacock and Smith, 2000; Berlind and Weinberg, 2002; Cooray

and Sheth, 2002) to our angular correlation function results. One of the key ingredients

of the halo model is the Halo Occupation Distribution (HOD) which tells us how the

galaxies populate dark matter haloes as a function of halo mass. Recently, the model has

been used to fit various datasets as a means to physically interpret the galaxy correlation

function and gain insight into their evolution (e.g. White et al., 2007; Blake et al., 2008;

Wake et al., 2008; Brown et al., 2008; Ross and Brunner, 2009; Zheng et al., 2009)

Here, we use a three-parameter model (e.g. Seo et al., 2008; Wake et al., 2008) which

distinguishes between the central and satellite galaxies in a halo (Kravtsov et al., 2004).

The mean number of galaxies residing in a halo of mass M is

〈N(M)〉 = 〈Nc(M)〉 × (1 + 〈Ns(M)〉) (2.23)

where the number of central galaxy is either zero or one with the mean given by

〈Nc(M)〉 = exp

(−Mmin

M

)
(2.24)

We assume that only haloes with a central galaxy are allowed to host satellite galaxies.

In such a halo, the satellite galaxies are distributed following an NFW profile (Navarro

et al., 1997) around a central galaxy at the centre of the halo. We also assume that their

numbers follow a Poisson distribution (Kravtsov et al., 2004) with a mean

〈Ns(M)〉 =

(
M

M1

)α

(2.25)

The NFW profile is parametrised by the concentration parameter c ≡ rvir/rs where

rvir is the virial radius and rs is the characteristic scale radius. We assume the Bullock

et al. (2001) parametrisation of the halo concentration as a function of mass and redshift,

c(M,z) ≈ 9

(1 + z)

(
M

M∗

)−0.13

, (2.26)

where M∗ is the typical collapsing mass and is determined by solving Eq. 2.42 with

σ(M∗) = δc(0).

The galaxy number density predicted by a given HOD is then

ng =

∫
dM n(M) 〈N(M)〉 (2.27)
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where n(M) is the halo mass function, here we use the model given by Sheth and Lemson

(1999). The effective galaxy linear bias can be determined from the HOD;

blin =
1

ng

∫
dM n(M)b(M) 〈N(M)〉 , (2.28)

where b(M) is the halo bias as a function of mass, for which we use the model of Sheth,

Mo, and Tormen (2001) plus the improved parameters of Tinker et al. (2005) (see §2.5.1,

Eq. 2.41). The average mass of haloes hosting such galaxy population is then

Meff =
1

ng

∫
dM n(M)M 〈N(M)〉 (2.29)

And the satellite fraction of the galaxy population is given by

Fsat =
1

ng

∫
dM n(M) 〈Nc(M)〉 〈Ns(M)〉 (2.30)

The galaxy power spectrum/correlation function can then be modelled as having the

contribution at small scales arises from galaxy pairs in the same dark matter halo (1-

halo term). On the other hand, the galaxy pairs in two separate haloes (2-halo term)

dominates at larger scales,

P (k) = P1h + P2h (2.31)

The 1-halo term can be distinguished into central-satellite, Pcs(k), and satellite-satellite,

Pss(k), contributions (see e.g. Skibba and Sheth, 2009);

Pcs(k) =
1

n2g

∫
dM n(M)2 〈Nc(M)〉 〈Ns(M)〉 u(k,M), (2.32)

and

Pss(k) =
1

n2g

∫
dM n(M) 〈Nc(M)〉 〈Ns(M)〉2 u(k,M)2, (2.33)

where u(k,M) is the Fourier transform of the NFW profile and we have simplified the

number of satellite-satellite pairs 〈Ns(Ns − 1)〉 to 〈Ns(M)〉2, i.e. Poisson distribution.

For 2-halo term, we implement the halo exclusion, ‘n′g-matched’, and scale-dependent

halo bias, b(M, r), of Tinker et al. (2005);
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P2h(k, r) = Pm(k) × 1

n′2g

×
[∫ Mlim(r)

0
dM n(M)b(M, r) 〈N(M)〉 u(k,M)

]2
, (2.34)

where Pm(k) is a non-linear matter power spectrum (see §2.4.2), Mlim(r) is the mass limit

at separation r due to halo exclusion and n′g is the restricted galaxy number density (Eq.

B13 of Tinker et al., 2005). The scale-dependent halo bias is given by (Tinker et al., 2005)

b2(M, r) = b2(M)
[1 + 1.17ξm(r)]1.49

[1 + 0.69ξm(r)]2.09
, (2.35)

where ξm is the non-linear correlation function (see §2.4.2).

The galaxy correlation function is then the Fourier transform of the power spectrum

which can be calculated separately for 1- and 2-halo terms. For the 2-halo term, we

need to correct the galaxy pairs from the restricted galaxy density to the entire galaxy

population. This is done by

1 + ξ2h(r) =

(
n′g
ng

)2 [
1 + ξ′2h(r)

]
, (2.36)

where ξ′2h(r) is the Fourier transform of Eq. 2.34.

We then project the predicted galaxy correlation function to w(θ) using Eq. 2.14 for a

range of HOD parameters. The best-fit model for each of our sample is then determined

from chi-square minimisation using the full covariance matrix. Note that we exclude

angular bins corresponding to scales smaller than 0.1 h−1 Mpc because of any uncertainty

in the ξ(r) model at the very small scales, r . 0.01 h−1 Mpc, can have a strong effect on

w(θ) even at these scales due to the projection. The best-fit Mmin, M1 and α and the

associated values for ng, Meff , Fsat and blin are given in Table 2.4. The 1σ uncertainties

on the best-fit Mmin, M1 and α are determined from the parameter space where ∆χ2 ≤ 1.

For ng, Meff , Fsat and blin which depend on the three main HOD parameters, this becomes

∆χ2 ≤ 3.53. Fig. 2.12 shows the best-fit HOD for each sample, the coloured solid lines

are the mean number of LRGs per halo with the central and satellite contributions shown

separately as the dashed and dotted lines, respectively.

As expected, the LRGs populate rather massive dark matter haloes with the masses

≈ 1013 − 1014h−1M⊙. At approximately the same redshift, the more luminous samples,

2SLAQ* and AAΩ*, are hosted by more massive haloes than the fainter samples. Most



2. LRG angular correlation functions 55

    

0.01

 

1

 

100
SDSS
2SLAQ*
AAΩ*
<Nc>
<Nc><Ns>

1013 1014 1015 1016

Mhalo (h
-1MΟ •)

0.01

 

1

 

100

<
N

(M
)>

2SLAQ
AAΩ
<Nc>
<Nc><Ns>

Figure 2.12: The mean number of LRGs per halo as a function of mass (solid lines) from

the best-fit HOD for the SDSS, 2SLAQ*, AAΩ* samples (top) and 2SLAQ, AAΩ samples

(bottom). The central and satellite contributions for each sample are shown as the dashed

and dotted lines.
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Table 2.4: Best-fit HOD parameters.

Sample z̄ Mmin M1 α ng Meff Fsat blin χ2
red

(1013h−1M⊙) (1013h−1M⊙) (10−4h3 Mpc−3) (1013h−1M⊙) (per cent)

SDSS 0.35 2.5 ± 0.2 29.5 ± 2.5 1.58 ± 0.04 1.3 ± 0.4 6.4 ± 0.5 8.1 ± 1.8 2.08 ± 0.05 3.1

2SLAQ* 0.53 2.2 ± 0.1 27.3 ± 2.0 1.49 ± 0.03 1.3 ± 0.3 4.7 ± 0.2 7.0 ± 0.8 2.21 ± 0.04 7.7

AAΩ* 0.67 2.1 ± 0.1 23.8 ± 2.0 1.76 ± 0.04 1.2 ± 0.2 4.3 ± 0.2 5.7 ± 0.7 2.36 ± 0.04 10.1

2SLAQ 0.55 1.10 ± 0.07 13.6 ± 1.1 1.42 ± 0.02 3.2 ± 0.5 3.4 ± 0.2 10.0 ± 1.1 1.97 ± 0.03 14.2

AAΩ 0.68 1.02 ± 0.03 12.6 ± 1.0 1.50 ± 0.03 3.1 ± 0.4 3.0 ± 0.1 9.0 ± 0.09 2.08 ± 0.03 13.6
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of the LRGs, > 90 per cent, are central galaxies in their dark matter haloes, the satellite

fractions is only 10 per cent or less with an increasing trend towards low redshift. This can

be explained in the framework of halo mergers at lower redshift (see §2.5.2). The best-fit

linear bias factors for all samples are in excellent agreement with the values derived in

§2.4.2. Also the galaxy number density from the best-fit halo model is consistent with

that derived from Eq. 2.18 (see Tables 2.2 and 2.3).

Note that, to first order, our best-fit HODs are compatible with the measurements

from other authors although a direct comparison with samples selected differently may not

be simple. For example, our SDSS sample has similar space density (although at higher

redshift, z = 0.35 versus 0.3) as the sample studied by Seo et al. (2008). Our M1/Mmin

and satellite fraction are in excellent agreement with their model 11 (their best-fit N -body

evolved HOD). But their α is somewhat lower which is caused by the higher σ8 = 0.9

value (Wake et al., 2008) and the lower average redshift. Their M1 and Mmin are also

somewhat higher than our best-fit values for the same reason as for α. Another example,

our best-fit M1, Mmin, blin and Fsat for 2SLAQ* sample are in good agreement with Wake

et al. (2008) z = 0.55 2SLAQ selection, although our values are somewhat higher which

may be due to our lower galaxy number density, implying that our sample contains rarer

and more biased objects.

The best-fit models for w(θ) are shown in Fig. 2.13, comparing to the data. Both the

models and data are scaled to account for the projection effect (see §2.4.2) and are plotted

at the depth of AAΩ*/AAΩ sample. We immediately see that while the fits at the large

scales (r & 3 h−1 Mpc) are good, the fits at the small scales and at r ≈ 1 − 2 h−1 Mpc

are rather poor especially for the higher redshift samples. This is evident in the high

best-fit reduced chi-square values in Table 2.4. Given our small error bars, this may

indicate that a more complicated halo model may be needed, e.g. five/six parameters

HOD, an improved halo-exclusion model (see Fig. 11 of Tinker et al., 2005), or different

halo concentration parametrisation. Another important point to note is that the HOD

formalism assumes a volume-limited sample, which we do not have here. This means that

our observed galaxy number density corresponds to a cut-off which evolves with redshift

rather than a cut-off in halo mass or LRG luminosity. Nevertheless, to first order the HOD

fits generally describe the shape and amplitude of our measured w(θ) and we believe that

the derived blin and Meff are reasonably robust despite the statistically poor fits.
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Figure 2.13: The best-fit HOD models for the SDSS, 2SLAQ*, AAΩ* samples (left) and

2SLAQ, AAΩ samples (right). These are scaled to the AAΩ*/AAΩ depth similar to that

shown in Fig. 2.11b. The bottom panels show the ratios between the best-fit HOD models

and the measured correlation functions.
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2.5 Evolution of LRG clustering and dark matter halo masses

2.5.1 Intermediate scales

We study the LRGs clustering and dark matter halo mass evolution by employing the

methods used by Croom et al. (2005) and da Ângela et al. (2008) to analyse their QSO

samples. We then proceed by considering the small-scale clustering evolution in the

framework of the halo model.

Clustering evolution

In this section, we make an attempt to quantify the clustering evolution of the LRGs via

the use of the w(θ)’s measured from the number-density (roughly luminosity) matched

samples as presented in the last section. We shall first compare the result at the inter-

mediate scales, 1 . r . 20 h−1 Mpc, to the simple long–lived model of Fry (1996). The

model assumes that galaxies are formed at a particular time in the past and their cluster-

ing evolution is determined by the influence of gravitational potential where no galaxies

are destroyed/merged or new population created, hence preserving the comoving number

density. In such a model the galaxy linear bias is given by

b(z) = 1 +
b(0) − 1

D(z)
(2.37)

and as we saw in §2.4.2 that ξm(r, z) = D2(z)ξm(r, 0), the clustering evolution is such

that

ξg(r, z) =

[
b(0) +D(z) − 1

b(0)

]2
ξg(r, 0) (2.38)

We shall also compare the data directly to the linear theory prediction for dark matter

evolution in the ΛCDM model, ξ(r, z) ∝ D2(z). In addition, we shall also check the

stable clustering and no–evolution (comoving) clustering models of Phillipps et al. (1978).

The stable model refers to clustering that is virialised and therefore stable in proper

coordinates. For a ξ(r) with r measured in comoving coordinates, the stable model has

evolution ξ(r) ∝ (1 + z)γ−3 and the no-evolution model has ξ(r) independent of redshift.

At these intermediate scales, the clustering is unlikely to be virialised so the stable model

is shown mainly as a reference point. From Eq. 2.38, the no–evolution model represents

the high bias limit of the long–lived model of Fry (1996). The stable and comoving models

are similar to the long–lived model in that they both assume that the comoving galaxy

density remains constant with redshift.
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In order to quantify the clustering amplitude of each sample, we shall use the inte-

grated correlation function in a 20 h−1 Mpc sphere as also utilised by several authors (e.g.

Croom et al., 2005; Ross et al., 2008b; da Ângela et al., 2008). The volume normalisation

of this quantity is then given by

ξ20 =
3

203

∫ 20

0
ξ(r)r2dr (2.39)

The 20 h−1 Mpc radius is chosen to ensure a large enough scale for linear theory to

be valid and in our case the power-law with γ ≈ 1.8 remains a good approximation up to

≈ 20 h−1 Mpc. Furthermore, the non-linearity at small scales does not significantly affect

the clustering measurements, when averaged over this range of scales.

The integrated correlation function, ξ20, approach also provides another means of

measuring the linear bias of the sample. For this, we again assume scale-independent bias

which is a reasonable assumption in the linear regime. The bias measured in this way is

given by

bg(z) =

√
ξ20,g
ξ20,m

(2.40)

The mass integrated correlation functions are again computed assuming our fiducial

cosmological model using the matter power spectra output from CAMB. The values for

ξ20,m used here are 0.153, 0.126 and 0.112 for z = 0.35, 0.55 and 0.68, respectively.

The ξ20,g is calculated using the best-fit double power-law parameters for each sample.

The results are plotted in Fig. 2.14a along with the best-fit linear theory evolution (long–

dashed line), stable clustering (dotted line), long-lived (dashed line) and no-evolution

models (dot-dot-dashed line). The linear bias factors measured using the ξ20 approach

are given in Table 2.5 and also presented in Fig. 2.14b. The bias factors determined

here are in good agreement with the large-scale ΛCDM (§2.4.2) and HOD (§2.4.3) best-fit

models.

To extend the redshift range, we shall compare our results to the clustering of early-

type galaxies in 2dFGRS studied by Norberg et al. (2002b) that roughly match the ab-

solute magnitude of our samples after the K + e correction. These are the samples with

−21.0 > Mbj − 5 log10 h > −22.0 and −20.5 > Mbj − 5 log10 h > −21.5, being compared

to the SDSS/2SLAQ*/AAΩ* and 2SLAQ/AAΩ data and denoted N02E1 and N02E2 in

Table 2.5, respectively. We proceed in a similar fashion to the procedure described above

and use the author’s best-fit power-law to estimate the ξ20,g’s and hence the bias values



2. LRG angular correlation functions 61

Table 2.5: Summary of the estimated LRG and 2dFGRS early-type galaxy bias factor

and MDMH as a function of redshift and luminosity.

Sample z M i b MDMH

−5 log10 h (1013h−1M⊙)

SDSS 0.35 -22.67 2.02 ± 0.04 4.1 ± 0.3

2SLAQ* 0.53 -22.69 2.16 ± 0.04 3.3 ± 0.2

AAΩ* 0.67 -22.60 2.33 ± 0.03 3.1 ± 0.1

2SLAQ 0.55 -22.40 1.91 ± 0.03 2.1 ± 0.1

AAΩ 0.68 -22.37 2.04 ± 0.02 1.9 ± 0.1

N02E1 ≈ 0.1 -22.68 1.90 ± 0.23 6.2 ± 2.2

N02E2 ≈ 0.1 -22.40 1.66 ± 0.20 3.9 ± 1.5

(see Table 2.5).

Both luminosity bins can be reasonably fitted by the long–lived model. The best-

fit models for the Mi − 5 log10 h = −22.7 and -22.4 samples have b(0) = 1.93 ± 0.02 and

1.74±0.02 with χ2 = 7.34 (3 d.o.f) and 4.11 (2 d.o.f) respectively, i.e. 1.5−1.9σ deviation.

This is interesting given the lack of number density evolution seen in the LRG luminosity

function by Wake et al. (2006). Nevertheless, it is intriguing that such a simple model

gets so close to fitting data over the wide redshift range analysed here.

The stable model and the linear theory (with constant bias) model rise too quickly as

the redshift decreases, excluded at > 99.99% confidence. However, the comoving model

also gives a good fit to the SDSS/2SLAQ*/AAΩ* data in Fig. 2.14a, as expected from

the lack of evolution shown in Fig. 2.11b. For this model to be exactly correct it would

suggest that there was an inconsistency in these results with the underlying ΛCDM halo

mass function. More certainly, we conclude that the evolution of the LRG clustering

seems very slow. This general conclusion agrees with previous work (White et al., 2007;

Wake et al., 2008). The latter author also only found a marginal rejection of the long-

lived model from the large-scale clustering signal (1.8σ) compared to 1.9σ here. They

found a much stronger rejection of a ‘passive’ evolution model from the small-scale LRG

clustering and we shall return to this issue in §2.5.2.
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LRG dark matter halo masses

The large-scale galaxy bias is roughly the same as that of the dark matter haloes which is

a known function of mass threshold. Thus by measuring the clustering of the LRGs one

can infer the typical mass of the haloes they reside in. The procedure employed here is

similar to that used by Croom et al. (2005) and da Ângela et al. (2008) to estimate the

dark matter halo masses of QSOs.

An ellipsoidal collapse model relating a halo bias factor to its mass was developed by

Sheth et al. (2001) as an improvement over an earlier spherical collapse model of Mo and

White (1996). In this analysis, we shall use the expression given in Sheth et al. (2001)

and the revised parameters of Tinker et al. (2005) which were calibrated to give better

fits to a wide range of σ8 values for variants of ΛCDM model;

b(MDMH, z) = 1 +
1√

aδc(z)

[√
a(aν2) +

√
ab(aν2)1−c

− (aν2)c

(aν2)c + b(1 − c)(1 − c/2)

]
, (2.41)

where a = 0.707, b = 0.35 and c = 0.80. ν is defined as ν = δc(z)/σ(MDMH, z). δc is the

critical density for collapse, and is given by δc = 0.15(12π)2/3Ωm(z)0.0055 (Navarro et al.,

1997). The rms fluctuation of the density field as a function of mass MDMH at redshift z

is σ(MDMH, z) = σ(MDMH)D(z) where σ(MDMH) is given by

σ(MDMH)2 =
1

2π2

∫
∞

0
k2P (k)w(kr)2dk (2.42)

P (k) is the linear power spectrum of density perturbations and w(kr) is the window

function, given by (Peebles, 1980)

w(kr) = 3
sin(kr) − kr cos(kr)

(kr)3
, (2.43)

for a spherical top-hat function. The radius r can be related to mass via

r =

(
3MDMH

4πρ0

)1/3

, (2.44)

where ρ0 = Ω0
mρ

0
crit is the present mean density of the Universe, given by ρ0 = 2.78 ×

1011Ω0
mh

2M⊙ Mpc−3. Here, we use the transfer function, T (k), fitting formula given by

Eisenstein and Hu (1998) to construct P (k), assuming our fiducial cosmology (see §2.4.2).

The estimated dark matter halo masses of the LRG samples are given in Table 2.5

and plotted in Fig. 2.14c. Note that the formalism of estimating dark matter halo masses
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from the galaxy biases used here assumes one galaxy per halo and can overestimate the

threshold mass for a given value of bias (Zheng et al., 2007). This is particularly true

when we consider the mass estimated from Eq. 2.41 as the threshold mass, minimum

mass required for a halo to host at least one galaxy and compare the results derived here

to Mmin from the best-fit HOD (§2.4.3). However, if it is used as an estimate for the

average mass of the host halo then it is under-estimated by ≈40 per cent compared to the

value given by the HOD due to the one galaxy per halo assumption.

Next, we attempt to fit the derived dark matter halo masses of these LRGs to the

halo merger framework in hierarchical models of galaxy formation. We use the formalism

discussed by Lacey and Cole (1993) to predict the median MDMH of the descendants of

virialised haloes at z = 1 for a given halo mass and fit this to our data. In essence, the

model gives the probability distribution of the haloes with mass M1 at time t1 evolving

into a halo of mass M2 at time t2 via merging. Fig. 2.14c shows the best-fit models

for the MDMH evolution estimated in this way. These models appear to be good fits to

both luminosity bins with the best-fit MDMH(z = 1) = 2.32 ± 0.07 × 1013 h−1M⊙ and

1.47 ± 0.05 × 1013 h−1M⊙ for the ℓ & 3L* and & 2L* samples, respectively.

The most massive haloes hosting these luminous early-type galaxies appear to have

tripled their masses over the past 7 Gyr (i.e. half cosmic time) in stark contrast to the

little evolution observed in the LRG stellar masses over the same period (see e.g. Wake

et al., 2006; Cool et al., 2008). This lack of evolution contradicts the predictions in the

standard hierarchical models of galaxy formation where one expects the most massive

galaxies to form late via ‘dry’ merging of many less massive galaxies. However, this

comes with a caveat that the MDMH at z ∼ 0 is an extrapolation (assuming Lacey and

Cole (1993) halo merging model) of the z = 0.35 − 0.7 measurements and the constraint

on the MDMH(z = 0.1) is much weaker than the higher redshift results.

2.5.2 Small-scale clustering evolution

Finally, we discuss the evolution of the correlation function at scales corresponding to

r < 1 h−1 Mpc. We concentrate on comparing the number density matched AAΩ* and

2SLAQ* samples to the SDSS sample. As can be seen in Fig. 2.11b, while at larger scales

the w(θ) show amplitudes that are remarkably independent of redshift, at smaller scales

the high redshift AAΩ* sample appears to have a lower amplitude than the lower redshift

surveys. Here, we compare the clustering in non-linear regime to two clustering models.
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Figure 2.14: (a): The LRG ξ20 measurements as a function of redshift and luminosity.

The data at z ≈ 0.1 (stars) are taken from the correlation functions of early-type galaxies

in 2dFGRS (Norberg et al., 2002b). Open and solid symbols correspond to the samples

with median absolute magnitude, Mi − 5 log10 h = −22.7 (SDSS/2SLAQ*/AAΩ*) and

−22.4 (2SLAQ/AAΩ). The best fits for various models are also shown (see text for more

details). The lower luminosity data have been lowered by 0.2 for clarity. (b): The LRG

linear biases as a function of redshift and luminosity, comparing to the best–fit long–lived

model. (c): The typical mass of dark matter haloes occupied by the LRGs as estimated

from the halo bias function. The dot-dashed lines are the best-fit evolution model of dark

matter halo mass via the merger framework (Lacey and Cole, 1993).
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Stable clustering model

The stable model describes the clustering in the virialised regime and hence stable (un-

changed) in proper coordinates (e.g. Phillipps et al., 1978). Therefore, assuming this

model one expects the spatial correlation function to evolve as ξ(r) ∝ (1 + z)γ−3, where

r is measured in comoving coordinates and γ is the power-law slope of the correlation

function. Fig. 2.15 shows the small-scale, r . 1 h−1 Mpc, w(θ) of the SDSS sample plus

its best-fit double power-law model, comparing to the evolved w(θ) from the z1 = 0.53

and 0.67 best-fit models. Their ratios to the z = 0.35 best-fit model are shown in the

bottom panel with the shaded regions representing 1σ uncertainties in the best-fit models.

We see that the stable model evolved from z1 = 0.67 under-predicts the z = 0.35 w(θ)

somewhat but otherwise is within the 1σ regions of each other. The agreement between

the evolved z1 = 0.53 and the z = 0.35 is better given that the redshift difference is

smaller. Note that the stable clustering model over-predicts the clustering amplitude at

r & 1 h−1 Mpc which is also observed in Fig. 2.14a as expected.

The physical picture that is suggested is that the inflexion in the correlation function

may represent the boundary between a virialised regime at small scales and a comoving

or passively evolving biased regime at larger scales. As noted by Hamilton et al. (1991)

and Peacock and Dodds (1996), the small scale, non-linear, DM clustering is clearly

expected from N -body simulations to follow the evolution of the virialised clustering

model. However, for galaxies in an ΛCDM context, the picture may be more complicated.

For example, by comparing the 2SLAQ and SDSS LRG redshift surveys using the

semi-projected correlation function, Wake et al. (2008) have suggested that a passively

evolving model is rejected, weakly from the large scale evolution but more strongly from

the evolution at small scales. Wake et al. (2008) interpret the clustering evolution using a

HOD description based on the ΛCDM halo mass function. Their ‘passive’ model predicts

a far faster evolution at small scales than is given by our stable clustering (see Fig. 2.16).

Our stable model is certainly passive in that it is based on the idea that the comoving

number density of galaxies is independent of redshift. However, the passive HOD model

of Wake et al. (2008) requires only 7.5 per cent of LRGs to merge between z=0.55 and

z=0.19 to reconcile the slow LRG density and clustering evolution in the ΛCDM model.

We shall see in the the next section if this model can also accommodate our z=0.68

clustering result while maintaining such a low merger rate.
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Figure 2.15: The small-scale w(θ) at z = 0.35 evolved from the best-fit double power-law

of AAΩ* (green dashed line) and 2SLAQ* (red dot-dashed line) samples, assuming stable

clustering model. The ratios of the evolved w(θ)’s to the best-fit double power-law of

SDSS sample are shown in the bottom panel. The shaded regions signify 1σ uncertainties

in the best-fit models.

HOD evolution

In §2.5.1, we found using the large-scale linear bias that the long-lived model (Fry, 1996) is

only marginally rejected at 1.5-1.9σ. This is in good agreement with the similar analysis

of Wake et al. (2008). However, they argued that if the small-scale clustering signal

was also taken into consideration, the long-lived model can be ruled out at much higher

significance (>99.9 per cent).

Recall that our goodness-of-fit (based on the minimum χ2) for the halo models is

rather poor (see table 2.4). This may be an indication that a more complicated model

may be needed, e.g. five-parameters HOD and/or a better two halo-exclusion prescription

etc., given our small error bars. Nevertheless, the HOD fit generally describe the shape

and amplitude of our measured w(θ) between 0.1-40 h−1 Mpc. Therefore, at the risk

of over-interpreting these HOD fits, we make a further test of the long-lived model by

evolving the best-fit HODs of the higher redshift samples to the SDSS LRG average
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redshift.

Following the methods described in (Wake et al., 2008, and references therein), the

mean number of galaxies hosted by haloes of mass M at later time, z0, is related to the

mean number of galaxies in haloes of mass m, 〈N(m)〉, at earlier time, z1, via

〈N(M)〉 =

∫ M

0
dmN(m,M) 〈N(m)〉

=

∫ M

0
dmN(m,M) 〈Nc(m)〉 [1 + 〈Ns(m)〉]

= C(M) + S(M), (2.45)

where N(m,M) is the conditional halo mass function of Sheth and Tormen (2002) which

is the generalisation of Lacey and Cole (1993) results, C(M) and S(M) are the number

of objects which used to be central and satellite galaxies.

We then model the central galaxy counts in the low-redshift haloes assuming that the

progenitor counts in these haloes is ‘sub-Poisson’ (Sheth and Lemson, 1999; Seo et al.,

2008; Wake et al., 2008) such that

〈Nc(M)〉 = 1 −
[
1 − C(M)

Nmax

]Nmax

, (2.46)

where Nmax = int(M/Mmin). This model is favoured by the Wake et al. (2008) analysis

and is also seen in the numerical models of Seo et al. (2008). The mean number of satellite

galaxies in the low-redshift haloes is then given by

〈Nc(M)〉 〈Ns(M)〉 = S(M) + fno−merge [C(M) − 〈Nc(M)〉] , (2.47)

where fno−merge is the fraction of un-merged low-z satellite galaxies which were high-z

central galaxies. This model is called ‘central-central mergers’ in Wake et al. (2008),

where the more massive high-z central galaxies are more likely to merge with one another

or the new central galaxy rather than satellite-satellite mergers.

For the long-lived model, we set fno−merge = 1. The results of passively evolving the

best-fit HODs from z1 = 0.67 (AAΩ*) and z1 = 0.53 (2SLAQ*) to z0 = 0.35 are shown

in Fig. 2.16 along with the SDSS best-fit model. At large scales (r ≥ 5 h−1 Mpc), the

long-lived model can only be marginally rejected at no more than 2σ for the AAΩ* case

and is consistent within 1σ in the case of 2SLAQ*. However, if we now consider the

small-scale, r < 1 h−1 Mpc, clustering signal we see from the bottom panel of Fig. 2.16

that the long-lived model becomes increasingly inconsistent with the best-fit model at
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Figure 2.16: The predicted SDSS LRG w(θ) from passively (fno−merge = 1) evolving the

best-fit HODs of 2SLAQ* (z1 = 0.53, red dot-dashed line) and AAΩ* (z1 = 0.67, green

dashed line) samples. The results when central galaxies from high redshift samples are

allowed to merge (see text for more detail) are also shown, blue dotted and magenta

long-dashed lines. The bottom panel shows the ratios of the evolved w(θ)’s to the SDSS

best-fit, the shaded regions signify the 1σ uncertainties.
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z = 0.35. If we take the fiducial scales at 0.5 h−1 Mpc as we did in the last section, the

long-lived model can be rejected at 98.2 and 99.9 per cent significance using the evolved

2SLAQ* and AAΩ* HODs, respectively. The much higher clustering signal at small scales

is caused by far too many satellite galaxies in the low-redshift haloes being predicted by

the long-lived model. This also results in the higher satellite fractions than observed;

both evolved 2SLAQ* and AAΩ* give Fsat = 18 ± 1 per cent at z = 0.35 compared to

8.1 ± 1.8 seen in the SDSS best-fit.

