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RIGIDITY OF BROKEN GEODESIC FLOW ANDINVERSE PROBLEMSYAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNAbstrat. Consider a broken geodesis α([0, l]) on a ompat Rie-mannian manifold (M, g) with boundary of dimension n ≥ 3. Thebroken geodesis are unions of two geodesis with the property thatthey have a ommon end point. Assume that for every broken geo-desi α([0, l]) starting at and ending to the boundary ∂M we knowthe starting point and diretion (α(0), α′(0)), the end point and dire-tion (α(l), α′(l)), and the length l. We show that this data determinesuniquely, up to an isometry, the manifold (M, g). This result has ap-pliations in inverse problems on very heterogeneous media for situa-tions where there are many sattering points in the medium, and arisesin several appliations inluding geophysis and medial imaging. Asan example we onsider the inverse problem for the radiative transferequation (or the linear transport equation) with a non-onstant wavespeed. Assuming that the sattering kernel is everywhere positive, weshow that the boundary measurements determine the wave speed insidethe domain up to an isometry.AMS lassi�ation: 35J25, 58J45.Keywords: Rigidity of Riemannian manifolds, broken geodesis, in-verse problems, radiative transfer.1. Introdution.1.1. Main result. Let us onsider a ompat Riemannian manifold
(M, g) with boundary of dimension n ≥ 3. Let SM denote its unittangent bundle. The lassial boundary rigidity problem is the fol-lowing (see [12, 13, 14, 16, 27, 32, 33, 34, 37, 38℄): Assume that weknow the distanes d(x, y) of boundary points x, y ∈ ∂M . Can wedetermine the isometry type of the manifold (M, g)? Mihel [30, 31℄observed that in the ase of simple manifolds these distane funtionsalso determine the values of the biharateristi �ow at boundary, theso-alled sattering relation or lens relation, that is,

L = {(x, ξ), (y, ζ), t) ∈ SM × SM × R : x, y ∈ ∂M,

(γx,ξ(t), ∂tγx,ξ(t)) = (y, ζ) for some t ≥ 0}where γx,ξ is the geodesi of (M, g) that leaves from x to diretion ξat t = 0. In other words, L gives the information when and whereand in whih diretion a geodesi, sent from the boundary, hits again1
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2 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNthe boundary. It was shown in [16℄ under some onditions (see also[2, 3℄) that the wave front set of the sattering operator assoiatedto the wave equation for the Laplae-Beltrami operator of a smoothRiemannian metri determines the sattering relation. The naturalonjeture is that for non-trapping manifolds the sattering relationdetermines the isometry type of the manifold. For reent progress onthis problem see the survey papers [35, 40℄.In the ase of a very heterogeneous media with many satteringpoints inside the manifold one an obtain further information by look-ing at the propagation of singularities of waves going through the man-ifold. This is the broken sattering relation or broken lens relation thatwe proeed to de�ne.A broken geodesi (or, a one broken geodesi) is a path α = αx,ξ,z,η(t),where z = γx,ξ(s) ∈M for some s ≥ 0, η ∈ SzM , and
αx,ξ,z,η(t) =

{
γx,ξ(t), t < s,
γz,η(t− s), t ≥ s,(See Fig. 1.) In Riemannian geometry broken geodesis are onsiderede.g. in the lassial Ambrose theorem [4℄, whih says that the paralleltranslations of the urvature tensor along broken geodesis determineuniquely a simply onneted Riemannian manifold.We denote by ℓ(αx,ξ,z,η) ∈ R+ ∪ {∞} smallest l > 0 suh that

αx,ξ,z,η(l) ∈ ∂M . Denote by ν the interior unit normal vetor andby
Ω+ = {(x, ξ) ∈ SM : x ∈ ∂M, (ξ, ν)g > 0},

Ω− = {(x, ξ) ∈ SM : x ∈ ∂M, (ξ, ν)g < 0}the inoming and outgoing boundary diretions respetively.The boundary entering and exiting points of broken geodesis de�nethe broken sattering relation,
R = {(x, ξ), (y, ζ), t) ∈ SM × SM × R+ : (x, ξ) ∈ Ω+, (y, ζ) ∈ Ω−,

t = ℓ(αx,ξ,z,η), and
(αx,ξ,z,η(t), ∂tαx,ξ,z,η(t)) = (y, ζ) for some (z, η) ∈ SM}.Our main result is:Theorem 1.1. Let (M, g) be a ompat Riemannian manifold witha non-empty boundary of dimension n ≥ 3. Then ∂M and the bro-ken sattering relation R determines the isometry type of the manifold

(M, g) uniquely.We remark that this result doesn't assume any a-priori ondition onthe metri g or the manifold M . The di�ulty in proving the resultlies in the possible ompliated nature of the broken geodesi �ow.The proof of the theorem above and the other results stated in theintrodution are given in setions 2�3.
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Figure 1. Left: Propagation of singularities and mul-tiple sattering for the radiative transfer equation.Right: A broken geodesi orresponding the relation
((x0, ξ0), (x1, ξ1), t) ∈ R with t = s1 + s2.1.2. Appliation: Radiative transfer equation. As mentioned ear-lier the broken sattering relation an be determined by probing withwaves a very heterogeneous medium with many sattering points andobserving at the boundary the e�ets. The strongest singularities of thewaves are the ones propagating through the medium without any re-�etion and this determines the sattering relation. The next strongersingularities orrespond to the waves re�eting only one and this de-termines the broken sattering relation at the boundary. This type ofsituation arises in geophysis due to the many disontinuities in thesurfae of the earth that at as re�etors and in optial tomography,a novel medial imaging tehnique that allows one to reonstrut thespatial distribution of optial properties of tissues by probing them bynear-infra-red photons [6, 7, 17, 18, 20℄. This an be formulated as aninverse problem for the radiative transfer equation and we onsider thisappliation in more detail below. For previous mathematial analysison the problem, see e.g. [8, 10, 11, 21, 22, 40℄.To avoid arti�ial di�ulties on how to formulate the boundary valueproblem for the radiative transfer equation, we onsider a non-ompatomplete manifold (N, g) without boundary. The inverse problem westudy is to �nd the metri in a ompat subset M with smooth bound-ary using external measurements made in the set U = N \M .We say that the funtion u(t, x, ξ) de�ned on (t, x, ξ) ∈ [0,∞)×SN ,is a solution of the radiative transfer equation on N if

(Hu)(t, x, ξ) + σ(x, ξ)u(t, x, ξ)− (Su)(t, x, ξ) = 0,(1)
u(t, x, ξ)|t=0 = w(x, ξ).Here H is the biharateristi �ow on the tangent bundle TN ,
Hu(t, x, ξ) =

∂u

∂t
− ξi

∂u

∂xi
− ξiξjΓkij(x)

∂u

∂ξk
,



4 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNwhere (x1, . . . , xn, ξ1, . . . , ξn) denotes loal oordinates on the tangentbundle TN orresponding to loal oordinates (x1, . . . , xn) of M and
ξj = gjkξk. The operator S, alled the sattering operator, is

Su(t, x, ξ) = c−1
n

∫

SxN

K(x, ξ, ξ′)u(t, x, ξ′) dVg(ξ
′).Here K ∈ C∞(SN ⊗ SN) is alled the sattering kernel and cn =vol(Sn−1). Finally, the funtion σ ∈ C∞(SN) is alled the attenuationfuntion. We denote the solution of (1) with the initial value w ∈

C∞(SN) by u(t, x, ξ) = uw(t, x, ξ).For the results onerning the radiative transfer equation we need afew more de�nitions. We say that the omplete manifold N is simple iffor any x, y ∈ N there is only one geodesi onneting these points. Wesay that M ⊂ N is stritly onvex if all points in M an be onnetedwith a geodesi segment lying in M and the seond fundamental formof ∂M is positive.We say that sattering kernel K is positive in M int if
K(x, ξ, ξ′) > 0, for all x ∈M int and ξ, ξ′ ∈ SxN .Next we de�ne the external measurements. We assume that for any

w ∈ C∞
0 (SN), suh that w(x, ξ) = 0 for x ∈ M we know solution

uw(x, ξ, t) for x ∈ U . In other words, we assume that we are given themeasurement map A : C∞
0 (SU) → C∞(R+ × SU),

Aw = uw|R+×SU .Note that the map A gives us the geodesi �ow in U and thus it deter-mines the metri gij(x) for x ∈ U . Also, it an be used to determinethe absorption σ|U .Theorem 1.2. Let N be a omplete simple manifold, M ⊂ N aompat and stritly onvex set with smooth boundary. Assume that
K(x, θ, θ′) vanish for x 6∈M , that is, K ∈ C∞

0 (SM ⊗SM) and that Kis positive in M int.Moreover, assume that we are given the set U = N \M and the mea-surement map A. These data determine uniquely the broken satteringrelation of the manifold (M, g).2. Proof of Theorem 1.12.1. Auxiliary Lemmata. Let (M, g) be a ompat manifold withboundary, ∂M . In the following, we use an auxiliary smooth losedompat n�manifold (M̃, g̃) that ontains (M, g). We ontinue to usenotation γx,ξ(t), (x, ξ) ∈ SM̃, for the geodesis on M̃ with γx,ξ(0) = xand γ′x,ξ(t) = ξ. All geodesis are parameterized by the arlength. Wedenote by distfM(x, y) and dist(x, y) the distane funtions on M̃ and
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M , respetively. To simplify notations, we denote

