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Abstract

Present-day simulations with the same boundary forcing but different resolutions (T213,
T159, T106, T63, T42, T31) of the atmospheric general circulation model ECHAM5 were
used to study the scaling behaviour of extreme precipitation in terms of return values, which
are estimated quantiles of the generalised extreme value (GEV) distribution. Area-averaged
return values of different regions in December, January, February (DJF) and June, July,
August (JJA) of the highest resolution T213, averaged to coarser grids, were compared to
area-averages of the coarser resolutions of ECHAM5. For the validation of return values,
mean precipitation totals and the mean precipitation intensity of the different resolutions
of ECHAM5 observational datasets of the UK and the USA were used. Additionally, the
observational dataset E-OBS was validated in the UK. Different qualitative scaling behaviours
were identified, depending on region and season. Extreme precipitation of different sources
has to be compared with respect to spatial scale. However, mean precipitation totals
do not show a scaling behaviour in the UK and the USA, indicating that for extreme
precipitation in comparison to precipitation totals different processes and different spatial
correlation lengths are responsible. T63 is the model resolution that is minimally necessary
to represent extreme precipitation even though higher resolutions improve the result. The
model ECHAM5 overestimates extreme precipitation and precipitation totals in the UK as
well as in the USA. The bias varies in its amount and in the ratio of precipitation totals to
return values. The qualitative scaling behaviours in the UK and the USA are captured by
ECHAM5. The seasonal cycle of precipitation return values in the southeastern US is not
well captured by the high resolutions of ECHAM5. The E-OBS dataset is not appropriate
for the validation of climate models in the UK in JJA. Hence, in JJA the spatial correlation
length of extreme precipitation is shorter than the distance between rain gauges included in
the dataset. The responsible processes for return values in UK and US are on a considerably
different spatial scale than those of precipitation totals.
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Zusammenfassung

Um das Skalierungsverhalten von Extremniederschlag anhand von Wiederkehrwerten, die
geschätzte Quantile der Extremwertverteilung sind, zu untersuchen, wurden Gegenwarts-
simulationen verschiedener Auflösungen (T213, T159, T106, T63, T42, T31) mit denselben
Randbedingungen des atmosphärischen Zirkulationsmodells ECHAM5 verwendet. Flächen-
mittelwerte der Wiederkehrwerte verschiedener Regionen in Dezember, Januar, Februar
(DJF) und Juni, Juli, August (JJA) der höchsten Auflösung, zu gröberen Auflösungen gemit-
telt, wurden mit Flächenmittelwerten der gröberen Auflösungen von ECHAM5 verglichen.
Zur Validierung der Wiederkehrwerte, des mittleren Gesamtniederschlags und der mittleren
Niederschlagsintensität der verschiedenen Auflösungen von ECHAM5 wurden Beobachtungs-
datensätze des UK und der USA verwendet. Weiterhin wurde der Beobachtungsdatensatz
E-OBS über dem UK validiert. Unterschiedliche qualitative Skalierungsverhalten wurden
abhängig von Region und Jahreszeit gefunden. Extremniederschläge unterschiedlichen
Ursprungs sollten nur unter Berücksichtigung der räumlichen Skala verglichen werden. Der
mittlere Gesamtniederschlag zeigt hingegen kein Skalierungsverhalten im UK und in den
USA. Dies weist darauf hin, dass für Extremniederschlag einerseits und für den mittleren
Gesamtniederschlag andererseits verschiedene Prozesse sowie verschiedene räumliche Korre-
lationslängen verantwortlich sind. T63 ist die Mindestauflösung, um Extremniederschlag
darzustellen. Dies wird durch höhere Auflösungen noch verbessert. Das Modell ECHAM5
überschätzt Extrem- und den mittleren Gesamtniederschlag über dem UK und den USA.
Die Höhe des systematischen Fehlers sowie das Verhältnis zwischen Gesamt- und Extrem-
niederschlag schwanken. ECHAM5 kann das qualitative Skalierungsverhalten im UK und in
den USA wiedergeben. Die höchsten Auflösungen von ECHAM5 simulieren hingegen den
jahreszeitlichen Zyklus der Wiederkehrwerte in den südöstlichen USA fehlerhaft. Zur Vali-
dierung von Klimamodellen im UK in JJA ist der E-OBS-Datensatz ungeeignet, da in JJA
die räumliche Korrelationslänge des Extremniederschlags kürzer ist als der Abstand zwischen
denen in E-OBS berücksichtigten Niederschlagsstationen. Der verantwortliche Prozess für
Wiederkehrwerte im UK und in den USA ist auf einer deutlich anderen räumlichen Skala
als derjenige des Gesamtniederschlags.
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1 Introduction

1.1 Extreme Precipitation Events

Extreme weather events can have serious impacts on human society as well as on ecosystems.
Questions like whether new climatic records such as the European flood in summer 2002
are due to natural variability or anthropogenically influenced global warming or other non-
stationary phenomena are not easy to answer. Extremes are hard to study as they are by
definition rare and obey different statistical laws than averages, i.e. the study of extremes
is the study of tails of distributions. Furthermore, it is harder to project changes in the
hydrological cycle than in temperatures as physical constraints are weaker and observations
are less complete (Allen and Ingram, 2002). Extreme value theory (EVT) is the only
statistical discipline developing methods to describe the stochastic behaviour of a process
at unusual large or small levels (Coles, 2004, p. 1).

