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ABSTRACT

A one-parameter family of exact solutions describing the bifurcation of a steady two-dimensional current

with uniform vorticity near a gap in a thin barrier is found. The unsteady evolution of source-driven flows

toward these steady states is studied using a version of contour dynamics, appropriately modified to take into

account the presence of a barrier with a single gap. It is shown that some of the steady solutions are realizable

as large-time limits of the source-driven flows, although some are not owing to persistent eddy-shedding

events in the vicinity of the gap. For the special case when there is zero net flux through the gap, numerical

experiments show that the through-gap flux of vortical fluid increases with the width of the gap and that this

flux approaches a steady limit with time.

1. Introduction

Circulation in the oceans is characterized by the

presence of intense boundary currents. These vary from

large-scale currents such as the Gulf Stream, deep

western boundary currents, and the buoyancy-driven

Leeuwin Current to smaller coastal flows driven by river

outflow plumes under the influence of the Coriolis force.

In many cases the boundaries along which these currents

flow are not perfect barriers but instead are perforated

by a series of gaps and straits. Many of the world’s

oceans and marginal seas are connected through such

narrow passages. Examples include numerous island

arcs in the ocean, including the Indonesian Archipelago

connecting the Pacific and Indian Oceans and the Lesser

Antilles, which forms a common boundary between the

Caribbean and the tropical Atlantic. Additionally, the

abyssal ocean can be thought of as a series of subbasins

separated by steep midocean ridges, which are ‘‘leaky’’

in the sense that some interbasin flow is permitted

through narrow fracture zones.

Gaps and straits between ocean basins play an im-

portant role in regulating interbasin volume transports

and fluxes of quantities such as heat and salt. Ocean-

ographers have long recognized the importance of gap

zone regions and have conducted theoretical and ob-

servational studies of various dynamical processes asso-

ciated with such regions. For example, Pedlosky (2001)

has studied the behavior of incident Rossby waves on

an idealized meridional barrier with gaps, demonstrat-

ing their transparency. A gap in the Lomonosov Ridge,

connecting two main basins of the Arctic Ocean, con-

trols deep water renewal in the region and has been

the subject of a field study by Timmermans et al. (2005).

Sheremet (2001), using numerical methods, has quan-

tified the penetration of a viscous western boundary

current through a gap in a meridional barrier and, sub-

sequently, has performed related laboratory experi-

ments (Sheremet and Kuehl 2007). Herbaut et al. (1998)

showed that the bifurcation of the coastal current near

the Strait of Sicily is consistent with linear Kelvin wave

dynamics. Pratt and Spall (2003) have modeled linear

barotropic wind-driven flow between basins separated

by a ‘‘porous’’ ridge (i.e., one with many gaps) and ob-

tained a differential equation whose solution determines

the magnitude of the zonal flow through the ridge. Nof

and Im (1985) constructed a model for the nonlinear

flow of a buoyant current through a gap and applied it to

the passage of the coastal current along the Alaskan

coast through Unimak Pass.

Johnson and McDonald (2004a, 2005) have studied

the motion of barotropic vortices in the presence of an

infinite barrier perforated by either a single gap or two

gaps. They obtained exact analytical expressions for

the trajectories of point vortices and compared these to
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numerical computations of finite area patches of con-

stant vorticity. In the case of point vortices, Crowdy and

Marshall (2006) subsequently extended the results of

Johnson and McDonald to barriers having an arbitrary

number of gaps. Recently, Crowdy and Surana (2007)

have detailed a method for implementing contour dy-

namics in domains with arbitrary connectivity, and this

method could be used to study the motion of vortices

near barriers with multiple gaps.