(x0, ξ0)Rt(x1, ξ1) if and only if (
(x0, ξ0), (x1,−ξ1), t

)
∈ R.On M̃ and M , we will use various ritial distanes along geodesis.We start with ritial distanes assoiated with the Riemann exponen-tial map, expx,

expx : TxM̃ ≡ SxM̃ × R+ −→ M̃, expx(sξ) = γx,ξ(s),

ξ ∈ SxM̃, s ∈ R+. The ut lous distane along γx,ξ, denoted by
τR(x, ξ), is de�ned by

τR(x, ξ) = max{s > 0 : distfM(x, γx,ξ(s)) = s}.(2)The ut lous distane τR(x, ξ), (x, ξ) ∈ SM̃ determines the injetivityradius inj (M) of M̃ ,inj (M) = min
(x,ξ)∈SfM

τR(x, ξ).We say that the set
ωx = {y ∈ M̃ : y = γx,ξ(τR(x, ξ)), ξ ∈ SxM̃},is the ut lous with respet to x. The ut lous ωx onsists of twotypes of points. We say that a point y ∈ ωx is an ordinary ut louspoint if there are ξ, η ∈ SxM̃ , η 6= ξ with

τR(x, ξ) = τR(x, η), γx,ξ(τR(x, ξ)) = γx,η(τR(x, η)) = y.Consider now the di�erential of expx at sξ that is denoted by d expx |sξ.We say that a point y = γx,ξ(s) is a onjugate point along γx,ξ, if thedi�erential d expx |sξ : TxM̃ → TyM̃ is degenerate. This is equivalentto the existene of a non-trivial Jaobi �eld Y (t) along γ = γx,ξ([0, s])with the Dirihlet boundary onditions Y (0) = 0 and Y (s) = 0. For
(x, ξ) ∈ SM̃ we de�ne the onjugate distane τc(x, ξ) ∈ R+ ∪ {∞} tobe

τc(x, ξ) = inf{s > 0 : d expx |sξ is not one-to-one}.Eah point y ∈ ωx is an ordinary ut lous point, a �rst onjugatepoint, or both.Next we disuss ritial distanes assoiated with the boundary ex-ponential map, exp∂M ,
exp∂M : ∂M × R −→ M̃, exp∂M (z, s) = γz,ν(s), z ∈ ∂M,where ν = ν(z) is the unit interior normal vetor to ∂M at z. The pair

(z, s) de�nes the boundary normal oordinates in M̃ near ∂M .The boundary ut lous distane, τb(z), z ∈ ∂M is given by
τb(z) = max{s > 0 : dist(γz,ν(s), ∂M) = s}.(3)



6 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNThe set of the orresponding points y = γz,ν(τb(z)) is alled the bound-ary ut lous,
ω∂M = {y ∈M : y = γz,ν(τb(z)), z ∈ ∂M}.The boundary ut lous onsists of two types of points. We say thata point y ∈ ω∂M is an ordinary boundary ut lous point if there are

z, w ∈ ∂M , z 6= w with
τb(z) = τb(w), γz,ν(z)(τb(z)) = γw,ν(w)(τb(w)) = y.Also, we say that a point y = γz,ν(z)(τb(z)) ∈ ωx is a foal point ifthe di�erential, d exp∂M |(z,τb(z)) : Tz∂M × R → TyM̃ is degenerate.Equivalently, t is a foal point if there is a non-trivial Jaobi �eld Y (t)along γz,ν([0, s]) with Y (s) = 0 and Y ′(0) = WY (0), where W is theWeingarten map of ∂M at z. For z ∈ ∂M , we de�ne the foal distane,

τf (z) to be
τf (z) = inf{s > 0 : d exp∂M |(z,s) is not one-to-one}.Note that y ∈ ω∂M is an ordinary boundary ut lous point, a �rst fo-al point, or both. Also, the funtions τR, τc, τb, and τf are ontinuous,e.g. [26℄.Comparing Jaobi �elds Y (s) along the geodesi γz,ν([0, s]) with theDirihlet ondition Y (0) = 0 and the Robin ondition Y ′(0) = WY (0),we see that τf (z) < τc(z, ν). Due to the ompatness of ∂M there is

c0 > 0 suh that
τc(z, ν) ≥ τf(z) + c0, z ∈ ∂M.In a similar manner, we an show that τR(z, ν) > τb(z), z ∈ ∂M.Indeed, assume the opposite, i.e., t = τR(z, ν) ≤ τb(z) for some z ∈ ∂M .Denote (y, η) = (γz,ν(t), −γ

′
z,ν(t)). By duality, τR(y, η) = τR(z, ν) = t.Let ε > 0 and xε = γz,ν(−ε) = γy,η(t+ ε). ThendistfM (xε, y) < t+ ε ≤ τb(z) + εand there is ηε ∈ Sxε

M̃ with y = γxε,ηε
(distfM(xε, y)). Denote by tε > 0the last time when γxε,ηε

(s) hits ∂M . If ε is su�iently small, we seeby the short-ut arguments that dist(y, ∂M) < τb(z). This ontraditsthe de�nition of τb in (3).Due to the ompatness of ∂M , by making c0 > 0 smaller if nees-sary,
τR(z, ν) ≥ τb(z) + c0, z ∈ ∂M.(4)Later we will onsider intersetions of various geodesis on M . Inthese onsiderations we would like to avoid pathologial ases that mayhappen to long geodesis. The �rst ase we analyze is a self-intersetionof a geodesi.
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z0 zFigure 2. Left: Self-intersetion of a normal geodesi.Right: Geodesis orresponding to fousing diretions.Lemma 2.1. Let γz,ν, z ∈ ∂M be the normal geodesi and
γz,ν(s+) = γz,ν(s−), s+ > s−,that is, γz,ν intersets itself. Then s+ + s− > 2τR(z, ν).Proof. Assume that

s+ + s− ≤ 2τR(z, ν).(5)Then s− < τR(z, ν). Let A = γz,ν(s−), B = γz,ν(τR(z, ν)) be points on
γz,ν, see Fig. 2, and denote by lBA = s+ − τR(z, ν) the length of the"long" geodesi γz,ν([τR(z, ν), s+]). Then, using de�nition (2) of τR,
s− = dist(z, A), τR(z, ν) − s− = dist(A,B), so that the length of thebroken geodesi γz,ν([0, s+]) ∪ γz,ν([0, s−]) from z to z is

s+ + s− = dist(z, A) + dist(A,B) + lBA + dist(A, z).Sine γz,ν([s−, τR(z, ν)]) is the unique minimal geodesi between itsendpoints, lBA > dist(A,B) = τR(z, ν) − s−. Therefore,
s+ + s− > s− + (τR(z, ν) − s−) + (τR(z, ν) − s−) + s− = 2τR(z, ν),whih ontradits (5). 2In the sequel, distS is the Sasakian distane on, depending on theontext, TM̃ or SM̃ , see [36℄.Lemma 2.2. Let ε > 0, z ∈ ∂M . There is δ = δ(ε) > 0 suh that if

(z1, ξ1)R2t (z2, ξ2), i.e. γz1,ξ1(t1) = γz2,ξ2(t2), t1 + t2 = 2t,with t < τR(z, ν) + δ and distS((zi, ξi), (z, ν)) < δ, i = 1, 2 then
|t− ti| < ε, i = 1, 2.Note that the onstant δ does not depend on z ∈ ∂M .Proof. Assume the opposite, i.e., an existene of points zk ∈ ∂M ,

(zki , ξ
k
i ) ∈ Ω+, k = 1, 2, i = 1, 2, . . . and a parameter ε > 0, suh that

lim
k→∞

distS((zki , ξki ), (zk, νk)) = 0,
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γzk

1
,ξk

1
(tk1) = γzk

2
,ξk

2
(tk2), t

k
1 + tk2 = 2tk, lim sup

k→∞
(tk − τR(zk, νk)) ≤ 0,with tk1 − tk2 ≥ 2ε. Using ontinuity arguments and ompatness of ∂Mwe have that there is a subsequene k(p) with zk(p) → z, tk(p)1 → t+,

t
k(p)
2 → t−, and

γz,ν(t+) = γz,ν(t−), t+ + t− ≤ 2τR(z, ν), t+ − t− ≥ 2ε,whih ontradits Lemma 2.1. 2Next we introdue auxiliary funtions µ1(z), µ2(z), and τM(z), z ∈
∂M with µ1(z) and µ2(z) to be determined from the broken satteringrelation. The funtion µ1(z) tells when a normal geodesis sent from
z ∈ M exits M . By the de�nition of the broken sattering relation,
R, a point (z, ξ) ∈ Ω+ is in relation with itself, (z, ξ)Rt(z, ξ), if andonly if the geodesi γz,ξ((0, t/2]) on M̃ lies in M int. This makes itpossible to determine, for any γz,ξ, (z, ξ) ∈ Ω+, its arlength to the�rst hitting point to ∂M . We denote this arlength by µ1(z, ξ) and
µ1(z) = µ1(z, ν).The funtion µ2(z) is an approximation to τf(z). If we want todetermine τf (z) we an argue as follows: assume that s > τf (z). Thenthe normal geodesi γz,ν([0, s]) is no longer a shortest path from γz,ν(s)to ∂M and there are sequenes zn → z, zn 6= z, sn → τf (z), tn → τf (z)suh that

γz,ν(sn) = γzn,νn
(tn), νn = ν(zn).In terms of the relation R, these imply that

(z, ν)RTn
(zn, νn), Tn = tn + sn,(6) with sn → τf (z), tn → τf (z), zn → z, when n→ ∞.Therefore, it makes sense to try to �nd τf (z) using (6). However,there are two obstales. First, it may happen that τf (z) ≥ µ1(z).Seond, having (6) with zn → z, Tn → 2t, we want to onlude that

sn → t, tn → t. To do so, we intend to use Lemma 2.2, whih requires
t ≤ τR(z, ν) whih is not known. To avoid these di�ulties, we will notdetermine τf (z) but another funtion µ2(z) that is losely related to it.De�nition 2.3. Consider the set S(z) of those s ∈ (0, µ1(z)) for whihthere are sequenes zn → z, zn ∈ ∂M zn 6= z, Tn → 2s suh that

(zn, νn)RTn
(z, ν).(7)De�ne µ2(z) = inf S(z), if S(z) 6= ∅ and µ2(z) = µ1(z) otherwise.Observe that µ2 may be found from the broken sattering relation.Lemma 2.4. Funtion µ2 : ∂M → R+ satis�es

min(µ1(z), τf (z), τR(z, ν)) ≤ µ2(z) ≤ min(µ1(z), τf (z)).(8)and τb(z) ≤ µ2(z).