Next, if we assume the central-central mergers model (Wake et al., 2008) and attempt

to match the large-scale clustering signal of the evolved to the z = 0.35 best-fit model.

As argued by Wake et al. (2008) and here that this is more likely to happen than the

satellite-satellite merging case. The fno−merge parameters in Eq. 2.47 required to give the

best matches to the large-scale clustering amplitude of the SDSS best-fit is 0.2 and 0.1 for

the 2SLAQ* and AAΩ* case, respectively. The new w(θ)’s determined from these models

are plotted in Fig. 2.16 as the blue dotted and magenta long-dashed lines. We can see

that the z1 = 0.67 evolved w(θ) at small scales is in excellent agreement with the SDSS

best-fit model. The predicted satellite fraction, Fsat = 7.8 ± 0.9, is also consistent with

the SDSS best-fit value. For the z1 = 0.53 case, the small-scale clustering signal is still

somewhat stronger that the SDSS best-fit model but otherwise are within 1σ confidence

regions of each other, and the predicted Fsat = 10.5±1.3 is also somewhat higher than the

best-fit value. The galaxy number density is reduced due to these central-central merger

by ≈6 and 11 per cent for the z1 = 0.53 and 0.67, respectively. However, note that this

is 2–3 times smaller than the fractional errors of our best-fit ng, ≈ 20 per cent.

In order to get a handle on the merger rates which can then be compared to the

previous results of White et al. (2007) and Wake et al. (2008), we follow their method

of adjusting the galaxy number density. This is because for this type of analysis the

galaxy samples at different redshifts are usually designed to have the same space density.

Whereas merging means that the space density of the low-z sample must be reduced unless

there are new galaxies created via merging of the fainter objects which fail to be in the

high-z sample but become bright enough to be in the low-z sample. To account for such

an effect by physically removing galaxies in a sample is rather difficult to do in practice

as argued by Wake et al. (2008). White et al. (2007) and Wake et al. (2008) adjusted

the mass-scale of the low-z HOD fit by several per cents which reduce the space density

and increase the clustering signal and hence require lower amount of merging of the high-

z population needed to match the low-z measurement. Increasing the fno−merge factor
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Figure 2.17: The ratio of the evolved w(θ) to the SDSS best-fit model with the HOD

mass-scale increased by 12 per cent.

in Eq. 2.47 results in a higher galaxy number density and clustering signal. Therefore

the opposing effect of adjusting mass-scaling and merging fraction on the galaxy number

density ensures that a unique solution which simultaneously satisfy the galaxy number

density and the clustering signal (at large scales) of the low-z sample can be reached.

For the z1 = 0.67 (0.53), we increase the mass-scale of z = 0.35 HOD fit by 12 (7)

per cent and allow 60 (50) per cent of the high-z central galaxies to merge in order to get

the matched large-scale bias of 2.12 (2.10) and ng = 1.12 (1.19) × 10−4h3 Mpc−3. This

yields the merger rate between z = 0.67 (0.53) and z = 0.35 of ≈ 6.6 (5) per cent, i.e.

≈ 2.8 (3.4) per cent Gyr−1. The evolved w(θ) divided by the model at z = 0.35 with

increased mass-scaled HOD fit is shown in Fig. 2.17. As noted earlier that the reduction

in the galaxy number density is small compared to its best-fit fractional error which means

that our constraints on these merger rates are rather weak. However, to first order the

merger rates derived here appear to be consistent with the value of 2.4 ± 0.7 and 3.4

per cent Gyr−1 found by Wake et al. (2008) and White et al. (2007), respectively.

In summary, the combination of stable clustering and passive evolution model is very

close to explaining the clustering evolution of the LRGs at small and large scales. These

models are much simpler than the HOD framework which require an understanding of

how galaxies populate dark matter haloes and how they and their host haloes merge.
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And yet the HOD model only requires ≈ 2 − 3 per cent/Gyr of these LRGs to merge in

order to explain their slow number density and clustering evolution. On the contrary, the

stable model requires the comoving number density to be constant with redshift. This

suggests that the simple virialised model may only provide a phenomenological fit to the

small-scale clustering evolution in the context of the ΛCDM model.

2.6 Searching for the BAO peak

Next, we inspect the correlation functions at larger scales to make a search for the BAO

feature. We first present the raw correlation functions in Fig. 2.18a. Each correlation

shows a feature at large scales, the most significant detection comes from the AAΩ sample

where the clustering signal at 120′ < θ < 500′ is detected at more than 4σ significance,

P (< χ2) = 1 × 10−6 (with covariance matrix) and 3.5σ significance for 200′ < θ < 500′.

The question is are they real or simply due to systematic error? (see §2.6.1 for a

series of systematic tests). Here, we perform a classic scaling test to see if any feature

is reproduced at the different depths of the three LRG samples. Given that the samples

have intrinsically different r0 (see Table 2.2), we choose simply to scale in the angular

direction only. The SDSS and 2SLAQ LRG correlation functions are scaled in the angular

direction to the AAΩ’s depth using the average radial comoving distance of each sample.

In Fig. 2.18b, we see that the scaling agreement of the large scale, θ ≈ 300′, features is

poor. Although SDSS shows a moderately strong peak feature, this is not reproduced at

the same comoving physical scale in the other two datasets.

Despite this failure of the scaling test, we now attempt to increase the signal to noise

ratio by combining the measurements from the three samples using inverse quadrature

error weighting. Firstly, the SDSS and 2SLAQ w(θ)’s are scaled in the angular direction

to the depth of the AAΩ LRGs (radial comoving distance, χ ≈ 1737 h−1 Mpc as opposed

to ≈ 1451 h−1 Mpc for 2SLAQ and ≈ 970 h−1 Mpc for SDSS) where their amplitudes

and errors are then interpolated to the AAΩ’s angular bins (i.e. Fig. 2.18b). The

amplitudes of the scaled SDSS and 2SLAQ w(θ)’s are then normalised to that of the

AAΩ sample’s at 10′. This involves lowering SDSS and 2SLAQ amplitudes by 25 and 15

per cent, respectively. The resulting correlation function is presented in Fig. 2.19 with

the arrow showing the expected position of the BAO peak. Note that due to the relatively

small statistical errors of the AAΩ LRG compared to other samples, the w(θ) result is

dominated by the AAΩ sample, therefore the possible SDSS peak at ≈ 100 h−1 Mpc is
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Figure 2.18: (a): The angular correlation function of the three LRG samples at large

scales. The shaded regions are 1σ JK errors. The arrow indicates the expected BAO

angular separation in each sample, assuming our fiducial cosmology. (b): Same as (a)

but now scaled in the angular direction to the depth of the AAΩ LRG sample. Note that

the errors in the angular correlation functions are correlated, see Fig. A.1 for the relevant

scales.
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Figure 2.19: The combined angular correlation function of the three LRG samples scaled

to the AAΩ depth, comparing the results when the SDSS standard (diamonds) and uber-

(circles) calibration are used. Also shown is the average field-to-field w(θ) (asterisks)

which represents an attempt to filter out any large scale gradients in the SDSS data.

not evident in the combined sample. There also seems to be an indication of an excess

out to possibly 200 h−1 Mpc, see §2.6.1 for robustness test of this excess clustering signal.

Using the ‘ubercalibration’4 (Padmanabhan et al., 2008) instead of the standard cal-

ibration, we find similar results at small and intermediate scales but somewhat lower

amplitude at ≈ 100 h−1 Mpc although the results agree within the 1σ error (see Fig.

2.19). This means the correlation functions at small and intermediate scales including

the parameters derived (e.g. power-law fits, linear biases, dark matter halo masses) in the

earlier parts are not affected by which calibration we use. The biggest difference, although

less than 1.5σ, is observed at scales larger than 120 h−1 Mpc and up to 150 h−1 Mpc where

the correlation signal is small and hence more prone to possible systematics. The weak

dependence of w(θ) at very large scales on the different calibrations may be an indication

that this apparent extra peak at θ ≈ 300′ could indeed be a systematics effect. We shall

return to this in §2.6.1.

We also tested whether the 200 h−1 Mpc excess can be eliminated by taking the

4This is the improved photometric calibration of the SDSS imaging data which have been simultane-

ously solved for the calibration parameters and relative stellar fluxes using overlapping observations.
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average w(θ) from the 15 × 20 deg2 subfields used for the jackknife errors. The result,

after integral constraint correction, is shown in Fig. 2.19. The 200 h−1 Mpc excess

persists even though there is some change at smaller scales. Given the model dependence

introduced by the integral constraint correction, hereafter, we shall use the correlation

function of the ubercal sample measured using our normal method.

2.6.1 Testing for systematic effects

We have performed a series of tests to check our results against possible systematic ef-

fects. The tests include exclusions of high dust extinction and ‘poor’ astronomical seeing

regions, an improved star-galaxy separation for the AAΩ sample and effects of possible

contamination by clustered stars.

First, we exclude the regions where the i-band extinction is greater than 0.1 mag which

discards ≈ 20 per cent of the data. The results are shown in the top row of Fig. 2.20. For

2SLAQ and AAΩ samples, the results appear to be lower than the main measurements

but otherwise remain within 1σ statistical errors of each other. Although the amplitudes

at θ ≥ 220′ are somewhat lower than the default AAΩ result, the excess at θ & 300′ still

persists. We then investigate the effect of excluding the regions with ‘poor’ astronomical

seeing, the limit of 1′′.7 is used following the SDSS ‘poor’ seeing definition which discards

≈ 30 per cent of the data. The results here are in good agreement with the main results

with the exception of a few angular bins around 320′ of the 2SLAQ sample where they

are somewhat (non-significantly) lower than the default measurements.

Next, we attempt to reduce the stellar contamination fraction in the AAΩ sample.

As a reminder, our default (optimised) star–galaxy separation algorithm (see §2.2) leaves

≈ 16 per cent stellar contamination in the sample while losing genuine LRGs only at a

sub-per cent level. Here, we impose a more aggressive star–galaxy separation cut which

reduces the contamination level to ≈9 per cent at the expense of nearly halving the number

of genuine AAΩ LRGs. The cut is a combination of the fitted ‘de Vaucouleurs’ radius as

a function of zdeV magnitude and the correlation between the ‘de Vaucouleurs’ and fiber

magnitudes in z-band. The w(θ) measurement for this new AAΩ sample after correction

by a factor of 1/(1 − f)2, where f = 0.09 is shown in the top-right panel of Fig. 2.20.

This is in good agreement with the main results.

We test our earlier assumption (§2.3, see also Blake et al. 2008) that the effect of the

stellar contamination is simply a dilution of δg by (1 − f) and hence the amplitude of

galaxy–galaxy correlation function by (1−f)2, where f is the contamination fraction. We
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Figure 2.20: The angular correlation functions for SDSS, 2SLAQ and AAΩ samples (left to right), measured with varying dust

extinction limit, astronomical seeing and different star-galaxy separation (top row), compared to our ‘Default’ results. Also shown

is the effect of low galactic latitude region exclusion for each sample (bottom row). Note that for the b > 60◦, the sample size is

reduced by 60 per cent. In each case, an arrow indicates the expected position of the BAO peak assuming our fiducial cosmology.
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add a sample of red stars to the 2SLAQ sample at the 16 per cent level, similar to what

we expect in the AAΩ sample. The stars are selected from SDSS photometric objects

which are classified as ‘star’. The colour selections have been matched to that of the

AAΩ-LRG sample. The sample is then randomly selected to have the number of objects

at 16 per cent of the 2SLAQ sample. They therefore follow the stellar distribution with

galactic latitude. The w(θ) result after correction by 1/(1−f)2 is shown in the top-middle

panel of Fig. 2.20 and is found to be in excellent agreement with the main 2SLAQ result.

We do not see any evidence of a slope change which may arise from a possible clustering

of the stellar contaminants at large scales, at least for the contamination level expected

in our sample.

We apply various minimum galactic latitude cuts on the data in order to test for any

systematic error. Such systematics (if they exist) could be due to the gradient caused by

galactic dust extinction and/or different stellar contamination fractions which one might

expect to be worse in the lower galactic latitude regions. Note that in our default datasets

≈ 95 per cent of the data are at b ≥ 30◦. The results of applying the galactic latitude

cuts of b ≥ 40◦, 50◦ and 60◦ are shown in the bottom row of Fig. 2.20. Note that with

the b ≥ 60◦ limit, ≈ 60 per cent of the data are discarded. The 2SLAQ results appear to

be marginally dependent on the galactic latitude limits. In the AAΩ sample the results

are in good agreement with the main measurement although the b ≥ 60◦ limit appears to

be ≈ 1σ lower in some angular bins.

Finally, we cross-correlate the SDSS and AAΩ samples. The redshift distributions

of the two samples are well separated with only slight overlap (see Fig.2.1). Therefore

any residual signal in their cross-correlation function, CCF, at large scales can be used

as an evidence for systematic errors. The CCF is shown in Fig. 2.21, comparing to the

auto correlation functions of the SDSS and AAΩ samples in the top and bottom panels,

respectively. The CCF has much lower signal than the ACF at θ < 120′ and is consistent

with zero, P (< χ2) = 0.997, between 120′ < θ < 500′ whereas the AAΩ w(θ) signal is

detected at more than 4σ significance (see above) in the same angular ranges.

We note that Ross et al. (2011) have suggested that there is a systematic effect as-

sociated with the area effectively masked by foreground stars which may be important

in terms of a systematic that may produce excess clustering at large scales. However,

such an effect would predict a decrease in galaxy density at low galactic latitudes and

this is not seen in our samples (see Fig. 9 of Sawangwit et al., 2010, also Fig. 3.8). If

anything, the opposite effect is seen in our data with an increase in density towards lower
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Figure 2.21: The auto correlation functions for SDSS (top panel) and AAΩ (bottom

panel) samples, comparing to the CCF between the two samples (blue solid lines).

galactic latitude which may be caused by stellar contamination. Here, we have tested our

w(θ) measurements by successively cutting out data at low galactic latitudes. Although

the 2SLAQ results may show some marginal dependence on the galactic latitude cut, the

AAΩ results seem reasonably unaffected (see Fig. 2.20(f)). This may be due to the higher

stellar contamination fraction in AAΩ sample which means that the effect seen by Ross

et al. (2011) may not be directly applicable to the AAΩ sample.

We conclude that the apparent clustering excess at ≈ 300′ in the AAΩ sample appears

to be reasonably robust against most of the systematic tests we performed here. However,

one might argue that the weakening of the excess signal when iextinc > 0.1 regions (≈20

per cent) are excluded and the marginal dependence on the galactic latitude cuts of the

2SLAQ results may be taken as some evidence for systematic effects. On the other hand,

the SDSS-AAΩ cross-correlation test also tends to limit the size of possible systematic
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errors.

2.6.2 Model comparisons

Standard ΛCDM model

First, we compare the measured angular correlation function to the perturbation theory

prediction in the standard ΛCDM Universe. To compute the theoretical prediction, we

proceed in the same manner as described in §2.4.2, calculating w(θ) by projecting ξ(r)

which is a Fourier transform of a non-linear P (k). However, here we assume the best-fit

cosmological parameters from Eisenstein et al. (2005), a flat ΛCDM model with Ωmh
2 =

0.13, Ωbh
2 = 0.024, h = 0.7 and n = 0.98. And unlike in §2.4.2, the non-linear modelling

of the BAO peak using only HALOFIT is not adequate. The BAO peak in the correlation

function can also be broadened (and perhaps slightly shifted) by the non-linear gravity

suppression of the higher harmonics in the power spectrum via mode coupling (Meiksin

et al., 1999). To model such an effect, we follow Eisenstein et al. (2005) and smoothly

interpolate between the linear power spectrum and the ‘no-wiggle’ spectrum with the

same overall shape but with the acoustic oscillations erased. This is done mathematically

by

P (k) = Plin

[
x+

Tnw(k) × (1 − x)

Tlin(k)

]2
, (2.48)

where Plin is linear matter power spectrum, Tnw(k) and Tlin(k) are ‘no-wiggle’ and linear

transfer functions computed from Eisenstein and Hu (1998) and x = exp(−k2a2) with

a = 7 h−1 Mpc chosen to fit the BAO suppression seen in their N-body simulations.

The P (k) is then corrected for non-linear gravitational collapse using the HALOFIT

software. The final P (k) is then transformed to ξ(r) using Eq. 2.19. Although the

scale-dependent redshift-distortion and halo bias correction is weak at these scales, we

follow Eisenstein et al. (2005) and multiply the correlation function by the square of

1 + 0.06/[1 + (0.06r)6] (solid line in their Fig. 5), again chosen to fit what is seen in

the N-body simulations. Such a correction is small at the BAO scale, only sub-percent

at r & 25 h−1 Mpc and increases to ≈ 10% at 10 h−1 Mpc. We then correct for the

linear redshift-space distortion, the ξ(s) amplitude is enhanced relative to the real-space

correlation function, ξ(r), such that (Kaiser, 1987)

ξ(s) =

(
1 +

2β

3
+
β2

5

)
ξ(r). (2.49)
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Here, we assume β = 0.45 for these LRG samples (see Ross et al. 2007). The final ξ(s)

model prediction with galaxy bias b = 2.09 for SDSS-LRG (see §2.4.2) is shown (cyan

solid line) in the inset of Fig. 2.22. Eisenstein et al. (2005) find this model to be a good fit

to their ξ(s) data with the best-fit χ2 = 16.1 on 17 degrees of freedom for a particular set

of cosmological parameters given above. We then computed w(θ) from the ξ(r) derived

above via Eq. 2.14. Although the model (cyan solid line in Fig. 2.22) was found to be

consistent with the LRG ξ(s), it is inconsistent with our w(θ) measurement, especially at

r & 60 h−1 Mpc or θ & 120′. The uber-cal AAΩ w(θ) between 40′−400′ (corresponding to

20 . r . 200 h−1 Mpc) are incompatible with the model at 99.8 per cent level (χ2=39.3

over 18-1 d.o.f with covariance matrix). We note that this rejection may be associated

with the apparent clustering excess at θ & 200′, which still could be subject to systematics.

Next, we compare our w(θ) to the best estimate of ξ(s) at the BAO scale as measured

by Eisenstein et al. (2005). Although these measurements may have been superseded by

DR7 spectrosopic LRG clustering analyses based on larger samples, these more recent

estimates are usually in reasonable agreement with the results of Eisenstein et al. (2005),

whether they are in correlation function (Mart́ınez et al., 2009; Kazin et al., 2010) or

power spectrum (Percival et al., 2010) form. For our comparison, we thus simply make

a polynomial fit to the best estimate ξ(s) of Eisenstein et al. (2005) (blue dashed line in

the inset of Fig. 2.22). The polynomial-fit ξ(s) is Kaiser de-boosted (Eq. 2.49) to give

ξ(r) by assuming β = 0.45. The ξ(r) is then corrected for the linear growth between

z = 0.35 and z = 0.68 which reduces the amplitude by ≈ 30%. The resulting model has

similar amplitude with the expected AAΩ-LRG ξ(r) because the SDSS and AAΩ-LRG

linear biases are coincidentally the same (see §2.4.2). The model is then projected to w(θ)

using Eq. 2.14 and is shown as a blue dashed line in Fig. 2.22. Our result appears to be

in good agreement with the model up to ≈ 120 h−1 Mpc given statistical uncertainties in

our measurement and the ξ(s) data. Beyond ≈ 120 h−1 Mpc, our w(θ) shows a higher

clustering amplitude as noted above.

Summarising, the wcom result appears consistent with the w(θ) prediction based on

the Eisenstein et al. (2005) best estimate of ξ(s) (at least out to ≈ 120 h−1 Mpc) but

not with the prediction based on the flat ΛCDM model due to the apparent large-scale

clustering excess in the w(θ). This means that given the size of error bars of the Eisenstein

et al. (2005) result, the ΛCDM model is quite compatible with the ξ(s) data but given

the much smaller statistical error on w(θ), in this case our measurements are inconsistent

with the ΛCDM model. While the feature observed at ≈ 300′ persists in most of the
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Figure 2.22: The combined w(θ) (open circles) compared to the projections of non-linear

ΛCDM model plus mode coupling, scale-dependent redshift-space distortion and halo bias

correction (cyan solid line) and the Eisenstein et al. (2005) ξ(s) (blue dashed line). The

red dot-dashed line is the ΛCDM model plus low-ℓ power excess (see below). The dash-

dot-dotted and dotted line shows the effect of subtracting the data by 0.001 and 0.0015,

respectively. The ξ(r) models used in the w(θ) projection are given as an inset together

with the Eisenstein et al. (2005) measurement (diamonds). Here, the same symbols are

used for the Eisenstein et al. (2005) and non-linear ΛCDM ξ(s) models as for the w(θ)

models above. Note that the errors in the angular correlation functions are correlated,

see Fig. A.1 for the relevant scales.
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systematic tests we performed on the AAΩ samples (§2.6.1), a few of these tests, e.g.

dust extinction, indicate there is still the possibility that systematic errors are affecting

the w(θ). Therefore, if we now assume that the excess signal at ≈ 150 h−1 Mpc is an

indication of a systematic and subtract 0.001 to 0.0015, the level of the excess amplitude

at this point in wcom (see Fig. 2.22), we obtain the w(θ) results as shown by the dash-

dot-dotted and dotted lines. These two lines now bracket the flat ΛCDM result. Thus

the issue of the disagreement between the w(θ) result and the ΛCDM model seems to rest

on the reality of the apparent clustering excess at large scales.

low-ℓ power excess?

Recently, Thomas et al. (2010) (see also Padmanabhan et al., 2007; Blake et al., 2007;

Thomas et al., 2011) has also found a significant excess in their angular power spectrum,

Cℓ, at the low multipoles relative to the best-fit ΛCDM models. They used photometric-

redshift catalogues of the LRGs at z ≈ 0.5 similar to our 2SLAQ sample. The most

significant (≈ 4σ) low-ℓ power excess is observed in the highest redshift bin while the

three lower-z samples show similar power excesses at 2-2.5σ significance in each bin. The

author carried out various systematic checks and found no indication of such an effect.

Their reconstruction of the matter distribution implied by the low-ℓ data also found

no preferred region of the observed sky where the signal could be coming from. While

the clustering excess only affects Cℓ at multipoles smaller than the acoustic oscillations

in Fourier space, unfortunately in configuration space the effect is expected on a wider

range of scales and could affect our w(θ) BAO measurement.

To estimate the effect of this low ℓ excess on the angular correlation function, we

assume the extra power at ℓ . 30 as observed by Thomas et al. (2010) (see Fig. 2.23).

The excess power is modelled as a power-law at ℓ . 30 and is truncated at ℓ ≤ 5 (blue

dot-dashed line in Fig.2.23). Thomas et al. (2010) best-fit ΛCDM (blue solid line) and

the power-law low-ℓ excess models are then used to predict the expected Cℓ for the AAΩ-

LRG n(z) (red dot-dashed and dashed lines in Fig.2.23), using the formalism described in

§3.3 (see also Padmanabhan et al. 2007; Thomas et al. 2011) but without the small-angle

approximation (Limber, 1953). The predicted w(θ) is then

w(θ) =
∞∑

ℓ=0

2ℓ + 1

4π
Pℓ(cos θ)Cℓ, (2.50)

where Pℓ(x) is the Legendre polynomial of order ℓ.
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Figure 2.23: The angular power spectrum of the 0.6 < z < 0.65 MegaZ-DR7 LRG

(Thomas et al., 2011) with significant power excess at low multipoles (diamonds). The

low-ℓ power excess plus the best-fit ΛCDM model of the 0.6 < z < 0.65 Cℓ (blue dot-

dashed and solid lines) is extrapolated to the AAΩ redshift range (red dot-dashed and

dashed lines).

The resulting w(θ) model with the amplitude normalised to fit the data at θ = 40′ −
400′ (r ≈ 20 − 200 h−1 Mpc) is shown as the red dot-dashed line in Fig. 2.22. The

model appears to be consistent with our wcom. Using uber-cal AAΩ-LRG result and

its covariance matrix at θ = 40′ − 400′, the model is acceptable at 13 per cent level

(χ2 = 23.6 over 18 − 1 d.o.f) when the amplitude of the w(θ) model is allowed to vary.

On the contrary, the best-fit ΛCDM model without the low-ℓ excess (red dashed line in

Fig. 2.23) is significantly rejected at 99.6 per cent (≈ 3σ) level by the same χ2 analysis.

This is consistent with the result derived in §2.6.2. The fact that the excess power in

the Cℓ taken the form of an ℓ ≈ 10 spike, suggests that this excess in w(θ) is due to

something other than acoustic oscillations in the power spectrum. Note that changing

the truncation scale of the low-ℓ power-law excess to ℓ ≤ 1 (ℓ ≤ 10) decreases (increases)

χ2 to 23.5 (24.6) and does not alter our main conclusion here.

We note that evidence for a large-scale (> 150 h−1 Mpc) correlation function excess has

also been detected in the NVSS radio source survey by Blake and Wall (2002) and Xia et al.

(2010). We have compared our results with theirs and find that our correlation function
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shows a similar shape but a factor of 2-3× lower amplitude. If the excess clustering signal

observed here is real then it could be evidence for non-Gaussianity (Xia et al., 2010) or for

the gauge dependence5 of the matter power spectrum on the largest scales (Lin, 2001; Yoo

et al., 2009). But until this feature is detected in an independent galaxy dataset, there will

always be the possibility that it is caused by some unknown systematics. Certainly, if the

ΛCDM model were correct then we would have to conclude that this excess was caused

by systematics at the level of ∆w ≈ 0.001−0.0015 in the photometric AAΩ-LRG sample.

Thus the question of whether we have detected the BAO scale in w(θ) is therefore not

straightforward to answer. If the excess clustering signal is real which may have enhanced

w(θ) amplitude at the BAO scale then we may have, given the agreement between our

result and the projected Eisenstein et al. ξ(s) and the ΛCDM model plus low-ℓ power

excess. But if it is an artefact then systematics are dominant and the BAO peak is at too

low an amplitude to be detected in our dataset.

2.6.3 Future improvement

Finally, we shall investigate the effects the redshift distribution width has on the de-

tectability of the BAO peak in angular correlation functions. For this purpose, we com-

pute w(θ) by projecting the real-space correlation function using Eq. 2.14 with various

galaxy redshift distributions. We use the observed ξ(s) form of Eisenstein et al. (2005)

rather than the ΛCDM prediction from CAMB or CMBfast. For the observed ξ(r), we

use a fit of the de-boosted Eisenstein et al. (2005) LRG ξ(s) assuming Kaiser factor,

β = 0.4 in the linear regime, r ≥ 15 h−1 Mpc, and a power-law with r0 = 10.5 h−1 Mpc

and γ = 1.9 for r < 15 h−1 Mpc (Zehavi et al., 2005a). This model is shown as a dashed

line in the inset of Fig. 2.22. To compare our w(θ) measurement to the predicted photo–z

result with redshift error, σz, we model the n(z) as a Gaussian with width σz and average

z = 0.68. We calculate the expected w(θ)’s assuming the AAΩ LRG n(z), σz = 0.01, 0.03

and 0.05.

The results are shown in Fig. 2.24. The narrower n(z) gives a higher w(θ) amplitude

and steeper power-law slope as expected. This is because there are fewer galaxy pairs

separated by different spatial scales in different redshift slices that project on to the sky

at similar angular separation to dilute the spatial clustering signal. With a sufficiently

5At around and beyond horizon scales, the matter power spectrum in the conformal Newtonian and

synchronous gauges can differ significantly. And it may not be trivial to relate the fluctuation variables

to observable quantities in a gauge-invariant way (see e.g. Yoo et al., 2009)
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Figure 2.24: The angular correlation functions from the projected LRG ξ(r) of Eisen-

stein et al. (2005) assuming different n(z) widths. Our w(θ) measurement is also shown

(diamonds) along with its expectation.

small n(z), w(θ) converges to the spatial correlation function as shown in Fig. 2.24 for

the thin-layer approximation.

