
Harnessing Exposed Terminals in Wireless Networks

Mythili Vutukuru, Kyle Jamieson, and Hari Balakrishnan
MIT Computer Science and Artificial Intelligence Laboratory

{mythili,jamieson,hari}@csail.mit.edu

Abstract

This paper presents the design, implementation, and ex-
perimental evaluation of CMAP (Conflict Maps), a system
that increases the number of successful concurrent trans-
missions in a wireless network, achieving higher aggregate
throughput compared to networks that use carrier sense
multiple access (CSMA). CMAP correctly identifies and ex-
ploits exposed terminals in which two senders are within
range of one another, but each intended receiver is far
enough from the other sender that the two transmissions can
succeed even if done concurrently. CMAP includes a reac-
tive channel access scheme in which nodes transmit con-
currently (even if there’s the possibility of a collision), then
observe the loss probability to determine whether they are
better off transmitting concurrently or not. Experimental re-
sults from a 50-node 802.11a testbed show that CMAP im-
proves throughput by 2× over CSMA with exposed termi-
nals, while converging to the performance of CSMA when
the senders and receivers are all close to each other. CMAP
also improves throughput by up to 47% over CSMA in real-
istic access point-based networks by exploiting concurrent
transmission opportunities.

1 Introduction

It is well-known that maximizing the number of suc-
cessful concurrent transmissions is a good way to maxi-
mize the aggregate throughput in a wireless network. Cur-
rent contention-based channel access protocols generally
attempt to minimize the number of packet collisions, al-
lowing concurrent transmissions only when the nodes deter-
mine that they are unlikely to result in a collision. For exam-
ple, in the popular carrier sense multiple access (CSMA)
scheme, before transmitting, a sender listens to the chan-
nel and assesses whether a nearby node is transmitting. If
no nearby node is transmitting, the sender transmits imme-
diately. If a nearby node is transmitting, then the sender
defers, waiting for some time after the end of the on-
going transmission. Then the sender repeats the same car-
rier sense–defer process.

Figure 1. An example transmission from S to R with three
abstract sender cases: an in-range but conflicting sender
CS, an exposed sender ES, and a hidden sender HS.

Because a receiver’s ability to decode a packet success-
fully depends on channel conditions near the receiver and
not the sender, CSMA is at best a sender’s crude guess about
what the receiver perceives. This guess can be correct if
the receiver and sender are close enough that they experi-
ence similar noise and interference conditions. However, it
can also prevent a sender (e.g., ES in Figure 1) from trans-
mitting a packet when its intended destination has a lower
level of noise and interference—an exposed terminal situ-
ation. In addition, researchers have observed that receivers
can often “capture” packets from a transmission even in the
presence of interfering transmissions [18, 20], suggesting
that simply extending the carrier sense mechanism to the
receiver does not solve the problem. We argue that schemes
like CSMA in which nodes use heuristics (such as “carrier
is busy”) to perform channel access are too conservative in
exploiting concurrency because they are “proactive”: nodes
defer to ongoing transmissions without knowing whether
in fact their transmission actually interferes with ongoing
transmissions.

To improve throughput in a wireless network, we pro-
pose CMAP, a link-layer whose channel access scheme re-
actively and empirically learns of transmission conflicts in
the network. Nodes optimistically assume that concurrent
transmissions will succeed, and carry them out in paral-
lel. Then, in response to observed packet loss, they dis-
cover which concurrent transmissions are likely to work,
and which aren’t (probabilistically), dynamically building
up a distributed data structure containing a “map” of con-
flicting transmissions (e.g., S to R and CS to CR in Fig-
ure 1). In §3, we describe this novel conflict map data struc-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1744128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ture (hence the name CMAP), and show how nodes can
maintain it in a distributed fashion by overhearing ongoing
transmissions and exchanging lightweight information with
their one-hop neighbors. By listening to ongoing transmis-
sions on the shared medium to identify the current set of
transmitters, and consulting the conflict map just before it
intends to transmit, each node determines whether to trans-
mit data immediately, or defer.

Of course, not all conflicting senders will be in range of
each other to overhear and make the transmit-or-defer de-
cision because of the well-known “hidden terminal” prob-
lem (HS in Figure 1). To prevent performance degradation
in such cases, a CMAP sender implements a reactive loss-
based backoff mechanism to reduce its packet transmission
rate in response to receiver feedback about packet loss. Fi-
nally, note that any scheme that seeks to exploit the ex-
posed terminal opportunity shown in Figure 1 must cope
with link-layer ACKs from R to S being lost at S due to
a collision with ES’s transmission. CMAP tolerates ACK
losses with a windowed ACK and retransmission protocol.

We have implemented a CMAP prototype in software
running on a 50-node testbed with commodity 802.11a
wireless LAN hardware (§4). We present an evaluation of
CMAP in §5 showing that CMAP leads to a 2× improve-
ment over CSMA with exposed terminals, while success-
fully avoiding interfering concurrent transmissions. In ac-
cess point-based topologies with multiple concurrent trans-
missions, CMAP improves aggregate throughput by be-
tween 21% and 47%; the median per-source throughput is
1.8× better than CSMA. CMAP also achieves a 52% im-
provement in aggregate throughput over CSMA in content
dissemination mesh networks. These gains are mainly due
to the non-interfering concurrent transmission opportunities
that CMAP is able to exploit.

The contributions of this paper over existing proposals
to solve the exposed terminal problem [1, 11, 16] are as
follows. First, CMAP identifies all exposed terminal op-
portunities because it uses packet delivery probabilities,
not heuristics that may (indirectly) influence packet deliv-
ery, to identify exposed terminals. Second, CMAP nodes
gather the packet delivery probabilities in an online and
distributed fashion, and do not require any offline mea-
surements. Finally, CMAP demonstrates its gains in a live
802.11a testbed implementation.

2 Overview of CMAP

The CMAP design has three parts: a channel access
(MAC) protocol, a windowed retransmission protocol, and
a backoff mechanism that uses receiver feedback.

Channel access. The CMAP MAC uses a distributed data
structure called the conflict map, which allows nodes to de-
termine which pairs of transmissions are likely to obtain

Figure 2. Example conflict map state shown for node
u when it detects a transmission between x and y that
conflicts with its transmission to v.

lower throughput if done concurrently than if done sequen-
tially. The nodes in the network use empirical observations
of packet losses to populate the conflict map, rather than as-
suming proactively (e.g., because the carrier is busy) that a
given pair of transmissions shouldn’t be done concurrently
because a collision might ensue.

Each node computes and stores a portion of the conflict
map using feedback from its receivers about the fate of its
transmissions. This conflict information at node u is a ta-
ble with entries of the form (v : x→ y). This entry, shown
in Figure 2, means that if u were to send to v concurrently
with a transmission from x to y, then the resulting through-
put would be lower than if the two transmissions were done
sequentially. We call such transmissions conflicting. If two
transmissions conflict, it would be better for one of the
senders (say, u) to defer its transmission while the other
transmission is in progress. For this reason, we call this ta-
ble the node’s defer table. The union of the defer tables of
all the nodes in the network forms its conflict map.

Initially, the defer table at each node is empty, so nodes
transmit without hesitation whenever they have data to
send. Each receiver keeps track of the packet loss rates from
its sender as well as what other concurrent transmissions
were ongoing during the time it was receiving packets. If a
receiver notices that the packet loss rate from its sender is
high when another concurrent transmission is in progress, it
infers that the concurrent transmissions conflict and propa-
gates this information to the defer tables of the conflicting
senders. §3.1 describes this process in detail.

