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Abstract 
 

Airborne Light Detection and Ranging (LiDAR) technology is assessed for its effectiveness as a 

tool for measuring terrain under forest canopy. To evaluate the capability of multiple-return 

discrete-pulse airborne laser ranging for detecting and resolving sub-canopy archaeological 

features, LiDAR data were collected from a helicopter over a forest near Gateshead in July 

2009. Coal mining and timber felling have characterised Chopwell Wood, a mixed coniferous 

and deciduous woodland of 360 hectares, since the Industrial Revolution. The state-of-the-art 

Optech ALTM 3100EA LiDAR system operated at 70,000 pulses per second and raw data were 

acquired over the study area at a point density of over 30 points per square metre. 

Reference terrain elevation data were acquired on-site to ‘train’ the progressive densification 

filtering algorithm of Axelsson (1999; 2000) to identify laser reflections from the terrain 

surface. A number of sites, offering a variety of tree species, variable terrain roughness & 

gradient and understorey vegetation cover of varying density, were identified in the wood to 

assess the accuracy of filtered LiDAR terrain data. Results showed that the laser scanner over-

estimated the elevation of reference terrain data by 13±17 cm under deciduous canopy and 

23±18 cm under coniferous canopy. Terrain point density was calculated as 4.1 and 2.4 points 

per square metre under deciduous and coniferous forest, respectively. Classified terrain points 

were modelled with the kriging interpolation technique and topographic archaeological 

features, such as coal tubways (transportation routes) and areas of subsidence over relic mine 

shafts, were identified in digital terrain models (DTMs) using advanced exaggeration and 

artificial illumination techniques.  

Airborne LiDAR is capable of recording high quality terrain data even under the most dense 

forest canopy, but the accuracy and density of terrain data are controlled by a combination of 

tree species, forest management practices and understorey vegetation.  
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Chapter 1. Introduction and Literature Review 1: Airborne 
LiDAR 
 

1.1 Introduction 
 

Collaboration between academic research institutions and Regional Development Agencies 

(RDAs) in the United Kingdom offers an effective means of concentrating research and 

development on projects beneficial to the local community. One North East has provided 

funding to conduct research at a forest near Gateshead with a view to forming a working 

partnership between the University of Durham, the North East branch of the Forestry 

Commission and local community groups, including the Friends of Chopwell Wood. Additional 

complimentary funding has been provided by each of these groups. Through knowledge 

transfer between agencies, the University is able to offer the wider community access to an 

innovative new surveying technique, airborne laser scanning, while utilising the experience of 

the Forestry Commission in forest practices and theory and the knowledge of the Friends of 

Chopwell Wood on local history. In addition to contributing resources, each group benefits 

from the research; for example the Forestry Commission obtains information on the viability of 

introducing remote sensing technology to forest operations and the Friends of Chopwell Wood 

acquire otherwise inaccessible information of their local landscape. Cooperation between 

interested parties, with a motivation for regional development, enhances the quality of 

research while maintaining a relevant focus on local community applications.   

 

1.1.1 Sub-forest canopy archaeology 

 

Topographic feature detection within forested areas remains one of the few obstacles to 

modern archaeological prospecting.  Areas covered by woodland are potentially concealing 

undetected archaeological features and consequently local history relating to these features 

remains unknown. Aerial reconnaissance and photography have been employed by 
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archaeologists for over a century to compliment terrestrial surveys, in addition to 

contemporary multispectral satellite remote sensing and image analysis (De Laet et al., 2007; 

Fowler, 2002; Neubauer, 2004). However these techniques can, in most cases, only recover 

detailed information in open areas without complex topography and/or vegetation (Barnes, 

2003; Bewley et al., 2005).  

Aerial photogrammetry offers the only method previously utilised for remote measurement of 

the terrain surface beneath forest canopy for archaeological applications (e.g. Bewley, 2003; 

Kucukkaya, 2004). Aerial photographs of the same location, but taken from multiple viewing 

angles, are manually or automatically joined with terrestrial tie-points (taken within gaps in the 

canopy) and elevation is triangulated (Baltsavias, 1999b). Accuracy is lost when few tie-points 

can be identified. Given the passive nature of the technique this is often due to shadow on the 

forest floor (Kraus and Pfeifer, 1998; Pfeifer and Mandlburger, 2009), but is also due to a lack 

of full automation and versatility (Nardinocchi et al., 2003). 

In an attempt to address these issues, some research has been conducted into an alternative 

remote sensing method for deriving accurate and detailed sub-canopy terrain data. Innovative 

‘Light Detection and Ranging’ (LiDAR) technology is capable of measuring over 100,000 points 

per second across the Earth’s surface (Mallet and Bretar, 2009), through the transmission of a 

laser beam between a moving aerial platform (typically a plane or helicopter) and the Earth. 

The three-dimensional location of a single point is measured from the laser pulse time-of-flight 

and the GPS co-ordinates of the aerial platform. Given the high measurement rate, points at 

the Earth’s surface are dense in space and thus regular penetration through even the thickest 

forest canopy is expected, advocating laser scanning (LiDAR) as a tool amenable to sub-canopy 

prospection. 
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1.1.2 Airborne laser scanning in archaeology 

 

Pfeifer and Mandlburger (2009) noted that through the 2000s, the consensus between leading 

national agencies, whose primary function concerned the acquisition of terrain elevation data, 

gradually changed from generating photogrammetric models to LiDAR alternatives of greater 

point density and precision. Anticipating further commercial development in this field, I 

describe in this thesis the derivation of a high spatial measurement resolution sub-forest 

canopy terrain surface from airborne LiDAR data with a view to testing the limits of this tool 

for archaeological prospection. 

Airborne laser scanning presents a non-invasive technique for acquiring topographic data in 

forested areas, eliminating the destructive facets of terrestrial surveying (Barber, 2007) and 

difficulties in feature interpretation at ground-level (Doneus et al., 2008).  Barber (2007) 

recommended airborne scanning as the prime archaeological tool for topographic surveys over 

areas greater than 0.01 km2, where a point measurement density of less than 1 point per m2 is 

required (figure 1.1). It is appropriate where the scale of a survey is too large for terrestrial-

based scanning or photogrammetry applications and/or when the requisite detail is prohibitive 

to ground-based GPS reconnaissance. Compared with the man-power required for both 

terrestrial methods, airborne LiDAR offers a cost-effective alternative. 

Yet it is the capacity to digitally remove the forest canopy that makes LiDAR so valuable to 

archaeology. Early work by Barnes (2003) and Holden at el. (2002) hinted at the potential of 

LiDAR for recovering topographic earthworks, but only as a complement to more established 

remote sensing techniques and in sparsely vegetated areas.  It was not until English Heritage 

commissioned the UK Environment Agency to assess the technique at the Stonehenge World 

Heritage Site between 2001 and 2005 that the ‘virtual deforestation’ function was properly 

explored (Bewley et al., 2005; Devereux et al., 2005; Haugerud and Harding, 2001). The 

assertion by Devereux et al. (2005) that Great Britain has approximately 11 percent woodland 

cover, ‘with the ability to hide even major features from the lens of a camera’, acted as a 
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stimulus for basic experimentation with vegetation-removal algorithms and testing against 

known sub-canopy field boundaries, fort ramparts, tracks etc. at Welshbury Hill, 

Gloucestershire (Crow, 2003; Crow et al., 2007). Further investigation into method and 

application followed, with notable contributions from Crutchley (2006; 2008), Challis (et al., 

2006; et al., 2008) and Doneus (and Briese, 2006a; 2006b; et al., 2008). 

 

 

Figure 1.1 Appropriate archaeological survey techniques for recording three-dimensional data 

characterised by exterior and interior scale of survey. Adapted from Barber (2007). 

 

The success of airborne laser scanning as a serviceable tool has, to some extent, limited 

research and development, with recent and prospective studies typically application oriented.  

Many practitioners have suggested that inadequate research has been directed towards 

establishing functional, specialised, archaeological vegetation-removal procedures (e.g. 

Devereux et al., 2005; Doneus, 2006a) and that auxiliary information on the role of canopy and 

understorey vegetation structure on terrain derivates is necessary for accurate archaeological 

feature identification (Pfeifer et al., 2004; Rosette et al., 2010). Investigation into the role of 
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both canopy and understorey vegetation could facilitate enhanced understanding of the 

capability of airborne LiDAR for conducting archaeological prospection in forested area. This 

study will examine the procedure for modelling sub-forest canopy topography with airborne 

LiDAR technology, the quality of modelled terrain and whether quality varies with 

environmental factors, e.g. tree species, and the capacity to detect archaeological features 

within topography. 

 

1.2 Technical Laser Scanning 

 

1.2.1 Defining a ranging system 

 

A basic laser ranging system measures the time for a pulse of light to travel between the 

sensor and an illuminated spot on the ground. The distance (or ‘range’) R is subsequently 

calculated as: 

  
 

 
    

where tL is the travel time and c is the speed of light through air (Baltsavias, 1999a). Ranging 

systems typically operate under one of two principal concepts: discrete-pulse or full-

waveform, both referring to the procedure by which reflected light is recorded in the sensor. 

Discrete-pulse systems can differentiate between one and five returns per pulse, i.e. they 

record the first and last ‘echoes’ from reflective surfaces within the laser footprint and up to 3 

echoes in between. Full-waveform systems record the phase difference between the received 

and transmitted signal, subsequently permitting digitisation of the full waveform of surface 

interactions (Wehr and Lohr, 1999). 

Both concepts are illustrated in figure 1.2, with the true reflected signal (power) recorded as 

five discrete echoes and also fully digitised (see the ‘Ranging Unit’ box). Noticeable in figure 

1.2, and something that will be discussed in greater length below, is the typical identification 

of a mixture of canopy, scrub and terrain in the reflected signal (over forested areas). While 

(1.1) 
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modern high-energy discrete-pulse or full-waveform LiDAR systems are capable of recording 

up to 5 or effectively unlimited echoes, respectively, per pulse, research to date into laser 

scanning for deriving terrain beneath forest, including that applied to archaeology, has 

commonly used discrete-pulse systems with the capacity to resolve only the first and last echo. 

 

 

 

Fig 1.2 Laser ranging principle and differences between conventional discrete-pulse and full-

waveform sensors. Source: Doneus et al. (2008). 

 

Laser pulses are emitted regularly from the sensor by one of a number of scanning 

instruments, including oscillating mirror, rotating polygon, Palmer and fibre scanners. For more 

information the reader is referred to Wehr and Lohr (1999). An oscillating mirror apparatus is 

utilised in this study, with the laser deflected by an oscillating mirror to produce a zigzag line of 

points termed a bidirectional scan (Wehr and Lohr, 1999). State-of-the-art LiDAR systems can 

emit up to 100,000 pulses every second by this method, with each echo recorded upon return 
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as co-ordinates x , y, z and intensity, where intensity is the power of the returning signal. A 

group of echoes (or returns) in the same spatial assemblage is termed a ‘point cloud’, which is 

well defined by Barber (2007) as ‘a collection of co-ordinates in a common co-ordinate system 

that portrays to the viewer an understanding of the spatial distribution of a subject’. 

In addition to the scanning and recording apparatus, the full LiDAR ranging unit consists of a 

Position and Orientation System (POS) and computerised control system. While the detector 

measures the range, through travel time, and receiving angle of a laser return, the POS locates 

the position and incidence angle of the scanner aperture in space to an accuracy at least as 

high as the laser range accuracy (Wehr and Lohr, 1999). Location of the airborne platform 

(airplane or helicopter) is calculated with a differential Global Positioning System (dGPS) 

(communicating with a base station on the ground) and the vector between the GPS and 

scanner aperture and detector (which is constantly changing with aircraft attitude) with an 

Inertial Measurement Unit (IMU). Scanning and positioning apparatus are synchronised by the 

computer control system. 

 

1.2.2 Technical sensing 

 

It is necessary to clarify the theory associated with the laser and scanning system that is 

relevant to terrain derivation. A comprehensive formula-oriented review of LiDAR technology 

is presented by Baltsavias (1999a) and concepts offered in this section are either obtained 

directly, indirectly or based on theory from this review. 

Maximum laser range is proportional to the square root of the laser power and the square root 

of the surface reflectivity, i.e. the magnitude of received energy following scattering and 

absorption at the land surface.  Variation in maximum laser range with target reflectivity is 

given in figure 1.3, with variation in range described as a correction factor based on target 

reflectivity of 80 % providing a factor of 1. As an example of materials relevant to this study, 

deciduous trees, coniferous trees and typical sub-canopy terrain are approximately 60, 30 and 
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20 % reflective, respectively (modified from the web pages of the firm Riegl in Wehr and Lohr, 

1999). This suggests that maximum range is roughly twice as large over the most reflective 

surfaces than the least reflective ones, but since this study is concerned with identifying 

terrain, maximum range here is limited to the range for ~ 20 % surface reflectivity. Range 

resolution is directly proportional to the time interval of the detector clock and specifies a 

threshold for differentiating between laser returns, consequently regulating the number of 

echoes recorded per laser pulse. 

 

Figure 1.3 Correction factor for maximum laser range, depending on target reflectivity (900nm 

wavelength laser with diffuse targets). Source: Wehr and Lohr (1999). 

 

Ranging precision R is a product of the ratio between photoelectric signal and noise: 

 
    

 

√   

 

This describes how clear the echo reflected from an obvious land surface is, in amongst 

background noise. ‘Noise’ originates both naturally and artificially from numerous sources 

including complex pulse reflection, e.g. from scrub and terrain, and imperfect laser pulse 

emission (Huising and Gomes Pereira, 1998). The sensor in the ranging unit is calibrated pre-

survey to reject candidate surface ‘returns’ that exhibit low signal to noise – where a 

significant deviation from background radiation cannot be detected. Supplementary both to 

(1.2) 
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this relation and the range resolution for understanding limits on detection is the horizontal 

diameter of the minimum detectable object on the ground , given by: 

        
   

where AL is the laser footprint diameter and  is the reflectivity at maximum range (adapted 

from Baltsavias, 1999a).  depends primarily on the structure of the target, which controls the 

quantity of energy reflected, but also on factors affecting the size of the laser footprint, like 

terrain gradient for example (see section 3.5.2.3). This relation is vital for archaeological 

feature detection owing to the frequent subtlety of relevant objects, e.g. earthworks, within 

topography. 

The quality of a model generated from LiDAR-derived terrain measurements is enhanced with 

an increasing number of data points. By assuming (1) equal distance between returns on the 

scan-line and (2) flat terrain, across-track point spacing, dxacross is given by: 

         
  

 
  

    

   
 

where SW is the swath width, N is the number of points per scan-line, h is the flying height and 

max is the maximum laser pointing angle with respect to the nadir. Along-track point spacing is 

directly proportional to the speed of the aircraft and the pulse rate. Each flight track produces 

a strip of points and the strips are then geo-referenced to each other using analogous pairs of 

tie-points and finally registered to a single point cloud (Kilian et al., 1996). The point cloud is 

validated against field-acquired reference data by calibrating an area of points in the survey 

area to an asphalt or concrete surface, for example a car park, measured with surveying 

equipment on-site, and removing any systematic bias in height from the point cloud. Kraus and 

Pfeifer (1998) emphasized the necessity of high quality calibration, with disruption to their 

final terrain model highlighted in their figure 9 (in Kraus and Pfeifer, 1998).  

 

 

 

(1.3) 

(1.4) 
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1.2.3 Sources of error associated with the LiDAR point cloud 

 

Pfeifer et al. (2004) outlined the various factors affecting the ‘journey’ of a single laser pulse, 

with error in the raw point cloud principally generated during: geo-referencing; determination 

of the angle of emission; emission; travel through the atmosphere; interaction (i.e. spectral 

and diffuse reflection and absorption) with the ground, structures and vegetation; travel back; 

and finally signal detection and time measurement. 

These sources of error can be grouped by error relating to position, to optical transfer and to 

detection, excluding error relating to interface with the land surface. Positional error is either 

random, originating from poor communication between the aircraft and GPS base station or 

insufficient satellite reception at the base station, or systematic, originating from poor quality 

control/tie points and subsequent mis-calibration of the whole point cloud (Baltsavias, 1999a; 

Kraus and Pfeifer, 1998). In-flight optical error, typically random, is primarily caused by 

attenuation and scattering off dust particles (smoke, smog) or precipitation, with ideal 

surveying conditions therefore very dependent on the weather (Baltsavias, 1999a; 1999b). 

Error in laser return detection has already been touched on and is strongly related to the 

sensor range resolution, which controls the minimum detectable height difference between 

echoes and is a critical restriction in LiDAR-based archaeology (Kraus, 2004). 

Experiments with the earliest terrain models often identified systematic overestimation of the 

true terrain surface. Early suggestions for the cause of this bias were geoid undulations and 

subsequent mis-registration of the point cloud or GPS phase ambiguities (Kraus and Pfeifer, 

1998), but although quite possible, neither accounted for the degree of bias. The height shift 

has since been explained by low vegetation, with the systematic overestimation  illustrated in 

figure 1.4. Pfeifer et al. (2004) described characteristic offset over long grass of 8 cm and over 

low vegetation of 15 cm, while Huising and Gomes Pereira (1998) suggested decimetre-to-

metre-scale systematic overestimation over grass and scrub, on flat or hilly terrain. A typical 

laser scanner is able to discriminate between successive pulses if they are greater than the 
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pulse duration of 5 ns apart, corresponding to a minimum detectable height difference on the 

ground of approximately 15 cm (Kraus, 2004; Doneus and Briese, 2006b). Even if discrete 

echoes are received both from the vegetation and terrain, if they are within the threshold 

minimum detectable height difference, the ‘terrain’ signal will be recorded as a mixture of 

ground and understorey/bush.  

 

Figure 1.4 Systematic upward shift σ in laser measurements over low vegetation. The dashed 

line illustrates the expectancy of LiDAR-derived height values. Source: Pfeifer et al. (2004). 

 

Various correction methods for different species/levels of understorey have been tested, for 

example using (1) reference data and linear regression of bias (i.e. empirical) (Hopkinson et al., 

2004), (2) texture analysis by identification of grey-level co-occurrences between pairs of 

points (Pfeifer et al., 2004) and (3) using echo width in full waveform data (see section 2.3) 

(Doneus et al., 2008). However, these techniques typically either require intensive and 

comprehensive field data collection or offer only limited success. Consequently with falling 

restrictions on detectable height difference in rapidly evolving modern LiDAR systems, recent 

research has tended to ignore this problem or find ways of removing erroneous areas 

following data processing (e.g. Hesse, 2010). 

The final significant source of error also originates from interaction of the laser pulse with the 

land surface. So-called ‘time-walk’ is caused by horizontal and especially vertical spreading of 

the laser pulse on sloped terrain (figure 1.5), leading to deterioration of the signal and 

increasing rise time dt, the latter breeding ranging error dR. Rise time describes the time 

required for pulse energy returning to the sensor to rise from 10 % to 90 % of maximum power 
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(Baltsavias, 1999a). Error in resolved terrain elevation increases when a measurement is taken 

across a wider area (figure 1.5 A) and this is illustrated in the case of the laser footprint in 

figure 1.5 B.  Ranging error is proportional to the width of the footprint, which itself is a 

product of the height h and scanning angle γ (Baltsavias, 1999a).  

 

  

Figure 1.5 (A) Relation of planimetric and height errors over sloped terrain and (B) the 

influence of sloped terrain on measured range. Source: Baltsavias  (1999a). 

 

1.3 Sub-forest Canopy Three-dimensional Terrain Modelling 

 

Following the acquisition of raw LiDAR data, it is necessary to process the point cloud in order 

to obtain digital models of the topography. Flood (2001) estimated that the data processing 

stage, as opposed to the acquisition and registration stages, typically requires approximately 

60 to 80 % of total survey time. With agencies who supply sub-forest canopy terrain models 

limited in the level of accuracy they are able to provide to a client by the quality of data 

processing, there is significant commercial potential in designing proficient processing 

software. As a result, extensive research has been afforded to this issue and a choice must be 

made between numerous brands of processing and modelling software. 

 

 

 

 

A B 
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1.3.1 Defining the processing chain 

 

It is necessary to outline the sequence of procedures involved in processing raw LiDAR data 

prior to examining the research conducted into each procedure. The registration and 

calibration stage has already been described in section 1.2.2 and is characteristically part of 

the data acquisition routine. 

Essential to generating high quality terrain models is the process of filtering terrain points from 

the original point cloud. Points are classified into either terrain or non-terrain categories using 

computerised algorithms (see section 1.3.3.1). Terrain and non-terrain classifications refer to 

the attributes of the surface reflecting the laser beam, with examples of non-terrain surfaces 

including buildings and vegetation. While classification describes the process of ‘labelling’ 

points as terrain, building, vegetation etc. (Sithole, 2005), filtering explicitly refers to the 

removal of unwanted non-terrain points from the point cloud, leaving only returns from the 

terrain surface (Pfeifer and Mandlburger, 2009). 

Filtered point cloud data, i.e. terrain points, are subsequently used to generate a digital model 

of the terrain and this may feasibly be seen as the final stage of processing. However, with a 

view to ascertaining the quality of a completed model, accuracy assessment is occasionally 

conducted in a further processing step. This assessment typically involves quantitative 

evaluation of the terrain model against field-acquired reference terrain data. 

The full data processing chain comprises: (1) classifying the raw LiDAR point cloud and filtering 

only terrain points; (2) modelling terrain with the filtered data and (3) assessing the accuracy 

of the model with respect to reference data. 

 

1.3.2 Processing and modelling terminology 

 

With the development of LiDAR as an established technology, processing and modelling 

nomenclature has evolved to deal with the complexity of the subject. At the point cloud 
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classification stage, optimum filtering parameters refer to the parameters selected for a 

filtering algorithm which offer most successful classification of terrain points. Type I (omission) 

errors refer to the false rejection of terrain points from the terrain category and Type II 

(commission) errors to the mistaken acceptance of non-terrain points in the terrain category, 

e.g. rejection of returns from a hilltop and acceptance of returns from low bushes in the 

terrain category, respectively (Pfeifer and Mandlburger, 2009). For many algorithms, training 

data are used to derive optimum filtering parameters, and these are typically in situ field-

acquired elevation reference data which train the filter to a particular location or environment 

(see section 1.3.3.3) (Zhang et al., 2003). 

At the modelling stage, terrain points are typically either used to generate a raster surface or a 

triangulated irregular network (TIN). Raster surfaces comprise regularly-gridded cellular arrays 

with cell elevation modelled by a continuous function that maps from the 2D planimetric 

position of LiDAR points to terrain elevation, z = f(x,y) (El-Sheimy et al., 2005). This function 

utilises the so-called 2.5D principle, where each cell position (x,y) can only be expressed by one 

height value (Tóvári and Pfeifer, 2005). Where a cell does not correspond with LiDAR data in 

plan, e.g. in gaps between points, elevation values are interpolated by a pre-described 

mathematical function (see section 1.3.5). Raster surfaces generated with LiDAR data are 

termed digital elevation models (DEMs). Where the model describes a surface over the highest 

points in the LiDAR cloud, i.e. the top of tree canopies and buildings in addition to terrain in 

open areas, it is termed, interchangeably, a digital surface or canopy model (DSM/DCM) 

(Pfeifer and Mandlburger, 2009). More relevant to this study however is the digital terrain 

model (DTM) which describes only the terrain or ‘bare-earth’ (i.e. ground without even scrub 

vegetation) (El-Sheimy et al., 2005). The triangulated irregular network (TIN) represents a 

vector- (rather than raster-) based method for modelling LiDAR points, with points (or nodes) 

connected in a tetrahedral lattice structure (Li et al., 2005). The relative merits of each are 

evaluated in sections 1.3.5 and 3.5.1. 
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1.3.3 LiDAR point cloud classification 

 

It is pertinent, with so many varieties of terrain filter algorithm, to outline the concept behind 

each general group of algorithms prior to reviewing their relative efficacy. While additional 

algorithms for classifying further groups of LiDAR points, i.e. vegetation and buildings, are 

available and numerous, they are not directly relevant to this study and, as such, will not be 

discussed. So the following are purely algorithms published for filtering terrain points from raw 

LiDAR point cloud data. All filters will characteristically assess the correlation of a ‘candidate’ 

terrain point to an initial surface or its nearest neighbour points through statistical analyses, 

thereby grouping contiguous points, likely reflected by the same target. 

 

1.3.3.1 Semi-chronological review of terrain filtering algorithms 

 

Morphological – block minimum (Lindenberger, 1993) 

In this filter, the lowest points in a ‘neighbourhood’ are assumed to belong to the bare earth. 

An initial terrain model is refined through repeating the filtering procedure, a two-step 

process, with increasingly smaller moving windows. Points within the filtering window (or 

neighbourhood) are only evaluated against each other and not the full point cloud.  At each 

stage, a coarse model is first calculated using the lowest point in each window and all 

additional points exceeding a given threshold height from this surface are then filtered out.  

The concept is illustrated in figure 1.6, with the circles representing raw LiDAR points, the 

dotted line representing the true terrain surface and the vertical lines representing the regular 

boundaries of the moving window. Within each ‘block’ (neighbourhood), minimum point 

elevation is given by the flat horizontal line with the grey region above this line representing 

the threshold for accepting further points. Raw LiDAR points are classified as terrain (white) or 

non-terrain (grey). It is apparent that while areas of ‘terrain’-classified points correspond with 

the true terrain surface, at four example scenarios (a-d in figure 1.6) LiDAR points are 
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incorrectly classified. At (a), the window size is smaller than a building so reflections from the 

roof are classified as terrain; at (b), over steep terrain the threshold is too low causing Type I 

errors; at (c), points over a bridge are commissioned as terrain (although this is the case with 

many filters and is often required by the data user, i.e. a bridge or ramp should be classified as 

terrain) and at (d), a sub-ground outlier (see section 1.3.4) causes Type I errors at the overlying 

terrain (Sithole and Vosselman, 2004; Sithole, 2005). 

Lindenberger’s (1993) algorithm was developed by Kilian et al. (1996), who assigned weights to 

points within a less severe height threshold based on the elevation difference between a LiDAR 

point and the lowest point in the neighbourhood and proportional to the size of moving 

window, with the ultimate surface a function of points with highest final weight. However, 

many of the same problems with the original algorithm remain. 

 

 

Figure 1.6 Visual demonstration of the block minimum procedure. Raw LiDAR points are 

classified as terrain (white circles) and non-terrain (grey circles). Letters are referred to in the 

text. Source: Sithole (2005). 

 

Hierarchical surface regularisation (Briese et al., 2002; Kraus and Pfeifer, 1998) 

In this filter, the bare earth is assumed to constitute a patchwork of piecewise, continuous 

overlapping surfaces. A rough first approximation of the terrain surface is calculated by 

performing robust kriging interpolation on initial terrain points and the vertical distances 

(residuals) of all additional LiDAR points to this surface are then calculated. Classification is 

(c) 
(b) 

(a) 

(d) 
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performed in a hierarchic method with a coarse to fine approach, where only points within a 

predefined threshold from the coarser level are selected as initial terrain points at the finer 

level. At each level, weights are allocated to LiDAR points based on their residual and position 

above or below the terrain surface (figure 1.7). Following weight allocation, the surface is 

recomputed and the weights recalculated; this iterative, hierarchical process continuing until 

the surface changes insignificantly with further iterations. 

Early development of the algorithm was conducted by Kraus and Pfeifer (1998) and Kraus and 

Rieger (1999), while Kraus and Pfeifer (2001), Pfeifer and Stadler (2001) and Pfeifer et al. 

(2001) improved the hierarchical approach. It was observed that the filter tended to smoothen 

out discontinuities in the true terrain surface, so Briese et al. (2002) enhanced the 

regularisation technique to incorporate breaklines in the final model. Breaklines are linear 

features describing local terrain discontinuities (Briese et al., 2009) and can be explicitly 

modelled as part of a digital terrain product (e.g. Briese, 2004; et al., 2009; Brugelmann, 2004; 

Brzank et al., 2005). More recently, Goepfert et al. (2008) attempted to include LiDAR intensity 

data in the surface regularisation algorithm by modelling point-to-point height shifts against 

the quantity of energy returning to the airborne sensor, but with only limited success. 
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Figure 1.7 Weight function of the surface regularisation filtering algorithm. The x-axis 

describes the residual height of a point to the interpolated surface (v) while the y-axis gives the 

weight (p) from 0 to 1. Above the surface (residual > 0) the weight gets progressively lower and 

a LiDAR point has less effect on the terrain surface. Below the surface (residual < 0) the weight 

gets progressively higher and a point has more effect on the terrain surface, up to a threshold 

(g) whereupon the point has maximum effect (p = 1). If a candidate point is at w above g, the 

point is classified as non-terrain and ignored in future iterations. Source: Kraus and Pfeifer 

(1998). 

 

Progressive TIN densification (Axelsson, 1999; 2000) 

In this filter, the bare earth is assumed locally and globally flat. A first approximation of the 

terrain is obtained by block minimum, with the lowest point per   m2 classified as terrain and 

triangulated to a TIN. The size of the neighbourhood must be larger than the size of the largest 

building in the LiDAR point cloud to prevent initial classification of terrain points on the tops of 

buildings. Further points are classified as terrain and added iteratively to the TIN if they fall 

within pre-defined description length and angle criteria, i.e. a point must not be over a 

threshold distance or angle from the terrain surface. In this way, the modelled surface almost 

‘fluctuates’ up beneath the true terrain with newly classified terrain points repositioning the 

model closer to the real surface level. 

The concept is illustrated in figure 1.8, with symbols equivalent to those in figure 1.6 and the 

bold line representing the modelled terrain surface. At (a), the description length and angle 

criteria are illustrated; at (b), by the third iteration step a reflection from low vegetation is still 

included in the terrain (Type II error) and at (c), a sub-ground outlier is classified as terrain at 

the initial block minimum stage causing Type I errors at the LiDAR points above (Sithole and 
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Vosselman, 2004; Sithole, 2005). However, realistically, prior to processing LiDAR data, outliers 

are typically removed using alternative (but very simple) algorithms and the effects of (c) are 

eliminated. 

Later variants on this filter used the lower part of the convex hull of the point cloud as the 

initial reference surface and tested candidate points by the vertical distance to this surface 

(Von Hansen and Vögtle, 1999; Vögtle and Steinle, 2003). Sohn and Dowman (2002) also 

developed this method using a segmentation-based downward ‘divide-and-conquer’ 

optimality criterion, in addition to the upward densification process, to help to reduce the 

Type II errors illustrated in figure 1.8 (b), thus enhancing filter performance. 

 

 

Figure 1.8 Visual demonstration of the progressive densification procedure. Raw LiDAR points 

are classified as terrain (white circles) and non-terrain (grey circles), with the number next to a 

point referring to classification at a particular iteration. Letters are referred to in the text. 

Source: Sithole (2005). 

 

Morphological – adaptive slope-based (Sithole and Vosselman, 2001; Vosselman, 2000) 

In this filter, it is assumed that gradients in the bare earth are locally bounded, i.e. terrain is 

not continuous and local surfaces do not smoothly link up with each other. Fundamental to 

this filter is the concept of the ‘structure element’ which is a function describing admissible 

height differences between candidate LiDAR terrain points as a function of the horizontal 

distance between them (figure 1.9 B). The structure element is shaped like an inverted funnel 

or cone (figure 1.9 A) and classifies points one-by-one with respect to their neighbours. The 

(c) 

(a) (b) 
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function for the structure element must be determined from either assumptions made on the 

maximum terrain slope in the area of interest and associated computation of the probable 

threshold admissible height difference (probabilistic curve in figure 1.9 B) or field-acquired 

terrain reference data and evaluation of the maximum admissible height difference (maximum 

curve in figure 1.9 B) (Pfeifer and Mandlburger, 2009). Reference data consist of correctly 

classified terrain and non-terrain points in an environment representative of the full area of 

interest (see section 1.3.3.3) (Vosselman, 2000). 

Morphological filters of this type are liable to fail when their relatively crude assumption fails, 

for example over very steep slopes and hilltops. Developments have been made to the early 

algorithms in an attempt to adapt the structure element to a local estimate of the terrain using 

contextual information. A coarse slope map and crude DTM obtained from block minimum 

filtering (Sithole and Vosselman, 2001) and local plane fitting (Roggero, 2001) have been 

utilised and changing the size of the structure element has been tested (Zhang et al., 2003), 

while more recent workers have inclined the element with the terrain and used repetitive 

interpolation to refine the model (Kobler et al., 2007). Meng et al. (2009) added a further step 

to standard morphological filtering procedure by removing LiDAR points above a threshold 

slope (with respect to local profiles through points), but crucially with a threshold that changes 

based on the original scanning direction of the airborne sensor. 

 

 

 

 

 

 

 

 

 



21 
 

 

  

Figure 1.9 (A) Conical structure element moving between candidate LiDAR terrain points on 

the upper surface. Source: Sithole and Vosselman (2001). (B) Two filter functions for assessing 

admissible height differences between LiDAR terrain points. Threshold acceptable height 

difference changes exponentially with distance between points for both functions. Source: 

Vosselman (2000). 

 

TIN thinning and de-spiking (Haugerud and Harding, 2001) 

In this filter, it is assumed that curvature in the bare earth is locally bounded. A TIN is 

generated between all LiDAR points in the cloud and points that exhibit sharp upwards 

convexity are preferentially removed. Given that the geometry of the surface changes as 

points are removed, the procedure is iterated and the surface at each step is interpolated by 

linear prediction to a new TIN. This process helps to maintain topographic discontinuity but 

typically over 10 iterations are necessary to achieve high geomorphologic quality in the final 

terrain model, with associated heavy demand on computing time. 

 

Active shape models (Elmqvist, 2001; et al., 2001; 2002) 

In this filter, the bare earth is assumed to constitute a patchwork of piecewise, continuous 

overlapping surfaces. A ‘membrane’ is floated up from beneath the LiDAR point cloud and 

allowed to cling to low points. The membrane consists of a surface of active shape models 

whose material properties (i.e. the forces on the membrane) are defined by an internal energy 

A B 

x(m) y(m) 

z(m) 
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function. The energy function is minimised when the active contours find edges in the terrain 

and the material properties of the membrane (for example: rigidity, elasticity) control the 

structure of the modelled terrain, i.e. the degree of topographic discontinuity. Any LiDAR point 

within a threshold height of the membrane is classified as terrain following minimisation of the 

energy function. 

 

Edge-based clustering (Brovelli et al., 2002; Filin, 2002) 

In this filter, it is assumed that points inside closed edges belong to objects (non-terrain), i.e. 

terrain is unbounded. The full LiDAR point cloud is first gridded and gaps are modelled using 

spline interpolation. Residual differences in elevation between LiDAR points and the grid are 

calculated and standard image analysis edge-detection techniques are employed to locate 

boundaries between residuals exhibiting sharp contrast above and below the gridded surface 

(figure 1.10). A region-growing algorithm encloses the convex hull of a candidate object – a 

group of points within a closed boundary – and the object is removed (filtered out of the point 

cloud) if the mean height of the set of points is equal to or greater than the mean boundary 

height. 

The original concept introduced by Brovelli et al. (2002) was developed by Filin (2002), who 

clustered points into four classes prior to filtering based on three measures: (1) the position of 

a candidate point relative to its neighbours, (2) morphological height differences between 

clusters and (3) distance parameters of points on the tangent plane to a candidate point. 

ThuyVu and Tokunaga (2002) took the technique a stage further by using wavelet analysis and 

k-means clustering to classify LiDAR points and filter non-terrain. 
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Figure 1.10 (A) LiDAR points (blue dots) along a transect over the preliminary grid (red dotted 

line) in an edge-based clustering algorithm. (B) Elevation residuals between the points and 

grid. Circled is a candidate point with high residual distance to an adjacent point and is hence 

suitable for edge detection. Source: Brovelli et al. (2002). 

 

Advanced block minimum (Wack and Wimmer, 2002) 

In this filter, the lowest points in a neighbourhood are assumed to belong to the bare earth. 

Significant improvement to the standard block minimum algorithm is achieved through 

incorporating the basic morphological concept into a hierarchical framework. An initial DTM of 

coarse spatial resolution (for example 9 m) is refined to models of higher resolution, e.g. 3 m, 1 

m, 0.3 m etc.,  at each iteration. A ‘Laplacian of Gauss’ operator is employed at each level to 

identify and remove LiDAR points exhibiting elevation residuals above a pre-defined threshold 

to the block minima. Points not removed, for example at the 3 m level, are weighted based on 

their distance to the DTM at the previous level (the 9 m model) and the 3 m DTM is then 

recomputed, and so on. 

 

Segmentation-based (Jacobsen and Lohmann, 2003; Nardinocchi et al., 2003) 

In this filter, it is assumed that the bare earth is a collection of connected components, 

occupying a large area. Raw LiDAR data are first gridded, with cells interpolated using the 

nearest neighbour technique. Cells are segmented (grouped) if an area subscribes to a pre-

defined geometric and topologic pattern, e.g. of that expected over tree canopy, building or 

terrain, via a region-growing algorithm. Following segmentation, regions are connected 

A B 
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through node and edge theory and non-terrain regions (rather than individual LiDAR points, as 

in most other filters) are filtered if their gradient orientations to adjacent regions are above a 

maximum threshold. 