The thin-layer model is calculated by using an infinitesimally thin galaxy selection

function, in this case a delta function, δ(z − 0.68), centred at the same redshift as the

mean of the Gaussian n(z). The result is an angular rescaling, corresponding to the radial

comoving distance out to z = 0.68, i.e. w(θ) = ξ(χθ). This is shown as a long-dashed line

in Fig. 2.24. The BAO peak appears at w ≈ 0.01, the same amplitude as the input ξ(r)

shown in the inset to Fig. 2.22. Clearly it would not make sense to pursue the angular

correlation function route when the photo-z accuracy becomes much smaller than the

BAO scale because at that point it will start to be advantageous to include the BAO

signal from the radial direction as well as the angular direction by using either the 3-D

correlation function, ξ(s), or the semi-projected correlation function, w(rp). Thus for the

approach we have followed here, the results in Fig. 2.24 corresponding to σz ≈ 0.03−0.05

(i.e. ∆r ≈ 60−100 h−1 Mpc) are the best the 2-D correlation functions can do. However,

such a factor of 2× improvement in the photo-z or colour-cut accuracy would be useful

for the increased signal with respect to the systematic noise shown by the SDSS data in

Fig. 2.24. Also with σz = 0.03 − 0.05 the signal to noise ratio is within a factor 1.5-2 of

its best value in a spectroscopic survey in our redshift range (see Fig. 2.24).
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The AAΩ LRG n(z) can be narrowed down by the use of photo–z as opposed to using

the simple colour-magnitude cut considered in this study. The current best photo–z accu-

racy for z ≈ 0.5 LRGs using the SDSS photometry with the Neural Networks algorithm

gives σz ≈ 0.05−0.06 (Collister et al., 2007; Abdalla et al., 2008), a modest improvement

over what we currently achieve. But by combining with near-infrared photometry and a

spectroscopic redshift training set of a few thousands, the photo–z accuracy of the AAΩ

LRGs could be further improved, possibly to achieve the σz = 0.03 limit for the useful-

ness of the 2-D correlation function technique. The southern VST ATLAS and VISTA

VHS surveys will double the area with optical-NIR photometry to search for BAO. The

inclusion of NIR data from VISTA VHS survey is also expected to improve the photo–z

accuracy (Banerji et al., 2008) of the proposed Dark Energy Survey (DES). The deeper

grizy photometry of the Panoramic Survey Telescope and Rapid Response System (Pan-

STARRS, Chambers 2009) 3π survey combined with the JHK photometry from the the

UKIRT Infrared Deep Sky Survey (UKIDSS, Lawrence et al. 2007) Large Area Survey

(LAS) should also give a photo-z accuracy of σz(z = 0.7) & 0.03 (Cai et al., 2009). These

improved photometric redshifts and the application of the full Limber’s formula used here

should also reduce any systematics in estimating the BAO scale (see Simpson et al., 2009)

from this new generation of 2-D cosmological surveys.

2.7 Summary and Conclusions

We have presented here a new and detailed analysis of the angular correlation function

of the Luminous Red Galaxies extracted from the SDSS DR5 photometric catalogue. All

the necessary information for inferring the spatial clustering is obtained and calibrated

through redshift surveys of sample subsets. Our conclusions are as follows;

(i) We measured the angular correlation function of the LRGs at three different red-

shifts, namely 0.35, 0.55 and 0.68 and found the results to be well approximated by

power-laws at small and intermediate scales.

(ii) With the large samples in terms of the numbers of objects and volume cover by the

data, we see the deviation from the canonical single power-law at high significance.

(iii) The data are better fitted by a double power-law where the large-scale ( & 1 −
2 h−1 Mpc) slope is equal to that of the conventional single power-law, i.e. γ ≈ 1.8.
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(iv) The form of the angular correlation functions at large scales are consistent with the

expectation of the linear perturbation theory in the flat standard ΛCDM Universe.

(v) The LRG linear bias is high, bg ≈ 2.0, as expected for massive luminous early-type

galaxies and the clustering strength is found to be strongly linked to the sample

intrinsic brightness.

(vi) The best-fit HOD models suggest that these LRGs reside in the massive dark matter

haloes, 1013 − 1014h−1M⊙, and are typically central galaxies in their dark matter

halo hosts, with the satellite fraction no more than 10 per cent.

(vii) The clustering evolution at intermediate scales (1 < r < 20 h−1 Mpc) is remarkably

slow and may be approximately explained by a long-lived model or even a no–

evolution model. The long-lived model may be in line with the observed passive

evolution of the LRG luminosity function, consistent with a constant comoving LRG

space density in this redshift range. This latter conclusion would also apply in the

case that the no–evolution (comoving) model were found to fit better but in this

case the observations may require a significantly higher bias.

(viii) Using the Lacey and Cole (1993) framework, our MDMH(z) measurements are well

fitted by the model where halo mass is grown via merging of progenitors with masses

of ≈ 1.4×1013 h−1M⊙ and ≈ 2.3×1013 h−1M⊙ from z = 1, for haloes that typically

host ℓ ≥ 2L* and ≥ 3L* galaxies, respectively. We found that these dark matter

haloes have tripled their masses over the last half of cosmic time (although see the

caveat given at the end of §2.5.1) whereas it has been claimed that the LRG stellar

masses have grown by less than 50 per cent (Cool et al., 2008).

(ix) At small scales (r < 1 h−1 Mpc) the clustering evolution appears slightly faster

at fixed luminosity and the clustering increases towards lower redshift, consistent

with a virialised clustering model. Since our virialised model assumes a constant

comoving LRG space density, a combination of this stable clustering model at small

scales and the long–lived model at intermediate scales could be consistent with the

idea that merging of LRGs may not change the LRG space density significantly out

to z ≈ 0.7.

(x) However, the evolution based on HOD and the ΛCDM halo merging framework

requires that ∼ 2 − 3 per cent/Gyr of the LRGs merge with each other in order
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to explain the small-scale clustering evolution, consistent with the results of White

et al. (2007) and Wake et al. (2008).

(xi) In our AAΩ-LRG result we find a BAO peak at a level consistent with the best

estimate of ξ(s) obtained by Eisenstein et al (2005). But, given the small size of our

statistical errors, these results deviate significantly, ≈ 4σ, from the standard ΛCDM

prediction because of an apparent large-scale clustering excess.

(xii) The excess clustering signal generally persists after a series of systematic tests we

performed. However, a few of these tests did change the feature somewhat, suggest-

ing that it could still be caused by some unknown systematic effects.

(xiii) If the ΛCDM model were correct then we would have to conclude that this excess

was caused by systematics at the level of ∆w ≈ 0.001 − 0.0015 in the photometric

AAΩ-LRG sample.

(xiv) Otherwise, the excess signal in our w(θ) relative to the standard ΛCDM model

appears to be in good agreement with the Cℓ power excess at low ℓ observed by

other authors who used photo–z LRG samples at z ≈ 0.5.

(xv) If real, the large-scale clustering excess may be interpreted as an evidence for a non-

standard cosmological model, e.g. primordial non-Gaussianity or general relativistic

effects. However, more, independent, data is required to check the reality of this

clustering excess.

(xvi) Further improvement could be achieved with smaller photo–z error, probably via

Neural Network route but a sample of a few thousands z ≈ 0.7 LRGs would be

needed in order to obtained the required photo–z accuracy, given the already narrow

redshift distribution of our sample in this analysis.

(xvii) The photo–z accuracy needed to robustly detect the acoustic peak in the angular

correlation function of the LRGs at z ≈ 0.7 is σz ≈ 0.03 which may be the best

the angular correlation functions can do. This limit should be achievable with the

future wide-field imaging survey such as the Pan-STARRs 3π survey.



Chapter 3
The Integrated

Sachs-Wolfe Effect

3.1 Introduction

Many observations now suggest that we live in a spatially flat, dark energy dominated

Universe (e.g. Perlmutter et al., 1999; Cole et al., 2005; Tegmark et al., 2006; Riess et al.,

2007; Dunkley et al., 2009). In such a cosmology, positive correlation between the CMB

and large-scale-structure (LSS) is expected due to the decaying gravitational potential

(Sachs and Wolfe 1967). The deviation of the CMB temperature in the vicinity of LSS is

caused by the non-vanishing difference in the energy gained and lost by the CMB photons

as they traverse a region of over– or under–density. By integrating across all the potential

wells along the line of sight from the surface of last scattering, the primordial fluctuations

in the CMB are modified by this effect. This secondary anisotropy of the CMB is called

the Integrated Sachs–Wolfe (ISW) effect and sometimes known as the late-time ISW effect

to distinguish it from the ‘early-time’ Sachs–Wolfe effect. For a spatially flat Universe,

a detection of the Integrated Sachs-Wolfe (ISW) effect would provide direct dynamical

evidence of the accelerating expansion unlike the geometrical measurement inferred from

standard candles such as the SNIa.

The SNIa results coupled with the CMB evidence that the Universe is nearly flat,

suggests there exists an exotic form of energy with negative pressure. The exact nature of

this so–called dark energy is not yet known but it already entails many serious problems.

Foremost amongst them are the fine-tuning problem and the cosmic coincidence problem

(e.g. Carroll, 2001; Peebles and Ratra, 2003).

The ISW signal in the CMB–galaxy cross–correlation is very small, generally less than

one µK, and very difficult to detect. Previous ISW detections generally have less than

3σ statistical significance. These include the studies of Fosalba et al. (2003), Padmanab-

han et al. (2005) and Cabré et al. (2006) who used SDSS galaxies in both photo-z and

88
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magnitude limited samples and the WMAP3 dataset. Other authors have used X-ray

sources (Boughn and Crittenden, 2004) and NVSS radio sources (Nolta et al., 2004). Of

these, it seems that up to now the most significant detection of the ISW effect comes

from the NVSS radio sources at 2.3σ. Other authors (e.g. Giannantonio et al. 2008 and

Ho et al. 2008) have made compilations of the other results and claimed up to 4σ ISW

detections in terms of the overall significance. The only other claims of ISW detections

at high significance are the methods that reduced the galaxy samples to focus only on

regions of high or low underdensity. In particular, Granett et al. (2008) cross-correlated

the positions of ≈ 100 superclusters and voids in the MegaZ–LRG (Collister et al., 2007)

sample and McEwen et al. (2007) employed a similar wavelets method using radio sources

from NVSS.

Here we shall search for the ISW effect by using samples of Luminous Red Galaxies

(LRGs) from the SDSS DR5 dataset. LRGs are the most luminous stellar systems in the

Universe, residing in the most massive dark matter haloes. Having formed most of their

stars much earlier and over short period of time, the objects appear red with reasonably

uniform spectral energy distributions therefore these galaxy samples can be selected ho-

mogeneously and observed out to greater distance (or lookback time). Moreover, being

massive means that the LRGs are also a highly biased tracer of the LSS (e.g. Ross et al.

2007, Wake et al. 2008). The selection techniques for z < 0.6 LRG samples have been

well established in the literature. Many LSS studies have been carried out using these

LRG samples including the claimed detections of the ISW effect (e.g. Cabré et al. 2006).

The recent spectroscopic survey by Ross et al. (2008b) has shown that it is possible to

extend the selection technique and hence the LRG sample out to z ≈ 1. Applying this

tested algorithm to the entire SDSS imaging significantly increases the effective volume

and makes these LRGs ideal probes of large-scale structure.

Our main goal is to detect the ISW signal in the CMB by cross-correlating WMAP5

map with the new z̄ ≈ 0.7 LRG sample and to test the detection of the ISW effect caused

by the LRGs at lower redshift (z̄ ≈ 0.35, 0.55) as claimed by a number of authors (e.g.

Padmanabhan et al. 2005, Cabré et al. 2006). These studies used the LRG candidates

extracted from the SDSS DR3 or DR4 whilst we are using DR5, ≈ 50 per cent and 20

per cent increase in the area coverage, respectively. The larger sky coverage should provide

a statistical advantage over the previous studies. Our new higher redshift LRG sample

should also provide a chance to constrain the evolution if such an effect is indeed detected.

Moreover, a recent study by Douspis et al. (2008) suggests that the ISW signal-to-noise
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can be optimised if the large-scale tracer probes out to a median redshift of 0.8 but there

is no further improvement after a redshift of unity. The claim appears to be supported by

the cross-correlation analysis of Giannantonio et al. (2008) in which the signal-to-noise

of the ISW detection from the 2 Micron All Sky Survey (2MASS; Jarrett et al. 2000) is

≈ 4–6 times smaller than from the NRAO VLA Sky Survey (NVSS; Condon et al. 1998)

where z̄ ≈ 0.1 and 0.8 respectively, despite the fact that the two surveys have similar sky

coverage and sky density (NNVSS ≈ 2N2MASS). If this is true then our higher redshift

LRG should be more sensitive to the ISW signal and will provide even higher significance

of detection than previous studies using the LRGs which currently reach ≈ 2σ significance

at best. The new sample therefore presents a fresh opportunity to test one of the most

crucial manifestations of the accelerating expansion, obtaining independent confirmation

of the geometrical inference of the SNIa result if detected and a challenge to the current

standard picture of the Universe otherwise.

The layout of this chapter is as follows. We present the data in §3.2. We then outline

the theoretical prediction and cross-correlation technique employed in this study in §3.3

and §3.4, respectively. The results and a range of analyses performed to ensure their

robustness are given in §3.5 and §3.6. The additional sky rotation tests performed on

our dataset and selections of previously claimed ISW detections are reported in §3.7. We

then present the discussion and conclusion of our studies in §3.8 and §3.9. Throughout

this study (unless otherwise stated), we assume a standard ΛCDM cosmology with ΩΛ =

0.73, Ωm = 0.27, fbaryon = 0.167, σ8 = 0.8 and H0 = 100h km s−1 Mpc−1 (h = 0.7

where necessary).

3.2 Data

3.2.1 CMB Temperature Map-WMAP5

The CMB temperature maps used here are taken from the WMAP five-year data re-

lease (Hinshaw et al., 2009). The data products are publicly available1 in Hierarchical

Equal Area isoLatitude Pixelisation (HEALPix, Górski et al. 2005) format. Although

the WMAP observes in five frequency bands, we choose to use only the three highest-

frequency bands, namely, W at 94 GHz, V at 61 GHz and Q at 41 GHz as the CMB

anisotropy in these ranges are less susceptible to a contamination from the foreground

anisotropy (i.e. synchrotron and free-free emission) than the lower frequency counterparts.

1http://lambda.gsfc.nasa.gov/
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This enable us to test for any wavelength dependence in the CMB-galaxy cross-correlation

where one expects the ISW signal to be achromatic. The possible SZ contamination can

also be checked against multi-frequency analyses which will also benefit from using the

data with highest possible resolution. We therefore concentrate our analysis mainly on the

W band due to its relatively high resolution compared to the other bands, 12.′6 FWHM

compared to 19.′8 for V and 29.′4 for Q band. Despite the fact that the V band has lower

noise than the W band (hence often the band of choice for this type of analysis), we do

not observe any major difference in either the cross-correlation results or their statistical

errors (see Fig. 3.2). We also use the Internal Linear Combination (ILC, Gold et al. 2009)

to further check our results, although it should be noted that, according to the WMAP

team, there could be a significant structure in the bias correction map at scales smaller

than ≈ 10◦ (Limon et al., 2008).

We shall use the temperature maps at a resolution of Nside=512 (res=9) which for the

whole sky, contains 3 145 728 pixels each with an area of ≈ 49 arcmin2. The foreground-

contaminated regions of the sky, mainly in Galactic Plane and Magellanic Clouds including

extragalactic point sources, are excluded using a combination of ‘Extended temperature

analysis mask’ (KQ75, Gold et al. 2009) and ‘Point source catalogue mask’ (Wright et al.,

2009). After applying the masks, we are left with 2 239 993 pixels (≈ 70 per cent). The

maps contain thermodynamic temperatures with the dipole contribution subtracted from

the data by the WMAP team (Hinshaw et al., 2009).

3.2.2 Luminous Red Galaxies

The Luminous Red Galaxy (LRG) photometric samples are extracted from the SDSS DR5

(Adelman-McCarthy et al., 2007) imaging data based on three LRG spectroscopic redshift

surveys whose median redshifts are ≈ 0.35, 0.55 and 0.7 (Eisenstein et al., 2001; Cannon

et al., 2006; Ross et al., 2008b). In essence, these surveys utilised a crude but effective

determination of photometric redshift (photo-z), owing to the strong 4000 Å break of a

typical E/S0 galaxy spectral energy distribution (SED). As the break is redshifted through

the SDSS g, r, i, and z bandpasses, its colour-colour track exhibits a distinctive turning

point at various redshifts for different colour pairs. Moreover, their uniform SEDs ensure

that they have an extremely tight locus in the colour space. This allows the potential

LRGs in the desired redshift ranges to be selected uniformly using their locations on

the colour-colour plane coupled with the luminosity threshold set by the appropriate

magnitude limit.
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These simple methods have been proven to be highly effective in selecting the intrin-

sically luminous early-type galaxies in the targeted redshift ranges as demonstrated by

the SDSS–LRG, 2SLAQ and AAT–AAΩ redshift surveys (Eisenstein et al., 2001; Can-

non et al., 2006; Ross et al., 2008b). Although the LRG photo-z in these redshift ranges

can be estimated quite accurately (Padmanabhan et al., 2007; Collister et al., 2007), we

decided to base our study on the colour–magnitude cuts because a well defined photo-z

error distribution is needed for the deconvolution to recover the real redshift distribution

and could bias the analyses of the results. The colour-magnitude cut techniques used in

the above spectroscopic surveys, applied to the entire SDSS DR5 dataset (only Northern

Galactic Cap), results in ≈ 1.5 million LRG candidates and the redshift distribution of

the survey is assumed for the corresponding photometric sample. The LRG samples used

in this chapter are the same as that used in Chapter 2 and the outlines of their selection

algorithms are given in §2.2.

3.3 Theoretical prediction

The secondary CMB anisotropy caused by the time-varying gravitational potential, Φ, is

known as the Integrated Sachs-Wolfe (ISW) effect. As the CMB photons traverse such

regions, the temperature perturbation associated with the time dependent potential is

given by

δISWT (n̂) ≡ ∆ISW
T (n̂)

T0
= −2

∫ zLS

0
dz

1

c2
∂Φ

∂z
(n̂, z) (3.1)

where Φ is the Newtonian gravitational potential at redshift z, n̂ is a unit vector along

a line of sight, T0 = 2.725 K is the CMB temperature at present time and zLS ≈ 1089 is

the redshift at the surface of last scattering.

The gravitational potential, Φ, is related to the matter density fluctuation via Poisson’s

equation (Eq. 7.14, Peebles 1980);

∇2Φ(n̂, z) = 4πGa2ρm(z) δ(n̂, z) (3.2)

where a is the scale factor normalised to unity at redshift zero. By recalling that ρcrit(0) =

3H2
0/8πG and Ωm = ρm(0)/ρcrit(0), the Fourier transform of the gravitational potential

is

Φ(k, z) = −3

2
Ωm

(
H0

k

)2 δ(k, z)

a
. (3.3)
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Unfortunately, the ISW contribution to the CMB primary anisotropy is less than 10

per cent for ℓ & 10 and to make matters worse, the total anisotropy signal is dominated by

cosmic variance at smaller ℓ (i.e. larger angle) where most of the ISW signal is expected

to be (e.g. Hu and Scranton, 2004). To isolate the ISW signal one must cross-correlate

the temperature fluctuation with a tracer of gravitational potential projected on the sky

(Crittenden and Turok, 1996). For this purpose, one can use the simple 2-point statistics

to compute the angular cross–correlation of the temperature and galaxy fluctuation maps

in real space,

wgT (θ) = 〈δg(n̂1) ∆T (n̂2)〉 (3.4)

where n̂1·n̂2 = cos θ. To calculate the theoretical expectation for the real space cross–

correlation, we start by computing the angular cross–power spectrum of the galaxy over-

density and ISW temperature perturbation fields;

CISW
gT (ℓ) ≡ 〈δg,ℓm ∆∗

T,ℓ′m′〉. (3.5)

Firstly, we need to expand the galaxy density fields, δg(n̂, z), in spherical harmonics

and Fourier transform them. For a galaxy survey with a selection function φg(z) and

linear bias bg(z), this is

δg,ℓm = iℓ
∫

d3k

(2π)3

∫
dz 4πjℓ(kχ)Y ∗

ℓm(k̂)

× bg(z)φg(z) δ(k, z) (3.6)

where jℓ(y) is the spherical Bessel function of the first kind of rank ℓ, Yℓm(k̂) is the

spherical harmonic function and χ is a comoving distance which is an implicit function of

z through the relation dχ = c/H(z) dz. In obtaining Eq. 3.6, we use the orthonormality

of Yℓm in their expansion of a plane wave (e.g. Scharf et al. 1992);

exp(−ik·n̂χ) = 4π
∑

ℓm

iℓ jℓ(kχ)Yℓm(n̂)Y ∗

ℓm(k̂) (3.7)

Similarly, for the ISW temperature fluctuation, by putting together Eq. 3.1, 3.3 and

3.7, this is
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∆ISW
T,ℓm = iℓ

∫
d3k

(2π)3

∫
dz 4πjℓ(kχ(z))Y ∗

ℓm(k̂)

× 3ΩmT0

(
H0

kc

)2 ∂

∂z

[
δ(k, z)

a(z)

]
(3.8)

For a flat–sky approximation (Limber, 1953), following Afshordi et al. (2004) and

realising that in linear perturbation theory δ(k, z) = D(z) δ(k, 0) and

〈δ(k1) δ(k2)〉 = (2π)3 δDirac(k1 − k2)P (k) , (3.9)

from Eq. 3.5, 3.6 and 3.8 , CISW
gT (ℓ) can be simplified to

CISW
gT (ℓ) =

4

(2ℓ+ 1)2

∫
dz P (k)WISW(z)Wg(z). (3.10)

WISW(z) and Wg(z) are the ISW and galaxy window functions defined as

WISW(z) ≡ 3ΩmT0

(
H0

c

)2 d

dz

[
D(z)

a(z)

]
(3.11)

and

Wg(z) ≡ bg(z)φg(z)D(z) (3.12)

where k ≈ (ℓ + 1/2)/χ(z), D(z) is the linear growth factor given by the fitting formula of

Carroll et al. (1992) and P (k) is the linear power spectrum at redshift zero. The survey

selection function is given by

φg(z) ≡ χ2nc(χ)∫
dχχ2nc(χ)

= n(z)
H(z)

c
(3.13)

where nc(χ) is the comoving number density and n(z) is the normalised redshift distribu-

tion, N(z), of the galaxies in the survey. Finally, wISW
gT (θ) is related to the cross–power

spectrum via the expansion in Legendre polynomials;

wISW
gT (θ) =

∞∑

ℓ=2

2ℓ + 1

4π
Pℓ(cos θ)CISW

gT (ℓ). (3.14)

We set the monopole (ℓ = 0) and dipole (ℓ = 1) contribution to zero, as it is done in

the WMAP maps (§3.2.1). The contributions of the monopole and dipole are significant

and overpredict wISW
gT by ≈10 per cent (Cabré et al., 2006). The summation in Eq. 3.14

converges earlier than ℓ ≈ 500 but we set our upper limit to ℓ = 1000 which provides
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sufficiently stable models without sacrificing too much computing time. The linear power

spectrum is computed using

P (k) = A kns T 2(k) (3.15)

where ns is the scalar spectral index and A is the normalisation factor with the value set

by σ8. We use the transfer function, T (k), fitting formula of Eisenstein and Hu (1998).

Our fiducial models assume a ΛCDM Universe with ΩΛ = 0.73, Ωm = 0.27, fbaryon =

0.167, σ8 = 0.8, h = 0.7 and ns = 0.95. Note that, for a flat Universe with Ωm = 1, the

linear growth factor is equal to the scale factor, a, at all redshifts and WISW(z) vanishes,

hence in this case we expect no correlation between large-scale-structure and the CMB.

3.4 Cross-correlation technique

Firstly, each galaxy sample is pixelised into equal area pixels on the sphere using the

HEALPix (Górski et al., 2005) format, following the standard resolution and ordering

scheme of the publicly-available WMAP5 temperature map (i.e. nested, res=9). The

most conservative temperature mask, extended temperature analysis (KQ75), plus point

source catalogue mask are then applied to the temperature maps (§3.2.1) and the pixelised

galaxy distributions, discarding approximately 30 per cent of the entire sky. Additionally,

in order to estimate fairly the galaxy background density and a robust cross–correlation

result, the DR5 coverage mask including quality holes are applied to the data. We only

restrict the data to the most contiguous region of the NGC and therefore exclude the SDSS

stripes 39, 42 and 43 in the DR5 coverage mask. After applying ‘KQ75 ∪ point source ∪
DR5’ mask, 516,507 out of 3,145,728 pixels (all sky) are admitted for the cross–correlation

analysis.

The galaxy number overdensity, δg(n̂), is then calculated from the galaxy distribution

maps and assigned to each pixel;

δg(n̂) =
ng(n̂) − ng

ng
(3.16)

where ng and ng are the number of galaxies and its average for the sample of interest. Fig.

3.1 shows the W-band temperature fluctuation map and δg map for SDSS, 2SLAQ and

AAΩ LRG, smoothed with Gaussian beam of 1◦ Full Width at Half Maximum (FWHM).

The two–point cross–correlation function at angular separation θ is computed using
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Figure 3.1: The 1◦ smoothed map of W-band data and galaxy number overdensity for

SDSS, 2SLAQ and AAΩ LRG (Ubercal) after applying KQ75 and SDSS-DR5 mask.
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wgT (θ) =

∑
ij fiδg(n̂i) fj∆T (n̂j)∑

ij fi fj
(3.17)

where fi is the fraction of pixel i within the unmasked region, n̂i·n̂j = cos θ and ∆T is

the CMB temperature anisotropy measured by WMAP5 with the monopole and dipole

contribution subtracted off. However, as we use relatively fine resolution pixels and

weighting by the unmasked fraction does not alter our measurement, Eq. 3.17 is sim-

ply wgT (θ) = 〈δg(n̂1) ∆T (n̂2)〉.
It is a well known fact that bins in the correlation function are correlated because the

same points (or pixels in this case) can appear in many different pairs which are included

in different bins, especially at large scales. To correctly estimate the statistical significance

of the results, one needs to consider the full covariance matrix, Cij. Here, we construct

the full covariance matrices using jackknife resampling. In order to obtain a sufficiently

stable covariance matrix, the jackknife subsamples of approximately twice the number

of angular bins being considered are needed. For the number of angular bins considered

in this study, we split the masked temperature/overdensity map into 24 subfields with

approximately equal area. The 24 jackknife subsamples are constructed from these fields,

each one leaving out a different subfield. The wgT (θ) are computed for each jackknife

subsample and the covariance matrix is

Cij =
NJ − 1

NJ

NJ∑

m=1

[(wgT,m(θi) − wgT (θi))

× (wgT,m(θj) − wgT (θj))] (3.18)

where NJ = 24 in this case, wgT,m(θi) and wgT (θi) are the cross–correlation measured

from the mth jackknife subsample and the average of all the subsamples in the ith bin,

respectively. Note that the difference between wgT (θ) and wgT (θ) estimated using the

whole sample is negligible. The reason for multiplying NJ − 1 is because the jackknife

subsamples are not independent. The statistical uncertainty for each individual angular

bin is contained in the diagonal elements of the covariance matrix.

3.5 Results and Analysis

3.5.1 LRG–WMAP5

The cross–correlation results of the LRG distributions with the WMAP5 temperature

maps using the three highest-frequency data plus the ILC are shown in Fig. 3.2. The
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errors are 1σ statistical errors estimated from jackknife re-sampling of 24 subfields as de-

scribed in §3.4. Generally, the results using different WMAP bands are in good agreement

(within the 1σ error) for all three LRG samples. The achromatic results indicate that

the contamination from effects such as dust, synchrotron and free-free emission which are

frequency-dependent in nature are minimal or at least sub-dominant compared to our sta-

tistical uncertainties. This also applies to a lesser extent to the thermal Sunyaev–Zeldovich

(Sunyaev and Zeldovich, 1980) effect, although for the bands shown, the difference in the

SZ and CMB spectral slopes is only ≈30 per cent. However, we shall see in §3.7 that there

is still a strong suggestion that other systematic effects may still be contaminating the

SDSS and 2SLAQ results.

We first consider our new and higher redshift sample of 800 000 AAΩ LRGs. This

sample shows virtually no positive correlation with the CMB data. If anything, the

data show a slight anti-correlation out to large scales, possibly to θ . 1◦ (≈ 30h−1Mpc

at the median redshift of the sample), although the signal to noise is still low. This

weak anti-correlation is observed in all WMAP5 frequency bands under study here (the

most right column of Fig. 3.2) with the exception of the Q band which only shows zero

correlation at best with a possible zero-point shift towards very large scales. As for the

SDSS and 2SLAQ results the cross–correlation with the ILC map gives a systematically

lower amplitude (more negative in AAΩ case) than other bands. Given the relatively large

scales of the null result in the AAΩ–WMAP5 CCF and the amplitude of the expected

ISW signal (see Fig. 3.3), it would seem extremely unlikely that the positive correlation

of the ISW effect could be cancelled out by the negative contribution from the thermal

SZ effect. If this result is real and not due to some systematic effects, the implications

for the view that the Universal expansion is accelerating, could be profound.

In the case of the SDSS and 2SLAQ LRG samples, our results are similar to those of the

previous authors who have analysed similar datasets. We observe marginally significant

positive correlations in the Q, V and W bands where the measured wgT (θ)’s are similar

in terms of their amplitudes and angular extents for each sample although the signal is

weaker in the SDSS sample. The ILC results are slightly lower than the other bands in

both samples but otherwise still within 1σ error. Our SDSS results can be compared to

the lowest redshift–bin sample of Scranton et al. (2003) who used the LRGs extracted

from the SDSS DR2 following Eisenstein et al. (2001) but with a much fainter magnitude

limit, i < 21, and divided their samples into redshift slices using photo–z. The results are

similar in terms of amplitude but our errors are slightly smaller due to our larger area
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Figure 3.2: The cross-correlation results of WMAP5 W, V and Q band including the

ILC map (top to bottom) with the SDSS, 2SLAQ and AAΩ LRG (left to right).
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coverage (≈7600 deg2 as opposed to ≈3400 deg2) although their object numbers are ≈7

times higher than ours owing to the broader N(z) and fainter flux cut.

The 2SLAQ results are comparable to the ‘SDSS LRG’ results of Giannantonio et al.

(2008). These authors used the MegaZ-LRG photo-z catalogue of Collister et al. (2007),

covering the redshift range 0.4–0.7 with a colour-magnitude selection similar to our 2SLAQ

sample but a slightly fainter flux limit, ideV < 20 as opposed to 19.8. In the LRG panel of

their Fig. 4, we see that their result has similar amplitude and errors (jackknife) to our

2SLAQ result. Although their Monte Carlo methods give somewhat larger errors than

the jackknife estimations, the statistical significance estimated using errors drawn from

both methods are very similar, 2.2–2.5σ for their LRG catalogue. Padmanabhan et al.