Each node in the network continuously listens to the
wireless channel to keep track of what other transmissions
are currently in progress in its vicinity. When a node u is
about to send a packet to node v, it consults its defer table
to see if there are any entries of the form v : x→ y, such
that there’s an ongoing transmission between x and y. If so,
u defers its transmission until x→ y completes and then re-
attempts to transmit. Otherwise, it goes ahead and transmits.
The transmission decision process is described in §3.2.

Windowed retransmission protocol. To increase the
packet success rate observed by higher layers, receivers
send link-layer ACKs for the received data packets; in re-
sponse, the sender retransmits packets presumed lost. The
CMAP retransmission protocol (§3.3) uses a window, un-

like current wireless LAN link layers that use a stop-and-
wait retransmission protocol (i.e., a window size of 1). The
ACKs sent by receivers are cumulative and contain a bitmap
indicating which packets in the window have been received.
The main benefit of the window mechanism is to avoid spu-
rious retransmissions when only the ACK (and not the data
packet) gets lost, thereby making the retransmission proto-
col resilient to ACK losses. This resilience is important for
CMAP because although making transmission decisions us-
ing the defer table exploits exposed terminal opportunities,
the ACKs have a high likelihood of being lost in collisions
at the exposed senders. For example, in Figure 1, the ACK
from receiver R to sender S can collide at S with a data
transmission from ES to ER.

Backoff policy. As described thus far, for a sender to de-
fer to an interfering transmission, the receiver must be able
to identify the interferer and the sender must be able to over-
hear the interfering transmission. Therefore, CMAP may
degrade performance when an interferer is out of hearing
range of either the sender or the receiver; we show in §5.4
that the expected reduction in CMAP throughput due to
such “hidden interferers” is around 10% of the link rate.
To improve throughput in such cases, CMAP uses a loss
rate-based backoff policy (§3.4). Because CMAP uses cu-
mulative ACKs, senders in CMAP, unlike 802.11 senders,
do not back off every time a transmission fails to elicit an
ACK. Instead, receivers report the loss rate over a window
of packets in every cumulative ACK, and senders back off
when this loss rate exceeds a threshold.

2.1 Physical Layer Abstraction

CMAP encapsulates packets with a CMAP header and
trailer before handing them over to the physical layer
(PHY). We assume the following abstract model of the
underlying PHY: it decodes and delivers the headers and
trailers of received packets independent of the rest of the
packet [5]. This PHY model has two important properties.
First, it “streams” the header of an incoming packet to the
CMAP layer before the rest of the packet reception com-
pletes. This property ensures that nodes learn of and defer to
ongoing conflicting transmissions in a timely manner. Sec-
ond, even if some bits in the packet’s payload are corrupted
in a transmission, the PHY can salvage error-free headers
and trailers and pass that information to CMAP. This ability
to recover headers or trailers from a collision helps populate
the conflict map (§3.1).

This abstract model of the physical layer can be real-
ized in two ways. Our CMAP implementation (§4) uses a
software “shim” that transmits separate small “header” and
“trailer” packets with their own checksums (CRCs) before
and after a data packet respectively; doing so provides the
abstraction with the two properties mentioned above with-
out modifying the current PHY implementations. An alter-

Transmission
Time

Src Dest Seq. No.

Payload

6 6 4 4 4

Header/Trailer

Packet

Size (bytes)

Header Trailer

CRC

Figure 3. CMAP packet format.

nate approach, which requires hardware modification but
has lower overhead, is to transmit the header and trailer as
part of the packet and use recently-proposed partial packet
recovery techniques [5] to decode headers and trailers inde-
pendently. For ease of exposition and without loss of gener-
ality, however, we will describe the design of CMAP assum-
ing the physical layer abstraction of the previous paragraph.

3 CMAP Design

This section describes CMAP’s design in detail. The
CMAP packet format, header and trailer subfields and their
suggested sizes are shown in Figure 3. In addition to the
source and destination MAC addresses, the CMAP header
and trailer contain the estimated transmission time of the
packet, which lets deferring nodes decide how long they
need to wait before attempting to send data. They also con-
tain a link-layer sequence number and a separate CRC cov-
ering the entire header or trailer.

CMAP nodes are always in promiscuous mode, attempt-
ing to decode the headers and trailers of other concurrent
transmissions that they can overhear. 1 For now, we assume
that all packets are transmitted at a common bit-rate and
power level. This assumption simplifies the discussion of
the system; in §3.5, we discuss how CMAP must be mod-
ified to handle heterogeneous bit-rates and transmit power
levels. We also assume that all transmissions are unicast;
we discuss how to handle transmissions with more than one
intended destination in §3.6.

3.1 The Conflict Map

We first describe how each node maintains its defer ta-
ble to form the network’s conflict map. We use the notation
u → ∗ to denote a transmission from u to any other node
(or to the broadcast address).

Each sender uses feedback obtained from receivers to
populate its defer table. To provide this feedback, each re-
ceiver maintains an interferer list by observing the fate of
packets reaching it, periodically broadcasting this list to all
other nodes (senders) in its vicinity.

Constructing the interferer list. The interferer list at re-
ceiver node v, Iv, is a list of pairs (u,x) of sources u and in-

Source Interferer

*
Dest Defer if Dest Defer if

*v x u v

Defer Table of Defer Table of

Interferer List of

u
z

x

v y

u x

xu

v

Figure 4. Example to illustrate CMAP’s operation.

terferers x, such that (u,x)∈ Iv implies that the transmission
x→ ∗ conflicts with the transmission u→ v (see Figure 4
throughout this discussion). v adds this entry to the list after
observing that transmissions from u to itself suffer a packet
loss rate greater than a certain threshold linter f whenever a
transmission from x (to any other node) is concurrent; in
such cases, it would make sense for u to defer its transmis-
sion to v when x was already transmitting data. Node v uses
a threshold loss rate linterf and not just a single packet loss
to infer interference, because if x causes only mild interfer-
ence to u→ v, then the overall throughput of u→ v would
be higher if the transmissions proceeded concurrently than
if u waited for x to finish. In fact, one can see that as long
as the loss rate observed at v is below 0.5, the throughput
of u→ v will be higher if u transmits concurrently with x
than if u interleaves its transmissions with x’s transmissions.
Therefore, linterf must be 0.5.

To populate its interferer list, a receiver that experi-
ences interference must know the identity of the interfering
sender. The key insight here is that, in collisions of packets
of comparable sizes, either the header or the trailer from
each of the colliding senders can be salvaged with high
probability (our physical layer delivers error-free headers
and trailers). For example, we see in Figure 5 that when v’s
reception of a packet from source u is corrupted by a col-
lision due to an interfering transmission x→ y that starts
shortly afterward, v will be able to recover the header from
u and the trailer from x.

When a receiver v detects a collision on a packet from
u (by an unmatched header or trailer), it looks for headers
or trailers from other sources received shortly before and
after the collision. The receiver can verify that the trans-
missions corresponding to such headers or trailers actually
overlapped in time with its reception using the transmission
time information in the headers and trailers. When v iden-
tifies an interfering source x in this manner, it adds the pair
(u,x) to Iv if the packet loss rate from sender u is above the

�
�
�

�
�
�

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

Packet

Packet

Recovered at

header/trailer Corrupted by collision

v

u v

x y

Figure 5. One of header or trailer of a packet usually
survives in a packet collision.

threshold linterf . Entries in the interferer list are timed out
periodically to accommodate changing channel conditions
and interference patterns.