RIGIDITY OF BROKEN GEODESIC FLOW 9Proof. The right inequality in (8) follows from De�nition 2.3 andonsiderations before it.To prove the left inequality of (8), let us assume that there is s <
min(τf(z), µ1(z), τR(z, ν)) whih satis�es (7). By Lemma 2.2, applia-ble due to Tn < 2τR(z, ν) for large n, we have

γzn,νn
(sn) = γz,ν(s

′
n), sn → s, s′n → s, zn → z, zn 6= z.(9)As s < τf (z), exp∂M is a loal di�eomorphism near (z, s), whih on-tradits (9). This proves (8).Using de�nitions µ1 and τf , we see by using (4) that

τb(z) ≤ min(
1

2
µ1(z), τf (z), τR(z, ν(z))).This yields τb(z) ≤ µ2(z). 2Finally, we need a funtion τM(z) with τM (z) > τb(z) having theproperty that, for t < τM(z) the geodesis sent bak from a point

x = γz,ν(t) hit the boundary ∂M near z in a regular way. Namely, wede�ne
τM(z) = min (µ1(z), τR(z, ν(z))), z ∈ ∂M.As τb(z) ≤ 1
2
µ1(z) we see by (4) that τb(z) < τM (z).2.2. Family of interseting geodesis. In this setion we intend touse the broken sattering relation to verify if a given family of geodesisinterset at one point.Let z0 ∈ ∂M , ν0 = ν(z0), and x0 = γz0,ν0(t0), 0 < t0 < τM(z0).Denote η0 = −γ′z0,ν0(t0). Clearly, η0 is the diretion of the reversegeodesi, γx0,η0 from x0 to z0. By onsidering Jaobi �elds along thisgeodesi, we see that the exponential map, expx0

: Sx0
M̃ × R+ → M̃ ,is a loal di�eomorphism near (η0, t0).As t0 < τR(x0, η0) and γx0,η0(t0) hits ∂M normally, all geodesis γx0,ηhit ∂M transversally for η ∈ Sx0

M lose to η0. They determine smoothfuntions z(η), t(η) suh that γx0,η(t(η)) = z(η) ∈ ∂M . Inverting thesefuntions and using transversality, we obtain, in a neighborhood U ⊂
∂M of z0 a smooth setion ξ(z) : U → SU and a funtion t(z) suhthat

γz,ξ(z)(t(z)) = x0, z ∈ U.(10)In the following, our aim is to determine, using the broken satteringrelation R, whether, for a given triple {U, ξ( · ), t( · )} of a neighborhood
U ⊂ ∂M and funtions ξ(z) and t(z), there exists a point x0 ∈M suhthat γz,ξ(z)(t(z)) = x0 for all z ∈ U .To this end, we notie that property (10) implies

(z, ξ(z))RT (z) (z0, ν0), (z, ξ(z))RT (z,z′) (z′, ξ(z′)), z, z′ ∈ U,(11)
T (z) = t(z) + t0, T (z, z′) = t(z) + t(z′),



10 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNfor smooth ξ(z), t(z). In addition,
t(z0) = t0, dt(z)|z0 = 0, ξ(z0) = ν(z0),(12)where the last properties follow from the fat that γx0,η0 is normal to

∂M . Here, dt(z) = dzt(z) is the di�erential of the funtion t : U → R.These observations motivate the following de�nition:De�nition 2.5. Let z0 ∈ ∂M and t0 > 0. Consider a family F(z0, t0) =
{U, ξ( · ), t( · )} where U ⊂ ∂M is a neighborhood of z0, ξ : U → SMis a smooth setion, and t : U → R is a smooth funtion. We say that
F(z0, t0) is a family of fousing diretions if ξ(z), t(z) satisfy ondi-tions (11) and (12). We then say that the geodesis γz,ξ(z), z ∈ U arethe geodesis orresponding to family F(z0, t0).Note that the broken sattering relation R determines if given U ,
ξ(z), and t(z) form a family of fousing diretions. Our prinipal teh-nial result in this setion shows that the geodesis orresponding to afamily of fousing diretions interset at a single point.Theorem 2.6. Let z0 ∈ ∂M, t0 < τM (z0), and F(z0, t0) be a familyof fousing diretions. Then there is a neighborhood Ũ ⊂ U of z0 suhthat

γz,ξ(z)(t(z)) = γz0,ν0(t0), for all z ∈ Ũ .Proof. The proof of this result is rather long and will onsist of severalsteps and auxiliary lemmata.Step 1. We start with an observation that (11) implies that, for any
z ∈ U , there are s(z), ŝ(z) ≥ 0 suh that

x(z) = γz,ξ(z)(s(z)) = γz0,ν0(ŝ(z)), s(z) + ŝ(z) = T (z).As t0 < τR(z0, ν0), by Lemma 2.2 s(z) → t0, ŝ(z) → t0 when z → z0and
s(z0) = ŝ(z0) = t0.(13)Next we show that s(z), ŝ(z) are C∞-smooth near z0 and

ds(z)|z0 = dŝ(z)|z0 = 0.(14)To this end, onsider the funtion H(s, z),
H(s, z) = dist(γz0,ν0(s), z) + s− T (z), (s, z) ∈ (t0 − δ, t0 + δ) × U.As t0 < τR(z0, ν0), the funtion H(s, z) is C∞-smooth a neighborhoodof (t0, z0) and

H(t0, z0) = 0, ∂sH(t0, z0) = ∂sdist(γz0,ν0(s), z0)|t0 + 1 = 2.Making U smaller if neessary, the equation H(s, z) = 0 has a uniquesolution s = s̃(z) whih is C∞−smooth in U with s̃(z0) = t0. As also
s = ŝ(z) solves H(s, z) = 0, we see that ŝ(z) = s̃(z), z ∈ U . It thenfollows that s(z) = T (z) − ŝ(z) ∈ C∞(U).



RIGIDITY OF BROKEN GEODESIC FLOW 11Let us di�erentiate the identity H(ŝ(z), z) = 0 with respet to z at
z = z0. Due to (12) and the fat that γz0,ν0 is normal to ∂M ,
0 = dzH(ŝ(z), z)|z0 = dz ŝ |z0 · (∂sdist(γz0,ν0(s), z0)|s=t0 + 1) = 2dzŝ |z0 .Thus, dz ŝ |z0 = 0 and also dzs|z0 = dz(T (z) − ŝ(z))|z0 = 0.Step 2. Consider the map E ∈ C∞(U ;SM),
E(z) = (x(z), η(z)) :=

(
γz,ξ(z)(s(z)), −γ

′
z,ξ(z)(s(z))

)
, E(z0) = (x0, η0).Lemma 2.7. The map dE|z0 : Tz0∂M → Tx0,η0SM has the form

dE|z0(v) = (0,Θv), v ∈ Tz0∂M,(15)where we identify Tx0,η0SM ≈ Tx0
M × Tη0(Sx0

M). Furthermore, Θ :
Tz0∂M → Tη0(Sx0

M) is bijetive.Proof of Lemma 2.7. As x(z) = γz0,ν0(ŝ(z)), it follows from (14)that dx|z0 = 0, i.e., dE|z0 is of form (15). To show that Θ is bijetive,observe that
expx(z)(s(z)η(z)) = z, z ∈ U.(16)Let us denote Exp(x, ξ) = expx ξ, (x, ξ) ∈ TM̃ . By di�erentiating bothsides of (16) with respet to z and using dx|z0 = 0, we obtain

dξExp|(x0,t0η0)

(
s(z0)Θζ + (ds|z0ζ)η(z0)

)
= ζfor any ζ ∈ Tz0∂M. Using that s(z0) = t0, ds|z0 = 0, we get

dξ expx0
|ξ=t0η0(t0Θζ) = ζ,whih implies that Θ : Tz0∂M → Tη0(Sx0

M) is bijetive. 2Step 3. Our further onsiderations are based on the analysis of theintersetion of a single geodesi and the geodesis orresponding to afamily of fousing diretions.Lemma 2.8. Let z0 ∈ ∂M and F(z0, t0) = {U, ξ( · ), t( · )}, t0 < τM(z0)be a family of fousing diretions. Let γ(τ) be another geodesi in Mwhih intersets γz0,ν0,
γ(0) = γz0,ν0(r0), γ′(0) 6= ±γ′z0,ν0(r0), r0 < τM(z0).(17)Assume, in addition, that all geodesis γz,ξ(z) orresponding to F(z0, t0)interset γ near y0, i.e.,

γz,ξ(z)(r(z)) = γ(τ(z)),(18)where 0 < r(z) ≤ r1 < τM (z0) and |τ(z)| ≤ i1 < inj (M). Then r0 = t0.Proof of Lemma 2.8. Denote y0 = γz0,ν0(r0). First we show that
r(z) is ontinuous at z0. If this is not true, there would be anotherintersetion of γz0,ν0 and γ,

γz0,ν0(r
′) = γ(τ ′), r′ ≤ r1, r

′ 6= r0, |τ
′| < inj (M).