(2005) has also performed the analysis with a similar LRG sample but using the angular

cross–power spectrum, Cℓ, making a direct comparison to our results difficult. The sample

these authors used is somewhat similar to the Eisenstein et al. (2001) selection but with

the flux cut as faint as 2SLAQ in ‘CutII’, resulting in a redshift distribution similar to

our SDSS and 2SLAQ LRG samples combined, although they limited the redshift of the

sample to 0.2 < z < 0.6 using their template-fitting photo-z. The positive correlation is

detected at 2.5σ, similar to Giannantonio et al. (2008) although the sample they used only

covers half as much sky. We conclude that our analyses are broadly reproducing previous

results in these 0.25 < z < 0.6 LRG redshift ranges, both in terms of their amplitude and

statistical significance.

3.5.2 Comparison to Models

Fig. 3.3 shows the comparison of our results to the theoretical expectation as described

in §3.3. The galaxy selection functions used in construction of these models are given by

the normalised N(z) of the sample as shown in Fig. 2.1 (see also §2.2). The galaxy bias in

the model is estimated from the angular autocorrelation function, wg(θ, z̄), of each LRG

sample relative to the underlying dark matter clustering, b2g(z̄) = ξg(r, z̄)/ξm(r, z̄), where

we assume the linear scale-independent bias and measure its value at large scales (≈10

h−1Mpc). The matter ξ(r, z̄) is estimated for the same fiducial cosmology as described

in §3.3 and then projected onto the sky using the corresponding ng(z). This gives an

unbiased prediction which can be compared to the measured wg(θ, z̄) and allows bg(z̄)

to be extracted from their relative amplitudes. Note that we assume non-evolving bias

and denote the bias estimated from each sample as the bias at the corresponding average

redshift which is reasonable, given the narrow redshift ranges of our samples. The galaxy
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Figure 3.3: The LRG–WMAP5 cross-correlation results using W -band and ILC map

compared to the theoretical predictions (red solid lines), assuming the standard ΛCDM

and the galaxy linear bias (bg) of 2.10, 1.99, 2.2 and 2.1 for SDSS, 2SLAQ, AAΩ-LRG and

the combined sample respectively. The stellar contamination correction for each sample

has been applied to the corresponding model. In the ‘Combined’ panels, the cross–

correlation results of the quadrature–error weighted mean of the three LRG samples are

compared to the average model predictions.
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bias measured in this way can also be viewed as an effective value for each sample. The

models shown in Fig. 3.3 use bg(z̄) of 2.10±0.04, 1.99±0.02 and 2.20±0.02 for the SDSS,

2SLAQ and AAΩsamples, respectively. These values are taken from Sawangwit et al.

(2011a) and are compatible with the values measured by other authors, e.g. Tegmark et al.

(2006), Padmanabhan et al. (2007) whose bg(0.35) = 1.9±0.07 and bg(0.55) = 1.85±0.05

as compared to our SDSS and 2SLAQ LRG, respectively. The bg value of Tegmark et al.

(2006) was measured from a sample of z ≈ 0.35 LRGs similar to what we call SDSS LRG

sample here but without the bright limit cut (see §2.2.1) hence allows under–luminous

objects and main galaxies into their sample. And as a result we expect their bias to be

somewhat lower than ours.

As emphasised earlier, the AAΩ LRG sample shows no positive correlation with the

WMAP5 data and perhaps even a slight negative correlation. We then combined the

W -band data between 12′–120′, and found the amplitude of the CCF and its jackknife

error (1σ) is −0.07 ± 0.2 µK. This is consistent with the null hypothesis (only ≈ 0.4σ

deviation) and rejects the ISW signal expected in the standard models at ≈ 1.9σ or

at 5 per cent significance after the stellar contamination has been taken into account in

the predicted signal (see §3.6.3). Performing a similar statistical analysis on the cross–

correlation results using the ILC map gives a slightly higher significance of rejecting the

standard model ISW hypothesis (2.2σ, see Table 3.1).

Additionally, to test that the zero correlation in the AAΩ results is not due to its

faint limit making the sample incomplete, we have cut the faint limit of the sample back

in steps of 0.25 mag to 20.0 (see §3.6.2 and Sawangwit et al. 2011a). The amplitude of

the CCF between 12′–120′ for i < 20.25 (denoted by AAΩ∗ in Table 3.1) is −0.1 ± 0.2

for W -band data and −0.2 ± 0.21 for the ILC map. The ISW model prediction is then

re-computed taking into account the corresponding n(z) and linear bias, including the

correction for stellar contamination at the same level as the main AAΩ sample. The

significance of rejection of the standard model for the i < 20.25 AAΩ sample is slightly

higher than that of the main AAΩ sample, at 2.2σ and 2.5σ for W -band and ILC map,

respectively.

The measured wgT for the SDSS LRG agrees reasonably well with the theoretical ex-

pectation at angles . 30′ although not at high statistical significance. However, the same

cannot be said for the angle beyond this scale and up to ≈ 600′ where the cross–correlation

appears to be less than the expected signal although still not at high significance. One

may be inclined to conjecture that this could be due to the negative contribution coming
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Table 3.1: The significance tests of the cross–correlation results using the WMAP W -band data and ILC maps. The measurements

are tested against the expected ISW prediction in the standard ΛCDM model and null result hypothesis. Column 5 gives the

amplitudes and 1σ jackknife errors of the data binning between 12′–120′. Column 6 gives the significance of the deviation of the

value in column 5 relative to ISW/null signal hypothesis.

Sample z̄ Number bg(z̄) wgT (12′ − 120′) Deviation significance

µK (ISW,null)

W -band: SDSS 0.35 106,699 2.10 ± 0.04 0.25 ± 0.33 (1.0σ, 0.8σ)

2SLAQ 0.55 655,775 1.99 ± 0.02 0.34 ± 0.21 (0.2σ, 1.6σ)

AAΩ 0.68 800,346 2.20 ± 0.02 −0.07 ± 0.20 (1.9σ, 0.4σ)

AAΩ∗ 0.67 375,056 2.37 ± 0.03 −0.10 ± 0.20 (2.2σ, 0.5σ)

Combined 0.60 1,562,820 2.10 ± 0.01 0.15 ± 0.17 (1.0σ, 0.9σ)

Weighted mean – – – 0.14 ± 0.14 (1.3σ, 1.0σ)

ILC map: SDSS 0.35 106,699 2.10 ± 0.04 0.19 ± 0.33 (1.2σ, 0.6σ)

2SLAQ 0.55 655,775 1.99 ± 0.02 0.27 ± 0.22 (0.5σ, 1.2σ)

AAΩ 0.68 800,346 2.20 ± 0.02 −0.18 ± 0.22 (2.2σ, 0.8σ)

AAΩ∗ 0.67 375,056 2.37 ± 0.03 −0.20 ± 0.21 (2.5σ, 1.0σ)

Combined 0.60 1,562,820 2.10 ± 0.01 0.07 ± 0.17 (1.4σ, 0.4σ)

Weighted mean – – – 0.07 ± 0.13 (2.0σ, 0.5σ)
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from the thermal SZ effect, but at this redshift 100′ corresponds to ≈ 20 h−1Mpc which

would be too large a scale to be caused by hot gas in galaxy clusters. Although the

clusters do cluster among themselves, the contribution to any extended SZ effect is likely

to be small (Myers et al., 2004). Besides, there is no physical reason why SZ effect should

affect only the highest redshift sample. The most likely explanation for this appears to

be a statistical fluctuation which means that our SDSS LRG measurement rejects neither

the ISW expectation nor the zero correlation at more than ≈ 1σ significance level. If we

bin the data in the angular range 12′–120′ into a single bin, the correlation amplitude and

its jackknife error (1σ) is 0.25±0.33 µK which deviates from the null result hypothesis by

only 0.8σ and from the standard model by 1.0σ. For the 2SLAQ case, as in other stud-

ies, the positive cross-correlation signal agrees very well with the expected ISW signal in

the standard cosmology in terms of its amplitude and angular extent. Nevertheless, the

2SLAQ sample’s rejection of the null result is still only at the 1.2-1.6σ significance level

(see Table 3.1).

3.5.3 The Combined LRG sample

We shall now consider the cross–correlation of the combined LRG sample with the CMB

data. In our first method of combining the three LRG samples we shall treat these as three

independent surveys and then test this assumption by presenting the cross-correlation

result for the combined 1.5 million LRG sample, complete with its own direct jackknife

error analysis, to check that they agree.

First, the three CCF’s of the SDSS, 2SLAQ and AAΩ samples are combined by weight-

ing inversely in quadrature according to the statistical errors of each sample2 (see bottom

right panels of Fig. 3.3 and also Fig. 3.4). The model (red solid line in Fig. 3.3) is

estimated by taking an average of the ISW models of the three LRG samples. We find

that the rejection significance is 1.3σ for the standard ISW model and 1.0σ for the null

result in the W band. In the ILC band the significance of the rejection of the ISW model

rises to 2.0σ and the significance of rejection of the null result reduces to 0.5σ. Table

3.1 gives the summary of all the significance tests performed. We conclude that while

the ISW standard model is still consistent with the CCF result from the three combined,

weighted LRG samples it is now more consistent with the null result due to the inclusion

of the AAΩ data.

2This is similar to combining χ2 from the independent samples, although we do not take any possible

correlation between samples into account here (see e.g. §3.5.4).
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Figure 3.4: (top) The W-band cross–correlation results of the combined sample (solid

circles) compared to the quadrature–error weighted mean of the three LRG sample (dia-

monds). Also shown are the standard model predictions by taking a weighted mean (solid

line) of the models of three LRG samples and for the combined sample (dot-dash line).

(bottom) Same as above but for the ILC map rather than W -band data
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Second, for comparison, we also present the results of cross-correlating the combined

LRG sample with the WMAP5 data i.e. we now treat the combined sample of ≈ 1.5

million LRGs as a single sample for cross-correlating with, in turn, the WMAP5 W and

ILC CMB data. A full jackknife error analysis was carried out in the same way as for

the individual samples. We expect the results to be similar to the weighted combination

of the three samples’ CCF’s as presented above. Fig. 3.4 shows the comparison between

these results. The models for the combined samples are computed following the procedure

described in §3.3 assuming the linear galaxy bias (given in Table 3.1) estimated from the

angular autocorrelation function and N(z) of 1.5 million LRGs. Table 3.1 again shows

the significances of rejection of the standard model and the null results. We see that the

observational results in both cases are very similar. For both bands, the significances

are given in Table 3.1. The results are again very similar to those where the weighted

mean was adopted. The cross-correlation results are again as consistent with the zero

correlation as they are with the standard ISW model for the W band. The ILC band

again more significantly rejects the ISW model than the null result.

Clearly the preference for the null result over the standard model prediction depends

on the accuracy of the new AAΩ result. We test the robustness of the AAΩ result in §3.6.

3.5.4 χ2 fits

For completeness, we also quantified the goodness-of-fit of our measurements to the ex-

pected ISW signal or null result hypothesis by calculating the chi-square, χ2, which uses

the normal size bin as shown in Fig. 3.3 and takes into account the possible correlation

of the bins through the use of the covariance matrix (§3.4). The χ2 is given by

χ2 =
∑

i,j

C
−1
ij [wgT (θi) − wISW

gT (θi)] · [wgT (θj) −wISW
gT (θj)] (3.19)

where C
−1
ij is the inverse of covariance matrix, wgT (θi) is the measured angular cross–

correlation and wISW
gT is the theoretical expectation assuming the standard ΛCDM cos-

mology (see Fig. 3.3) which can be replaced by zero when testing the zero correlation

hypothesis. Using the galaxy linear bias, bg, and N(z) for each sample as as mentioned in

§3.5.2, the χ2 tests were performed for the angular bins between 12′–120′, inclusively. The

lower limit is set approximately to the best WMAP5 resolution in the W band (≈ 12′).

The significances obtained from the χ2 method generally confirmed the results using

the 12′–120′ bin, especially those of the main LRG samples. For example, assuming
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standard model parameters, the SDSS-W band results give χ2=19.4 for the predicted

ISW signal and 17.7 for the zero correlation hypothesis. For the 2SLAQ results, using the

standard model gives χ2 = 13.2 and relative to the null result gives χ2 = 11.5. These χ2

were computed for 6 degrees-of-freedom (d.o.f), i.e. 6 angular bins were used in computing

the χ2. Using the χ2 distribution, the SDSS results deviate from the ISW model and null

result at 4 and 7 per cent statistical significance, respectively. The 2SLAQ results agree

with the ISW model with the reduced chi-square, χ2/d.o.f., of order of unity and reject

the zero correlation hypothesis at 1.5σ significance. The AAΩ results gave χ2 = 11.7

and χ2 = 4.4 for the ISW model and null correlation respectively, corresponding to the

chances of agreement of 7 per cent and 62 per cent. These all agree reasonably well with

the large-bin significances presented in Table 3.1. However, similar χ2 significance tests for

the combined sample and some ILC individual samples did not perform very consistently,

occasionally giving pathological results and poor agreement with the 12′–120′ bin and this

is why we have only quoted the simpler, single large-bin significances in Table 3.1.

3.6 Robustness tests

Given that the AAΩ LRGs comprise a new sample, there is no previous measurement

that can be directly compared to our own. We now present the result of tests we have

done in order to check the robustness of our new result.

3.6.1 Random realisations and simulated CMB Maps

Here we generate 100 random realisations for each of the samples. Each realisation has the

same number density as the sample it tries to mimic. Note that these random realisations

are not clustered. The results are shown in Fig. 3.5. The jack-knife errors that we use

are seen to be much larger than the standard deviation of the random catalogues (inner

green shaded region). This is expected because the random catalogues are not clustered

unlike the LRGs. The means of these random realisations are consistent with zero and

show no sign of bias except perhaps at the smallest scales of the SDSS sample.

We have also made simulated CMB temperature anisotropy maps and cross-correlated

these with the three LRG samples. A simulated CMB map is generated as a realisation

of random Gaussian fields on a sphere with the fluctuation characterised by WMAP5

best-fit power spectrum. The simulated maps are also convolved with a Gaussian beam

with FWHM similar to the WMAP W -band, i.e. 12.′6. The cross–correlation results are
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Figure 3.5: The cross–correlation results (diamonds) of three LRG samples and their jackknife errors (1σ) compared to the results

of using 100 random realisations of each LRG sample (inner green shaded region) and 100 simulated CMB maps (outer grey shaded

region). The shaded area signify a standard deviation in the measurement of 100 realisation for each case. Note that the means of

these random realisations are consistent with zero as can be seen from their symmetry about the zero line. The solid line is again

the theoretical prediction of the ISW signal in standard ΛCDM model.
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shown in Fig. 3.5. The standard deviation of 100 CMB random realisations (outer grey

shaded region) are roughly consistent with our jackknife estimates especially at small and

intermediate scales but somewhat larger at large scales.

3.6.2 Photometry test

Next, we look to see if the AAΩ cross-correlation measurement is robust by comparing

the result from the SDSS ‘ubercalibration’ of Padmanabhan et al. (2008) with that from

the standard SDSS calibration. Fig. 3.6 shows that the results are stable to whichever

calibration we used. We further looked for systematic effects in the original photometry by

weighting SDSS stripes according to their overall number density. The physical motivation

for this arises from the SDSS observing strategy and the fact that a slightly different

calibration for different nights could affect the source density as a function of the SDSS

stripe, given our faint limit. We observe a hint of these variations although not at a high

level and use these to correct the source densities in each stripe as mentioned. However,

such variations seem to be weaker when using the ubercalibration as opposed to the

standard one. The result of weighting according to the stripe number density is shown

in Fig. 3.6 and again the result appears robust when this filter is applied to the original

data.

Although we work at a relatively high galactic latitude, it is possible that in some

regions of the sky, high galactic dust obscuration could result in lower numbers of pho-

tometrically detected objects. Furthermore, that same dust obscuration patch could be

a source of contamination in the CMB data in the sense that the temperature in that

particular region could be systematically raised by the dust emission and hence results

in a false anti-correlation. To test this, we exclude the region where the extinction is

greater than 0.1 mag in the i-band which discards ≈ 15 per cent of the data. We observe

no difference to our main results, even when a more aggressive limit, iextinction < 0.08 (23

per cent discard), is applied (see Fig. 3.6). Note that when similar tests are performed

using extinction in the SDSS r-band instead, we again obtain results which are consistent

with those presented in §3.5 for all three LRG samples.

We then cut back the i-band limit of the AAΩ sample in 0.25 mag steps from i = 20.5

to i = 20.0 while keeping the other conditions the same. These results are compared

with the result at i < 20.5 in Fig. 3.7. Again the results appear robust. We have also

made tests of the single epoch SDSS photometry using deeper Stripe 82 (Abazajian et al.,

2009) and the William Herschel Deep Field (WHDF, Metcalfe et al. 2001) data. Both
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Figure 3.6: The cross-correlation of the AAΩ LRG to W-band data using the original

SDSS photometry (diamond) compared to the measurements using ‘ubercalibration’ (dot-

dash line), the stripe weighted (dotted line) and when the data is restricted to the region

where galactic extinction in i-band less than 0.1 (dot-dot-dot-dash line) and 0.08 (long

dashed line) magnitude.

these comparisons showed that the SDSS photometry in r, i and z bands showed good

agreement with the deeper data until the errors showed a significant increase beyond the

limits r = 22.0, i = 21.0 and z = 20.2.

3.6.3 Star–galaxy separation

We noted in §3.2 that the stellar contamination in our AAΩ-LRG sample could be as

high as 16 per cent. Care should therefore be taken when analysing this dataset. We

obtained this contamination fraction using the information learned from the AAΩ-LRG

spectroscopic survey (Ross et al., 2008b), by imposing a star–galaxy separation in the

z-band similar to the method applied in the SDSS- and 2SLAQ-LRG redshift surveys

using the i-band. Our optimised star–galaxy separation procedure selects objects with

zpsf − zmodel > 0.53 + 0.53(19.0 − zmodel) which only loses genuine LRGs at a sub-percent

level and leaves ≈16 per cent stellar contamination in our sample, as quoted earlier.

The effect of stellar contamination distributed at random in the sample is simply a

dilution of the over/under density hence reducing the autocorrelation amplitude of the

sample by (1−f)2 and the cross–correlation by a factor of (1−f) where f is the fraction of
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Figure 3.9: The cross–correlation of the W -band data and the 2SLAQ LRG when a

sample of random realisation of ≈16 per cent is added to the LRG catalogue (diamonds).

The results using original 2SLAQ sample and when multiplied by 1− fs are shown as the

dot-dashed and dotted lines, respectively. The long-dashed line shows the result when the

16 per cent added contaminants are replaced by red stars. The result of cross–correlating

the ILC map with the 16 per cent–red star contaminated 2SLAQ sample is also shown

(solid line).

the contamination. This is true if the contamination is distributed uniformly at random

in the sample. However, if there is some spatially dependent variation of the number

density, a further systematic effect could arise through this process. To test this, we first

check to see if there is a trend of the number density as a function of galactic latitude as

one might expect for stellar contamination. Although a slight such trend is observed, it

is at no more than the levels observed in the SDSS and 2SLAQ samples (see Fig. 3.8)

whose stellar contamination fractions are approximately 1 and 5 per cent, respectively.

Next we restrict the data to the high galactic latitude regions, namely b > 40◦, 50◦ and

60◦. The results are in good agreement with our main results for all three LRG samples

up to b > 60◦ where the cross–correlations become noisy due to the 75 per cent reduction

in the sample sizes.

To simulate the effect of the stellar contamination on the LRG–CMB cross–correlation,

we have introduced a set of random realisations into the 2SLAQ sample. The result is

presented (diamonds) in Fig. 3.9 along with the cross–correlation of the original 2SLAQ
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sample (dot-dashed line) and the result of reducing its amplitude by a factor of (1 −
0.16) (dotted line). Furthermore we would like to check for any effects that may arise

from possible large scale clustering of the stars. This is done by adding a sample of

red stars to the 2SLAQ LRG sample at the 16 per cent level. The stars are selected with

similar colour–magnitude criteria to that of the AAΩ LRGs and should mimic the angular

distribution and properties of the stellar contaminants seen in the sample. The result is

shown in Fig. 3.9 (long-dashed line). This test should also reveal any possible effects

on the wgT ’s due to (if any) correlation between these stars and the CMB. We found

the 16 per cent–red star contaminated 2SLAQ result to be consistent with the dilution

of randomly distributed contaminants case. The result is also consistent with the cross–

correlation with the foreground reduced ILC map (solid line), further confirming that our

result is not affected by any star–CMB cross–correlation. Note that the significance test

presented in Table 3.1 has already taken into account such an effect by multiplying the

ISW model by a factor of (1 − 0.16). The significance of the AAΩ sample’s rejection of

the standard model ISW prediction is therefore robust against the stellar contamination

discussed here.

We next attempt to reduce the stellar contamination fraction by imposing a more

aggressive star–galaxy separation cut which result in nearly halving the number of genuine

AAΩ LRGs. The cut is a combination of the fitted ‘de Vaucouleurs’ radius as a function

of zdeV magnitude and the correlation between the ‘de Vaucouleurs’ and fiber magnitudes

in z-band. This reduces the contamination to ≈9 per cent. Fig. 3.10 (top panel) shows

the cross–correlation of this sample with the W -band data which is in good agreement

with our main result.

The contamination fractions of these samples are verified by their angular autocor-

relation functions, wgg(θ). The corrected wgg(θ) is shown in bottom panel of Fig. 3.10.

This is again in good agreement with the 16 per cent contaminated sample and consistent

within ≈ 1σ of the Ross et al. (2008b) power–law fit to the semi–projected correlation

function, wp(σ). Note that we only expect the agreement in the range r ≈1–15 h−1 Mpc

where a single power-law is a good fit to the data. The measured wgg’s are also consistent

with the results when restricting galactic latitude to greater than 40◦, 50◦ and 60◦. We

believe the slight discrepancy with the wp(σ) is due to the noisy measurement from the

small number of spectroscopically confirmed LRGs used in Ross et al. (2008b) and not

caused by the under–estimation of the contamination level as demonstrated by our two

independent approaches for star–galaxy separation.
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Figure 3.10: (top) The AAΩ LRG–WMAP5 cross–correlation of the 9 per cent stellar

contaminated sample (asterisks) compared to the main AAΩ sample used in our study

(diamonds). (bottom) The corrected autocorrelation functions of the 9 per cent– and

16 per cent–contaminated samples (asterisks and diamonds). These are compared to the

results of limiting the 9 per cent–contaminated sample to the regions with galactic latitude

higher than > 40◦, 50◦ and 60◦. The dashed-line and shaded region is the wgg(θ) and

1σ error inferred from the wp(σ) measured from ≈ 400 spectroscopically confirmed AAΩ

LRGs (Ross et al., 2008b).
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Even if the contamination fraction is under-estimated, the effect of an increased (uni-

form) stellar contamination would be to increase the ISW model amplitude when the

bias value from the LRG autocorrelation is corrected upwards to obtain the true bias

value. This upwards shift in the ISW model would then be exactly cancelled by the

downwards correction to account for the dilution of the cross-correlation signal due to

stellar contamination.

We conclude that despite the faint magnitude limit, and moderate level of stellar

contamination (≈ 16 per cent) our ISW results for the AAΩ LRGs seem robust to the

tests we have made and the SDSS data seem accurate enough to support this ISW analysis.

Up to this point, we have therefore found no explanation in terms of a systematic effect for

the low AAΩ–WMAP5 cross–correlation result. Next, we shall perform a similar analysis

on some of the large-scale tracers whose ISW effect has been previously claimed in order

to test our methodology and look for other possible systematics in these samples.

3.6.4 SDSS galaxy–WMAP5

We next cross–correlate galaxies extracted from SDSS DR5 using r-band magnitude lim-

its. The objects are photometrically classified as galaxies by the SDSS reduction pipeline.

We subsample the galaxies in three magnitude ranges, namely, 18 < r < 19, 19 < r < 20

and 20 < r < 21, where all the magnitudes are galactic extinction corrected model mag-

nitudes. The subsamples contain approximately 2, 6 and 16 millions objects, respectively.

This is the same as Cabré et al. (2006, C06 hereafter) but covering ≈ 20 per cent more

area and we use WMAP5 rather than WMAP3. A similar r-band selected galaxy sample

was also used by Giannantonio et al. (2008, G08 hereafter) although these authors use

‘ubercalibration’ photometry rather than the original one and limit the sample photo-z

to redshift between 0.1–0.9. The ISW effect has been claimed to be detected in these

samples at moderate significance level by both C06 and G08 although their results do

not agree with the former having twice as much positive cross–correlation between the

CMB and the r-band selected galaxy sample. As a result C06 need to fit their result with

higher ΩΛ, for a galaxy bias b = 1.0.

For the cross-correlation analysis, we proceed in the same manner as with the LRG

samples. To compute the ISW model, we use the n(z) distributions following Dodelson

et al. (2002). The average redshifts inferred from the n(z) are estimated to be approxi-

mately 0.17, 0.24 and 0.33. We then follow our procedure for the LRGs and obtain the

galaxy linear bias from the measured amplitude of the galaxy 2-point autocorrelation
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function for each subsample. We obtain the values bg = 1.2, 1.1 and 1.2 for the sample

with r-band magnitude limit of 18–19, 19–20 and 20–21, respectively, in agreement with

the measurements of C06 and G08 whose bg ≈1–1.2. The cross–correlation measurements

and the theoretical models are presented in Fig. 3.11.

We marginally detected the correlation between the CMB data and all the r-band

selected subsamples. We shall now compare the 20 < r < 21 result in Fig. 3.11 to Fig.

2 (top) of C06. Our result is lower by a factor of ≈ 2 but very close to the re-analysis

of the SDSS r-band data of G08 who also found a factor of two discrepancy with C06.

After their discussions, the two groups found that the discrepancy is due to an extra

quality–cut imposed on the data by C06, namely, r-band magnitude error less than 0.2

mag. We regard the factor of two rise in the amplitude of the cross-correlation after

this small change in the magnitude error limit simply as symptomatic of the statistical

fragility of the result. We conclude that our re-analyses of these data agree well with the

standard ΛCDM predictions although the significance of rejection of the null result is still

only ≈1–2σ.

3.6.5 NVSS-WMAP5 cross–correlation

To test our methodology further, we performed a cross–correlation analysis of WMAP5

with radio sources from the NRAO VLA Sky Survey (NVSS; Condon et al. 1998) which

has been previously used by various groups for ISW studies. The NVSS sample comprises

about 1.8 million radio sources detected to a flux limit of ≈ 2.5mJy at 1.4GHz. The NVSS

covers the entire sky higher than −40◦ declination (≈80 per cent of the sky). Interestingly,

the previous study of Boughn and Crittenden (2002) found no correlation of these sources

with the Cosmic Background Explorer (COBE) CMB map but a later study by Nolta

et al. (2004) found a positive correlation with the first-year WMAP data which they

claimed to be the evidence for ΩΛ > 0 at 95 per cent confidence, assuming a flat CDM

cosmology. The re-analysis of the NVSS–CMB correlation by G08 also confirmed Nolta

et al. (2004) results at approximately the 3σ significance level.

For the cross–correlation analysis we restrict the data to the declination, δ ≥ −37◦

where the survey is the most complete. We then applied the masking and pixelisation

procedure described in §3.4 but for this sample we shall use lower resolution (res=6 as

opposed to res=9) HEALPix Górski et al. (2005) scheme to reduce the computing time

because of the much larger sky coverage of the NVSS. We checked that the measurements

using different resolutions do give the same results in terms of amplitudes and statistical
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Figure 3.11: The cross–correlation of W -band data with the r-band selected galaxies. The sample magnitude ranges are as indicated

in the plots. The ISW model prediction is shown for each sample, assuming Dodelson et al. (2002) n(z) with the measured bias of

1.2, 1.1 and 1.2 for 18 < r < 19, 19 < r < 20 and 20 < r < 21 sample, respectively.
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Figure 3.12: The cross-correlation of the NVSS sources to the W -band data. The ISW

prediction (red solid line), assumes linear bias of 1.5 (Boughn and Crittenden, 2002;

Giannantonio et al., 2008) and n(z) derived from Dunlop and Peacock (1990) radio source

luminosity function (mean-z model 1).

uncertainties (§3.6). The higher resolution (res=9) result shall be discussed in this section

but for the purpose of the systematics test in §3.7, we shall present the results using res=6.

Boughn and Crittenden (2002) noticed a number density trend with the declination

which affected their autocorrelation measurement. Following Nolta et al. (2004), we

applied a correction for this by splitting the sample into sin δ strips of width ≈ 0.1 and

scaling the galaxy numbers in pixels belonging to a particular strip by the ratio of global

mean to the strip mean. The cross–correlation procedure is then carried out as outlined

in §3.4 but the statistical uncertainties and covariance matrix are now estimated from

approximately 20 equal–area jackknifes rather than 24. The result using W -band data

along with the standard model ISW prediction (red solid line) is presented in Fig. 3.12.

The ISW predictions for the NVSS sources are computed using the number–redshift

distribution, n(z), derived from the radio source luminosity function (mean-z model 1)

of Dunlop and Peacock (1990). The median redshift estimated from such n(z) is ≈ 0.8

with a tail extending out to z ≈ 3. We assume the source bias, b, of 1.5 as measured by

a number of authors (e.g. Boughn and Crittenden, 2002; Giannantonio et al., 2008).

Fig. 3.12 shows that we find a marginally positive correlation similar to the prediction

of the standard model at scales smaller than ≈ 5◦ at ≈ 2σ significance. Our result can
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be directly compared with that of G08 who, like us, cross–correlate the source number

fluctuations to ∆T as opposed to the source number per pixel approach of Nolta et al.