Nodes periodically broadcast their interferer lists to all
neighbors, either as standalone packets or by piggy-backing
the interferer lists with routing beacons or other control
messages. In general, it suffices to broadcast the interferer
list to just the one-hop neighbors, because a receiver does
not hear headers from interferers that are more than a hop
away and hence does not know about them. However, in
networks with asymmetric links (e.g., the receiver can hear
the interferer’s headers but the interferer cannot hear the re-
ceiver’s interferer list updates), it may help to propagate the
interferer list over two hops.

Populating the defer tables. When a node P receives an
interferer list Ir from node r, it updates its defer table using
the following two local rules at P :

Update rule 1: ∀q : (P ,q) ∈ Ir add (r : q→∗)
to the defer table.

Update rule 2: ∀q : (q,P) ∈ Ir add (∗ : q→ r)
to the defer table.

To understand the above rules, consider again the exam-
ple shown in Figure 4. When u receives v’s interferer list, it
adds the entry (v : x→ ∗) to its defer table by Rule 1, be-
cause u now knows that its transmitting packets to v while
x is transmitting to any node is likely to cause a high packet
loss at u.2 Note that u need not defer while transmitting to
all destinations, e.g., it may be able to transmit successfully
to some other node z while x→ ∗ is in progress. Accord-
ingly, Rule 2 does not apply at u.

On the other hand, when x receives v’s interferer list, it
adds an entry (∗ : u→ v) to its defer table by Rule 2. Note
that x cannot transmit to any destination (not just y) while
u→ v is in progress, because its transmission to any node
will cause interference at v. On the other hand, x can trans-
mit freely when u is transmitting to a node other than v (say,
z) as long as it knows it doesn’t cause interference at that
node. Accordingly, Rule 1 does not apply at x.

3.2 Transmission Decision Process

Each node keeps track of all ongoing transmissions it
has heard about in the ongoing list, using the source, desti-
nation, and transmission time fields of the packet header
to add and expire entries from this list. Suppose node u
wants to send a packet to destination v. First, u checks that
v is neither sending nor receiving packets at that moment.
Next, for each communicating pair p→ q in the ongoing
list, u checks its defer table to see whether one of its en-
tries matches the following patterns that indicate a conflict
between the two transmissions:

Defer pattern 1: (∗ : p→ q)

Defer pattern 2: (v : p→∗)

If no match exists, then u immediately sends the packet
to v. Otherwise, it defers its transmission until the matching
transmission ends, waits a small amount of time (tdeferwait)
to check if any other transmission begins, then conducts the
same check again (it can’t simply send because some other
entry could now match).

One further optimization to this process is to send a
non-conflicting packet to another destination, if the current
packet at the head of the queue must be deferred. This opti-
mization requires per-destination queues, but is not hard to
implement, though some care must be taken to ensure that
no queue is starved. We believe that this scheme will further
improve throughput, and plan to evaluate it in the future.

3.3 Windowed ACK and Retransmission Protocol

After transmitting a packet, a sender waits for an ACK
from the receiver for up to a duration tackwait. If the ACK
does not arrive in this duration, the sender does not immedi-
ately retransmit the packet. It instead transmits a send win-
dow of up to Nwindow unacknowledged packets. This win-
dow mechanism helps avoid spurious retransmissions in the
case when the packet was correctly received at the destina-
tion but the ACK gets lost due to interference at the sender.
We use Nwindow = 8 packets to tolerate a significantly higher
loss rate on ACKs than on the data packets.

The ACKs sent by receivers upon every successful
packet reception are cumulative and include a bitmap in-
dicating which packets in the send window were received
correctly. The ACKs also include the packet loss rate per-
ceived by the receiver over the previous window of packets,
computed using the link-layer sequence numbers in packet
headers and trailers.

When the number of unacknowledged packets
Noutstanding at a sender reaches the maximum Nwindow,
the sender times out for a random time chosen between the
minimum timeout τmin and maximum timeout τmax before
retransmitting each unacknowledged packet in its window
in sequence. Because the absence of an ACK for the entire

window may indicate extreme interference at either the
sender or the receiver, τmax should be at least as long as
the time taken to transmit an entire window’s worth of
packets in order to allow the interfering transmission at
the destination to complete. We pick τmax = Nwindow (bits)

link speed (bits/s)
and τmin = τmax

2 .

3.4 Backoff Policy

CMAP’s ability to prevent conflicting transmissions de-
pends on the sender and receiver being able to overhear the
headers and trailers from an interfering transmission. For
example, the conflict map algorithm may not work when
the conflicting senders cannot hear each other (the hid-
den terminal problem) or when the receiver is not in the
hearing range but experiences interference from a far-away
interferer (see §5.4 for an evaluation of CMAP in such
cases). Nodes also experience transient losses before the
feedback from receivers propagates to the defer tables of the
senders. In order to slow down the senders and limit losses
in such cases, CMAP implements the following backoff
mechanism between consecutive packet transmissions at
senders. Nodes maintain a contention backoff window CW
like 802.11. After transmitting a packet and waiting for an
ACK for up to a duration of tackwait, nodes also wait for
a random backoff duration between 0 and CW before at-
tempting to transmit the next packet.

Because CMAP uses windowed transmissions unlike the
802.11 MAC, the sender updates CW in response to the
packet loss rates reported in ACK packets and not in the ab-
sence of ACKs after a packet. CMAP senders update their
contention backoff window CW upon receiving an ACK as
follows. If the loss rate reported in the ACK is below a
threshold lbackoff (0.5 in our implementation; we found in
our evaluation that CMAP’s performance was not sensitive
to the choice of the threshold), the sender resets its CW to
zero. If the loss rate is above the threshold, the sender incre-
ments CW to a nonzero value, starting with the minimum
CWstart and doubling it on every consecutive increment, up
to a maximum CWmax. CWstart and CWmax are chosen to
roughly mirror the corresponding 802.11 values. Note that
the sender does not update CW when an ACK does not ar-
rive between packets of a send window to avoid unneces-
sary backoffs in response to just ACK losses. Thus the back-
off in CMAP is more resilient to ACK loss than the backoff
in 802.11. Figures 6 and 7 summarize the pseudocode for
transmitting a packet and processing ACKs in CMAP.

3.5 Handling Multiple Bit-rates

So far in our discussion, we have assumed that all trans-
missions are performed at a common bit-rate and power
level. To handle heterogeneous bit-rates, nodes annotate the
interferer lists and defer tables with the bit-rates of the
sources when the interference occurred. The decision to

while data to send and Noutstanding < Nwindow do {
while defer table does not permit do {

wait until end of current transmission + tdeferwait
}
transmit and add packet to sent queue
wait up to tackwait for an ACK
wait for a backoff duration ∈ [0,CW]

}

Figure 6. Pseudocode for sending a packet.

clear packets covered by ACK from sent queue
Noutstanding← Nout− number acked packets
update loss rate estimate l from ACK
if (l > lbackoff) then {

if CW = 0 then
CW ←CWstart

elsif CW < CWmax then
CW ← 2 ·CW

}
else

CW ← 0

Figure 7. Pseudocode for processing ACKs.

transmit at a node will then depend on the defer table en-
try corresponding to the bit-rate of its intended transmission
and of the ongoing transmission. The extensions to handle
multiple power levels are similar. We have not yet incorpo-
rated these bit-rate extensions in our implementation.