Tóvári and Pfeifer (2005) added a segmentation-based algorithm to standard surface 

regularisation, while an innovative method was proposed by Sithole (2005) where LiDAR points 

are classified as terrain if a human could ‘reach’ them by walking (by means of GIS-based 

network analysis). 

 

1.3.3.2 Critical review of terrain filtering algorithms 

 

To be able to perform effective qualitative or quantitative evaluation of available terrain 

filtering algorithms, assessment must be conducted in a controlled environment, i.e. by testing 

each filter on the same (correctly prior-classified) LiDAR data set(s). However, to date, few 

experimental comparison studies have been carried out because filtering algorithms tend to be 

proprietary and their details are not published. Two relevant studies are available: the first, a 

comparison of eight filters over twelve LiDAR data sets by an ISPRS Working Group in 2004 

intended to identify directions for future research (Sithole and Vosselman, 2004) and the 

second, a comparison of nine filters over fifteen data sets (provided by ISPRS) by Texan 

Universities in 2010 intended to highlight the limits of existing algorithms (Meng et al., 2010). 

Sithole and Vosselman (2004) recognised that the following scenarios tended to cause 

problems for filters: outliers, complex objects (e.g. buildings or urban landscapes), slopes, 

vegetation and discontinuous terrain; so appropriate LiDAR data sets were acquired and 

qualitative assessment was conducted (table 1.1). Most relevant to this study is the ability of a 

filter to preserve complex terrain and remove vegetation (highlighted sections in table 1.1), 

given that the environment of interest is forest rather than urban and outliers can typically be 

removed with alternative algorithms prior to classification. 
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The progressive densification and advanced morphological algorithms were best at preserving 

discontinuities in terrain, with the surface regularisation filter widely reported to reduce 

geomorphic quality of modelled terrain (Kraus and Pfeifer, 1998; Elmqvist, 2002), while 

segmentation-based and basic morphological filters experience difficulties with preservation 

(table 1.1) (Brovelli, et al., 2002). The quantitative ISPRS assessment described the basic 

morphological filters (Roggero, 2001; Sithole and Vosselman, 2001) as producing the highest 

number of Type I errors over discontinuous terrain. Sithole and Vosselman (2004) presented 

results for their quantitative assessment over one site in detail (unfortunately for this work, an 

urban site), but the progressive densification filter performed particularly well (only 4 % of 

points were incorrectly classified) while the basic morphological and segmentation-based 

filters yielded abundant Type I errors (over 29 % of terrain points were incorrectly classified as 

non-terrain).  

 

 

Table 1.1 Qualitative comparison of filtering algorithms by the ISPRS Working Group. Good 

(***) indicates > 90 % of LiDAR points were classified correctly, fair (**) indicates < 90 % but > 

50 % of points were classified correctly and poor (*) indicates < 50 % of points were classified 

correctly. R denotes successful removal of a non-terrain object. Source: Sithole and Vosselman 

(2004). 
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Table 1.1 illustrates that all filtering algorithms were competent at filtering vegetation, even 

low bushes/scrub and vegetation on slopes. However, when assessing filters against each 

other, this issue was where segmentation-based filters typically struggled, given lack of clear 

region/class structure over vegetation (Filin, 2002; Tóvári and Pfeifer, 2005; Pfeifer and 

Mandlburger, 2009). Only the active shape, advanced morphological and surface regularisation 

algorithms were very successful at removing both vegetation on slopes and understorey/low 

vegetation (table 1.1). 

Meng et al. (2010) conducted comprehensive quantitative assessment for the same range of 

filter algorithms evaluated by the ISPRS Working Group, but also included a multi-directional 

morphological algorithm (MGF algorithm) developed the previous year (Meng et al., 2009). 

The Kappa Index of Agreement (Jensen, 2005) was employed to assess the accuracy of filtered 

LiDAR data, with 100 % indicating perfect agreement between filtered data and prior-classified 

(reference) LiDAR data and 0 indicating agreement arising by chance, with negative values 

caused by low matching data sets. Axelsson’s (1999; 2000) progressive densification algorithm 

yielded the highest Kappa average across the full range of fifteen test sites (with half urban 

and half rural sites) (figure 1.11). It was clear from the tests completed that the progressive 

densification terrain filter dominated over sites exhibiting rough or discontinuous terrain and 

was most successful at three of four sites with steep slopes and dense forest. 
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Figure 1.11 Kappa averages for nine filters based on 15 LiDAR data sets covering a range of 

environment types. Source: Meng et al. (2009). 

 

Each filter tended to demonstrate particular aptitude over a specific environment or scenario, 

so there is no reason to advocate the disqualification of any algorithm. However, the 

experimental reviews conducted by Sithole and Vosselman (2004) and Meng et al. (2010) 

identified the progressive densification algorithm as the preeminent filter over a majority of 

environments, including dense forest and scenarios comprising sloped and discontinuous 

terrain – those most relevant to this study. Pfeifer and Mandlburger (2009) also promoted the 

use of filters with surface-based structures (e.g. Axelsson, 1999; 2000; Elmqvist, 2002) for 

generating terrain models of high geomorphic quality under forest canopy. The MGF and 

alternative progressive densification algorithms of Meng et al. (2009) and Sohn and Dowman 

(2002), respectively, also impressed when filtering both tree canopy and low scrub vegetation. 

 

1.3.3.3 Filter adaptation to survey location 

 

If an algorithm is not entirely autonomous, i.e. it requires user input prior to filtering LiDAR 

data, typically in the form of parameter configuration, then effective removal of non-terrain 

points is conditional on the identification of acceptable input. Few algorithms are 100 % 
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autonomous, but an example of one is the modified surface regularisation filter developed by 

Doneus and Briese (2006a) for full-waveform LiDAR data (see section 2.3) which thresholded 

the width of a returning laser ‘echo’ to better detect terrain points. However, if, for example, 

full-waveform ranging capabilities are unavailable or a basic, unmodified algorithm is used, as 

is standard in the majority of surveys, additional data must be employed to ‘train’ parameters 

to a specific site (Pfeifer and Mandlburger, 2009). 

Training data are typically field-acquired reference points covering a small region of the full 

survey area, classified manually into terrain and non-terrain categories, which are then used to 

constrain filter parameters. LiDAR points covering the same area as the reference data are 

iteratively filtered with varying parameters until they match the reference points classified as 

terrain (e.g. Axelsson, 1999; Vosselman, 2000; Zhang et al., 2003). Numerous variations to this 

procedure exist; for example, Sithole (2001) used a coarse slope map obtained from 

preliminary LiDAR terrain filtering (i.e. less accurate but validated with less field data and 

therefore much quicker) to manipulate the rotation of a morphological structure element and 

Schickler and Thorpe (2001) created a classification map of vegetation types, water bodies, 

urban areas etc. and associated a parameter set with each class to train the surface 

regularisation filter to location. 

Generally, a filtering algorithm is capable of classifying LiDAR data to a reasonable level of 

accuracy without exploiting training data; for example, in Meng et al.’s (2010) comparison 

study, default parameters supplied by the software providers were able to provide typically > 

50 % accurate classifications across a range of environments (LiDAR data sets). Yet to obtain 

filtering accuracy closer to (and sometimes above) 90 %, algorithms must be trained to 

location with, characteristically field-acquired, reference data (Schickler and Thorpe, 2001). 
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1.3.4 Removing outlying points 

 

It has been noted that several LiDAR terrain filtering algorithms have difficulties eliminating 

the influences of points far removed from the bulk point cloud (see table 1.1). These ‘outliers’ 

are either way above ground, typically caused by laser reflections from birds, or way below, 

caused by multi-path error: an energy pulse bouncing off multiple surfaces leading to 

erroneously long travel-time and mis-location of co-ordinates (Kobler et al., 2007), or by 

artefacts generated within the altimeter from high-energy laser returns (Haugerud and 

Harding, 2001). However, almost all outliers can be removed prior to the core filtering 

operation using maximum height difference algorithms, which are commonly available in most 

LiDAR filtering packages. 

 

1.3.5 Modelling terrain with LiDAR data 

 

Following classification, it is necessary to model filtered LiDAR terrain points as a digital terrain 

surface in order to facilitate computer visualisation of topography. As noted in section 1.3.2, 

the data structure of a model is typically either raster-based (DTM) or triangulated (TIN). To 

generate a raster surface, regularly-gridded cellular arrays are assigned elevation values by 

LiDAR terrain points when they intersect cells (Pfeifer and Mandlburger, 2009). However, 

where cells do not intersect any LiDAR points, i.e. at gaps between terrain returns, a 

mathematical function must be used to interpolate (model) between points. 

The relative influences of different interpolation methods on DTM accuracy were investigated 

by Desmet (1997) and Smith et al. (2005) who calculated that spline and advanced kriging 

techniques offered the highest accuracy with respect to field-acquired reference terrain data. 

Nearest-neighbour interpolation generated the highest overall error and introduced artefacts 

to DTMs, primarily in sudden changes in elevation and regular ‘stepping’ (an oscillation around 

the true terrain surface on slopes). Since the options for the choice of interpolation procedure 
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are often limited to the type/brand of software package used and the motivation, i.e. 

prerequisite macro- or micro-scale modelling for construction or fluvial purposes, for example, 

this issue will be discussed in greater detail in the methodology in Chapter 3. 

 

1.3.6 Accuracy assessment 

 

With a view to evaluating the quality of processed LiDAR terrain data, qualitative and 

quantitative accuracy assessment can be performed. The former will simply involve visual 

inspection of a surface for obvious data artefacts while the latter typically requires cross-

tabulation with classified ground truth data (Huising and Gomes Pereira, 1998). A wide-scale 

random sampling approach has been tested for quantitative assessment, where filtered terrain 

points are selected at random over the full study area and their co-ordinates located in the 

field (e.g. Bowen and Waltermire, 2002; Norheim et al., 2002); but this has been found to 

overestimate DTM accuracy because poorly classified LiDAR points tend to be clustered and 

thus locally influential, for example where a dense bush causes Type II filtering errors, and 

random sampling characteristically misses the majority of these (relatively isolated) scenarios 

(Meng et al., 2010). The cross-tabulation approach is stratified-random and is, as such, biased 

towards these difficult filtering scenarios. In-situ field reference points are classified, with 

terrain points categorised by land-cover, e.g. those under grass, scrub/shrub, deciduous and 

coniferous forest (Su, 2004; Su and Bork, 2006) and evaluated against either nearby LiDAR 

terrain points (i.e. point-pairs within a set radius) (Hodgson and Bresnahan, 2004) or the 

interpolated terrain model (Reutebuch et al., 2003). 

Measures of LiDAR terrain quality are ascertained by evaluating differences in elevation 

(deviations) between reference points and LiDAR points or terrain models. The actual statistics 

used vary between accuracy assessments in different studies, with little cohesion in approach, 

but all offer one, or a number of, statistical measures that describe: (1) bias – the over- or 

under-estimation of LiDAR-derived elevations with respect to reference elevation (e.g. 
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Norheim et al., 2002) and/or (2) precision – the variability of LiDAR-derived elevations with 

respect to reference elevation (e.g. Hodgson and Bresnahan, 2004; Hyyppä et al., 2005). 

 

1.3.7 Seasonal impact on airborne LiDAR survey 

 

It has been recognised that the time of year is influential on the value of airborne LiDAR survey 

over forest, as winter tree conditions, i.e. deciduous leaf-off, provide better canopy 

penetration rates than summer conditions and thus a greater (relative) number of returns 

from the terrain rather than canopy (Amable et al., 2004; Raber et al., 2002b). Devereux et al. 

(2005), Gallagher and Josephs (2008) and Harmon et al. (2006) conducted archaeological LiDAR 

surveys during winter for this reason and, although the former noted that this does not 

necessarily have any advantage for surveys over coniferous forest, Crutchley (2008) suggested 

that low understorey vegetation in winter, under both coniferous and deciduous stands, is also 

conducive to higher quality terrain derivation. 
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Chapter 2. Literature Review 2: Archaeological Prospection with 
LiDAR Data 
 

Whilst archaeological features under forests are difficult to detect in the field and frequently 

inaccessible, the sheltered environment is ideal for long-term feature preservation without the 

threats typical of open areas, primarily from agriculture, but additionally from weather-related 

erosion and military damage (Barnes, 2003; Doneus and Briese, 2006a; Gallagher and Josephs, 

2008). Consequently, the ability to ‘remove’ forest canopy and conduct archaeological 

prospection, for which airborne LiDAR is advocated as a non-invasive tool (see section 1.3), 

could, quite feasibly, make possible the detection of better-preserved features than is typical 

in open areas. 

Key contributors to this young discipline (of archaeology-based airborne laser scanning) 

include: Bernard Devereux (Devereux et al., 2005; et al., 2008) for initial experimentation into 

the viability of using airborne LiDAR; Simon Crutchley (Crutchley, 2006; 2008) for his work on 

LiDAR processing and analysing methodology; Keith Challis (Challis et al., 2006; et al., 2008) for 

his work on classifying archaeological features from LiDAR data; and Michael Doneus (Doneus 

and Briese 2006a; b; et al., 2008) for adapting the standard processing chain to concentrate on 

detecting archaeological features. The following section will outline the techniques employed 

to analyse LiDAR data for archaeological purposes and the critical work undertaken to improve 

its performance. 

 

2.1 Limitations of Ground Survey and Photogrammetry for Sub-canopy 
Archaeology 
 

Shortcomings to previous sub-forest canopy feature prospection methods were mentioned 

early in this work as a premise for the initial experimentation with, and later development of, 

airborne LiDAR as a possible tool for detecting archaeological features beneath forests. 

Historically, prospection and monitoring have been conducted on foot on a site-by-site basis, 
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with the more recent addition of aerial photography support. However the cost of visiting and 

reporting on vast numbers of sites, especially under forests, is prohibitive and consequently, 

feature validation and condition surveys, supplementary to original field surveys, are 

characteristically not undertaken on a regular basis (Barnes, 2003). Aerial photogrammetry has 

also been employed to measure sub-canopy elevation; but as an intrinsically passive 

technique, in order to detect subtle features, lighting conditions and sun elevation through the 

surveying period must be at near optimum levels, and some low earthworks covered in dense 

vegetation are almost impossible to locate on the ground, let alone from the air, in low spatial 

resolution photogrammetry-derived elevation models (Doneus and Briese, 2006b; Gallagher 

and Josephs, 2008). 

While airborne laser scanning suffers various measurement errors (see section 1.2.3), it has 

several crucial advantages over former techniques. Through LiDAR surveying, a client can 

obtain very high density elevation measurements at an acquisition rate of greater than 10 km2 

per day, and processing for terrain models is relatively automated and accurate; so for these 

respective reasons it is a more efficient technique than either ground survey or 

photogrammetry (Baltsavias, 1999b; Barber, 2007; Crutchley, 2008). For archaeological 

purposes, the coherence of LiDAR terrain models and images allows the human eye to detect 

small changes in topography that cannot be identified in the characteristically coarse terrain 

models derived from photogrammetry (Barber, 2007; Gallagher and Josephs, 2008). 

 

2.2 Standard Methodology for Conducting Archaeological Feature 
Prospection with LiDAR 
 

Following the decision to conduct an airborne LiDAR survey over a particular site, with the aim 

of detecting and resolving archaeological features within modelled topography, it is necessary 

to make several logistical and data processing-directed considerations. A survey is 

commissioned with a view to recording LiDAR points at a specific point density or spacing, i.e. 

n points per m2 or one point every x m, respectively, and flight parameters, for example flying 
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height and laser pointing angle (equation 1.4 in section 1.2.2), are set accordingly. Crutchley 

(2008) recommended point spacing of at least 1 m to detect cultural features like barrows, 

enclosures and mining pits, most of the time; while Barber (2007) suggested that 50 cm 

spacing will permit detection of features of this size 95 % of the time (table 2.1). Table 2.1 

gives appropriate point spacing for the 66 or 95 % probability of detecting features (standard 

cultural heritage) of various sizes, based on mathematical analysis of points on a grid (Barber, 

2007). The obstacles to this ‘inverted’ approach of determining flight parameters from prior 

knowledge of the characteristic archaeological feature to be measured are: (1) if little or 

nothing is known about the features to be detected; (2) if there is forest cover and thus no 

idea of the laser penetration rate and (3) if there is forest cover, understorey or low vegetation 

cover etc., with terrain filtering required and thus no idea of the accuracy of processed LiDAR 

terrain data. These problems indicate both a direction for further research and the common, 

present lack of an informed procedure for selecting flight parameters (i.e. choosing suitable 

LiDAR point densities). 

 

Feature 

size (mm) 

Example feature Point spacing required to 

give 66 % probability that a 

feature will be visible (mm) 

Point spacing required to 

give 95 % probability that a 

feature will be visible (mm) 

10,000 Large earth work 3500 500 

1,000 Small earth work/ditch 350 50 

100 Large stone masonry 35 5 

10 Large tool marks 3.5 0.5 

1 Weathered masonry 0.35 0.05 

 

Table 2.1 Appropriate point spacing (sampling resolution) for various sizes of cultural heritage, 

based on standard mathematics to determine appropriate minimum sampling intervals over a 

regular grid of data. Adapted from: Barber (2007). 

 

Raw LiDAR data are filtered and terrain points are modelled as a raster (DTM) or TIN. While 

triangulation maintains all the accuracy of the input data and rasterisation tends to smooth 
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(often important) topographic discontinuities, TINs will enhance artefacts caused by Type II 

errors introduced at the filtering stage where a smoothed raster surface will reveal hidden 

features (Crutchley, 2008). Investigators have typically favoured rasters over TINs for 

interpreting archaeological features in LiDAR data (e.g. Challis et al., 2008; Devereux et al., 

2005; Harmon et al., 2006). 

Numerous post-processing techniques, of varying sophistication, have been utilised to analyse 

LiDAR data. Typically, the more advanced techniques have greater processing (time/cost) 

requirements. The most basic is vertical exaggeration of the terrain using 3-D visualisation 

software packages, but this can equally emphasise background noise and data artefacts (Type 

II filtering errors) (Crutchley, 2006; Harmon et al., 2006). So the common first step of visual 

analysis is to generate hillshade images from terrain models, in either greyscale (figure 2.1) or 

colour. The ‘scene’ (area of interest) is artificially illuminated from a specific light angle and 

azimuth, with shadows cast behind the digital topography and, ideally, features accentuated 

against the general terrain surface. This technique is imitating passive aerial photography (with 

a static solar light source), but resolves characteristic photographic problems of excessive 

shadow and feature alignment parallel to the light source, with a single LiDAR scene usually lit 

from a minimum of four angles (Crutchley, 2008). Preferably, a scene should be lit and 

interpreted from every viewing angle and azimuth to maximise feature detection, but the 

processing requirements become unwieldy. 

Hence, various developments have been made to the basic hillshade technique.  The first is to 

give each hillshade model, of the same scene but lit from a different viewing angle (a ‘series’), 

a separate colour scale and combine them into a single colour composite (Crutchley, 2008). 

This creates an image with shadows from four angles, but this is at the significant risk of 

masking subtler features like slight banks or ditches (Devereux et al., 2005; Crutchley, 2008) 

which require a specific (single) illumination direction to be detected. Alternatively, statistical 

analysis of the variation in a series can be employed to create a single interpretation image. 

Through principle components analysis (PCA), an image is generated which possesses the 
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property of equal illumination from all angles, thus yielding a far lower likelihood of feature 

masking (Devereux et al., 2008). This technique will be covered in greater detail in section 2.3. 

 

 

 

 

Figure 2.1 LiDAR hillshade image of an eighteenth-century plantation terrace in Maryland, U.S., 

illuminated from the north, with excavation trenches of 20-60 cm depth visible in the 

highlighted area (red box). Source: Harmon et al. (2006). 

 

Techniques for the direct manipulation of digital terrain data have also progressed from basic 

vertical exaggeration, with slope and difference models generated to enhance archaeological 

features against natural, background topography (Doneus and Briese, 2006b; Hesse, 2010; 

Sittler, 2004). The slope model exhibits a graded colour scheme based on slope rather than 

elevation while the difference model is formed by subtraction of a full resolution terrain model 

from a resampled model of lower resolution. Again these techniques will be covered in greater 

detail in section 2.3. 

Crutchley (2006) emphasised the importance of exploiting contextual data both in the 

interpretation and validation of LiDAR data. He suggested checking OS and historical maps to 

rule in or out candidate archaeological features identified in a terrain model and prevent the 

erroneous classification of, for example, modern field boundaries and man-made forest 
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clearance piles (‘brash’ from tree felling operations) as cultural heritage. Barber (2007) 

advocated the compilation of an integrated GIS with mapping, photography, points of interest 

and land cover information, in addition to LiDAR terrain information. Hyperspectral data and 

LiDAR have also been acquired for the same area and collated for archaeological applications 

(Coren et al., 2005; Pietrapertosa et al., 2008). 

 

2.3 Examples of Critical Work Using LiDAR in Archaeology 
 

Ridge and furrow extraction (Sittler, 2004; Sittler and Schellberg, 2006) 

Fossilised ridge and furrow micro-topography (typically of approximately 30 - 60 cm depth), 

formed over years of ploughing and hoeing, was measured under mixed-species forest canopy 

at a site in Germany converted to forest from arable land in the 18th century. LiDAR data were 

acquired in broadleaf-on conditions, but variation in canopy density and species did not 

demonstrate significant control over the quality of terrain filtering. LiDAR point spacing of one 

point every 1.5 m was sufficient to resolve topography because the vertical accuracy of the 

data was less than the height of the majority of features. Following computation of a 

difference model between the 2-D planimetric surface and true undulating topography, 

individual furrows were extracted through manual delineation (figure 2.2). Although this 

method appeared to succeed, lack of validation against ground truth data indicates that its 

genuine potential is yet to be fully tested. 
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Figure 2.2 (A) Extraction of individual furrows from a difference model (greyscale image) as 

polygons (coloured shapes) by manual delineation in GIS software. The difference model was 

generated by subtracting the LiDAR terrain model from a 2-D planimetric surface. (B) Vertically 

exaggerated transect across two furrows with the position of the 2-D planimetric surface 

highlighted by the dashed red line. Source: Sittler (2004).  

  

Advanced visualisation of sub-forest canopy features (Devereux et al., 2005; et al., 2008) 

Broadleaf-off airborne LiDAR survey was employed to attempt to map a prehistoric hillfort at 

Welshbury Hill, Gloucestershire, characterised by obvious bank and ditch earthworks, subtle 

hut and charcoal platforms and a possible Bronze Age field system under dense, mixed-species 

forest, beneath which ground survey had been described as an ‘impossible’ task (SAM 31186, 

2004 in Devereux et al., 2005). DTMs were generated from LiDAR terrain data, filtered with an 

algorithm that classified last echoes as terrain if they were above a threshold distance from 

their equivalent first echoes (i.e. of the same laser pulse) (this is a modified version of the 

algorithm developed by Raber et al., 2002a). A preliminary experiment was conducted to test 

the quality of filtered LiDAR terrain (and archaeological feature detection potential) against 76 

vegetation zones (categorised by tree species and canopy form), the reference data set 

compiled by field survey (Crow, 2003). Leaf-off deciduous trees were conducive to regular 

laser penetration and thus high terrain point density, but even in mature, thinned conifer 

plantation, feature detection was described as ‘surprisingly successful’ (Devereux et al., 2005). 

A B 
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Very subtle features, like charcoal platforms, were frequently detected, but in some areas 

man-made forest clearance piles could not be filtered out and were evident as ‘fishbone’ 

patterns in the modelled terrain; these are likely, in some places, to mask underlying features. 

Devereux’s group extended their method in 2008 by pioneering innovative principal 

components analysis (PCA) for visualising the same Welshbury Hill LiDAR terrain models. This 

method takes a set of inter-correlated variables (i.e. a series of hillshade images illuminated 

from different angles) and transforms them to a new set of uncorrelated variables using the 

eigenvalues and eigenvectors of their correlation matrix (Devereux et al., 2008). The first three 

components typically contain over 95 % of the variability in the original data set, so a false 

colour composite of these components was generated by the group (figure 2.3 B), which 

negated the effects of over-illumination and over-shadow apparent in their earlier work. The 

third component (figure 2.3 C) was additionally found to exhibit almost equal loading on all 

sixteen of the original illumination directions (there were 16 hillshade images in the series), 

highlighting finer detail in the landscape and aiding in, especially, the detection of subtle 

platform earthworks (Devereux et al., 2008). 

 

 

Figure 2.3 (A) Hillshade model of Welshbury Hillfort illuminated from the east (90°) with over-

illumination and shadowing clearly visible. (B) Colour composite image of the first three 

principal components. (C) Third principal component with bank and ditch features noticeably 

emphasised. Spatial scale is unavailable in the original work for these images, but the scene is 

hundreds of metres across. Source: Devereux et al. (2008). 

 

A B C 
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Feature edge detection from hillshade models (Harmon, 2006) 

Terraced gardens and shaped acreage were identified in LiDAR terrain data acquired over a 

former plantation landscape in Maryland, U.S., now dominated by low vegetation (scrub) cover 

(figure 2.1). DTMs of both 1 and 2 m spatial resolution were generated by interpolating LiDAR 

last echoes (i.e. without advanced filtering) and following experimentation, 2 m resolution 

could not provide sufficient detail to pick up the edge-type terrace features. However, 

breakline modelling and image-based edge-detection techniques were utilised to successfully 

identify terraces in the 1 m resolution model (figure 2.1) and following feature mapping, the 

authors performed viewshed analysis to interpret the relationship of features to each other in 

the landscape. 

 

Geoarchaeological prospection and feature cataloguing (Challis et al., 2006; et al., 2008) 

Initially Challis’ working group focused on assessing the capability of airborne laser scanning 

for detecting archaeological geomorphology, i.e. relict river channels (Challis, 2006; Challis et 

al., 2006). Although this work had some application for topographic feature detection, Challis’ 

group later concentrated on archaeology and specifically on compiling feature inventories 

from LiDAR data (Challis et al., 2008). The group investigated the potential for LiDAR to 

enhance historic records using a data set acquired over a relatively open (unforested) corridor 

of the River Dove on the Derbyshire/Staffordshire border. 

Fossilised ridge and furrow topography, historic field boundaries and settlement remains were 

identified by their surface expression in LiDAR hillshade models, digitised in GIS software and 

finally categorised. Mapped features were compared to the Historic Environment Records 

(HER) and 84.4 % detected by LiDAR were not, at that time, on-record, reflecting a tendency of 

the HER to exclude large-scale landscape features like ridge and furrow; but also some 

ditch/platform earthworks had been missed. Laser scanning was recognised by Challis et al. 

(2008) as missing the majority of crop and soil marks (typically identified in oblique aerial 

photography) and missing some of the ‘smoother’ earthworks. 
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Sub-forest canopy prospection with full-waveform LiDAR (Doneus and Briese, 2006a; 2006b; 

Doneus et al., 2008) 

In their earliest work, Doneus and Briese (2006a) recognised the influence of low vegetation 

and understorey on LiDAR filtering accuracy, especially on the mistaken acceptance of points 

over vegetation in the terrain class (Type II errors), and the subsequent capabilities of airborne 

laser scanning for feature detection. As intimated in section 1.2.3, successive echoes from the 

same laser pulse must be separated by distances larger than the range discrimination of the 

LiDAR sensor (approximately 15 cm on the ground) to be recorded as distinct returns. The 

group attempted to identify earthwork features at an Iron Age Hillfort located under dense 

multi-story, but monoculture, deciduous forest in Austria, using the surface regularisation 

(robust linear prediction) filter (Pfeifer et al., 2001) to remove vegetation in leaf-off LiDAR 

data. However, by employing standard filtering procedure, the processed DTM included many 

anomalous features of diameter 5-6 m and height 0.2-1 m (figure 2.4 A), identified on the 

ground as man-made forest clearance piles (brash) (Doneus and Briese, 2006a). 

The full-waveform LiDAR is capable of quantifying the entire power waveform of each 

returning laser pulse (see full-waveform digitisation function in figure 1.2) and, as such, the 

power (or ‘width’) of each echo – i.e. the range distribution of individual scatterers 

contributing to an echo (Baltsavias, 1999a). A small echo width is recorded from flat, clear 

surface elements (e.g. terrain), while a large echo combines scatter from various elements 

(e.g. low vegetation and terrain) (Doneus and Briese, 2006a). Thus, Doneus et al. (2008) 

performed exploratory analysis to determine a threshold echo width of 1.7 ns, above which 

LiDAR returns were classified as non-terrain, and added an auxiliary step to the standard 

surface regularisation filtering procedure. The superior algorithm was tested on the same 

Austrian Hillfort LiDAR data set, with the majority of clearance piles and noise ‘purged’ from 

modelled terrain (figure 2.4 A and B) and many additional barrows of 0.2 to 2 m height 

detected to those mapped in a 1960s field survey (figure 2.4 C and D) (Doneus et al., 2008; 
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Ulbrich, 1962). Over some barrows, shallow (10 to 20 cm) depressions could even be observed 

where graves had been robbed. 

 

 

 

 

Figure 2.4 (A) Hillshade model of part of an Iron Age Hillfort (image approximately 0.5 km 

across) after standard filtering, with circular features highlighted in the boxes. (B) The same 

scene after supplementary removal of LiDAR returns with high echo width, with brash piles in 

the red box purged from the terrain model and a genuine barrow highlighted in the yellow 

box. (C) Terrestrial survey map of separate scene (Ulbrich, 1962). (D) Additional barrows 

detected with LiDAR (white circles) to those mapped by terrestrial survey (black circles) in the 

same scene as C. Sources: Doneus and Briese (2006a); Doneus et al. (2008).  

 

Detecting and interpreting industrial archaeology (Gallagher and Josephs, 2008) 

With the aim of detecting features of cultural heritage under boreal, mixed coniferous and 

deciduous forest in Michigan, U.S., airborne LiDAR data were acquired (in broadleaf-off 

conditions) and filtered by classifying only last echo returns as terrain. Exhaustive copper 

mining was carried out during the 18th and 19th centuries, with the area therefore likely 

A B 

C D 
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containing extensive, previously undetected, relict industrial infrastructure. Hillshade models 

generated from the processed LiDAR terrain data were examined and candidate features 

identified by four visual criteria: particular shape, pattern, texture and shadow. Features were 

then categorised into, for example, mining pit, prospecting pit, spoil heap etc. and validated by 

pedestrian reconnaissance with handheld GPS. By this procedure, Gallagher and Josephs 

(2008) managed to locate numerous, previously unrecorded features, but suggested that areas 

of their DTMs were frequently masked by either heavy shrub vegetation or data artefacts over 

sloped terrain. 

 

Local relief modelling (Hesse, 2010) 

Recent work has been undertaken to improve existing techniques for manipulating digital 

terrain data, i.e. to enhance the basic difference model. The Local Relief Model (LRM) 

emphasises the visibility of medium-scale, shallow topographic features in a hillshade model, 

irrespective of illumination angle, by creating a DTM purged of variable, small-scale landforms 

from the original LiDAR data. An LRM reflects less bias towards small-scale features relative to 

the landscape at large than is typical in a simple difference model (Hesse, 2010). When testing 

at a site in Germany, the technique was found to be particularly successful at exposing the 

most subtle topographic features, like ridge and furrow for example, but suffered from 

distortion on steep slopes and required site-specific parameter selection. 

  

2.4 Common Obstacles to Conducting Viable Prospection with LiDAR 
Data 
 

Airborne laser scanning is limited in its aptitude for remote archaeological prospection, with 

the limitations mentioned in the previous section now collated. Commission errors (mistakenly 

accepted returns from vegetation in the terrain category during filtering) appear to affect the 

bulk of research, with several studies intentionally designing procedures to remove artificial 

features in terrain models (Doneus and Briese, 2006a; Hesse, 2010). Gallagher and Josephs 
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(2008) also described some omission errors causing problems for feature detection, especially 

over steep terrain, where interpolation caused discontinuity smoothing. Problems when 

artificially illuminating hillshade models are frequently referred to and include: (1) obscuring 

features in shadow, (2) over-illumination with an intense light source and (3) feature alignment 

parallel to the light source (Crutchley, 2008); although advanced PCA goes some way to solving 

these issues (Devereux et al., 2008). Ease of feature detection is observed as being 

proportional to the size and shape of feature, with larger, negative, deeper and isolated 

features more easily identified (Gallagher and Josephs, 2008). 

Some features are semi-erased by years of agricultural disturbance (e.g. ploughing), although 

this occurs much less frequently under woodland (Crutchley, 2006; Challis et al., 2008). Bewley 

et al. (2005) suggested that almost fully-erased features can still be detected with LiDAR, with 

relict field boundaries in particular surviving in modelled terrain but offering no visible surface 

expression in the field. 
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2.5 Research Aim and Objectives 
 

To this date, insufficient research has concentrated on the use of high-powered multiple-

return laser ranging for sub-canopy archaeological prospection. Studies are too broad, focused 

on feature extraction over a wide area of typically open terrain, or motivated by application 

alone, with inadequate evaluation of method. However, in light of the research identified in 

this chapter, it is plausible that airborne laser ranging may offer a more effective alternative to 

existing methods of sub-canopy prospection, like photogrammetry or ground survey. It is 

necessary to consider a suitable framework, comprising a series of research objectives, to 

address the following aim: 

 

To evaluate the capability of multiple-return discrete-pulse airborne LiDAR for detecting and 

resolving archaeological features under mixed coniferous and deciduous forest. 

 

Research objectives: 

 

1. To acquire high density airborne LiDAR data for a range of forest species characteristic of 

British woodland. 

 

2. To obtain in situ training data from which LiDAR filtering parameters can be constrained, 

with a view to removing non-terrain returns and retaining archaeological features. 

 

3. To classify the airborne laser data into terrain and non-terrain classes and derive three-

dimensional models of the sub-canopy terrain surface. 

 

4. To evaluate the accuracy of filtered LiDAR terrain data against in situ reference data of the 

true terrain surface under a variety of forest species. 
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5. To detect features of archaeological interest in the terrain models through image analysis 

and artificial exaggeration and manipulation. 

 

6. To validate candidate features by integrating the terrain models with existing aerial 

photography, historic mapping, ground survey information and other contextual data. 

 

7. To evaluate the viability of using airborne laser scanning for sub-canopy archaeological 

prospection and in what situation(s) it is merited. 
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Chapter 3. Methodology 
 

3.1 Study Area 
 

Chopwell Wood is a mixed coniferous and deciduous woodland of 360 hectares (3.4 km2) 

located on the northern slopes of the Derwent Valley, 16 km southwest of Gateshead in the 

northeast of England (figure 3.1). It is classified as an Ancient Woodland site by the UK Forestry 

Commission (2009), a designation reserved for only 2 % of the country’s forested area, and is 

one of the rarest habitats in the UK. The wood is characterised by rough topography and sharp 

elevation changes, with the ground level quickly rising from 40 to 230 m a.s.l. from south to 

north up the valley side. Vegetation is diverse, with over 250 plant species recorded in the 

wood and, although the tree canopy is dominated by species of beech, larch, pine and Douglas 

fir, cover is variable and mixed stands are common (Forestry Commission, 2009). A full list of 

the tree species in Chopwell Wood is given in Appendix 1. 

 

Figure 3.1 Location of Chopwell Wood. Source: EDINA (2009). 

 

Early tribal clearance from 300 BC through to extensive Roman deforestation from 50 AD has 

reduced a forest covering the full north side of the Derwent Valley to a few small wooded 
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areas, of which the early Chopwell Wood was one. The forest was routinely felled through the 

second millennium AD, reaching a minimum one hundred acres of scrub and trees in the late 

1600s which prompted replanting for the first time in the 1800s. Nine hundred acres of larch, 

oak and elm were replanted at this time and an even larger area was planted with Scots pine 

later on in the nineteenth century, although much of this new cover was felled during the two 

World Wars (figure 3.4) (Searle, 2000). With the Forestry Commission taking control of UK 

forests in 1923, full scale replanting of pine, fir, spruce and larch continued at Chopwell and 

many trees planted at this time are still standing in the forest today. 

Although an ancient woodland of great value, both to environmental groups and to the local 

community for leisure activities, there is a commercial side to contemporary forest 

management.  At Chopwell Wood the Forestry Commission primarily deals with thinning forest 

crops (removing, for example, one in every five trees), while also occasionally harvesting full 

areas. This has a number of implications for the work proposed in this study. When considering 

laser pulse interactions with human-planted, and thus regularly-spaced, trees, it is difficult to 

extrapolate results to natural forested area. Moreover, results from thinned forest will differ 

to those from non-thinned areas and harvesting operations also leave quite heavy remains on 

the forest floor – this compact branch and leaf material (brash) has been observed to severely 

limit laser pulse penetration to the terrain surface (Doneus et al., 2008). However, while these 

points are valid, Chopwell Wood’s diversity and management is characteristic of forests across 

the UK and, provided that tests sites within the wood are as representative of the forest as 

possible, results will potentially be significant at the national level. 