In this work, coastal currents are modeled as thin,

two-dimensional, layers of inviscid fluid with anomalous

(constant) vorticity surrounded by a larger ocean having

zero vorticity. The anomalous vorticity of the current

means that the layer of fluid will propagate parallel

to the coastal barrier owing to the image effect (e.g.,

Stern and Pratt 1985; An and McDonald 2004, 2005). In

this two-dimensional framework, the vorticity v has the

usual fluid dynamic definition v 5 yx 2 uy, where (u, y) is

the two-dimensional velocity field. This is equivalent to

the potential vorticity for a homogeneous fluid of con-

stant depth on the f plane. While many coastal currents

owe their origin to a balance between buoyancy and

Coriolis forces, it is also the case that many do have

anomalous vorticity and that this vorticity plays a role in

their evolution (e.g., Kubokawa 1991). The assumption

of constant vorticity means that the vorticity advection

equation is satisfied trivially in the interior of the fluid,

but the boundary separating regions of constant vortic-

ity evolves in a complicated, nonlinear way and defines a

difficult free boundary problem. It is, however, the as-

sumption of constant vorticity that enables the use of

powerful complex variable methods to find exact solu-

tions for the structure of bifurcating currents near a gap

(section 2) and allows the accurate computation of the

evolution of such flows using a numerical (or semi-

analytical) method of contour dynamics (section 3). An

important objective of the computations is to determine

whether the exact steady solutions are realizable from

an initial value problem in which a source of vortical

fluid is initiated at t 5 0.

2. Steady bifurcating vortical currents near a gap:
Exact solutions

a. Problem formulation

Consider a constant depth, homogeneous, and invis-

cid fluid. The two-dimensional velocity field (u, y) can be

derived from a streamfunction c(x, y) via u 5 2cx and

y 5 cy, where =2c 5 v is the vorticity of the fluid.

A current, comprising fluid with constant vorticity v0,

propagates from x 5 2‘ and approaches a gap centered

on x 5 0 in an otherwise straight, infinitesimally thin,

barrier. Outside the current the flow is irrotational; that

is, =2c 5 0. Using the width of the current at x 5 2‘ as

the length scale and v0
21 as the time scale, the problem

can be nondimensionalized, leading to the problem

shown schematically in Fig. 1. Far from the gap the flow

is parallel to the wall and therefore has velocity profile

u 5 1 2 y. Thus, the incoming flux is q 5 ½. It is assumed

that the current bifurcates at the gap of nondimensional

width 2L such that its downstream thickness is b with an

associated flux b2/2, and the thickness of the current that

passes through the gap approaches jaj, where a , 0, with

an associated flux a2/2. Mass conservation gives

a2 1 b2 5 1. (1)

Given L and b, the aim is to find the shape of the

boundary of the vortical current. Mathematically, this is

a free boundary problem similar to those previously

tackled by the authors (Johnson and McDonald 2006,

2007). Exact solutions can be found for the case when

u 5 y 5 0 (or, equivalently, $c 5 0) on the free bound-

ary so that the fluid is everywhere stagnant outside the

vortical current.

b. Potential plane analysis

To proceed, the problem shown in Fig. 1 is considered

in the complex plane with the origin centered on the

middle of the gap and the real axis aligned with the bar-

rier. The velocity field can be written in complex form as

FIG. 1. Bifurcating vortical current near a gap. The arrows indicate the flow direction and their

labels the nondimensional volume fluxes.
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u� iy 5� i

2
[z� S(z)], (2)

where S(z) is an analytic function of z. The �iz/2 term

on the rhs of (2) gives yx 2 uy 5 1 while the S(z) term

gives yx 2 uy 5 0 since it is analytic (and thus satisfies the

Cauchy–Riemann equations). Hence, (2) implies that

the velocity field has unit vorticity as required. Further,

since u 5 y 5 0 on the free boundary, it follows that

S(z) 5 z on the free boundary and is, therefore, the

Schwarz function of the curve corresponding to the free

boundary in the complex plane. Schwarz functions have

been usefully employed in the study of other classes of

flows with constant vorticity [e.g., finding families of

vortex equilibria, Crowdy (1999)].

Define a new complex variable w by

w 5 u
1

1 iy
1

5� i

2
[z� S(z)], (3)

which, using (2), gives u1 5 y 1 u and y1 5 2y. On the

barriers and the free boundaries y 5 0; hence these are

mapped to y1 5 0 in the w plane (i.e., the u1 axis). Fur-

ther, on the free boundaries u1 5 y since u 5 0. Hence

y 5 u1 on y1 5 0 for a # u1 # 0 and b # u1 # 1. For all

other values on the u1 axis the condition y 5 0 applies.