In fact, online bit-rate adaptation algorithms can benefit
from using the information in the conflict map in choosing
the best rate at which to transmit. For example, a node may
choose to transmit at a lower rate that can tolerate interfer-
ence from an ongoing transmission or defer to the ongoing
transmission and transmit at a higher rate later on, picking
the choice that yields a higher throughput. A preliminary
evaluation of CMAP at higher bit-rates (§5.8) indicates that
such an algorithm would amplify CMAP’s gains.

3.6 Beyond Unicast Transmissions

Thus far, we have assumed that all transmissions are uni-
cast. However, senders may also transmit broadcast packets
that are intended to reach some or all of the node’s one-hop
neighbors. To make channel access decisions, such broad-
cast transmissions could simply be treated as a collection
of unicast transmissions. For example, suppose a node u
wishes to make a broadcast to a set of nodes V . To make
a decision on whether to transmit or not, u uses the trans-
mission decision process in §3.2 to check that, ∀v ∈ V
and for every ongoing transmission p→ q, u→ v does not
conflict with p→ q. In opportunistic routing [2] however,
senders leverage broadcast transmissions in a slightly dif-

+
Atheros 802.11 card

Physical layer

Kernel Module
Click

CMAP
Link−layer

PHY shim layer

MadWifi

Figure 8. Architecture of the CMAP prototype; the com-
ponents shown in solid lines were implemented by us.

ferent way—the sender broadcasts a batch of packets to a
set of possible “forwarders” that opportunistically receive
and forward some fraction of the packets each to the des-
tination. In such broadcasts, it is sufficient to ensure that
a packet is correctly received at one of the forwarders,
not all. To handle such broadcasts, the conflict map data
structure described in this section must be augmented with
packet reception rates at receivers in the presence of inter-
ference. The sender’s decision on whether to transmit or
not will then be based on the probability that at least one
forwarder receives the packet, given the ongoing transmis-
sions. Adapting CMAP to handle opportunistic routing is
future work.

4 Implementation

In this section, we describe our implementation of
CMAP (summarized in Figure 8) and quantify its over-
heads. We have implemented CMAP using the Click [9]
router kernel module on Linux, and commodity 802.11
hardware driven by MadWifi [10]. To control channel ac-
cess and retransmissions from the CMAP kernel module,
we disabled carrier sense, link-layer ACKs, retransmissions
and 802.11 backoff in the wireless card. All the nodes run in
the promiscuous (“monitor”) mode of the MadWifi driver.

4.1 Adaptations For a Software MAC

We now describe the challenges in deploying and eval-
uating CMAP on commodity wireless hardware, and the
adaptations in our implementation to overcome these chal-
lenges. First, the current 802.11 physical layer delivers
headers of a packet along with the complete packet only
after packet reception has completed, and headers and trail-
ers from a corrupted packet cannot be recovered. In order
to provide a streaming physical layer abstraction (§2.1) to
the link-layer, our implementation uses a “shim” layer that
transmits separate “header” and “trailer” packets immedi-
ately before and after a data transmission respectively. We

........
Data packetsHeader Trailer

Virtual packet

Figure 9. Virtual packet format in the CMAP prototype.

will refer to the header, data, and trailer packets together as
a “virtual packet”. The shim is implemented in Click and is
located between the link and physical layers.

Second, the gap between the end of a data transmission
and arrival of the corresponding ACK is high in our imple-
mentation due to the communication latency between the
software MAC and the hardware physical layers at both the
sender and receiver. For example, in a typical experiment,
this gap was observed to be between 0.5 and 2 milliseconds
for about 90% of the data packets, and between 2 and 5 mil-
liseconds for the rest. This latency is excessive because it
takes only about 2 ms to transmit a 1400-byte packet at the
lowest data rate of 6 Mbits/s in 802.11a. This latency also
applies to received headers and trailers, and may prevent
senders from processing the received headers of conflicting
transmissions before transmitting data.

To overcome these limitations, our implementation
sends Nvpkt data packets destined to the same node be-
tween a header and trailer in one virtual packet, as shown
in Figure 9. This approach effectively amortizes the cost of
waiting for an ACK over multiple data packets, and allows
senders to react in a timely manner to concurrent transmis-
sions. In this implementation, defer and backoff decisions
are made once per virtual packet; once a decision to trans-
mit a virtual packet is made, the header, trailer and all the
data packets are sent without any gap in between. The re-
ceiver sends an ACK after receiving the trailer of a virtual
packet; the bitmap contained in the ACK acknowledges the
receipt of individual data packets within a virtual packet.

4.2 Choosing Values For Design Parameters

We now discuss the implementation choices for the var-
ious design parameters of CMAP. Our implementation uses
tdeferwait = tackwait = 5 ms to accommodate the propagation
delay between the link and physical layers, as measured in
§4.1. We use Nvpkt = 32 in our implementation because such
a CMAP implementation has comparable performance to
the commodity 802.11 protocol—the single link through-
put of CMAP at 6 Mbits/s is 5.04 Mbits/s while that of
802.11 with link-layer ACKs is 5.07 Mbits/s—enabling a
fair comparison of CMAP and 802.11. The send window of
unacknowledged packets is set to Nwindow = 8 virtual pack-
ets, or 256 data packets. The contention window parameters

CWstart and CWmax are set to the corresponding 802.11 val-
ues scaled by Nvpkt—5 ms and 320 ms respectively.

5 Evaluation

The goal of this section is to measure CMAP’s ability
to improve wireless network throughput by increasing the
amount of spatial reuse. To this end, we compare the per-
formance of our CMAP software prototype (described in
§4) to that of the 802.11 MAC with carrier sense enabled
(the “status quo”), and 802.11 with carrier sense disabled.
We summarize our results below.

• In experiments with two pairs of senders and re-
ceivers, CMAP successfully exploits concurrent trans-
mission opportunities to achieve up to 2× improve-
ment over 802.11 with carrier sense when the nodes
are in an exposed terminal situation (§5.2), while ef-
fectively avoiding interfering concurrent transmissions
using the conflict map data structure (§5.3). CMAP’s
windowed retransmission protocol is central to realiz-
ing the full throughput gain in exposed terminal cases.

• The impact of “hidden interferers” that are out of com-
munication range of either the sender or receiver on
CMAP throughput is small (§5.4), and CMAP’s back-
off scheme ensures no performance degradation com-
pared to the status quo in such cases (§5.5).

• In realistic access point-based topologies with mul-
tiple concurrent senders, CMAP improves aggregate
throughput by between 21% and 47% and median per-
source throughput by 1.8× compared to the status quo
by exploiting exposed terminal opportunities (§5.6).

• CMAP improves throughput by 52% compared to the
status quo in two-hop content dissemination mesh
topologies (§5.7).

• CMAP’s performance benefits apply across multiple
bit-rates (§5.8).

5.1 Experimental Testbed and Method

Our testbed consists of Soekris net4526 computers with
a 133 MHz 486 processor running the 2.4.26 Linux kernel.
The nodes are equipped with an 802.11 a/b/g mini-PCI card
based on the Atheros AR5212 chipset.

The testbed nodes are located in one large floor of an
office building as shown in Figure 10. Transmitting in iso-
lation, of the 2162 node pairs that have any connectivity
whatsoever, approximately 68% links have a packet recep-
tion rate (PRR) less than 0.1, 12% have a PRR greater than
0.1 and less than 1, and 20% have a PRR of 1. Considering
just the latter two types of links, the nodes in our testbed
have a mean degree of 15.2 and a median degree of 17.