12 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNThis leads to a ontradition as both γ([0, τ ′]) and γz0,ν0([r0, r
′]) areunique minimal geodesis between their endpoints. Thus r(z) is on-tinuous at z0.To prove the laim, we assume that r0 6= t0. Our next goal is to showthat the map Ψ : U × R+ → M ,

Ψ(z, r) = expz(rξ(z))is a loal di�eomorphism near (z0, r0), see the right part of Fig. 3.Indeed, as t0, r0 < τR(z0, ν0), the map expx0
is a loal di�eomorphismnear (t0 − r0)η0, where x0 = γz0,ν0(t0), η0 = −γ′z0,ν0(t0). Thus,

d expx0
|(t0−r0)η0 : T(t0−r0)η0(Tx0

M) → Ty0Mis bijetive. Using the de�nitions for s(z), E(z) = (x(z), η(z)) intro-dued earlier we have
Ψ(z, r) = γE(z)(s(z) − r) = expx(z)((s(z) − r)η(z)).By (13) and (14), ds(z)|z0 = 0 and s(z0) = t0, whih together with (15)imply that
dΨ|(z0,r0)(ζ, ρ) = d expx0

|(t0−r0)η0((t0 − r0)Θζ − ρη0)for ζ ∈ Tz0∂M and ρ ∈ R. Thus, by Lemma 2.7 and bijetivity of
d expx0

|(t0−r0)η0 ,
dΨ|(z0,r0) : Tz0∂M × R → Ty0Mis bijetive, i.e., Ψ is a loal di�eomorphism near (z0, r0).Now, let Σ be an (n − 1)−dimensional submanifold whih ontainsa part γ(−ε, ε) of γ near y0 and is transversal to γz0,ν0 at y0, see Fig. 3,the existene of suh submanifold guaranteed by (17). Introduing theboundary normal oordinates (w, n) assoiated to Σ, with n = 0 on Σ,we rewrite Ψ in these oordinates as

Ψ(z, r) = (w(z, r), n(z, r)).By transversality, ∂n
∂r

(z0, r0) 6= 0. This implies that for any z near z0the equation n(z, r) = 0 for has a unique solution r = r̂(z). Moreover,
r̂(z0) = r0 and the funtion r̂(z) is smooth in a neighborhood of z0.Now r(z) and r̂(z) are ontinuous at z0 and they both solve theequation n(z, r) = 0. Thus, there is a neighborhood Ũ ⊂ U of z0 suhthat r̂(z) = r(z) for z ∈ Ũ . As also Ψ is a loal di�eomorphism, wesee that if Ũ is small enough, then Ψ̃ : Ũ → Ψ̃(Ũ) ⊂ Σ, where Ψ̃(z) =
Ψ(z, r(z)), is a di�eomorphism of (n − 1)-dimensional submanifolds.On the other hand, ondition (18) implies that Ψ̃(Ũ) ⊂ γ(−ε, ε). As
γ(−ε, ε) is a one-dimensional submanifold of Σ, we get a ontraditionfor n ≥ 3. Thus, r0 = t0. 2Step 4. Let 0 < ε < 1

4
min(inj (M), τR(z0, ν) − t0) and 0 < δ < δ(ε)where δ(ε) is de�ned in Lemma 2.2. We hoose a neighborhood Ũ ⊂ U
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Figure 3. Left: Submanifold Σ ontains geodesi γ andis transversal to γz0,ν . Right: Geodesis orresponding to
F(z0, t0) almost interset at the point x0 = γz0,ν(t0) andde�ne oordinates near p = γz0,ν(r0).of z0 so that

|t(z) − t0| < ε and dS((z, ξ(z)), (z0, ν0)) < δ for z ∈ Ũ .By De�nition 2.5, there exist funtions s1(z, z
′), s2(z

′, z) > 0, z, z′ ∈

Ũ , suh that
γz,ξ(z)(s1(z, z

′)) = γz′,ξ(z′)(s2(z
′, z)), s1(z, z

′) + s2(z
′, z) = t(z) + t(z′).By Lemma 2.2, these imply that

|t0 − s1(z, z
′)| < 2ε, |t0 − s2(z

′, z)| < 2ε.(19)Consider a geodesi γ(s) = γz′,ξ(z′)(s+ s2(z
′, z0)) for some �xed z′ ∈ Ũ ,

z′ 6= z0. It follows from (19) that Lemma 2.8 is appliable to thefamily F(z0, t0) and the geodesi γ with r1 = τR(z0, ν0) − 2ε, i1 = 2ε.Thus, γz′,ξ(z′) and γz0,ν0 interset at x0 = γz0,ν0(t0). As z′ ∈ Ũ \ {z0} isarbitrary, all geodesis orresponding to family F(z0, t0) with a startingpoint z′ ∈ Ũ interset in x0. 2Later on we will need the following modi�ation of Lemma 2.8 whihdo not require that all geodesis of F(z0, t0) interset γ near y0.Lemma 2.9. Let z0 ∈ ∂M and F(z0, t0) = {U, ξ( · ), t( · )}, t0 < τM(z0)be a family of fousing diretions. Let γ(τ) be another geodesi in Mwhih intersets all geodesis γz,ξ(z) orresponding to F(z0, t0),
γz,ξ(z)(r(z)) = γ(τ(z)),where 0 < r(z) ≤ r1 < τM(z0) and |τ(z)| ≤ L, where L > 0 is arbitrary.Assume, in addition, that h(z) = r(z) + τ(z) is ontinuous. Then

γz,ξ(z)(t(z)) = γ(h(z0) − t0) when z is su�iently lose to z0, i.e., allgeodesis interset at the same point.



14 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNProof. We �rst show that there is only a �nite number of interse-tions of γz0,ν0((0, r1)) with γ([−L,L]). Let τ1, . . . , τN ∈ [−L,L] and
r1
0, . . . , r

N
0 ∈ (0, r1) de�ne the points of the intersetion,

γz0,ν(z0)(r
j
0) = γ(τj).As all geodesis in balls of radius inj (M) are shortest and rj0 ≤ r1 with

γz0,ν0([0, r1]) being the shortest between its endpoints,
N ≤

[
2Linj (M)

]
+ 1,where [t] denotes the integer part of t ∈ R.Let 0 < ε < 1

2
inj (M) and U(ρ) = ∂M∩B(z0, ρ), where B(z0, ρ) ⊂Mis the ball with enter z0 and radius ρ. Then there is ρ0 > 0 suh that
min

1≤j≤N
|r(z) − rj0| < ε, for z ∈ U(ρ0).Indeed, otherwise there is a sequene zn → z0 with r(zn) → r̃ <

τR(z0, ν(z0)) and τ(zn) → τ̃ , |τ̃ | ≤ L, suh that
γz0,ν0(r̃) = γ(τ̃), r̃ 6= rj0, j = 1, . . . , N,whih is a ontradition.For 0 < ρ < ρ0, denote

Vj(ρ) = {z ∈ U(ρ) : γz,ξ(z)(r) = γ(τ), r(z) + τ(z) = h(z), |r − rj0| ≤ ε}.Sets Vj(ρ) are relatively losed U(ρ) and, therefore, measurable on
∂M . As ⋃N

j=1 Vj(ρ) = U(ρ), we see that for some j the set Vj(ρ) hasnon-zero (n − 1)-dimensional measure. However, if rj0 6= t0, the sameonsiderations as in the proof of Lemma 2.8, by replaing r0 by rj0 andusing a relatively open neighborhood Ũ ⊂ Vj(ρ) of z0, show that the set
Vj(ρ) has (n− 1)−dimensional measure equal to 0 when ρ > 0 is smallenough. This shows that there are j and ρ > 0 suh that rj0 = t0 and
U(ρ) \ Vj(ρ) has (n− 1)−dimensional measure equal to 0. Thus Vj(ρ)is dense in U(ρ). As ε > 0 is arbitrary, the ontinuity of the geodesi�ow shows that γz0,ξ0(t0) = γ(h(z0)− t0). Together with Theorem 2.6this ompletes the proof. 2In the following we say that two geodesis µ(t) and µ̃(t) oinide if
µ(t1) = µ̃(t2) and µ′(t1) = ±µ̃′(t2) for some t1, t2 ∈ R. Note that this isequivalent to µ(t) = µ̃(a+ t) or µ(t) = µ̃(a− t) for all t in a non-emptyopen interval and a ∈ R.2.3. Reonstrution of the boundary ut lous distane.Lemma 2.10. The boundary, ∂M , and the broken sattering relation,
R, determine the boundary ut lous distane τb(z), z ∈ ∂M .