The ‘‘potential’’ w plane is shown in Fig. 2. Note that

everywhere in the (physical) z plane the flow is such that

y # 0. Hence y1 $ 0, and it follows that the flow is

mapped to the upper half of the w plane.

An analytic function z 5 z(w) is sought in the w plane

such =z 5 y has the behavior shown in Fig. 2 on the real

w axis. Elementary methods give

z 5 C 1
w

p
log

w(w� 1)

(w� b)(w� a)

� �
, (4)

where C is a real constant to be found. At z 5 2L the

velocity field must have inverse square root singularity

that occurs at a p-radian corner (Howison and King 1989;

Johnson and McDonald 2007); that is, z ; 2L 1 w22 as

w / ‘. Expanding (4) in the limit w / ‘, using (1) and

the condition at z 5 2L, gives

C 5�L 1 (1� a� b)/p. (5)

On the right-hand barrier y 5 0 there is a stagnation

point where the vortical boundary detaches from the

underside of the barrier as in Fig. 1. As <z / ‘, the

velocity becomes parallel to the barrier and, since it has

unit vorticity, has the profile u 5 b 2 y. Therefore, in this

limit, on the barrier y 5 0 and u 5 b. Restricting at-

tention to the case in which u is unidirectional on the

right-hand barrier (i.e., u $ 0), it follows that u varies

continuously in the interval [0, b]. The location of the tip

of the right-hand barrier z 5 L is then given implicitly as

the smallest possible real value of z that satisfies (4) for

0 # u , b (recall w 5 u on the barrier); that is,

L 5 C 1 min
0 # u , b

u

p
log

u(u� 1)

(u� b)(u� a)

� �� �
. (6)

Using (5) in (6) gives the gap width 2L in terms of b:

2L 5
1

p
(1� a� b)

1 min
0 # u , b

u

p
log

u(u� 1)

(u� b)(u� a)

� �� �
. (7)

In summary, (1), (4), (5), and (7) define a one-parameter

family of solutions for the free boundary shape. That is,

choosing 0 , b , 1, (1) gives a, then (7) gives L and (5)

gives C, finally determining z as a function of u and y

through (4).

On the free boundary w 5 y and (4) gives an explicit

expression for the boundary of the current:

x 5�L 1
1

p
(1� a� b) 1

y

p
log

y(1� y)

(y� b)(y� a)

� �
. (8)

Streamlines of the flow field can be computed from (4)

using the method described in Johnson and McDonald

(2006). Figure 3 shows streamlines with evenly spaced

values of the streamfunction for steady gap flows: b 5

0.80, 0.50, and 0.20, corresponding to gap widths, de-

termined from (6), 2L 5 0.18, 0.39, and 0.55, respec-

tively. In steady flow of inviscid and incompressible

fluid, the pressure p can be calculated from the Bernoulli

equation with p/r 1 U2, where r is the density and U is

the fluid speed, being constant along a streamline. The

dashed line is the streamline that meets the tip of the

barrier at z 5 L. The stagnation point on the right-hand

barrier is shown by a cross. As expected, as the gap width

decreases the across-gap flux increases. This is shown in

Fig. 4 in which the across-gap current width b is plotted

against the gap width 2L. As 2L / 2/p ’ 0.64, the

across-gap flux approaches zero and most of the current

passes through the gap. This case is relevant to the

flow of a coastal current about a sharp cape with the

FIG. 2. The potential plane problem; y satisfies Laplace’s equation

in the upper half of the w plane.
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right-hand barrier playing no role in the steady dynamics

since the flow is steady outside the vortical layer. It is

noteworthy that this problem of finding a steady vortical

current propagating around a semi-infinite barrier be-

comes mathematically equivalent to the finding the shape

of a layer of viscous fluid coating a semi-infinite plate

(a problem with industrial applications) for which the

following exact solution exists (Howison and King

1989):

x 5
2

p
� y

p
log

1 1 y

1� y

� �
. (9)

Note that (9) can be obtained from (8) (up to a trans-

lation in x) by putting b 5 0 and a 5 21. For gap widths

greater than 2/p, all the current passes through the

gap.