Figure 10. A map of our 50-node indoor wireless testbed.

We perform all our experiments in the 5 GHz 802.11a
band which had negligible background traffic; we leave an
evaluation of CMAP in other frequency bands with differ-
ent propagation characteristics and potentially more non-
CMAP background traffic to future work. Unless mentioned
otherwise, all senders transmit 1400-byte data packets at
the 6 Mbits/s bit-rate of 802.11a as fast as they can. Each
run of an experiment lasts for 100 seconds and the aggre-
gate throughput achieved is measured as the total number of
non-duplicate data packets received per second at the des-
ignated receivers, computed over the last 60 seconds of the
experiment.

We pick sender-receiver pairs in each experiment based
on measurements of PRR and average signal strength be-
tween pairs of nodes at 6 Mbits/s and in the absence of any
other concurrent transmission, obtained shortly before run-
ning the corresponding experiment. In all experiments be-
low, we define two nodes a and b to be “in-range” of each
other if both the links a→ b and b→ a have a PRR above
0.2 and signal strength above the 10th percentile of the sig-
nal strength of all links network-wide. We call a link a→ b
a “potential transmission link” if both the links a→ b and
b→ a have a PRR above 0.9 and signal strength above the
10th percentile of the signal strength of all links network-
wide; we pick only such links to send data in our experi-
ments because any routing protocol running on this testbed
typically selects such links. Note that while the PRR of a
link alone could serve as a good metric to decide whether
the link is a potential transmission link or not, we also
use a low signal strength threshold to eliminate very weak
links whose performance would degrade precipitously in
the presence of other transmissions in the network.

5.2 CMAP Exploits Exposed Terminals

In this experiment we seek to quantify the maximum
throughput gain two simultaneous wireless data streams can
achieve in an exposed terminal configuration. Since this sit-
uation occurs frequently in busy access point-based wire-

0

25%

median

75%

1

 0 2.5 5 7.5 10 12.5

15%

30%

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

Throughput (Mbits/s)

CS, acks
CS off, no acks

CMAP
CMAP, win=1

Figure 12. Experiment with exposed terminals. CMAP
achieves a 2× gain over 802.11 with carrier sense.

less networks [6], we expect the gains we find in the results
to be applicable to such networks.

We pick pairs of links from our 50-node testbed, as
shown in Figure 11(a), such that: (i) the two senders are
in range of each other, (ii) each sender-receiver pair is a
potential transmission link (as per the definitions in §5.1),
(iii) the signal strength from a sender to its corresponding
receiver is strong (in the 90th percentile of signal strength
of all links network-wide), and (iv) the signal strength be-
tween all other pairs of nodes is somewhat weak (below the
90th percentile threshold). The last two constraints ensure
that the two transmissions do not interfere very much, most
likely resulting in an exposed terminal situation.

Figure 12 presents the distribution of throughput across
50 exposed terminal configurations chosen at random from
all possible configurations. With carrier sense enabled, we
see that most link pairs achieve little more than the single-
link rate of 5 Mbits/s, since most of the time, each sender
defers its transmission to the other.

With carrier sense and link-layer ACKs disabled (thin
dashed curve), we see that 15% of the pairs are not in fact
exposed terminals in the sense that the two transmissions do
not simultaneously achieve their maximum throughput. Of
the remaining 85% of pairs in this experiment, CMAP per-
mits the two transmissions to proceed concurrently 70%

85% =
82% of the time, resulting in a throughput improvement of
approximately 2× over 802.11 with carrier sense enabled.
By carefully scrutinizing the experiment logs, we verified
that the remaining 18% of pairs experienced many spurious
retransmissions due to very high ACK loss rates that our
windowed ACK scheme could not completely eliminate.

To quantify the benefits of our windowed retransmission
protocol, we repeated the CMAP experiments with a win-
dow size of one virtual packet. We found that the median
throughput improvement in this case was just 1.5×, signif-

A1
B1

B2

A2

B3

S
A3

(PRR > 0.9, signal > 10%−ile)
Potential transmission link

In range (PRR > 0.2, signal > 10%−ile)

Weak signal (< 90%−ile)
Strong signal (> 90%−ile)
Not in range (PRR < 0.2)

(b) Senders in−range(a) Exposed terminals (c) Senders out of range
(Hidden terminals)

(d) Mesh topology

Figure 11. Constraints on topologies in experiments with exposed terminals (§5.2), two senders in-range (§5.3) and out of
range (§5.5), and mesh topologies (§5.7). All links that are not annotated in the figure are unconstrained.

0

25%

median

75%

1

 0 2.5 5 7.5 10 12.5

15%

82%

C
u

m
u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

Throughput (Mbits/s)

CS, acks
CS off, acks

CS off, no acks
CMAP

Figure 13. Experiment with two senders in range of each
other. CMAP correctly identifies interfering concurrent
transmissions.

icantly lower than CMAP with a window of eight virtual
packets, because ACKs collided frequently at the senders
and caused the senders to timeout and perform spurious re-
transmissions.

5.3 CMAP Avoids Interfering Transmissions

We now evaluate CMAP on more general two-sender
topologies. In this experiment, we evaluate the performance
of CMAP on a topology with two sender-receiver pairs such
that the two senders are in hearing range of each other. This
experiment tests whether the defer scheme correctly dis-
criminates between interfering and non-interfering concur-
rent transmissions.

We choose two sender-receiver pairs for this experiment
as shown in Figure 11(b): the two senders are in range of

each other, and each sender-receiver pair is a potential trans-
mission link; unlike in the experiments with exposed ter-
minals (§5.2), we impose no additional constraints on the
signal strengths of the links. Note that some pairs of links
could well be exposed terminals.

Figure 13 presents the distribution of throughput across
50 link pairs chosen at random. On 15% of the link pairs,
simultaneous transfers were deleterious, evidenced by the
worse performance of 802.11 with carrier sense disabled
compared to 802.11 with carrier sense enabled. For these
link pairs, CMAP correctly directs that each transmission
defer to the other and tracks the performance of 802.11 with
carrier sense on (5 Mbits/s). However, there are link pairs in
this experiment that are better off transmitting concurrently
(18% of them on the right-hand side of the CDF), for which
802.11 with carrier sense and link-layer ACKs disabled of-
fers a throughput improvement up to 2×. For these link
pairs, CMAP correctly directs transmissions to occur simul-
taneously, and thus achieves roughly the same throughput
improvements as 802.11 with carrier sense disabled. Also
note that, over link pairs that are on the right side of the
CDF, 802.11 with carrier sense disabled performs worse
than CMAP when link-layer ACKs were enabled because
802.11 uses a stop-and-wait transmission method (unlike
CMAP’s windowed retransmission scheme) and hence is
more vulnerable to the ACK loss problem.