Chopwell Wood is host to an abundance of industrial archaeology, including relicts from the 

coal mining period and associated transportation infrastructure (figure 3.2). Coal mining began 

in approximately 1600 and by 1724 there were seven small collieries (bell-pits or drift-mines) 

working in and around the wood. Many drift- and shaft-mines were dug after 1850, with small 

(likely horse-drawn) tubways erected to move the coal out of the wood. A large mineral 

railway connection was constructed through the wood in 1896 (figure 3.3) to transport 300 

B 
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tons of coal per day from Chopwell and mines in the surrounding area. Roads were also laid 

parallel to the track as firebreaks and a stone overbridge built in 1894. The railway operated 

until the last of the wood’s collieries closed in 1960 and the track was lifted in 1961, but its 

impression on the sub-forest canopy topography is still clear (Searle, 2000). 

 

 

Figure 3.2 (A) Relic coal tubway and (B) disused sluice gate under Chopwell Wood. Locations 

are given in figure 3.3. 

 

 

Figure 3.3 Aerial photograph of Chopwell Wood with some important features highlighted and 

spot height minima and maxima identified. Photo positions for figure 3.2 A and B are given. 
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Figure 3.4 Oblique aerial photograph of south Chopwell Wood. Date: 4/10/1947. Source: 

Declassified Air Force Photographs from World War 2 UK aerial survey. 

 

It is very possible that there is, as of yet, undetected industrial archaeology hidden beneath 

the forest canopy, whether relevant to mining activity, timber production or the railway 

connection. This, in addition to its unique ecological diversity, makes Chopwell Wood an ideal 

location to test the use of airborne LiDAR for remote modelling of sub-canopy terrain and 

detection of archaeological features. 
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This chapter is organised in the sequence of the data processing chain:  (1) fieldwork 

preparation & data sources, (2) data acquisition, (3) data pre-processing & LiDAR point cloud 

classification, (4) LiDAR terrain modelling and accuracy & bias assessment, and (5) LiDAR post-

processing and data analysis. 

 

3.2 Fieldwork Preparation and Data Sources 
 

3.2.1 Preliminary site assessment 

 

To fully test the capability of airborne laser scanning for measuring sub-canopy terrain, 

experimentation was conducted under the harshest possible scientific conditions. As 

mentioned in the previous section, Chopwell Wood offers diversity in vegetation density and 

species, variable topography and variety in size and subtlety of archaeological features.  

Prior to data acquisition, it was necessary to identify a number of sites within the forest 

representative of Chopwell’s variety for in situ field data collection. These sites had to cover a 

range of tree canopy structure, topography and archaeological feature, wide enough to ensure 

that all key factors expected to affect the airborne LiDAR could be tested. Information 

collected at these sites would provide both training data for constraining optimum LiDAR 

filtering parameters and reference data against which the accuracy of the airborne LiDAR 

points could be evaluated. 

During several early field visits, some of the twenty or so candidate sites (identified 

beforehand using mapping, aerial photography and GIS data) could be rejected under logistical 

criteria. These included sites in young Sitka spruce, where high canopy density was initially 

thought to provide an ideal challenge to sub-canopy airborne ranging; while this may be so, 

the density in fact proved too high even for comprehensive field data collection. Other sites 

were rejected in areas too steep to conduct fieldwork and where stands had been so recently 

thinned or fully harvested that they were not represented in Forestry Commission GIS data. 
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Figure 3.5 (A) Locations of sites for in situ field data collection on an Ordnance Survey map 

(1:10,000 scale). Source: EDINA (2009). (B) Site 4 in beech (during winter) with clear 

channelling (man-made, for drainage) and medium-rough topography. (C) Site 2 in pine (during 

winter) with some brash left from recent thinning operations. 

 

A 
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Site 
No. 

Easting Northing Primary 
Tree 
Species 

Planting 
Year 

FC Terrain Ratings Known 
Archaeology 

Understory 
Vegetation 
Rating 

  Roughness Gradient 

1 413319 558609 Corsican 
Pine 

1947 2 1 None 5 

2 413289 558718 Corsican 
Pine 

1947 2 1 None 5 

3 413527 558479 Beech 1934 2 2 None 3 

4 413450 558459 Beech 1934 2 2 None 4 

5 414119 558380 Beech 1923 2 1 Avenue (at 
possible 
location of 
pre-1800 
house) 

4 

6 414209 558334 Beech 1923 2 1 Former 
reservoir 

2 

7 414322 557558 Douglas 
Fir 

1987 2 3 None 1 

8 414351 557617 Douglas 
Fir 

1991 3 5 Stonework, 
low walls and 
building 
rubble 

1 

 
Table 3.1 Site details for in situ field data collection. FC (Forestry Commission) terrain ratings 

are subjective human observations of local terrain roughness and gradient on a scale from 

lowest roughness/gradient at 1 to highest at 5, obtained from the Forestry Commission GIS 

Database (1998). Understory vegetation ratings are subjective human observations of 

combined understory cover and thickness (density) on a scale from lowest density at 1 to 

highest at 5, made by the author and co-workers. Easting and northing are given in the 

OSGB36 coordinate system. 

 

Eight candidate sites were identified during these early field visits, covering a cross-section of 

tree species, ages, terrain roughness, slope and size and shape of sub-canopy archaeological 

feature (figure 3.5 and table 3.1). Winter site photographs in figure 3.5 illustrate typical tree 

spacing and especially the structure of the terrain (often hidden by low vegetation in summer) 

at beech (B) and pine (C) stands. The number of sites was considered sufficient to provide a 

comprehensive assessment of the research aim, given both the range in site attributes and 

repeat measurement i.e. two sites in each area, four deciduous and four conifer sites (table 

3.1). Data collected at all field sites were utilised in the accuracy assessment, while site 8 also 

served as a training data set for LiDAR classification and, as such, acquisition at this site was 

more intensive and comprehensive. 

 



54 
 

3.2.2 Data sources 

 

This section describes the types of data collected whereas the data acquisition section 

describes the exact details of sample sizes, plot areas etc. 

An Optech ALTM 3100EA airborne laser ranging system was mounted on a helicopter platform 

and used to collect point cloud data over the study area. The system comprised a pulsed infra-

red laser and a sensor capable of recording up to four returns in the time domain of each 

pulse, a differential GPS in communication with a ground-based station and an IMU. The laser 

can deliver up to 70,000 pulses per second and can typically differentiate objects on the 

ground larger than approximately 30 cm in diameter at an elevation of 1 km (table 3.2).  

 

 LiDAR System 

 Optech ALTM 3100EA Trimble GS200 

Platform Helicopter Terrestrial 

Laser Type Pulsed Pulsed 

Beam Deflection Oscillating mirror Oscillating mirror 

Wavelength (nm) 1064 516 

Flying Height (km) ≤3.5 - 

Pulse Rate (kHz) ≤70 ≤5 

Footprint Size 0.3/0.8 m @ 1 km 3 mm @ 50 m 

Accuracy (cm) Hor: 18@1km, Ver: 5-35 Hor:0.3@100m, Ver: ~0.1 

Range (m) 4000 200 

Field of View (deg) Hor:50, Ver: 50 Hor: 360, Ver: 60 

 

Table 3.2 Technical specifications for the airborne and terrestrial LiDAR systems used in this 

study (Mallet and Bretar, 2009; Optech ALTM Gemini Datasheet, 2004; Trimble GS Series 

Datasheet, 2005). 

 

Elevation data were collected in the field by three different means: terrestrial laser scanner 

(TLS), total station (EDM: Electronic Distance Measurement) and differential GPS (figure 3.6). 

Technical details for the Trimble GS200 terrestrial laser scanner are given in table 3.2. Like its 
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airborne counterpart, the TLS uses a pulsed time-of-flight system to record points at 5000 

pulses per second and can operate up to a range of 200 m (far beyond anything required in 

this study). The scanner uses a visible (green) laser, as opposed to the infra-red laser in the 

airborne system, but this makes little relevant difference to how it collects data. The Leica 

TCRP1205 total station records the locations of specific points relative to a known point or 

‘base station’ by transmitting and receiving an infra-red laser beam to and from a specular 

target, such as a prism. Within a distance of 800 m between base and target, never exceeded 

in this study, points are located to an accuracy of 1 mm (Leica TCRP1205 Datasheet, 2009) and 

can be identified beneath the forest canopy by ID number and attributes attached to this 

identification by the user. While the TLS measures numerous points over a surface; known 

objects on the ground i.e. archaeology can be measured and identified with the total station. 

However, in order to utilise either technique, one or several control points must be referenced 

at a site to a national or international co-ordinate system using a Global Positioning System 

(GPS). The Leica GX1230+, utilised in this study, offers static and real-time RTK (base and rover) 

applications and with the addition of up to 6 m aerial extension, providing stronger 

communication between the GPS unit and satellites under forest canopy, points can be 

surveyed rapidly and typically with an accuracy of less than 10 cm. Raw GPS points are post-

processed using RINEX data from the Ordnance Survey, including real-time models of 

atmospheric conditions, to obtain a more accurate position.  

 

Figure 3.6 (A) Terrestrial laser scanner. (B) Total station. (C) Differential Global Positioning 

System. 

B C A 
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The result of having to ‘survey in’ the TLS and total station data with the differential GPS is that 

the accuracy of a GPS control point is translated to its associated group of TLS and/or total 

station points, with error in the position or height of the GPS point systematically translated to 

all associated points. So a control point with three-dimensional accuracy of ± 10 cm assigns 

equivalent accuracy to all associated total station points, despite being surveyed themselves at 

an accuracy of 1 mm. Since the airborne LiDAR data (the primary data set) employed in this 

study is registered to an external reference frame (a national or international coordinate 

system), the terrestrial LiDAR and total station data has to be registered to the same reference 

frame otherwise direct comparison between data sets cannot be made. Therefore, although 

absolute uncertainty in field-acquired elevation data may be only 1 mm, the translation of 

points to an external reference frame introduces additional relative uncertainty. 

Individual trees were surveyed according to the Forestry Commission Field Guide to Timber 

Measurement (Mackie and Matthews, 2008). Diameters were measured at breast height 

(DBH), which is the point on the tree 1.3 m above ground level or, on sloping ground, the 1.3 m 

level on the upslope of the tree. They were measured with girthing tape in rounded-down 

centimetre classes. Commonly stand basal area is calculated from the DBH by totalling the 

cross-sectional areas (at breast height) of all trees in a stand, followed by stem density, which 

is the stand basal area divided by the total plot area in hectares (Mackie and Matthews, 2008). 

The stem height of each tree was also measured with a Vertex-II hypsometer – the user 

standing at a distance from the tree of at least 1.5 times its height so as to judge the highest 

point of the trunk more precisely. In the same way, the canopy base height was measured as 

the lowest live branch in each tree canopy. 

Various quantitative relationships have been established between characteristic tree 

dimensions, like those detailed above, and variables more difficult to measure directly, like, for 

example, tree volume (Zianis, 2005). One of these ‘allometric relationships’ can be exploited to 

estimate canopy density, through assessment of tree species and DBH against Forestry 

Commission form growth tables (Mackie and Matthews, 2008). Stem density and canopy depth 
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(the difference between stem and canopy base height) are, assuming robust allometric 

correlation, proportional to canopy density and, as such, are related to the degree of laser 

penetration through forest canopy. 

Understorey vegetation height and density were measured across each site at randomly 

distributed points inside the plot area.  The ‘volume’ of influential material covering the terrain 

surface was then calculated from density (in plan) and mean vegetation height. 

Mapping, aerial photography and GIS data were required to inform initial site choices and also 

to provide context to the airborne LiDAR data, in addition to supporting archaeological feature 

validation following data analysis. High spatial resolution (10 cm) aerial photography was 

acquired simultaneously from the helicopter platform alongside the airborne LiDAR data with a 

Canon EOS 1d Mk3 digital camera. Ordnance Survey mapping dating from 1849 to the present 

day was obtained from the EDINA Digimap geo-data portal (EDINA, 2009), while oblique aerial 

photographs of the wood from 1947 and 1956, declassified from World War II Air Force 

surveys of the UK, were donated by a member of the local Chopwell Wood community 

(Fountain, 2010). GIS data were provided by the Forestry Commission, whose 1998 assessment 

includes information on tree species, planting year, sub-canopy topographic roughness and 

gradient and, given its status as ancient woodland, Chopwell Wood has changed little since. 
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3.3 Data Acquisition 
 

3.3.1 Airborne LiDAR data 

 

Airborne LiDAR data were acquired on the 18th and 19th July, 2009 by Network Mapping Ltd 

under favourable flying conditions. Data were obtained during the summer ‘leaf-on’ period for 

deciduous tree species when the seasonal variability in laser penetration through the forest 

canopy was at its minimum and understory vegetation density was also at its annual peak. This 

was a consequence of both restrictions on data availability, due to survey costs and the 

availability of the Network Mapping helicopter, and a desire to investigate the viability of sub-

canopy archaeological prospection under the most rigorous conditions. 

The data were pre-processed in-house by the service providers under the following routine. 

GPS and IMU data were processed through Applanix POSPac 5.0 under the loosely coupled 

GNSS mode using information from two ground-based stations. Optech’s Dashmap was used 

to process the trajectory and range information into a georeferenced point cloud in the UTM 

Zone 30N WGS84 coordinate system. This was later converted to the OSGB36 co-ordinate 

system so that airborne LiDAR data matched the full data set. Finally Terrasolid’s Terrascan 

software was used to match 17 flight strips with up to 50% overlap and rectify the point cloud. 

The mean first return point density of the pre-processed (raw) data, for all returns – i.e. from 

terrain, vegetation, buildings and anomalies – was 31 points per square meter. 

 

3.3.2 In situ elevation training data for filtering 

 

Typically commercial filtering algorithms for airborne LiDAR data require some user input in 

setting classification parameters (see section 1.3.3.3). Although there does not appear to be 

consensus on a single, outstanding method for deriving optimum filtering parameters, 

research frequently indicates that the most robust technique involves tuning a terrain filter to 
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known ground points, irrespective of the type of algorithm (Axelsson, 2000; Wack and 

Wimmer, 2002; Zhang et al., 2003). A training data set of pre-classified reference points must 

therefore be collected on which the filter algorithm can be tested and parameters constrained.  

The characteristics of the training data heavily influence the characteristics of the LiDAR points 

classified as terrain and, as such, the severity of the filter; i.e. in this study it is necessary that 

the filter must be tuned not only to reference points on the ground, but also to archaeological 

features on or within the topography, typical of those observed under Chopwell Wood. While 

the filter must be rigorous enough to limit Type II errors, it must also be sensitive to features 

on or in the terrain and not mistakenly filter them out. 

 

   

 

Figure 3.7 (A) Aerial photograph, the extent of which is marked by the red box on the inset 

map of Chopwell Wood, showing the location of Site 8 (yellow box). The locations of GPS 

control points, CP# and Total Station traverse points, TS# are given as yellow dots. (B) Field 

Map of Site 8 (22/05/10), the extent of which is marked by the yellow box on figure 3.7 A. 

illustrating the distribution of the seven TLS scan positions (X), including the central scan 

position which is highlighted by the dashed red box and is also the position of the centre of the 

site (TS3 on figure 3.7 A). Archaeological features are labelled and photograph IDs and 

locations are given by < symbols. 
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Site 8 was chosen to collect the training data for a number of reasons. Primarily it was 

apparent during the early field visits that the crowded Douglas fir at this site, only twenty years 

old, and the complex and steep topography (table 3.1) would likely limit both the number of 

laser pulses penetrating the canopy and the accuracy of the ones that did. The area had also 

been highlighted by members of a local community group as a site of archaeological interest, 

given the presence of a number of low walls, man-made channels and structural rubble 

beneath the canopy (figures 3.7 and 3.8). It was thought that this could have been the site of a 

forest house pre-dating the 19th century; and the size and shape of the features, in addition to 

the complexity of the vegetation and topography, offered an ideally harsh environment to fine 

tune the filtering algorithms. 

Preliminary tests with the GPS confirmed original assessments of the dense tree canopy, with 

even hour-long surveys over a single position, using the full aerial extension, yielding poor 

horizontal and vertical accuracy (over 1 m and 3 m, respectively). So two GPS control points 

were set up in an open area approximately twenty meters from the site centre and the total 

station was then used to traverse into the forest (via points TS1 and TS2 in figure 3.7 A) to the 

site centre at point TS3 (003 in figure 3.7 B). Terrain elevation at the base of each tree was 

surveyed with the total station (for a regular distribution of ground points) along with points at 

the edges of and over the archaeological features. Full rotation terrestrial laser scans (360 

FOV at 20 m range and 3 cm point resolution at 20 m) were taken from seven distributed 

locations over the ~0.4 ha site (points 003 and Scan 1-6 in figure 3.7 B) and the scan locations 

were recorded with the total station. 
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Figure 3.8 (A) Photograph Id2590 – Man-made channels. (B) Photograph Id2586 – Fir trees 

over what is thought to be building rubble. See Ids in figure 3.7 B for photograph locations. 

 

 

3.3.3 In situ data for accuracy assessment 

 

Further to acquiring training data to process the airborne LiDAR, field data were also collected 

for accuracy assessment (see section 1.3.6). To facilitate meaningful comparison between 

LiDAR and reference elevations, the field data were collected in comparable conditions to the 

airborne laser data: during spring and summer, so that deciduous trees were in-foliage and 

understory vegetation was at its most dense (e.g. figure 3.9 A). Hence, all in situ data were 

acquired during a field season lasting from approximately the start of March to mid-July and 

involving over 20 days on-site. Data were collected inside eight circular sites (figure 3.5 and 

table 3.1), including site 8 despite its additional purpose, of radius 20 m (approximately 0.12 

ha). Typically the Forestry Commission use plot sizes of 0.01 to 0.05 ha as a representative 

sample for timber measurement, depending on the tree spacing in a particular stand, so a plot 

size of > 0.1 ha would offer a large sample whatever the tree species or spacing (Mackie and 

Matthews, 2008). Plot centres were located with GPS (utilising aerial extension capabilities) so 

that full rotation terrestrial laser scans (360 FOV at 20 m range and 3 cm point resolution) 

could be taken of the entire site. 
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Individual tree diameters and stem and canopy heights were surveyed using girthing tape and 

a Vertex-II hypsometer. However, tree attribute acquisition was not straightforward due to the 

occurrence of, for example, multiple trees at the same location – a product of split trunks 

below the 1.3 m DBH measurement point or numerous germinations. Ensuring that data were 

consistently acquired with a view to how it would be expected to affect the airborne LiDAR, a 

number of rules were established for these incidences. The height of a ‘multi-tree’ was taken 

as the highest stem, as the most elevated section of the canopy has principal control over 

penetration (Amable et al., 2004), while multi-tree DBH was taken as the sum of all stem 

diameters, as each stem contributes to the density of the total canopy cluster. By considering 

the probable effect of stem density on laser penetration rate, a multi-tree was counted as: 1 + 

0.5*[number of stems] in order to describe a larger/denser canopy but limiting its influence 

given that, for example, a multi-tree with 3 stems was assumed to provide typically greater 

obstruction to the laser than a single stem, but less than three distributed trees.  

Understory vegetation ‘volume’ (density multiplied by mean height) was recorded at each of 

the eight sites. Density was measured as the percentage cover (in plan view) to the nearest 5 

%, so, for example, close to total cover under the pine (figure 3.9 A) and entirely exposed 

terrain under the Douglas fir (figure 3.9 B). Mean height was calculated as the average 

understory height to the nearest 10 cm, with a greater number of measurements taken at sites 

with higher density vegetation, i.e. up to one every 5 m2 at sites like the pine (figure 3.9 A). 
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Figure 3.9 (A) Dense low vegetation under the pine at Site 2 (with the plot marker hidden). (B) 

No low vegetation under the Douglas fir at Site 7. 

 

3.3.4 Terrestrial survey for feature validation 

 

Following processing and analysis of the airborne LiDAR data, candidate archaeological 

features were validated by a number of methods. Doneus et al. (2008), among others, argued 

that ‘low micro topographic earthworks, especially when covered with dense vegetation... can 

be difficult to locate on the ground, even by an experienced surveyor’, so handheld GPS was 

used to pinpoint the general location of subtle features for visual assessment. Qualitative 

assessment was conducted primarily by taking photographs of features from below the forest 

canopy to provide additional information on stonework, colour of soil, surrounding features 

etc. to the topographic information provided by the LiDAR data. Where a candidate 

archaeological feature was identified in the airborne LiDAR data but greater topographic detail 

was required for validation, the feature, and often its surrounding area, was surveyed with the 

Leica GPS 1200. 
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3.4 Data Pre-processing and LiDAR Point Cloud Classification 
 

3.4.1 Elevation data registration 

 

Field-acquired GPS (and associated total station) data were post-processed with active RINEX 

data from the Newcastle Station, approximately 14 km from Chopwell Wood, using Leica’s Geo 

Office software. Processed points were registered to the OSGB36 co-ordinate system. The 

terrestrial LiDAR data were georeferenced with corresponding GPS control points in Trimble’s 

Pointscape but, having no control on scan rotation, each point cloud had to then be registered 

in the z-axis. Scans were matched to the local terrain slope (derived from preliminary 

classification of the airborne LiDAR) through fine-tune rotation in Archaeoptics’ Demon 

software. The airborne LiDAR data were registered to the OSGB36 coordinate system in-house 

by the service providers. 

 

3.4.2 Quality control for airborne LiDAR data 

 

The airborne LiDAR data were calibrated in-house by the service providers, using 85 ground 

truthing points at a Network Mapping calibration site as control. A mean offset (systematic 

bias) of 0.06 m between the laser and ground was removed from the point cloud. High and low 

outliers were removed with Terrascan’s ‘isolated points’ and ‘low points’ filtering algorithms – 

simple procedures for identifying anomalies based on unreasonable distances between points. 

 

3.4.3 LiDAR point cloud classification 

 

Of the numerous algorithms presented for filtering LiDAR data (see section 1.3.3.1), the 

progressive densification method of Axelsson (1999; 2000) offers most to this study. It fares 

well in both Sithole and Vosselman’s (2004) ISPRS filter comparison and Meng et al.’s (2010) 
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review, and is especially impressive at filtering complex objects, discontinuous terrain and 

vegetation (table 1.1). It is additionally employed as the ‘ground’ filter in the powerful 

Terrascan processing software, which was freely available to the author. An approximation of 

the terrain surface is first obtained through block minimum analysis, with the user defining the 

block diameter by setting the maximum building size – the largest possible horizontal distance 

between ground points (figure 3.10 A).  Points are triangulated and the TIN then ‘fluctuates’ up 

through the point cloud with further ground points added if they fall within pre-defined 

description length and angle criteria (figure 3.10 A ‘iteration distance’ and ‘iteration angle’, 

figure 3.10 B and see also figure 1.8). The maximum terrain angle can also be defined to 

prevent unrealistic commission of ground points over larger areas (figure 3.10 A). An example 

of a transect through classified ground points (and other categories) is given in figure 3.10 C. 

 

 

 

Figure 3.10 (A) User-defined parameters in the Terrascan ‘ground’ classification algorithm. (B) 

Iteration distance and iteration angle between candidate points. Source: Terrascan Manual 

(2010). (C) A transect through LiDAR points classified by the progressive densification method. 

Source: Axelsson (2000). 

C 

B A 
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Terrain filtering parameters were constrained using the in situ elevation training data collected 

at site 8. The GPS and total station ground control were used to classify the terrestrial LiDAR 

data, which subsequently provided control for classifying the airborne LiDAR (figure 3.11). This 

two stage process was necessary because airborne laser penetration through the fir canopy 

was infrequent and ALS (airborne LiDAR) terrain points were randomly distributed. Very few 

ALS and ground control points related spatially and thus assessing correlation in elevation 

between ALS and training data was relatively meaningless. Employing the terrestrial laser scan 

points, relatively concentrated in space, as intermediaries between ground control and 

airborne data provided more reliable filtering. 

 

 

Figure 3.11 Cross-sections through hypothetical LiDAR data. Point cloud classification: green = 

vegetation, black = terrain and red = ground control point (GCP). (A) Terrestrial LiDAR classified 

into vegetation and terrain using total station GCP’s. (B) Airborne LiDAR classified into 

vegetation and terrain using the terrain returns from the terrestrial LiDAR classification as 

GCP’s. 

 

Terrascan offers an effective means of testing the correlation between two point clouds 

covering the same area. The ‘control report’ procedure selects points between the two 

datasets closest in the x-y plane and runs, on these point-pairs, simple least-squares regression 

in elevation, with output including: (1) the mean offset between all tested points, (2) the 

standard deviation of this offset and (3) the root mean square error of this offset. Mean offset 

describes the systematic over- or under-estimation (bias) of LiDAR terrain with respect to 

Low 
Vegetation 

Terrain GCP 

Dense Canopy 

GCP Terrain 
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reference data while standard deviation describes the variability (precision) of LiDAR terrain 

with respect to reference and RMSE describes the variability of the height measurement 

between the LiDAR and reference data. Collectively, these three statistics describe LiDAR 

accuracy. The control report procedure can be managed by changing the maximum permitted 

distance and slope between a pair of tested points. 

Owing to the prerequisites on filter sensitivity mentioned in section 3.3.2, the filtered 

terrestrial LiDAR training data were compared, using the control report function, to both the 

full sample of total station ground control points and to only those identifying archaeological 

features on the terrain surface. In this way, the ability of filtered LiDAR terrain to pick out 

specific features, in addition to the full ground surface, could be analysed. Optimum filtering 

parameters for the terrestrial LiDAR data were obtained by iterating round the routine: (1) 

filtering with angle x and distance y, (2) performing a control report against all ground control 

points, (3) performing a control report against the archaeological control points, (4) output 

mean offset, standard deviation and RMSE. Low mean offset and standard deviation, 

combined with a reasonable retention of points, identified the strongest set of parameters. 

Airborne LiDAR data for the area covering site 8 were filtered by the same procedure as that 

described above, using the points retained as terrain in the classification of the terrestrial 

LiDAR data as control. Only the single control report was produced at each cycle, however, due 

to a lack of archaeological feature identification in the terrestrial laser points; but with the 

optimum parameters at the first step purposely sensitive to archaeological features in the 

topography, testing at the second against these filtered points was, as such, equally sensitive. 

Accordingly, optimum filtering parameters for the airborne data were derived and these were 

used to classify the point cloud over the full study area into terrain and non-terrain categories. 

Figure 3.12 is a flow diagram outlining the various steps of the point cloud classification 

procedure. 
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Figure 3.12 Flow diagram for the airborne LiDAR point cloud classification procedure 
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differential GPS and IMU information from the helicopter flight 

Quality control: calibrate airborne LiDAR data against ground truthing points 

and remove outliers 

Register terrestrial LiDAR data to the 

OSGB36 co-ordinate system with in situ 

GPS and total station information 

Filter terrestrial LiDAR data with 

parameters: angle x and distance y 

Generate control report against ground 

control points 

Generate control report against 

archaeology control points 

Calculate optimum filtering parameters 

and classify ‘ground’ points 

Iterate ro
u

n
d

 lo
o

p
 

Filter airborne LiDAR data with parameters: angle x and distance y 

Generate control report against points classified as ground in the terrestrial 

LiDAR data 

Calculate optimum filtering parameters and classify ‘ground’ returns from the 

airborne data 

Iterate ro
u

n
d

 lo
o

p
 



69 
 

3.5 LiDAR Terrain Modelling and Accuracy & Terrain Point Density 
Assessment 
 

3.5.1 Evaluation of terrain model derivation procedure 

 

After the pre-processing stage, filtered airborne LiDAR data were modelled for computer 

visualisation. The structure of a terrain model can, to some extent, be modified depending on 

the technique employed to interpolate between LiDAR points (see section 1.3.5) and the 

ability to visualise and identify topographic, archaeological features may then depend on this 

choice. 

It was mentioned in the previous chapter that options for the choice of modelling procedure 

are often restricted by computer software availability and that the optimum technique can 

change depending on the modelling scenario. Though primarily utilised for pre-processing 

LiDAR data, the Terrascan software additionally offers a number of output models for filtered 

terrain data. The first is a triangular irregular network (TIN), which, as stated in section 2.2, 

maintains all the accuracy of the input data; but a lack of interpolation, or smoothing, between 

nodes can hide objects in the terrain that would otherwise be clear (Li et al., 2005; Crutchley, 

2008). Also provided are raster-based rectangular arrays of grid cells, with elevation values 

determined from lowest, highest or average point elevation within each cell and basic linear 

interpolation performed at cells without point coverage. However, isolated points cause 

biased elevation estimates, and clustering and isolation are typical in real sub-canopy LiDAR 

terrain data. Interpolation techniques of greater sophistication were available and are detailed 

below, but the principal advantage of using Terrascan was its processing power and 

subsequent rapid modelling procedure. 

Various multivariate interpolation techniques for vector data are available in commercial GIS 

and image processing software, including ERDAS Imagine, ITT Visual Information Solutions’ 

ENVI and ESRI’s ArcGIS. The outstanding techniques are: inverse distance weighting (IDW), 

based on calculating a value at an unknown location as the weighted sum of a user-defined 
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sample of known points; kriging, which calculates the value at a point by linear least squares 

estimation; and spline interpolation, which fits a surface defined piecewise by polynomial 

functions (Li et al., 2005). Where terrain points are relatively sparse or widely spaced, for 

example under some areas of forest canopy, kriging has been recommended as the best 

predictor of the three (Lloyd and Atkinson, 2002; Pfeifer and Mandlburger, 2009), 

consequently providing better computer visualisation. 

In order to establish the most accurate modelling procedure, the three preeminent 

interpolation techniques given above, along with standard linear interpolation, were tested by 

comparing modelled airborne LiDAR surfaces with reference terrain data. Airborne LiDAR 

surfaces for each interpolation technique were generated through the same filtered terrain 

points at Site 8 and evaluated against the terrestrial LiDAR terrain data. The terrestrial LiDAR 

data was chosen as reference terrain data as it provided as close a match to the true terrain 

surface as possible. Mean offset and standard deviation between surface and reference were 

calculated and these statistics were used to determine the most effective point modelling 

procedure. 

 

3.5.2 Accuracy, bias and terrain point density assessment 

 

Comprehensive accuracy and terrain point density assessment covered four areas: (1) standard 

assessment involving cross-tabulation of filtered LiDAR data against classified ground truth 

data (see section 1.3.6) for eight study sites; (2) within-site LiDAR terrain point clustering 

assessment; (3) assessment of the influence of slope on LiDAR terrain accuracy and (4) full 

study area assessment. The latter extends the results obtained at the eight test sites to the 

entire wood and the second and third are supplementary analyses, conducted to investigate 

issues with LiDAR terrain accuracy identified during preliminary experimentation with the 

Chopwell Wood data set, but barely reported in previous research. 
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3.5.2.1 Standard accuracy, bias and terrain point density assessment 

 

A comparison between the airborne LiDAR and in situ reference elevation data across all eight 

study sites helps to ascertain the relative success of airborne laser scanning as a viable 

technique for archaeological prospection over a variety of land covers. 

Airborne LiDAR terrain data, filtered with the optimum parameter set (established in section 

3.4.3), were tested for accuracy in elevation at each site by evaluation point-to-point against 

terrestrial LiDAR terrain reference data. After removing vegetation (using tested filtering 

parameters), terrestrial LiDAR data were assumed to represent the true terrain surface. The 

‘control report’ function in Terrascan was again utilised to calculate mean offset, standard 

deviation and RMSE between closest pairs of points in the x-y plane (figure 3.13 A). A surface-

to-surface assessment was also performed at each site after interpolation through respective 

airborne LiDAR and terrestrial LiDAR (reference) points with the chosen modelling procedure 

(see section 3.5.1). As processed LiDAR data are displayed as a digital terrain model prior to 

visual analysis, it was crucial to ascertain the difference between terrain point and surface 

accuracies. This involved calculating mean absolute offset (positive plus negative offset) in 

elevation between airborne LiDAR and reference surfaces (figure 3.13 B) using Arc GIS 

software. Absolute offset describes the mean difference between surfaces, irrespective of 

direction, rather than mean offset (often termed ‘signed’ offset, e.g. Hodgson et al., 2003) 

which describes net over- or under-estimation (calculated in the point-to-point assessment). 

Both mean offset and mean absolute offset are measures of bias (systematic error), while 

standard deviation is a measure of precision (random error) and RMSE measures the variability 

of the height measurement between LiDAR and reference. Published accuracy assessments 

offer one or more of these four statistical measures, so, in order to comprehensively evaluate 

the results from this study, all four measures were calculated. 

Filtered LiDAR terrain was evaluated quantitatively against cross-tabulated terrain reference 

data for the tree species beech, pine and fir. With a view to clarifying broader relationships 



72 
 

between the quality of airborne LiDAR sub-canopy terrain measurement and various attributes 

of the forest environment, the three LiDAR elevation accuracy statistics and spatial point 

density were compared with tree canopy variables, understory vegetation and 

roughness/gradient of the topography through linear regression analysis. 

 

 

 

Fig 3.13 (A) Point-to-point accuracy assessment, where X is the maximum tolerated horizontal 

distance between tested pairs of points and z is the offset in elevation between the points. (B) 

Surface-to-surface assessment, where z is the offset in elevation between the surfaces, with 

absolute offset represented by the hashed grey area. 

 

3.5.2.2 Terrain point clustering assessment 

 

It was noticed during early field visits, and later discussed at the preliminary stage of method 

planning, that several of the factors highlighted in previous research as influential to the 

passage and reflection of a laser pulse through the forest, i.e. canopy structure and understory 

vegetation, were characteristically regular and clustered. Stand-scale canopy alternates 

between dense and dispersed areas of foliage depending on the positions of individual trees, 

which are typically regularly spaced in managed forest, and understory vegetation appears 
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most dense at gaps between tree crowns where light penetrates to the forest floor. There is, 

of course, a significant random component to this pattern, but statistical autocorrelation and 

clustering analyses were undertaken to evaluate to what degree this affected the positions of 

terrain points in the filtered airborne LiDAR data.  

Moran’s I three-dimensional autocorrelation evaluates whether a pattern between points is 

clustered, dispersed or random based on XYZ co-ordinates. A null hypothesis was setup prior 

to undertaking the analysis that stated there was complete spatial randomness between 

points, i.e. that there was no pattern between LiDAR returns in space. The index is given by 

Griffith (1987) as: 

   
 

  

∑ ∑       
 
     

 
   

∑   
  

   

 

where zi is the deviation in elevation of feature i from its mean       ̅       is the spatial 

weight between feature i and j, n is equal to the total number of features and S0 is the 

aggregate of all the spatial weights:  

    ∑ ∑     

 

   

 

   
 

An index above 1 indicates increased clustering, near 0 a random distribution and below 1 

increased dispersion between points. To test the statistical significance of autocorrelation 

index results, p-value and Z-score values were also calculated. A p-value describes the 

probability that the observed spatial pattern between points was created by some random 

process and the Z-score is a measure of standard deviations. A subjective judgement must be 

made regarding the accepted degree of risk that the null hypothesis is falsely rejected, i.e. 

accepting a spatial pattern between points to a confidence level of 95, 99% etc.; but the higher 

confidence levels are associated with small p-values and very high or very low (negative ) Z-

scores (relating to the tails of the normal distribution through, in this case, LiDAR point 

elevations). Where autocorrelation analysis yields a small p-value and either a very high or a 

(3.1) 

(3.2) 
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very low (negative) Z score, it is extremely unlikely that the observed pattern is some version 

of the theoretical spatially random pattern represented by the null hypothesis. 

The Getis-Ord General G clustering analysis evaluates the degree of concentration between 

points in two-dimensional space. The index is given by Getis and Ord (1992) as:   

   
∑ ∑       
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where xi and xj are spatial attribute values for features i and j and wi,j is the spatial weight 

between them. The index value presents less information than the autocorrelation equivalent, 

but if the confidence (p-value) is small and the absolute value of the Z score is large enough 

that it falls outside of the desired confidence level, there is spatial clustering in the x-y plane. 

Both tests were conducted between airborne LiDAR returns within each of the eight test sites 

and compared to the following field data: (1) understory vegetation density, (2) the stem 

density of primary tree species, (3) mean canopy depth and (4) tree count. In this way, the 

original suggestions that regular vegetation structure might lead to spots of high laser 

penetration, and thus clustered terrain returns, were properly evaluated. 

 

3.5.2.3 Influence of terrain slope on accuracy 

 

It was necessary to attempt to establish whether terrain slope influenced the accuracy of 

airborne LiDAR terrain measurements. This was investigated by comparing the accuracy of a 

LiDAR point when the laser was assumed to illuminate a flat footprint on the ground and a 

footprint whose size was proportional to the terrain slope. 

