
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Strategies for entangling remote spins with unequal
coupling to an optically active mediator

Erik M Gauger1, Peter P Rohde1, A Marshall Stoneham2

and Brendon W Lovett1,3

1 Department of Materials, University of Oxford, Parks Road, Oxford,
OX1 3PH, UK
2 Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, UK
E-mail: erik.gauger@materials.ox.ac.uk, peter.rohde@materials.ox.ac.uk,
a.stoneham@ucl.ac.uk and brendon.lovett@materials.ox.ac.uk

New Journal of Physics 10 (2008) 073027 (18pp)
Received 12 May 2008
Published 14 July 2008
Online at http://www.njp.org/
doi:10.1088/1367-2630/10/7/073027

Abstract. We demonstrate that two remote qubits can be entangled through
an optically active intermediary even if the coupling strengths between mediator
and qubits are different. This is true for a broad class of interactions. We consider
two contrasting scenarios. Firstly, we extend the analysis of a previously studied
gate operation which relies on pulsed, dynamical control of the optical state and
which may be performed quickly. We show that remote spins can be entangled in
this case even when the intermediary coupling strengths are unequal. Secondly,
we propose an alternative adiabatic control procedure, and find that the system
requirements become even less restrictive in this case. The scheme could be
tested immediately in a range of systems including molecules, quantum dots,
or defects in crystals.
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1. Introduction

The control and physical representation of entanglement lie at the heart of quantum computing.
This leads to several design considerations. Firstly, it is essential to have a well-defined localized
information carrier that can be manipulated precisely. The basic information unit is usually
a qubit—a two level quantum system. Secondly, it is necessary to design quantum gates to
precisely control both the individual dynamics of each qubit, and their correlated motion. These
two classes of operation are usually treated separately, and defined as single and two qubit
gates. Together they form a universal set that can encode any quantum algorithm. Any practical
quantum computer must, however, provide significantly more than just a universal gate set. It
must be capable of preparing an initial quantum state, and of reading a final state. It should be
able to control sufficiently many qubits for a time long enough to perform a useful calculation,
without significant loss of entanglement during the evolution of the quantum state. And, as any
quantum device will surely be controlled by a classical computer system, compatibility with
current technologies is desirable.

These requirements have led to a wealth of research on solid state implementations
of quantum computers. In particular, an electron or nucleus with spin 1/2 constitutes a
perfectly defined qubit. However, in solid state systems there is often uncertainty about the
positions of and interactions between such spins, which of course makes control difficult.
In this paper, we shall demonstrate that it is nonetheless perfectly possible to devise very
accurate quantum gates even when the parameters describing the qubits have a degree of
randomness.

Many papers have discussed how spins could be used as qubits in various materials [1, 2].
It is often the case that spins with the long coherence times that are so desirable for storing
quantum information, are hard to control directly. However, they can be accessed indirectly
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Table 1. Summary of proposals for generating pairwise entanglement of
qubits with the help of controlled intermediaries. Different approaches will be
optimized by choosing different material systems.

Qubit Control Method Reference

Electron donor spin Electron donor spin Optical excitation [3]
QD electron spin Exciton Optical excitation [4]–[6]
Nuclear donor spin Electron spin Electric Field [2]
Molecular nuclear spin Electron spin RF pulse [9, 10]

through other states with shorter lifetimes, and manipulated more quickly. For example,
different defects in semiconductors can be chosen such that they have the correct properties to
play different roles: a defect with an electron spin in a quiet environment can be used to represent
that quantum information, and interactions can be provided by optically active defects with
shorter decoherence times [3]. Alternatively, excitons in quantum dot systems can be excited
to provide coupling between dot-based spin qubits [4]–[6], that can sometimes be mediated by
an optical cavity [7, 8]. Further, in NMR quantum computing, the interaction between nuclear
spins is provided by the electrons [9, 10]. A summary of such approaches can be found in
table 1.