5.4 How Bad Are Hidden Interferers?

CMAP’s conflict map and defer mechanisms can fail
to detect conflicting transmissions when either (a) the re-
ceiver is unable to receive at least some headers and trailers
from an interferer in order to populate its interferer list, and
thereby the conflict map, or (b) a potential sender cannot
hear the interferer’s transmission headers in order to defer to
it (the hidden terminals problem). As a result, an interferer

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
o
rm

al
iz

ed
 t

h
ro

u
g

h
p
u

t
(S

en
d

er
 t

o
 r

ec
ei

v
er

)

Packet reception rate

Figure 14. Scatter plot of the normalized throughput of
a pair S→ R in the presence of an interferer I vs. the
minimum of the packet reception rates of the links I→ R
and I→ S.

that is out of communication range of either the receiver or
the sender of a transmission (a “hidden interferer”) can de-
grade the throughput of that transmission. In this section,
we evaluate the frequency of hidden interferers and their
impact on CMAP throughput.

To identify the frequency of hidden interferers, we quan-
tify the relationship between an interferer I’s effect on the
throughput of a transmission S → R and the probability
that S and R can hear I. In this experiment, we randomly
choose 500 pairs of sender-receiver pairs (S,R) with a po-
tential transmission link between them, and for each pair,
we pick an interferer I at random from all the nodes in the
testbed. We first measure the throughput of the link S→ R
and the PRRs of the links I→ R and I→ S in the absence of
any other interference. S and I then transmit 802.11 pack-
ets continuously and simultaneously with carrier sense and
link-layer ACKs disabled3, and we measure the throughput
of S→ R in the presence of I’s transmissions.

Figure 14 shows a scatter plot of the normalized through-
put of S→ R with interference (the ratio of the throughput
of S→ R in the presence of I’s interference to that in the
absence of interference) on the Y-axis, and the minimum of
the packet reception rates of I → R and I → S on the X-
axis. Note that the data points that lie near the left bottom
of this graph correspond to hidden interferers, because for
such points I reduces the throughput of S→ R and yet is
out of communication range of either S or R. From the data,
we find that the fraction of points that lie in the left bottom
quadrant of the plot (i.e., the fraction of cases where I re-
duces the throughput of S→ R by more than 50%, but has
a link with PRR less than 0.5 to either S or R) is only 8%.
This observation convinces us that hidden interferers do not
occur very frequently in our experiments.

0

25%

median

75%

1

 0 2.5 5 7.5 10 12.5

88%

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

Throughput (Mbits/s)

CS, acks
CS off, acks
CMAP

Figure 15. Experiment with two senders out of each
other’s transmission range. CMAP’s backoff strategy
avoids performance degradation compared to status
quo.

We now estimate the magnitude of impact a hidden inter-
ferer has on CMAP throughput as follows. Let pr and ps de-
note the packet reception rates of the links I→ R and I→ S
respectively. Then the probability that both S and R hear I
is at least p = max(pr + ps− 1,0). Let T denote the nor-
malized throughput of S→ R in the presence of I. Now, had
the experiment been run with CMAP, the conflict detection
mechanism would have avoided a throughput degradation
(i.e., resulted in a normalized throughput of 1) with a proba-
bility p, and resulted in a lower throughput of T with a prob-
ability 1− p. Hence, the expected throughput of S→ R with
CMAP can be computed as p ·1+(1− p) ·T . A sum of the
above expression over all data points in Figure 14 works out
to be 0.896. Thus, the expected damage to a CMAP pair’s
throughput due to a hidden interferer is only around 10%.
In practice, however, the degradation will be even smaller
(as we will see next) because CMAP senders back off in re-
sponse to losses, unlike the senders in the above experiment
which were made to transmit continuously.

5.5 CMAP Handles Hidden Terminals Well

We now evaluate how well CMAP’s backoff protocol
prevents performance degradation when the defer mecha-
nism fails in an experiment with pairs of hidden terminals.
We choose pairs of links for this experiment as shown in
Figure 11(c): each receiver has a potential transmission link
to both senders (as per the definitions in §5.1), ensuring that
the two transmissions will almost always interfere with each
other at the receivers. The senders are not in range of each
other with the result that they cannot defer to each other’s
transmissions.

Figure 15 presents the distribution of throughput across
50 randomly chosen link pairs. We see that CMAP and

0

25%

median

75%

1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

Reception rate

In-range, header
In-range, header/trailer

Out of range, header
Out of range, header/trailer

Figure 16. Probabilities of reception of either header
or trailer and header alone for each transmitted virtual
packet, computed from the experiments with two pairs
of senders in-range (§5.3) and out of range (§5.5).

802.11 (with both carrier sense enabled and disabled) per-
form comparably. Also note that there is very little weight
on the right-hand side of the CDF that represents through-
puts greater than the single pair throughput. This is because
the best we can hope for in such topologies, with current
802.11 hardware, is transmissions interleaved with each
other to achieve the throughput of a single sender-receiver
pair.

We also use the above experiment to validate our de-
sign decision of transmitting both headers and trailers (as
opposed to only headers) on packets. For each experiment
with two senders in §5.3 and §5.5, we compute the fraction
of virtual packets transmitted by a sender for which either
the header or the trailer was successfully received by the
receiver. We compare this fraction against the fraction of
virtual packets for which the header was received. We plot
a CDF of these fractions across all sender-receiver pairs in
each experiment in Figure 16. We see that the probability of
reception of a header or trailer is higher than the probabil-
ity of reception of a header alone in both the experiments;
the benefit of using trailers is more pronounced when the
senders were out of each other’s range and persistently col-
lided at the receivers. We also observe that the probability
that either a header or trailer is received is almost 1 in the
experiment where the senders are in range of each other and
transmit equal-sized packets.

5.6 Access Point Topology

In this section, we evaluate CMAP on larger topologies
with multiple concurrent senders. We pick topologies that
resemble wireless local area networks (WLANs) with mul-
tiple access points (APs) and clients that span a geographi-
cal area several radio-ranges in diameter.

Number of APs and clients

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
b
it

s/
s) CS on

CS off

3 4 5 6

CMAP

Figure 17. Mean throughput in the experiment with N
APs and N clients; error bars show standard deviation.
CMAP achieves between 21% and 47% more throughput
than the status quo.

25%

median

75%

1

 0 1 2 3 4 5 6

2.5 4.6

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

Throughput (Mbits/s)

CS on
CS off
CMAP

Figure 18. CDF of the per-sender throughput in experi-
ments with N APs and N clients. CMAP increases the
median by a factor of 1.8.

We divide the testbed (see Figure 10) into six “regions”
and designate one node in each region as an AP, such that
each AP is out of the communication range of every other
AP. We choose clients of an AP from the set of nodes in that
region that have a potential transmission link to that AP, and
randomly designate one of the client or AP as the sender of
packets. We then perform experiments by varying the num-
ber of APs (N) from three through six, always choosing APs
from adjacent regions when there are fewer than six APs in
an experiment. For each value of N, we perform 10 experi-
ments with different clients for APs each time.

Figure 17 shows the average aggregate throughput of
CMAP and 802.11 (with both carrier sense enabled and dis-
abled) as a function of the number of concurrent senders N
in the experiment. We find that CMAP improves aggregate
throughput by between 21% (when N = 3) and 47% (when

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7

H
ea

d
er

 o
r

tr
ai

le
r

re
ce

p
ti

o
n

 r
at

e

Number of concurrent senders

Mean Median

Figure 19. Mean and median probabilities of reception of
either header or trailer of a virtual packet at a receiver,
as a function of the number of concurrent senders in the
experiment. The thick error bars represent the 25th and
75th percentiles, and the thin error bars show the 10th
and 90th percentile values.

N = 4). CMAP sees this improvement because pairs of
senders in adjacent cells were often exposed terminals. Fig-
ure 18 shows a CDF of the per-sender throughput for all
senders across all experiments. From the figure we find that
CMAP improves the median per-sender throughput by a
factor of 1.8 compared to 802.11.