RIGIDITY OF BROKEN GEODESIC FLOW 15Proof. We reall that for t0 < τb(z0) the point z0 in the unique pointof ∂M losest to x0 = γz0,ν0(t0). On the ontrary, when t0 > τb(z0)there is another point w ∈ ∂M with dist(γz0,ν0(t0), w) < t0. What ismore, onsiderations in the beginning of Setion 2.2 show the existeneof a family F(z0, t0) of fousing diretions for t0 < τM(z0). Reall that
τb(z0) < τM (z0).Thus, when τb(z0) < t0 < τM (z0), there is a family F(z0, t0) =
{U, ξ(· ), t(· )} of fousing diretions, a point w ∈ ∂M, w 6= z0, and
s0 < t0 suh that

(z, ξ(z))Rt(z)+s0 (w, ν(w)), z ∈ U.(20)Our next aim is to show that when t0 < τb(z0), there are no w ∈ ∂Mand F(z0, t0) satisfying (20) with s0 < t0.Assuming the opposite, there is a neighborhood U ⊂ ∂M of z0 anda funtion r(z) with
γz,ξ(z)(r(z)) = γw,ν(w)(t(z) − r(z) + s0), z ∈ U.(21)Next we prove that

r0 = lim sup
z→z0

r(z) ≤ t0.(22)Assume that (22) is not true. Then there is a sequene zn → z0 with
r(zn) → r0 > t0. By the ontinuity of the exponential map, it followsfrom (21) that γz0,ν0(r0) = γw,ν(w)(t0 − r0 + s0). Thus, by the triangleinequality,dist (w, γz0,ν0(t0))

≤ dist(w, γw,ν(w)(t0 − r0 + s0)) + dist(γz0,ν0(r0), γz0,ν0(t0))
≤ (t0 − r0 + s0) + (r0 − t0) ≤ s0 < t0,whih ontradits the de�nition (3) of τb. Thus (22) is valid.Therefore, by making U smaller if neessary, we have

r(z) < τM (z0), z ∈ U.Assume �rst that geodesis γz0,ν0 and γw,ν(w) do not oinide. ApplyingLemma 2.9 with γ(τ) = γw,ν(w)(t0 + s0− r0 + τ) and L = 2t0, we obtain
γz0,ν0(t0) = γw,ν(w)(s0). As s0 < t0 this ontradits with the de�nitionof τb. If γz0,ν0 and γw,ν(w) oinide, ondition w 6= z0 implies that
γz0,ν(z0)(t0+s0) = w. Then we would have dist(x0, ∂M) ≤ dist(x0, w) ≤
s0 < τb(z0), that is not possible.Finally, by Lemma 2.4 the relation R determines the funtion µ2(z)satisfying τb(z) ≤ µ2(z). Let J(z0) be the set of those t0 ∈ [0, µ2(z0)]for whih there are w ∈ ∂M , s0 < t0, and F(z0, t0) satisfying (20).If τb(z0) < µ2(z0), we see that (τb(z0), µ2(z0)) ⊂ J(z0). Thus we andetermine τb(z0) by setting τb(z0) = inf J(z0) if J(z0) 6= ∅ and τb(z0) =
µ2(z0) otherwise. 2



16 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANN2.4. Boundary distane representation of (M, g). Next we on-strut of isometry type of manifold (M, g) by showing that the brokensattering relation, R, determines the boundary distane representation
R(M) of (M, g) that is the set

R(M) = {rx : x ∈M} ⊂ C(∂M),where rx : ∂M → R are the boundary distane funtions
rx(z) = dist(x, z), z ∈ ∂M.It is well-known, e.g. [5, 24, 25℄ that the set R(M) possesses a naturalstruture of a Riemannian manifold with the map

R : M → R(M), R(x) = rx(·),being an isomorphism. What is more, this metri struture an beidenti�ed just from the knowledge of the set R(M). An additional ad-vantage of dealing with R(M) is the existene of a stable proedure toonstrut a metri approximation, in the Gromov-Hausdor� topology,to (M, g) given an approximation to R(M) in the Hausdor� topologyon L∞(∂M), [23℄. To onstrut R(M), we assume that the funtion
τb is already known. We start with �nding dist∂M on ∂M whih isinherited from (M, g). We de�ne that dist∂M(z1, z2) = ∞ when z1 and
z2 lie on di�erent omponents of ∂M .Lemma 2.11. The boundary, ∂M , and the broken sattering relation,
R, determine, for any z1, z2 ∈ ∂M , the distane dist∂M(z1, z2) along
∂M .Proof. It is enough to onsider the ase when z1 and z2 are in thesame omponent of ∂M .Using boundary normal oordinates, we see that there is ε0 > 0 and
c0 > 0 suh that

|dist(y1, y2) − dist∂M(y1, y2)| ≤ c0ε
3/2,(23)if dist∂M(y1, y2) ≤ ε3/4, ε < ε0. Let x2 = γy2,ν2(ε
5/4). Making ε0 > 0smaller if neessary, we see that there is a unique shortest geodesi in

M , γy1,ξ1, with (y1, ξ1) ∈ Ω+, from y1 to x2. Moreover, using againboundary normal oordinates, we see that
|dist(y1, x2) + dist(x2, y2) − dist∂M(y1, y2)| ≤ c1ε

5/4.(24)Let µ = µ([0, l]) be a shortest geodesi of ∂M from z1 to z2. Let
N ∈ Z+, ε = l/N and yj = µ(εj), j = 0, . . . , N . De�ne xj = γyj ,νj

(ε5/4)and assoiate with eah j = 1, . . . , N a broken geodesi αj whih is theunion of the geodesi from yj−1 to xj and from xj to yj. Inequality (24)implies that if N → ∞, then
|dist∂M(z1, z2) −

N∑

j=1

(dist(yj−1, xj) + dist(yj, xj)) | ≤ c2ε
1/4 → 0,(25)



RIGIDITY OF BROKEN GEODESIC FLOW 17Motivated by this, de�ne for N ∈ Z+ and ε = 1/N

dN(z1, z2) = inf

N∑

j=1

sj,where the in�mum is taken over the points yj ∈ ∂M , j = 0, 1, . . . , N, y0 =
z1, yN = z2, whih satisfy the following ondition: For any j = 0, . . . , N−
1, there are ηj ∈ Syj

M, (νj, ηj)g > 0 and positive sj < ε3/4 suh that
(
(yj, ηj), (yj+1, ν(yj+1)), sj

)
∈ R, j = 0, 1, . . . , N − 1.Using (23) we see that dN(z1, z2) ≥ dist∂M(z1, z2) − c3ε

1/2. On theother hand, as we saw in (25), there are yj, ηj, and sj suh that
|dist∂M(z1, z2) − dN(z1, z2)| ≤ c4ε

1/4 = cN−1/4 → 0, when N → ∞.Thus we get thatdist∂M (z1, z2) = lim
N→∞

dN(z1, z2).

2Next we determine the distane between boundary points with re-spet to the metri g in M .Lemma 2.12. The boundary, ∂M , and the broken sattering relation,
R, determine the distane funtion dist(x1, x2) for x1, x2 ∈ ∂MProof. By [1℄, for any x1, x2 ∈ ∂M a shortest path onneting them isa C1−path. Let x(s), s ∈ [0, l], l = dist(x1, x2), x(0) = x1, x(l) = x2 besuh a shortest path, parameterized by the arlength, that onnets x1to x2 in M . Moreover, by [1℄ it holds that if x(s) ∈M int for s ∈ (a, b),then x((a, b)) is a shortest geodesi between x(a) and x(b) in M .Clearly, the set of s ∈ [0, l] suh that x(s) ∈ M int is open. By (23),for any ε > 0 there is a �nite number points ai, i = 1, . . . , p, ap+1 = l,and bi, i = 1, . . . , p with 0 ≤ a1 < b1 ≤ a2 · · · < bp ≤ ap+1 = l suh that
zi = x(ai), yi = x(bi) ∈ ∂M anddist(x1, x2) ≤ dist∂M(x1, z1) +(26)

+

(
p∑

i=1

dist(zi, yi) + dist∂M(yi, zi+1)

)
≤ dist(x1, x2) + εand there are shortest paths γzi,ηi

([0, li]) in M of length li = bi − aifrom zi to yj that satisfy γzi,ηi
((0, bi − ai)) ⊂M int. Next we will relate(26) to the broken geodesi relation. Reall that relation R involvedbroken geodesis that start and end non-tangentially to the boundary.Beause of this, we onsider for tangential ηi the vetor ξi = (1 −

h)1/2ηi + h1/2ν(zi) ∈ Szj
M . If ηi is non-tangential, we set ξi = ηi.When h > 0 is small enough and si < li is su�iently lose to li,



18 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNwe have that γzi,ξi((0, si]) ⊂ M int, and the losest boundary point to
γzi,ξi(si), denoted ỹi, satis�esdist(γzi,ξi(si), ỹi) <

ε

p
, dist∂M(ỹi, yi) <

ε

p
.Consider the broken geodesi from zi to ỹj whih is the union of thegeodesi from zi to γzi,ξi(si) and from γzi,ξi(si) to ỹj. It has the length

ti ≤ li + ε/p and non-tangential starting and ending diretions. Thus
(zi, ξi)Rti(ỹi, ν). These onsiderations show thatdist(x1, x2) = inf

(dist∂M(x1, z1) + (

p∑

i=1

ti + dist∂M(ỹi, zi+1))

)where the in�mum is taken over ti > 0, zi, ỹi ∈ ∂M , and diretions
ξi, ζi suh that zp+1 = x2 and the relations (zi, ξi)Rti(ỹi, ζi) are valid.
2Theorem 2.13. The boundary, ∂M , and the broken sattering rela-tion, R, determine the set R(M) ⊂ C(∂M).Proof. Let ω∂M be the boundary ut lous onM . AsM \ω∂M is denseinM , it is su�ient to �nd R(M \ω∂M). Reall that, for x0 ∈M \ω∂M ,we have x0 = γz0,ν0(t0), where t0 = dist(x0, ∂M) < τb(z0) and z0 isthe unique boundary point losest to x0. Using the broken satteringrelation R, we intend to determine, for any w0 ∈ ∂M , D(z0, t0, w0) :=dist(x0, w0).Let x(s) be a shortest path from x0 to w0 parametrized by the ar-length. Denote by w = x(s0) the �rst point where x(s) is in ∂M .Clearly, dist(x0, w0) = s0 + dist(w,w0), s0 ≥ t0.(27)By [1℄, the path x([0, s0]) is a geodesi in M . We denote η = −x′(s0)so that x0 = γw,η(s0). As t0 ≤ τb(z0) < τM(z0), there is a family offousing diretions F(z0, t0) = {U, ξ( · ), t( · )} suh that for s1 = s0,
w1 = w, and η1 = η we have

(w1, η1)Rs1+t(z) (z, ξ(z)), z ∈ U.(28)After these preparations we will show that
D(z0, t0, w0) = inf(dist(w0, w1) + s1)(29)where in�mum is taken over w1 ∈ ∂M , η1 ∈ Sw1

M , and s1 ≥ t0 suhthat there is a fousing sequene F(z0, t0) = {U, ξ( · ), t( · )} satisfying(28).Formula (27) shows that the in�mum on the right side of (29) is lessor equal to D(z0, t0, w0). Thus to prove (29), it is enough to show thatif w1, η1, and s1 satisfy (28) then ρ = dist(w0, w1) + s1 ≥ dist(x0, w0).Assume now that (28) is valid. Then, for some r(z), τ(z), r(z) +
τ(z) = s1 + t(z), we have that γz,ξ(z)(r(z)) = γ(τ(z)).