In a modern sensor, the diameter of the laser footprint on the ground is typically > 20 cm 

(Mallet and Bretar, 2009) and depends primarily on the height of the aircraft and the angle of 

the scanner at any point in time. While the LiDAR sensor utilised in this study could locate up 

to four surfaces within the footprint; it could not discriminate between surfaces separated by 

less than 15 cm elevation (see section 1.2.3) and therefore could not resolve topography at a 

(3.3) 
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scale below the diameter of the laser footprint. Where topography within the footprint was 

complex, the LiDAR sensor would record only the energy peak of the returning pulse (Wehr 

and Lohr, 1999). It was necessary to establish whether within-footprint topography recorded 

by the sensor changed with terrain slope. 

The footprint assessment involved testing filtered airborne LiDAR terrain points against 

terrestrial LiDAR reference terrain points across the eight field test sites. Buffer zones were 

first created around each ALS return based on the average size of the laser footprint during 

helicopter flight. Obviously the size of the footprint would have varied throughout LiDAR data 

acquisition, but the information required to calculate the size of each footprint individually 

could not feasibly be collected. Instantaneous laser footprint diameter, ALinst is given by:   

 
       

 
           

 
 

where h is the flying height, γ is the laser beam divergence and θinst is the instantaneous scan 

angle, itself given by:   

          
 

 
  

where θ is the maximum scan angle (Wehr and Lohr, 1999). The maximum and minimum laser 

footprint size during flight was calculated using the range in aircraft altitude and maximum 

scan angle, obtained from the Network Mapping flight reports, and the beam divergence for 

the laser in the Optech ALTM 3100EA ranging system, taken from Mallet and Bretar (2009). 

Given the regularity of the scanning procedure and low deviation in aircraft altitude during 

data acquisition, average footprint size was calculated as the midrange size. Without the 

capacity to identify exact footprint shapes at ground level, the buffer zone around each LiDAR 

return (‘footprint centre’) was assumed circular. 

However, equation 3.4 is valid only under the assumption that the terrain surface is 

consistently flat, which is not always the case, especially at Chopwell Wood given the range in 

elevation across the study area. To be able to assess the influence of terrain slope on LiDAR 

point accuracy, a more complex version of equation 3.4, which includes terrain inclination as 

(3.4) 

(3.5) 



76 
 

an independent variable, was used to calculate a second version of each laser footprint at each 

field test site. 

Across track instantaneous laser footprint diameter, ALinst is given by:   
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where i is the inclination angle of the local planar terrain surface. At each LiDAR point, the 

footprint was calculated with: (1) a constant diameter based on average flying height and scan 

angle and (2) a diameter based also on the inclination of the local slope. Local terrain 

inclination was previously calculated by generating a low resolution slope map from the 

filtered airborne LiDAR data. The significant range in gradient across the eight test sites (see 

table 3.1) helped to determine whether terrain slope was a controlling factor on laser 

accuracy. 

The accuracy of each airborne LiDAR terrain point with respect to the detail of the true 

topography was calculated by evaluating the mean offset and standard deviation in elevation 

between all terrestrial LiDAR reference points within the boundary of the laser footprint and 

the elevation of the airborne LiDAR return. Mean offset and standard deviation were 

calculated for both constant diameter footprints and footprints with diameter proportional to 

the terrain slope, thereby emphasising the role of slope, if any, on LiDAR measurement 

accuracy. 

 

3.5.2.4 Full study area assessment 

 

With the intention of evaluating the viability of airborne laser scanning for sub-forest canopy 

terrain derivation, accuracy and terrain point density assessments were conducted across the 

entire study area. This involved assessing both LiDAR terrain point density and systematic & 

(3.6) 
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random error under each of Chopwell Wood’s nineteen dominant tree species (see Appendix 1 

for a list of species). The optimum filtering parameters, determined in section 3.4.3, were 

employed to classify the complete airborne LiDAR dataset into ‘terrain’ and ‘non-terrain’ 

categories, and subsequently terrain points were separated spatially according to forest 

boundaries. These boundaries were obtained from the Forestry Commission GIS (1998) and 

located single (or mixed) species ‘compartments’ (stands) within the forest.  

After isolating terrain returns under discrete areas of canopy, LiDAR terrain point density was 

calculated by compartment. Despite the airborne LiDAR system acquiring raw data at regular 

across track point spacing (see section 1.2.2), along track spacing, proportional to the speed of 

the aircraft, varied and accordingly, terrain point density had to be normalised by the point 

density of the original, raw data. Mean raw point density (points per m2) was first calculated 

for the full study area. The mean penetration rate (terrain point density divided by raw point 

density) for each compartment was then determined and normalised terrain point density for 

each compartment was calculated as penetration rate multiplied by the mean raw point 

density the full study area. Finally, mean terrain point density for each species was obtained by 

calculating the average across all compartments of the same species, weighting the 

contribution of a compartment to the mean based on its area. Thus, mean, normalised LiDAR 

terrain point density was determined for Corsican pine, Norway spruce, Japanese larch etc. 

(see Appendix 1). Mean terrain point density was also determined for five classes of similar 

species: (1) pine family minus fir, (2) fir, (3) cypress family, (4) beech, sycamore and ash 

families and (5) birch family (see Appendix 2 for details on classes), and for deciduous and 

coniferous forest. 

The quality of a digital terrain model is proportional to both the number of points contained 

within it and the accuracy of those points (Pfeifer and Mandlburger, 2009). Accuracy was 

estimated over the full study area by extrapolating information obtained at the eight test sites, 

i.e. at beech, pine and fir sites, in section 3.5.2.1, to all forest compartments. A universal 

assumption was made that these deciduous, pine and fir sites were symptomatic of equivalent 
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stands across the wood. A measure of ‘viability’ for archaeological prospection (i.e. for 

measuring sub-canopy terrain) at each forest compartment was determined by weighting 

terrain point density according to high/medium/low point accuracy (so that high point density 

with high point accuracy would generate the highest viability and vice versa). This measure 

provided an indication of areas of Chopwell Wood amenable to resurvey and of comparable 

areas at other locations that would be suitable for survey with airborne LiDAR. 

 

3.6 Visualisation and Analysis 
 

3.6.1 Vertical exaggeration for feature detection 

 

The first step in post-processing the digital terrain data involved exaggerating topography to 

highlight archaeological features against their surroundings. Exaggerating the DTM vertically in 

areas of interest was followed by generation of difference models against the local topography 

and slope models, based on the methods of Sittler (2004) and Crutchley (2008). 

Local relief models (LRMs), as suggested by Hesse (2010), were also generated where required 

by extracting low-relief features, covering a range of sizes typical of industrial and pre-

industrial archaeology (e.g. charcoal platforms, mining and quarrying pits and heaps etc.), from 

the DTM and eliminating as far as possible the small-scale (<1 m diameter) landscape forms 

from the data (see section 2.3). An LRM reflects less biased elevation information for small-

scale features relative to the landscape at large than is typical in a simple difference model 

(Hesse, 2010). Deriving a finished LRM is more complex than any of the other elevation 

manipulation techniques and comprises several processing steps: (1) application of a low pass 

filter (with a 3 x 3 kernel) over the DTM, (2) extraction of zero-metre contours from a 

difference map between the original and filtered DTM and (3) interpolation of these contours 

to a new DTM ‘purged’ of the small-scale features. However, the finished product can 

significantly enhance some of the most subtle topographic features. 
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3.5.2 Artificial illumination for feature detection 

 

Further to modifying a digital terrain model directly, the manner in which the model is viewed 

can also be varied by changing its environment. Visualisation depends on the position of an 

artificial light source over the model and subsequent topographic shading effects (see sections 

2.2 and 2.3). The light source is fully adjustable, both in terms of intensity and position; the 

latter varied by angle around the azimuth and altitude (hemispheric angle). This is the basis of 

the ‘hillshade’ model (figure 3.14) and was the second step in feature detection over the 

processed Chopwell terrain data after vertical exaggeration.  

Areas proving difficult to interpret following hillshade analysis from single light sources, due to 

excessive shadowing or feature alignment parallel to the source, were post-processed as false 

colour composite images of several illumination angles and azimuths, according to the method 

of Devereux et al. (2005) (see section 2.3). In areas of extreme complexity, composite images 

were generated by principal components analysis (PCA). As stated in section 2.3, the first three 

components of a PCA typically contain over 95% of the variability in the original dataset and 

Devereux et al. (2008) suggested that the third component of a PCA between 16 images 

demonstrates almost equal loading in all directions, aiding detection of the most subtle 

features. Devereux et al. (2008) also found that the third component displayed this same trait 

across a variety of sites. So PCA between 16 images was utilised in areas of complex 

topography, where feature detection using standard techniques was impractical, with the aim 

of identifying subtle, previously concealed archaeological features. 
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Figure 3.14 Hillshade technique. The light source over a DTM shades the backside of 

topographic features (grey hashed area). 
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Chapter 4. Results and Analysis 1: Airborne Laser Scanning Over 
a Forest Environment 
 

Results are separated into two chapters. Chapter Four covers objectives 3 and 4: constraining 

optimum LiDAR filtering parameters, selecting the most favourable modelling procedure and 

accuracy assessment. Chapter Five covers objectives 5 and 6: archaeological feature detection 

and validation.  

 

4.1 Airborne LiDAR Data 
 

Following quality control and outlier removal, the raw airborne LiDAR data were investigated 

for unresolved issues. The size of the data set (> 20 million points) was identified early on as 

problematic, given that the Terrascan software is capable of loading roughly only half of these 

and processing (i.e. running filtering routines on) even fewer (Terrascan Manual, 2010). So the 

data were separated into numerous smaller point cloud tiles of 250 x 250 m area. The Forestry 

Commission GIS ‘subcompartment’ database was imported into Terrascan to allow point 

clouds and individual forest compartments to be analysed when, for example, looking at one 

of the eight field test sites. 

Although outlier removal had already been performed, it was clear that some anomalous 

returns remained in the data set. All sub-ground outliers appeared to have been removed 

correctly, but a few, way above the ground surface, potentially presented unavoidable 

obstacles to the filtering procedure and had to be identified before continuing. Some of these 

outliers were clearly recognisable as high-voltage power lines (figure 4.1) or returns from low-

flying birds, but were sufficiently isolated from each other that they were not expected to 

cause problems. Outliers could only influence the filtering procedure if they were clustered to 

such an extent that the initial block minimum algorithm selected one for the starting TIN 

(Sithole, 2005). 
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Figure 4.1 Transect through raw airborne LiDAR points at Chopwell Wood, with ‘outlier’ 

returns from a high voltage power-line highlighted. Inset is a photograph at the same location. 
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4.2 Constraining Optimum LiDAR Terrain Filtering Parameters 
 

Site 8 provided an ideal location to evaluate the effect of varying terrain filtering parameters 

over a range of topography and different types of archaeological feature under dense 

overlying conifer plantation, typical of many European forests. The locations of the ground 

control points (GCPs) recorded with the total station and GPS equipment are illustrated in 

figure 4.2 B. GCPs were evenly distributed and split between terrain and man-made structures 

(note the corresponding feature outlines in figure 4.2 A and B). 

 

 

 

 

Figure 4.2 (A) Field map of Site 8 showing scan locations and archaeological features. (B) In situ 

reference data (GCPs) at Site 8, where: black dot = control point over terrain, red dot = 

terrestrial LiDAR scan location, cross = control point over archaeological feature and dashed 

grey line = outline of archaeological feature (corresponding with figure 4.2 A). 
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Parameter Description and Derivation TLS Filter  ALS Filter  

Maximum 

Terrain 

Angle 

The maximum tolerated terrain angle during filtering - 

designed to prevent artificial terrain gradient. 

Determined from a rough terrain model through GCPs 

(i.e. true terrain surface). 

50 

degrees 

50 

degrees 

Maximum 

Building 

Size 

The maximum distance between points used as initial 

ground points in the filter. Determined from the 

maximum distance between pre-filtered points. 

5 m 12 m 

Maximum 

Triangle 

Size 

The largest accepted horizontal distance between 

filtered point and control point pairs during parameter 

testing.  Determined from pre-measured micro-

topography. 

2 m 2 m 

Z 

Tolerance 

The largest accepted vertical distance between filtered 

point and control point pairs during parameter testing, 

so that small triangles do not exceed the max slope. 

Determined from pre-measured micro-topography. 

0.15 m 0.15 m 

Maximum 

Slope 

The maximum slope between filtered point and control 

point pairs during parameter testing.  Determined from 

a rough terrain model through GCPs . 

45 

degrees 

45 

degrees 

 

Table 4.1 Parameters kept constant in the progressive densification filtering and testing 

procedures. 

 

Two of the parameters required for the progressive densification filtering procedure, the 

iteration angle and distance, were systematically changed (figure 4.3) while maximum terrain 

angle, building size and triangle size (table 4.1) were kept constant. The iteration angle was 

examined over a range of 2 to 5° and the iteration distance over a range of 0.01 to 0.1 m. 

Following registration of the terrestrial LiDAR (TLS) at Site 8, optimum iteration angle and 

distance for filtering terrain from TLS data were selected by comparing filtered points against 

GCPs (table 4.2). Comparisons were based on three measures of accuracy: (1) mean offset, 

which describes the systematic over- or under-estimation (bias) of LiDAR terrain with respect 

to reference data; (2) standard deviation, which describes the variability (precision) of LiDAR 

terrain with respect to reference and (3) RMSE, which describes the variability of the bias. The 
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raw TLS training data numbered 194,103 points and the final column of table 4.2 gives the 

percentage of these points accepted as terrain after each iteration. The choice of optimum 

parameters reflects the need to balance between obtaining filtered points as close as possible 

to the GCPs and accepting an adequate number of points (i.e. not severely reducing resolution 

for a small gain in accuracy). The optimum filtering parameters are an iteration angle of 3.2 

degrees and a distance of 0.05 metres (see dashed grey lines in figure 4.3). 

 

Iteration 

ID 

Classification 

Thresholds 

Accuracy Statistics for all 

GCPs (m) 

Accuracy Statistics for 

Feature Points Only (m) 

Accepted 

Points (%)  

 Angle 

(deg) 

Dist 

(m) 

Mean 

Offset 

Std 

Dev 

RMSE Mean 

Offset 

Std 

Dev 

RMSE  

1 2 0.05 0.032 0.170 0.172 -0.095 0.186 0.206 3.57 

2 4 0.05 0.044 0.178 0.182 -0.095 0.196 0.215 7.30 

3 6 0.05 0.061 0.207 0.215 -0.045 0.285 0.285 10.42 

4 4 0.02 0.065 0.194 0.202 -0.121 0.261 0.276 3.92 

5 4 0.04 0.048 0.180 0.185 -0.095 0.197 0.215 6.97 

6 4 0.06 0.035 0.205 0.207 -0.105 0.244 0.262 7.72 

Optimum 3.2 0.05 0.047 0.170 0.176 -0.094 0.189 0.208 5.79 

 

Table 4.2 A subset of the terrestrial LiDAR filtering optimisation with iterations at varying angle 

and distance parameters. 

 

Figure 4.3 Change in accuracy statistics between terrestrial LiDAR terrain points and the full 

GCP set with varying filter parameters. Full line = standard deviation and dashed = mean 

offset. 
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Figure 4.4 Transects A, B and C through the training data at Site 8. Red point = GCP within 1 m 

either side of the transect, full line = interpolated surface through TLS points filtered with 

optimum parameters, dotted line = surface after loose filtering and alternate line = surface 

after tight filtering. 

 

All iterations in table 4.2 yield terrain points with mean offset approximately 5 cm higher than 

the true terrain (full GCP set). This is expected, since laser pulses will frequently intercept low 

vegetation and dead ‘brash’ material, leading to points immediately above the true terrain 

surface, and if the filtering routine accepts a sufficient number of these points as terrain, the 

LiDAR terrain overestimates true elevation. The archaeological features at Site 8, for example 

the building rubble and breaks of slope at the channel sides (see figure 3.8), are 

characteristically ‘positive’ with respect to the local topography, i.e. convex upwards and 

angular, rather than concave. The filtered LiDAR terrain is anticipated to underestimate the 

height of these features because the filtering tends to smooth out positive, angular 

discontinuities. A rectilinear pile of building rubble is ‘smoothed’ by 10 to 20 cm in the filtered 

LiDAR (at (i) in transect A in figure 4.4), but alternatively the depth of the man-made channel is 

underestimated by 50 cm (at (ii) in transect B). Although it could be argued that filtering with a 

‘looser’ parameter set, i.e. using parameters that allow more points to be classified as terrain, 

can help to fully retain some of these features (as at (i) and (iii) in figure 4.4), other features 

are just as easily obscured by non-terrain points, e.g. those from low vegetation (as at (ii) in 
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figure 4.4) and missed as Type II filtering errors. The issue with using a ‘tighter’ parameter set 

(figure 4.4), i.e. using parameters that allow fewer points to be classified as terrain, is that the 

terrain point density is reduced. 

However, 5 cm systematic error (mean offset) between terrestrial LiDAR and true terrain is low 

and the random error (standard deviation) of only 17 cm (table 4.2), in addition to visual 

analysis of the transects in figure 4.4, suggests that the terrestrial LiDAR terrain points filtered 

with optimum parameters describe the true terrain surface very closely. After filtering, over 

11,200 LiDAR terrain points remain and are used as control points for calculating the optimum 

airborne LiDAR filtering parameters. This number of control points corresponds to a density on 

the ground of > 3 points per m2, which provides a sufficiently detailed representation of the 

topography to validate the airborne LiDAR filtering routine. 

While the procedure for classifying the airborne LiDAR was identical to that utilised in 

classifying the terrestrial LiDAR, one of the control parameters had to be altered. The 

maximum building size parameter limits the size of the moving widow in the initial block 

minimum routine (table 4.1) and while 5 m was satisfactory when filtering the terrestrial 

LiDAR, given the low distances between points, it had to be raised to 12 m when filtering the 

airborne LiDAR. This was obviously not due to buildings within Site 8 (the largest building in a 

point cloud characteristically defines the largest possible distance between terrain points), but 

to the lower resolution of the airborne LiDAR and the possibility that adjacent pulses may not 

penetrate the canopy within 5 metres. The value of 12 m was ascertained through preliminary 

investigation of all points penetrating the high canopy at Site 8. Additionally, ground control 

points over different surfaces, i.e. archaeological features or terrain, could not be 

differentiated in the airborne LiDAR optimisation like they were in the terrestrial LiDAR 

optimisation, so airborne LiDAR filtering parameters could only be validated against the full 

GCP set. 

 Following registration of the airborne LiDAR at Site 8, the optimum parameters for filtering 

terrain from ALS data were acquired by comparing filtered points against the 11,200 (TLS) 
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control points (reference data). Accuracy statistics for a number of example iterations and the 

optimum parameters are given in table 4.3, with some subjective judgement again required to 

ensure a balance between tight validation of ALS points to the control and accepting an 

adequate number of terrain points. The iteration angle was examined over a range of 7 to 13° 

and the iteration distance over a range of 0.1 to 0.5 m. The changes in mean offset, standard 

deviation and RMSE with varying iteration angle and distance parameters are illustrated in 

figure 4.5. Mean offset and standard deviation values are low for the optimum parameters of 

an 11.2 degree angle and 0.26 metre distance (see dashed grey lines in figure 4.5), with a 

relatively large number of terrain points accepted. 

 

Iteration 

ID 

Classification 

Thresholds 

Accuracy Statistics for all GCPs (m) Proportion of Points 

Accepted (%) 

 Angle 

(deg) 

Distance 

(m) 

Mean 

Offset 

Std Dev RMSE  

1 9 0.5 0.144 0.204 0.249 2.61 

2 11 0.5 0.149 0.197 0.247 2.98 

3 13 0.5 0.157 0.206 0.259 3.33 

4 11 0.1 0.126 0.265 0.293 1.47 

5 11 0.2 0.139 0.204 0.246 2.47 

6 11 0.3 0.146 0.195 0.243 2.87 

Optimum 11.2 0.26 0.144 0.195 0.242 2.63 

 

Table 4.3 A subset of the airborne LiDAR filtering optimisation with iterations at varying angle 

and distance parameters. 
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Figure 4.5 Change in accuracy statistics between airborne LiDAR terrain points and the full GCP 

set with varying filter parameters. Full line = standard deviation and dashed = mean offset. 
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Figure 4.6 Transects B and D through the training data at Site 8. Bold line = interpolated 

surface through TLS points filtered with optimum terrestrial parameters (filtering stage 1), light 

grey point = ALS point from loose airborne filtering (filtering stage 2) within 1 m either side of 

the transect, grey point = ALS point from optimum filtering, black point = ALS points from tight 

filtering, red line = interpolated surface through ALS points filtered with optimum airborne 

parameters, dotted line = interpolated surface after loose filtering and alternate line = 

interpolated surface after tight filtering. 
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The airborne LiDAR systematically overestimates the true terrain (reference data) by 14 cm, 

with random error (standard deviation) of 20 cm (table 4.3). Systematic error is larger than the 

5 cm observed at the first filtering stage between terrestrial LiDAR and GCPs, and can be 

explained by: (1) low vegetation having greater influence on the airborne LiDAR, owing to a 

higher distance between ALS terrain points and subsequently greater likelihood of Type II 

errors during filtering, and the larger airborne laser footprint occasionally measuring points as 

a mixture of terrain and scrub reflection (Baltsavias, 1999b; Doneus et al., 2008); and (2) the 

Optech ALTM 3100EA laser having inferior vertical accuracy at long-range compared to the 

terrestrial Trimble GS200: 5 to 35 cm rather than 0.1 cm (Mallet and Bretar, 2009; Optech 

ALTM Gemini Datasheet, 2004; Trimble GS Series Datasheet, 2005). Essentially, the 14 cm bias 

(and ±20 cm precision) could be explained by either, but is likely a combination of the two and 

cannot easily be unravelled. A lower proportion of terrain points accepted from the ALS than 

the TLS, 2.6 % as opposed to 5.8 %, is also expected, as a larger fraction of the airborne point 

cloud will include returns from the forest canopy due to scanning from a position above the 

wood (airborne) rather than from the ground (terrestrial). What is important is that a relatively 

large number of points are accepted (table 4.3). 

The transects in figure 4.6 highlight some of the areas where airborne LiDAR points are, in 

general, higher than the true terrain surface, or don’t absolutely locate the surface. At (iii) in 

transect D, many ALS points lie 10 to 20 cm above the true terrain and the optimum ALS 

surface (red line) runs through these points. The variability in elevation of points at this 

position suggests local low vegetation, and thick enough shrub/scrub that the filter with 

optimum parameters accepts these points as terrain, i.e. the algorithm cannot identify a clear 

number or distribution of points on the true terrain surface below. The full width of the man-

made channel is also not successfully resolved at (ii) in transect B (figure 4.6). However, full 

channel depth is measured correctly and as a result, the channel can clearly be detected within 

the topography. It is significant that this feature can be identified, given that the site is located 
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in a particularly difficult environment for laser canopy penetration, and this offers promise for 

detecting similar features elsewhere. 

Filtering LiDAR data with less severe (i.e. loose) parameters has already been mentioned as a 

possible method for retaining topographic features, but with the caveat of increasing Type II 

errors, which lead to unrealistic deviations (artefacts) in modelled terrain. These deviations are 

observed frequently at Site 8 when the airborne LiDAR is filtered with loose parameters and 

one instance is demonstrated at (i) in transect B (figure 4.6), with LiDAR terrain overestimating 

the reference data by up to 50 cm. At the same location, the LiDAR terrain filtered using 

optimum parameters is very close to the true terrain surface. 

The final noticeable concern with the filtering procedure is the tendency of the progressive 

densification algorithm to occasionally remove convex slopes from the topography, such as the 

8 m length slope at (iv) in transect D (figure 4.6). This lack of slope preservation has been 

observed in previous research (Huising and Gomez Pereira, 1998), but it also apparent that 

almost all algorithms suffer from the same problem (Sithole and Vosselman, 2004) and little 

research has been directed towards identifying its cause. 

In summary, a two-stage filter parameter identification procedure has been conducted at Test 

Site 8 in Chopwell Wood, with (1) filtered terrestrial LiDAR terrain points validated against GPS 

and total station ground control (reference data) and (2) filtered airborne LiDAR terrain points 

validated against terrestrial LiDAR terrain points. Optimum parameters for filtering terrain with 

the progressive densification algorithm of Axelsson (1999; 2000) over complex forest canopy 

and sub-canopy topographic features are established as an iteration angle of 11.2 degrees and 

an iteration distance of 0.26 metres. 
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4.3 Evaluation of Interpolation Techniques for Modelling LiDAR Terrain 
Data 
 

Prior to testing the accuracy of the filtered airborne LiDAR terrain data, candidate methods for 

deriving digital terrain models (DTMs) through terrain points were evaluated at Site 8. The 

following techniques were advocated in previous research: (1) raster-array cell-minimum with 

linear interpolation, (2) inverse distance weighted (IDW) interpolation, (3) kriging interpolation 

and (4) spline interpolation. All methods calculate the elevation of cells in a regular, 

rectangular grid and in this experiment, a cell size of 0.25 m was selected based on the point 

density of the filtered airborne LiDAR terrain data at Site 8 and pre-requisites for detecting 

topographic features of sub-metre dimensions. It was decided that the Triangular Integrated 

Network (TIN) technique would not be tested, given that a lack of smoothing between LiDAR 

points has regularly been observed in previous research to conceal otherwise obvious features 

in the terrain (see section 3.5.1) (Crutchley, 2008). 

Each interpolation procedure required some user input in setting operational parameters 

(constants) and these were determined through preliminary observation of the LiDAR data, 

recommendations from secondary research and/or inductive reasoning. All functions searched 

for the closest 12 LiDAR points to a particular cell and the value of the interpolation was based 

on elevation as a weighted mean of these returns. This was preferred to a search radius based 

on a threshold distance, to reduce bias at cells where few accepted returns could be identified 

– a problem limited when interpolation is consistently a function of a pre-determined number 

of points. The kriging algorithm used a linear variogram with a sill (Oliver, 1990) and the spline, 

a stiff-interpolant tension method (Franke, 1982), to prohibit the generation of artificial 

features in the topography (artefacts). Both methods forced the surface closer to terrain 

points, thereby providing a realistic representation of the terrain, more faithful to the original 

data. 

The reference data employed to test and validate the interpolation techniques were a TIN 

between terrestrial LiDAR points (i.e. as true a representation of the actual terrain surface as 
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possible) and the GPS/total station GCPs over archaeological features at Site 8 (table 4.4). An 

interpolated surface with lower offset and standard deviation to reference data was 

considered higher quality, i.e. of greater value to visualising terrain and detecting 

archaeological features. It is apparent that the surface interpolated through linear cell-

minimum (method (1)) offers the lowest quality terrain model. Surfaces generated by methods 

(2) – (4) are compared visually with the reference surface along a 30 m transect through the 

site in figure 4.7. Table 4.4 indicates that kriging offers the closest representation of the true 

terrain surface, with standard deviation of only 32 and 43 cm to the terrestrial LiDAR TIN and 

archaeological feature GCPs, respectively. Figure 4.7 illustrates that the kriging technique 

slightly overestimates the concavity of the slope and the size of the slope crest along the 

transect; the tension spline technique appears to suffer from the same problem and the 

inverse distance weighted interpolation causes ‘stepping’, due to a problem inherent to the 

linear distance weighting concept. 

 

  Surface to Terrestrial LiDAR TIN Surface to Archaeological 
Features 

  Mean Offset 
(m) 

Standard 
Deviation (m) 

Mean Offset 
(m) 

Standard 
Deviation (m) 

1 Cell-Min Linear 
Interpolation  

0.385 0.352 -0.105 0.519 

2 Inverse Distance 
Weighted 

0.353 0.372 0.069 0.450 

3 Krige with Linear 
Variogram 

0.333 0.324 0.098 0.426 

4 Tension  
Spline 

0.361 0.346 0.082 0.471 

 

Table 4.4 Mean offset and the standard deviation of offset between airborne LiDAR digital 

terrain surfaces, interpolated through the best-fitting iterations of the 4 different techniques 

and (1) a TIN of terrestrial LiDAR terrain points and (2) GCPs over archaeological features. 

 

Based on this evaluation and on recommendations from published research, the kriging 

interpolation technique with linear variogram is selected as the most favourable method for 

modelling digital terrain from the airborne LiDAR terrain data. 
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Figure 4.7 Vertically exaggerated transect of terrain surfaces interpolated through (1) inverse 

distance weighting, (2) kriging with linear variogram and (3) tension spline (see legend). The 

bold, black line illustrates the position of a TIN through reference terrain data. The transect 

covers 30 m from southeast to northwest through Site 8. 
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4.4 Accuracy and Terrain Point Density Assessment 
 

4.4.1 Standard accuracy and terrain point density assessment 

 

Following the identification of optimum filtering parameters for processing airborne LiDAR 

data with the progressive densification algorithm at Chopwell Wood, accuracy and terrain 

point density were assessed by comparing filtered LiDAR with cross-tabulated terrain 

reference data. Reference data were acquired in the field at eight, 0.12 ha test sites which 

comprise two sites in Corsican pine, two in Douglas fir and four in beech (see table 3.1 and 

figure 4.5 in section 3.2.1). Terrestrial LiDAR were registered and terrain was filtered using the 

optimum TLS parameters determined in section 4.2, with the terrain point density of reference 

data at least 5 points per m2. It is unprecedented in research published to date to have such a 

high quality reference data set for assessing sub-forest canopy LiDAR terrain data. 

Prior to quantitative assessment, transects through the test sites were studied to compare 

airborne LiDAR and reference data qualitatively. Summer photographs and transects through 

Sites 1, 3, 6 and 7 are illustrated in figures 4.8 to 4.11. These sites offered variety of tree 

species, terrain slope and roughness, and density of understorey vegetation. Photograph 

viewpoints and transect locations are illustrated on the circular (0.12 ha) site outline map, with 

each transect displaying a profile through the reference data (full line) and all airborne LiDAR 

points within a ±1 m (lateral distance) buffer of the transect (black points). Polynomial trends 

are also presented through LiDAR points at each transect to highlight over- or under-

estimation with respect to the true terrain surface. 

The low vegetation at Site 1, a mixture of bracken and fern, is considerably denser and 

consistently higher than at any other site (Photo ID1 and 2, figure 4.8), which appears to have 

a strong impact on the nature of the airborne LiDAR terrain points (transect 1A and 1B, figure 

4.8). Elevation differences between adjacent points are erratic and points are typically above 

the true terrain – in places over 20 cm higher ((i) and (iv) in figure 4.8) (note the different 
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scales of the y-axes). The domed and shaped structure of the LiDAR ‘terrain’ at (iii) (figure 4.8), 

along with the variability in point elevations and approximate 50 cm overestimation compared 

to the reference data, suggests that laser returns over a particularly large and compact (single, 

isolated) plant (similar to those highlighted by the dashed white lines in photograph ID1 in 

figure 4.8), were mistakenly accepted in the terrain class during filtering. It is possible that the 

tree canopy is responsible for these effects; but while LiDAR terrain points at Site 2 (also pine) 

exhibit comparable, erratic overestimation relative to reference elevation, this particular 

scenario cannot be identified at any other site, including the other coniferous (fir) sites. 

Summer tree canopy cover appeared denser in the beech at Site 3 than the pine at Sites 1 and 

2, with significantly less dense understorey vegetation likely a result of lower sunlight 

penetration (photos in figure 4.9). A complex LiDAR scrub/terrain mixture is not observed, but 

surface vegetation, noticeable in Photo ID2 (figure 4.9), causes the laser scanner to typically 

overestimate the elevation of the true terrain. This bias is never greater than 30 cm or so and 

the LiDAR generally appears to correspond well with the reference data, although the LiDAR 

points do not follow a 30 to 40 cm deep natural drainage channel in the topography at (i) in 

figure 4.9. 

Airborne LiDAR terrain points also appear to correspond well with reference data along 

transects 6A and 6B (figure 4.10) at another beech stand in a different area of the forest, with 

points characteristically < 10 cm from the true terrain elevation. In spite of this, some 

systematic under-estimation by the LiDAR of the true terrain surface is evident at (i) in transect 

6A (figure 4.10). Possible explanations for this include: (1) systematic error in the LiDAR sensor, 

(2) a cluster of laser scattering (multi-path) errors caused by the structure of broadleaves (Ni-

meister et al., 2001) or (3) mis-registration of the reference data. 

Alternation between 10 to 20 cm over- and under-estimation compared to the reference data 

is observed under the Douglas fir at Site 7 (transect 7B, figure 4.11). This site is located on a 

steep, convex slope and a phenomenon associated with laser ranging over steep topography 

termed ‘time-walk’ (see section 1.2.3) has previously been recognised to disrupt terrain 
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filtering algorithms in this way (Baltsavias, 1999a; Huising and Gomes Pereira, 1998). However, 

the three scenarios mentioned in the previous paragraph are also possible explanations for the 

minor LiDAR deviations with respect to the true terrain elevation. There is little understorey 

vegetation at this site (photos in figure 4.11), so time-walk, error in the sensor and/or mis-

registration of the reference data are all plausible. In any case, deviation from the true terrain 

surface appears very low at all sites excluding Sites 1 and 2, under the thinned pine. 
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Figure 4.8 Site 1. Clockwise from top left: site location and outline map of site, site 

photographs, transects 1A and 1B through the site where: full line = surface through reference 

data, black point = airborne LiDAR and dashed line = trend through airborne LiDAR. 
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Figure 4.9 Site 3. Clockwise from top left: site location and outline map of site, site 

photographs, transects 3A and 3B through the site where: full line = surface through reference 

data, black point = airborne LiDAR and dashed line = trend through airborne LiDAR. 
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Figure 4.10 Site 6. Clockwise from top left: site location and outline map of site, site 

photographs, transects 6A and 6B through the site where: full line = surface through reference 

data, black point = airborne LiDAR and dashed line = trend through airborne LiDAR. 
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Figure 4.11 Site 7. Clockwise from top left: site location and outline map of site, site 

photographs, transects 7A and 7B through the site where: full line = surface through reference 

data, black point = airborne LiDAR and dashed line = trend through airborne LiDAR. 
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Quantitative assessment of airborne LiDAR terrain point accuracy is undertaken by evaluating 

airborne LiDAR terrain points and modelled surfaces against respective reference terrain 

points and surfaces. Reference data comprise filtered terrestrial LiDAR point clouds, acquired 

at each of the eight test sites at Chopwell Wood. The surface-to-surface assessment involves 

comparison of 0.25 m spatial resolution LiDAR and reference terrain models, both interpolated 

by the kriging technique (see section 4.3). This resolution is based on the minimum airborne 

LiDAR terrain point density, which is 3 points per m2 under the Douglas fir at Site 8. Point-to-

point and surface-to-surface assessments provide four significant statistical measures:  (1) 

mean offset and (2) mean absolute offset – measures of bias, (3) standard deviation of offset – 

a measure of precision and (4) root mean square error (RMSE) – a measure of the variability of 

the height estimate (see section 3.5.2.1 for more information). Measures (1), (3) and (4) 

describe systematic error in the LiDAR terrain data with respect to the true terrain elevation, 

while (2) describes random error. 

The results of the site-by-site statistical assessment are given in table 4.5. Mean offset and 

absolute offset are highest at Site 2 (54 and 46 cm, respectively) and lowest at Site 6 (-3 and 11 

cm, respectively), while standard deviation is highest at Site 5 (27 cm) and lowest at Sites 3 (12 

cm) and 6 (10 cm). Maximum absolute offset, which is a crude indication of the largest non-

terrain artefact (i.e. a product of filtering and/or sensor errors) that could incorrectly be 

interpreted as an archaeological feature, is recorded as 141 cm at Site 7. LiDAR terrain point 

density is highest at Sites 1 and 2 (43 and 39 points per m2, respectively) and lowest at Sites 6 

and 8 (7 and 3 points per m2). Sites 1 and 2, in the thinned Corsican pine, offer approximately 

40 ‘terrain’ returns per m2, indicating canopy laser penetration of up to almost 100 %.  
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Site Airborne LiDAR Accuracy Statistics (cm) No. of 

LiDAR 

Points in 

Site 

LiDAR Point 

Density 

(points per 

m2) 

 Mean 

Offset (1) 

Standard 

Deviation (2) 

RMSE (3) Mean 

Absolute 

Offset (4) 

1 21 20 29 27 5440 43 

2 54 21 57 46 4948 39 

3 9 12 15 12 1294 10 

4 39 18 43 30 1020 8 

5 6 27 28 41 1338 11 

6 -3 10 11 13 901 7 

7 3 16 16 25 2411 19 

8 15 15 21 21 401 3 

 

Table 4.5 Statistical assessment between airborne LiDAR and reference terrain data at the 

eight test sites. Individual statistical measures are referred to in the text. Positive standard 

offset indicates that LiDAR over-estimating the elevation relative to the reference terrain data. 

Measures (1) to (3) are determined through point-to-point assessment, while (4) is determined 

though surface-to-surface assessment. 