We next study how the header or trailer reception prob-
abilities at a node are affected by the number of concurrent
transmissions in the network. Figure 19 shows the mean,
median, and various percentile values of the probability of
reception of either a header or trailer of a virtual packet
at each receiver, as a function of the number of concurrent
transmissions in the network. We find from the graph that
the median header or trailer reception probability is prac-
tically unaffected by the number of concurrent transmis-
sions. However, the 10th percentile value drops sharply, in-
dicating that a small fraction of receivers cannot implement
the conflict map mechanisms effectively in the presence of
many concurrent transmissions. To increase the robustness
of CMAP to header or trailer loss in such cases, we can
replicate the header and trailer information (an overhead of
24 bytes) in every data packet of a virtual packet.

5.7 Mesh Topology

In this section, we present an evaluation of CMAP over
a two-hop content dissemination mesh network shown in
Figure 11(d). The source S first broadcasts a batch of pack-
ets to its one-hop neighbors A1, A2, and A3. The Ais then
transmit the packets to the corresponding Bis. We compute
the throughput at each Bi as the minimum of the through-
puts along the corresponding S → Ai and Ai → Bi paths.

0

25%

median

75%

1

 0 5 10 15 20 25

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

Throughput (Mbits/s)

CS@18
CMAP@18

CS@12
CMAP@12

CS@6
CMAP@6

Figure 20. Experiment with exposed terminals transmit-
ting at 6, 12 and 18 Mbits/s rates of 802.11a. CMAP contin-
ues to exploit exposed terminal opportunities at higher
bit-rates.

We measured the aggregate throughput at all the Bis over
10 different topologies. We found that CMAP achieves a
52% higher average throughput than 802.11 with carrier
sense enabled. The reason for this improvement was that,
frequently, one or more of the Ais were exposed terminals
during the Ai→ Bi transfers.

While the above experiment may not be representative of
the performance of CMAP over arbitrary mesh networks,
it convinces us that multi-hop mesh networks can benefit
from a MAC that exploits concurrent transmission oppor-
tunities. In fact, given a MAC like CMAP that increases
concurrency, routing protocol design should be rethought
to generate topologies that increase concurrent transmission
opportunities.

5.8 Variable Bit-rates

Thus far all experiments have reported performance fig-
ures from the 802.11a 6 Mbits/s bit-rate. In practice, how-
ever, wireless senders may run at many of the higher bit-
rates available to increase throughput. Consequently, we
seek to measure if CMAP can continue to exploit exposed
terminal opportunities at higher bit-rates.

We repeat the experiment with exposed terminals, as in
§5.2, at the 12 and 18 Mbits/s rates of 802.11a. In each ex-
periment, all the senders run at a common bit-rate that we
set manually, and do not perform any online rate adaptation.
Also, CMAP nodes were always made to transmit interferer
list updates, headers, trailers and ACK packets at the low-
est bit-rate irrespective of the bit-rate of data packets, re-
sulting in a slight performance penalty at higher bit-rates.
The CDFs of the throughputs of CMAP and 802.11 with
carrier sense enabled at bit-rates of 6, 12 and 18 Mbits/s
are shown in Figure 20. We see from the figure that CMAP

continues to show throughput improvements over 802.11 at
higher bit-rates. Note however that the number of exposed
terminal opportunities decreases with increasing bit-rates
because the minimum SINR required to decode an incom-
ing packet increases with increasing bit-rates; as a result,
some pairs of links that could transmit concurrently at lower
rates cannot do so at higher rates.

6 Related Work

Spatial reuse is a well-known concept in wireless com-
munications networks of many different types. MACA [7]
makes the observation that carrier sense cannot make cor-
rect transmission decisions because it does not consider
channel conditions at the receiver, resulting in problems
like exposed and hidden terminals. The paper proposes the
RTS/CTS virtual carrier sensing protocol to solve the hid-
den terminal problem. However, this mechanism does not
solve the exposed terminal problem.

In a busy access point WiFi network, Judd [6] observes
that many clients connected to different access points are in
fact exposed terminals with respect to each other. In fact,
two randomly-chosen clients are as likely to be exposed ter-
minals with respect to each other as they are to connect to
the same access point. This result suggests that the use of
conflict maps could significantly improve performance in
infrastructure wireless LANs.

There have been a few previous proposals to increase
concurrency in wireless networks [1, 11, 16, 3]. As we ex-
plain below, however, CMAP differs from all these schemes
in the method of identifying and exploiting the identified
concurrent transmission opportunities. Also, these previous
proposals build upon the RTS/CTS mechanism and evaluate
their ideas in simulation alone. Like CMAP, the “adaptive
learning” extension of MACA-P [1] builds a data structure
containing potentially non-interfering but nearby nodes.
Unlike CMAP however, MACA-P is based on the RTS/CTS
exchange, extended in time to include a control gap, which
results in a significant protocol overhead. RTSS/CTSS [11]
uses an offline training phase to determine which nodes may
transmit concurrently. This approach, however, is not ap-
plicable when the channel varies, as is the case in prac-
tice. It also does not have any mechanisms to deal with
the ACK loss problem in exposed terminals. Shukla et
al. [16] propose identifying exposed terminals performing
an RTS/CTS exchange on the basis of overhearing an RTS
without overhearing a CTS. This method does not identify
all exposed terminal opportunities—it misses exposed ter-
minals where a sender can hear another receiver’s CTS, but
is far enough from the receiver that it can transmit concur-
rently. In the Interference Aware (IA) MAC protocol [3],
nodes make transmission decisions using the SINR esti-
mates at receivers that are embedded in CTS messages.
However, the IA MAC misses exposed terminals where one

of the exposed senders does not hear the CTS from the other
receiver.

There have also been proposals to use receiver-based
feedback of channel conditions in making transmission de-
cisions to improve the performance of CSMA. E-CSMA [4]
uses observed channel conditions at the transmitter (RSSI,
for example), and receiver-based packet success feedback
to build a per-receiver probability distribution of transmis-
sion success conditioned on the channel conditions at the
sender at the time of transmission. Then a node makes a
transmit/defer decision based on transmitter channel condi-
tions just before sending a packet. The distinguishing fea-
ture of CMAP from E-CSMA is that CMAP explicitly takes
the identity of current senders and whom they’re sending
to into account while making channel access decisions, in-
stead of implicitly capturing them using signal strength es-
timates, and hence can better predict which transmissions
are likely to succeed and which not.

Other researchers have observed that concurrent trans-
missions do not always result in both the colliding pack-
ets being lost [18, 20]. This phenomenon, in which a re-
ceiver can correctly decode it’s sender’s packet even in the
presence of other concurrent transmissions, is sometimes
referred to as the “capture” effect. CMAP increases the
opportunities for and exploits packet capture by increas-
ing the number of concurrent transmissions. Whitehouse et
al. [20] and Priyantha [15] propose mechanisms to boost
the chances of packet capture. In these schemes, receivers
acquire packet preambles throughout the duration of ongo-
ing packet receptions in addition to when no packet is be-
ing received, thereby capturing stronger transmissions that
start during the reception of weaker transmissions. These
schemes can improve CMAP’s performance by helping it
build up state about the network gleaned from stronger and
later transmissions.