Since the length scale used to nondimensionalize the

problem is the upstream current width (2q*/v0)1/2 where

q* is the (dimensional) upstream flux and v0 is the vor-

ticity, the ratio of the gap width to upstream current width

is 2L/(2q*/v0)1/2. In the limit v0 / 0 the effective gap

width vanishes and all of the current leaps across the gap.

3. Computation of time-dependent flows

It is of interest to determine if a time-dependent flow

in which a coastal current encounters a gap evolves to-

ward a member of the family of exact steady solutions

derived above. The numerical method of contour dy-

namics provides an accurate method for studying the

evolution of flows with piecewise-constant vorticity. It

has been previously used to study the evolution and

stability of coastal currents (e.g., Stern and Pratt 1985;

Pratt and Stern 1986) and their interaction with topo-

graphic features such as shelves, canyons, and headlands

(e.g., Cherubin et al. 1996; An and McDonald 2004,

2005). As in Johnson and McDonald (2006), the time-

dependent current is generated by a source in the wall,

here located upstream of the gap at z 5 24. Given that

a steady-state current reaches its maximum width of

unity exponentially quickly with distance downstream of

the source (Johnson and McDonald 2006), locating the

source at z 5 24 is sufficiently far from the gap to be

considered at ‘‘infinity.’’ Equally, it is sufficiently close

to the gap to enable the interaction of the current with

the gap to be studied numerically in a reasonable time.

As a check, numerical experiments for other choices

of upstream source location were performed and little

dependence on the source location was evident. The

contour dynamics algorithm used previously by the au-

thors (Johnson and McDonald 2004a) for vortex motion

near a single gap in an infinite wall is also used here. A

further modification to the algorithm is necessary in this

FIG. 3. Streamlines for steady gap flows: b 5 0.8, 0.4, and

0.2, corresponding to gap widths 2L 5 0.18, 0.39, and 0.55. The

boundary of the current is shown as a thick solid line. Streamlines

are at equally spaced values of the streamfunction. The dashed line

is the streamline that meets the tip of the barrier at z 5 L. The

stagnation point on the right-hand barrier is shown by a cross.

FIG. 4. Plot of across-gap flux q as a function of gap width 2L.
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work since the current passes around the tip of the plate

where the unsteady velocity field becomes singular.

To preclude this singularity, a circular ‘‘exclusion zone’’

of small radius is centered on the plate tips z 5 6L.

During the advection process, if a node on the contour

enters the exclusion zone, it is projected onto the rim of

the small circle, thus avoiding the singular regions near

z 5 6L. The contour is then renoded to ensure its

smoothness. Various radii for the exclusion zone were

tested, leading to the conclusion that using a radius of

0.1 seems to have little qualitative effect on the dy-

namics. This ‘‘exclusion’’ procedure is tested explicitly

in the next subsection for the special case of a semi-

infinite plate with a circular tip: a boundary shape which

can be constructed ‘‘exactly’’ using contour dynamics.

a. Semi-infinite plate

Before tackling the case of a finite width gap, the evo-

lution of a coastal current around a single semi-infinite

barrier stretching from z 5 0 to <z 5 2‘ is studied. The

steady solution is given by (9). This case is relevant to

the flow of a coastal current about a sharp cape.