(2004). Similarly, G08 observed a good agreement between their measurement and the

standard ΛCDM model which also starts to breakdown at ≈ 5◦. We take this agreement as

a further indication of the robustness of our cross–correlation methodology and analyses.

In the next section, we shall further test the NVSS–WMAP5 result for contamination by

systematic effects.

3.7 CMB Sky rotation test

Here we shall perform an additional test for systematics, similar to that used by Myers

et al. (2004) and Bielby and Shanks (2007) for testing their detection of the SZ effect,

particularly in checking the reality of a large scale temperature decrement around galaxy

groups and clusters. We follow these authors and rotate the WMAP maps around the

galactic pole in the clockwise direction, each time adding 40◦ to galactic ℓ. There is an

area very close to the pole where there is less movement from the rotation, but given that

we use a 40◦ shift the effect of this slight non-independence is small. We have checked

that if we cut out the circumpolar region down to galactic latitude b = 75◦ our results

are unaffected.

The CMB masks (KQ75 plus point source) are rotated with the temperature maps

to ensure that the contaminated regions are excluded from both galaxy and temperature

fluctuation maps. The SDSS DR5 mask is then applied to the data in the case of LRG

and r-band selected samples. The cross–correlation is performed using the W -band data

following the procedure described in §3.4. We use the cross–correlation results between

12′ < θ < 120′ where the difference between the ISW and null result is at its maximum

as in §3.5. The cross–correlations are then performed at eight 40◦ intervals.

3.7.1 LRGs

The cross-correlation measurements are presented in Fig. 3.13 (top panel). The errors

shown are jackknife errors (1σ) and as expected they are similar at all rotation angles

which makes the data points straightforward to compare. For the SDSS sample at z=0.35,

there is a higher positive point at rotation angle 40 degrees. For the 2SLAQ sample at

z=0.55 the points at rotation angles 160 and 240 degrees are more negative than the zero

degree point is positive. There is no reason to expect anything other than a null result at
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any rotation angle other than zero. Therefore, based on this rotation test the significances

are now reduced to the ≈ 12 − 25 per cent level, suggesting that systematics as well as

statistical errors may be affecting the data.

3.7.2 SDSS galaxies

We also applied the same test to the ISW results using three SDSS r-band selected galaxy

samples of 18 < r < 19, 19 < r < 20 and 20 < r < 21. The results are shown in Fig. 3.13

(middle). Again we see that there are rotation angles that show more significant non-zero

detections than at the zero degree rotation angle. We see that at 40◦ rotation angle, the

results are very negative in all three samples. At the rotation angle of 200◦, the results

are more positive than the zero degree rotation, again in all three samples. As for the

LRG samples, this means that the significance is reduced to a marginal ≈ 10 per cent

level and the results suggest that systematic effects as well as statistical errors may be

contributing to the apparent ISW detection at zero degrees rotation angle.

3.7.3 NVSS radio sources

We then applied the same test to the NVSS–WMAP5 cross–correlation result. (see Fig.

3.13, bottom). This time the point at rotation angle 280 degrees is more positive than

the point at zero degrees. As with other samples, the jackknife errors on all the points

are similar so this comparison is fair. Again we conclude that systematic effects may be

contributing to the apparent ISW detection which explains the reduction in statistical

significance to > 10 per cent from the rotation test.

3.8 Discussion

Given the consistency of the AAΩ and the combined LRG results with the zero correlation,

we now discuss whether there is any contradiction between our conclusions and those

of other authors. In particular, we discuss the results of G08 who claim a 4.5σ ISW

detection from the combined analyses of several large-scale tracers. These tracers include

some of the LRG samples. They also include NVSS radio sources. The most significant

detection in their Table 1 is from the NVSS at 3.3σ. Their LRG analysis gives 2.2σ

for a sample roughly equivalent to our 2SLAQ LRG sample. These compare to 1.6σ for

our 2SLAQ samples. For the NVSS we find a 1.8σ result. Their SDSS galaxy sample

gives 2.2σ equivalent to our combined SDSS r–band limited sample which gives ≈ 1.3σ
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Figure 3.13: The cross-correlation of the three LRG samples (top), r-band selected galax-

ies (middle) and the NVSS sources (bottom) to the rotated W -band data in our rotation

test (see text for more details). Note that for the top two plots, the points have been

shifted slightly in the x-axis for clarity.
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significance. Thus our significances appear lower than those of G08, particularly for NVSS.

This discrepancy increases when we consider the rotation test. In the rotation test of the

NVSS sample, 1 out of 8 points has higher amplitude than zero rotation measurement

which is only ≈ 1.5σ significance. For the 2SLAQ case, this gives 1–2 out of 8 points

which is equivalent to 1.2–1.5σ significance. The SDSS galaxy gives 2 higher (or lower)

points in 8 or ≈ 1.2σ.

The two methods G08 used to assess the significance of their results also show differ-

ences. Their Table 1 assumes the hypothesis of the standard ΛCDM model to obtain a

maximum likelihood amplitude, A, and an associated error from their data. This error is

different from the error that can be inferred from the χ2 statistic in their Table 2 which

tests the null result hypothesis. For example, their LRG result is 0.4σ significant from

Table 2 whereas it is 2.2σ significant from Table 1. Their SDSS galaxy sample rejects the

null result hypothesis at 1.3σ significance from the χ2 statistic, again lower than their

Table 1 at 2.2σ. Also the NVSS only reject the null result at 1.3σ rather than 3.3σ. We

assume that these differences may be due partly to different null hypotheses (see Francis

and Peacock, 2010, for a detailed discussion of the effect) and partly due to different

methodologies. Certainly, the levels of significance in their Table 2 are lower and more in

line with what our rotation tests show, i.e. 1–2 higher (or lower) points in 8 or 1.2–1.5σ.

It remains to be seen for the other samples in their Table 1 and 2, if the same pattern

applies with the maximum likelihood significances in Table 1 being higher than the χ2

significances in Table 2. We conclude that the rejection of the null result by their χ2

test may be more consistent with what we have found than the results in their Table 1.

Indeed their χ2 summed from all surveys is 67 on 74 degrees of freedom which is hardly

a significant rejection of the null result and can be compared to our overall rejection of

the null result of 0.5 to 1σ in our Table 2. Therefore as long as we refer to the χ2 test of

G08, there seems to be no inconsistency with our estimate of the significance of the low

rejection of the null result.

3.9 Summary and Conclusion

We have performed a cross–correlation analysis between the WMAP5 CMB data and

various large-scale structure tracers including our new high redshift AAΩ-LRG survey.

The summarised conclusions of our findings are as follows:

(i) We have found a null ISW result for z ≈ 0.7 AAΩ–LRG sample. The standard
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model is rejected at ≈ 2.2σ significance by this dataset.

(ii) We have confirmed the marginal correlations between WMAP5 CMB temperature

fluctuations and SDSS LRGs at z=0.35 and 2SLAQ LRGs at z=0.55.

(iii) The null result in the AAΩ–LRG sample at large scales is unlikely to be caused by

the negative contribution of the SZ effect, given its angular extent and the expected

amplitude of ISW signal.

(iv) We have made a range of tests on the AAΩ cross-correlation measurement which

confirms its robustness. These include moving the magnitude limits up to 0.5mag

brighter, removing areas of sky with significant dust absorption, using an estimate

of the cross-correlation that takes out any possible systematic effects due to SDSS

stripes and comparing the standard and uber-calibrations of the SDSS photometry.

We have also checked the effects of stellar contamination in our samples. All these

tests produce results consistent with our original measurements.

(v) We have also reproduced the cross-correlation results of most previous authors using

our techniques. In particular we have reproduced the marginally positive correlations

seen using SDSS magnitude limited samples of galaxies and NVSS radio sources.

(vi) However, rotation tests indicate that accidental alignment or some unknown sys-

tematics can give rise to a correlation signal comparable to and in many cases even

larger than the ISW signal itself. This suggests that the previous positive detections

may still be subject to unknown systematic effects.

(vii) Combining the new z̄ ≈ 0.7 LRG survey with the lower redshift LRG samples, the

overall cross–correlation result is now as consistent with a null detection as it is with

the standard ΛCDM model for both W -band and ILC data. For the ILC map, the

significance of rejecting the standard model is ≈ 2σ whereas the result is only 0.5σ

away from the zero correlation hypothesis.

(viii) Given the results of the rotation test on the SDSS and 2SLAQ LRG samples, the

support these give to the standard ISW model in the combined sample may have

even less statistical weight than indicated above.

(ix) There is a possibility that the absence of the ISW correlation in the high redshift

dataset is due to evolution of the dark energy equation of state. However, we regard

it as unlikely that evolution could take place over the short redshift interval between
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the 2SLAQ and AAΩ datasets. It is more plausible that the differences between

the redshift bins are purely statistical, particularly given the rotation test results.

We note that the individual positive detections that we have discussed are only

marginally statistically significant and the combined ILC dataset is more consistent

with zero than with the standard model prediction.

(x) If the ISW effect was generally absent then the impact on cosmology would be

large because this would be strong evidence against an accelerating Universe. This

would therefore argue against a significant role for a cosmological constant or dark

energy in the Universe. Moreover, the absence of ISW would also argue against

any modified gravity model which produced acceleration. The model which would

be heavily favoured would be an Einstein-de Sitter model with Ωm = 1. However,

if such a model had a critical density of exotic, CDM particles then there might

be a contradiction with the high baryon densities in rich galaxy clusters such as

Coma. This rich cluster ‘baryon catastrophe’ has previously argued against a high

CDM density because starting from Ωb/Ωm ≈ 0.03, it was difficult to understand

in a hierarchical model how to produce a 5× bigger baryon fraction in rich galaxy

clusters (White et al., 1993).

(xi) It is therefore important to repeat the LRG measurements made here, now in the

Southern sky. One opportunity to do this will arise from the new ESO imaging

surveys in the South which are about to start, the VST ATLAS and the VISTA

Hemisphere Survey. If the results we have found here are repeated then there could

be significant consequences for cosmology.



Chapter 4
Beam profile sensitivity

of WMAP CMB power

spectrum

4.1 Introduction

The Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al., 2003a) has produced

some of the best support for the standard ΛCDM cosmological model. By measuring the

first two acoustic peaks in the Cosmic Microwave Background (CMB) temperature power

spectrum it has shown that the Universe is spatially flat with (Ωm, ΩΛ) = (0.26, 0.74)

and H0 = 72 km s−1 Mpc−1 (Hinshaw et al., 2009; Spergel et al., 2007). The precision

of the fit is impressive and rules out many competing simple models such as the low H0,

Ωbaryon = 1 model of Shanks (1985, 2005, 2007).

Of course, statistically precise measurements can also contain systematic errors which

have to be guarded against. Such systematics include Galactic foregrounds which at the

least cause mode coupling due to the incomplete sky (e.g. Hinshaw et al., 2003b; Chon

et al., 2004). There are also potentially more subtle systematics that arise from cosmo-

logical foregrounds. For example, Myers et al. (2004) and Bielby and Shanks (2007) have

detected the SZ effect in the WMAP data by cross-correlating the CMB with rich cluster

positions. Shanks (2007) has also discussed the effect of foreground lensing, prompted

by quasi-stellar object (QSO) lensing results (Myers et al., 2003, 2005; Mountrichas and

Shanks, 2007). But SZ is unlikely to make a strong contribution to the first acoustic

peak (Huffenberger et al., 2004). Also lensing requires a high anti-bias between galaxies

and the mass distribution to have a significant effect at the first peak which needs to be

reconciled with measures of bias from galaxy clustering dynamics (e.g. Ratcliffe et al.,

1998b; Hawkins et al., 2003).

However, there are also many potential systematics involved with the WMAP instru-
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ment, although the WMAP team have taken care that the effects of such systematics

are minimised. One major potential systematic concerns the question of the WMAP ra-

dio telescope beam profile. We shall see that even at the wavenumber ℓ ≈ 220 of the

first acoustic peak, the WMAP CMB power spectrum has significant dependence on the

beam profile even in the highest resolution 94 GHz W-band. Here the W-band resolution

quoted by the WMAP team is 12.′6 FWHM which is roughly equivalent to ℓ ≈ 1800. It is

also noted that the beam is not Gaussian. Now the WMAP team have extensive papers

devoted to the important question of measuring the beam (Page et al., 2003b; Jarosik

et al., 2007; Hill et al., 2009). The standard method is to use WMAP observations of a

bright source such as the planet Jupiter to measure the beam profiles.

The layout of this chapter is as follows. The data used in this study are described

in §4.2. We then re-derive in §4.3 the beam convolved CMB power spectrum from the

WMAP data to show directly the effect of the beam. The new estimates of the WMAP

beam profiles using WMAP5 point sources and other tests including the robustness of our

method are presented in §4.4. In §4.5 we then make fits to the radio source beam profiles

and use these to debeam the WMAP5 data and explore the range of power spectra that

results. Our discussion and conclusions are then presented in §4.6.

4.2 Data

4.2.1 WMAP temperature maps

Here we use the five-year WMAP datasets which are available from the LAMBDA CMB

website. The maps from the individual detectors in 5 frequency bands, K, Ka, Q, V and

W are supplied. The FWHM of the 94-GHz W beam is 12.′6 compared to 19.′8 at V

(61 GHz), 29.′4 at Q (41 GHz), 37.′2 at Ka (33 GHz) and 49.′2 at K (23 GHz). There

are 10 differencing assemblies (DAs), namely K1, Ka1, Q1, Q2, V1, V2, W1, W2, W3

and W4. The different DA maps can be cross-correlated to obtain power spectra free

of uncorrelated detector noise bias (Hinshaw et al., 2003b). The Jupiter beam profiles

for each DA and the corresponding transfer functions are also given. The maps are in

HEALPix (Górski et al., 2005) format with Nside = 512 and Nside = 1024. These give

equal area pixels of dimension ≈ 7′ and ≈ 3′, respectively.
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Table 4.1: Summary of the WMAP sources listed as point sources in the Greenbank and

PMN 5-GHz catalogues.

Band ≥1.1 Jy < 1.1 Jy Total (> 2σ)

Q 182 165 347

V 164 153 317

W 97 84 181

4.2.2 WMAP point source catalogue

We use the radio sources drawn from the WMAP5 point source catalogue (Wright et al.,

2009). These sources have to be detected to > 5σ in at least one WMAP band and their

flux density is reported if they are detected at > 2σ in any of the other four WMAP

bands. This gives a list of 390 sources to a limit of ≈0.5 Jy in each band. The source

positions are accurate to ∼ 4′ (Wright et al., 2009). 365 out of 390 sources are pre-

detected at 4.85 GHz in the Greenbank (GB6) northern sky survey (Gregory et al., 1996)

and the Parkes-MIT-NRAO (PMN) surveys (Griffith and Wright, 1993). Here, we only

use WMAP5 sources with 4.85 GHz counterparts and exclude sources (12 out of 365) that

were found to be resolved at ≈ 4.′6 FWHM resolution of GB6 and PMN. Table 4.1 shows

the number of these sources in each band, also split into those brighter or fainter than

1.1 Jy.

From the optical identifications of Trushkin (2003) of the 208 WMAP first-year sources

the survey contains 77 per cent QSOs or BL Lac with the remainder being radio galax-

ies/AGN. This is as expected given the dominance of flat-spectrum compact sources at

the high WMAP frequencies.

4.2.3 NVSS radio sources

The NRAO VLA Sky Survey (NVSS) covers ≈82 per cent of the celestial sphere, including

all the sky north of δ > −40◦, at a frequency of 1.4 GHz (Condon et al., 1998) and 45′′

FWHM beam. It contains 1.8 × 106 sources with a sky density of ≈ 44 deg−2 to a flux

limit of ≈ 2.5 mJy. The uncertainties in the source positions vary from < 1′′ for S > 15

mJy point sources to 7′′ for the faintest detectable sources, S = 2.3 mJy. Here we used

samples limited to peak flux density > 1.0 Jy and δ > −37◦ which gives 1082 sources

outside WMAP5 ‘point source catalogue mask’ (Wright et al., 2009, see also Fig. 4.1).



4
.
W

M
A
P

b
e
a
m

s
e
n
s
it
iv
ity

1
2
8

Figure 4.1: WMAP5 W-band temperature map overlaid by the positions (open circles) of SW > 1.1 Jy point sources used in the

analysis. The temperature map has been smoothed with a 12.′6 FWHM Gaussian kernel. The grey region represents the WMAP5

‘point source catalogue mask’ (Wright et al., 2009).
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These low frequency selected sources are more likely to be extended than those selected

at higher WMAP frequencies. However, with the 45′′ FWHM beam their substructure

can be resolved into multiple components by NVSS. Overzier et al. (2003) (see also Blake

and Wall, 2002) made an auto-correlation analysis of the source positions which showed

evidence of multiple components to separation θ ≈ 6′ for the 0.5 Jy limited sample.

This suggests that even here the effect of multiple-component sources is likely to be

small even in the highest resolution W-band beam. Furthermore, Blake and Wall (2002)

showed that only ≈7 per cent of the S > 50 mJy sources were resolved into multiple

components by NVSS and the size distribution of θ > 2′ sources is a steep power-law,

f(θ) ∝ θ−2.4. However as a precautionary measure, we shall also exclude any source that

has neighbouring source(s) within 1◦. This leaves 933 S > 1.0 Jy sources for the WMAP

beam analysis.

4.2.4 Ground-based 90-95GHz Radio Sources

We shall compare WMAP W-band fluxes with ground-based radio source fluxes from the

Australia Telescope Compact Array (ATCA; Sadler et al., 2008) and the IRAM 30-m

radio telescope (Steppe et al., 1988). The ATCA survey was made at 95 GHZ and the

IRAM survey at 90 GHz. The ATCA survey was based on sources selected from the

Australia Telescope 20 GHz survey. Of the 130 sources observed, 17 were detected at

more than 2σ by WMAP5. The IRAM survey observed 294 sources at 90 and 230 GHz,

targeting sources which are brighter than 1 Jy at 5 GHz. Here 66 sources were detected

at more than 2σ by WMAP5. At these high frequencies the sources are mainly QSOs, BL

Lacs or blazars. Many of the sources in the ATCA and IRAM surveys are variable and so

where this is an issue we shall use the average source fluxes in our comparison with the

WMAP fluxes.

4.3 Deriving the beam convolved Cℓ

We now analyse the WMAP data to make an initial estimate of the power spectrum

and to highlight the effect of the finite beam width using the WMAP highest resolution

(band) data. To reduce the effect of correlated detector noise which would result from

an auto-correlation of an individual CMB map, we make a cross-correlation of the maps

from different DA’s (Hinshaw et al., 2003b). Here, we use the five-year W1 and W2

temperature maps with the HEALPix resolution 9.
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We derive the cross-power spectra by using PolSpice code (Chon et al., 2004) which

is a generalisation of SpICE (Spatially Inhomogeneous Correlation Estimator; Szapudi,

Prunet, and Colombi, 2001) to include the analysis of CMB polarization. The code

calculates a pixel space two-point correlation function via a fast spherical harmonics

decomposition, which is then transformed to give an estimate of the power spectrum. Note

that the algorithms employed by the code is mathematically equivalent to a ‘pseudo-Cℓ’

estimator (for a review of different power-spectrum estimators see Efstathiou, 2004). The

default WMAP5 ‘temperature analysis mask’ (KQ85; Nolta et al., 2009; Gold et al., 2009)

is used to exclude the foreground-contaminated regions of the sky. The cut-sky corrected

angular power spectrum, C ′

ℓ, is then obtained directly from PolSpice. Hereafter, we shall

call an angular power spectrum after a cut-sky and pixel transfer function (see Eq. 4.2)

correction a ‘beam convolved Cℓ’.

In Fig. 4.2, we immediately see that the beam convolved Cℓ (green line) is not only

drastically smoothed at the position of the second and third peaks but there is also a

significant effect at the position of the first peak at ℓ ≈ 220 in that the amplitude of the

standard ΛCDM result (blue line) is ≈ 70 per cent higher. The reason for this is seen in

Fig. 4.3(f) where the beam profile from the Jupiter observations using the W1 detector

are shown. It can be seen that the beam is not Gaussian and has a θ−3 power-law tail

out to > 1◦. Hill et al. (2009) give the relation between the beam transfer function, bℓ,

and the normalised symmetrised beam profile, bS(θ), as,

bℓ = 2π

∫
bS(θ)Pℓ(cos θ)d cos θ/ΩB, (4.1)

where ΩB is the main-beam solid angle and Pℓ(x) is Legendre polynomial of order ℓ.

The debeamed cross-power spectrum measured from DA i and j is then determined

from the measured C ′

ℓ by

Cℓ = C ′

ℓ/b
i
ℓb

j
ℓp

2
ℓ , (4.2)

where pℓ is the pixel transfer function supplied with the HEALPix package. For Nside =

512, the pixel window function lowers the measured C ′

ℓ by ≈ 1 and 10 per cent at ℓ ≈ 200

and 500, respectively.

If we use Eq. 4.2 with the Jupiter beam transfer function from the WMAP team, we

find that we get back to the usual ΛCDM model (green and orange lines in Fig. 4.13).

The black line shows the Cℓ measured from a full-sky CMB simulation (WMAP5 best-fit

ΛCDM model) after smoothing by a Gaussian beam, using synfast (Górski et al., 2005).
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Figure 4.2: The beam convolved Cℓ measured from cross-correlating W1 and W2 maps

(green line) compared to the standard debeamed WMAP result (blue line) as presented

by Nolta et al. (2009). Also shown are Cℓ measurements of a full-sky CMB simulation

(WMAP5 best-fit ΛCDM model) smoothed with a 12.′6 FWHM Gaussian beam (black

line), and a similar simulation now smoothed with the W1 and W2 Jupiter beams (red

line). Although the beam convolved Cℓ (green) and the Jupiter beam-smoothed standard

simulation Cℓ (red) agree, the difference between these and the Nolta et al. result (blue)

shows the large effect of debeaming even at the scale of the first acoustic peak.
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The red line shows the effect of the similar simulation now smoothed with W1 and W2

Jupiter beam profiles (Hill et al., 2009). The latter shows excellent agreement with our

beam convolved Cℓ measured from the real W1 and W2 maps. The W1-W2 cross-Cℓ is

noisier than the simulation due to radiometer noise in the data. The effect of the Jupiter

beam compared to the Gaussian beam is thus very significant in decreasing the height of

the first peak. We also see that when the Jupiter beam is used, the ΛCDM model does

give an accurate fit to the beam-convolved Cℓ. Thus when we use the same parameters

as the WMAP team, we reproduce the WMAP result.

4.4 Testing the WMAP beam profile

4.4.1 Beam profiles via WMAP point sources

We then estimated a beam from the radio sources by making a stacking analysis of

WMAP5 temperature maps around radio source positions. Extended foreground emission

regions are excluded from the temperature maps using the ‘point source catalogue mask’

(Wright et al., 2009, see Fig. 4.1). We calculated the average ∆T (per 49 arcmin2 pixel)

in annuli as a function of angular distance, θ, between radio source position and the pixel

centre. In the first instance we show the raw cross-correlation function for the Q, V and

W bands in Fig. 4.3(a)-(c), split into bright (≥ 1.1 Jy) and faint (< 1.1 Jy) WMAP5

source subsamples. The errors on the radio source profiles are jackknife errors. These are

estimated from six approximately-equal-area subfields,

σ2JK(θ) =
NJ − 1

NJ
×

NJ∑

i′=1

[∆Ti′(θ) − ∆T (θ)]2 (4.3)

where NJ = 6, and ∆Ti′ is the stacked temperature measured from all except the ith

subfield. The multiplication by a factor NJ − 1 reflects the fact that the six re-sampling

fields are not entirely independent.

We see that the fainter source profiles appear to agree with the brighter source profiles

at scales of θ ≈ 30′ but have significantly lower peak values. This is most clearly shown

in the un-renormalised profiles shown for the bright and faint Q, V, W band sources in

Fig. 4.3(a)-(c). Although noise may be an issue for the faintest sources, this suggests that

there may possibly be some form of non-linearity in the WMAP beam. We also note that

the raw profiles from both bright and faint sources show a positive offset at the 0.01-0.02

mK level. The offset shows an increasing trend from 1◦ − 5◦. The main uncertainty in
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Figure 4.3: (a-c) The raw radio source beam profiles for the WMAP sources compared to the beam profiles from Jupiter (blue solid

lines) and random realisations (dotted lines) for Q1, V1 and W1. (d-f) The zero-offset subtracted (see text) and normalised beam

profiles for Q1, V1 and W1. The radio source profiles for all compact WMAP sources are shown as diamonds. Profiles derived

from WMAP sources with flux brighter (fainter) than 1.1 Jy are shown as asterisks (stars). A Gaussian is shown as a magenta

dot-dashed line and empirical fits to the radio source profiles are shown as orange and green dashed lines.
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estimating WMAP beam profiles from these data is in subtracting this offset at scales

> 1◦.

Since WMAP has significant sidelobes stretching to ≈ 90◦ (Barnes et al., 2003), there

was a possibility that the offsets are also part of the beam. However, when we distributed

points at random in the masked region and used these as our centres for our stacking

analysis we also found a similar offset [dotted lines in Fig. 4.3(a)-(c)]. This makes it look

like the offset is not associated with the existence of sources and hence not associated with

the WMAP beam. Our Monte Carlo simulations (see §4.4.2) shows that these offsets are

caused by the CMB fluctuations. We therefore employed a ‘photometry’ approach for the

stacking analysis where we have subtracted the WMAP flux in an annulus at 1◦ < θ < 2◦

for the W band and proportionately bigger annuli in the V and Q bands. Using sky annuli

close to the sources will clearly improve background subtraction in the presence of local

background fluctuations.

The resulting WMAP radio source beam profiles for Q, V and W bands are shown in

Fig. 4.3(d)-(f). The profiles have been renormalised (≈ 10 per cent statistical uncertainties

in the normalising factors) to fit the peak in the WMAP Jupiter beam profile at θ < 4′.

For each band we also compare the profiles to a Gaussian beam with the FWHM as

indicated in the plot. We see that on average the profiles from the radio sources are

broader than the Jupiter profile in the W, V and Q bands. In the lower frequency, lower

resolution K and Ka bands the radio source profiles fit the Jupiter beam better, indeed

almost perfectly (not shown here). Clearly, given the size of the errors there is little

information from the radio sources on the beam profile at θ > 30′. Fig. 4.3 again shows

the WMAP radio sources divided into faint and bright sources, split at 1.1 Jy. In the W

and V bands particularly we again note that the fainter sources appear to be wider than

the brighter sources. We also find similar results for W2, W3, W4, V2 and Q2 but choose

not to include them here for clarity. These deviations from the WMAP Jupiter beam are

puzzling and we now check to see if they could be caused by systematics.

We first checked the effect of pixelisation on the sources by using the smallest HEALPix

pixels with Nside = 1024 (i.e. dimension ∼ 3′). There were no differences seen in the

results. Furthermore, the convolution with Nside = 512 pixel window function (magenta

dot-dashed lines in Fig. 4.5) is also too narrow to explain the discrepancy between the

Jupiter beam of the WMAP team and our measurements.

Many of the WMAP sources show flux variability from year to year (Wright et al.,

2009). To test that this does not affect our beam measurements, we exclude sources which
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Figure 4.4: The W1 beam profile measured using the SW ≥ 1.1 Jy point sources which

are not flagged as variable source (magenta circles), comparing to the main result (red

asterisks) as shown in Fig. 4.3(f)

have been found to be variable. These sources are flagged with ‘v’ and ‘V’ in Table 1

of Wright et al. (2009). For the S ≥ 1.1 Jy samples the number of objects remain after

the variable source exclusion are 29, 60 and 72 for W, V and Q-band, respectively. The

resulting beam profiles are consistent with the results derived earlier. Fig. 4.4 shows the

W1 beam profile measured using the non-flagged subsample. Our beam measurement

appears to be unaffected by the fact that majority of these bright sources are variable.

However, the variability of the sources’ fluxes may contribute to larger statistical errors

of the beam measurements.

Next, we check the likely contribution of radio source clustering to the beam profiles,

using the clustering analysis of the NVSS radio survey by Overzier et al. (2003). At

S ≥ 200 mJy where the sky density of NVSS sources is n ≈ 0.6 deg−2,

w(θ) = 3 × 10−5θ−3.4 + 6.6 × 10−3θ−0.8. (4.4)

This is a 2-power-law form which changes slope at θ ≈ 0.1◦. At smaller scales, double-

lobed radio sources split into two components dominate while at larger scales source-

source clustering dominates. We estimate the contribution of sources by first calculating

the excess number of sources in an annulus of area ∆A at radius θ from an average

source, Nex(θ) = w(θ)n∆A. The excess flux/temperature per unit area in the profile in
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the annulus is then given by ∆Tex = Nex× f̄/∆A where f̄ is the average source flux. For

a Gaussian point source of central intensity/temperature per unit area, T0, and width, σ,

the flux is 2πσ2T0. Therefore in this case,

∆Tex(θ) = w(θ)2πnσ2T0. (4.5)

Substituting in the above values for n and W at θ = 0.5◦ with σ = 5.′4 as for the W band

we find ∆Tex ≈ 3 × 10−4T0 which is a negligible contribution in explaining the excess in

Fig. 4.3f at this scale, if T0 is taken to be the central profile value. Taking the parameters

for 100 mJy from Overzier et al. (2003) makes the effect even smaller. These results are

also likely to be upper limits for the WMAP sources which only have a density of n ≈ 0.01

deg−2 and an average 95 GHz flux of 500 mJy. Note also that there is no object in the

W-band point-source list which lies within a degree of the other sources in the same list.