More recently, several key experiments have been performed that demonstrate many of the
ingredients that are needed for the operation of these control schemes. For example, the spin
of an NV- centre in diamond can be initialized, read and manipulated optically [11], and can
be coupled to other nearby electron spins coherently, and this coherence can be manipulated
optically [12, 13]. The motion of carbon-13 nuclear spins can also be detected optically in
the NV- system [14], and it has even been possible to map the NV- electron spin state onto a
nearby C-13 nucleus, and get it back again [15]. In semiconductor quantum dots the coherence
of electron spins has been optically controlled [16] and initialized [17] and tunnel coupling
between two electron spins in neighbouring quantum dots has been detected optically [18].
Remote spin coupling through a spin bath has been demonstrated in a lithographic quantum dot
system [19]. Electrons spin states have been used to manipulate nuclear spin qubits in other
systems as well [20, 21], in a time shorter than needed for direct addressing.

In this paper, we consider explictly a system for entangling two such long lived spin
qubits, via a third, central, electron spin of a different species that might have a much shorter
decoherence time. This central spin can be optically excited, and in the excited state the electron
wavefunction typically has a greater spatial extent than in the ground state (see figure 1).
If this larger wavefunction overlaps with the two neighbouring spins, it gives rise to an exchange
coupling. This possibility was first raised by Stoneham et al [3] who introduced a scheme for
entangling deep donor spins in silicon, where various defects could be used for the different spin
species (for example, Mg+, Se+, or Bi+ [3, 22] are good candidates). In contrast to the previous
work, we shall here study a more general situation in which there is only limited control over the
various coupling parameters in the problem, and show that it is still possible to obtain a highly
entangling gate operation.
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(a)

(b)

Figure 1. In the optical ground state of the central control qubit (b), the
wavefunctions of the three species do not overlap and there is no spin–spin
exchange interaction. When the central control is optically excited (a) its
wavefunction has a larger extent and so activates the spin–spin coupling.

2. Model

Let us first introduce a general model for the system we are considering. It has the following
Hamiltonian, in the usual notation using Pauli spin operators σ :4

H = EQσ
Q
z + ECσ

C
z + EQ′σ Q′

z

+|e〉
(

J1(σ
Q

· σC
−ασ Q

z · σC
z )+ J2(σ

Q′

· σC
−ασ Q′

z · σC
z )+ω0

)
〈e|, (1)

Q and Q ′ label the two qubit spins; C is the central (control) spin which has two degrees of
freedom: one is its spin σC and the other is its orbital state which we restrict to the space
spanned by states {|g〉, |e〉}. We assume an allowed optical transition of energy ω0 between |g〉

and |e〉, but that Q and Q ′ do not couple directly to an optical field. Each of the E j gives the
Zeeman splitting of spin j in an external magnetic field of strength B (E j = µ j B). J1 and J2

are the exchange coupling between spins Q or Q ′ and C , respectively, which is only present
when C is in the excited state |e〉. For α = 0 it takes an isotropic Heisenberg form, and for
α = 1 it represents an XY -type coupling. We assume that the control–qubit coupling strength
when the control is in the |g〉 state is negligible in comparison with the coupling when the
control is in the |e〉 state. Calculations in [23] show that this is indeed the case for donors in
silicon, where the |e〉 coupling can be two to four orders of magnitude larger. We also ignore
the direct donor–donor coupling, which again is valid for the silicon donor system. For suitable
spatial configuration with donors separated by around 25 nm, the direct donor–donor coupling
can be as low as 4.73 × 10−3 GHz whereas the control-mediated coupling strength is still up to
157 GHz [24, 25].

In order to control the interaction, a laser is applied with frequency ωl, and this introduces
an oscillatory term into the Hamiltonian. The oscillation can be removed by transforming into

4 We use σ matrices that all have eigenvalues ±1.
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a frame rotating at ωl and making a rotating wave approximation, whereupon we write:

H = EQσ
Q
z + ECσ

C
z + EQ′σ Q′

z +
�(t)

2
(|e〉〈g| + |g〉〈e|)

+|e〉
(

J1(σ
Q

· σC
−ασ Q

z · σC
z )+ J2(σ

Q′

· σC
−ασ Q′

z · σC
z )+1

)
〈e|, (2)

where 1≡ ω0 −ωl is the laser detuning from the transition and �(t) is (generally time-
dependent) Rabi frequency.