 

Species Airborne LiDAR Accuracy Statistics (cm) No. LiDAR/ 

Reference 

Point Pairs 

Compared 

LiDAR Point 

Density 

(points per m2) 

Standard 

Offset 

Standard 

Deviation 

RMSE Mean 

Absolute 

Offset 

Pine 38 21 43 37 10,388 41 

Douglas fir 9 16 19 23 2,812 11 

Beech 13 17 24 24 4,553 9 

       

Coniferous 23 18 31 30 13,200 26 

Deciduous 13 17 24 24 4,553 9 

 

Table 4.6 Statistical assessment between airborne LiDAR and reference terrain data, cross-

tabulated by canopy species. Refer to the caption of table 4.5 for more information on 

statistical measures. 
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LiDAR accuracy statistics for the eight test sites are cross-tabulated by canopy species in table 

4.6. The pine yields particularly poor results, for reasons already mentioned. However, for 

Douglas fir, the LiDAR over-estimates true terrain elevation by only 9 cm, four times less than 

the pine, and is 5 cm more precise. As suggested in the qualitative assessment, this can be at 

least partly attributed to a lack of understorey vegetation cover (photographs in figure 4.11). 

Under the beech canopy, LiDAR terrain accuracy is similar to the fir canopy, and when 

comparing deciduous against coniferous sites, the deciduous (beech) sub-canopy terrain offers 

almost exactly the same precision as the coniferous (pine and fir) terrain, but over-estimates 

the true terrain by a significantly lower quantity (13 cm as opposed to 23 cm). The pine is 

considerably less amenable to summer LiDAR terrain survey than either the fir or beech, but 

this cross-section of tree species and other site attributes, e.g. understorey vegetation, is 

representative of the entire wood and, as such, deciduous forest appears, in general, more 

amenable to LiDAR terrain survey than coniferous forest. 

With a view to assessing potential cause and effect relationships between LiDAR accuracy 

statistics, LiDAR terrain point density and various site attributes, the results from table 4.5 are 

evaluated against information on the tree canopy, understorey vegetation and topography. All 

site attribute data were acquired in the field, apart from the data for topographic roughness 

and gradient and stand planting year, which were obtained from the Forestry Commission UK 

GIS (1998). The entire data set, referenced by site, is presented in table 4.7. Multiple 

regression analysis is performed among variables to ascertain statistically significant 

relationships and a number of the most interesting relationships are investigated further. The 

Pearson’s Product Moment Correlation Coefficient (PMCC) r is employed to evaluate the 

strength of linear least squares relationships between variables, and provides values between  

-1 and 1 depending on the direction (positive equals positive direction) and strength (one 

equals perfect correlation, zero equals no correlation) of a relationship. The correlation matrix 

between variables is presented in table 4.8. 
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Site 1 2 3 4 5 6 7 8 Mean 

LiDAR 

Accuracy 

Statistics (cm) 

Std Offset  21 54 9 39 6 -3 3 15 18 

Std Dev 20 21 12 18 27 10 16 15 18 

RMSE 29 57 15 43 28 11 16 21 27 

Abslt Offset 27 46 12 30 41 13 25 21 27 

LiDAR Point Density (pm
-2

) 43 39 10 8 11 7 19 3 18 

Primary Tree Species CP CP BE BE BE BE DF DF - 

Dominant Secondary Tree 

Species 

SY - - - HO/ 

OK 

MA/ 

EL 

BI BE/ 

BI 

- 

Planting Year 1947 1947 1934 1934 1923 1923 1987 1991 - 

Tree 

Survey 

Stats 

(0.12ha 

plot) 

Tree Count 45 36 61 36 35 55 175 252 87 

Primary vs. 

Secondary (%) 

58 78 95 100 80 45 98 85 80 

Conifer vs. 

Deciduous (%) 

58 78 0 0 3 5 98 85 41 

Mean Stem Height 

(m) 

17.5 20.0 22.0 19.0 14.0 16.5 18.5 11.5 17.5 

Mean Canopy 

Depth (m) 

9.5 10.0 16.5 13.0 10.5 11.0 7.0 5.5 10.5 

Mean DBH (m) 0.31 0.35 0.32 0.30 0.31 0.27 0.24 0.14 0.28 

Mean DBH of 

Primary Species (m) 

0.44 0.41 0.32 0.30 0.34 0.40 0.24 0.14 0.32 

Stem Density (basal 

area per ha) 

0.38 0.33 0.41 0.23 0.29 0.32 0.73 0.36 0.38 

Stem Density of 

Primary Species 

(basal area per ha) 

0.35 0.32 0.40 0.23 0.27 0.27 0.73 0.30 0.36 

PMCC Stem Height vs. DBH 0.95 0.89 0.59 0.84 0.93 0.87 0.79 0.53 0.80 

Forestry 

Commission 

Terrain 

Ratings (1-5) 

Roughness 2 2 2 2 2 2 2 3 2 

Gradient 1 1 2 2 1 1 3 5 2 

Understorey 

Vegetation 

Density (%) 95 95 35 60 40 25 0 5 45 

Mean Height 

(m) 

1.2 1.1 1.0 1.0 0.9 0.7 0 0.3 0.8 

Volume (m
3
) 1400 1200 400 800 400 200 0 20 400 

 

Table 4.7 Airborne LiDAR and site attribute information for the eight test sites. Tree species 

codes are: CP = Corsican pine, BE = Beech and DF = Douglas fir. 
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 LiDAR Tree Topo Low 

Veg 

Vol Off Std RMS PD Age Cou SH CD DBH SD Rou Gra 

LiDAR Offset - - - - - - - - - - - - - 

Std Dev 0.36 

 

- - - - - - - - - - - - 

RMSE 0.96 0.58 

 

- - - - - - - - - - - 

Point 

Density 

0.50 0.39 0.52 - - - - - - - - - - 

Tree Age 0.03 0.15 0.14 -0.02 - - - - - - - - - 

Count -0.30 -0.31 -0.41 -0.35 - - - - - - - - - 

Stem 

Height 

0.32 -0.22 0.23 0.36 0.31 - - - - - - - - 

Canopy 

Depth 

0.07 -0.17 0.03 -0.12 0.76 - - - - - - - - 

DBH 0.40 

0.22 

0.36 

0.21 

0.48 

0.31 

0.52 

0.64 

0.74 

0.72 

- - - - - - - - 

Stem 

Density 

-0.39 

-0.32 

-0.23 

-0.17 

-0.43    

-0.35 

0.13 

0.16 

-0.64 

-0.59 

- - - - - - - - 

Topo Roughness -0.06 -0.18 -0.17 -0.38 - - - - - - - - - 

Gradient -0.16 -0.32 -0.30 -0.48 - - - - - - - - - 

Summer 

Understorey 

Volume 

0.71 0.44 -0.18 0.81 0.36 -0.65 0.40 0.24 0.69 -0.39 - - - 

 

Table 4.8 Correlation matrix of PMCC (r) values between LiDAR accuracy statistics, LiDAR point 

density and test site attributes. Highlighted in red are correlation coefficients above 0.4, 

indicating a strong relationship. When there clearly cannot be a relationship between two 

variables, e.g. tree age and topographic roughness, correlation is not performed. Two 

coefficients are given for DBH and stem density: (1) for the entire plot, on the top row, and (2) 

only primary species, on the bottom row. Abbreviations are: Off = mean offset, Std = standard 

deviation, RMS = root mean square error, PD = point density, Cou = tree count, SH = stem 

height, CD = canopy depth, DBH = diameter at breast height, SD = stem density, Rou = terrain 

roughness and Gra = terrain gradient. 
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Caution must be used when attempting to interpret these relationships, because: (1) the 

independent and dependent variables are not identified and, as such, cause and effect is only 

recognised through logical reasoning; (2) a strong relationship may arise indirectly if many 

variables are dependent, i.e. one affects another which in turn affects another so the first and 

last correlate, and (3) each least squares regression considers only eight values (eight test 

sites). The latter argument is reasonably weak, given that each value is a product of a data set 

rigorously sampled over a large forest plot. For example, the mean DBH value at Site 8 is 

calculated from 252 individual trees (table 4.7). 

It has been suggested that tree structure is highly influential over the rate of laser pulse 

penetration through forest canopy and accordingly the LiDAR terrain point density (Hodgson et 

al., 2005; Raber et al., 2007). In this study, tree structural properties are estimated by 

assuming allometric association between forest variables, i.e. that stem diameter, stem height 

and canopy depth are proxies for canopy density and diameter (Zianis, 2005). Some criteria for 

the existence of such a relationship between stem height and DBH are given in table 4.7 at 

with an average PMCC r of 0.8 across all plots. 

Least squares regression analyses between LiDAR terrain point density and four forest 

structure variables (stem density, stem density of primary species only, mean stem height and 

mean canopy depth) are illustrated in figure 4.12. Point density is positively related to tree 

stem diameter (DBH) (table 4.8) with a high r (0.52 and 0.64, for full and only primary species, 

respectively). Correlations between stem density, stem height and point density are positive 

but weak (r < 0.4) (table 4.8; figure 4.12). Increasing canopy cover and density are assumed to 

reduce laser penetration rate, and these positive relationships are inconsistent with that 

assumption. The following explanations are offered:  (1) stem diameter, height and density are 

not appropriate proxies for stand-scale canopy structure; (2) allometric assumptions are not 

valid for all tree species; (3) an insufficient number of plots are analysed to recognize the true 

relationships and/or (4) the relationships are non-linear. Whilst canopy depth exhibits negative 

correlation with terrain point density (figure 4.12 B), in line with the original theory on laser 
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penetration rate, the relationship is weak (r of -0.12). However, tree count and terrain point 

density also exhibit negative correlation, and although an r value of -0.35 is relatively weak in 

comparison to, for example, the correlation between terrain point density and DBH, it is strong 

enough to suggest that a relationship could exist. It is assumed that a higher tree count (with 

individual trees closer to each other) is likely to reduce laser penetration and consequently 

lower terrain point density, but, based on the weak correlation obtained in this study, more 

intensive investigation, for example using a dataset with a much larger number of forest plots, 

may be required to determine a strong relationship between these variables.  

 

 

 

Figure 4.12 (A) Tree stem density against LiDAR terrain point density, where black point (full 

trend line) = primary species only, cross (hashed trend line) = all trees in site. (B) Mean height 

against LiDAR terrain point density, where black point (full trend line) = tree top height and 

cross (hashed trend line) = tree canopy height.  

 

The influence of specific tree species on point density will be covered in greater detail in the 

full study area assessment (section 4.4.4). However, it is clear from the results in table 4.5 that 

the laser penetrated the pine canopy far more easily than either the beech or fir. It was initially 

apparent, both from studying Sites 1 and 2 in the field and the tree count at each of these sites 

(table 4.7), that the Corsican pine stands had been significantly thinned. This clearly 

contributes to the laser penetration rate, but it has also been suggested that needle foliage is 
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less obstructive to the laser than broad-shaped and horizontally oriented leaves of deciduous 

trees, which tend to absorb or heavily attenuate the pulse energy (Su and Bork, 2006). It was 

observed at Site 8 that secondary species amongst the fir (typically beech and birch), although 

constituting only 15 % of stems, provided significant canopy cover, and this, to some extent, 

explains the considerably lower terrain point density at Site 8 than Site 7, of 3 and 19 points 

per m2, respectively. 

Figure 4.14 A illustrates the relationship between the LiDAR accuracy and understorey 

vegetation. Understorey vegetation is given as the volume of influential material covering the 

sub-canopy terrain surface, e.g. percentage cover * 0.12 ha plot (converted to square metres) 

* mean height. Based on preliminary investigation, including the qualitative assessment (e.g. 

the photographs in figure 4.8), and published research (e.g. Doneus et al., 2008) it is assumed 

that a thicker and greater coverage of low vegetation will: (1) cause the airborne laser scanner 

to over-estimate the elevation of the terrain, due to Type II filtering errors, and (2) reduce the 

precision of LiDAR terrain measurements, due primarily to deterioration of the laser pulse 

following interaction with vegetation. 

 

  

 
Figure 4.13 Tree stem density against LiDAR terrain accuracy statistics, where black points 

(solid trend line) = mean offset, grey diamonds (dotted grey trend line) = standard deviation 

and crosses (dashed trend line) = RMSE. (A)  Stem density of all species in stand. (B) Stem 

density of primary species only. 
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Figure 4.14 LiDAR terrain accuracy statistics, where black points (solid trend line) = mean 

offset, grey diamonds (dotted grey trend line) = standard deviation and crosses (dashed trend 

line) = RMSE; against (A) understorey vegetation volume and (B) combined (average of) 

Forestry Commission roughness and gradient terrain ratings (recorded in 1998). 

 

Both assumptions are validated by strong, positive correlations between understorey volume 

and mean offset (r of 0.71), RMSE (0.72) and standard deviation (0.44) (table 4.8 and figure 

4.14 A). The relative strength of these relationships, in comparison to those associated with 

the tree canopy, suggests that understorey vegetation plays a crucial role in controlling the 

precision and especially over-estimation of LiDAR terrain data. In identifying a deterministic 

relationship such as this within the complex matrix of variables influencing the travel of a laser 

pulse (see section 1.2.3), considerable caution must be taken. Previous concerns expressed 

over the quantity of data contributing to the least squares analysis, for example that the 

number of test sites is insufficient, still apply; but it is clear that understorey vegetation is 

more influential on sub-forest canopy LiDAR terrain measurement than previously thought. 

Besides tree canopy and understorey vegetation, terrain roughness and gradient are believed 

to influence LiDAR terrain point accuracy. Steep slopes have, in previous studies, caused 

systematic error associated with ‘time-walk’ (see section 1.2.3) (Baltsavias, 1999a) and convex 

slopes have caused problems for both the progressive densification filtering algorithm and 

terrain modelling procedures (Pfeifer and Mandlburger, 2009), while Huising and Gomes 
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Pereira (1998) have observed that slope crests can be detached during filtering. The 

relationships between Forestry Commission terrain ratings and LiDAR bias and accuracy are 

illustrated in figure 4.14 B. The rating in figure 4.14 B, from 1 to 5, is an average of roughness 

and gradient and it is expected, based on the research cited above, that a low rating will 

correlate with higher quality LiDAR terrain measurements. It appears that, contrary to 

expectation, terrain of greater roughness and gradient provides LiDAR points of higher 

precision and lower bias (figure 4.14 B). However, the relationships between terrain gradient 

and especially roughness and LiDAR mean offset, RMSE and standard deviation are weak (table 

4.8), typically with r < 0.4. Weak statistical correlation implies that variation in topography has 

little or no control over the quality of sub-forest canopy LiDAR terrain measurements, but, 

given that the Forestry Commission GIS terrain ratings are a subjective and crude (stand-wide) 

measure, the relationship between terrain slope, roughness and LiDAR terrain point accuracy 

will be investigated in greater detail in section 4.4.3. 

In summary, the most significant outcome of this section of the accuracy assessment is that, 

under thinned coniferous forest, which might previously have been considered relatively 

amenable to summer (leaf-on) LiDAR terrain survey and despite regular laser penetration and 

subsequently high terrain point density, dense understorey vegetation caused numerous Type 

II filtering errors. This in turn led to reduced terrain accuracy and significant over-estimation of 

the true terrain elevation.  

 

 

 

 

 

 



114 
 

4.4.2 Within-site terrain point clustering assessment 

 

Based on field observation, stand-scale canopy and understorey often appeared regular and 

clustered, suggesting that selective laser penetration around non-terrain objects could 

potentially lead to patterns in terrain points. This is particularly significant for sub-canopy 

archaeological feature prospection capabilities, because a feature could be hidden in a gap 

between intermittent ‘patches’ of dense terrain points, for example if it is located directly 

beneath a tree crown. A digital terrain model (DTM) specified as a product of 5 measurement 

points per m2 may actually describe a surface with patches of 20 points per m2 but also 

considerable gaps without points. To evaluate the influence of forest canopy and understorey 

vegetation on the distribution of LiDAR terrain returns, two statistical clustering analyses were 

conducted. 

The two statistical tests are Moran’s I three-dimensional autocorrelation and the Getis-Ord 

General G clustering analysis, with the results for each across the eight Chopwell Wood test 

sites given in table 4.9 and cross-tabulated against understorey vegetation density, the stem 

density of primary tree species, mean canopy depth and the tree count. Moran’s I 

autocorrelation evaluates whether points are clustered, dispersed or random based on XYZ co-

ordinates. Points are evaluated against neighbours; so, to rule out the possibility of mistakenly 

identifying patterns in random data, a fixed sphere of 2 m was established for point-to-point 

comparison. If the confidence (p-value) is small and the absolute value of the Z score is large 

enough that it falls outside of the desired confidence level, a pattern between points is likely at 

that confidence level. An index above 1 indicates increased clustering, near 0 a random 

distribution and below 1 increased dispersion between points (i.e. points are increasingly 

isolated). 
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Site 1 2 3 4 5 6 7 8 

Moran’s I 

Three-

dimensional 

Auto-

correlation 

Index (p-value) 

 

0.78 0.83 0.98 0.68 0.53 0.69 1.12 0.74 

Z Score (Std 

Deviations) 

371 346 151 99 91 66 274 48 

Significance 

Level 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

% Likelihood 

Random Chance 

< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 

Getis-Ord 

General G 

Clustering 

Index (p-value) 

 

0.01 0.01 0.03 0.04 0.03 0.02 0.02 0.05 

Z Score (Std 

Deviations) 

-2.24 15.4 -9.67 -3.53 -0.54 -7.58 -3.65 -4.60 

Clustering 

 

Mod Very Very Very None Very Very Very 

Significance 

Level 

0.05 0.01 0.01 0.01 - 0.01 0.01 0.01 

% Likelihood 

Random Chance 

< 5 < 1 < 1 < 1 - < 1 < 1 < 1 

Tree Species CP CP BE BE BE BE DF DF 

Understorey Vegetation 

Density (%) 

95 95 35 60 40 25 0 5 

Stem Density of Primary 

Species (basal area per ha) 

0.35 0.32 0.40 0.23 0.27 0.27 0.73 0.30 

Mean Canopy Depth (m) 

 

9.5 10.0 16.5 13.0 10.5 11.0 7.0 5.5 

Tree Count 45 36 61 36 35 55 175 252 

 

Table 4.9 Site-by-site Moran’s I autocorrelation and Getis-Ord general G clustering analyses, 

cross-referenced against field-acquired site attribute information. Tree species codes: CP = 

Corsican pine, BE = Beech and DF = Douglas fir. 
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All sites offer less than 1 % likelihood that the distribution of LiDAR terrain returns in three-

dimensions are the result of random chance (table 4.9). The points at Site 7 are most clustered 

with Moran’s I Index, MI = 1.12, while those at Site 5 are least clustered, while still exhibiting a 

statistically significant pattern, with MI = 0.53. It was originally hypothesised that clustering 

would increase with higher percentage understorey vegetation cover, which itself grows in 

patches, until a peak value, after which the cover becomes uniform and clustering declines. 

This would yield a negative second-order polynomial relationship between understorey cover 

and Moran’s I, but no clear correlation is visible (figure 4.15 A). Likewise, it was hypothesised 

that clustering would increase with greater stem density, canopy depth and a higher number 

of trees, given that gaps in the canopy should theoretically diminish with a rise in these 

variables. Canopy depth and tree count offer little trend, each yielding a Pearson’s correlation 

coefficient, r of less than 0.4. However, the Moran’s I Index – stem density relationship exhibits 

a clear positive linear correlation (r of 0.87; figure 4.15 B), which suggests that total canopy 

cover, i.e. the size of canopy in addition to the number of trees, has primary control over the 

pattern of LiDAR terrain points. Over 80 % of the raw LiDAR data over Chopwell Wood were 

reflections from the tree canopy, so the distribution of canopy penetrating laser pulses was 

understandably organised by the canopy density (an allometric proxy of stem density).  

 
 

 

Figure 4.15 (A) Moran’s I index against understorey vegetation cover. (B) Moran’s I index 

against stem density of primary species, with a linear least squares regression trend line. 
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Getis-Ord General G clustering analysis evaluates to what extent points are concentrated in 

two dimensions. A fixed radius of 2 m was again established for point-to-point comparison, to 

rule out the possibility of mistakenly identifying patterns in random data.  If the confidence (p-

value) is small and the absolute value of the Z score (number of standard deviations from the 

mean) is large enough that it falls outside of the desired confidence level, a pattern between 

points is likely to that confidence level. The Index value presents little clear information but a 

higher ‘Z Score’ indicates greater spatial clustering. 

Sites 2 to 4 and 6 to 8 offer less than 1 % likelihood that the distributions of LiDAR returns in 

two dimensions are the result of random chance (table 4.9). Site 1 demonstrates only 

moderate clustering, with a less than 5 % likelihood of random chance, and Site 5 

demonstrates no clustering. While Site 3 has the highest Z score of +15.4, suggesting that 

terrain points are relatively clustered in two dimensions, the Z score of -0.54 at Site 5 is too 

few (< 1) standard deviations from the mean to indicate clustering. Again, with a view to 

establishing potential deterministic relationships between forest canopy, understorey cover, 

and two-dimensional clustering, least squares linear regression analysis was conducted 

between variables. Only the understorey vegetation density (percentage cover over the site) 

yielded strong positive correlation with the Z Score (r of 0.61), with the coefficients for stem 

density, canopy depth and tree count all < 0.4 and negative. 

This suggests that, although canopy cover organises the distribution of canopy penetrating 

laser pulses and accordingly the distribution of LiDAR terrain points in three-dimensions, 

understorey vegetation controls the planimetric distribution of these points. In other words, 

the Getis-Ord clustering analysis ignores the elevation of terrain points and thus also 

misclassified points; so the understorey vegetation, understood to have caused Type II errors 

at the filtering stage of LiDAR data processing (see section 4.4.1), is strongly related to the 

distribution of terrain points in two dimensions, but not in three. Full, three-dimensional 

clusters of points are associated with gaps or low foliage density areas of the forest canopy. 
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4.4.3 Influence of terrain slope on accuracy 

 

In order to establish whether terrain slope influenced the accuracy of airborne LiDAR terrain 

measurements, LiDAR terrain returns were assessed against field-acquired terrain reference 

data at each of the eight field test sites. 

The average flying height during the Chopwell Wood helicopter LiDAR survey was 

approximately 490 m a.s.l. By evaluating equation 3.4 (section 3.5.2.3) with this altitude and 

with an average laser beam divergence of 0.5 (γ is unitless) and average scan angle of 10°, the 

average diameter of the laser footprint on the ground was determined as 0.29 m, equating to 

an area of 0.07 m2. This equation assumes that the terrain surface is consistently flat, so 

equation 3.6 (section 3.5.2.3) was employed to calculate the size of the laser footprint at 

individual terrain returns, depending on the local slope. Local slope was obtained from a 

coarse, 1 m spatial resolution slope model through terrestrial LiDAR terrain reference data. 

 

Site Species Footprint Diameter Constant 0.29 m 

Accuracy against Reference Points 

(cm) 

Footprint Diameter α to Slope 

Accuracy against Reference Points 

(cm) 

 Offset Std Dev Offset Std Dev 

1 CP 13 21 22 21 

2 CP 46 25 55 24 

3 BE 0 13 9 12 

4 BE 35 14 45 12 

5 BE 12 28 12 27 

6 BE -2 12 -2 12 

7 DF 8 18 8 17 

8 DF 11 12 11 12 

Average 20 18 20 17 

 

Table 4.10 Statistical comparison of LiDAR terrain point accuracy when terrain slope is, or is 

not, taken into account. Positive mean offset describes the over-estimation in elevation of an 

airborne LiDAR point with respect to a reference point. See Appendix 1 for tree species codes. 
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Reference data comprised terrestrial LiDAR terrain points at spatial resolution of at least 5 

points per m2. All reference points within the horizontal bounds of each airborne LiDAR terrain 

return were evaluated, and statistics for mean elevation offset (i.e. between a LiDAR point and 

its associated reference points) and standard deviation of offset were generated at each site 

(table 4.10). These measures of accuracy were generated both for a constant laser footprint 

size and for a footprint size proportional to the local slope, so that the influence of terrain 

inclination on laser scanning accuracy could be assessed. 

The largest differences in mean offset and standard deviation between accuracy calculated 

with a constant footprint diameter and accuracy calculated with a diameter proportional to 

the local slope are 1.4 and 1.8 cm, respectively, at Site 4 (figure 4.16). Relevant differences 

were expected at sites with steep terrain, i.e. Sites 7 and 8, but average differences in mean 

offset and standard deviation over all sites of only 0.4 and 0.5 cm, respectively, suggest that 

slope does not greatly influence laser terrain measurement accuracy.  

 

 

 

Figure 4.16 Difference between footprint analysis with constant diameter and diameter 

proportional to slope, where (A) refers to mean offset and (B) refers to standard deviation of 

offset. Positive difference describes greater accuracy using footprint diameters proportional to 

slope than using constant diameter footprints and vice versa. Data labels refer to the test site 

numbers, i.e. from 1 to 8.  
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4.4.4 Full study area accuracy and terrain point density assessment 

 

Since airborne LiDAR data were acquired for the whole of Chopwell Wood, several parts of the 

standard accuracy and terrain point density assessment (section 4.4.1) could be extrapolated 

to the full study area. Without impractically extensive in situ field data collection, accuracy and 

assessment like that performed in section 4.4.1 could not be carried out over the entire forest. 

However, the Forestry Commission UK GIS (1998) offered spatial demarcation of individual 

tree stands, with each stand characterised by a single, or group of, tree species; and, 

consequently, terrain point density could be evaluated against tree species across the wood.  

With the Forestry Commission GIS constructed primarily for commercial operations, several 

important facets of the data structure must be considered prior to use in research. One 

peculiarity is the procedure for splitting regions inside ‘compartments’ (stands) with multiple 

(but not mixed) tree species. Establishing the precise location of small stands is not essential to 

the Forestry Commission, so for the sake of visualising the data, a secondary species is 

represented by randomly distributed blocks (note the artificial square cells in figure 4.17). The 

areal fraction of a compartment covered by these blocks is accurate, but the locations of 

individual smaller stands are not and the random distribution is purely for visualising data. A 

second significant aspect of the GIS is the date of data acquisition. For almost all forest 

compartments this was 1998, which means that thinning and clearing operations, for example, 

contracted after this date, are not recorded. Some stands planted during the 2000s have been 

added to the initial data set and felled areas noted, but the most recent operations (2009-

2010) have not and so field observations and communication with Forestry Commission 

rangers provide up to date information. 
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Figure 4.17 Spatial distribution of tree cover at Chopwell Wood. Tree species are grouped into 

five species classes. For details of tree species classes see Appendix 2. 

 

Raw LiDAR data for the entire wood were classified with the progressive densification filtering 

algorithm, using the optimum parameters determined in section 4.2. Terrain point density (i.e. 

terrain points per m2) was normalised by the average point density of the raw LiDAR data (31 

points per m2) (see section 3.5.2.4) and then calculated for each forest compartment. Mean 

terrain point density for each tree species was calculated as the average point density across 

all compartments of the same species, ensuring that the contribution of a compartment to the 

mean was weighted by its area. Terrain point density and canopy penetration rate for each 

species in Chopwell Wood are given in table 4.11, along with the area covered by that species. 

With the aim of identifying patterns across similar tree species, point density and penetration 

rate are also given for five species classes, and for coniferous and deciduous forest (table 

4.11), and are represented graphically in figures 4.18 and 4.19. 

Table 4.11 illustrates canopy penetration rates (and equivalent terrain point densities) in 

descending order, i.e. from most to least favourable penetration. It must be kept in mind, 



122 
 

throughout this assessment, that penetration rates are only valid for summer, broadleaf-on 

canopy and dense understorey conditions.  

Mean normalised terrain point density is highest under Norway spruce at 6.3 points per m2 

and lowest under Western hemlock at 0.9 points per m2. The latter was anticipated, prior even 

to commissioning the LiDAR survey, because the hemlock canopy lets almost no sunlight filter 

through to the forest floor even on the brightest summers day (D. Woodhouse, personal 

communication 2010) and it was expected to have the same ‘impenetrable’ effect on the laser 

scanner. However, the high point density under the Norway spruce was not expected, because 

published research has not generally advocated coniferous trees with needle foliage as being 

especially amenable to laser penetration (e.g. Hodgson et al., 2003; Hodgson and Bresnahan, 

2004). It was only following discussion with Forestry Commission rangers, who knew the forest 

exceptionally well, that it was deduced that large stands of Norway spruce at Chopwell Wood 

had been heavily thinned. 
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  Tree Species Mean 
Penetration 
Rate (%) 

Mean Terrain 
Point Density 
(points per m2) 

Area (km2) 

  Norway Spruce 20.3 6.3 0.41 

  Mixed Deciduous 17.5 5.4 0.53 

  Oak 15.9 4.9 0.38 

  Birch 14.5 4.5 0.04 

  Lodgepole Pine 13.6 4.2 0.02 

  Sycamore 9.7 3.0 0.01 

  Scots Pine 8.5 2.6 0.39 

  Douglas Fir 8.0 2.5 0.41 

  Lawsons Cypress 7.8 2.4 0.02 

  Japanese Larch 7.7 2.4 0.47 

  Corsican Pine 7.4 2.3 0.51 

  Noble Fir 7.3 2.3 0.01 

  Hybrid Larch 7.2 2.2 0.01 

  Beech 6.6 2.1 0.39 

  Grand Fir 6.3 1.9 0.03 

  Sitka Spruce 6.2 1.9 0.25 

  European Larch 3.6 1.1 0.02 

  Mixed Coniferous 3.3 1.0 0.03 

  Western Hemlock 3.0 0.9 0.04 

5 Classes Description Mean 
Penetration 
Rate (%) 

Mean Terrain 
Point Density 
(points per m2) 

Area (km2) 

1 Pine Family minus Fir 7.9 2.4 2.12 

2 Fir 7.6 2.3 0.18 

3 Cypress Family 7.8 2.4 0.01 

4 Beech, Elm, Sycamore and 
Ash Families 

13.2 4.1 0.77 

5 Birch and Willow Families 14.5 4.5 0.04 

    Mean 
Penetration 
Rate (%) 

Mean Terrain 
Point Density 
(points per m2) 

Area (km2) 

  Coniferous 7.9 2.4 2.31 

  Deciduous 13.2 4.1 0.81 

 

Table 4.11 Airborne LiDAR mean terrain point density and mean canopy penetration rate 

assessed by (1) tree species, (2) five species family classes (see Appendix 2) and (3) coniferous 

and deciduous forest. 
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Figure 4.18 Mean airborne LiDAR terrain point density under specific tree species. See 

Appendix 1 for full tree species codes. 

 

 

Figure 4.19 Mean airborne LiDAR terrain point density under five tree species family classes. 

See Appendix 2 for details on tree species classes. 

 

It is clear from the Norway spruce that forest management practices can be highly influential 

on laser penetration rates. In general, un-thinned coniferous species of high density stocking, 
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for example the Western hemlock, Sitka spruce and Grand fir, offer lowest terrain point 

density (< 2 points per m2), while thinned coniferous and broad-leaved (foliage-on) deciduous 

species, for example Corsican pine and beech, respectively, offer moderate point densities (2 

to 3 points per m2) and typically deciduous species with low stocking densities, like oak and 

birch, offer highest point densities (> 4 points per m2). 

It is also clear that the age of a stand has some control on the canopy penetration rate. Three 

stands of different age are presented in figure 4.20: (A) a juvenile Sitka spruce stand planted in 

2002, (B) a Douglas fir stand planted in 1991 and (C) a Douglas fir stand planted in 1984 which 

has experienced rapid growth. All three stands are coniferous but demonstrate a trend of 

increasing mean terrain point density with age: the juvenile Sitka of 1.5 points per m2, the 

1991 fir of 2.4 and the 1984 fir of 3.1. The large canopy depth to stem height ratio evident in 

the Sitka (figure 4.19 A) is not conducive to either full-canopy laser penetration or terrain 

filtering, hence the low terrain point density. Alternatively, the obvious canopy in the older 

Douglas fir (figure 4.19 C) and lack of understorey are very beneficial to the filtering procedure.  

It is beyond the scope of this study to attempt to model or account for the effects of varying 

age and management strategy within individual species on LiDAR terrain modelling quality, but 

it is theoretically possible if comprehensive data for stand planting year and species growth 

models are readily available. 

 

   

Figure 4.20 (A) 7 year old Sitka spruce. (B) 18 year old Douglas fir. (C) 25 year old Douglas fir. 

Ages are given as they were at the time of airborne LiDAR data acquisition. 

A B C 
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Individual tree species are classified into five family groups in table 4.11. It is instantly 

noticeable that LiDAR terrain point density is very similar among the three coniferous species 

groups and also the two deciduous species groups, suggesting that generalisations in pre-

survey point density forecasts are valid over particular areas of coniferous or deciduous forest. 

Mean terrain point density is 2.4 points per m2 under coniferous forest and 4.1 points per m2 

under deciduous forest (table 4.11). The canopy penetration rates, of 7.9 % for coniferous and 

13.2 % for deciduous forest, are perhaps more significant for future research or commercial 

operations, as these figures could be exploited, pre-survey, to map sub-canopy terrain point 

density forecasts based on the expected raw point density of a particular LiDAR system at a 

particular average flying height. Equally, this procedure could be employed inversely to 

determine flight parameters (including altitude) from pre-requisite sub-coniferous and sub-

deciduous canopy terrain point densities.  

A measure of sub-canopy terrain surveying viability is presented with a view to informing 

archaeological feature prospection strategy. ‘Viability’ was calculated by weighting normalised 

terrain point density at each forest compartment (stand) by the expected accuracy of terrain 

points based on the results of this study. The results of the standard accuracy assessment (see 

section 4.4.1) suggested that LiDAR terrain returns under beech forest are typically more 

accurate than those under fir, and that terrain returns under fir are typically more accurate 

than those under pine (table 4.6). So terrain point density was given a weighting of 2, 1 or 0.5 

for respective deciduous species, fir species and non-fir coniferous species (pine, larch, spruce 

and hemlock). It must be taken into account that generalisations over deciduous, fir and pine 

forest are based on stocking densities and average stand ages typical of Chopwell Wood, which 

is itself characteristic of woodland across the UK. The viability measure is relative and is, as 

such, not quantified.  

The spatial distribution of tree species family classes is illustrated in figure 4.17 as reference 

for the viability map in figure 4.21. Maximum viability is predictably located under oak and 

birch stands, where laser penetration through the canopy is high and terrain measurement 
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accuracy is also high. Minimum viability is located under Corsican pine, Japanese larch and 

Western hemlock stands in the west, south and east of the wood, respectively, where canopy 

is almost impenetrable and/or understorey vegetation causes significant terrain measurement 

bias and imprecision. 

 

 

Figure 4.21 Relative viability of airborne LiDAR sub-canopy terrain survey, based on post-

processed terrain point density and accuracy with respect to the true terrain elevation. White 

regions are open areas within the boundary of the wood.  

 

The viability map is purely a tool for visualising prospective differences in terrain model quality 

between areas of the Chopwell Wood LiDAR data set. It might be argued that the ranges in 

both terrain point density and measurement precision, of approximately 1 to 6 points per m2 

and 15 to 20 cm standard deviation, respectively, for various tree species, are not sufficiently 

wide to have a significant effect on the detail or quality of a terrain model. This argument 

would be supported by the fact that the lower ends of each range, i.e. 1 point per m2 and 20 

cm precision, are typical of, and frequently better than, many published archaeological feature 

prospection studies (e.g. Devereux et al., 2005; Sittler, 2004). While archaeological feature 

Relatively high terrain 

modelling viability 

Relatively low terrain 

modelling viability 
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detection may be possible across all areas of Chopwell Wood, in order to resolve the most 

subtle topographic features, for example shallow mounds and ditches with height and width 

less than one metre, higher point density and accuracy may be required. This subject will be 

explored further in the following chapters. 
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Chapter 5. Results and Analysis 2: Terrain Modelling and 
Archaeological Prospection 
 

5.1 Digital Terrain Modelling 
 

Filtered airborne LiDAR terrain data are modelled into a surface structure to facilitate sub-

canopy archaeological prospection. After evaluating interpolation methods (see section 4.3), 

the raster-based kriging technique was selected for modelling gaps between LiDAR points. 

Interpolated digital terrain models (DTMs) are generated and used first for hillshade analysis, 

thereby emphasizing topographic features with artificial shadows. A 0.25 m spatial resolution 

hillshade terrain model of the whole of Chopwell Wood is illustrated in figure 5.1, but, from 

this relatively remote viewpoint, only large river tributaries and topography at a spatial scale 

greater than approximately 100 m can be identified. Several white areas are noticeable in the 

model where terrain points are too isolated to accurately model intervening topography. 