We conclude that radio source clustering is not likely to be an issue for our radio source

beam profiles.

Wright et al. (2009) noted that the faint WMAP5 sources show a selection effect

and flux density bias arising from possible coincidence with CMB peaks, i.e. Eddington

bias. Therefore one might suspect that their positions and widths could also be affected

by CMB fluctuations as well. To check that such a bias does not affect our beam pro-

file measurements, we use a combination of (a) purpose-made simulations and (b) radio

sources pre-selected at frequencies far from the WMAP bands.

4.4.2 Monte Carlo simulations

We made 100 Monte Carlo simulations to check our method and the robustness of the

results. We followed the procedures described by Wright et al. (2009) (see also Chen and

Wright, 2009). For each set of simulation, 106 point sources are generated with a power-

law distribution, N(> S) ∝ S−1.7, at WMAP Q-band (Bennett et al., 2003c; Chen and

Wright, 2009). Their spectral indices, α, are drawn from a Gaussian distribution with

a mean -0.09 and standard deviation 0.176 as characterised by WMAP5 point source

catalogue (Wright et al., 2009). The flux density for each object is scaled to the centre of

the other four bands using the relation Sν ∝ να. The source positions are then randomly

distributed on the sky and each source is assigned to a pixel in a HEALPix res=11 map.
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For a source with flux density Sν , the peak antenna temperature difference is given by

∆Ta = Sν

(
Ω
∂Bν

∂T

∣∣∣∣
T0

)−1
x2ex

(ex − 1)2

= ∆Tt
x2ex

(ex − 1)2
, (4.6)

where Bν is the Planck function, Ω = 2.5 × 10−7 sr is a solid angle of res=11 pixel,

x = hν/kT0, h is the Planck constant, k is the Boltzmann constant, T0 = 2.725 K is the

CMB temperature (Mather et al., 1999) and ν is the frequency which we use the values

given in Table 1 of Hinshaw et al. (2009). Eq. 4.6 gives ∆Ta ∝ νβ where β = α − 2,

following the notation convention (see e.g. Bennett et al., 2003b; Hinshaw et al., 2009).

The publicly available WMAP maps (§4.2) are given in thermodynamic temperature, ∆Tt

(Limon et al., 2008). For a direct comparison with our results, we thus use ∆Tt and not

∆Ta in the simulations.

Five temperature maps, one for each band, are then smoothed with the corresponding

WMAP beam transfer function (Hill et al., 2009) before being downgraded to res=9.

The simulated CMB temperature map (smoothed with an appropriate beam transfer

function) constructed from WMAP5 best-fit Cℓ and pixel noise are then added to the

source temperature maps. The pixel noise is modelled as a Gaussian distribution with zero

mean and standard deviation σ = σ0/
√
Nobs, where Nobs is the number of observations in

each pixel and σ0 is given for each DA and frequency band (Limon et al., 2008). Before

we proceed further, we check our stacking technique as described in §4.4.1 by applying

it to the simulated Q1, V1 and W1 maps using the known source positions. The results

for sources with SQ,V,W > 1 Jy and 0.3 < SQ,V,W < 1 Jy are shown in Fig. 4.5. The

figure shows that the beam profiles can be accurately recovered using both bright and

faint sources once the pixelisation effect has been taken into consideration (magenta dot-

dashed lines).

Next, we applied the five-band detection technique following procedures utilised by

WMAP team (Bennett et al., 2003c; Hinshaw et al., 2007, 2009). Firstly, the temperature

maps are weighted by the number of observations in each pixel, N
1/2
obs T . The weighted

map is then filtered in the harmonic space by (e.g. Tegmark and de Oliveira-Costa, 1998;

Refregier et al., 2000)

Wℓ = bℓ/(b
2
ℓC

CMB
ℓ + Cnoise

ℓ ), (4.7)

where CCMB
ℓ is the CMB power spectrum and Cnoise

ℓ is the noise power, and bℓ is the

beam transfer function (Hill et al., 2009). The filter is designed to suppress fluctuations
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Figure 4.5: The simulated beam profiles using radio point sources. The results for bright and faint sources are shown as asterisks

and stars, respectively. The error bars are 1σ rms of 100 simulations. The raw measurements before background subtraction

and normalisation, akin to the top row of Fig. 4.3 are shown in panel a), b) and c). The effect of finite pixel size on the profile

measurement is shown by the magenta dot-dashed lines. The green and orange dashed lines are the empirical fits to the real point

source measurement as shown in Fig. 4.3
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Figure 4.6: The filtering functions Wℓ used to detect point sources in Q, V and W-band

temperature maps (red dot-dashed, dashed and solid lines, respectively). The blue and

green lines show contributions from the CMB and noise fluctuations, following the same

line symbols as Wℓ.

due to the CMB at large scales and pixel noise at scales smaller than the beam width.

The filtering function, Wℓ, for Q, V and W bands are shown in Fig. 4.6 as red dot-dashed,

dashed and solid lines, respectively. We used the WMAP5 best-fit Cℓ for CCMB
ℓ (blue

lines). The Cnoise
ℓ (green lines) are determined from pixel noise maps constructed using σ0

and five-year Nobs for each band as described above. Note that the derived noise power

is consistent with the analytic formula given in Tegmark and Efstathiou (1996) where

Cnoise
ℓ = Ωpixσ

2
0/ < Nobs >.

We then search the filtered maps for peaks which are > 5σ. Peaks detected in any

band are fitted to a Gaussian profile plus a planar baseline in the unfiltered maps for

all other bands. The recovered source positions are set to the best-fit Gaussian centres

in W-band. The best-fit Gaussian amplitude is converted to antenna temperature, using

the relation given in Eq. 4.6, and then to a flux density using conversion factors, Γff (ν),

given in Table 4 of Hill et al. (2009). Note that the Γ(ν) factor can also be determined

using Eq. 4.6 but with the pixel solid angle replaced by that of the beam (e.g. Page et al.,

2003b). In any given band, we only use sources that are > 2σ and the fitted source width

smaller than 2x the beam width, following the WMAP team. The number of detected

sources is 352 ± 30 using 100 realisations, consistent with WMAP5 point source analyses
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Figure 4.7: The integral counts, N(> S), of the detected sources in Q (a), V (b) and W

(c) bands from 100 simulations (coloured solid lines). On average, the recovered N(> S)

are in good agreement with the WMAP5 point source catalogue (magenta circles) and

the input power-law distribution in Q-band (red dashed line) for S > 1 Jy.

by Wright et al. (2009) and Chen and Wright (2009). Fig. 4.7 shows that on average the

integral source counts, N(> S), detected in our simulations (diamonds with error bars)

are in good agreement with WMAP5 (magenta circles). Our simulations also recover the

input power-law N(> S) distribution (red dashed line in Fig. 4.7a) down to the expected

WMAP5 limit, S ≈ 1 Jy, remarkably well.

For each simulation we applied our beam profile analysis outlined in §4.4.1. The

average beam profiles derived from 100 simulations are plotted in Fig. 4.8 where the error

bar represents their standard deviation in each angular bin. We found that even profiles

as narrow as the W-band Jupiter profile can be retrieved remarkably well out to 30′. The

flux dependence of measured profiles were small with only a hint of possible Eddington

bias in the faintest bin. The estimated uncertainties using these Monte Carlo simulations

are consistent with our Jackknife error estimation presented in §4.4.1. Note that the

Monte Carlo error converges after ≈60-70 simulations. The Monte Carlo simulations

we performed here suggests that our method for recovering beam profile by stacking

temperature maps around point sources is robust and the Jackknife error estimation is

reliable.
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Figure 4.8: Same as Fig. 4.5, but now the stacking analysis are centred on the sources which are detected in the simulations following

WMAP team’s five-band detection method. The error bar is a standard deviation of the 100 simulations. The number indicated in

the plots are the recovered source numbers averaging over 100 simulations.
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4.4.3 NVSS radio sources

Point source catalogues made at significantly lower frequencies than the WMAP bands

are unlikely to be affected by Eddington bias, if identification is done independently of the

WMAP5 point source catalogue. For example, point source selected at 1.4 GHz will have

antenna temperature ≈ 4500x higher than a source with similar flux density selected

at W-band (≈ 94 GHz), i.e. Ta ∝ Ω−1
beamν

−2, whereas the rms antenna temperature

due to the CMB fluctuations stays roughly the same between the two frequency bands

(e.g. Bennett et al., 2003c). The NVSS beam width is ≈ 15x (§4.2.3) smaller than the

WMAP highest resolution band, W, thus the factor quoted above is likely to be at least

another factor of ≈ 200x bigger. Therefore we now stack WMAP5 temperature data

centred around the positions of the 1082 S1.4 > 1 Jy NVSS point sources (§4.2.3). Fig. 4.9

shows the resulting Q1, V1 and W1 profiles. We see that they are consistent with those

measured using WMAP5 total/bright sources presented in §4.4.1. However, the profiles

do not appear to be wider or at least not as wide as the WMAP5 faintest subsample given

that the average flux (at WMAP bands) of the NVSS sample is ≈ 3x lower. Although

one might be inclined to suggest that the beam measured using the WMAP faintest bin

is affected by Eddington bias, the faint data are rather noisy and this conclusion is not

supported by the simulation results found in the last section.

In §4.4.1, WMAP5 sources used in the analysis had to be pre-detected in the GB6

or PMN 5-GHz surveys which already reduces somewhat the effect of Eddington bias.

We now check the robustness of this result by imposing a more conservative matching

threshold to a GB6 or PMN source from < 11′ (Wright et al., 2009) to < 4′ (i.e. ≈1/2

pixel size at res=9). This removed ≈ 100, 90 and 40 ‘> 2σ’ sources (mostly faint) in Q,

V and W-band, respectively. The resulting beam profiles are plotted in Fig. 4.9 and are

in good agreement with the main results presented in §4.4.1.

As we noted in §4.2.3 that many of the NVSS sources are resolved into multiple

components (Blake and Wall, 2002). Although this is unlikely to cause the widening

of the beam beyond θ & 6′ and certainly not via the source clustering (see §4.4.1 and

below). Here, as a precautionary measure, we shall test the beam profile measured using

the NVSS by excluding any source that has neighbouring source(s) within 1◦. This extra

condition reduces the number of S1.4 > 1.0 Jy sources outside the WMAP5 ‘point source

catalogue’ mask to 933. The resulting beam profiles are shown in the Fig. 4.10(d)-(f).

We see that the beam profiles are in good agreement with the previous results shown in
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Figure 4.9: The beam profiles measured using 1082 NVSS 1.4GHz sources with S > 1 Jy (open circles). Also shown are results from

using only WMAP5 point sources that has GB6/PMN 5GHz counterpart within 4′ (diamonds). These are compared to WMAP

team’s (Jupiter) beam profiles (blue solid lines) and our empirical fits (green and orange dashed lines).
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Fig. 4.9.

Although we argued above that sources (i.e. their identifications and positions) se-

lected at NVSS frequency are robust against the CMB fluctuations compared to WMAP

bands, our beam analysis is still carried out using WMAP temperature maps. As we

noted above that the average flux of the S1.4 > 1 Jy NVSS sources in the WMAP bands

is ≈ 3x lower than that of the WMAP5 faintest sample used in §4.4.1. Therefore it is

important to check whether the WMAP beam profiles can be recovered robustly using

these NVSS sources.

For this purpose, we created 100 Monte Carlo simulations similar to that described in

§4.4.2 but without the five-band detection procedure since these sources are pre-detected

by NVSS with high position accuracy (§4.2.3). The 933 NVSS source positions are used

and fluxes at 1.4 GHz are extrapolated to WMAP Q, V and W bands assuming mean

spectral index, α, of -0.45 in order to mimic the observed average flux density in these

bands. The temperature maps are smoothed with the corresponding WMAP (Jupiter)

beam profiles. The simulated CMB fluctuations and radiometer noise are then added

to the source temperature maps. For each WMAP band, we applied our beam profile

analysis to each of the 100 simulated maps. The results are shown in Fig. 4.10(a)-(c).

The plot shows that with these NVSS radio sources the WMAP beam profiles can be

robustly recovered out to 30′ and are not affected by the source clustering consistent with

our semi-empirical calculation presented in §4.4.1. We then take the standard deviation

of the 100 simulated results in each angular bin as the 1σ error. The ratio of the Monte

Carlo error to the Jackknife error is shown as the dotted line in Fig. 4.10(a)-(c). The

Monte Carlo and Jackknife errors are in good agreement except at scales < 10′ where

Jackknife errors are somewhat over-estimated in Q and V bands.

We conclude that in the W and V bands and probably the Q band, the average radio

source profile is wider than the Jupiter beam and the fainter sources tentatively show

a wider profile than the brighter sources. For W1 and S > 1.1 Jy sources, the beam

profile measured in §4.4.1 rejects that of Jupiter with 4.0, 3.0 and 3.5σ significance for

θ = 12.′6, 20′ and 31.′6. These become 4.4, 3.2 and 2.8σ when Monte Carlo errors are used

instead. Note that the pixelisation has been taken into account when estimating these

significances. The results using NVSS sources further support that the WMAP beam is

wider than the Jupiter beam as found by using WMAP’s own point source catalogue.

The 1.4-GHz selection frequency of NVSS is far from 94 GHz and any widening therefore

cannot be due to any selection bias at 94 GHz from the Eddington effect.
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Figure 4.10: (a-c) The WMAP beam profiles measured from 100 Monte Carlo simulation using S1.4 > 1 Jy NVSS sources, where

the ratios between Monte Carlo and Jackknife errors are also shown (dotted lines). (d-f) The WMAP beam profiles measured with

933 NVSS sources without any neighbouring source within 1◦. These are compared to WMAP team’s (Jupiter) beam profiles (blue

solid lines) and our empirical fits (green and orange dashed lines).
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Figure 4.11: The comparison of the ATCA (diamonds) and IRAM (asterisks) source flux

densities with the WMAP W-band data.

4.4.4 Comparison of WMAP and ground-based source fluxes

We now make a check of the WMAP5 W band fluxes as presented by Wright et al. (2009)

in their Table 1. We checked these against the ATCA and IRAM source flux densities. The

comparison in Fig. 4.11 shows that for both surveys, the brighter sources with fluxes > 3

Jy are about a factor of 1.5 fainter in the WMAP source list than in the ATCA or IRAM

lists whereas Wright et al. (2009) claimed that for fluxes > 2 Jy the assumed Gaussian

profile used in the fit caused the under-estimation of the recovered flux by only 10 per cent.

The WMAP fluxes at S < 1 Jy are over-estimated due to Eddington bias (Wright et al.,

2009; Chen and Wright, 2009). The agreement between the ATCA and IRAM fluxes

appears better than for WMAP, if we use WMAP as an intermediary between these two

surveys. The under-estimation of the flux cannot be explained by variability because this

would results in a scattering around 1:1 relationship rather than a clear trend seen at

the bright end of the plot. If the scale error is due to WMAP, then this might confirm

the idea that there is a non-linearity in the WMAP flux scale. It could mean that the

narrower WMAP beam at brighter fluxes is missing a significant amount of flux in the

tail of the beam profile. There is also evidence that WMAP W-band fluxes of the bright

sources are significantly under-estimated compared to the Planck Early Release Compact

Source Catalogue (Ade et al., 2011) at 100 GHz (Whitbourn, Shanks & Sawangwit, in

prep.).



4. WMAP beam sensitivity 147

4.4.5 Evidence for extended W-band beam from WMAP SZ effect?

Further evidence that the width of W band beam profile has been underestimated may

come from results on the SZ effect. Previously, Myers et al. (2004) found what looked

like an extended SZ effect in the WMAP1 data by cross-correlating Abell cluster and

APM cluster positions with WMAP data. Then Bielby and Shanks (2007) compared the

WMAP3 SZ decrements with X-ray data to show that while nearby rich clusters such

as Coma are correctly predicted, at higher redshifts the clusters show less SZ effect than

predicted. Indeed, for a sample of 38 higher redshift clusters of Bonamente et al. (2006),

the predicted, stacked SZ decrement was rejected at 5.5σ. Bielby and Shanks (2007) used

a Gaussian profile at W and at Ka. We therefore first used the Jupiter profile in both

these bands and noticed little reduction of the predicted SZ decrement in both bands.

Then we used our point source beam at the W-band to predict the SZ decrement. Given

that the Gaussian width equivalent of the point source beam is now ≈ 8′ rather than

≈ 5.4′, this means that there will be a 8/5.4 = 1.5× lower central normalisation for the

wider beam. The discrepancy with the convolved SZ model is now reduced to ≈ 3.7σ.

However, taking into account that the X-ray models only apply out to ≈ 2′ Bielby and

Shanks (2007) found that the significance then dropped to 2.5σ. Given another 50 per cent

reduction caused by the beam reduces the significance to 1.7σ. We conclude that the SZ

fits support the evidence from the radio sources that the W-band beam profile has been

significantly underestimated. The Ka band significance of this result is unaffected but

always was lower because of the wider beam profile at this frequency. These results would

help to explain the increased difficulty in getting WMAP SZ detections at higher redshift

as being due to the increased domination of a wider than expected beam.

4.5 Impact on the debeamed Cℓ

Finally, we use the information from our radio source beam profiles to judge what the

effect might be on the debeamed WMAP Cℓ. Unfortunately we will have to extrapolate

our radio source fits in the regime beyond ∼ 1◦ out to 5◦ because of the large errors on

the radio source beam profile in this range. We first make an extrapolation where we fit

the small-scale beam profile points and then extrapolate continuing with the power-law

as shown by the green dashed lines in Fig. 4.3(d)-(f). We also made a more conservative

extrapolation where we again fit the small-scale data but then extrapolate continuing

parallel to the Jupiter beam profiles at large scales [orange dashed lines in Fig. 4.3(d)-
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Figure 4.12: The W1 (a) and V1 (b) beam transfer functions, bℓ, derived from WMAP5

radio point source profiles (orange and green dashed lines), comparing to WMAP team’s

official bℓ (blue solid lines) and those derived from Gaussian profiles with 12.′6 and 19.′8

FWHM. The colour of the point-source bℓ corresponds to that of the bS(θ) which it was

derived from [Fig. 4.3(e) and (f)].

(f)]. The beam transfer functions, bℓ, required in debeaming of the power spectra are

calculated from the radio source beam profiles using Eq. 4.1. The derived beam profiles

presented in §4.4.1 are in fact smoothed by the pixelisation effect, as already mentioned

above. Therefore one needs to correct for such an effect although this is expected to be

small, given the beam width and pixel resolution relevant here. The correction is relatively

trivial in the harmonic space, since the pixel transfer function is readily available from

HEALPix package. The unsmoothed beam transfer function is just a division of the

derived bℓ by the pixel window function. The resulting bℓ for W1 and V1 are shown in

Fig. 4.12(a) and (b), respectively.

The beam convolved cross-power spectra for V1-V2 and W1-W2 are derived following

the procedure outlined in §4.3. The debeamed Cℓ are calculated using Eq. 4.2, assuming

WMAP5 Jupiter beam transfer function (Hill et al., 2009) and the radio-source beam

transfer functions derived above. The binned, debeamed cross-power spectra are shown

in Fig. 4.13. We followed the WMAP binning scheme and for each ℓ bin we plot the

mean value of the debeamed TT power spectrum, i.e. ℓ(ℓ+ 1)/2π ×Cℓ, in that bin. The

error bars shown in the plot are estimated from the dispersion of the data in that bin.

These are only given as a guide and not meant to replace the errors derived from the
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Figure 4.13: The debeamed CMB power spectra. The blue diamonds show the WMAP

team’s result. The cross-Cℓ for the W1 and W2 (V1 and V2) maps and debeaming with

the Jupiter beam profile is shown as the green (orange) line. The same result but now

debeamed using the 12.′6 FWHM Gaussian is shown as the magenta line, significantly

different from the result using the Jupiter beam profile to debeam. The same results but

now using the profiles from the compact radio sources are shown as the red and cyan

lines for W and V band, respectively. The differences in the two sets of debeamed W and

V spectra are due to the difference in extrapolations of the radio source beam profiles

beyond θ = 30′ (see Fig. 4.3e and 4.3f.)
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diagonal elements of the covariance matrix. For ℓ & 40, the Jupiter debeamed cross-

power spectra (green and orange lines) are in good agreement with the WMAP5 official

results (Nolta et al., 2009) up to ℓ ≈ 500 where the noise starts to dominate. On the other

hand, below ℓ ≈ 30 our results appear to be different from the WMAP5 official results.

This is, perhaps, not surprising, given that we use PolSpice code (Szapudi et al., 2001;

Chon et al., 2004) which employs a ‘pseudo-Cℓ’ based estimator (Peebles and Hauser,

1974; Hivon et al., 2002) whereas the WMAP team used a hybrid estimator (Efstathiou,

2004). The WMAP hybrid method utilised a maximum-likelihood estimate (Tegmark,

1997; Bond, Jaffe, and Knox, 1998; Wandelt, Larson, and Lakshminarayanan, 2004) at

low ℓ and a pseudo-Cℓ based estimate at high ℓ, making a transition at ℓ = 32 (Hinshaw

et al., 2007; Nolta et al., 2009). Another possible reason is that the WMAP five-year low-

ℓ power spectrum analysis (Dunkley et al., 2009) used the Internal Linear Combination

(ILC) map (Gold et al., 2009) as the input temperature map thus minimising the residual

foreground contamination.

The range of the radio-source debeamed Cℓ is shown by the two red lines and two cyan

lines (for W and V bands) in Fig. 4.13. The most conservative beam model yields ≈ 50

per cent higher than the Jupiter debeamed Cℓ at the scale of the first peak. But the most

extreme model is now a factor of 2-3 higher even at ℓ = 220 than the standard model

power spectrum. We note that it has been possible to derive consistent Cℓ’s between

the V, W (and Q) bands, although we accept that this is due to the freedom we have in

extrapolating our radio source beam profiles beyond θ ≈ 30′. It seems that if the radio

sources are indicating a wider beam profile, then the systematic uncertainty in the beam

at the largest scales will dominate the error budget of the Cℓ even at the scale of the first

acoustic peak. These larger errors would then allow a wider range of cosmological models

to be fitted, including models where the first peak lies at ℓ as high as 330 (Sawangwit and

Shanks, 2010b).

4.6 Discussion and conclusions

Clearly it is important to understand why the radio source profiles are so wide in the Q,

V and W bands. If there is a correlation between beam width and source flux then it

will be wrong to use Jupiter profile to debeam the CMB power spectra because in the W

band, for example, the ≈1-Jy radio sources are much closer to the ≈ 0.5-Jy rms flux of

the CMB fluctuations than the 1200-Jy flux of Jupiter.
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In estimating the new beam profiles, we have excluded radio sources that were ob-

served to be extended by higher resolution surveys at 5 GHz, GB6 and PMN. We have

also showed that the extended profiles are not caused by radio-source clustering or the

flux variability. Furthermore, our Monte Carlo simulations with a realistic point source

detection algorithm same as that used by WMAP team showed that the WMAP beam

profiles can be robustly recovered out to 30′ using our stacking analysis of both WMAP’s

own source and NVSS catalogues. We also argued that the smaller than expected SZ

decrements from WMAP observations of rich clusters (Myers et al., 2004; Bielby and

Shanks, 2007) may also be explained by a wider than expected WMAP beam at W-band.

The non-linearity shown by the WMAP source fluxes compared to independently

measured ATCA/IRAM fluxes (also Planck fluxes, Whitbourn, Shanks & Sawangwit, in

prep.) is powerful supporting evidence of non-linearity in the WMAP data calibration. In

considering possible causes of WMAP non-linearity, we first note that detector saturation

is unlikely to be the problem since this would lead to the brighter sources having a

wider profile than the fainter sources, which is not observed. However, Jupiter, being a

moving source, has to be dealt with in a different way to the radio sources and the CMB

fluctuations in the maps. This means that if there was a problem in the WMAP analysis,

it would be necessary to check any filtering that is done to the maps. A filter with a

non-linear effect would be needed to explain our radio-source results.

One possible source of error is the radiometer gain model but this appears to be well

calibrated using the CMB dipole. But it is clear that in modelling the gain there is the

opportunity to apply a non-linear filter to the data. In their Section 4, Hinshaw et al.

(2009) state that a main goal of the WMAP data processing is to fit the calibration

and sky signal simultaneously. They note that since the data model is non-linear and

the number of parameters is large, the general problem is intractable. They therefore

proceed iteratively but it might be speculated whether there could be any issues with this

iteration. Their Eq. 2 has di = gi(∆Tvi − ∆Tai) + bi, where di is the difference recorded

between the two radiometer channels, gi is the radiometer gain and bi is a baseline that

has to be fitted. ∆Tvi and ∆Tai are the true temperature differences from the dipole and

the CMB fluctuations respectively. It is conceivable that badly fitting baselines and/or

gains might lead to non-linearities with the radio source profiles. For example, if the gain

is non-linear and its dependence on the temperature is such that

g̃ ∝ ∆T−α (4.8)
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The wrongly assumed gain linearity would lead to wider source profiles and underesti-

mated fluxes at bright end,

b̃S(θ) ∝ bS(θ)1−α (4.9)

and

S̃ν ∝ S1−α
ν (4.10)

The preliminary results suggest that the above equations may be a good fit to the data

(Whitbourn, Shanks & Sawangwit, in prep.)

However, Hinshaw et al. (2009) argue that the fits for gi and bi are generally correct

based on checks with simulations that include known systematic effects. The input maps

for the simulations are accurately recovered. This is reassuring but it may still be the case

that other unknown systematics may be affecting these iterative fits. There appear to be

no further empirical checks that have been made on the linearity of the resulting maps. It

might be wondered whether if the calibration uncertainties are actually relatively small,

could they be ignored for some part of the map production to see how robust the fully

fitted results are? Otherwise, we do not understand the reason for the difference between

the Jupiter and radio source beam profiles.

We conclude the following.

(i) The WMAP power spectrum is heavily dependent on the beam profile. Indeed even

the first acoustic peak at ℓ ≈ 220 is very dependent on the form of the profile at

1◦ − 2◦ where the profile is only ≈ 0.1 per cent of its peak value.

(ii) The radio point sources detected by WMAP in the Q, V and W bands generally

show a broader beam profile than the Jupiter beam used by the WMAP team. For

example, using SW ≥ 1.1 Jy sources, our W1 beam profile rejects the Jupiter beam

with & 99.5 per cent confidence.

(iii) There may be tentative evidence for a flux-dependent effect within the WMAP data

in that fainter radio sources appear to have broader profiles than brighter sources,

although the faint data are noisy.

(iv) Non-linearity in the WMAP flux scale may also be indicated by comparisons of

WMAP radio source fluxes with ATCA and IRAM fluxes which show 50 per cent

reduced flux from WMAP.
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(v) Further arguments against possible systematics such as Eddington bias affecting our

results come from simulation checks and NVSS sources selected at frequency where

CMB fluctuations are sub-dominant.

(vi) The systematic errors on the WMAP Cℓ due to the beam may be much larger than

previously expected and in turn, this means that the systematic error on the best

fit cosmological model may also be larger. It will be interesting to see if a revised

estimate of the WMAP beam profile then allows a simpler cosmological model to

be fitted than ΛCDM.



Chapter 5
WMAP scan pattern

and on-sky beam maps

5.1 Introduction

In Chapter 4, we assumed that the beams are axially symmetric when estimating the CMB

angular power spectrum (Cℓ). However this is generally not the case for the WMAP (Page

et al., 2003a,b) and many CMB experiments, e.g. SPT (Lueker et al., 2010), Archeops

(Maćıas-Pérez et al., 2007), Boomerang (Masi et al., 2006), Maxima (Rabii et al.,

2006) and the Planck mission (Maffei et al., 2010). An asymmetric beam coupled with a

survey’s complex scanning pattern can also result in an effective beam being a function of

its position on the sky. This makes inferring the true CMB angular power spectrum, Csky
ℓ ,

from the estimated Cest
ℓ very complicated. In the past, many CMB analyses have neglected

this difficulty by assuming the azimuthally-symmetrised beam in the Cℓ estimations (e.g.

Wu et al., 2001). However, there are also many studies (e.g. Wandelt and Górski, 2001;

Souradeep and Ratra, 2001; Mitra et al., 2004, 2011) which attempt to model the effect

of more realistic beams on the Cℓ estimations. The symmetric-beam assumption will

generally bias the estimates of the temperature Cℓ at high ℓ, corresponding roughly to

scales smaller than the beam width. Another important effect is the introduction of

statistical anisotropies into the observed CMB temperature and polarisation (Shimon

et al., 2008), thus mimicking anisotropic effects such as gravitational lensing (Hanson,

Lewis, and Challinor, 2010).

Our adopted azimuthally-symmetrised beam approach is the same as that employed by

WMAP team in their map-making, beam transfer function and angular power spectrum

estimates (Page et al., 2003b; Hinshaw et al., 2003b; Jarosik et al., 2007; Hinshaw et al.,

2007; Hill et al., 2009; Nolta et al., 2009). WMAP’s scan strategy helps to alleviate

the effect of the beam asymmetry somewhat by observing each sky pixel over a wide

range of azimuth angles. However, as we shall see later that this is not the case at low

154
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Ecliptic latitudes where the scanning is sparse and mostly in the orthogonal direction of

the Ecliptic plane. In the WMAP three-year temperature analysis, Hinshaw et al. (2007)

estimated the bias induced by the residual beam asymmetry and found that the Q-band

cross-power spectrum requires the largest correction (≈ 6.3 per cent at ℓ = 600) due to its

most elliptical beam of the three highest frequency bands used in the Cℓ analysis. The V-

and W-band, however, only require . 1 per cent corrections at ℓ < 1000, i.e. significantly

smaller than the instrument noise for these ℓ ranges. Consequently, the corrections for V-

and W-band are neglected and the Q-band data were excluded from the final three-year

(and later) power spectrum. For a more sensitive CMB experiment such as the ongoing

ESA Planck mission (The Planck Collaboration, 2006) which has a less symmetrising

scan strategy (Tauber et al., 2010) than WMAP, the beam asymmetry is expected to

be a major source of systematic errors. And many efforts have now been devoted to the

studying of its effect on the Planck results (e.g. Ashdown et al., 2009; Huffenberger et al.,

2010; Mitra et al., 2011).