A general state of the three spin system |φ〉 is given by a superposition of the spin
basis states |{↑,↓}〉Q ⊗ |{↑,↓}〉C ⊗ |{↑,↓}〉Q′ , where the arrows represent the spin up or down
projection along the z-quantization axis. For convenience, we adopt the usual qubit notation
|QC Q ′

〉 with Q,C, Q ′ being either 0 for the ‘down’ or 1 for the ‘up’ projection of the respective
spin qubit.

We shall be concerned with the situation in which we initialize the system in |g〉 and where
qubit C is prepared in the state |0〉. We then allow the system to evolve under laser excitation
until there is a ‘revival’ such that C returns to the state |0〉. We will show that the remaining two
qubits Q and Q ′ can become entangled by such an operation. In the following, we will explore
two contrasting scenarios, Firstly, a fast ‘dynamic’ optical excitation in which the system is
excited suddenly by a pulsed laser, then allowed to evolve for a time before sudden de-excitation.
Secondly, we will look at an ‘adiabatic’ approach in which the laser intensity and/or frequency
is changed slowly and continuously such that the system follows its instantaneous eigenstates.

3. Dynamic excitation

Consider first a laser that is resonant with the |g〉 − |e〉 transition (i.e. 1= 0). If a rectangular
pulse is applied for a time tl = π/� all population is transferred from |g〉 to |e〉 thus activating
the spin couplings. After waiting for a specified amount of time this interaction is deactivated
again using an identical pulse. For the dynamical approach to work, we require a system where
α = 1, i.e. that the Ising part is removed from the Heisenberg interaction and we are left with
an XY coupling. We will discuss the reason for this at the end of this section. Hamiltonians not
satisfying α = 1 are not amenable to the dynamic method and a more general adiabatic approach
discussed later must be used.

Let us assume that the optical excitation is fast in comparison to the subsequent spin
dynamics, which are described by the restricted Hamiltonian 〈e|H |e〉:

He = EQσ
Q
z + ECσ

C
z + EQ′σ Q′

z +
(

J1(σ
Q
x · σC

x + σ Q
y · σC

y )+ J2(σ
Q′

x · σC
x + σ Q′

y · σC
y )

)
. (3)

He conserves the total spin projection: 6z = σ Q
z + σC

z + σ Q′

z . Therefore the evolution can be
partitioned into subspaces of different 6z:

He = H0 ⊕ H1 ⊕ H2 ⊕ H3, (4)

where Hi is the Hamiltonian of the subspace with6z = 2i − 3 (see table 2). The central (control)
qubit is set to |0〉 initially and so we need not consider the H3 space further. Let us now analyse
the dynamics of the other subspaces.
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Table 2. Table showing the four uncoupled subspace and the notation used for
each.

Subspace 6z Component states

H3 3 |111〉

H2 1 {|110〉, |101〉, |011〉}

H1 −1 {|100〉, |010〉, |001〉}

H0 −3 |000〉

3.1. H1 subspace (6z = −1)

In the basis of states {|010〉, |100〉, |001〉}, and for qubits with the same g-factors (EQ = EQ′)
we have

H1 = EC

 R J ′

1 J ′

2
J ′

1 1 0
J ′

2 0 1

 , (5)

with R ≡ (2EQ/EC)− 1, J ′

1 ≡ 2J1/EC and J ′

2 ≡ 2J2/EC . There is always one eigenvector that
is orthogonal to |A〉 ≡ |010〉:

|E〉 =
J ′

1|100〉 − J ′

2|001〉√
J ′

1
2 + J ′

2
2

. (6)

Let us define a state that is orthogonal to both |A〉 and |E〉:

|T 〉 =
J ′

2|100〉 + J ′

1|001〉√
J ′

1
2 + J ′

2
2

, (7)

and rewrite the Hamiltonian in the basis {|A〉, |T 〉, |E〉}

H1 = EC

 R
√

J ′

1
2 + J ′

2
2 0√

J ′

1
2 + J ′

2
2 1 0

0 0 1

 . (8)