 

Figure 5.1 Hillshade terrain model of Chopwell Wood with 0.25 m spatial cell resolution. 
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With the aim of demonstrating variation between terrain models under different areas of the 

forest, 0.25 m spatial resolution hillshade models at three of the field test sites are presented 

in figures 5.2 to 5.4, covering each of the tree species: pine, beech and fir. While LiDAR terrain 

points are dense under the pine at Site 2 (39 points per m2) (figure 5.2), some quasi-circular 

gaps are evident between point clusters (note the planimetric point distribution), suggesting 

that the large understorey plants, evident in figure 5.2 A, prevent all laser pulses from reaching 

the terrain. In reality, the true terrain at Site 2 is not characteristic of the ‘bumpy’ topography 

apparent in figure 5.2 C and emphasized in figure 5.2 D, which also suggests that some LiDAR 

returns from scrub, or mixed scrub and terrain reflections, have been mistakenly classified as 

terrain during filtering. Each of the ‘bumps’ evident across the profile in figure 5.2 D is 

therefore likely an individual or amalgamated group of low plants, rather than rough 

topography. However, the linear feature highlighted in figure 5.2 C, identified in the field as a 

natural drainage channel of approximately 50 cm depth, offers some promise for detecting 

topographic features under pine canopy in spite of the ‘noise’ associated with understorey 

vegetation. 
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Figure 5.2 Site 2. (A) Site photograph. (B) Planimetric distribution of airborne LiDAR terrain 

points, with the location of the profile in D identified by the red arrow. (C) A shaded terrain 

model through airborne LiDAR terrain points. (D) A profile through the terrain model. 

 

A 

Airborne LiDAR Terrain Point Distribution 

Shaded terrain model 

artificially lit from the 

southwest and viewed from an 

oblique angle. Annotations are 

referred to in the text. 

Profile through airborne 

LiDAR terrain model 

(identified in B by the red 

arrow, i.e. 0 to 40 m in the 

direction of the arrow). 

Site 2 
Pine 

B 

D 

C 

222

223

224

225

226

0 10 20 30 40

El
e

va
ti

o
n

 (
m

 a
.s

.l
.)

 

Distance along profile (m) 



132 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Site 5. (A) Site photograph. (B) Planimetric distribution of airborne LiDAR terrain 

points, with the location of the profile in D identified by the red arrow. (C) A shaded terrain 

model through airborne LiDAR terrain points. (D) A profile through the terrain model. 
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Figure 5.4 Site 7. (A) Site photograph. (B) Planimetric distribution of airborne LiDAR terrain 

points, with the location of the profile in D identified by the red arrow. (C) A shaded terrain 

model through airborne LiDAR terrain points. (D) A profile through the terrain model. 
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Although laser pulse penetration through the beech canopy is less frequent than the pine, 

resulting in a lower terrain point density at Site 5 than Site 2 (11 points per m2, figure 5.3), 

understorey vegetation is less dense (figure 5.3 A) and the terrain model (figure 5.3 C) is 

consequently much smoother, exhibiting little of the ‘noise’ so evident under the pine (figures 

5.2 C and D).  However, an artefact of the interpolation procedure, `stepping`, mentioned 

previously in section 4.3 and typically associated with the inverse distance weighting technique 

rather than kriging, is evident in the terrain model in figure 5.3 C and highlighted by a white 

box. This artefact can cause problems when it occurs over archaeological features in terrain 

models and affects feature detection. A linear step-type feature is highlighted by the dashed 

white line in figure 5.3 C and identified in the field as one edge of a clear avenue of 

approximately 3 to 4 m width. Both edges of the avenue can be identified in the field, but only 

the northern edge has an obvious topographic imprint, highlighted by the red lines in figure 5.3 

A and the red box in figure 5.3 D. This feature will be discussed in greater detail in section 5.2.3 

but it was mentioned in the early field visits that a pre-1800 AD forest house may have stood 

at this site and, if so, the feature may have been an avenue to this house (L. Searle, personal 

communication 2010). Clustering of terrain points is evident, especially in the northern part of 

Site 5 (figure 5.3 B), caused by greater canopy laser penetration over the avenue feature 

where there are few stems and only sparse foliage from adjacent beech trees. 

Canopy penetration through the fir at Site 7 is more frequent than the beech and less than the 

pine (figure 5.4 B), but a complete absence of understorey vegetation (figure 5.4 A) yields a 

smooth terrain model (figure 5.4 C). Site 7 is located at the lip of a steep slope and a ditch-type 

feature of approximately 10 m width and 1 m depth is visible in the profile across the southern 

part of the terrain model (figure 5.4 D). This feature is too large to be a drainage channel but, 

following validation in the field, is discovered to be the source of natural surface flow down 

the local slope. 

While the topographic features identified at the test sites are primarily not archaeological, 

they give a preliminary indication of the minimum size and most favourable shapes for 
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detection. Linear, channel-type features of < 1 m width and depth are resolved even under the 

thick scrub vegetation in the pine, due to their consistency over 4 m plus distances, even if 

sections are missed. Other linear features, for example the edge of the ‘avenue’ at Site 5, are 

less obvious but can still be located if point density is high enough. There appears to be an 

element of chance involved in sub-canopy archaeological prospection with airborne LiDAR 

terrain data, given that LiDAR points tend to cluster in space (see section 4.4.2). It is plausible 

that one of two adjacent archaeological features of equivalent size, under the same forest 

species, could be resolved in detail while the other is missed altogether, depending on their 

relative positions with respect to tree crowns and understorey. Non-linear features appear to 

be more difficult to identify in shaded terrain models as they often resemble natural 

topography. 
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5.2 Archaeological Prospection and Validation 
 

Rigourous LiDAR terrain filtering and comprehensive accuracy and point density assessments 

were performed with the research aim consistently kept in mind: to test the capability of 

airborne laser ranging for detecting and resolving archaeological features in sub-canopy 

topography. The following section will utilise the information obtained in Chapter 4 and 

additional visualisation and post-processing analyses to evaluate this aim. A number of 

archaeological features in the forest were either familiar to a local community group or 

located during preliminary field visits by the author, prior to carrying out this investigation, 

although information on context or history is not necessarily established. These ‘known’ 

features offer a means of testing the capability of airborne LiDAR and are detailed in table 5.1. 

Four groups of features are selected for full analysis, labelled in table 5.1 by a number in 

brackets, with their locations given in figure 5.5. 

 

 

Figure 5.5 Locations of the archaeological features concentrated on in the prospection 

evaluation. Base is a 1:10,000 scale OS map. Source: EDINA (2009). 

(1) Tubway 
West 

(1) Tubway 
Southeast 

(4) Rubble 
building 

structures 
and 

channel 

(2) Drift Mine 
and Hollows 

(3) Avenue 
and Path 



137 
 

Feature 

(Group) 

Easting 

(m) 

Northing 

(m) 

Canopy 

Species 

 Topographic 

Signature 

Width, 

Depth (m) 

Shape History 

Avenue 414153 558392 BE Obvious edge 3-4, 

0.1-0.5 

Linear, 

wide 

Avenue to 

Dene House? 

Pathway 

 

414041 558236 BE, CP Brick material in 

path 

1, 

0.1-0.3 

Linear Path to Dene 

House? 

Reservoir 414209 558334 BE None ?, ? Circular  

Building 

Rubble (4) 

413834 557270 DF 

(MB) 

5+ piles of 

building rubble 

5-6, 

<1 

Circular, 

linear 

House/ 

building? 

Man-made 

Channel (4) 

413829 557256 DF 

(MB) 

Channel, small 

bridge 

2, 

2 

Linear, 

forked 

Part of 

building? 

Disused 

Railway 

413337 558504 JL, BE, 

OK 

Large 

channel/cutting 

10, 

3-4 

Linear, 

curved 

Coal 

transport 

Stone 

Overbridge 

413546 558974 DF, CP, 

JL, BE 

Large intact 

bridge 

10, 

8 

Linear Access over 

trainline 

Tumulus 412695 558904 Few 

Stems 

Mound 5, 

<2 

Elongate Ancient 

burial mound 

Enclosure 

 

414838 557362 Open Artifically 

shaped topo 

>10, 

2-3 

Circular Ancient 

Tubway 

West (1) 

412725 557850 Open Large ditch 5, 

2-3 

Linear Coal from 

drift mine 

Drift Mine 

(2) 

412899 557932 CP Large slope 8, 

5-6 

Concave 

Slope 

After 1893, 

pre-1939 

3+ Hollows 

(2) 

412899 557932 CP Line of small 

pits at mine 

<2, 

<1 

Circular  

Site of 

Sawmill 

413229 557916 CP Shaped 

platform 

>10, 

? 

Square World War II 

Drover’s 

Road 

412778 557339 MB, JL Livestock 

passage 

>5, 

0.5 

Linear  

2 Pits 

 

414116 557569 DF Small pits and 

spoil heap 

1-2, 

<1 

Circular  

Tubway SE 

(1) 

414443 557441 SP, CP, 

MB 

Large ditch 5, 

2-3 

Linear Coal 

transport 

Dam/Sluice 

 

414371 557422 SP Obvious brick 

structure 

10, 

2-3 

Square Pre-1854 

 

Table 5.1 ‘Known’ features of archaeological interest at Chopwell Wood. Easting and northing 

coordinates refer to the OSGB36 system. Tree species codes are given in Appendix 1. 
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Of the features not selected for evaluation, the large disused railway cutting and stone bridge 

crossing the railway are very obvious in the filtered LiDAR terrain model and can be identified 

even at the scale of figure 5.1. The tumulus and enclosure, although interesting features, are 

just outside the boundary of Chopwell Wood and are therefore not covered by plantation 

forest, so the benefit in testing at these sites is reduced. The topographic signature of the 

Drover’s Road has been disrupted by its contemporary use as a forest track and little field 

validation has been conducted at either this or the site of the World War II sawmill, again 

reducing the benefit in testing the LiDAR at these sites. All LiDAR terrain models presented in 

this chapter have spatial cell resolution of 0.25 m. 

It must be acknowledged at this stage that prospection is conducted with the primary aim of 

resolving and identifying archaeological features in the sub-canopy topography. Interpretation 

and understanding of features and their context is secondary and in this study is limited to 

constraining age/period and validating function. It must be understood that the author is not 

an archaeologist and that any interpretation offered either for currently poorly understood 

features or for newly identified features is not necessarily correct and would need professional 

evaluation at a later date. 

 

5.2.1 Coal tubways 

 

Two trough-type features, both of approximately 2 m depth and 5 m width, can clearly be 

identified at the south east corner and western edge of Chopwell Wood (figure 5.5). These are 

known ‘tubways’, constructed to transport coal from mine shafts within the forest. 

Photographs of the two tubways are presented in figure 5.6, both exhibiting comparable shape 

and dimensions. Given the (relatively large) size of the features, locating them in the airborne 

LiDAR terrain data is not difficult; but what these features offer is the possibility of testing to 

what level detail, especially of the trough rims and base, can be resolved.  While the west 

tubway is located in open terrain, free from canopy cover, the southeast tubway is completely 
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hidden under discrete regions of Corsican and Scots pine, with some intermittent mixed 

broadleaf species. The latter is also situated on the side of a steep slope (up to 40), so 

reduced laser return accuracy is expected. 

 

  

 

Figure 5.6 (A) Winter photograph of the western coal tubway cross-section from the position 

of transect B in figure 5.12. Note the tubs and tracks are replicas placed at this site for heritage 

value. (B) Summer photograph up the southeast tubway from the position of transect B in 

figure 5.7, with pine forest cover.  

 

A shaded terrain model of the southeast tubway, artificially illuminated from the northwest at 

altitude 45 degrees, is shown in figure 5.7. Various features are evident in the model, most 

notably a significant tributary of the Derwent River as well as the main river channel, an open 

field (observe the even surface) and a forest track. The tubway is highlighted by the dashed red 

lines and could be identified by the prominent shadow over one side of the trough after 

shading. Three transects (on equivalent vertical scales) are illustrated in figure 5.8 and referred 

to in figure 5.7. The high gradient of the area is clear at transect B and, while along-profile  

channel dimensions are not regular, the tubway can be identified at all transects, with the 

signature in the topography strongest at transect A (width > 5 m, depth > 2 m). One of the 

least obvious sections of the tubway, at transect B (depth < 1 m), is still resolved in the LiDAR, 

and even topography of < 50 cm height is evident in the model.  

 

A B 
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Figure 5.7 Shaded terrain model of the southeast coal tubway with illumination from the NW 

at 45. Note that illumination parameters are consistently given as: ‘azimuth’, ‘altitude’ (in 

degrees). The edges of the tubway are highlighted by the two dashed red lines and lines A to C 

indicate the locations of transects in figure 5.8. 

 

Figure 5.8 Vertically exaggerated transects A, B and C across the southeast coal tubway 

(referenced in figure 5.7) with the cross-sectional extent of the tubway highlighted. Distance 

along transect is always given in a west to east direction.  
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In order to validate both the accuracy and detail of this LiDAR-derived feature, control points 

along the base of the tubway profile, acquired through differential GPS survey in the field, are 

compared with a transect through the LiDAR DTM (figure 5.9). GCPs are located at 

approximate 5 m intervals along the profile and thus horizontal characteristics of the 

topography can only be validated at this spatial resolution. Additionally, the horizontal 

accuracy of the GPS was compromised to some extent by the forest canopy and rough terrain, 

with some difficulty detecting satellites; so mean control point horizontal and vertical accuracy 

is ± 1.08 and ± 3.02 m, respectively. Hence, while LiDAR elevation overestimates the elevation 

of the GPS data by 0.24 m (± 0.50 m), the GCPs are up to 3 m out and, based on the vertical 

accuracy of the LiDAR under pine during accuracy assessment (see section 4.4.1), the terrain 

model is up to 0.21 m out. So although it could be expected that the LiDAR might over- rather 

than under-estimate the elevation of control points, since returns from low vegetation (figure 

5.6 B) may have been mistaken for terrain at the LiDAR filtering stage, the estimated 0.24 m 

difference in elevation between the two data sets is still smaller than the total LiDAR plus 

reference (control point) data error of ± 3.23 m. 

 

Figure 5.9 Profile through the LiDAR terrain model up the southeast coal tubway, along the 

base of the trough (black line) with GPS control point locations and elevations (red points). 
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Yet, despite expected error, the airborne LiDAR terrain data models the true ground surface 

closely and incidences where the LiDAR resolves even minor deviations in the terrain, for 

example at (i) in figure 5.9, are more common than irregularities in the modelled surface, for 

example at (ii).  It is evident from the LiDAR terrain model that the rims of the tubway are also 

extracted correctly and, where no laser return falls directly over the edge, kriging interpolation 

aids in the derivation of breaks in slope between points either side of the edge. 

Aerial photographs of Chopwell Wood, provided by a member of a local community group (P. 

Fountain, 2010), are available for 4th October 1947 and 13th March 1956. By fortunate 

coincidence the area of forest over the southeast tubway was felled for timber in 1956, 

immediately prior to image acquisition (with the current pine stands replanted later that same 

year), and the canopy covered and uncovered photographs are shown in figure 5.10. Figure 

5.10 B offers, following image registration, high accuracy feature positioning; but further 

analysis using these images is beyond the scope of this study and they are presented as an 

example of data that could be utilised, in combination with LiDAR, for advanced archaeological 

interpretation. 

 
 

Figure 5.10 (A) Aerial photograph of the southeast coal tubway below tree cover. Date: 

4/10/1947. (B) Aerial photograph of same area immediately after deforestation. Date: 

13/03/1956. Source: Royal Air Force Photographs from World War 2 UK aerial survey. 

A B 
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Figure 5.11 Historic 1:2500 County Series map, registered as in operation between 1893-1915, 

with the investigated section of the southeast coal tubway inside the grey box and the 

continuation of the tubway to Garesfield Colliery in High Spen highlighted by the dashed red 

line. A coal shaft can be identified on this map inside the yellow box, but may be difficult to 

pick out. Source: EDINA (2009). 
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Basic clarification of the history and context of this tubway can be made through 

interpretation of historic Ordnance Survey 6” Series maps (EDINA, 2009). A coal shaft and early 

tubway configuration can be identified in County Series mapping from 1854, but the edition 

operational from 1893-1915 illustrates the continuation of the tubway from the section 

recognised in the LiDAR data (grey box in figure 5.11), along the eastern edge of the wood up 

to Garesfield Colliery at High Spen (dashed red line in figure 5.11). Apart from the section 

identified, this tubway is known to have passed underground along this route (Searle, personal 

communication). At Garesfield colliery it intersects the railway line which up until 1961 

transported coal through and from the wood. The 1924 edition of the same map is the first to 

show the tubway as inoperative and the coal shaft is labelled as ‘old shaft’. The southeast 

tubway can, as such, be constrained as active for an unknown period between 1854 and 1924, 

with full operation in place by 1893. To validate this interpretation, intermittent sections of the 

tubway were located in the field along the full length highlighted in figure 5.11. 

The tubway at the western edge of the forest is highlighted by dashed red lines on a shaded 

terrain model in figure 5.12, artificially illuminated from the southeast at an altitude of 45. A 

large tributary to the Derwent River is identified in the model, intersecting a forest road and 

the tubway at approximately the same location. Prominent shadow over one side of the 

trough strongly emphasizes the feature and the similarity in detail between this model and 

that of figure 5.7 suggests that LiDAR terrain model quality at the southeast tubway is not 

severely degraded after filtering the pine canopy. Two transects across the feature are given in 

figure 5.13 and referred to in figure 5.12. The trough has a maximum depth of 2 to 3 m at 

transect B and while the topographic signature is diminished further west (transect A), over 

100 metres of tubway length can be identified (figure 5.12).  
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Figure 5.12 Shaded terrain model of the western coal tubway with illumination from the SE at 

45. The edges of the tubway are highlighted by the two dashed red lines and lines A and B 

indicate the locations of transects in figure 5.13. 

 

 

Figure 5.13 Vertically exaggerated transects A and B across the western coal tubway 

(referenced in figure 5.12) with the cross-sectional extent of the tubway highlighted. Distance 

along transect is always given in a west to east direction.  
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The tubway at the western edge of Chopwell Wood can be first identified in a County Series 

Ordnance Survey map from 1906 (EDINA, 2009) (figure 5.14). Given that it cannot be located 

on the previous edition, released in 1893, and that the coal drift mine at the eastern end (see 

section 5.2.2) is labelled as ‘Old’ in 1906 (figure 5.14), it can be reasonably assumed that this 

section of tubway was operational for an unknown period between 1893 and 1906. Although 

the contemporary topographic signature can only be distinguished between the red limits in 

figure 5.14, the original tubway extended both an additional 200 metres or so further west and 

50 m east to the drift mine. The tubway was constructed to transport coal from the drift mine 

to the edge of the wood as this area was fully forested until very recently.  

 

 

 

 

Figure 5.14 Historic 1:2500 County Series map, registered as in operation 1906-1936, with the 

full extent of the western coal tubway located between the two dashed red lines. The inset 

shaded LiDAR terrain model covers the area highlighted by the yellow box and the section of 

the tubway that can be clearly distinguished in the model is highlighted on both the historic 

map and terrain model by the full red lines. Note the coal drift mine `labelled on the map at 

the eastern end of the tubway (see section 5.2.2). Source of historic map: EDINA (2009). 
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5.2.2 Drift mine and hollows 

 

Less well documented than the coal tubways is a drift mine at the eastern end of the tubway at 

the western edge of Chopwell Wood (figure 5.5), although it is established that the mine and 

tubway are associated (figure 5.14; table 5.1). A large, steep convex slope is observed in the 

contemporary topography at this location (figure 5.15 A) in addition to the brick foundations of 

industrial infrastructure, and a number of obscure hollows can also be identified in a line to 

the northeast of the slope (figure 5.15 B).  While the convex slope is situated at the boundary 

between Japanese larch and Corsican pine stands, the hollows are covered exclusively by the 

pine, with moderately dense understorey cover over both (figure 5.15). Identifying the slope in 

the LiDAR terrain data may not prove a demanding task, given the size of the feature, and 

much like the tubway analysis, focus is placed on calculating how much detail can be resolved. 

However, the hollows are all < 2 m in width and < 1 m in depth, and the pine canopy and 

understorey provide significant obstruction to the laser, so it will be evaluated whether these 

features can even be extracted from the topography. 

 

  

 

Figure 5.15 (A) Summer photograph of the convex slope at the drift mine under larch and pine 

forest. (B) Summer photograph of one of the hollows to the NE of the slope under pine forest. 

 

A B 
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A shaded terrain model, artificially illuminated from the southeast at an altitude of 45, is 

presented in figure 5.16. Unrealistic edge effects just north of the feature are labelled 

(demarcated by the dotted yellow line in figure 5.16). These effects are a product of the 

interpolation procedure when there are few or no points in a large area, with the interpolated 

cell value at the edge of the true surface (along the dotted yellow line) spread to the boundary 

of the interpolation extent. No LiDAR terrain returns are located within this area due to a lack 

of pulse penetration and those that do penetrate do not then offer suitable terrain reflections. 

However this is not an issue as the area of interest (the extent of the features) is outside the 

modelled area. The uneven (bumpy) terrain surface across figure 5.16 is comparable to that 

observed at Test Sites 1 and 2 (see figure 5.2 in section 5.1) and is therefore explained as ‘false’ 

topography caused by understorey vegetation mistakenly classified as ‘terrain’ at the LiDAR 

filtering stage. 

Transect A (figure 5.17) illustrates a profile through the features, with slope and hollows 

highlighted, while transect B constrains the width of the slope. It must first be noted that the 

lip of the slope is resolved successfully (figure 5.17), despite this situation being known to 

commonly cause problems to filtering algorithms, including the progressive densification 

algorithm (see section 1.3.3.2) (Sithole and Vosselman, 2004). This offers considerable promise 

for extracting similar discontinuities under thick conifer forest elsewhere. In contrast, the back 

wall of the convex slope is not modelled as accurately, with ‘stepping’ clear on transect A 

(figure 5.17). This is likely caused by either: (1) a lack of terrain returns over the back wall, with 

the subsequent stepping phenomenon a product of the interpolation process between distant 

returns of significantly different elevation (i.e. from the top and bottom of the slope), or (2) a 

laser footprint diameter too large to resolve the required gradient, causing ‘time-walk’ (see 

section 1.2.3). The hollows behind the convex slope are evident in a transect through the DTM 

(transect A in figure 5.17), but in order to detect similar features without prior knowledge (and 

therefore no recognition of where to position a transect, for example) at another location, 

more sophisticated visualisation would be necessary. 



149 
 

 

 

 

Figure 5.16 Shaded terrain model of the drift mine and hollows with illumination from the SE 

at 45. The drift mine (westernmost feature) and hollows are highlighted by dashed red lines 

and lines A and B indicate the locations of transects in figure 5.17. The dashed yellow line 

marks edge effects in the terrain model. 

 

 

 

 

 

Figure 5.17 Vertically exaggerated transects A and B through and across the drift mine and 

hollows (referenced in figure 5.16), highlighted by pairs of dashed red lines. Distance along 

transect A is in a west to east direction and along transect B is in a north to south direction. 
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Given that it is difficult to detect and resolve the hollows (of < 2 m width and < 1 depth) under 

pine forest in standard shaded terrain models, further visualisation analysis is employed to 

attempt to emphasize the depressions against the local topography. With the aim of testing its 

efficacy for resolving particularly subtle archaeological features, principal components analysis 

(PCA), a visualisation technique for combining information from a number of artificially 

illuminated hillshade models (see section 3.5.2), is utilised over the drift mine and hollows. 

Shaded terrain models of the area from sixteen angles (at regular 22.5 intervals in azimuth 

and constant 45 altitude) are combined and transformed to a new set of sixteen uncorrelated 

variables. Histograms of illumination values for all sixteen original models are verified as 

normal distributions – a pre-requisite for PCA. Table 5.2 gives directional loadings for the first 

five components, with values > 0.3 (indicating high model intercorrelation) in bold, and the 

percentage of variance explained by each component. The first three components explain 

approximately 93 % of the variation between hillshade models (topography), with components 

1 and 2 associated with northeast/southwest and northwest/southeast illumination directions, 

respectively (note high loadings in these directions). The importance of component 3 is 

advocated by the pioneers of this applied technique (Devereux et al., 2008) because it exhibits 

almost equal loading in all 16 directions (table 5.2), suggesting that its information content 

might be independent of illumination direction, with implications for detecting features 

without the problems of directional shading. 

A single hill-shaded model from the southeast is presented in figure 5.18 A for comparison 

against a false colour composite image of the first three principal components figure 5.18 B 

and also component 3 independently figure 5.18 C. The ‘stripe’ effect across the top of the 

principal component images is an artefact of the intercorrelation procedure in the PCA 

algorithm, but it does not coincide with the features under consideration and is thus 

inconsequential. It is clear from the outset that component 3 offers high definition for feature 

detection at this scale, with the hollows particularly distinct and the lip of the convex slope 

obvious, but its interpretation is somewhat complicated by irregular shadowing and definition 
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of the (erroneous) ‘stepping’ on the back wall (figure 5.18 C). The true location of the lip is 

highlighted in figure 5.18 A.  This technique offers promise for identifying features of less than 

2 m width and 1 m depth in areas of forest, like the Corsican pine, where LiDAR-derived terrain 

data includes unfiltered returns from low vegetation. 

 

Component 1 2 3 4 5 

Illumination 

direction 

from North 

(0) 

0 -0.23 -0.21 0.30 0.21 0.30 

22.5 -0.31 -0.10 0.29 0.10 0.24 

45 -0.35 0.06 0.30 -0.77 0.20 

67.5 -0.32 0.18 0.25 -0.06 -0.25 

90 -0.26 0.28 0.20 0.12 -0.25 

112.5 -0.16 0.36 0.16 0.15 -0.18 

135 -0.03 0.39 0.13 0.14 -0.08 

157.5 0.10 0.38 0.13 0.11 0.04 

180 0.22 0.32 0.15 0.06 0.15 

202.5 0.31 0.22 0.19 0.01 0.23 

225 0.35 0.11 0.24 -0.05 0.25 

247.5 0.34 -0.01 0.29 -0.09 0.21 

270 0.29 -0.45 0.31 -0.32 -0.59 

292.5 0.18 -0.24 0.31 0.01 -0.21 

315 0.04 -0.29 0.32 0.33 -0.19 

337.5 -0.10 -0.28 0.30 0.21 0.17 

% 36.58 31.21 25.77 1.73 1.45 

Cum. % 36.58 67.79 93.56 95.28 96.73 

 

Table 5.2 Loadings for the first five principal components of the sixteen illuminated models of 

the drift mine and hollows and the percentage of variance explained by each. 

 

The location of the drift mine is given in figure 5.14 in section 5.2.1 (labelled as `Old Coal Drift`) 

and the large convex slope likely represents the entry point, with the tubway formerly moving 

underground at this point. A historic Ordnance Survey map from 1924 suggests that the lateral 

extent of the slope has fallen substantially, with the extent of the feature in 1924 highlighted 
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in blue on figure 5.19 and the extent of the contemporary feature highlighted in red. The origin 

of the hollows is less apparent, but their trend exactly parallel to, and extending beyond, the 

coal tubway (see figure 5.14 in section 5.2.1), indicates that they might be sites of subsidence 

down into a possible drift tunnel below. Performing PCA in other locations, with a view to 

locating similar lines of hollows, may facilitate the identification of further drift mines currently 

lost beneath the forest canopy. 
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Figure 5.18 (A) Shaded terrain model of the drift mine and hollows (highlighted by the dashed 

yellow lines), illuminated from the SE at 45. (B) False colour composite of the first three 

principal components of the sixteen band principal components image, where: component 1 is 

shaded red, 2 is shaded green and 3 is shaded blue. (C) Shaded relief image of component 3. 
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Figure 5.19 Historic 1:2500 County Series map, registered as in operation between 1924-1949, 

with the convex slope of the drift mine highlighted by the dashed blue line and the 

contemporary topographic signature of both the drift mine and hollows highlighted by the 

dashed red line. Note the coal tubway is not marked by this edition, although the new forest 

road has been laid (see figure 5.14). Source: EDINA (2009). 

 

5.2.3 Avenue and pathway 

 

It has already been suggested that the wide, linear feature in the topography at Test Site 5 may 

have been an avenue leading to a former house within the forest pre-dating the 19th century 

(table 5.1) (see section 5.1) (FoCW, 2009). A photograph down this ‘avenue’ is given in figure 

5.20 A, with the edges (< 50 cm high ridges) especially prominent. Furthermore, a path 

constructed with what appears to be building material (i.e. brick, tiles etc.) is evident nearby 

(figure 5.20 B), and the manner in which the avenue and path appear to intersect indicates 

that there may have been several routes to this house. Both features are currently used as 

forest paths and are marked on the Ordnance Survey map as such (figure 5.5), but it is natural 

that even following demolition of the house, the same tracks have continued to provide access 

through this area of the forest. 

Drift Mine 

Hollows 
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An artificially illuminated shaded terrain model of the area surrounding the avenue is 

presented in figure 5.21. A stream at the eastern end of the feature is marked on the model 

and can be located in figure 5.5. A vertically exaggerated profile across the feature (figure 5.22) 

emphasizes the avenue platform raised from the surrounding terrain surface, and ridges along 

either side of approximately 10 cm height on the south side and 30 cm on the north side are 

identified. The ridges are almost impossible to detect in the standard terrain model (figure 

5.21) so a vertically exaggerated shaded terrain model is generated of the same area with 

elevation exaggerated by ten times. Part of this model is presented in figure 5.23 and although 

it is still difficult to detect the 10 cm high southern edge of the avenue, the raised surface of 

the 30 cm high northern ridge is heavily accentuated against the adjacent topography. The 

canopy cover above this feature is beech, which offers reasonable laser penetration and 

relatively high terrain point accuracy (with respect to coniferous forest) (see table 4.6 in 

section 4.4.1), but there is noticeable clustering of LiDAR terrain returns under this type of 

canopy (see section 5.1). This is the most plausible explanation for the heavily undulating 

(rather than flat) modelled terrain surface over the avenue ridges, noticeable in figure 5.23. 

 

  

 

Figure 5.20 (A) Winter photograph from the west end of the avenue. (B) Close-up photograph 

of the pathway with brick and construction materials clear. 

A B 
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Figure 5.21 Shaded terrain model of the avenue with illumination from the NW at 45. The 

lateral extent of the avenue is highlighted by the red lines. The blue line indicates the location 

of the transect in figure 5.22. The yellow symbol indicates the viewpoint of figure 5.23. 

 

Figure 5.22 Vertically exaggerated transect across the avenue (blue line in figure 5.21) with 

the width of the major platform marked by the two red lines and the two ridges highlighted 

by the dotted red boxes. Distance along transect is in a south to north direction. 
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Figure 5.23 Shaded terrain model of the avenue, vertically exaggerated by 5 times and 

illuminated from the northwest. The same section of the northern (prominent) ridge of the 

avenue is highlighted by the dashed red lines in both the terrain model and inset 

photograph. The location of the viewpoint for both the model and photograph is given by 

the yellow symbol in figure 5.21. 

 

The pathway is a much longer archaeological feature than the avenue and is covered by 

both beech and Corsican pine stands. The subtlety of the feature, measured at less than 30 

cm depth in the field, and widespread ‘false’ topography in the terrain model (figure 5.24), 

characteristic of LiDAR data under pine and caused by poor filtering over dense low 

vegetation cover (noted in sections 4.4.1 and 5.1), mean that only a single, small section of 

the pathway can be identified in the standard hillshade model (which is illuminated from the 

northwest at 45 altitude; figure 5.24). Exaggerating the model vertically would only 

accentuate these disruptive features further and likewise principal components analysis 

would do the same.  
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Figure 5.24 Shaded terrain model of the area surrounding the pathway with illumination from 

the NW at 45. The small section of the pathway that can be detected is highlighted by the 

dashed red line. 

 

The Local Relief method (Hesse, 2010) enhances the visibility of medium-scale (> 1 m 

diameter), shallow topographic features, irrespective of the illumination angle, by creating a 

DTM ‘purged’ of variable landforms from the original LiDAR terrain data. This technique was 

designed for archaeological prospection and appears to be ideal for extracting more 

information from the terrain model at the pathway. Three of the steps are presented in figure 

5.25, with B illustrating a difference map obtained after performing low-pass filtering (with a 3 

x 3 kernel) over the original DTM and calculating the difference between the two terrain 

models. Contours at the zero-metre level are extracted from the difference map in figure 5.25 

C and a purged terrain model is interpolated from these contours (D) (see Hesse, 2010 for 

details). Comparison between the two shaded surface models (figure 5.25 A and D), both 

computed with identical illumination parameters, demonstrates the uniform removal of small, 

disruptive features from the topography and consequently a longer section of the pathway can 

be identified more easily in the purged model . 

Stream 

Channel  

Stream 

Channel  
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Figure 5.25 (A) Shaded terrain model of the pathway with illumination from the NW at 45. 

(B) Difference map of A representing local relief variations. (C) Extraction of zero metre 

contour lines from the difference map (inside the yellow box in B). (D) Enhanced local relief 

model of the same area as A, with the same illumination parameters, following ‘purging’ of 

small-scale features, with the more obvious pathway highlighted by the dashed red line. 

A B 

C D 
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Assuming that both the avenue and pathway are associated with the former position of this 

mysterious ‘Dene House’, it can be hypothesised that the building could have been located 

close to the intersection of the two linear features. Figure 5.26 illustrates a local relief model 

generated from purged avenue and pathway DTMs, and artificially illuminated from the 

northwest at an altitude of 45. Despite the features not physically intersecting, it is 

assumed that neither route can deviate by > 20 from their expected course, based on their 

contemporary position/direction and the hypothesis that the two features are linked. 

Hence, if a house was located here prior to 1800, it is most likely that it was situated within 

the hashed red zone marked on figure 5.26. 

 

 

 

 

Figure 5.26 Local relief model (LRM) of the pathway and avenue with illumination from the 

NW at 45. A building (Dene House?) at the intersection between these routes was likely 

situated inside the zone marked by the hashed red lines. 
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5.2.4 Rubble building structures and man-made channel 

 

The limit of airborne LiDAR as a technique for archaeological prospection is demonstrated 

by a relative inability to detect the piles of building material and man-made channel 

beneath the young Douglas fir (and partial mixed deciduous) canopy at field Test Site 8 

(figure 5.5). These features are thought to be the remains of a building that stood at this 

location at some point prior to 1850 (L. Searle, personal communication 2009). It was noted 

in section 4.4.4 that LiDAR terrain point density was higher under the older, taller, 25 year 

old fir canopy and negligible understorey vegetation at Site 7 than under the 19 year old 

canopy at Site 8 (19 and 3 points per m2, respectively). Consequently the interpolated 

terrain model is based on fewer points at Site 8 and is less detailed and less representative 

of the true terrain than at Site 7 (see figure 5.4 in section 5.1). For this reason, the 

probability of detecting, let alone resolving, archaeological features such as the piles of 

building material and man-made channel at Site 8, of approximately 2 to 3 m width and 1 to 

2 m depth (figure 5.27), is much lower. 

 

  

 

Figure 5.27 (A) Winter photograph of one of the building rubble piles at test site 8 with the 

shape of the pile highlighted. (B) Winter photograph from the northern end of the man-made 

channel at test site 8 (note the fork). Both features lie under Douglas fir canopy.  

 

A B 
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A shaded terrain model of the area surrounding test site 8 is presented in figure 5.28, 

artificially illuminated from the northeast at an angle of 45. Control points along the edges of 

the archaeological features, acquired in the field with the total station (and previously utilised 

during filter parameterisation in section 4.2), are superimposed onto the image and emphasize 

that neither the piles of building rubble or man-made channel are visible in the standard 

shaded terrain model (figure 5.28). In addition to sparse LiDAR terrain point density limiting 

feature definition, the whole area of interest is situated on the side of a significant slope, with 

several of the piles of rubble located on an even steeper backslope (figure 5.28). This has 

important implications for both the accuracy of returns (the reason of which has previously 

been alluded to) and the process by which terrain is interpolated between relatively remote 

returns on a slope. ‘Stepping’ has already been noticed in a terrain model over the convex 

slope of the drift mine (see section 5.2.2) and can also be observed systematically over the 

shaded surface in figure 5.28, including over a majority of the archaeological features. Where 

features are smaller than the typical size of the largest artefact, i.e. < 2 m depth, they cannot 

realistically be resolved or identified at all. 

One feature that can be detected is the lower part of the man-made channel (figure 5.27 B). A 

profile acquired along the base of the channel (which covers the western rather than north 

pointing fork; figure 5.28) is compared with field-derived total station control points in figure 

5.29 and suggests that the airborne LiDAR struggles to extract the full channel depth. It could 

be argued, as with previous scenarios, that overestimation of the true channel base elevation 

by 81 cm (with a standard deviation of 28 cm) is caused by dense low vegetation; but, 

following examination in summer (figure 5.27 A), this is found not to be the case. It is more 

likely that it is beyond the capability of the airborne LiDAR to resolve subtle topographic 

earthworks, like the rounded piles of rubble, under young (19-year old) fir and likely also 

spruce and hemlock species (see table 4.11 in section 4.4.4).  In this scenario, the airborne 

LiDAR data can, at best, be used to infrequently detect features like the channel. 
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Figure 5.28 Shaded terrain model of the area surrounding the rubble structures and man-

made channel, with illumination from the NE at 45. The blue line indicates the location of a 

profile along the floor of the channel shown in figure 5.17. Ground control points (GCPs) over 

the features are illustrated as red dots.  