Recently, Liu et al. (2010) claimed that there exists a timing offset between the satellite

pointing and the differential temperature data in the ‘Time Ordered Data’ (TOD) which

has been missed by the WMAP team’s data analysis pipeline. The offset of 25.6 ms has

been explicitly shown to be present between the starting time of the ‘Meta Data Table’ and

‘Science Data Table’ using a computer script provided by Roukema (2010a). Such an error,

if it exists, would induce an artificial quadrupole signal arising from incorrect Doppler-

dipole subtraction due to the satellite pointing offsets as demonstrated by Liu et al. (2010)

and Moss et al. (2011). The former found that most of the detected WMAP quadrupole

signal can be explained by this systematic error although the latter disputed that it only

produced a third of the claimed signal. Moss et al. (2011) further demonstrated that

the coincidental alignment of the induced and primordial quadrupole fields is due to an

unfortunate coupling of the WMAP scan pattern and the dipole field and suggested that

this should not be the case for the Planck mission.

Besides the induced quadrupole signal, Moss et al. (2011) (see also Roukema, 2010a)

noted that given the WMAP scanning strategy, the satellite pointing error will also affect

the observation of point sources. At low Ecliptic latitudes, the scan pattern is mostly

orthogonal to the Ecliptic plane while near the pole it is much more isotropic. The pointing

error would mean that a point source near the Ecliptic plane will appear elongated in the

Ecliptic North-South direction whereas a point source near the pole will remain circularly

symmetric. Moss et al. (2011) suggested that by stacking sources in Ecliptic latitude
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bin, the timing residual can be constrained. Here, we investigate the possibility of using

the real point source data and numerical simulations to test the timing offset claimed in

the literature. We will also check if such an effect can explain the wider than expected

WMAP beam profile as observed in Chapter 4 (see also Sawangwit and Shanks, 2010a).

We shall also use the algorithm for deriving the on-sky beam maps developed during this

study to check if the azimuthally-symmetrised beam profile observed near the Ecliptic

plane, i.e. as in the analysis of Jupiter beam profile, can be applied everywhere else on

the sky.

The layout of this chapter is as follows. We first outline the key ingredients for

modelling the on-sky beam maps in §5.2. The algorithm for generating the on-sky beam

maps are then used to investigate the effect of possible WMAP timing offset on the point

source profile and the beam ellipticity, including its detectability by stacking radio point

sources in §5.3. The summary and conclusions are then presented in §5.4.

5.2 Modelling the on-sky beam maps

5.2.1 WMAP scanning strategy

The WMAP observatory was launched on June 30, 2001 and has been collecting science

data from a Lissajous orbit around the Sun-Earth L2 Lagrange point since August 10, 2001

(see Bennett et al., 2003a, for the mission review and summary of the instrument design).

The WMAP is a differential experiment which means that it measures the temperature

by taking a difference measurement between two points in the sky through a series of

scanning arcs by two feed horns (called A- and B-side) at a fixed separation on the sky,

≈ 141◦ where the exact values differ slightly for different ‘Differencing Assemblies’ (DAs).

The experiment used the CMB dipole field1 and its modulation due to WMAP’s motion

as a continuous calibration source. Since the separation of the two feed horns is large,

the probe always see a substantial CMB dipole modulation which is crucial for a stable

calibration of the data.

To achieve its goal of reconstructing the full sky temperature map with minimum

systematics and maximising polarisation sensitivity and beam symmetry, WMAP employs

a compound motion which allows it to scan each sky pixel through as many azimuth angles

and on many different time scales as possible (Bennett et al., 2003a, and reference therein).

1which was precisely measured by the Cosmic Background Explorer (COBE; Kogut et al., 1993;

Lineweaver et al., 1996)
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Figure 5.1: (top) Overview of the WMAP observatory, showing its major components

and the spacecraft (S/C) coordinate. Figure credit: Bennett et al. (2003a). (bottom)

The WMAP’s compound motion in its ‘observing mode’, showing spin and precession

rates including its orientation relative to the Sun-Earth system. This is an illustrative

guide only and not to scale. Picture adapted from the NASA WMAP mission website

(http://map.gsfc.nasa.gov/mission/observatory_scan.html).



5. WMAP scan pattern and on-sky beam maps 158

The two feed horns spin around the satellite symmetry axis (-Z axis in Fig. 5.1) at 0.464

rpm (±0.13 per cent). Simultaneously, the spin axis precesses around the Sun-WMAP

line (in the anti-Sun direction) at an angle ϑP = 22.◦5 (±0.◦023) with a period of one hour

(±3.6 per cent). For a pictorial representation of the WMAP scan strategy see the bottom

panel of Fig. 5.1. This fast spin strategy combined with reasonably fast precession means

that the requirements mentioned above can be met. The full sky can be covered every six

months while maintaining the reasonable azimuth coverage, i.e. ∼ 30 per cent near the

Ecliptic plane and increases to ∼ 70 per cent at |β| ≈ 50◦ (the cusps seen in Fig. 5.2) and

100 per cent at the Ecliptic pole. The reason for these different azimuthal coverages is

due to the WMAP scan pattern where it is mostly confined to the North-south direction

closer to the Ecliptic plane and become more isotropic as it approaches the pole.

We model the WMAP scanning strategy and use the parameters given above to con-

struct a set of rotating coordinates and their corresponding rotation matrices which in

turn can be used to transform any vector in the satellite coordinate to Ecliptic coordi-

nate, and vice versa. The time-dependent rotation matrix (see Appendix B) is used to

determine the WMAP pointing of any DA horn (either A- or B-side) at any given time

by applying it to the line-of-sight (LOS) unit vector of that particular horn. The LOS

vectors for all the 20 DAs, 10 for each side, are given in the satellite coordinates and can

be extracted from the LOS Table of the TOD (Limon et al., 2008).

Fig. 5.2(top) shows the scan model (orange solid line) for W1A (A-side beam boresight

of the W1 DA) predicted for the first hour of WMAP observing mode, using only the

first few quaternions (attitude data) extracted from the TOD to triangulate its starting

point. The model is compared to the real WMAP scan pattern (white dashed line) of

the same DA and side. The WMAP pointing data are determined from the TOD using

WMAP software2. The number of observations (Nobs) per pixel per year for W1 map

which are constructed from the scan model (pointing data) is also shown in top (bottom)

panel of Fig. 5.2. The model was run for 365 days to simulate a stream of TOD which is

then processed with the map-making procedure explained in §5.2.3. In the bottom panel

of Fig. 5.2, the regions where data were rejected due to one of the outer planets (Mars

through Neptune) is within 7◦ of either A or B-side beam (Bennett et al., 2003b) are clearly

visible in the Ecliptic plane. The data which are flagged with Jupiter passages within a

few to several degrees (exact values depend on the frequency band) of the beam centre

are kept for the WMAP beam analyses (Page et al., 2003b, see also §5.2.2). Another

2http://lambda.gsfc.nasa.gov/product/map/current/m_sw.cfm
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Figure 5.2: Number of observation per pixel per year for W1 in Ecliptic coordinates.

(Top) The predicted Nobs map using the scanning model (§5.2.1). The map is overlaid by

the first hour of the scan pattern (orange line), comparing to the WMAP in-flight attitude

data from TOD (white dashed line). The first few quaternions from WMAP TOD were

used to triangulate the starting point of the satellite spin axis and the beam boresight.

(Bottom) The first-year WMAP Nobs map. The regions where data were rejected due to

one of the outer planets (Mars through Neptune) is within 7◦ of either A or B-side beam

are clearly visible in the Ecliptic plane.
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notable feature is the cusps in the Nobs at |β| ≈ 50◦, corresponding to |ϑP − 141◦/2|
the angular distance between precessing spin-axis and the antenna pointing. The good

agreement between our model and the real scan pattern including the general feature seen

in the Nobs maps demonstrate that the assumed scanning model should be adequate for

our purpose here.

5.2.2 WMAP beam response

The WMAP telescope focal plane makes an angle of 19.◦5 with the spin (spacecraft sym-

metry) axis (see Page et al., 2003a, for the probe’s optical design and characterisation).

The feed horns for the A- and B-side are located back-to-back to facilitate the 141◦ angu-

lar separation on the sky to achieve WMAP observing goal as highlighted in §5.2.1. Each

side consists of 10 DAs, namely K1, Ka1, Q1, Q2, V1, V2, W1, W2, W3 and W4. Their

main beams are situated on the focal plane around the optic axis.

The in-flight beam response is determined from the repeated observations of Jupiter

over the course of the experiment. Jupiter is observed by WMAP twice a year, each

time lasting for ≈ 45 days. The data are taken in normal ‘observing mode’ when Jupiter

passes within ≈ 7◦, 5◦, 5◦, 4◦ and 3.◦5 of either the A- or B-side beam centre for K,

Ka, Q, V and W bands, respectively. Here, we consider the five-year data release3 which

includes the beam maps analysis of 10 Jupiter observing seasons; Oct/Nov 2001, Feb/Mar

2002, Nov/Dec 2002, Mar/Apr 2003, Dec 2003/Jan 2004, Apr/May 2004, Jan/Feb 2005,

May/Jun 2005, Feb/Mar 2006 and Jun/Jul 2006 (Hill et al., 2009). We shall only focus

on the W-band, especially W1 DA, beam response which is found to be significantly

wider than expected using stacking analysis of point sources’ profiles (see Chapter 4 and

Sawangwit and Shanks, 2010a).

The beam maps are constructed from the hybridisation of Jupiter data with a beam

model which allows the low signal-to-noise beam pedestal to be better constrained. In

other words, the beam model substitutes the Jupiter data in the low signal region set

by the hybridisation threshold of 3, 4, 6, 8 and 11 dBi for K, Ka, Q, V and W bands,

respectively (Hill et al., 2009). The beam map, B(n̂), is related to the observed Jupiter

temperature maps by (Page et al., 2003b)

T (θ, φ) = Tm
J ΩB B(θ, φ), (5.1)

3Available at http://lambda.gsfc.nasa.gov/product/map/dr3/m_products.cfm
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Figure 5.3: The WMAP Jupiter beam maps (Hill et al., 2009) for W1A (left) and W1B

(right) used in conjunction with the scan strategy to model the on-sky beam maps.

where Tm
J is the amplitude observed by WMAP and ΩB is the main-beam solid angle.

The five-year Jupiter (antenna) temperature maps, background subtracted and aberration

corrected, for W1A and W1B are shown in the left and right panels of Fig. 5.3, respectively.

The maps are pixelised into 2.′4 × 2.′4 bins and have undergone the hybridisation. Note

that the probe scanning direction is parallel to the x-axis of the plotted beam map (Limon

et al., 2008).

From Fig. 5.3, it is immediately obvious that the beams are not axially symmetric

as expected (Page et al., 2003a). The beams appear slightly non-circular within ≈ 12.′6

FWHM of the beam centre. This arises from the fact that the beam centre is not on the

primary focus although not too far off compared to the lower-frequency DAs whose beam

asymmetries are more severe as a result (Page et al., 2003a). Other notable features can

be seen at ≈ −10 to −20 dB level. These are caused by the distortion of the primary

mirror upon cooling (Page et al., 2003a,b). Note that the beam profiles we studied in the

last Chapter is the azimuthally-symmetrised beam response, bS(θ), of a combination of

A- and B-side maps. Therefore any asymmetry is averaged out and should not directly

affect our previous results. However, it may give rise to an echo ring at 140◦ around a

bright source (see §5.3).

The hybrid beam maps are used for the purpose of estimating the hybridised sym-

metrised beam profiles, BS(θ). The azimuthally-symmetrised beam response is calculated

by averaging the temperature within an annulus centred on the beam centroid with a ra-
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dius θ. The normalised (at θ = 0) symmetrised beam profile, bS(θ), is defined such

that

bS(θ) = ΩBB
S(θ), ΩB = 2π

∫
bS(θ) sin θ dθ. (5.2)

For the five-year beam analysis, the W-band main-beam solid angle was evaluated out to

the ‘transition radius’ of 3.◦5 (Hill et al., 2009, Table 3). The effective bS(θ) for each DA

is then determined by combining the A- and B-side profiles, bS,A and bS,B, (Page et al.,

2003b; Hinshaw et al., 2003a);

bS(θ) =
ΩS

2

[
bS,A

(1 + xim)ΩA
B

+
bS,B

(1 − xim)ΩB
B

]
, (5.3)

where xim ≈ 0.01 accounting for the transmission imbalance between A- and B-side

(Jarosik et al., 2003), ΩS is the effective beam solid angle, ΩA
B and ΩB

B are the main-beam

solid angles for sides A and B.

5.2.3 Map-making process

The WMAP experiment reconstructs the temperature map, T (n̂), by scanning the sky

with two antennas (called A- and B-side). In fact, the probe recorded raw differential

signals, i.e. uncalibrated Time-Ordered Data (TOD), as it scans the sky;

draw(t) = g(t) [d(t) + ε(t)] + b(t), (5.4)

where g(t), b(t) and ε(t) are instrument gain (responsivity), baseline and noise as a

function of time, respectively (Hinshaw et al., 2003a, and references therein). Once the

raw TOD are calibrated (using the Dipole modulation), the differential temperature data

can be written in the form

d(t) = (1 + xim)T (n̂A) − (1 − xim)T (n̂B), (5.5)

where n̂A and n̂B are unit vectors denote the A- and B-side pointing on the sky at a given

time t. The terms (1 + xim) and (1 − xim) account for the input transmission imbalance

between the A and B sides (Jarosik et al., 2003). In practice, each antenna observes the

sky through a beam B(θ, φ), thus Eq. 5.5 becomes

d(t) =

∫
dΩT (n̂)

[
(1 + xim)BA

(
R(t) · n̂

)
− (1 − xim)BB

(
R(t) · n̂

)]
, (5.6)
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where R(t) is the rotation matrix constructed from WMAP scan pattern (§5.2.1) and is

used to transform a sky coordinate4 into the spacecraft (S/C) and then the beam map

coordinates. For the purpose of sky map reconstruction, this is written simply as

d(t) = (1 + xim) T̃ (pA) − (1 − xim) T̃ (pB), (5.7)

where T̃ (p) is the beam-smoothed sky map at the pth pixel observed either by A- or B-

side antenna. The sky map has now been discretised into Npix elements which introduces

further smearing to the map. However, such a smearing effect can be easily corrected if

the pixel window function is known. The pixelisation scheme employed by the WMAP

team (and also in this work) is the ‘Hierarchical Equal Area isoLatitude Pixelisation’ of

a sphere (HEALPix; Górski et al., 2005).

Now, the calibrated TOD can be written in terms of a mapping matrix M and the

beam-smoothed sky map;

d = MT̃ (5.8)

The mapping matrix has Nt ×Npix elements, with each row contains only two non-zero

elements in the columns correspond to the A- and B-side antennas pointing;

Mt,∗ = [. . . , (1 + xim), . . . ,−(1 − xim), . . .] (5.9)

Note that we have deliberately ignored the instrument noise, ε(t), in Eq. (5.5)-(5.8). In-

cluding noise would affect the statistic and not the general feature of the beams we attempt

to measure here. However, in §5.3.2 where the statistic of the noise is required, we shall

assume white noise because for most radiometers the noise covariance matrix,
〈
εεT

〉
, is

reasonably diagonal. Even if this is not the case, any residual off-diagonal terms are likely

to affect pixels at the beam separation angle, i.e. 141◦, (Hinshaw et al., 2003a) therefore

such an effect is not expected to be an issue for our study here. In the standard WMAP

map-making pipeline, the effect of correlated noise in the TOD which would result in

striping in the final sky map is reduced by an application of a pre-whitening filter on the

calibrated TOD (e.g. Hinshaw et al., 2003a).

Following the WMAP team’s map-making routine, we determine the sky map solution

from the differential time-ordered data using a maximum likelihood estimate;

4Here, we choose Ecliptic coordinate with longitude λ and latitude β.
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T̃ = D−1 · T̃ 0

=
(
MTM

)−1 ·
(
MTd

)
(5.10)

To solve for the sky map using the above equation, one needs to invert the Npix × Npix

matrix D. For the WMAP resolution, there are more than one million sky pixels and such

an evaluation becomes computationally prohibitive. To work around this, the iterative

approach was introduced by Wright et al. (1996). Because MTM is diagonally dominant,

its inverse can be approximated5 as (Hinshaw et al., 2003a)

D̃−1
i,j ≈ 1

Nobs(pi)
δij (5.11)

The iterative solution to the above equation is then given by

T̃ n+1 =
(
D̃−1MT

)
d +

(
I− D̃−1D

)
T̃ n, (5.12)

where I is an identity matrix and the initial guess of the sky map is T̃ 0 = MTd (Eq. 5.10).

For a single beam experiment, the second term on the RHS is zero and the sky map

solution for a given pixel is simply an average of all the observations belong to that

pixel. In the WMAP case (and any differential experiments), the second term serves as

a correction for the approximation made in Eq. 5.11 by using the sky map from previous

iteration. The number of observations per pixel is defined as the total number of times

a particular pixel has been observed by either A or B side. The map solutions usually

converge after ≈ 50 iterations as demonstrated by WMAP flight-like simulations (Hinshaw

et al., 2003a).

5.3 The on-sky beam maps and the effect of timing offset

Here, we investigate the on-sky beam response in a noiseless temperature map by incor-

porating all the ingredients outlined in §5.2. We put four mock point-sources which have

the same brightness temperature as Jupiter on a CMB-free sky. The sources are placed

at different Ecliptic latitudes, β, to check for any latitude dependence of the beams which

may result from the beam asymmetry coupled with the complex scanning pattern. The

scan model was run for 365 days with the W1A and W1B Jupiter beam maps (Fig. 5.3).

5The approximation is in fact exact for a single beam experiment such as the Planck mission.
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We use the same time step (integration time) as the real W-band data, i.e. 51.2 ms. The

sky map is then constructed from the time-ordered differential data resulting from the

‘one-year’ mapping simulation. The map-making process described in the last section is

employed with 50 iterations.

The resulting Nobs map is shown in Fig. 5.2, comparing to WMAP one-year data for

W1 DA map. The beam maps for the point sources at different β are shown in the left

panels of Figs. 5.4 and 5.5. For low Ecliptic latitudes β = 0◦ − 30◦, the substructures

seen in the Jupiter beam maps (Fig. 5.3) at ≈ −10 dB level (at θ ≈ 20′ from the beam

boresight) are still clearly visible in the point-source beam response. The feature is aligned

with the Ecliptic east-west direction on the sky due to its cross-scan orientation in the

beam rest-frame and the scan pattern at low Ecliptic latitudes being nearly orthogonal to

the plane. The scan strategy did very little in symmetrising the beam at these latitude

ranges. As a result, outside the central 12.′6 FWHM, the beam appear rather elongated

in the direction parallel to the Ecliptic plane. The situation is improved somewhat by the

time we get to β = 60◦ and the beam appears to be completely symmetric at the pole as

expected.

Another important effect, is the ‘echoes’ of the bright sources into rings at θ ≈ 141◦

around the sources. This is caused by the source being observed with a different orienta-

tion each time and the measured differential signal changes due to the beam asymmetry.

A similar effect can also be seen if the symmetric beam is assumed but then a timing off-

set is introduced which effectively elongates the beam profile in the scan direction (Moss

et al., 2011). In the WMAP pipeline, this is dealt with by incorporating a bright Galactic

source mask which only allows the iterative map-making to update the pixel where the

source is observed but not the paired pixel (e.g. Hinshaw et al., 2003a). Despite this

effort, there are a couple of studies which detected the existence of cold rings around hot

pixels in the five-year maps (Liu and Li, 2009; Aurich et al., 2010). It is possible that the

observed cold rings are caused by the beam asymmetry coupled with the scan strategy

and the bright sources which are left unmasked. We leave this study for future work and

only focus on the source beam response here.

5.3.1 Symmetrised beam profile

Next, we deliberately introduce a timing offset between the antennas pointing and the

recorded differential signal in the time-ordered data. The objective is to investigate the

effect of a possible WMAP timing error claimed in the literature (Liu et al., 2010, 2011;
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Figure 5.4: The on-sky beam maps as a function of Ecliptic latitude, β, and timing

offset. The beam maps are constructed by applying the map-making process (§5.2.3) on

simulated time-ordered data resulting from 365 days of scanning with Jupiter beam maps

(Fig. 5.3). The y-axis is aligned to the Ecliptic north-south direction. Top to Bottom;

β = 0◦ and 30◦. Left to Right; Offset= 0.0×, 0.5× and 0.8 × 51.2 ms. The scale of the

colour range is similar to Fig. 5.3
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Figure 5.5: Same as Fig. 5.4. Top to Bottom; β = 60◦ and 90◦. Left to Right; Offset=

0.0×, 0.5× and 0.8 × 51.2 ms.
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Roukema, 2010a,b) on the point-source beam profiles. In Chapter 4 (see also Sawangwit

and Shanks, 2010a), we found that by stacking radio point-source the recovered beam

profile for W-band is significantly wider than WMAP five-year beam profile from Jupiter

map analysis. The reasons why the measured radio source profile may be more appro-

priate than the Jupiter profile if non-linearity in the calibration does exist (as indicated

by WMAP source fluxes comparison with the ground-base) has also been discussed in

Chapter 4. Here, we shall check whether the smearing due to the timing error could be

the cause of the wider beam profile.

We generate a stream of simulated time-ordered data of a noiseless map with mock

point sources (see above). The map-making is then applied to the TOD which contain an

induced timing offset between the pointing and differential data. The claimed timing offset

is 25.6 ms which has also been shown to be present in the time-stamp of the WMAP TOD

‘Meta Data Table’ and ‘Science Data Table’ (Roukema, 2010a). Here, we parametrise the

timing offset as a fraction of the W-band integration time, i.e. ∆t = 0.5 × 51.2 ms.

However, note that timing offsets of similar amplitudes are also claimed to exist in the

Q- and V-band data (Liu et al., 2010, 2011) which have integration time of 102.4 and

76.8, respectively. Therefore, this timing offset is not to be confused with how one might

choose to interpolate the pointing within the integration time although it is conceivable

that such an error could have originated from it.

The resulting beam maps as a function of Ecliptic latitude and timing offset are plotted

in Figs. 5.4 and 5.5. Within ≈ 12.′6 FWHM of the beam centre, the map become elongated

in the Ecliptic north-south direction for β ≈ 0◦ − 30◦ because the scan pattern is mostly

orthogonal to the Ecliptic plane. Outside θ ≈ 12.′6 where the beam asymmetry is caused

by the −10 dB substructure, the timing offset appears to improve the symmetry of the

beam somewhat. For timing offset ∆t = 0.8 × 51.2 ms which corresponds to angular

separation of 2.784 (deg s−1) ·
(
0.8 × 51.2 (ms)

)
· sin(70.◦5) = 6.′7 which is bigger than

the W-band beam width ≈ 12.′6/
√

8 ln 2, we see in the right panels of Fig. 5.4 that the

point sources start to appear as double peaks. For a point source at high Ecliptic latitude

the beam map remains circularly symmetric as expected, although we note some strange

‘squeezed’ shape for the source at β ≈ 60◦ when the timing offset is induced into the

TOD.

We then estimate the symmetrised beam profiles from the beam maps. Here, the on-

sky beam maps are used rather than independently combining the A- and B-side beams

(Eq. 5.3, see also Page et al., 2003b). The normalised symmetrised beam profiles as a func-
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Figure 5.6: The symmetrised beam profile at Ecliptic latitude β divided by the profile at

β = 0◦ for different timing offsets. The gaps are due to no data contained in the bin at

≃ 2′ for the β = 0◦ source.

tion of timing offset are plotted in Fig. 5.7 but first we check whether the symmetrised

profiles show any indication of latitude dependence. Fig. 5.6 show the ratio of the sym-

metrised beam profile of a point source at β = 30◦, 60◦ and 90◦ to that at β = 0◦. The

symmetrised profiles at different latitudes are in good agreement with each others even

though the beam maps near Ecliptic plane are markedly different from those closer to the

pole. Therefore, the assumption that the symmetrised beam profile is independent of the

sky position appears to hold to a certain degree as demonstrated by this test. Even with

the induced timing offsets, the assumption still appear to be a good approximation.

Fig. 5.7 show the symmetrised beam profiles for different timing offsets, comparing

to the five-year WMAP ’s official beam profile (Hill et al., 2009). The beam profile for
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Figure 5.7: The normalised symmetrised W1 beam profiles determined from a noiseless

map constructed from a flight-like scan pattern and Jupiter beam map. The beam profiles

measured from stacking radio point sources (Chapter 4, see also Sawangwit and Shanks,

2010a) in the WMAP5 (diamonds) and 1.4-GHz NVSS catalogues (red solid circles) are

also shown for comparison. The zero-offset beam profile is slightly wider than the five-year

Jupiter beam profile (black solid line; Hill et al., 2009) is due to the pixelisation effect (as

expected).
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the nominal timing offset ∆t = 0.5 × 51.2 ms as claimed by Liu et al. (2010) is wider

than the zero offset as expected. However, it fails to produce a profile as wide as the

observed WMAP5 (diamonds) and NVSS (red solid circles) source profiles at θ & 20′.

For ∆t = 0.8 × 51.2 ms, the beam profile are generally in better agreement with the

data. Upon closer inspection, however, the profile is somewhat broader at θ ≈ 10′ while

still slightly narrower than the data at θ > 20′. As noted above that ∆t = 0.8 × 51.2

ms timing offset corresponds to ∆θ = 6.′7 which is larger than the W-band beam width

≈ 12.′6/
√

8 ln 2 and in the beam map this can seen as double peaks. Here, the profile

displays a slight dip at small θ as one may expect. If the offset is increased to 1.0×51.2 ms,

the profile dip at small θ becomes more apparent and the resulting profile at θ ≈ 8′ − 20′

now becomes too wide for the data.

If the timing offset in the WMAP TOD which is left uncorrected in the map-making

process is the cause of the observed point source profile being wider than the Jupiter beam

profile, the test we carried out in this section would require timing offset of ∆t ≈ 0.8×51.2

ms. This is somewhat larger than the value claimed by Liu et al. (2010, 2011). We shall

return to discuss this in §5.4.

5.3.2 Beam ellipticity

As we can see in Figs. 5.4 and 5.5 that the induced timing offset in the map-making process

affect the ellipticity of the beam map which is confined mostly within the central 12.′6

FWHM of the beam. The effect of the timing offset on the beam shape is also latitude

dependent. Here, we attempt to exploit the full 2D information of the beam maps unlike

in §5.3.1 where we average the beam map over its 2π azimuth angle. In other words, we

shall measure the ellipticity of the beam within ≈ θFWHM as a function of Ecliptic latitude

and use this to constrain the size of a possible timing offset if it indeed does exist.

Method

We use the WMAP5 point source catalogue Wright et al. (2009) and stacking the temper-

ature maps around these sources. The selection criteria of the sources, e.g. fluxes, mask

and 5-GHz cross-identification plus non-extended flag, are the same as that used in §5.3.1.

In an attempt to maximise signal-to-noise, here we shall use WMAP seven-year tempera-

ture maps rather than the five-year maps. And we use the highest resolution WMAP map

available, res=10, which has pixel dimension of ≈ 3.′5. Note that the symmetrised beam

profiles derived from WMAP7 temperature maps are consistent with the results presented
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in Chapter 4 (see also Fig. 5.7). The sources are divided into three Ecliptic latitude bins

with a width ∆ sinβ=1/3 to help keeping similar number of objects in each bin. Because

of the directionality of the problem, the temperature map around each point source is

re-orientated so that the Ecliptic north-south direction is aligned in the same direction

before stacking. The re-orientated maps are put into a new xy coordinate gridded with

3.′4 × 3.′4 pixel size. The mean map, T (x, y), is determined by averaging all the maps

surrounding point sources in each latitude bin. The mean for each pixel is weighted by

the number of observations in that pixel.

The beam ellipticity we measure is defined such that

ε̄ ≡ 1 − σb
σa
, (5.13)

where σa and σb are the semi-major and semi-minor axis lengths of an elliptical profile. We

apply algorithms to extract the shape parameters similar to those used for source extrac-

tion in optical astronomy (e.g. SExtractor; Bertin and Arnouts, 1996, and references

therein). The σa and σb are given by

σ2a =
〈x2〉 + 〈y2〉

2
+

√(
〈x2〉 + 〈y2〉

)2

4
+ 〈xy〉, (5.14)

and

σ2b =
〈x2〉 + 〈y2〉

2
−

√(
〈x2〉 + 〈y2〉

)2

4
+ 〈xy〉, (5.15)

where 〈x2〉, 〈y2〉, 〈xy〉 are the second-order moments and are calculated from

〈x2〉 =

∑
i
Ti x

2
i

∑
i
Ti

− 〈x〉2, 〈y2〉 =

∑
i
Ti y

2
i

∑
i
Ti

− 〈y〉2, 〈xy〉 =

∑
i
Ti xiyi
∑
i
Ti

− 〈x〉〈y〉, (5.16)

where 〈x〉 and 〈y〉 are the first-order moments given by

〈x〉 =

∑
i
Ti xi
∑
i
Ti

, 〈y〉 =

∑
i
Ti yi
∑
i
Ti

(5.17)

The first moments can also be thought of as the beam map barycentre. In our calcu-

lation of the stacked maps, this always gives a value within half a pixel of the stack centre

(see Fig. 5.8), i.e. the fitted source positions. To check our method, we first apply it to

the high signal-to-noise Jupiter beam map (Fig 5.3). Because the observed on-sky beam
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is a combination of A- and B-side beam maps, we therefore measure the beam ellipticity

of the average map after correcting for the transmission imbalance similar to Eq. 5.3. The

measured beam ellipticity of the combined A- and B-side maps is ε̄ = 0.049 if all the sums

in Eqs. 5.16 and 5.17 are calculated using all the pixels within a radius of 12′ of the beam

centre. Increasing and decreasing the sum radius to 15′ and 10′ result in the measured

ellipticities of 0.046 and 0.041, respectively. The recovered semi-major and semi-minor

axis lengths are approximately 5′.