RIGIDITY OF BROKEN GEODESIC FLOW 19Keeping aside the trivial ase when the geodesis γz0,ν0 and γw1,η1oinide, onsider �rst the ase when lim sup r(z) = r > t0. Denoting
γz0,ν0(r) = x1, we then havedist(w1, x0) ≤ dist(w1, x1) + dist(x1, x0)

≤ (s1 + t0 − r) + (r − t0) ≤ s1,yielding ρ ≥ dist(w0, w1) + dist(w1, x0) ≥ dist(w0, x0). If, however,
lim supz→z0 r(z) = r ≤ t0, we are in the situation of Lemma 2.9, whihshows that

γz0,ν0(t0) = γ(s1),yielding again that ρ ≥ dist(w0, x0). 2As the set R(M) an be naturally endowed with a di�erential stru-ture and a Riemannian metri so that is beomes isometri to (M, g),see e.g. [24, 25℄, we have �nished the proof of Theorem 1.1. 23. Proofs for the radiative transfer equation.3.1. Notations. Let X be a manifold with dimension n and Λ1 ⊂
T ∗X \0 be a Lagrangian submanifold. Let (x1, . . . , xn) = (x′, x′′, x′′′) ofbe loal oordinatesX with x′ = (x1, . . . , xd1), x′′ = (xd1+1, . . . , xd1+d2),
x′′′ = (xd1+d2+1, . . . , xn), and φ(x, θ), θ ∈ RN be a non-degenerate phasefuntion that parametrizes Λ1. We say that distribution u ∈ D′(X) is aLagrangian distribution assoiated with Λ1 and denote u ∈ Im(X; Λ1),if it an an loally be represented as

u(x) =

∫

RN

eiφ(x,θ)a(x, θ) dθ,where a(x, θ) ∈ Sm+n/4−N/2(X × RN \ 0), see [15, 19, 29℄.Let S1 ⊂ X be a submanifold of odimension d1. We denote itsonormal bundle by N∗S = {(x, ξ) ∈ T ∗X \ 0 : x ∈ S, ξ ⊥ TxS}. If
S1 = {x′ = 0} in loal oordinates, Λ1 = N∗S1 and u ∈ Im(X; Λ1),then loally

u(x) =

∫

Rd1

eix
′·θa(x, θ′) dθ′, a(x, θ′) ∈ Sµ(X × R

d1 \ 0)where µ = m − d1/2 + n/4. We denote Im(X;S1) = Iµ(X;N∗S1) andsay that Iµ(X;S1) are the onormal distributions in spae X assoiatedwith submanifold S1.Also, we denote by Ip,l(X; Λ1,Λ2) the distributions u in D′(X) asso-iated to two leanly interseting Lagrangian manifolds Λ1,Λ2 ⊂ T ∗X,see [15, 29℄. Let S1 and S2 be submanifolds of M of odimensions
d1 and d1 + d2, S2 ⊂ S1. If in loal oordinates S1 = {x′ = 0},
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S2 = {x′ = x′′ = 0}, and Λ1 = N∗S1, Λ2 = N∗S2, then the distribution
u ∈ Ip,l(X; Λ1,Λ2) an be loally represented as

u(x) =

∫

Rd1+d2

ei(x
′·θ′+x′′·θ′′)a(x, θ′, θ′′) dθ′dθ′′,where a(x, θ′, θ′′) belongs to a produt type symbol lass Sµ′,µ′′(X ×

(Rd1 \ 0) × Rd2) ontaining symbols a ∈ C∞ that satisfy
|∂γx∂

α
θ′∂

β
θ′′a(x, θ

′, θ′′)| ≤ CαβγK(1 + |θ′| + |θ′′|)µ−|α|(1 + |θ′′|)µ
′−|β|for all x ∈ K, multi-indexes α, β, γ, and ompat sets K ⊂ X. Above,

µ = p+ l − d1/2 + n/4 and µ′ = −l − d2/2.By [15, 29℄, miroloally away from Λ1 ∩ Λ2,
Ip,l(Λ0,Λ1) ⊂ Ip+l(Λ0 \ Λ1) and Ip,l(Λ0,Λ1) ⊂ Ip(Λ1 \ Λ0).Thus the prinipal symbol of u ∈ Ip,l(Λ0,Λ1) is well de�ned on Λ0 \Λ1and Λ1 \ Λ0.3.2. Born series. In the sequel, we denote the distane on (N, g) by

d(x, y) = dist(x, y). Let γx,ξ(t) be the geodesi on (N, g) with initialpoint x and initial diretion ξ ∈ Sx0
N . Denote

γx,ξ = {γx,ξ(t) ∈ N : t ∈ R},

ηx,ξ = {(γx,ξ(t), γ̇x,ξ(t)) ∈ SN : t ∈ R},

η+
x,ξ = {(γx,ξ(t), γ̇x,ξ(t)) ∈ SN : t ∈ R+}.The measurement operator A an be extended to distributions w sup-ported in SU . In the following we onsider u orresponding to w0(x, ξ) =

δ(x0,ξ0)(x, ξ), x0 ∈ U . We assume that γx0,ξ0(R+) interset the stritlyonvex manifold M ⊂ N . To analyze the orresponding solution, letus denote the spei� geodesi on whih the leading order singularitiespropagate by γ0 = γx0,ξ0. Also, we denote the orresponding spray in
SN by η0 = ηx0,ξ0 .Let u0(x, ξ, t) be the solution of the equation (1) with S being zero,that is, Hu0 + σu0 = 0, u0|t=0 = w0. Then u0(t) = c0(x)δη0(t)(x, ξ),where c0(x) is a non-vanishing smooth funtion. To simplify notations,we onsider the equation for all t ∈ R, obtaining

u0(t, x, ξ) = c0(x)δη0(t)(x, ξ), (t, x, ξ) ∈ R × SN.In the following we analyze the higher order terms in the Born series,that is,
uj = QSuj−1, j ≥ 1,where Q is de�ned by v = QF where

Hv + σv = F in R+ × SN, v|t=0 = 0.



RIGIDITY OF BROKEN GEODESIC FLOW 21We note that there are C1, C2 > 0 so the solutions uw of equation(1) satisfy
|uw(x, ξ, t)| ≤ C1e

C2t‖w‖L∞(SN).(30)To analyze the singularities of u, let us take the Laplae transformin time t and onsider û(k, x, ξ) = (u(· , x, ξ))(k). By (30) the Laplaetransform is well de�ned for k ∈ C, Re k > C2. In the following, weonsider k �rst as as a parameter, and denote û(x, ξ) = û(x, ξ, k). Then
(k + Ĥ)û+ σû− Sû = w0 in (x, ξ) ∈ SN,where w0(x, ξ) = δ(x0,ξ0)(x, ξ) and
Ĥu(x, ξ) = −ξj

∂u

∂xj
− ξlξjΓmlj (x)

∂u

∂ξm
.The operator Ĥ + k : C∞(SN) → C∞(SN) has Q̂k a parametrix, see[19, 29℄, that satis�es (QF )(k) = Q̂k(F (k)). Also, we denote û(k) =

û0(k) + ûsc(k), where ûsc(k) = û1(k) + û2(k) + . . . .Consider now a Born iteration starting at a general w0(k). Sine theoe�ients of Ĥ are smooth funtions and the kernel of S is a smoothompatly supported funtion, we that for any s ≥ 0 there there is
C3 = C3(s) > 0 suh that for Re k > C3 the Born series

ŵ(k) =

∞∑

j=0

(Q̂kS)j−1w0(k)(31)onverges in Sobolev spae Hs
loc(SN) when w0(k) ∈ Hs

loc(SN).3.3. Properties of the ompositions of the operators S and Q̂k.Lemma 3.1. We an write S = S1S2,
Sjf(x, ξ) =

∫

Sn−1

Kj(x, ξ, ξ
′)f(x, ξ′) dS(ξ′), j = 1, 2where Kj(x, ξ, ξ

′) ∈ C∞
0 (SN × SN).Proof. Interpreting x as a parameter, we de�ne Kx : L2(Sn−1) →