 

 

Figure 5.29 LiDAR profile along the floor of the channel (black line), from the southernmost 

end up along the western fork, compared with ground control points (red points). The 

extent of the profile is given by the blue line in figure 5.28. 
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In summary, this section (5.2) has emphasised both the capabilities and limitations of 

airborne laser scanning as a technique for sub-forest canopy archaeological feature 

prospection. It has answered the question of whether minor differences in LiDAR point 

density and accuracy have a significant effect on the detail of a terrain model and 

subsequently on the user’s ability to detect archaeological features. Whilst features of less 

than one metre height and width can be detected under beech and pine canopy at the 

avenue, pathway and drift mine, features of comparable subtlety, i.e. piles of building 

rubble and most of a man-made channel, cannot be detected under dense fir canopy. 

The viability of terrain modelling and associated archaeological feature prospection using 

LiDAR will be discussed in greater detail in the following chapter. 
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Chapter 6. Discussion 
 

6.1 Evaluation of Laser Scanning as a Tool for Sub-canopy Terrain 
Modelling 
 

6.1.1 Reasons for variations in LiDAR terrain point accuracy and density under different 

forest species  

 

Variations in the accuracy and density of LiDAR terrain points under different types of forest 

cover were demonstrated in sections 4.4.1 and 4.4.4. In this section, the possible and probable 

reasons for these variations, and the implications they have for predicting terrain modelling 

(and consequently also archaeological surveying) viability, are discussed. 

It has been suggested, in numerous studies (e.g. Clark et al., 2004; Hodgson and Bresnahan, 

2004), that canopy cover is highly influential over the accuracy of LiDAR terrain measurements. 

Canopy of greater cover and density is, based on previous research, expected to increase both 

the systematic and random error exhibited by terrain points. By this logic, mean standard 

offset, standard deviation and RMSE ought to rise with increasing stem height, canopy depth, 

stem diameter (DBH) and stem density. However, it is clear from the correlation analysis in 

section 4.4.1 (table 4.8) that only mean DBH demonstrated a consistent positive correlation 

with LiDAR bias and precision. The relationships between stem density and bias and precision 

were poor and, surprisingly, all negative (figure 4.13 A), with little change if only trees of 

primary species were examined (figure 4.13 B). The following explanations are offered: (1) 

stem height, canopy depth and stem density are not appropriate proxies for stand-scale 

canopy structure; (2) allometric assumptions are not valid for all tree species; (3) an 

insufficient number of plots are analysed to recognize the true relationships; (4) the 

relationships are non-linear and/or (5) that the filtering procedure was so effective that the 

quality of accepted terrain points will not necessarily decline with increasing canopy cover. 

It is clear from the qualitative assessment at the start of section 4.4.1 that the final argument is 

invalid, given that Type II filtering errors were numerous at Sites 1 and 2 (figure 4.8).  The 
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fourth, and to some extent, third arguments can be discounted for stem density because the 

trends between variables were strong enough that their negative characteristics were 

unmistakable (figure 4.13). Although weak, the positive relationships between stem height and 

canopy depth and LiDAR bias suggest that stem height and canopy depth describe stand-scale 

canopy structure more closely than stem density.  Tree diameter (at breast height) appeared 

to predict LiDAR bias and precision well (r of 0.40, 0.36 and 0.48 for mean offset, standard 

deviation and RMSE, respectively; table 4.8). 

But despite the relatively strong relationships between tree DBH and LiDAR bias and precision, 

the accuracy of LiDAR-derived terrain elevation appears to be controlled primarily by the 

understorey vegetation. The weak, and often negative, relationships between tree canopy 

structural variables, like canopy depth and stem density for example, terrain roughness and 

gradient, and LiDAR bias and precision obtained in the correlation analysis (table 4.8) were 

either coincidental or were, more likely, a by-product of the dominance of understorey 

vegetation as a controlling factor. For instance, Test Site 1 was 95 % covered by (on average) 

1.2 m high fern and bracken, and LiDAR at this site demonstrated mean offset of 21 cm and 

standard deviation of 20 cm compared to the true terrain. In contrast, Test Site 7 had 

negligible understorey and demonstrated only 3 and 16 cm offset and standard deviation, 

respectively.  This is a pronounced difference and, as such, it matters little that the terrain was 

much steeper and stem density was higher at Site 7 than Site 1, because the understorey 

vegetation was the principal controlling factor over the quality of LiDAR-derived terrain 

measurements. LiDAR terrain point density at the test sites also appeared to be controlled by 

the relative rate of laser penetration through understorey vegetation, and to some extent 

through the tree canopy, with strong least squares relationships determined between point 

density and understorey volume (r of 0.81; table 4.8 in section 4.4.1), and tree diameter (r of 

0.52 and 0.64, for the entire plot and for only primary species, respectively). 
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Both the accuracy and density of LiDAR terrain points were higher under deciduous than 

coniferous forest, even in deciduous leaf-on conditions (table 4.6 in section 4.4.1 and table 

4.11 in section 4.4.4). This suggests that the quality of terrain modelled with LiDAR data 

should, in general, be greater under deciduous canopy cover. However, either terrain point 

accuracy or density can have a dominant influence on the quality of a terrain model, 

something that is emphasised in areas of coniferous forest in Chopwell Wood that have been 

subject to thinning operations. 

It has been assumed until now that thinned forest, with greater laser canopy penetration, is 

ideal for sub-canopy LiDAR survey (e.g. Devereux et al., 2005). Following this assumption, the 

thinned Corsican pine cover in Chopwell Wood ought to be highly conducive to sub-canopy 

survey, as should other thinned coniferous species like the Norway spruce (which offers a 

mean penetration rate of over 20%; table 4.11). But, given that thick summer understorey was 

observed throughout the Corsican pine test sites in Chopwell Wood, there is a convincing 

argument that thinned and, as such, relatively low density coniferous forest (compared to that 

observed in the fir – compare the photos in figures 4.8 and 4.11), allows the sub-canopy 

vegetation to thrive. This indirectly increases Type II filtering errors and reduces the accuracy 

of LiDAR-derived terrain elevation. The assumption that thinned forest is ideal for sub-canopy 

survey is not necessarily the case with summer-acquired leaf-on LiDAR data. 

Significant point bias and low accuracy are as degrading to a digital terrain model as low point 

density (Pfeifer and Mandlburger, 2009), if not more so, and so have considerable influence on 

the interpretation of topographic features. For example, a feature with relief < 20 cm in the 

topography at (i) in transect 1A in figure 4.8 (section 4.1.1) cannot be resolved with the LiDAR 

data. Relatively extreme over-estimation of true terrain elevation and low precision at these 

sites indicates that, in spite of the high spatial measurement density, thinned Corsican pine in 

summer is not especially amenable to LiDAR-based sub-canopy terrain survey. In contrast, little 

summer understorey vegetation was observed under the thinned Norway spruce (during 

investigation in the field). This suggests that the accuracy of LiDAR terrain points under the 
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Norway spruce could be expected to be similar to the accuracy of points recorded under the 

Douglas fir at Test Sites 7 and 8 in Chopwell Wood, which also contained little or no 

understorey. High accuracy measurements of the terrain combined with a greater than 20% 

canopy penetration rate make thinned Norway spruce particularly amenable to sub-canopy 

terrain survey. The contrasting examples from the Corsican pine and Norway spruce in 

Chopwell Wood indicate that the role of forest management practices, for example thinning 

operations, on LiDAR-based terrain surveying viability during peak summer understorey 

conditions is not clear cut. However, it is clear that low terrain point accuracy can result in 

poor quality modelled terrain in spite of high point density, and vice versa, with either point 

accuracy or density acting as a limiting factor for conducting sub-canopy survey. 

 

6.1.2 Evaluation against published LiDAR terrain accuracy assessments 

 

Airborne LiDAR-derived terrain model accuracy has not been comprehensively investigated in 

any single published study to date, which is surprising given that vegetation-filtered terrain 

models are commonly utilised in numerous commercial and scientific applications. In fact, far 

more attention has been paid to assessing the relative success of vegetation-removal 

algorithms against each other, than to identifying the limit of airborne LiDAR as a technique for 

sub-canopy terrain modelling. That said, a number of groups have conducted tests on LiDAR 

products over the last decade to determine accuracy against field-acquired reference data of 

true terrain elevation.  This section will review all relevant published studies and compare 

results to those obtained from this study. 

Eight studies contributing significant data are identified, but the lack of investigation into 

LiDAR accuracy assessment has led to significant inconsistency in approach. Typically, 

reference point elevation is evaluated against either proximate LiDAR terrain point elevation 

or the elevation of an interpolated surface through LiDAR terrain points (see section 1.3.6). 

Where testing point-to-point examines the true difference between LiDAR and reference 
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(Hodgson and Bresnahan, 2004), testing surface to reference emphasizes the critical role of the 

final modelled surface, which is usually the required product, and is, as such, the more 

applicable assessment (Hyyppä et al., 2005). Given that only eight suitable studies can be 

identified, tests performed under similar conditions are uncommon. Published studies include 

data collected under a variety of conditions, such as leaf-on or –off, different point densities, 

over different tree species and mixtures, so all relevant studies are included. Likewise, tests 

have been conducted in areas with different forest management strategies, so care must be 

taken when comparing, for example, ‘equivalent’ results from coniferous or deciduous forest. 

Results for the eight studies are given in table 6.1 and offer varying quantities and types of 

data. Another consequence of the lack of cohesion between investigations is the range of 

statistical approaches, with each study presenting results for at least one of the following: (1) 

mean (‘signed’) offset or (2) mean absolute offset, which describes the bias of LiDAR against 

reference terrain elevation; (3) standard deviation, which describes the precision of LiDAR 

against reference; and (4) root mean square error (RMSE), which describes the bias precision. 

In this work, results are offered for all four measures, under both deciduous and coniferous 

forest (see table 4.6 in section 4.4.1). Comparable tests taken from published studies are 

grouped by the categories: deciduous forest, conifer forest and shrub/brush. Mixed conifer 

and deciduous forest is included in the deciduous category given the dominant role of 

broadleaf trees on laser canopy penetration (Su, 2004; Su and Bork, 2006).  

Studies 2 and 8 and this work describe very similar 10 to 20 cm over-estimation by LiDAR of 

the true terrain surface elevation under deciduous forest (table 6.1). Both Hodgson et al. 

(2003) (study 2) (study 8), who conducted their research in mixed deciduous forest, and Su and 

Bork (2006), who conducted theirs in aspen forest, chose to use leaf-on conditions – 

comparable to the data collected from Chopwell Wood. So, if it assumed that these data are 

describing a genuine pattern, minor overestimation of the terrain surface can be expected 

under leaf-on deciduous canopy. The overestimation is explained in each paper by multi-story 

vegetation affecting the LiDAR filtering procedure (Hodgson et al., 2003; see also Pfeifer and 
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Mandlburger, 2009; Pfeifer et al., 2004) and the broad-shaped and horizontally oriented leaves 

of deciduous trees (and typical understorey plants) causing attenuation of the laser beam (Su, 

2004; Su and Bork, 2006). Ni-Meister et al. (2001) suggested that a corollary of the latter 

process is that LiDAR last returns may originate from the forest canopy or understorey 

vegetation rather than the true ground, particularly with a small footprint system. The results 

of Norheim et al. (2002) (study 1) and Hodgson et al. (2005) (study 6) indicated that airborne 

LiDAR under-estimated reference terrain data by 36 and 16 cm, respectively, and while 

Norheim et al. recognized that the source of their bias was likely a product of poor control 

point co-ordinate transformations (an issue they mentioned they were looking into), Hodgson 

et al. suggested that their under-estimation was relatively insignificant and was just as 

plausible a result as slight over-estimation, given the lack of tree foliage and understorey 

vegetation during leaf-off survey. 

The results presented in this study have remarkably similar approximate 20 cm absolute offset 

and 25 cm RMSE values under deciduous forest to studies 5 and 6 (table 6.1). Both were leaf-

off investigations of forest in North and South Carolina in the U.S. conducted by Prof. Michael 

Hodgson’s group. As previously mentioned, these landscapes offer forest conditions not 

dissimilar to the deciduous stands at Chopwell Wood, so analogous results for LiDAR terrain 

bias are promising and suggest that the overestimation that can be expected when 

commissioning an airborne LiDAR survey for measuring sub-deciduous canopy terrain is 

approximately 10 to 25 cm (Hodgson and Bresnahan, 2004; Hodgson et al., 2005). 

Norheim et al. (2002) (study 1), Clark et al. (2004) (study 4) and Su and Bork (2006) (study 8) 

offered values for LiDAR terrain precision of 74, 166 and 52 cm, respectively (table 6.1), that 

are far greater than the 17 cm presented in this study. Clark et al. (2004) explained the low 

precision and high mean offset and RMSE (101 and 195 cm) for their accuracy assessment at a 

tropical rainforest in Costa Rica by erroneous inclusion of laser returns from dense understorey 

vegetation and dead wood on the forest floor as terrain during classification (Type II filtering 

errors). Only Hyyppä et al. (2005) offered precision values as low as the 17 cm calculated for 
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Chopwell Wood – 9 and 8 cm for leaf-on and –off surveys, respectively. While it is promising 

that the precision estimate for terrain under deciduous forest at Chopwell Wood is low, it does 

not correlate well with published data and it is therefore inconclusive whether a precision of 

approximately 20 cm is typical of global deciduous forest or relates more to managed 

broadleaf stands like those at Chopwell. 

Although Reutebuch et al. (2003) (study 3) offered LiDAR overestimation of the true terrain 

surface under coniferous forest (of 31 cm), three other studies (1, 2 and 6) offered 

underestimation by approximately 10 to 25 cm (table 6.1). Reutebuch et al. (2003) obtained 

similar over-estimation to the results presented in this work, 18 cm compared to 23 cm, in 70+ 

year-old lightly thinned coniferous stands in Washington State, U.S.A. Slightly lower bias under 

the predominantly Douglas fir cover in Washington than the combined pine and fir coniferous 

species investigated in this study is expected, because the understorey vegetation under pine 

in summer is observed in this work to increase bias (see section 4.4.1). Mean offset under the 

Douglas fir species in this study is only 9 cm. The LiDAR underestimation of true terrain 

elevation observed by Norheim et al. (2002) (study 1) and Hodgson et al. (2005) (study 6) could 

again be reasonably explained by poor control point co-ordinate transformation and winter 

survey (with little understorey vegetation), respectively (see above); but bias of a similar 

magnitude was presented by Hodgson et al. (2003) for terrain estimates under pine during 

summer. Assuming that understorey vegetation was as dense under the pine forests of North 

Carolina as it was at Chopwell Wood in the summer of 2009, this underestimation is alarming. 

Moreover, the repeat determination of this negative bias in three separate studies (1, 2 and 6), 

reduces confidence in the 23 cm overestimation under coniferous forest acquired at Chopwell, 

although differences in method between the three published studies and this one are 

considerable. 
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Study (1) (2) (3) (4) (5) (6) (7) (8) Here 

Data Acquisition 

Date 

Sep 99 Jun 00 Mar-

May 99 

Oct 97 Mar 00 Jan, 

Feb 01 

Sep 98- 

May 03 

Oct 00 Jul 09 

Leaf-On or -Off ON ON ON ON OFF OFF Both ON ON 

GCP Technique GPS & 

TS 

RTK GPS & 

TS 

GPS & 

TS 

RTK RTK RTK & 

TS 

GPS & 

TS 

GPS, TS 

& TLS 

GCP Sampling 

Method 

random trans-

ects 

random random strat-

random 

trans-

ects 

random strat-

random 

strat-

random 

LiDAR Full Point 

Density (per m
2
) 

0.3 0.1 4.2 9 0.25 0.1 - 0.8 31 

Deciduous Type Mixed Dec  Dec Dec Dec Mixed Dec Dec 

GCP Count 444 281  ~1000 82 282 ~250 74 ~3,800 

Mean Offset -36 21  101 - -16 - 20 13 

Absolute Offset - 86   20 20 - - 24 

Std Dev 74 -  166 - - 8, 9 52 17 

RMSE - 122  195 26 27 - - 24 

Conifer Type Con Pine Con  Con Pine Con  Con 

GCP Count 81 112 120  119 113 ~250  ~3,800 

Mean Offset -16 -11 18  - -24 -  23 

Absolute Offset - 29 -  13 25 -  30 

Std Dev 27 - 18  - - 13, 11  18 

RMSE - 46 -  17 28 -  31 

Shrub/Brush Scrub Shrub   Brush Shrub  Shrub  

GCP Count 591 177   98 178  79  

Signed Offset -16 112   - -16  7  

Absolute Offset - 122   19 26  -  

Std Dev 99 -   - -  46  

RMSE - 153   23 36  -  

 
Table 6.1 Accuracy assessment results for all relevant published studies preceding this 

research. Where, in order of publishing date, (1) Norheim et al. (2002) for mixed forest in 

Washington; (2) Hodgson et al. (2003) for stream corridors in North Carolina; (3) Reutebuch et 

al. (2003) for conifer forest in Washington; (4) Clark et al. (2004) for tropical rainforest in Costa 

Rica; (5) Hodgson and Bresnahan (2004) for mixed forest in South Carolina; (6) Hodgson et al. 

(2005) for stream corridors in North Carolina; (7) Hyyppä et al. 2005 for mixed forest in Finland 

and (8) Su and Bork (2006) for deciduous forest in Canada. Accuracy statistics are given in 

centimetres and to the nearest centimetre. ‘GPS’ is static acquisition of GPS control points, 

‘RTK’ is acquisition of GPS control points with a rover and base-station, ‘TS’ is acquisition of 

control points with a total station, and TLS with a laser scanner. ‘Strat-random’ is a stratified-

random sampling technique for sampling control points. 
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Results for the root mean square error (RMSE) of LiDAR terrain measurements under 

coniferous forest are reasonably similar in all published studies (table 6.1). RMSE varies by 

approximately only 10 cm between studies 2, 5 and 6 and this work, and these consistent 

values for bias precision, in addition to the 23 cm value for bias calculated in this study, 

suggest that terrain overestimation of 25 to 45 cm can be expected when commissioning a 

survey with modern LiDAR technology over coniferous forest (Hodgson and Bresnahan, 2004; 

Hodgson et al., 2003; Hodgson et al., 2005). However, this is only valid under the assumption 

that the positive bias obtained in this study is typical of terrain measurements acquired with a 

state-of-the-art LiDAR system under coniferous forest and that the negative estimates of bias 

obtained in studies 1, 2 and 6 are not applicable to modern laser scanning, given that all three 

studies were conducted approximately a decade ago using now out-dated LiDAR technology. 

RMSE is higher under pine-only forest (average 35 cm) than both the mixed coniferous forest 

(17 cm) (table 6.1) and Douglas fir stands evaluated in this study (18 cm) so terrain 

overestimation appears to be consistently higher under pine canopy than other coniferous 

tree species. 

The precision of LiDAR terrain measurement under coniferous forest is very similar between 

this study (18 cm) and studies 1 and 7, (27 and 12 cm, respectively), and is identical to that 

found by Reutebuch et al. (2003) for coniferous forest in Washington (18 cm). Standard 

deviation values are consistently low across all studies and suggest that precision of 10 to 25 

cm can be expected of a LiDAR terrain survey under coniferous canopy. It should be noted that 

both Norheim et al. (2002) and Hyyppä et al. (2005) obtained lower values of precision under 

coniferous forest than deciduous forest, which contradicts the results presented in this study. 

Assessment results for shrub and brush cover are given in table 6.1, but as these types of 

environment were not (and could not be) investigated at Chopwell, they are provided only as 

reference. It is inconclusive whether LiDAR-derived terrain measurements under shrub over- 

or under-estimate the true surface elevation, but precision is relatively low (> 45 cm) (Norheim 

et al., 2002; Su and Bork, 2006). 
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Based on comparisons between published results and the bias and precision assessment 

carried out in this study, airborne LiDAR-derived terrain measurement accuracy of 

approximately 10-25 ± 20 cm is expected under deciduous forest and 20-45 ± 20 cm is 

expected under coniferous forest.  

 

6.1.3 Evaluation of point density on the quality of a terrain model 

 

The quality of a LiDAR-derived digital terrain model is controlled by the density and accuracy of 

terrain points contained within it. Topographic feature detection capability is heavily 

influenced by the quality of a terrain model, so the effectiveness of a model depends on 

terrain point density, bias and precision. The effect of high bias and low precision on a terrain 

model is relatively clear – the elevation at a particular location will not describe the true 

terrain elevation – but the effect of changing point density is less obvious and will be 

investigated in the following section. 

Raber (2003) and Raber et al. (2007) explored the effect of changing point density on terrain 

model accuracy across a range of land-cover classes, including deciduous forest, mixed forest 

and shrub. These studies involved testing the mean absolute error and RMSE between 

increasingly decimated terrain models of the same area, i.e. models generated with 1 of every 

2, 1 of every 4 etc. points in the original 0.6 points per m2 dataset, against field reference 

control points (Raber et al., 2007). Random error patterns were observed in the increasingly 

decimated terrain models across all land-cover classes, that is to say areas of decreasing 

accuracy were not spatially related to reductions in point density. In addition, several artefacts, 

including ‘crystal forests’ and ‘bomb craters’, were identified with increasing frequency in the 

terrain models of lower point density. The former refers to large triangular facets caused by 

single returns highly deviated from the general surface trend, and the latter to sub-ground 

outliers (Raber, 2003). Intensive outlier removal was conducted on the raw Chopwell Wood 

LiDAR data, so bomb craters were not a problem; but crystal forest artefacts have been 
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observed in the filtered terrain model and were especially evident on the backslope of Test 

Site 8 (see figure 5.28 in section 5.2.4). The presence of these artefacts indicates areas of the 

terrain model with insufficient detail to allow topographic feature recognition. 

Contrary to Raber’s work, Chow and Hodgson (2009) found that the absolute error from 

reference terrain elevation increased monotonically with declining LiDAR point density. 

However, the relationship they presented as ‘significant’ was based on using the original DTM 

as reference, rather than field-acquired ground control, and therefore seems self-evident. But 

this could equally be interpreted as advantageous in the context of understanding different 

point densities in the Chopwell Wood data, as this relative fall in accuracy reflects reduced 

DTM quality at low point density, with subsequent difficulty in detecting topographic features. 

Hence for different point densities under coniferous or deciduous forest cover, from the same 

original LiDAR data, higher or lower accuracy can represent the difference between detecting 

and missing a feature.  

Hodgson and Bresnahan’s (2004) study appeared to be one of the only ones to offer terrain 

point densities classified by forest cover, comparable to those presented in this work (see 

section 4.4.4). These are understandably hard to interpret, because raw mean LiDAR point 

density in Hodgson and Bresnahan’s study was 0.25 points per m2 in comparison to the 31 

points per m2 at Chopwell Wood, but the laser penetration rate though deciduous and 

coniferous canopy was given as 48 and 36 %, respectively (Hodgson and Bresnahan, 2004), in 

comparison to the 13 and 8 % calculated in this study. Importantly, the rate is higher under 

deciduous forest in both investigations, but a considerably higher proportion of laser pulses 

penetrated the canopy and understorey in Hodgson and Bresnahan’s study. This is likely 

explained by: (1) Hodgson and Bresnahan (2004) acquiring LiDAR data in leaf-off conditions, 

which heavily influences both penetration through deciduous canopy and though understorey 

vegetation under either deciduous or coniferous forest and/or (2) a universal difference 

between the attributes of deciduous and coniferous canopy in the temperate Chopwell Wood 

and boreal South Carolina forests that is not well understood from the information presented 
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in Hodgson and Bresnahan (2004). However, both studies suggest that the detail of a terrain 

model is typically higher under deciduous than coniferous forest, owing to a higher rate of 

laser penetration and subsequently greater terrain point density under broadleaf species. 

The effect of changing point density on the accuracy of a terrain model has not been 

established, with opposing views as to whether reducing point density is spatially related to 

loss in accuracy (Chow and Hodgson, 2009, Raber et al., 2007). But it is clear from the results of 

the clustering assessment in this study (section 4.4.2) that sub-canopy terrain models under 

both deciduous and coniferous forest exhibit intermittent areas of high and low detail, 

depending on gaps or low foliage density regions of the canopy. While deciduous species offer 

relatively higher terrain model detail, the quality of a model, whether under deciduous or 

coniferous forest, is particularly influenced by the level of terrain point clustering. 

The implications of varying terrain point density, accuracy and bias under deciduous vs. 

coniferous canopy, and of terrain point clustering, on archaeological feature prospection will 

be explored further in the next section. 
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6.2 Archaeological Feature Prospection with LiDAR-derived Terrain 
Models 
 

6.2.1 Minimum detectable feature size and shape 

 

To establish the viability of LiDAR-based survey for detecting archaeological features under a 

particular type of forest cover, the size and shape of the most challenging, but still detectable, 

feature must be determined. The primary control over this is the quantity (density) of laser 

reflections from the terrain surface, but a threshold minimum detectable size can initially be 

ascertained from the accuracy of the final LiDAR terrain in height and position. 

Assuming an area with unlimited terrain returns, the work at Chopwell Wood and results from 

other published studies suggest, based on mean offset, precision and RMSE between LiDAR 

and reference terrain data, that only a feature with an elevation signature (i.e. elevation 

relative to the surrounding area, on flat or sloped ground) of approximately >20 and >30 cm 

under deciduous and coniferous forest, respectively (table 6.1 in section 6.1.2), can be 

resolved. A lower feature is just as likely to be an artefact of measurement error or the 

modelling procedure representative of archaeological imprint in the topography. But 

realistically, even expert prospection in the field will also routinely miss such features, 

especially in shadowed areas or under shrub or brush (Doneus and Briese, 2006b). It may 

additionally be true that a feature smaller than these ‘limits’ may be detectable if the feature is 

covered by densely-packed LiDAR points, but the chance of such circumstances occurring is 

low given typical distance between terrain points of approximately 0.5 and 0.7 m for 

deciduous and coniferous forest, respectively (calculated from table 4.11 in section 4.4.4). 

Even over an area of maximum terrain point clustering, i.e. below a gap in the tree cover and 

exhibiting no understorey vegetation, the smallest possible point spacing of approximately 

0.18 m (based on the raw point density of 31 points per m2) is too wide for a feature with an 

elevation signature smaller than 20 cm to be identified. 
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The effect of LiDAR point coverage on the difference between detecting and the failure to 

detect particularly subtle archaeological features is illustrated in figure 6.1. These schematic 

diagrams highlight the difference between detecting (figure 6.1 A and B) and failure to detect 

(C and D) two small and subtle archaeological features typical of areas such as Chopwell Wood: 

a 30 x 100 cm mound, for example a barrow or small pile of rubble, and a 30 x 30 cm relict 

drainage gulley or trench. These feature sizes were selected based on the sizes of particularly 

difficult to detect features at Chopwell Wood and on those described in previous studies using 

high-resolution airborne laser scanners (e.g. Doneus et al., 2008; Gallagher and Josephs, 2008). 

It must be kept in mind that these diagrams only show cross-sections through features and 

that archaeological feature detection over terrain models is a three-dimensional process, but 

when LiDAR terrain points are spaced at approximately 0.5-0.7 m (the mean spacings under 

coniferous and deciduous forest at Chopwell Wood) as in figure 6.1 C and D, the topography of 

neither feature is adequately resolved. The shape of interpolated topography in figure 6.1 C 

and D would change if different points were removed from A and B (i.e. if the original data 

were equally decimated, but different points had, for example, penetrated the tree canopy as 

those shown), but any combination of points at 0.5-0.7 m spacing would not aid in the 

detection of either archaeological feature. 

The resolving power of a LiDAR system is further degraded as a result of error in position, with 

the horizontal accuracy of the LiDAR system employed in this study approximately ±20 cm at 

1000 m flying altitude (Optech ALTM Gemini Datasheet, 2004). Error in height can mean the 

difference between detecting a feature or not, but the magnitude of potential positional error 

was not high enough to regularly disguise archaeology on the ground at Chopwell Wood, given 

that even the smallest features analysed (e.g. hollows, edges etc.) were always >30 cm and 

typically >100 cm in diameter. These feature sizes are characteristic of industrial infrastructure 

investigated at other locations (e.g. Gallagher and Josephs) and the horizontal accuracy of a 

modern airborne laser scanning system is therefore generally not a limiting factor for 

conducting prospection over industrial archaeology.  
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Terrain point density was measured at 4.1 and 2.4 points per square metre under deciduous 

and coniferous forest, respectively, at Chopwell Wood, and in terrain modelled from these 

point densities, many archaeological features were identified under the forest canopy. The 

smallest features still resolved in detail were the hollows behind the western drift mine (see 

section 5.2.2) and the narrow pathway in the east of the wood (see section 5.2.3). Numerous 

additional features of similar size, approximately 50 cm height and < 100 cm width, were 

identified and validated during extensive prospection. However, a number of features, 

including the 50 to 100 cm high piles of building rubble under Douglas fir in the south of the 

wood, could not be resolved (see section 5.2.4).  

 

 

Figure 6.1 Schematic diagrams of interpolated surfaces (dashed red lines) through airborne 

LiDAR terrain returns (red points) against true ground elevation (black lines). (A) 30 x 100 cm 

mound, for example a barrow or small pile of building rubble, with low LiDAR point spacing. (B) 

30 x 30 cm gulley/trench, for example relic drainage or similar to feature edge, with low point 

spacing. (C) Mound with high (wide) point spacing, typical of that observed under Chopwell 

Wood using the laser scanner employed in this study. (D) Gulley with high point spacing. 

 

Previous studies have attempted to estimate threshold minimum LiDAR point densities 

required to identify various archaeological features. Challis et al. (2008) suggested that terrain 

modelled with LiDAR points at a density of 0.25 per m2 tended to overlook barrows and 

earthworks at the River Dove in Derbyshire and plantation terrace edges of < 50 cm height in 
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Maryland, U.S. were not well resolved at the same point density by Harmon et al. (2006). In 

contrast, Crutchley (2008) suggested that terrain point density of only 1 point per m2 was 

adequate to record the majority of approximately 1 m diameter barrows, enclosures and 

mining pits at a number of English Heritage sites (Bewley et al., 2005; Crutchley, 2006). 

Gallagher and Josephs (2008) used LiDAR terrain models generated from 0.7 terrain points per 

m2 under mixed forest in Michigan, U.S., to locate various linear and circular topographic 

depressions, later validated in the field as copper prospecting trenches and pits. They 

identified a minimum depth for detecting negative features, i.e. those below the surface 

(trenches, ditches etc.), as 1.5 m and indicated that differentiating between adjacent, similar 

features was challenging. They also noted inaccurate LiDAR elevations on the steeply-sloping 

surfaces of several larger relic mines, equivalent to the problems observed at the western Drift 

Mine at Chopwell Wood (see section 5.2.2).  

Barber (2007) identified LiDAR terrain point density requirements for various sizes of cultural 

heritage based on the probability of visualising a feature – the two sizes relevant to this study 

being 1 and 10 m diameter earthworks (highlighted in red in table 6.2).  For a ‘large 

earthwork’, point densities of 0.08 and 4 points per m2 provided 66 and 95% probability, 

respectively, that the feature will be visible; for a ‘small’ earthwork or ditch, the corresponding 

figures are 8 and 400 points per m2. These calculations take no account of realistic detection 

scenarios and are based on strict mathematical concepts, so caution must be taken in their 

interpretation, but they suggest that terrain modelled using 8 points per m2 LiDAR will 

regularly resolve the small earthwork/ditch type features characteristic of those at Chopwell 

Wood, e.g. the piles of building rubble or drift mine hollows. In this study, mean point density 

under deciduous forest is 4.1 points per m2, a density of the same order of magnitude to the 

66% detection probability, so it can loosely be assumed that just fewer than 66% of 

approximately 1 m sized features are detected with the LiDAR under deciduous tree species at 

Chopwell Wood. Lower point density under coniferous forest of 2.4 points per m2 indicates 

that less of these smallest features are identified. It must be noted that forest management 
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strategies were identified as being highly influential on laser penetration rates, and associated 

terrain point densities, through forest canopy (see section 4.4.4), so the separation of 

deciduous vs. coniferous canopy would not necessarily adequately explain feature detection 

potential at a particular stand. 

 

Feature 

size (m) 

Example feature Point density required to 

give 66% probability that a 

feature will be visible 

(points per m2) 

Point density required to 

give 95% probability that a 

feature will be visible 

(points per m2) 

10 Large earth work 0.08 4 

1 Small earth work/ditch 8 400 

0.1 Large stone masonry 800 40,000 

0.01 Large tool marks 80,000 4,000,000 

0.001 Weathered masonry 8,000,000 400,000,000 

 

Table 6.2 Appropriate point density requirements for resolving various sizes of cultural 

heritage, based on standard mathematics to determine appropriate minimum sampling 

intervals over a regular grid of data. The two feature sizes most relevant to this study are 

highlighted in red. This table is based on data from table 2.1 in section 2.2. Adapted from: 

Barber (2007). 

 

In an attempt to identify the minimum detectable feature size under coniferous and deciduous 

forest, one final issue must be addressed. It was discovered in section 4.4.2 that laser 

reflections from the sub-canopy terrain surface under all tree species at Chopwell were 

typically significantly clustered, both in two and three dimensions, resulting from selective 

absorption by individual canopies and/or understorey bushes/patches of vegetation. This has 

important implications for feature prospection, given that archaeology may be ‘hit’ or ‘missed’ 

depending on planimetric alignment with respect to canopy and understorey vegetation. In 

comparison to the bulk of published research into LiDAR-based archaeological feature 

prospection, point density in this study is relatively high – high enough even in sparse areas to 
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distinguish larger (> 1 x 1 m) features; but where features are as small and subtle as those in 

figure 6.1, comparative clustering can be the difference between detection (for example A and 

B) and not (for example C and D). This phenomenon has rarely been discussed in previous 

research, is difficult to predict and requires further research. 

Besides size, shape is also regarded as a possible control on archaeological feature 

detectability, whether owing to the pattern and density of LiDAR points over a feature or due 

to feature illumination parallel to the light source during post-processing (Devereux et al., 

2005; 2008; Harmon et al., 2006). While the latter limitation can typically be avoided by 

employing principal components analysis (Devereux et al., 2008), the former has been 

recognized as a limitation for prospection. Gallagher and Josephs (2008) evaluated relative 

feature detectability on two criteria: whether mining features were (a) linear or circular and (b) 

positive or negative (in elevation, with respect to the terrain surface). They determined that 

(1) some linear features were difficult to pick up due to their frequent similarity to pathways 

and stream courses, (2) circular features in groups often appeared as a single feature in the 

terrain model and (3) negative features were much clearer than positive ones. At the 

prospection stage of this work (see section 5.2), it was often noticed that linear features were 

more easily detected than circular features. This was a consequence of circular features often 

demonstrating similar topographic signatures to ‘false’ topography in the modelled terrain – 

that is, the topography caused by mistakenly accepted LiDAR reflections from plants/bushes in 

the terrain class at the filtering stage of data processing. 

With reference to the discussion above and secondary data acquired from published research, 

the following information is recognised as relevant to calculating a minimum detectable 

feature size. Consistent to both deciduous and coniferous forest are horizontal LiDAR system 

error of 20 cm and in situ reference (validation) data error of 7 cm, both random errors (see 

section 6.4.1). Vertical LiDAR point accuracies and horizontal point densities are approximately 

20 cm and 4.1 points per m2 and 30 cm and 2.4 points per m2 for deciduous and coniferous 

forest species, respectively. Based on threshold point density requirements calculated for 
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detecting typical small and subtle industrial archaeological features both in this work and 

previous studies, and on the theoretical feature detection probabilities calculated by Barber 

(2007) (table 6.2), a threshold minimum coverage of four LiDAR terrain points over a feature is 

required for detection. 

Minimum detectable feature size is calculated as approximately 50 x 100 cm (vertical x 

horizontal) under deciduous forest and 65 x 170 cm under coniferous forest. The vertical 

component of the minimum detectable feature size is a product of reference data error, 

vertical LiDAR point accuracy and the threshold minimum point coverage. The horizontal 

component of the minimum detectable feature size is a product of LiDAR system error, 

reference data error, horizontal LiDAR point densities and the threshold minimum point 

coverage. However, realistically, features are more easily detected and resolved where LiDAR 

terrain points are fortuitously clustered and linear features are characteristically more easily 

resolved than circular ones. 