Mitra et al. (2004) measured the eccentricity, e, of the first-year W1A Jupiter beam

map to be around 0.35-0.4. The author used a couple of elliptical Gaussian fitting routines,

AIPS and IRAF, and obtained consistent measurements from both software. Now, the

the ellipticity is related to the eccentricity via

e =

√

1 −
(
σb
σa

)2

, ε̄ = 1 −
√

1 − e2 (5.18)

This corresponds to ε̄ ≈ 0.063 − 0.083 and is in good agreement with our W1A measure-

ment of ε̄ = 0.079 using the method above. However, as their results (Fig. 9) indicate that

while the measurements are quite stable at the similar semi-major axis lengths recovered

by our method, measurements made at larger distances are affected by the substructure

at ≈ 20′. This would systematically increase the measured beam ellipticity and therefore

bias our measurement which is intended only for the central θ . θFWHM part of the beam

maps. However, as noted above that outside θFWHM, the timing offset acts to reduce the

beam ellipticity we seek to measure. We therefore apply our beam ellipticity measurement

only out to θ ≈ 10′.

Results and Monte Carlo simulations

We create Monte Carlo simulations to help with interpreting the beam ellipticity measure-

ments as well as to obtain estimates of the statistical uncertainties on the measurements.

The point source temperature maps are created from a power-law N(> S) distribution

(see Chapter 4). But instead of smoothing the map with a symmetric beam, here, we

use the Jupiter beam maps and the scan model (see §5.2) to simulate WMAP TOD.

The sky map is then re-constructed from the TOD. Note that the CMB fluctuations are

not included at the scanning stage but is added after the sky map is recovered to help

reduce computing time. The white noise is then added to the temperature maps. This is

the same as what we called radiometer/pixel noise in Chapter 4. The noise map is con-
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Figure 5.8: The stacked temperature maps around point sources in the real data and

simulations in the lowest β bin; (a) WMAP5 point sources, (b) simulation with zero

offset, (c) simulation with 0.5×51.2 ms offset and (d) simulation with 0.8×51.2 ms offset.

The crosses indicate the first moments for each stacked map. Each map is overlaid by an

ellipse constructed from its shape parameters derived from the second moments.

structed from the seven-year Nobs map and the σ0 value (noise per pixel per observation)

taken from Limon et al. (2008). We then apply the point source detection as outlined in

Chapter 4. For each induced timing offset, we generate 50 Monte Carlo realisations.

The beam ellipticity analysis described above is then applied to each simulation.

Fig. 5.8(b)-(d) show examples of the stacked map (for the lowest β bin) from one of the

Monte Carlo realisation with different induced timing offsets. The stacked temperature

map around WMAP5 point sources is also given in panel (a) of Fig. 5.8 for comparison.

The averages and the standard deviations determined from sets of 50 simulations are
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Figure 5.9: The beam ellipticity measurements as a function of Ecliptic latitude and

timing offset. For each timing offset, the expected values are determined from 50 Monte

Carlo simulations. The beam ellipticity measured from stacking WMAP5 point sources

in Ecliptic latitude bins are shown as the blue solid circles.

plotted as the coloured lines and their error bars in Fig. 5.9. The simulation results show

a decreasing trend of the beam ellipticity as a function of Ecliptic latitude as expected.

As a result, the measurements in the lowest β bin have the most discriminating power

in terms of constraining the size of timing offset. For ∆t = 0.8 × 51.2 ms, the statistical

errors increase because of the rise in the uncertainty in the recovered positions of the

point sources. The ellipticity measured in the lowest β bin and zero-offset is consistent

with the rest-frame beam map, ε̄ ≈ 0.04 − 0.05, presented above as expected.

The beam ellipticities measured from stacking WMAP5 point sources are consistent

within 1σ statistical uncertainty (χ2 = 2.96 over 3 d.o.f) of the zero timing offset. How-

ever, the ∆t = 0.5 × 51.2 ms results from the simulations indicate that, using only the

lowest β bin, it can be marginally ruled out at 1.9σ significance level. Using all three

bins, χ2 = 5.07 and the probability of acceptance P (< χ2) = 0.17. But as we see in the

last section that its symmetrised beam profile is not wide enough to explain the point

source measurements. For ∆t = 0.8×51.2 ms case which is preferred by the symmetrised

beam profile test, the beam ellipticity is too large for the measured value with χ2 = 16.3

over 3 d.o.f and can be ruled out at 99.9 per cent significance level.
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5.4 Discussion and conclusions

We have used both the symmetrised profiles and the full 2D information of the beam maps

measured from stacking the radio point sources to investigate the effect of a possible timing

offset in the WMAP time-ordered data. The analyses we performed are in the contexts

of testing if the wider beam profiles we measured in Chapter 4 can be explained by the

presence of a timing offset which may be left uncorrected in the map-making process. The

claimed timing offset ∆t = 0.5 × 51.2 ms (Liu et al., 2010, 2011; Roukema, 2010b) would

widen the observed beam profile but as our simulation which incorporates WMAP scan

strategy and the realistic Jupiter beam map shows that the resulting symmetrised beam

profile is still not wide enough. If we then assume that the timing offset is real and look

for a size of ∆t required to explain the point source profile, our measurements indicate

that the timing offset of ∆t = 0.8 × 51.2 ms would be needed, still not too far off from

the claimed value in the literature.

The notable feature observed in the on-sky beam maps with the induced timing off-

set is the elongation of the point source temperature map along the scanning direction.

Although the WMAP scan strategy is designed to observe a sky pixel from all azimuth

angles, the scan pattern and its direction are rather sparse and confined mostly in the

orthogonal direction of the Ecliptic plane at low Ecliptic latitudes (§5.2). This couples

with a timing offset means that the elongation effect is expected to be most severe at

low β and should be observable by stacking the temperature maps around point sources

at low β. We exploited this and performed an analysis which shows that the data are

consistent with a zero-offset case, although 25.6 ms timing offset cannot be ruled out

at high significance level using our measurements. However, the preferred timing offset,

∆t = 0.8 × 51.2 ms, suggested by the symmetrised beam profile test, is ruled out at 99.9

per cent significance level.

Our results support the finding of Roukema (2010a) who despite pointing out the

existence of an offset in the starting time of the meta data and science data tables in the

time-ordered data has found that the timing adopted by the WMAP team (zero timing

offset as used here) is preferred at 4.6σ significance, comparing to the 25.6 ms timing offset.

The author indirectly measured the image sharpness of the sky maps using percentiles of

the pixels temperature above certain threshold. Therefore, it seems that the timing offset

may be ruled out, at least in the map-making process. Liu et al. (2011) and Roukema

(2010b) have independently confirmed that there may in fact be a timing error in the
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calibration process which could have been caused by the starting time offset mentioned

above. However, it is difficult to imagine how any timing error in the calibration process

could effect a point source spatially and act to widen its profile.

Although it is possible that if any pointing error (which is not associated with timing

offset nor scan direction) does exist, this may act to blur out any elongation expected

to result from the timing offset. Such an error would have to be of similar size to that

considered here. However, according to Hinshaw et al. (2009) WMAP team expects only

≈ 1′ temperature-dependent pointing offset between the probe’s star tracker and the beam

boresight. This is not big enough to cause the smearing of the possible beam elongation

observed here or indeed to widen the point source profile at the level seen in the data.

Therefore, we conclude that the recently claimed timing offset in the TOD is not the

cause of the observed wider than expected beam profile presented in Chapter 4.



Chapter 6
Conclusions

6.1 Summary of the main results

In this thesis, we confronted the current standard cosmological paradigm with observa-

tions regraded as the main pillars of modern cosmology, namely the large-scale structure

and the cosmic microwave background including their cross-correlation. In Chapter 1,

we reviewed the theoretical framework, assumptions and observational evidence which

contribute to the rise of the ΛCDM model and highlighted its successes and problems.

The need to continually checking the model was also emphasised.

In Chapter 2, we measured the angular correlation functions of LRGs at three average

redshifts and used them to study the clustering evolution. The shape of the angular

correlation functions in the linear regime is consistent with a ‘high-peaks’ bias model and

linear theory within the ΛCDM framework. The departure from the conventional power-

law can be described by the Halo Occupation Distribution framework where a strong

effect is expected in a more luminous (L > L∗) and high-z galaxy sample (Watson et al.,

2011). Using the estimated linear bias factors in conjunction with the dark matter halo

bias (Sheth et al., 2001; Tinker et al., 2005) and halo merger formalism (Lacey and Cole,

1993), the haloes which typically host ≈ 2L∗ − 3L∗ LRG at z . 0.7 can be regarded as

the descendants of haloes with mass ∼ 1 × 1013 h−1M⊙ at z = 1. In the CDM model,

the rapid growth of these haloes and therefore of the LRG are expected. This is very

different to the long-lived or no-evolution model which may be suggested by the slow

evolution observed in the LRG luminosity function (e.g. Wake et al., 2006; Brown et al.,

2007). However, in order to explain the small-scale clustering evolution, the LRGs must

be allowed to merge at ∼ 2 − 3 per cent per Gyr. These also have to be ‘dry’ mergers to

explain the little stellar masses growth observed in the LRGs since z = 1.

We then searched for the BAO peak in the LRG angular correlation function. Our

result shows good agreement with the SDSS LRG result of Eisenstein et al. (2005) but we

find an apparent excess clustering signal beyond the BAO scale. Angular power spectrum

analyses of similar LRG samples also detect a similar apparent large-scale clustering

178
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excess but more data is required to check for this feature in independent galaxy datasets.

Certainly, if the ΛCDM model were correct then we would have to conclude that this

excess was caused by systematics at the level of ∆w ≈ 0.001 − 0.0015 in the photometric

AAOmega-LRG sample. We then investigated a possible improvement in detecting a

BAO peak in w(θ) of photometric LRG samples at z ∼ 1 where we argued that for photo-

z error of ≈ 0.03 − 0.05 (expected in upcoming photometric surveys) photo-z+w(θ) may

provide a competitive route to the BAO detection, provided that systematic errors can

be kept under control.

In Chapter 3, we cross-correlated various LSS tracers with the CMB temperature

maps from five-year observations of the WMAP satellite to look for the ISW effect. We

found that the new LRG sample at z ≈ 0.7 shows very little positive evidence for the ISW

effect. Indeed, the cross-correlation is negative out to ≈ 1◦. The standard ΛCDM model

is rejected at ≈ 2.2σ significance by the new LRG data. We then analysed the previous

samples at z ≈ 0.35 and z ≈ 0.55. As found by other authors, these results appear con-

sistent with the standard ISW model, although many of these results appear to require

higher ΩΛ than other observations and the statistical significance remains marginal. Tak-

ing the z ≈ 0.35 and z ≈ 0.55 LRG results in combination with the new z ≈ 0.7 sample,

the overall result is now more consistent with a null detection than with the standard

ΛCDM model prediction.

We then performed a new test on the robustness of the LRG ISW detections at

z ≈ 0.35 and z ≈ 0.55. We made 8 rotations through 360◦ of the CMB maps with

respect to the LRG samples around the galactic pole. We find that in both cases there

are stronger effects at angles other than zero. This implies that the z ≈ 0.35 and z ≈ 0.55

ISW detections may still be subject to systematic errors which combined with the known

sizeable statistical errors may leave the z ≈ 0.35 and z ≈ 0.55 ISW detections looking

unreliable. We have further made the rotation test on several other samples where ISW

detections have been claimed and find that they also show peaks when rotated. We

conclude that in the samples we have tested the ISW effect may be absent and we argue

that this result may not be in contradiction with previous results.

In Chapter 4, we made an independent estimation of the CMB temperature angular

power spectrum using the publicly available WMAP data and Cℓ computation code. We

showed how sensitive the WMAP power spectra are to the form of the instrumental beam.

Even though the beam core width corresponds to wavenumber l ≈ 1800, the form of the

beam still significantly affects the WMAP results even at l ≈ 200 which is the scale of
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the first acoustic peak. The difference between the beam convolved Cl and the final Cl is

≈ 70% at the scale of the first peak, rising to ≈ 400% at the scale of the second.

New estimates of the Q, Vand W -band beam profiles are then presented, based on a

stacking analysis of the WMAP5 radio source catalogue and temperature maps where we

demonstrate its robustness through Monte Carlo simulations. The radio sources show a

significantly (3 − 4σ) broader beam profile on scales of 10′ − 30′ than that found by the

WMAP team whose beam analysis is based on measurements of Jupiter. Beyond these

scales the beam profiles from the radio sources are too noisy to give useful information.

Furthermore, we find tentative evidence for a non-linear relation between WMAP and

ATCA/IRAM 95 GHz source fluxes. We discuss whether the wide beam profiles could

be caused either by radio source extension or clustering and find that neither explanation

is likely. The reasons for the difference between the radio source and the Jupiter beam

profiles are therefore still unclear. If the radio source profiles were then used to define the

WMAP beam, there could be a significant change in the amplitude and position of even

the first acoustic peak. It is therefore important to identify the reasons for the differences

between these two beam profile estimates.

In Chapter 5, we developed a method to construct the on-sky beam maps for a differ-

ential CMB experiment such as WMAP. As a demonstration the WMAP scan strategy

and the realistic beam maps as measured by the WMAP team were used to produce the

on-sky beam map for the W1 DA. We showed that the azimuthally symmetrised beam

profiles are independent of the Ecliptic latitude even though the 2D maps appear very

different. We then used this to investigate the timing offset in the WMAP time-ordered

data recently claimed in the literature. The claimed timing offset of ∆t = 0.5 × 51.2

ms cannot produced the radio source beam profile as wide as that observed in Chap-

ter 4 and ∆t = 0.8 × 51.2 ms may better describe our results. However, using the full

2D information of the beam maps via the beam ellipticity, the offset ∆t = 0.8 × 51.2

ms can be ruled out at 99.9 per cent significance level while ∆t = 0.5 × 51.2 ms is only

marginally ruled out. We argued that the timing offset cannot explain the wider than

expected beam profile observed in the stacking of radio sources we performed in Chapter

4. The marginally rejection of the timing offset ∆t = 0.5 × 51.2 ms in the map-making

process is also consistent with Roukema (2010a). Although the author found a much

higher significance of rejection by indirectly measuring the sharpness of the temperature

maps.
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6.2 Final Conclusions and Future Prospects

The accelerated expansion and the inferred presence of dark energy is no doubt the most

enigmatic discovery of modern cosmology. Our current cosmological, flat ΛCDM, model,

though apparently supported by plethora of observations, is based on two pieces of undis-

covered physics which are believed to contribute 95 per cent of the energy density of the

Universe. So far none of the proposed dark energy models is completely successful and

convincing enough (Sahni, 2004; Shanks, 2005). Many dark energy experiments are now

being designed with a common goal to achieve an unprecedented level of precision mea-

surement on the equation of state w, employing variety of techniques and cosmological

probes such as weak lensing, BAO, cluster abundance and SNIa (see e.g. Dark Energy

Task Force report, Albrecht et al. 2006, for a review on strengths, weaknesses and con-

straining power of each method). However, the converging of astronomy community to

measure dark energy ever more precisely is not without its criticism (White, 2007). More

importantly, the attention should also be paid to testing our gravity theory and not just

the equation of state as demonstrated by the redshift-space distortion study of Guzzo

et al. (2008).

The lack of direct detection of dark matter particles and satisfactory explanation for

cosmological constant problems means that one should remain sceptical. This thesis has

confronted the standard cosmological model using a few of the tools usually employed

in modern cosmology. We particularly found that the shape of LRG angular correlation

function at large scales is consistent with the ΛCDM prediction in the ‘high-peaks’ bias

and linear theory frameworks. At the largest scales, we found an excess clustering which

might be evidence for some new physics or non-Gaussianity beyond the standard infla-

tionary ΛCDM model if confirmed in independent datasets. Although a systematic effect

is also a possibility based on the tests we performed. If this is the case then our attempt

to search for the BAO peak in the angular correlation function may be prohibited by the

level of systematic effects. LRG surveys form the ideal BAO route to study dark energy

at z . 1 owing to their high bias and intrinsically luminous nature. Their homogeneous

SEDs also provides a further argument for using LRGs in the photo-z BAO study in on-

going and upcoming photometric surveys such as Pan-STARRs, DES, VST ATLAS and

LSST. In fact, the ongoing SDSS-III’s Baryon Oscillation Spectroscopic Survey (BOSS;

Eisenstein et al. 2011) is targeting z ≈ 0.55 LRG’s as one of their LSS tracers to measure

the BAO distance scale and dark energy equation-of-state at great precision.
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An LRG sample also provides a good LSS tracer for detecting the ISW effect by

cross-correlating it with the CMB. Our new photometric LRG sample at z̄ ≈ 0.7 showed

zero correlation with the WMAP5 maps despite the fact this is the redshift where the

ISW signal is expected to be maximised. We further showed that the previous detections

of the ISW effect may not be as significant as previously claimed. The absence of the

ISW effect would be evidence against any model that produced accelerated expansion.

In a spatially flat Universe, this would therefore argue against a significant role of a

cosmological constant or dark energy in the Universe and that the matter density is equal

to the critical density. It is therefore important to repeat similar LRG measurements in

the southern sky and with a larger sky coverage. The surveys mentioned above will also

provide new opportunities to do just that.

On the CMB front, the much anticipated Planck mission will soon shed light on

some of the controversial issues raised in the literature and this thesis regarding the

WMAP results. This also includes the possible induced quadrupole component due to the

unfortunate coupling of the dipole with the WMAP scan strategy (Liu et al., 2010, 2011;

Roukema, 2010b; Moss et al., 2011). In fact, the Planck Early Release Compact Source

Catalog is now being used to check (Whitbourn, Shanks & Sawangwit, in prep.) the

possible non-linearity in the WMAP radio source fluxes found here as well as the WMAP

SZ anomaly found by Myers et al. (2004) and Bielby and Shanks (2007). Although it is

true that the WMAP results agree remarkably well with ground-based and balloon-borne

CMB experiments, the aforementioned issues still demand explanations. All these issues

aside, the Planck mission with its much improved sensitivity and impressive frequency

coverage will provide a valuable source of information for cosmology and astrophysics. The

cosmological parameters will no doubt be measured with even greater precision. It will

also provide further informations regarding the inflationary models of the early Universe.

Finally, the Square Kilometre Array (SKA) will provide a great opportunity to bridge

the observation gap between the reionisation (z ∼ 6) and recombination (z ∼ 1000) epochs

by making a map of neutral hydrogen via the HI 21-cm emission line. The tomography

of redshifted 21-cm emission line will revolutionise our understanding of the Universe at

this pivotal epoch when galaxy formation started. The quest for a better picture of our

Cosmos is set to remain lively and exciting for, at least, decades to come.



Appendix A
LRG angular

correlation functions

and their covariance

matrices

Here, we tabulate the angular correlation functions (Table A.1) measured from the

three photometric LRG samples studied in Chapter 2. The full covariance matrices in the

form of correlation coefficients are shown in Fig. A.1.

Table A.1: The measured angular correlation functions for

the SDSS, 2SLAQ and AAΩ-LRG and their 1σ JK errors.

θ(′) SDSS 2SLAQ AAΩ

0.100 26.78 ± 2.37 9.85 ± 0.39 6.27 ± 0.24

0.150 15.96 ± 1.47 7.40 ± 0.14 4.65 ± 0.10

0.225 11.09 ± 0.56 4.54 ± 0.085 2.95 ± 0.057

0.337 6.10 ± 0.33 2.95 ± 0.050 1.86 ± 0.033

0.506 3.93 ± 0.19 1.83 ± 0.026 1.11 ± 0.016

0.759 2.04 ± 0.090 1.09 ± 0.020 0.65 ± 0.014

1.139 1.55 ± 0.061 0.68 ± 0.011 0.419 ± 0.0095

1.708 1.00 ± 0.038 0.416 ± 0.0057 0.282 ± 0.0059

2.562 0.56 ± 0.025 0.285 ± 0.0061 0.213 ± 0.0036

3.844 0.31 ± 0.019 0.199 ± 0.0038 0.151 ± 0.0023

5.766 0.22 ± 0.012 0.152 ± 0.0026 0.112 ± 0.0020

8.649 0.171 ± 0.0081 0.113 ± 0.0019 0.083 ± 0.0013

12.97 0.118 ± 0.0053 0.078 ± 0.0018 0.057 ± 0.0011

Continued on next page
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Table A.1 – continued from previous page

θ(′) SDSS 2SLAQ AAΩ

19.46 0.091 ± 0.0055 0.055 ± 0.0012 0.0405 ± 0.00077

29.19 0.060 ± 0.0041 0.038 ± 0.0011 0.0264 ± 0.00062

43.78 0.038 ± 0.0031 0.0226 ± 0.0009 0.0157 ± 0.00060

60.00 0.028 ± 0.0023 0.0144 ± 0.0008 0.0093 ± 0.00053

80.00 0.018 ± 0.0020 0.0086 ± 0.00076 0.0056 ± 0.00051

100.0 0.014 ± 0.0019 0.0054 ± 0.00067 0.0040 ± 0.00045

120.0 0.011 ± 0.0017 0.0034 ± 0.00060 0.0039 ± 0.00036

140.0 0.0071 ± 0.0018 0.0024 ± 0.00061 0.0035 ± 0.00027

160.0 0.0063 ± 0.0014 0.0019 ± 0.00064 0.0029 ± 0.00032

180.0 0.0045 ± 0.0013 0.0021 ± 0.00065 0.0024 ± 0.00039

200.0 0.0026 ± 0.0014 0.0020 ± 0.00060 0.0020 ± 0.00039

220.0 0.0020 ± 0.0014 0.0022 ± 0.00062 0.0011 ± 0.00035

240.0 0.0014 ± 0.0013 0.0019 ± 0.00058 0.0014 ± 0.00039

260.0 0.0014 ± 0.0015 0.0015 ± 0.00045 0.0015 ± 0.00040

280.0 0.0017 ± 0.0011 0.0013 ± 0.00044 0.0018 ± 0.00032

300.0 0.0020 ± 0.00077 0.0013 ± 0.00045 0.0021 ± 0.00038

320.0 0.0016 ± 0.00091 0.0015 ± 0.00045 0.0021 ± 0.00043

340.0 0.0032 ± 0.0010 0.0013 ± 0.00053 0.0019 ± 0.00048

360.0 0.0025 ± 0.0010 0.0011 ± 0.00047 0.0016 ± 0.00048

380.0 0.0023 ± 0.0011 0.0012 ± 0.00045 0.0016 ± 0.00045

400.0 0.0025 ± 0.0010 0.0010 ± 0.00045 0.0013 ± 0.00041

420.0 0.0017 ± 0.0011 0.00054 ± 0.00045 0.0007 ± 0.00041

440.0 0.0020 ± 0.0012 0.00064 ± 0.00042 0.0006 ± 0.00038

460.0 0.0003 ± 0.0012 0.00017 ± 0.00045 0.0008 ± 0.00038

480.0 0.0006 ± 0.0014 0.00002 ± 0.00047 0.0005 ± 0.00039

500.0 −0.0001 ± 0.0012 0.00018 ± 0.00051 0.0005 ± 0.00044
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Figure A.1: The correlation coefficients, rij , out to very large angular separations. These are derived from the covariance matrices

(Eq. 2.13) via 96 jackknife re-sampling fields. Three panels show rij for SDSS, 2SLAQ and AAΩ -LRG samples from left to right.



Appendix B
Constructing WMAP

line-of-sight rotation

matrix

The WMAP beam line-of-sight (LOS) for each side (A and B) of a ‘Differencing

Assembly’ (DA) is given in the spacecraft (SC) coordinates1. The beam pointing on the

sky as a function of time can be determined by incorporating the survey scan strategy

(Chapter 5, Fig. 6.1) with the LOS unit vector (n̂SC). Here, we construct a time-dependent

rotation matrix, R(t), for the purpose of transforming the beam LOS given in the SC

coordinates into the sky (Ecliptic) coordinates.

The coordinate transformation is done in the following four steps.

(I) The probe spins around its axis of symmetry (-Z axis in Fig. 6.1) which is pointing

in the anti-Sun direction. A new coordinate (x′, y′, z′) is constructed from the SC

coordinate (x, y, z) so that the z′−axis is aligned with the −z direction, n̂′ = R1n̂SC;




n′x

n′y

n′z


 =




−1 0 0

0 1 0

0 0 −1







nx

ny

nz


 (B.1)

Figure B.1: Step 1 in the coordinate transformations.

1See e.g. Table 7 of Hinshaw et al. (2003a), and the full precision unit vectors are available in the

released time-ordered data (Limon et al., 2008)
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(II) The (x′, y′, z′) coordinate spins around its z′-axis with a spin rate ψ̇. In a new

stationery coordinate (x′′, y′′, z′′), n̂′′ = R2(t)n̂′;




n′′x

n′′y

n′′z


 =




cosψ(t) − sinψ(t) 0

sinψ(t) cosψ(t) 0

0 0 1







n′x

n′y

n′z


 , (B.2)

where ψ(t) = ψ̇t+ψ0, ψ̇ = 2.784 deg s−1 and ψ0 is the initial value to be determined.

Figure B.2: Step 2 in the coordinate transformations.

(III) The spin axis precesses around the anti-Sun direction (z′′′-axis) at an angle ϑP =

22.◦5 and precession rate φ̇. In (x′′′, y′′′, z′′′) coordinate, the LOS unit vector is given

by n̂′′′ = R3(t)n̂′′;




n′′′x

n′′′y

n′′′z


 =




cos ϑP cosφ(t) − sinφ(t) sinϑP cosφ(t)

cos ϑP sinφ(t) cosφ(t) sinϑP sinφ(t)

− sinϑP 0 cos ϑP







n′′x

n′′y

n′′z


 , (B.3)

where φ(t) = φ̇t+φ0, φ̇ = −0.1 deg s−1 and φ0 is the initial value to be determined.

Figure B.3: Step 3 in the coordinate transformations.
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(IV) Finally, the (x′′′, y′′′, z′′′) coordinate can be transformed into the Ecliptic coordinate

(EC), here denoted by (X,Y,Z). The precession axis (z′′′) is rotated onto the Eclip-

tic plane (XY plane). Any possible misalignment with the plane is parametrised by

an angle β0, to be determined later. The (x′′′, y′′′, z′′′) coordinate rotates around the

Z-axis (pointing in the North Ecliptic pole direction) as the WMAP (and Earth)

orbits around the Sun at an orbiting speed λ̇. Here, we assume λ̇ is approximately

constant along the entire orbit. In the EC coordinate, the LOS unit vector becomes

n̂EC = R4(t)n̂
′′′;




nX

nY

nZ


 =




− sinβ0 cos λ(t) sinλ(t) cos β0 cos λ(t)

− sinβ0 sinλ(t) − cos λ(t) cos β0 sinλ(t)

cos β0 0 sinβ0







n′′′x

n′′′y

n′′′z


 , (B.4)

where λ(t) = λ̇t + λ0 and λ0 is the initial value to be determined. The orbiting

speed is calculated for a circular orbit at a = 1.01 AU, i.e. period=1.015 yr. Using

WMAP Quaternions in a triangulation, the β0 is determined to be very close to

zero, ≈ −0.◦04. The similar technique can also be used to determine the scan

starting point, ψ0, φ0 and λ0, using Quaternions available in the WMAP TOD.

Figure B.4: Step 4 in the coordinate transformations.

The WMAP beam boresight on the sky at any given time can be determined for

either A- or B-side of any DA using its LOS unit vector extracted from the LOS table

of the released time-ordered data, n̂EC = R(t)n̂SC. Putting all the steps outlined above

together,

n̂EC = R4(t)R3(t)R2(t)R1n̂SC, (B.5)

i.e. R(t) = R4(t)R3(t)R2(t)R1. For the reverse transformation, n̂SC = R−1n̂EC =

RT n̂EC, where the last equality applies because rotation matrix is orthogonal.
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K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and

M. Bartelmann. HEALPix: A Framework for High-Resolution Discretization and Fast

Analysis of Data Distributed on the Sphere. ApJ, 622:759–771, Apr 2005.

B. R. Granett, M. C. Neyrinck, and I. Szapudi. An Imprint of Superstructures on the

Microwave Background due to the Integrated Sachs-Wolfe Effect. ApJ, 683:L99–L102,

Aug 2008.

P. C. Gregory et al. The GB6 Catalog of Radio Sources. ApJS, 103:427–+, Apr 1996.

M. R. Griffith and A. E. Wright. The Parkes-MIT-NRAO (PMN) surveys. I - The 4850

MHz surveys and data reduction. AJ, 105:1666–1679, May 1993.

E. J. Groth and P. J. E. Peebles. Statistical analysis of catalogs of extragalactic objects.

VII - Two- and three-point correlation functions for the high-resolution Shane-Wirtanen

catalog of galaxies. ApJ, 217:385–405, Oct 1977.



BIBLIOGRAPHY 198
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