L2(Sn−1) by
Kxf(ξ) =

∫

Sn−1

K(x, ξ, ξ′)f(ξ′) dS(ξ′).As the kernel K(x, ξ, ξ′) is smooth, we see that for all α ∈ Nn and
l,m ∈ N there is a onstant cαlm suh that

sup
x∈M

‖∂αx (1 − ∆ξ)
mK(x, ξ, ξ′)‖Cl(Sn−1×Sn−1) < cαlm,(32)where ∆ξ is the Laplae-Beltrami operator of the (n− 1)-sphere Sn−1.Let am > 0 be numbers suh that 0 < am < e−m min(1, c−1

αlm) for all
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max(|α|, l) ≤ m. Then the operator

B =

∞∑

m=0

am(1 − ∆ξ)
mde�nes an unbounded non-negative selfadjoint operatorB : L2(Sn−1) →

L2(Sn−1) having an inverse J = B−1 that an be extended to a smooth-ing operator D′(Sn−1) → C∞(Sn−1). Moreover, by (32) we see that forany x the operator Lx = BKx de�nes a smoothing operatorD′(Sn−1) →
C∞(Sn−1) and its Shwartz kernel Lx(ξ, ξ′) is a C∞-smooth in all vari-ables (x, ξ, ξ′). Thus we prove the assertion by de�ning K2(x, ξ, ξ

′) =
Lx(ξ, ξ

′) and K1(x, ξ, ξ
′) = J(ξ, ξ′), where J(ξ, ξ′) is the Shwartz ker-nel of J . 2The Born series iteration an be written as

ûj(k) = Q̂kS1A
j−1S2û0(k)where A = S2Q̂kS1. To analyze the operator A we onsider �rst thease where K(x, ξ, ξ′) would be the onstant 1. Denote by Sc theoperator orresponding to a onstant sattering kernel K(x, ξ, ξ′) = 1.For this purpose, we introdue operators T = π∗ : L2(SN) → L2(N)and T ∗ = π∗ : L2(N) → L2(SN), that is,

Tu(x) = c−1
n

∫

SxN

u(x, ξ)dVg(ξ), T ∗v(x, ξ) = v(x),where cn = vol(Sn−1) and Vg is the volume on SxN .Lemma 3.2. Let Z = SN × SN , L0 = {(x, ξ, y, η) ∈ Z : x = y}, and
Σ0 = N∗L0. The Shwartz kernels of Ac and A satisfy

Ac(x, ξ, y, η) ∈ I−1(Z;L0) = Ir(Z; Σ0),(33)
A(x, ξ, y, η) ∈ Iρ(Z; Σ0)(34)where r = −(n + 1)/2, ρ = r + ε, and ε > 0.Proof. Clearly, TT ∗ = I and Sc = T ∗T . Thus we have Sc = Sc1S

c
2where Sc1 = Sc2 = S. In the loal oordinates Sc has the Shwartz kernel

Sc(x, ξ, x′, ξ′) = δ(x− x′) ∈ I0(Z;L0) = Im1(Z; Σ0),where m1 = (1 − n)/2. To analyze A = S2Q̂kS1, we �rst onsider theoperator
Ac = Sc2Q̂kS

c
1 = T ∗TQ̂kT

∗T.Denote Q̃k = TQ̂kT
∗ : L2(N) → L2(N) and let v ∈ C∞

0 (N). Then
(Q̂kT

∗v)(x, ξ) =

∫ 0

−∞

h(x, ξ, s, k)v(γx,ξ(s)) ds



RIGIDITY OF BROKEN GEODESIC FLOW 23where h(s, x, ξ, k) is the solution of the di�erential equation
∂sh(s, x, ξ, k) + (k + σ(γx,ξ(s)))h(s, x, ξ, k) = 0,(35)
h(s, x, ξ, k)|s=0 = 1.Note that

h(x, ξ, s, k) = e−ksh(x, ξ, s, 0).(36)Thus, using the assumption that the manifold N is simple, we have
(TQ̂kT

∗v)(x) =

∫

Sn−1

∫ 0

−∞

h(s, x, ξ, k)v(γx,ξ(s)) dsdVg(ξ)(37)
=

∫

N

[h(s(x, y), x, ξ(x, y), k)j(x, y)]v(y) dVg(y),where s(x, y) ∈ (−∞, 0] and ξ(x, y) ∈ SxN are de�ned by exp−1
x (y) =

s(x, y)ξ(x, y), and j(x, y) = det(d expx |y)
−1 is the Jaobian determi-nant where d expx |y is the di�erential of the map expx evaluated at y.Sine (N, g) is simple, the kernel b(x, y) := h(s(x, y), x, ξ(x, y), k)j(x, y)is smooth outside the diagonal and behaves near the diagonal as

b(x, y) ∼ e−kd(x,y)d(x, y)1−n.Using (37) we see that Q̃k is a pseudodi�erential operator of order (−1)(for a similar argument see [37℄).The Shwartz kernel Q̃k(x, x
′) ∈ I−1(N ×N ; diag (N ×N)) of Q̃ anbe written as

Q̃k(x, x
′) =

∫

Rn

ei(x−x
′)·θa(x, x′, θ)dθ, a ∈ S−1(N ×N × R

n \ 0).The same expression de�nes a funtion Q̃k(x, ξ, x
′, ξ′) := Q̃k(x, x

′) ∈

I−1(SN×SN ;L0). This funtion is the Shwartz kernel of Ac = T ∗Q̃kTand thus we see that the �rst part of the assertion, the formula (33) issatis�ed.Next we onsider the Shwartz kernel of A, that is, A(x, ξ, y, η). Itan be written as a produt
A(x, ξ, y, η) = Ac(x, ξ, y, η)J(x, ξ, y, η)where (using the Riemannian normal oordinates at x)

J(x, ξ, y, η) = K2(x, ξ,
y − x

|y − x|
)K1(y,

x− y

|x− y|
, η).Now J1(x, y, z) := K1(x, ξ, z/|z|) and J2(x, y, z) := K2(x, z/|z|, ξ)are homogeneous funtions if degree zero in z, and we see that [15,formula (1.2)℄

K2(x, ξ,
y − x

|y − x|
), K1(y,

x− y

|x− y|
, η) ∈ I−n(Z;L0).



24 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNNow we an write A as the produt of K1, K2, and Ac. To analyze thisprodut, we need the following lemma extending results of [15℄ for lessregular onormal distributions.Lemma 3.3. Let Z be a manifold of dimension d and L0 be a sub-manifold with odimension n. Assume that A ∈ I−d(Z;L0) and B ∈
Iµ(Z;L0), µ < 0. Then the pointwise produt AB ∈ Iµ+ε(Z;L0) forany ε > 0.Proof. Let (z′, z′′) be loal oordinates of X suh that L0 = {z′ = 0}.Then

A(z) =

∫

Rd

eiz
′·θa(z, θ) dθ, B(z) =

∫

Rd

eiz
′·θb(z, θ) dθ,where a(z, θ) ∈ S−d(X × R

d \ 0) and b(z, θ) ∈ Sµ(X × R
d \ 0). Thesymbol c(z, θ) of the produt A(z)B(z) is given by the onvolution

c(z, θ) =

∫

Rd

a(z, θ − θ̃) b(z, θ̃) dθ̃,and a simple omputations shows that
|c(z, θ)| ≤ C

∫

Rd

(1 + |θ − θ̃|)µ(1 + |θ̃|)−d dθ ≤ C ′(1 + |θ|)µ+ε,with ε > 0. Indeed, deomposing the domain of integration as Rd =
B(0, 1

2
|θ|) ∪ B(θ, 1

2
|θ|) ∪ (Rd \ (B(0, 1

2
|θ|) ∪B(θ, 1

2
|θ|))), we see that

|c(z, θ)| ≤ C1|θ|
µ log |θ| + C2|θ|

−d|θ|d+µ(1 + δµ,−d log |θ|) + C3|θ|
µ

≤ C ′(1 + |θ|)µ+ε,where |θ| > 1 and δµ,−d is one if µ = −d and zero otherwise. Thederivatives of c(z, θ) an be estimated in similar way, and we obtainthat c(z, θ) ∈ Sµ+ε(X × Rd \ 0). 2Lemma 3.3 for the produt of K1, K2, and Ac implies (34). Thisproves Lemma 3.2. 2The previous result says, roughly speaking, that A is like a ΨDO oforder (−1) operating in (x, y)-variables when ξ and η are onsidered asparameters.Next we onsider powers of A. Next, Σ′
0 denotes the anonial rela-tion orresponding to the Lagrangian manifold Σ0. We see that Σ′

0×Σ′
0intersets leanly T ∗SN×diag (T ∗SN×T ∗SN)×T ∗SN with the exess

d = (n− 1). Thus using [42, Thm VIII.5.2℄, we see that
A2 = A ◦ A ∈ I−2ρ+d/2(Z; Σ0) = Iρ2(Z; Σ0),where ρ2 = −(n + 3)/2 + 2ε with any ε > 0. Iterating operator A, wesee that

Aj ∈ Iρj (Z; Σ0) = I−1−j+ε(Z;L0), ρj = −
n + 1

2
− j + ε, ε > 0.