 

6.2.2 Evaluation against the work of Michael Doneus’ group 

 

It is necessary when evaluating an innovative piece of research to compare results with 

relevant published data. If one particular study or series of work is outstanding as the foremost 

piece of research to date, it seems prudent to conduct supplementary assessment. The work 

by Michael Doneus’ group on full-waveform airborne laser scanning for the detection of Iron 

Age hillfort remains at Purbach, Austria represents the furthest anyone has taken the idea of 

LiDAR-based archaeology. The remains primarily comprise earthwork ditches and mounds 

(barrows) of a similar range of dimensions to, for example, the tubways, rubble piles etc. at 

Chopwell Wood, under a mixed oak and beech forest with a varying degree of understorey 

vegetation (Doneus et al., 2008). The contrasting methods of Doneus’s group and this work, 

and the success of each with feature detection, are evaluated. 
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Despite both studies paying close attention to the same objective while designing LiDAR 

classification procedures – namely to base filtering rigidity on the end product (archaeology) so 

as to limit feature smoothing and removal (Doneus and Briese, 2006a) – the structure of each 

method remains very different. Where filtering in this work utilised the progressive 

densification algorithm of Axelsson (1999; 2000) and field-derived training data to constrain 

processing parameters, Doneus’ group used robust linear prediction and surface regularisation 

(Briese et al., 2002; Kraus and Pfeifer, 1998; 2001; Pfeifer et al., 2001) coupled with a threshold 

procedure for refining terrain models by removing returns with large ‘echo width’ (Doneus and 

Briese, 2006a). Echo width, a measure of the range distribution of individual surface scatterers 

contributing to the echo, is a function available only to full-waveform sensors and highlights 

returns from multiple elements rather than the terrain (Doneus and Briese, 2006a). Doneus et 

al. (2008) identified a threshold echo width of 1.7 ns by exploratory analysis and removed all 

returns with echo width above this. The key distinction between these methods is that the 

procedure in this study utilised in situ data, obtained in on-site, while Doneus’ data processing 

chain was entirely remote from the study area. Clearly the latter is advantageous in terms of 

processing ease and requirements on time, due to lengthy GPS, Total Station and TLS data 

acquisition and registration procedures, but it can only be considered more suitable if it is of 

greater benefit to archaeological feature detection. 

It must be noted prior to comparing results that the Chopwell Wood and Purbach LiDAR 

surveys were conducted under very different conditions. Although full-waveform, the system 

used by Doneus’ group in 2006 provided average, raw point density of approximately 8 points 

per m2 (Doneus and Briese, 2006a) while the system used in this work provided over 30 points 

per m2. However, the Purbach survey (over deciduous forest) was performed in leaf-off 

conditions and, although filtered terrain point density was not declared, the laser penetration 

rate was undoubtedly higher than the approximately 10% observed at Chopwell Wood during 

leaf-on conditions (equating to a mean terrain point density of 3 points per m2) (see table 

4.11). It can, as such, be reasonably assumed that filtered terrain point density was very close 
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between the two surveys, but without foliage, terrain returns from the Purbach survey can be 

expected to demonstrate higher accuracy than those from the Chopwell survey. 

Doneus et al. (2008) suggested that barrows of down to 20 cm height could be detected in 

their terrain models following removal of forest clearance piles and understorey vegetation by 

echo width thresholding. The group added a considerable number of new features to those 

originally mapped by ground survey in the 1960s (see figure 2.4 D). Additionally, depressions 

between 7 and 20 cm in depth were identified on a number of barrows, interpreted as traces 

of looting (Doneus and Briese, 2006b). This capability in detection is an upshot of leaf-off 

survey, with terrain modelling elevation precision under deciduous forest only 17 cm in this 

work, thus limiting feature detection in leaf-on conditions to a scale of at least 20+ cm. This 

extended ability of the full-waveform system to model < 10 cm elevation topography over the 

discrete-pulse equivalent may be entirely attributable to canopy cover (i.e. leaf-off rather than 

-on) and subsequent variation in model accuracy; but alternatively it may, in part, be 

accounted for by superior performance of the echo-width filtering procedure. To fully 

understand the benefit, if any, of full-waveform LiDAR survey and echo-width filtering over 

discrete-pulse survey, both techniques would have to be tested under the same controlled 

environment, i.e. over the same study area and for either leaf-on or -off conditions. 

 

6.2.3 Evaluation of terrain model post-processing analysis techniques 

 

Various techniques have been advocated for visualising and analysing the LiDAR-derived 

terrain model, the majority of which have been utilised in this study (section 5.2). No 

technique has been rejected for poor performance or incompetence as all provide some level 

of additional support to the analysis, but this section will discuss the effectiveness of each and 

the appropriate scenarios where each should be employed, based on effectiveness vs. 

computation time.  
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Vertical terrain model exaggeration is employed as a first step of nearly every archaeological 

study and offers a rapid method of emphasizing artificial features in the topography 

(Crutchley, 2006; 2008). It was used in this work to accentuate the edges of the coal tubways 

(section 5.2.1) and avenue (section 5.2.3), much like Harmon et al. (2006) did to detect and 

map linear edge-based cultural features at Maryland plantation sites in the U.S., and is most 

effectively used to quickly identify features with obvious structure over smooth topography. 

Where features are hidden in discontinuous terrain, vertical exaggeration also emphasizes 

natural roughness and background noise (Crutchley, 2008). Difference and slope models were 

also used in this study at the preliminary stage of feature prospection, but typically suffered 

from over-illumination compared with PCA, and slope models were difficult to interpret owing 

to a lack of information on slope direction and therefore feature shape (i.e. ridge or gulley).  

So following the recognition of these deficiencies, Hesse (2010) designed the Local Relief 

Model (LRM), an evolution of a technique originally conceived by Doneus and Briese (2006b), 

which reflects less biased elevation information of small-scale features relative to the 

landscape at large than is typical in a simple difference model. The LRM method was employed 

in this work to enhance the pathway feature (section 5.2.3) by producing a terrain model 

purged of small-scale features, for example bushes or plants mistakenly classified as terrain 

during LiDAR filtering, and allowed a greater length of the feature to be identified. While it can 

therefore be argued that LRMs should always be preferred to difference or slope models, 

generating a ‘local relief’ product is time-consuming and hence an apparently inferior option 

may prove cost-effective for large data sets or for detecting less subtle features. For example, 

Sittler (2004) aimed to delineate a wide area of obvious linear ridge and furrow topography at 

an ancient agricultural site in Germany and, despite having to filter a dense mixed forest 

canopy from the raw LiDAR data set, difference models appeared to highlight features 

perfectly adequately. 

Image processing techniques are also employed to analyse terrain models for archaeological 

prospection, with colour composite images generated to visualise the same topography from 
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multiple shading angles simultaneously (Crutchley, 2008) and principle components analysis 

(PCA) used to create composite images possessing the property of ‘equal illumination’ from all 

directions (Devereux et al., 2008). Devereux et al. (2005) suggested that small features on 

sloped terrain can be hidden by over-illumination of a hillshade model and Crutchley (2008) 

indicated that linear features can be missed if they are oriented parallel to the light source, but 

PCA especially can minimise these problems. In this study, PCA was successfully exploited to 

identify the concave slope of a drift mine entrance and possible subsidence of the mine tunnel 

under thick pine forest (section 5.2.2). For this type of scenario, i.e. complex groups of features 

on rough topography or sloped terrain under dense vegetation cover, principal components 

analysis is ideal for maximising the probability of reliable feature detection and interpretation. 

However, ‘the method adds to the already significant burden of LiDAR processing time’ 

(Devereux et al., 2008) and must therefore be used selectively.  

As stated in the opening paragraph to this section, all terrain model visualisation techniques 

provide some level of additional support to airborne archaeological survey, but each method 

must be chosen carefully based on a particular landscape or scenario. Where vertically 

exaggeration of a hillshade model is capable of highlighting relic field boundaries or walls, for 

example, it is not able to differentiate subtle topographic earthworks from complex terrain in a 

situation more suitable to advanced image processing, like PCA. 
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6.3 Evaluation of Methodology 
 

While outlining a methodological framework for this study, field and laboratory procedures 

were justified against prevailing research and the study objectives. However, where alternative 

approaches and procedures were available, the suitability of the method must be evaluated 

with respect to the final results.  

 

6.3.1 Point cloud classification 

 

It has been mentioned that Michael Doneus’ group  designed an entirely remote procedure for 

filtering LiDAR data (section 6.2.2) (Doneus and Briese, 2006a) and that other attempts have 

been made to filter without training data (Pfeifer and Mandlburger, 2009). However, the LiDAR 

system utilised in this study lacked the capability to differentiate between similar objects on 

the ground, a capability that the full-waveform system has, and required additional data to 

tune the filter algorithm parameters. Overlooking logistical demands, the use of training data 

over full remote processing is not necessarily a disadvantage and has been employed 

successfully by Axelsson (2000) and Zhang et al. (2003). This success originally directed the 

choice and justification of ‘tuning’ the LiDAR filtering algorithm to known terrain points over 

alternative methods (see section 3.3.2). 

Yet the progressive densification algorithm is often employed without locally-acquired training 

data for commercial applications (G. Stenson, personal communication 2010), i.e. by using 

universal filter parameters (default to the computer software), and in these situations it is 

argued that the demands on field data acquisition outweigh the benefit to accurate terrain 

derivation. This may well be the case for wider-scale applications, such as flood modelling or 

planning tree felling operations; but where the aim is to identify sub-metre scale topographic 

features, terrain filtering parameters must be close to perfect (see section 5.2.4 for a case in 

point). In this study, the bias and precision of filtered LiDAR terrain data against reference data 
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of the true terrain elevation varied by only a few 10s of cm over a reasonably wide range of 

parameter values when identifying optimum filter parameters (table 4.3), suggesting that little 

is gained from fine tuning the filter. However, localised deviations between surfaces filtered 

with slightly different parameters are evident in figure 4.6, especially at (i) and (ii), and are 

universal to all forest-canopy filtered terrain models in this study.  As already stated, in order 

to identify subtle topographic features, terrain models must be proficiently filtered universally, 

i.e. in all areas. Obtaining low bias and high precision statistics with respect to reference data, 

when using default software parameters, are irrelevant if some areas containing 

archaeological features are filtered poorly. 

Further to evaluating the use of training data for constraining filter parameters, it is also 

necessary to assess the competence of the progressive densification algorithm (Axelsson, 

1999; 2000) against other available filters for archaeological applications. It was advocated in 

both Sithole and Vosselman’s (2004) and Meng et al.’s (2010) filter review papers as being one 

of, if not the most, capable terrain filters in forested environments and over discontinuous 

surfaces. Under quantitative assessment, it was recognised as the most accurate overall 

algorithm, i.e. for all tested landscapes/environments, in both reviews. 

There is no doubt that the algorithm is relatively strong at filtering trees and retaining rough 

topography, like that observed at Chopwell Wood, compared to other available algorithms, but 

it still has deficiencies over steep convex up-slopes (figure 5.17 A in section 5.2.2) and is 

frequently unable to remove dense understorey vegetation (e.g. transect 1A in figure 4.8 in 

section 4.4.1). However, like Doneus and Briese’s (2006a) addition of echo width thresholding 

to the linear prediction and surface regularisation algorithm in their archaeologically-oriented 

study, the progressive densification algorithm could be updated in future work to counter 

these deficiencies, for example by using an additional segmentation-based, region-growing 

function (e.g. Nardinocchi et al., 2003) to help to discriminate between areas of terrain and 

localised groups of laser returns over low plants or bushes. 
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6.3.2 Accuracy assessment 

 

Given consensus in the published research over the most suitable method for conducting 

accuracy assessment, i.e. of calculating ‘closeness statistics’ between the elevation of filtered 

LiDAR terrain and field-acquired reference data, there was little need or sense in attempting a 

new approach (Clark et al., 2004; Hodgson and Bresnahan, 2004; Norheim et al., 2002). Yet 

considerable diversity between studies in the type of statistic used indicates that it is prudent 

to evaluate where the accuracy and bias assessment carried out in this work lies within this 

wider research framework.  

Values for mean (‘signed’) offset, absolute offset, standard deviation of offset and root mean 

square error were generated in this work, but previous studies tended to use only one or two 

of these and not the same ones (see table 6.1 in section 5.1.2). These tests measure bias and 

precision against reference data, so making robust comparisons between studies utilising 

different tests is extremely difficult.  

Attempts have been made in previous research to isolate the relative contribution of various 

sources of error to the total error obtained during accuracy assessment (Hodgson and 

Bresnahan, 2004; Hodgson et al., 2005; Su and Bork, 2006). The sources of error segregated in 

published studies include: LiDAR system error, in situ control (reference) point error, error 

caused by sloped terrain and interpolation error. By removing these components, the true 

capability of LiDAR as a technique for modelling terrain can be determined (e.g. Hodgson and 

Bresnahan, 2004). The drawback of this development to the accuracy assessment is that it is 

rarely performed, principally owing to intensive requirements for supplementary data 

collection and processing. The evaluation of kriging interpolation in section 4.3 was not of the 

required standard to identify the true interpolation error component, as this processing step 

was exclusively conducted to assess a range of interpolation techniques against each other. 
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6.4 Sources of Error 
 

Many sources have been cited as contributing error to the processed LiDAR terrain data and 

they are now outlined. Errors inherent within the study are divided into three main sections: 

those associated with the in situ field data, with the airborne LiDAR data and with the 

contextual data. 

 

6.4.1 Field data 

 

Reference data for validating and testing airborne LiDAR include those collected with 

differential GPS, total station (electronic distance measurement) and terrestrial laser scanning 

(TLS). The latter two systems offer typical three-dimensional accuracy of ±1 and < ±3 mm, 

respectively (Leica TCRP1205 Datasheet, 2009; Trimble GS Series Datasheet, 2005). Inherent to 

the TLS sensor are a number of component errors, e.g. those induced with low signal to noise 

ratio or at scan borders, and correspond to the same problems with the airborne system 

(section 6.4.2); but at typical terrestrial scanning ranges of <20 m (2% of the standard ALS 

range), their effects were insignificant. Dominant over the accuracy of the reference data was 

error relating to the differential GPS. As the control points measured with the total station and 

TLS were registered to a national co-ordinate system with GPS reference (‘base station’) 

points, any error in the base station was translated to its associated sub-group of control 

points. Additional error was generated by inaccurate registration of a terrestrial LiDAR point 

cloud, which was common given the complexity of the procedure (see section 3.4.1); but 

where data were checked following registration, the magnitude of this component was 

characteristically low compared to total error. Typical dGPS vertical and horizontal accuracy 

was ±1 and ±1 cm, respectively, for base station locations, with subsequent translation of ±1 

cm base station accuracy to all TLS and total station reference points, and ±7 and ±2 cm for 

direct measurements under the forest canopy (utilising aerial extension capabilities). One 
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centimetre error in reference data was at least an order of magnitude smaller than typical 

three-dimensional error in the airborne LiDAR data (see section 6.4.2). 

In addition to that introduced during field acquisition of elevation control points, error was 

introduced during individual tree attribute data acquisition procedures. Stem diameter (at 

breast height), stem height and canopy base height contributed to stand-scale canopy 

characteristics via the calculation of stand basal area, canopy density and canopy height 

(through allometric relationships between forest variables) (see section 3.2.2). Girthing tape is 

accurate to the nearest centimetre, but measures in rounded-down centimetre classes, so 

introduces systematic error (underestimation) at each stem. Given that basal area and stem 

density are proportional to the sum of squares of stem diameters, potential systematic error 

was < 1*N2 cm where N was the number of stems at a sample site. However, stem density was 

calculated to a hundredth of a hectare (i.e. to the nearest 100 m2; table 4.7) and even if DBH 

was consistently underestimated for every tree at the site with most stems, Site 8 

(approximately 250 stems), stem density would be underestimated by only 6 m2. Human error 

introduced when measuring stem height and canopy base height with the laser hypsometer 

was harder to quantify. The rangefinder offers accuracy of ±10 cm but measurements were 

taken to the nearest 50 cm which, following experimentation, was found to eliminate the 

typical standard deviation resulting from human perception of highest branch or lowest live 

branch in repeat measurements. This method was proposed and justified by Clark et al. (2004). 

Human error was also introduced in the estimation of understorey vegetation cover at field 

test sites. Vegetation height was measured to ±5 cm with a tape, but sampling points were 

randomly distributed which potentially introduced bias to final mean height calculation. In 

fact, sampling could not be described as totally random due to the selection of sampling points 

by field workers on-site rather than by a computerised (unbiased) system. Severe human error 

is associated with estimating vegetation density and for this reason it was recorded to the 

nearest 5% cover, with final estimates on ‘volume of cover’ subsequently calculated to the 

nearest 100 m3 (table 4.7 in section 4.4.1). This volume statistic only needed to be a loose 
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estimate, i.e. no better than ±50 m3 accuracy, due to vast differences between test sites (table 

4.7) and the requirement to simply establish whether a relationship existed between 

understorey and LiDAR terrain accuracy, bias and point density (figure 4.14 A and table 4.8 in 

section 4.4.1), not determine a robust equation for a potential trend. 

 

6.4.2 Airborne LiDAR data 

 

It is worth noting prior to outlining the sources of error associated with LiDAR data that they 

are often very difficult to quantify. Attempts have been made to ‘budget’ error by source; for 

example, Hodgson and Bresnahan (2004) discriminated between errors caused by sloping 

terrain, by the modelling (interpolation) procedure and by the system itself. With the 

exception of an attempt to identify the influence of terrain slope on total error in LiDAR 

elevation (see section 4.4.3), the processing requirements to conduct such a comprehensive 

investigation were considered beyond the scope of this study. The following section will 

outline sources of error associated with the LiDAR system and registration and classification 

procedures before presenting estimates of quantity. 

Sources of error relating to the LiDAR system and how it measures objects at the Earth’s 

surface were identified in section 1.2.3 and, as stated, are related to (1) position, (2) optical 

transfer or (3) detection. These include: (1) poor communication between GPS base station 

and aircraft; insufficient satellite reception; Inertial Navigation System (INS) misalignment and 

gyro drift; and scan border phenomena; (2) attenuation and scattering of the laser beam off 

dust particles or precipitation; (3) poor target reflectivity; ‘time-walk’ over sloped terrain and 

low range resolution (Baltsavias, 1999a; 1999b; Huising and Gomes Pereira, 1998 ; Kraus, 

2004). 

Poor calibration of LiDAR point clouds to reference data, misregistration of clouds to each 

other and poor quality reference data introduce systematic positional error (Kraus and Pfeifer, 

1998). Flight-strip adjustment procedures are based on the method first detailed by Kilian et 
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al. (1996) of transforming strips to a homogenous exterior coordinate system via registration 

of pairs of tie-points within point clouds. However, since registration was carried out by the 

service provider, the author was unable to obtain comprehensive information on calibration 

errors. 

Error associated with LiDAR classification is divided into that relating to the filtering algorithm, 

to incorrect parameter determination and to commission and omission errors introduced into 

the final terrain data in spite of incorrect parameters. The relative merits of Axelsson’s (1999; 

2000) progressive densification algorithm and the ‘training data technique’ for constraining 

filter parameters were discussed in section 6.3.1, and although each appears favourable when 

compared with alternatives, both are imperfect and introduce error into filtered terrain 

models. In their quantitative filter comparison study, Sithole and Vosselman (2004) 

demonstrated that the progressive densification algorithm was the best performer over an 

(admittedly urban) test site with vegetation cover (figure 4 in Sithole and Vosselman, 2004), 

with only 3% of terrain returns mistakenly rejected (Type I errors) and 6% of non-terrain 

returns accepted (Type II errors). These percentage errors cannot, however, be extrapolated to 

all environments. While more complex training datasets have been employed to determine 

filter parameters, i.e. using different parameters based on regional gradient or environment 

type (Sithole, 2001), little information has been published on the degree of error reduction 

associated with more comprehensive reference data. 

Although their analysis was based on outdated laser scanning technology (in addition to 

theoretical considerations), Huising and Gomes Pereira (1998) presented a thorough 

evaluation of LiDAR-based errors, with errors separated by environment type (table 6.3). 

Indeed, when these values are compared with updated measurements, the lower end of the 

estimates in Huising and Gomes Pereira (1998) can be considered close to modern error values 

(e.g. GPS base station errors from this study; vegetation errors from Pfeifer et al., 2004; slope 

errors from Hodgson and Bresnahan, 2004, etc.). 
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Detector bias and laser pulse delay relate to the sensor range resolution, which is typically 5 

ns, corresponding to a minimum detectable height difference at the Earth’s surface of 

approximately 15 cm (Kraus, 2004). Doneus and Briese (2006b) noted that this provided a 

vertical threshold for detecting archaeological features in discrete-pulse LiDAR systems of a 

minimum 15 cm height above adjacent topography. An estimate of horizontal accuracy was 

not offered by the service providers, but for the LiDAR system employed in this study it was 

approximately 20 cm at 1000 m flying altitude (Optech ALTM Gemini Datasheet, 2004). 

Additional system error, both systematic and random, is generated by the GPS and INS units, 

but is typically centimetre-scale (table 6.3) and can be limited through high quality surveying. 

At the data calibration stage, 6 cm systematic error in height was removed from the point 

cloud after evaluation against ground control (section 3.4.2).  

Understorey vegetation (causing type II filtering errors) and ‘time-walk’ over sloped terrain 

have been argued as plausible explanations for the systematic overestimation by the LiDAR of 

true terrain elevation at Chopwell Wood (section 4.4.1). Huising and Gomes Pereira (1998) 

suggested that understorey and ‘time-walk’ typically contribute decimetre- and centimetre-

scale error, respectively (table 6.3). Without error budgeting, the contribution of each factor to 

total terrain elevation error at Chopwell Wood cannot be offered. However, with bias between 

processed LiDAR terrain and reference elevation calculated as 13 and 23 cm for deciduous and 

coniferous forest, respectively (see table 4.6 in section 4.4.1), the contribution of either factor 

cannot be greater than decimetre-scale. Total random error (precision), a combination of 

system and terrain roughness/reflectivity errors (table 6.3), was 17 and 18 cm for deciduous 

and conifer forest, respectively (see table 4.6), which are again comparable to the lower end of 

the magnitudes presented by Huising and Gomes Pereira (1998) (among other studies, see 

section 6.1.2). 
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Table 6.3 Quantification of systematic and random errors based on the theoretical 

considerations of Lemmens and Fortuin (1997), with the type of terrain cover closest to 

Chopwell Wood highlighted by the red box. Source: Huising and Gomes Pereira (1998). 

 

6.4.3 Contextual Data 

 

Of lesser significance to the study than sources of error in the field or airborne LiDAR data, but 

still relevant, the context data (GIS, mapping and aerial photography) introduced some 

additional error. The accuracy of the Forestry Commission GIS is relevant to the quantitative 

section of this work as it was utilised to investigate LiDAR terrain point density across the full 

study area (section 4.4.4).  However, while sources of error in the GIS include incorrect forest 

compartment boundary locations, incorrect compartment areas and mistaken tree species 

classification, they were not estimated by the Forestry Commission (1998) and therefore 

cannot be quantified. Error in feature position is an issue relevant also to the historic mapping, 

given the lack of GPS capabilities when these maps were created; but these data were only 

used for qualitative interpretation and validation of archaeological features. More important 

to feature interpretation (section 5.2) was human error introduced by misinterpretation of 

mapping and historic aerial photography.  
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Chapter 7. Conclusion and Future Developments 
 

7.1 Conclusion 
 

Airborne laser scanning offers a promising solution to one of the few obstacles remaining to 

modern, remote archaeological prospection – that of detecting features hidden under 

woodland. With the aim of evaluating this potential, airborne LiDAR data were acquired from a 

helicopter over Chopwell Wood, a mixed coniferous and deciduous forest in the northeast of 

England. The wood is characterised by rough topography and sharp elevation changes, and 

contains numerous archaeological features, most of which post-date the Industrial Revolution 

and include coal mining and transportation infrastructure. It therefore represented an ideal 

location at which to test the limit of laser scanning for airborne reconnaissance of 

archaeological features. 

In order to conduct effective prospection, digital terrain models (DTMs) were generated from 

the LiDAR data through classification and modelling procedures. At the classification stage, the 

LiDAR data were filtered into terrain and non-terrain categories with the progressive 

densification algorithm, designed by Axelsson (1999; 2000). Optimum parameters for the 

algorithm were identified and validated with a training data set, consisting of in situ terrain 

reference points collected at a field sample site considered characteristic of the Wood at large. 

These parameters describe filtering angle and distance thresholds, and were calculated as 11.2 

degrees and 26 cm, respectively. Following classification of the full LiDAR data with the 

optimum parameters, the kriging technique was employed to interpolate terrain points to 

digital terrain models. 

Further in situ field data were collected from eight sample sites in the Wood to evaluate the 

accuracy of the filtered LiDAR terrain data. Sample sites covered a range of tree species, 

topographic roughness and gradients, and understorey vegetation densities, so as to test the 

accuracy of the filtered LiDAR terrain data in different environments. LiDAR terrain data and 

reference data were compared, yielding precision of 18 cm for deciduous forest and 17 cm for 
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coniferous forest. LiDAR terrain data were found to overestimate the true terrain surface by 13 

and 23 cm for deciduous and coniferous forest, respectively. This overestimation was 

principally attributed to erroneous inclusion of laser returns from understorey vegetation in 

the terrain (rather than non-terrain) category at the filtering stage of data processing. These 

values compare favourably with previous research, but owing to a lack of consistent 

methodology between published studies in this field, it is difficult to cross-compare results 

among those that are published.  

Both LiDAR terrain point accuracy and density are critical controlling factors on digital terrain 

model quality which in turn affects archaeological feature detection. Terrain point density was 

calculated as the percentage of laser returns penetrating the forest canopy, normalised by the 

mean raw LiDAR point density for the entire study area (31 points per square metre), because 

changing helicopter flying height and inconstant scan line overlap meant that the point density 

of the raw data was variable. Point density was calculated for the entire study area by tree 

species, with mean point density under deciduous forest of 4.1 points per square metre and 

under coniferous forest of 2.4 points per square metre. The penetration rates over deciduous 

and coniferous canopy were 13.2 and 7.9%, respectively. Forest management practices, 

especially thinning operations, were identified as being highly influential over the rate of 

canopy penetration at a particular stand. 

The ability to detect and resolve archaeological features was evaluated by considering a 

number of case studies at Chopwell Wood. A relict coal tubway of 5 m depth and 2 to 3 m 

width under pine, a drift mine and tunnel subsidence with < 1 m depth hollows under pine and 

an avenue and path combination of < 50 cm elevation under beech were all identified and 

resolved in detail with the LiDAR terrain models – although typically only following post-

processing with advanced artificial illumination and exaggeration techniques. However, at one 

site, < 1 m high piles of building rubble and a 2 m deep man-made channel from a (now 

demolished) 150+ year old house under Douglas fir were resolved either poorly or not at all. 

Considering these cases, in addition to the quantitative analyses of LiDAR terrain point 
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accuracy and density, threshold minimum detectable feature size was estimated at 

approximately 50 cm height and 100 cm diameter under deciduous forest and approximately 

65 cm height and 170 cm diameter under coniferous forest. These values were based on LiDAR 

terrain point density and accuracy, LiDAR system accuracy and the accuracy of reference data 

(ground control). Features smaller than these thresholds, like the < 50 cm elevation avenue 

and pathway for example, could only be resolved when they demonstrated a particularly 

obvious shape, i.e. extreme linearity. 

Modern airborne laser scanners, like the one employed in this study, are able to record high 

quality terrain measurements below all species of forest. Successive measurements of the 

terrain surface are typically less than one metre apart and areas of greater than 2.5 km2 can be 

surveyed in a single day. In comparison to existing ground survey techniques, for example field 

survey and image photogrammetry, airborne LiDAR offers unrivalled speed of data acquisition 

(including data processing obligations) and is accordingly the most cost-effective option when 

surveys over areas greater than approximately 1 km2 are required and field survey becomes 

impractical (Pfeifer and Mandlburger, 2009). LiDAR technology has the ability to revolutionise 

archaeology, with terrestrial scanners already commonly utilised to document recognised 

artefacts (Barber, 2007; Ortiz et al., 2006). Previous research has suggested that topographic 

earthworks can be identified under specific, characteristically monoculture, forests (Devereux 

et al., 2005; Doneus et al., 2008); but this study has tested the capability of airborne LiDAR to 

detect and resolve archaeological features under a variety of tree species and forest 

management situations. Furthermore the LiDAR data were acquired when deciduous trees 

were in-foliage (leaf-on) and understorey vegetation was at peak annual cover and density, in 

order to suitably evaluate the limits of the technique. Results have reinforced the early 

promise identified in pilot studies, with archaeological features from the Industrial Period, 

including relic mineral tubways and mine shafts, detected under a range of forest species, both 

coniferous and deciduous. Airborne LiDAR represents an ideal solution for the rapid 

visualisation of sub-canopy topography over a wide area, and with a view to detecting and 
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resolving archaeological features for either remote prospection or identification of interesting 

sites for future field survey, it has significant scientific benefits. 

With regard to the original research aim – to evaluate the capability of multiple-return 

discrete-pulse airborne LiDAR for detecting and resolving archaeological features under mixed 

coniferous and deciduous forest – the following conclusions are presented: 

1. In managed deciduous and coniferous forest, airborne LiDAR terrain data overestimated 

the elevation of the true terrain by 13±17 and 23±18 cm, respectively. This was during 

deciduous leaf-on conditions when understorey vegetation was at peak density. The 

principal explanation for this overestimation was the mistaken classification of laser 

reflections from understorey vegetation as terrain during LiDAR filtering. 

2. The proportion of laser reflections from the terrain, i.e. penetrating the forest canopy, was 

greater under deciduous forest at 13.2% than under coniferous forest at 7.9%. 

3. Based on the canopy penetration rates for airborne LiDAR over deciduous and coniferous 

forest and the accuracy of laser returns from the terrain, sub-canopy archaeological 

prospection through airborne laser scanning is concluded as being more viable under 

deciduous than coniferous forest, even in summer deciduous leaf-on conditions. 

4. By combining canopy penetration rates and terrain point accuracies with the information 

obtained from conducting sub-canopy prospection over a range of archaeological feature 

sizes and shapes, the minimum feature sizes detectable using state-of-the-art discrete-

pulse airborne LiDAR under deciduous and coniferous forest were estimated as 50x100 cm 

(vertical x horizontal) and 65x170 cm. Linear shaped features were more easily detected 

than round features. 
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7.2 Future Developments and Recommendations 
 

With the aim of formulating an effective framework for sub-forest canopy terrain modelling 

and associated archaeological feature prospection strategies, research must supplement 

future developments in airborne LiDAR technology. At present, the processing chain for 

deriving digital terrain model (DTM) products is assembled through a combination of choices 

made by the LiDAR data service providers and/or the data users. Preferences vary over the 

LiDAR data acquisition procedure, LiDAR registration and calibration procedure, LiDAR 

classification procedure and choice of filtering algorithm, and method of acquisition and 

quantity of in situ reference training data for classification, and indeed whether reference data 

are even used. That is not to say the methodology presented in this study outlines a list of 

perfect options, but a clear framework for processing LiDAR terrain models, with a view to 

detecting archaeological features, must be developed through research, before the 

advantages of superior laser scanning technology can be exploited. 

 

7.2.1 Using airborne LiDAR data 

 

A considerable amount of scientific research has gone and is still going into developing 

increasingly effective LiDAR terrain filtering algorithms. The reviews of Sithole and Vosselman 

(2004) and Meng et al. (2010) tested the performances of most of the commercially available 

algorithms at filtering the same data sets and developers will build upon these results with 

future evolutions of their algorithms or new concepts. However, little can likely be done to 

improve the best algorithms, so perhaps more important is the type and detail of the 

reference training data set employed to constrain optimum filtering parameters. Different 

data sets (and consequently different parameter combinations) could be acquired for varying 

land cover type and/or tree species, for example above and below 45 degree terrain slope or 

coniferous and deciduous forest. Likewise, more comprehensive in situ reference data could 
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be collected for assessing the accuracy of LiDAR terrain under, for example, a greater range of 

tree species than the pine, Douglas fir and beech investigated in this study, or different levels 

of terrain roughness or slope. 

One noticeable controlling factor on the quality of LiDAR derived terrain models was the 

degree of local terrain point clustering, resulting from variable laser penetration through tree 

crown/gaps and understorey shrub and bushes. It would be beneficial to be able to identify 

stands prior to LiDAR data acquisition likely to cause significant clustering, which could 

subsequently be flown twice or purposely included in multiple scan lines to increase the 

chances of penetration through tree crown or shrub. This would require canopy gap analysis or 

preliminary low-density laser scanning prior to full survey, in order to classify complex areas, 

with obvious caveats that greater surveying cost and processing time would be required. 

 

7.2.2 Defining a methodological framework 

 

Making improvements to the LiDAR data processing steps, like developing increasingly 

effective filtering algorithms and more comprehensive training data sets for example, will 

enhance the quality of processed terrain models. But, in order to rapidly improve the viability 

of airborne LiDAR as a technique for sub forest-canopy archaeological feature prospection, it is 

perhaps more necessary to define a methodological framework to guide future research. It is 

essential that research is directed towards identifying effective procedures at two key areas of 

the processing chain: terrain filtering and accuracy assessment. Filtering algorithms with a 

particular focus on retaining topographic features should be evaluated against each other by 

testing classification accuracy on the same LiDAR data sets, i.e. across a range of 

environments, forest species and over various sizes and shapes of archaeological feature, in 

much the same way that broad filtering reviews were conducted by Sithole and Vosselman 

(2004) and Meng et al. (2010). Likewise, methods for assessing LiDAR terrain point or model 
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accuracy against reference data should be evaluated, given that current procedures are 

exceptionally diverse (highlighted by table 6.1 in section 6.1.2). 

Only by identifying an effective terrain classification procedure (including choice of filtering 

algorithm) and method of accuracy assessment can future research be organised and valid 

comparisons be made between studies conducted at different locations. By resolving 

inconsistencies in method, a research framework can be established to direct future study. 

After the entire LiDAR terrain filtering and modelling procedure is regulated, focus can be 

placed on evaluating the true potential of airborne laser scanning for sub-forest canopy 

archaeological feature prospection and developing strategies for future commercial and 

research endeavours. 

 

7.2.3 Combining several remote sensing approaches 

 

Various remote (and also in situ) techniques can be utilised collectively to improve 

archaeological survey strategies. Barnes (2003), Coren et al. (2005) and Rowlands and Sarris 

(2007) all supplemented LiDAR terrain model-based feature detection with additional data 

including multi- and hyper-spectral satellite imagery, oblique aerial photography and LiDAR 

intensity data. Typically each technique contributed to overall feature detection capability, but 

each tended to specialise in detection of a specific type of feature, e.g. buried or non-buried 

features, and only the LiDAR could provide information under forest. Only LiDAR co-ordinate 

(rather than intensity) data has, as of yet, been employed where it is necessary to prospect 

below forest canopy. The use of additional remote sensing technologies is subject to future 

research into, for example, LiDAR intensity data for establishing better terrain classifications or 

aerial photography for canopy gap analysis prior to laser scanning (see section 7.2.1). The 

viability of combining techniques is conditional on this research and whether it indicates that 

the costs of adding further apparatus to the airborne surveying platform or obtaining 
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secondary data, and additional processing requirements, enhance prospection capabilities 

sufficiently. 

 

7.2.4 Further research 

 

With LiDAR technology evolving so rapidly, for example the pulse rate of an airborne sensor 

can realistically double in a couple of years, it is crucial that research is sustained throughout 

sensor development. The preceding sections have identified a number of areas requiring 

further attention and a concerted effort towards standardising future research methodology 

would accelerate progress. The potential for airborne laser scanning to revolutionise 

archaeology over forested landscapes is evident in the results presented here and a second, 

NERC-funded survey to acquire airborne LiDAR data over Chopwell Wood during leaf-off 

conditions has been commissioned. But the continued exploitation of this technology by 

groups with archaeological expertise, rather than exclusively technical expertise, would help to 

improve and accelerate data pre-processing procedures and increase awareness of the 

technique in the archaeology community, thereby directing funding for further research.  
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Appendices 
 

Appendix 1 
 

Tree species codes for all species at Chopwell Wood: 

 

SP Scots pine 

CP Corsican pine 

LP Lodgepole pine 

EL European larch 

JL Japanese larch 

HL Hybrid larch 

NS Norway spruce 

SS Sitka spruce 

DF Douglas fir 

WH Western hemlock 

GF Grand fir 

NF Noble fir 

LC Lawsons cypress 

OK Oak 

BE Beech 

BI Birch 

SY Sycamore 

MC Mixed coniferous 

MB Mixed broadleaf (deciduous) 

 

 

 

 

 

 

 

 



216 
 

Appendix 2 
 

Tree species groups for all species at Chopwell Wood: 

 

Group 1 – Pine Family minus firs: 

Scots pine, Corsican pine, Lodgepole pine, European larch, Japanese larch, Hybrid larch, 

Norway spruce, Sitka Spruce, Western hemlock, mixed coniferous 

 

Group 2 – Fir type: 

Douglas fir, Grand fir, Noble fir 

 

Group 3 – Cypress Family: 

Lawsons Cypress 

 

Group 4 – Beech, Elm, Sycamore and Ash families: 

Oak, Beech, Sycamore, Mixed broadleaf 

 

Group 5 – Birch family: 

Birch 

 

 

 