Prior to laser excitation, the system contains no component of |A〉; it can therefore be written as
a superposition of |E〉 and |T 〉. |E〉 is an eigenstate so only accumulates phase. |T 〉 undergoes
Rabi cycling to |A〉; after each cycle all population returns to |T 〉, and the system ‘revives’ such
that no excitation is left on the central qubit. This ‘revival time’ trev is given by:

trev =
2nπ

EC

√
(R − 1)2 + 4J ′

1
2 + 4J ′

2
2
, (9)

where n is some integer, the number of oscillations that have occurred. At revival, we have

|T 〉 → eiθT |T 〉,

|E〉 → eiθE |E〉, (10)
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where

θT = πn −
EC(1 + R)trev

2
= πn

1 −
(R + 1)√

(R − 1)2 + 4J ′

1
2 + 4J ′

2
2

 ,

θE = −EC trev = −
2nπ√

(R − 1)2 + 4J ′

1
2 + 4J ′

2
2
.

(11)

3.2. H2 subspace (6z = 1)

In the basis {|101〉, |011〉, |110〉} we can write

H2 = EC

−R J ′

1 J ′

2

J ′

1 −1 0

J ′

2 0 −1

 . (12)

After the same revival time trev, C again returns to the |0〉 state, such that the state |A′
〉 ≡ |101〉

undergoes the following transformation:

|A′
〉 → eiθA′

|A′
〉, (13)

where

θA′ = πn +
EC(1 + R)trev

2
= πn

1 +
(R + 1)√

(R − 1)2 + 4J ′

1
2 + 4J ′

2
2

 . (14)

3.3. H0 subspace (6z = −3)

Finally, we have

|000〉 → eiθZ |000〉, (15)

where

θZ = −EC(R + 2)trev = −
2(R + 2)nπ√

(R − 1)2 + 4J ′

1
2 + 4J ′

2
2
. (16)

3.4. Evolution of the logical qubits; entangling power

Combining the dynamics for the different subspaces, the overall unitary evolution of the system
in the logical basis of qubits Q and Q ′ ({|00〉, |01〉, |10〉, |11〉}) is

U ′
=


eiθZ 0 0 0
0 11 12 0
0 12 13 0
0 0 0 eiθA′ ,

 , (17)
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Figure 2. Average entangling power e(U ) of the dynamic two qubit gate after
the first revival n = 1.

where

11 =
eiθE J ′

1
2 + eiθT J ′

2
2

J ′

1
2 + J ′

2
2 ,

12 =
J ′

1 J ′

2

(
eiθT − eiθE

)
J ′

1
2 + J ′

2
2 ,

13 =
eiθT J ′

1
2 + eiθE J ′

2
2

J ′

1
2 + J ′

2
2 .

(18)

To determine the extent to which this evolution creates entanglement, we use the measure
of average gate entangling power developed by Zanardi et al [26], who considered a bipartite
state |9〉, which lives in a Hilbert spaceH1 ⊗H2. The entangling power of U is found by taking
the average of the linear entropy of the reduced density matrix (ρ1 = tr1[|9〉]) over a uniform
distribution of input product states |ψ1〉 ⊗ |ψ2〉:

e(U )= E(U |ψ1〉 ⊗ |ψ2〉)
ψ1,ψ2

, (19)

E(|9〉)= 1 − tr(ρ2
1) is the linear entropy of ρ1. The maximum value of the entangling power

is about 0.22, and it falls to zero for a gate that produces no entanglement. Using equation (5)
from [26] we determine that

e(U )=
1
18(8 − 2|11|

2
− |11|

4
− 4|12|

2
− 2|12|

4

−2|13|
2
− |13|

4
− 2Re[ei(θZ +θA′ )12

2] − 2Re[ei(θZ +θA′ )1113]).
(20)