RIGIDITY OF BROKEN GEODESIC FLOW 253.4. Singularities of the terms in the Born series. In the follow-ing, let Λ0 = N∗Y0 and Λ1 = N∗(Y1), where
Y0 = {(γ0(t), γ̇0(t)) ∈ SN : t ∈ R},

Y1 = S(γ0) = {(x, ξ) ∈ SN : x ∈ γ0(R)}.Moreover, let P = P (x, ξ,Dx, Dξ) = Ĥ + k,har (P ) = {(x, ξ, x̃, ξ̃) ∈ T ∗(SN) : ξix̃i + ξiξjΓkij(x)ξ̃k = 0},and let Ξ(x, ξ, x̃, ξ̃) be the biharateristi of P (x, ξ,Dx, Dξ) (i.e. inte-gral urve of the Hamilton vetor �eld in T ∗(SN) \ 0) starting from
(x, ξ, x̃, ξ̃) ∈ T ∗(SN). Then the �ow-out anonial relation generatedby har (P ) is

Λ′
P = {(x, ξ, x̃, ξ̃; y, ζ, ỹ, ζ̃) ∈ (T ∗(SN) \ 0) × (T ∗(SN) \ 0) :

(x, ξ, x̃, ξ̃) ∈ har (P ), (y, ζ, ỹ, ζ̃) ∈ Ξ(x, ξ, x̃, ξ̃)}.The �ow-out of Λ1 in har (P ) is the Lagrangian manifold Λ2 ⊂ T SN \0satisfying Λ′
2 = Λ′

P ◦ Λ′
0.Lemma 3.4. We have

û0(x, ξ, k) = c0(x, k)δη0(x, ξ) ∈ Ir0(SN ; Λ0),where c0(x, k) is a smooth non-vanishing funtion and r0 = (2n−3)/4.For j ≥ 1,̂
uj(k) ∈ Irj ,−

1

2 (SN ; Λ1,Λ2), rj = −
n

2
− j + εδj≥2, ε > 0,(38)where δj≥2 is one if j ≥ 2 and zero otherwise.Proof. For the zeroth term in the Born series the laim is true byde�nition. Next we analyze the higher order terms. Clearly,

S2û0(x, ξ, k) = K2(x, ξ, η(x))(S
cû0)(x, ξ, k),where η(x) ∈ SxN de�nes a smooth vetor �eld suh that if x = γ0(s)then η(x) = γ̇0(s). A simple omputation shows that Λ′

0×Σ′
0 intersetsdiag(T ∗SN × T ∗SN) × (T ∗SN) transversally. Now S2 ∈ I0(SN ×

SN ;L0) = Im1(SN ×SN ; Σ0), where m1 = (1−n)/2 and by [19, Thm25.2.3℄ that S2 an be onsidered as a ontinuous operator
S2 : Ir0(SN ; Λ0) → Is(SN ; Λ1),where s = r0 +m1 and Λ′

1 = Λ′
0 ◦Σ′

0. A simple omputation shows that
Λ′

1◦Σ′
0 = Λ′

1, and that Λ′
1×Σ′

0 intersets diag(T ∗SN×T ∗SN)×(T ∗SN)leanly with exess e = (n−1). Thus we have by [19, Thm 25.2.3℄ that
AjS2û0(k) ∈ Iρj+m1+e/2(SN ; Λ1).Again, as Λ′

1 ◦Σ′
0 = Λ′

1, and Λ′
1 ×Σ′

0 intersets diag(T ∗SN × T ∗SN)×
(T ∗SN) leanly with exess e, we see that sine S1 ∈ Im1(Z; Σ0),

S1A
jS2û0(k) ∈ Iρj+2(m1+e/2)(SN ; Λ1) = Iρj (SN ; Λ1).(39)



26 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNTo analyze ûj(k) = Q̂kS1A
j−1S2û0(k), we observe that the operator

P = Ĥ + ik is a �rst order operator of real prinipal type. As Q̂k is itsparametrix, it follows from [29℄ that the Shwartz kernel
Q̂k ∈ I

1

2
−1,− 1

2 (Z; ∆T ∗Z ,ΛP ),(40)where ∆′
T ∗Z is the diagonal of T ∗Z×T ∗Z and Λ′

P ⊂ T ∗(Z) is the �ow-out anonial relation generated by har (P ). Now N∗Y1 intersetshar (P ) transversally. Hene we obtain (38) by [15, Prop. 2.1℄. 23.5. Prinipal symbol of the singularity. For any s > 0 there is j0suh that ûj0(k) ∈ Hs
loc(SN). Using the onvergene of the Born series(31), we see that the series ûj0(k)+ ûj0+1(k)+ ûj0+2(k)+ . . . onvergesin Hs

loc(SN).Next we onsider how to �nd the geodesi γ0 in U . To this endwe observe using (39) that T û(k) = T û0(k) + T ûsc(k) ∈ I0(N ; γ0)and T û0(k) ∈ I0(N ; γ0) have the same non-vanishing prinipal symbol.Thus T û(k) in U determines U ∩ γ0.Moreover, the above onvergene of the Born series in Sobolev spaesand (38) yield that û1(k) and ûsc(k) = û1(k) + û2(k) + . . . are bothelements in Ir1,− 1

2 (SN ; Λ1,Λ2) and they have the same prinipal symbolon Λ2 \ Λ1. Motivated by this, we onsider next û1(k).Using the above notations, we see that
Sû0(x, ξ, k) = S(x, ξ, η(x))h(d(x, x0), x0, ξ0, k)c1(x)δγ0(x) ∈ I0(SN ;Y1),where c1(x) is a smooth non-vanishing funtion. Moreover, the operator
Q̂k has the Shwartz kernel (40) that away from the diagonal has theform

Q̂k(x, ξ, x
′, ξ′) = h(d(x, x′), x′, ξ′, k)δη+

x′,ξ′
(x, ξ),where h is de�ned in (35). Thus, in (x, ξ, x′, ξ′) ∈ Z \ L0, the kernel of

Q̂k has the form
Q̂k(x, ξ, x

′, ξ′) =∫

RN

eiψ(x,ξ,x′,ξ′,θ)[h(d(x, x′), x′, ξ′, k)q(x, ξ, θ)] dθ mod C∞(Z)where ψ(x, ξ, x′, ξ′, θ) is a non-degenerate phase funtion parameteriz-ing the Lagrangian ΛP and q(x, ξ, θ) ∈ Sr1−1/2+(4n−2)/4−N/2(Rn×R
n−1×

RN \ 0) has a non-vanishing prinipal symbol.Let us use in SN \ η0 loal oordinates S : (x, ξ) 7→ (sj(x, ξ))
2n−1
j=1having the property that if γx,ξ(R−) intersets the geodesi γ0(R+) then

s1 = s1(x, ξ) is the unique value suh that
γx,ξ(R−) ∩ γ0(R+) = γ0(s1),and s2(x, ξ) = d(γ0(s1(x, ξ)), x). By [15, Prop. 2.1℄,

û1(k) = Q̂kSû0(k) ∈ Ir1,−
1

2 (SN ; Λ1,Λ2)



RIGIDITY OF BROKEN GEODESIC FLOW 27and û1(x, ξ, k) in (x, ξ) ∈ SN \ η0 has in the above loal oordinatesthe form
û1(x, ξ, k) =

∫

RN

eiφ(x,ξ,θ)[a(x, ξ, k)p(x, ξ, θ)] dθ mod C∞(SN),

a(x, ξ, k) = h(s1(x, ξ), x0, ξ0, k)h(s2(x, ξ), γ0(s1(x, ξ)), ζ(x, ξ), k)where φ(x, ξ, θ) is a non-generate phase funtion parametrizing the La-grangian manifold Λ2, ζ(x, ξ) = −γ̇x,ξ(−s2(x, ξ)) is the diretion of xfrom γ0(s1) and p(x, ξ, θ) is a symbol with a non-vanishing prinipalsymbol. Note that on Λ2 \Λ1 the prinipal symbol of a(x, ξ, k)p(x, ξ, θ)is non-vanishing on the onormal bundle of the submanifold
K = {(x, ξ) ∈ SN : γx,ξ(R−) ∩ γ0(R+) ∩M int 6= ∅}.By (36),
a(x, ξ, k) = e−k(s1+s2) S(γ0(s1), ζ, γ̇0(s1)) b0(x, ξ),(41)where s1 = s1(x, ξ), s2 = s2(x, ξ), ζ = ζ(x, ξ), and b0(x, ξ) is non-vanishing and independent of k.Now we are ready prove unique solvability of the inverse problem.Proof of Theorem 1.2. First we note that have found already theset γ0 ∩U . Thus we know the set W := SN \ (SM ∪ η0). By observingthe singularities of û(k) at W , we an �nd the onormal bundle ofthe manifold K ∩ U . Thus by observing û(k) at W we an �nd allpoints (x, ξ) ∈ W suh that there is a broken geodesi from (x0, ξ0)to (x, ξ) with a breaking point in M int. Moreover, we an �nd theprinipal symbol of û(k) on N∗K ∩W in some loal oordinates. By(41), observing the asymptotis of the prinipal symbol on N∗K ∩Wwhen k → ∞, we an �nd the funtion d(x0, γ0(s1)) + d(γ0(s1), x),

s1 = s1(x, ξ) on (x, ξ) ∈ W . Here γ0(s1) ∈ M int is the point at whihthe broken geodesi from (x0, ξ0) to (x, ξ) breaks, that is, the brokengeodesi hanges its diretion.Using the ontinuity of the geodesi �ow, we an �nd all (x, ξ) ∈ SN\
SM that are in the broken sattering relation with (x0, ξ0) and more-over, in suh ase we an �nd the broken geodesi distane d(x0, γ0(s1))+
d(γ0(s1), x). This proves the result and even more: The singularities ofthe Shwartz kernel of the operator A determine the broken satteringrelation R. 2Aknowledgements: M. Lassas was partially supported by the Aad-emy of Finland Center of Exellene programme 213476. G. Uhlmannwas partially supported by FRG grant DMS 0554575 and a WalkerFamily Endowed Professorship.Referenes[1℄ Alexander R., Alexander S. Geodesis in Riemannian manifolds-with-boundary.Indiana Univ. Math. J. 30 (1981), 481�488.
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