To incorporate the semi-infinite plate in contour

dynamics, the usual method employed by the authors

of finding an irrotational flow field correction that when

added to that computed using contour dynamics gives

zero normal velocity on the plate is used (see, e.g.,

Johnson and McDonald 2004b, 2005, 2007). In this

case, computing the irrotational flow field involves a

conformal map from the region surrounding the plate

to the exterior of the unit circle. A further reason for

studying this example is that there is, in fact, a map

from the exterior of the plate with a circular tip of ra-

dius « in the z plane (see Fig. 5) to the exterior of the

unit circle in the z plane:

z 5
z1/2 1 z� �
z1/2 � z 1 �

. (10)

This enables the exclusion zone method described above

to be explicitly tested. That is, the approximation when

nodes are projected back onto a circle of radius 0.1 at the

tip of a straight barrier can be tested by comparing with

a semi-infinite barrier of exactly the shape of a plate

augmented by a circle of radius 0.1 by choosing « 5 0.1

(as in Fig. 5) in (10). Such a test was carried out and little

qualitative difference was observed in comparing the

results—the conclusion being that the exclusion zone

FIG. 5. Semi-infinite plate with a circle of radius « centered at z 5 0.

FIG. 6. Evolution of a current about a semi-infinite plate originating from a source at z 5 24. The dashed line is the

exact solution of Howison and King (1989).
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method is a reasonable and efficient way of treating the

singularities occurring at the plate tips.

Figure 6 shows the evolution of the current about the

plate. All vortical fluid emitted by the source eventually

propagates around the tip and propagates toward <z /
2‘ on the opposite side to the barrier to the source. For

large times it is evident that the shape of the current

approaches the exact steady state (9). It is noteworthy

that no distinct eddies are detached from the current

during its evolution.

b. Gap-leaping currents

Figure 7 shows the evolution of a coastal current

starting at z 5 24 for across-gap flux b 5 0.5 and a gap

of width L 5 0.19 [this being, from (7), the corre-

sponding gap width for a steady solution]. The large

eddy forming ahead of the current is typical for vorti-

cal currents (see, e.g., Stern and Pratt 1985; An and

McDonald 2004; Johnson and McDonald 2006) and is

observed here for both currents that leap across and

those that pass through the gap. Behind these eddies, the

current widths approach the equivalent steady solution

(the dashed line) as time increases. This suggests that the

steady solutions of the previous section are physically

realizable and are also stable in this region of parameter

space.

Figure 8 shows the evolution of a coastal current

starting at z 5 24 for across-gap flux b 5 0.25 and a gap

of width L 5 0.26 [this being, from (7), the corre-

sponding gap width for a steady solution]. In compari-

son to the previous example, the flux across the gap is

smaller and the notable difference is that the across-gap

current is manifested as a chain of eddies, with the lead

eddy becoming completely detached and, owing to its

relatively large size and hence circulation, propagating

away from the chain of smaller eddies. In contrast, the

current that forms from fluid passing through the gap

matches well with the steady solution. There is some

complicated folding of the contour, partly owing to the

fact that velocity on the edge of the current vanishes

and perturbations on the contour are therefore slow to

propagate away.

c. Zero flux through the gap

In the previous examples a nonzero net flux though

the gap was specified. In many situations, however, it is

more natural to impose zero net flux through the gap,

this being the situation when the basin in the lower half

FIG. 7. Evolution of a current through a gap originating from a source at z 5 24, with b 5 0.5 and L 5 0.19. The

dashed line is the corresponding steady solution derived in section 2.

2670 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39



plane is finite. In this case the theory of section 2 is no

longer applicable because the velocity outside the vor-

tical current (i.e., the irrotational velocity field) does not

necessarily vanish since there must be a return flow of

nonvortical fluid from the lower to upper sides of the

barrier. However, it is still possible to perform numeri-

cal experiments, and in the following examples the net

flux is set to zero and the gap width is chosen.

Figure 9 shows the evolution of the current for a gap

of width L 5 0.2. In this case a small amount of vorti-

cal fluid is able to penetrate the gap, but the majority

leaps across the gap and evolves in a similar way to

a current flowing along an infinite unbroken barrier

(e.g., Stern and Pratt 1985; Johnson and McDonald

2006). Note that there is a thin layer of irrotational fluid

separating the downstream coastal current from the

barrier. This represents a nonzero flux of irrotational

fluid through the gap from the lower half plane to the

upper half plane and is required to reduce the net flux

to zero.