Figure 2 shows the average entangling power of the gate, e(U ), after the first revival n = 1, for
R = 1.5 The entangling power drops to zero when either J1 = 0 or J2 = 0: if either of the qubits
is not interacting with the central control, then no entanglement is possible. By contrast e(U )

5 For even n the average entangling power vanishes, e(U )= 0, whereas for odd n the entanglement revives to the
same level as for n = 1.
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Figure 3. Average entangling power of the dynamic gate when J ′

1 = J ′

2, for
different values of R ≡ (2EQ/EC)− 1.

is maximized (and reaches its theoretical maximum) when J ′

1 = J ′

2— and in figure 3 we show
e(U ) for different values of the ratio R in this equal coupling case. As R gets closer to unity, the
entangling power is larger for smaller J ′

1 = J ′

2. For larger J ′

1 = J ′

2 all plots approach maximal
entangling power. Overall, we can conclude that the dynamic gate has a reasonable entangling
power over a wide range of parameter space.

We can see that it is essential that α = 1 for the dynamic approach to work; if this were not
the case then the revival times in the H1 and H2 subspaces would not coincide, invalidating the
analysis presented here. In order to overcome this restriction we must change our strategy and
we shall discuss this next.

4. Adiabatic excitation

An alternative method for creating entanglement in our system relies on adiabatic following of
eigenstates. It can be implemented by slowly modulating the intensity of a laser that is close
to resonance with the optical transition of the central qubit. Prior to excitation, the system is
prepared in a superposition of the computational basis states, |Q Q ′

〉 ∈ {|00〉, |01〉, |10〉, |11〉}.
The laser intensity is then varied such that adiabatic following of eigenstates occurs, so if the
intensity is decreased again population returns to the computational basis.

With the laser on, each of the eigenstates consists of some superposition of |g〉 and
interacting |e〉 levels, such that the eigenenergies are determined not only by the optical coupling
but also by the Heisenberg interaction between the spins. Figure 4 shows such an eigenspectrum
of Hamiltonian (2) as a function of 1/�. For 1/�→ ∞, the eigenenergies tend to the
Zeeman split levels comprising the logical basis. The relative spacing between the eigenstates
changes with laser intensity—i.e. when 1/� approaches zero. Each eigenstate therefore
acquires a different dynamical phase as a consequence of its time evolution, which results in
different final phases of the logical states—and thus enables the implementation of a controlled
phase gate.

In order to determine which pulse shape and temporal profile is suitable for achieving
adiabatic following, we shall for the moment neglect the coupling between the spins in the
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Figure 4. Example of eigenspectrum as a function of the detuning 1 for
typical parameters. The eigenstates tending to the computational basis states for
�/1→ 0 (i. e. to the far right in this figure) are colour-coded as follows: |00〉,
green; |10〉 and |01〉, blue; |11〉, red.

excited levels. This gives us eight uncoupled two level systems (2LS), each of which is driven
independently by the laser. In this case, it is straightforward to derive an ‘adiabaticity condition’
which ensures eigenstate following, with suppressed transitions between the eigenstates:

�̇(t)1(t)−�(t)1̇(t)

2[1(t)2 +�(t)2]3/2
� 1, (21)

as in the Landau–Zener theory. This condition can be derived by analysing the time-dependent
unitary transformation of a driven 2LS Hamiltonian in the diagonal basis and stipulating that
the coupling between eigenstates should be small compared to their energetic spacing [27]. For
a Gaussian profile of the laser intensity,

�(t)=�0 exp[−(t/τ)2], (22)

and constant detuning 1, inequality (21) can be satisfied by demanding �0/1
2
� τ . Adiabatic

following is therefore always achieved in the limit �0 �1 together with a sufficiently large
pulse duration τ .6

The spin–spin interactions mean that the system cannot be regarded as eight separate 2LS.
Rather, the eigenstates are coupled states which ultimately generate the desired entanglement.
Nonetheless, the inequality (21) is still a requirement for achieving adiabatic following, but it
is not always sufficient; it is also essential that the eigenstates belonging to the computational
subspace without laser irradiation must be energetically distinguishable from those outside this
subspace. This avoids population leakage from the computational basis associated with a mixing
of eigenstates—and is reasonable in our scheme which presupposes two different species for
Q and C .