Padhye et al. [14] propose a set of metrics that esti-
mate link interference in static multi-hop wireless networks.
They suggest an offline process of pairwise link measure-
ments to identify conflicting transmissions. Similarly, the
interference map [13] builds up packet success information
about CSMA transmissions in an offline training phase, for
the purpose of network planning. CMAP, in contrast, ob-
tains interference information online.

Algorithms to tune the carrier sense threshold or power
level alone [12, 17, 19, 21, 22] and algorithms that tune
both carrier sense threshold and transmit power [8] build
on the basic carrier sense mechanism. Thus, these algo-
rithms make a fundamental trade-off between preventing
hidden-terminal collisions and permitting exposed-terminal
spatial reuse, and don’t fully take advantage of the many
exposed terminal opportunities present in real networks.
CMAP explicitly discriminates between conflicting and
non-conflicting transmissions, avoiding this tradeoff.

7 Conclusions

We presented the design, prototype implementation, and
experimental evaluation of CMAP, a reactive channel ac-
cess protocol that uses empirical observations of packet loss
to build a distributed data structure of interfering concur-
rent transmissions (called the conflict map) in a wireless
network. We showed how nodes can use this conflict map
data structure to transmit concurrently with each other when
transmissions do not interfere—almost all exposed termi-
nal configurations see a 2× gain in our experiments—while
successfully avoiding conflicting concurrent transmissions,
thereby increasing the aggregate throughput of the sys-
tem. Though flows under CMAP may experience transient
packet loss before conflict map entries converge, we believe
that the gains with CMAP outweigh this loss, especially in
topologies with scope for spatial reuse. Our evaluation of
CMAP over realistic access point topologies with multiple
concurrent senders shows that CMAP improves aggregate
throughput by up to 47% and median per-sender throughput
by 1.8× over 802.11 by exploiting concurrent transmission
opportunities.

Acknowledgments

We thank our shepherd Brad Karp and the anonymous
reviewers for their insightful comments. This work was sup-
ported in part by the National Science Foundation under
Grants CNS-0721702 and CNS-0520032, and by a Cisco
Fellowship.

References

[1] A. Acharya, A. Misra, and S. Bansal. Design and Analysis of a
Cooperative Medium Access Scheme for Wireless Mesh Networks.
In Proc. of IEEE BROADNETS, pages 621–631, San Jose, CA, Oct.
2004.

[2] S. Biswas and R. Morris. Opportunistic Routing in Multi-Hop
Wireless Networks. In Proc. of ACM SIGCOMM, pages 69–74,
Philadelphia, PA, August 2005.

[3] M. Cesana, D. Maniezzo, P. Bergamo, and M. Gerla. Interference
Aware (IA) MAC: an Enhancement to IEEE 802.11b DCF. In Proc.
of IEEE Vehicular Technology Conf., number 5, pages 2799–2803,
Oct. 2003.

[4] S. Eisenmann and A. Campbell. E-CSMA: Supporting Enhanced
CSMA Performance in Experimental Sensor Networks using
Per-neighbor Transmission Probability Thresholds. In Proc. of
IEEE INFOCOM, pages 1208–1216, Anchorage, AK, May 2007.

[5] K. Jamieson and H. Balakrishnan. PPR: Partial Packet Recovery for
Wireless Networks. In Proc. of ACM SIGCOMM, pages 409–420,
Kyoto, Japan, August 2007.

[6] G. Judd. Using Physical Layer Emulation to Understand and
Improve Wireless networks. PhD thesis, CMU, October 2006.
CMU-CS-06-164.

[7] P. Karn. MACA - A New Channel Access Method for Packet Radio.
In ARRL/CRRL Amateur Radio 9th Computer Networking Conf.,
September 1990.

[8] T.-S. Kim, H. Lim, and J. Hou. Improving Spatial Reuse through
Tuning Transmit Power Carrier Sense Threshold and Data Rate in
Multihop Wireless Networks. In Proc. of ACM MobiCom, pages
366–377, Los Angeles, CA, Sept. 2006.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. ACM Transactions on Computer Systems,
18(3):263–297, Aug. 2000.

[10] Multiband Atheros Driver for Wireless Fidelity. http://madwifi.org.

[11] K. Mittal and E. Belding. RTSS/CTSS: Mitigation of Exposed
Terminals in Static 802.11-Based Mesh Networks. In Proc. of IEEE
WiMesh Workshop, Reston, VA, Sept. 2006.

[12] J. Monks, V. Bharghavan, and W. Hwu. A Power Controlled
Multiple Access Protocol for Wireless Packet Networks. In Proc. of
IEEE INFOCOM, pages 219–228, Anchorage, AK, Apr. 2001.

[13] D. Niculescu. Interference Map for 802.11 Networks. In Proc. of
the ACM/USENIX Internet Measurement Conf., San Diego, CA,
Oct. 2007.

[14] J. Padhye, S. Agarwal, V. Padmanabhan, L. Qiu, A. Rao, and
B. Zill. Estimation of Link Interference in Static Multi-hop
Wireless Networks. In Proc. of the ACM/USENIX Internet
Measurement Conf., Berkeley, CA, Oct. 2005.

[15] N. B. Priyantha. The Cricket Indoor Location System. PhD thesis,
MIT, June 2005.

[16] D. Shukla, L. Chandran-Wadia, and S. Iyer. Mitigating the Exposed
Node Problem in IEEE 802.11 Ad Hoc Networks. In Proc. of IEEE
ICCCN, pages 157–162, Dallas, TX, Oct. 2003.

[17] D. Son, B. Krishnamachari, and J. Heidemann. Experimental study
of the effects of Transmission Power Control and Blacklisting in
Wireless Sensor Networks. In Proc. of the IEEE Conf. on Sensor
and Ad-hoc Communication and Networks, pages 289–298, Santa
Clara, CA, October 2004.

[18] D. Son, B. Krishnamachari, and J. Heidemann. Experimental
Analysis of Concurrent Packet Transmissions in Low-Power
Wireless Networks. In Proc. of ACM SenSys, pages 237–250,
Boulder, CO, Nov. 2006.

[19] R. Wattenhofer, L. Li, P. Bahl, and Y. Wang. Distributed Toplogy
Control for Power Efficient Operation in Multihop Wireless Ad Hoc
Networks. In Proc. of IEEE INFOCOM, pages 1388–1397,
Anchorage, AK, Apr. 2001.

[20] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler.
Exploiting the Capture Effect for Collision Detection and Recovery.
In IEEE EmNets Workshop, Sydney, Australia, May 2005.

[21] X. Yang and N. Vaidya. On Physical Carrier Sensing in Wireless Ad
Hoc Networks. In Proc. of IEEE INFOCOM, number 4, pages
2525–2535, Miami, FL, Mar. 2005.

[22] J. Zhu, X. Guo, L. L. Yang, W. S. Conner, S. Roy, and M. M. Hazra.
Adapting Physical Carrier Sensing to Maximize Spatial Reuse in
802.11 Mesh Networks. Wiley Journal of Wireless Communications
and Mobile Computing, 4(8):933–946, December 2004.

Notes

1In the case of non-802.11 interference, CMAP cannot decode headers
and hence does not defer transmissions as carrier sense with energy detect
may. However, most 802.11 chipsets use preamble detection for carrier
sense instead of energy detection.

2We are assuming that all sources transmit at the same power level
always, independent of which destination they’re transmitting to. We are
also assuming omnidirectional, half-duplex radios.

3We disable link-layer ACKs to avoid the senders backing off in re-
sponse to packet losses.