Figure 10 shows the evolution of the current for a gap

of larger width L 5 0.8. In this case a significant portion

of the vortical fluid passes through the gap forming a

well-defined coastal current on the opposite side of the

barrier to the source. In order for the net flux to vanish

there must be an equal and opposite flux of irrotational

fluid. This return flux causes the vortical fluid leaping

across the gap to be displaced upward—this fluid taking

the form of a large eddy shedding event. Such eddy

shedding as fluid crosses the gap is typical in these zero-

net flux experiments for L * 0.4; the amount of fluid

going into forming the eddies depends on the across-gap

flux. In contrast, the through-gap fluid forms a well-

defined uniform current whose flux becomes steady as

time increases. This is illustrated in Fig. 11, which shows

the through-gap flux of vortical fluid for various gap

widths L as a function of time. In a typical experiment

the flux of vortical fluid through the gap is zero until the

current reaches the gap at about t 5 8. The flux then

increases rapidly, reaching a peak at about t 5 18. This

peak corresponds to the formation of the large eddy at

the head of the current on the opposite side of the bar-

rier to the source. After some further transient behavior,

the flux then settles down to an almost constant value.

As L increases, so does the flux of vortical fluid passing

through the gap. Recall that the flux from the source is

0.5 so that for L 5 1.0 most of the vortical fluid passes

through the gap.

FIG. 8. As in Fig. 7, but with b 5 0.25 and L 5 0.26.
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4. Discussion

A family of exact solutions describing the bifurcation

of a boundary current with constant vorticity near a gap

has been found. It is shown numerically that time-

dependent flows initialized from a source of constant

strength upstream of the gap approach the exact steady

solutions in the large time limit. This suggests that the

properties of the exact steady solutions are robust and

may well be observable in the ocean. Some physical

processes that are important in oceanic flows through

gaps (e.g., baroclinicity, mixing, local bottom topogra-

phy) have been neglected. Nevertheless, the simplified

dynamics has enabled identification of generic behavior

in the behavior of boundary currents near a gap sepa-

rating two ocean basins. For instance, specifying the gap

width or flux through the gap completely determines

the structure of a steady current bifurcating at the gap.

When the flux across the gap is sufficiently small, the

across-gap transport is manifested as a chain of propa-

gating eddies rather than a steady current.

The exact solution derived here, in addition to being

useful for checking results of large-scale numerical models,

can be used to predict the flux of the coastal current that

approaches and flows through Unimak Pass. This region

was also considered by Nof and Im (1985), who used

an equivalent barotropic model of a buoyancy-driven

coastal current and predicted that all of the current

should pass through the gap. They cited observational

evidence supporting their prediction.

The width of the pass at its narrowest point is 20 km

and the upstream breadth of the current is 40 km (i.e.,

twice the gap width; Nof and Im 1985). The present

theory immediately gives, using Fig. 4, a nondimen-

sional flux across-gap flux of 0.124 or 25% of the up-

stream flux, implying that 75% of mass flux of the

current passes through the gap in comparison to the

100% predicted by Nof and Im (1985). This prediction

made by the theory in this paper seems reasonable,

bearing in mind that observations show that the current

is unsteady and has a baroclinic structure with prom-

inent outcropping of isopycnals (e.g., Schumacher et al.

1982; Stabeno et al. 2002); such effects are not included

in this work.

For the situation in which there is no net flux through

the gap, numerical experiments show that, as the gap

width increases, so does the proportion of the vorti-

cal current passing through the gap. At large times the

transport in this current approaches a steady value,

whereas the current that leaps across the gap remains

FIG. 9. As in Fig. 7, but with zero net flux and L 5 0.2.
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unsteady, reflecting the generation of eddies at the gap

for the range of L tested. For L $ 1, at large times,

virtually all the vortical fluid passes through the gap. A

current propagating around the tip of a semi-infinite wall

(i.e., a cape) is able to do so without forming eddies. This

behavior differs from the eddying found by (Pichevin

and Nof 1996) for the dynamically different equivalent-

barotropic flow around a semi-infinite barrier.

FIG. 10. As in Fig. 9, but for L 5 0.8.

FIG. 11. Time-dependent through-gap fluxes of vortical fluid for various gap widths in the case

of zero net flux through the gap.
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