6 For small �0/1, τ must be automatically large since the interacting levels are only weakly excited.
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4.1. Action of the adiabatic operation

As in section 3, it suffices to analyse different 6z subspaces separately. Unlike for the dynamic
excitation, however, the restriction α = 1 is not a requirement for the adiabatic scheme (and
neither is EQ = EQ′). Once more, the control qubit should be initialized to σz = −1.7 The
zero excitation subspace then only contains the logical |00〉 state. Similarly, the two excitation
subspace contains only the logical |11〉 state. Therefore, no population transfer between these
and other logical states is possible and each merely accumulates a phase after the adiabatic pulse
has been applied. The situation is different for the single excitation subspace, which is populated
by the two interacting states |01〉 and |10〉. For this subspace, a more complex unitary operation
between the logical states results from the adiabatic operation.

The most general action of the adiabatic operation can be therefore described by the
following unitary matrix in the basis of the logical states {|00, |01〉, |10〉, |11〉〉}:

Uad =


eiφ00 0 0 0

0 ψ χ ′ 0
0 χ ψ ′ 0
0 0 0 eiφ11

 , (23)

where φi j is the phase acquired by the state |i j〉. The coefficients ψ , ψ ′, χ and χ ′ form a unitary
2 × 2 submatrix accounting for population transfer between |10〉 and |01〉 as well as the phase
acquired by each of these two states. The complexity of the Hamiltonian (2) makes it difficult
to find analytical expressions for the elements of equation (23). Nevertheless, for a given set of
system and laser control parameters Uad is straightforwardly obtained numerically.

The structure of Uad takes the same form as equation (17) obtained in section 3 for the
dynamic operation. This enables a direct comparison of the entangling power of the dynamic
and adiabatic approach using the measure defined in equation (20).

4.2. Adiabatic CPHASE gate

Under certain conditions the off-diagonal terms in equation (23) are zero. Using the numerical
techniques discussed earlier, we find that this is the case where either:

(i) there are degenerate logical qubits EQ = EQ′ with equal coupling J1 = J2 to the control
qubit, or

(ii) there are non-degenerate logical qubits EQ 6= EQ′ and a pulse duration τ longer than
(EQ − EQ′)−1.

In this case the adiabatic operation is simply

Uphase =


eiφ00 0 0 0

0 eiφ01 0 0
0 0 eiφ10 0
0 0 0 eiφ11

 , (24)

7 It is important to have the central qubit in a well-defined initial state because of subspace-dependent energy
shifts of the eigenstates. In general, this leads to different pulse durations for a successful entangling operation
depending on whether C is initially in the σz = −1 or the σz = +1 state.
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which is locally equivalent to the CPHASE gate when [4, 28]:

ϕ = φ00 −φ01 −φ10 +φ11 = π. (25)

This condition can always be satisfied by choosing an appropriate pulse duration.
We now explain why a system which satisfies the less restrictive set of conditions (ii) above

gives a unitary operation of CPHASE form. Our explanation needs to only consider the i = 1
subspace since the others are in CPHASE form under any conditions. We write a general initial
state in this subspace characterized by the amplitudes α and β as

|ψ(0)〉 = α|100〉 +β|001〉. (26)

Adiabatic following of eigenstates means that this state evolves under the influence of the laser
into

|ψ(t)〉 = α|µ(t)〉 +β|ν(t)〉, (27)

where |µ(t)〉 tends to |100〉 and |ν(t)〉 to |001〉 as the Rabi frequency �(t) goes to zero. The
time evolution of the slowly changing constituent eigenstates of equation (27) follows:

|µ(t)〉 = eiEµt
|µ〉, (28)

|ν(t)〉 = eiEν t
|ν〉, (29)

where µ and ν denote the instantaneous eigenstates and Eµ and Eν are their associated
eigenvalues. The time evolution of |ψ(t)〉 may thus be written as

|ψ(t)〉 = eiEµt
(
α|µ〉 + ei(Eν−Eµ)tβ|ν〉

)
. (30)

The i = 1 subspace consists of three spin states in each of the ground and excited optical states,
so that |µ〉 and |ν〉 will be composed of up to six different states. Focusing on the physical states
which correspond to the two logical states, |µ〉 and |ν〉 can be written as follows:

|µ〉 = (p|100〉 + q|001〉)⊗ |g〉 + |m〉, (31)

|ν〉 = (r |100〉 + s|001〉)⊗ |g〉 + |n〉, (32)

where p, r, q and s are appropriate amplitudes of this decomposition and |m〉 and |n〉 contain
the contributions of the four remaining states |010〉|g〉, |100〉|e〉, |001〉|e〉 and |010〉|e〉. Inserting
equations (31) and (32) into (30) yields

|ψ〉(t)= eiEµt
(
α|m〉 + ei(Eν−Eµ)tβ|n〉

+(αp + ei(Eν−Eµ)tβr) |100〉 + (αq + ei(Eν−Eµ)tβs) |001〉
)
. (33)

At the end of the pulse, adiabaticity ensures that the first two terms of equation (33) disappear.
The third and fourth terms show cycles of constructive and destructive interference of the
states |100〉|g〉 and |001〉|g〉. The interference oscillations range between αp ±βr for |100〉|g〉

and αq ±βs for |001〉|g〉 with a period of (Eν − Eµ)/2π =1E/2π . Our simulations show
that if the interference period 1E/2π is considerably faster than the pulse duration τ , all
population is restored to the original levels at the end of the pulse, as illustrated in the scenario
of figure 5—which of course allows the realization of a CPHASE gate with suitable laser control
parameters. Conversely, comparatively fast laser pulses generally transfer population between
the two logical states, leading once more to the gate described by equation (23).
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Figure 5. Interference of population between |10〉L and |01〉L in the i = 1
subspace. This effect is a consequence of the time evolution of a superposition
of eigenstates as explained in the main text. As shown, a sufficiently long pulse
duration damps the oscillations out and restores all population back into the
original levels at the end of the pulse. The Gaussian pulse is centred around
t = 0, where time is given in units of the pulse width τ , which in this case is set
to 150 ps.

4.3. Entangling power

We simulate the adiabatic operation by integrating Hamiltonian equation (1) with a Gaussian
profile of the Rabi frequency as in equation (22). In order to prevent Landau–Zener transitions
between the eigenstates, τ needs to be suitably large. Depending on whether a pure phase gate
or a more general entangling gate is desired, the effect of the operation can be obtained after the
pulse has finished by extracting either a nontrivial phase as in equation (25) or the unitary matrix
equation (23). The average entangling power of both these quantities can then be determined
using equation (20).

We find that a more pronounced difference between the Zeeman splittings of all three
spins makes the adiabatic following more robust and permits the application of a pulse with
shorter duration. This might be achieved by using species with varying g values, or through an
inhomogeneous magnetic field.

Figure 6 shows a typical plot of the average adiabatic entangling power (as in equation (19))
as a function of J1 and J2, and figure 7 presents a cross section along the diagonal J1 = J2.8 As
for the dynamic gate, the most entangling region occurs along the diagonal where J1 and J2

are equal; in contrast to the dynamic gate, the graph shows a rather complicated oscillatory
structure. This is connected to how phase accumulates in the adiabatic gate—which is in turn
related to the values of J1 and J2. The plots contain some areas where adiabatic following does
not occur, causing significant population leakage away from the computational basis states.

8 In order to compare these simulations to those for the dynamic gate we choose more restrictive conditions than
are necessary: matching onsite energies EQ = EQ′ , XY -type coupling (α = 1) and EC = 0.1 ps−1.
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three-dimensional (3D) plot) correspond to parameter combinations for which
the adiabatic gate leads to population leakage out of the computational basis,
making e(U ) ill-defined. J1 and J2 are given in units of 0.1 ps−1. The
pulse duration τ = 0.5 ns, the detuning 1= 0.5 ps−1 and coupling strength
�0 = 0.3 ps−1. NB. For a particular J1, J2, it is possible to optimize the speed
of the gate by varying τ , 1 and �.
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Figure 7. Average entangling power of the adiabatic gate when J1 = J2 (in units
of 0.1 ps−1), for different values of R.

In this case e(U ) is ill defined. However, a well-defined adiabatic operation can always be
recovered by making adjustments to the choice of laser control parameters.

5. Decoherence

We shall now discuss the effect of decoherence on our predictions. The dominant decoherence
source or sources will be different for each physical implementation of our Hamiltonian
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Figure 8. Comparison of final population in the computational basis (squares)
and final purity of system’s density matrix (circles) for the adiabatic gate (orange)
and the dynamic gate (blue). The decay rate is given in units of ns−1 and the
system parameters are J1 = J2 = 0.05 ps−1 and R = 1.2. Typical laser control
parameters have been used, such that both gates achieve an entangling power
very close to the maximal value of e(U )≈ 0.22.

equation (1), and a full discussion of each possible process is beyond the scope of a single paper.
However, we shall discuss decoherence that arises from spontaneous decay of the optically
excited state. This could either be radiative or nonradiative [29, 30], and would be the dominant
source for deep donors in silicon [3, 22].

We use a standard quantum optical master equation [31] to model the decay affecting the
control qubit Q

ρ̇ = −i[H, ρ] +00

(
σ−ρσ+ −

1
2(σ+σ−ρ + ρσ+σ−)

)
, (34)

where ρ is the system’s density matrix, 00 is the decay rate (the inverse of the natural lifetime)
and σ+ and σ− are raising and lowering operators with respect to |e〉 and |g〉.

We will explore two figures of merit: the amount of population returned to the desired
computational basis states, and the purity of the density matrix, after application of the gate.
For both gate types, we have performed a full numerical simulation that for the dynamic gate
includes the two (rectangular) laser π pulses. Figure 8 shows that the fast dynamic gate retains
a higher purity even for fast decay rates. However, the adiabatic gate is more robust to loss of
population from the computational basis.

In figure 9, we analyse the dependence of the two figures of merit on J1 = J2. For the
dynamic gate, we keep �0 = 5 ps−1

≈ 3 meV constant; this introduces an increasing intrinsic
error as trev decreases and the transient regimes of excitation and de-excitation become more
important. On the other hand, the purity improves as trev becomes shorter when radiative decay
is included, as shown by the red curves. For the adiabatic gate, a pulse duration τ = 0.5 ns
and coupling strength �= 0.066 meV are used, with the detuning adjusted in the range 1=

0.16–0.6 meV to give a maximum entangling power for each of the J1 = J2 points shown.
As can be seen in figure 9, the adiabaticity condition is very well satisfied and there is no
population leakage in absence of radiative decay. However, decay events inevitably lead to
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Figure 9. Intrinsic gate errors (blue curves) and additional effects of decoherence
(red curves): the final purity and the final population of the computional basis
states are shown as a function of the coupling strength J1 = J2 (in units of
0.1 ps−1). A decay rate of 1 ns−1, R = 1.2 and typical laser pulse parameters
have been used.

some population leakage when included in the model. Unsurprisingly, a stronger XY interaction
improves performance for both purity and loss of population; this is in contrast to the dynamic
scheme, for which the loss of population gets worse when the interaction strengths are larger.

6. Conclusion

We have shown that it is possible for a central control to be a mediator of entanglement between
two qubits, even if the coupling strengths between mediator and qubits are different. When a
dynamic approach is taken, the coupling must be of XY form—but if an alternative adiabatic
gate is performed any coupling form is permissible. Further, the gate is close to maximally
entangling over a wide range of parameter space, in both cases.
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The proposed protocol could immediately be tested in a range of experimental systems,
which include molecules with coupled electron and nuclear spins, and donors in silicon. Possible
experiments would include the demonstration of remote entanglement between two centres that
are not directly coupled, or the demonstration of a simple algorithm.
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