Underlying Mechanisms in Changes in the Hydrological Cycle

Changes in the overall intensity of the hydrological cycle are mainly constrained by the
energy budget, i.e. the energy balance between atmospheric radiative cooling and latent
heating and hence, less than the increase in atmospheric moisture content (Allen and Ingram,
2002). However, the heaviest precipitation events are likely to occur when all moisture in
a volume of air precipitates at once. This indicates the increase of the intensity of these
events with enhanced moisture content of the atmosphere, following the Clausius-Clapeyron
relationship (Trenberth, 1999). Emori and Brown (2005) found in six climate model
experiments extreme precipitation worldwide increasing due to thermodynamic changes
(i.e. enhanced atmospheric moisture content) whereas the response of mean precipitation
to thermodynamic changes varies (Emori and Brown, 2005). The dynamic changes (i.e.
changes in atmospheric motion) play a secondary role in the difference between mean
and extreme precipitation and are limited to lower latitudes however (Emori and Brown,

1



2 1 Introduction

2005). Meehl et al. (2005) found enhanced tropical precipitation intensity being related to
water vapour increases whereas enhanced mid-latitude intensity was found to result from
circulation changes affecting the distribution of increased water vapour in atmosphere-ocean
coupled general circulation models (AOGCMs). Accordingly, Wehner (2004) found the
correlations between the spatial pattern of return value changes and mean precipitation
changes to be low. The changes in mean precipitation do not provide significant information
about changes in precipitation extreme values (Wehner, 2004).

Recent and Projected Changes in Extreme Precipitation

Many regions show a positive trend of precipitation extremes over the recent decades
(Alexander et al., 2006). The observed changes in heavy precipitation frequencies are greater
than in precipitation totals. Even in regions with decreasing or unchanged precipitation
totals an increase in heavy and/or very heavy precipitation was observed (Groisman et al.,
2005).
Transient climate simulations show the changes in annual precipitation extremes sub-

stantially exceeding the changes in annual mean precipitation (Kharin and Zwiers, 2005).
Increases in heavy precipitation were even found in regions where mean precipitation de-
creases (Semenov and Bengtsson, 2002). Semenov and Bengtsson (2002) found maxima of
the increase in annual heavy precipitation over Europe and the eastern USA. Kharin et al.
(2007) found an increase in return values of annual extremes of daily precipitation amounts
of about 6 % with each Kelvin of global warming.

The magnitude and pattern of return values as well as projected changes in return values
in transient climate change simulations were found to be dependent on the seasonal cycle
(Wehner, 2004). Russo and Sterl (2012) found an increase in seasonal extreme precipitation
in most of the Earth’s regions. Seasonal precipitation means behave differently however. In
many regions these are without increase or decreasing (Russo and Sterl, 2012).

1.2 Quality of Data

The reliability of the investigation of extreme precipitation is highly dependent on the quality
of the underlying dataset. Regardless of the data source, the representation of extreme
precipitation depends on the resolution of the dataset. Figure 1.1 shows that weather
phenomena like thunderstorms happen on small spatial and temporal scales.
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Figure 1.1: Spatial and temporal scales of atmospheric phenomena and how these phenomena are
treated in Reynolds-averaged Navier–Stokes mesoscale or obstacle resolving microscale models (right
columns). Source: Schlünzen et al. (2011).

Observational Data

Obervational datasets are often limited by a sparse density of rain gauges. Furthermore,
station data can not be compared directly to grid box data from climate models (Osborn
and Hulme, 1997). Hence, gridding methodologies are applied. Especially in only sparsely
sampled regions, interpolation can lead to higher correlation lengths of rainfall events in the
dataset than in reality. Furthermore, the methods of measurements as well as the number
of rain gauges change in time leading to inhomogenous time series.

Climate Model Data

The atmosphere with its changing weather is a chaotic system, hence its predictability is
limited (Latif, 2009, p. 111). To analyse the climate, the interest is not the exact prediction
of detailed weather phenomena, but the analysis of the statistics of weather (Latif, 2009, p.
111). According to Lorenz (1970), climate projection is a typical boundary value problem,
whereas weather prediction is an initial value problem.

It can be seen in Figure 1.2 that the resolution of general circulation models (GCMs)
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became substantially higher since the first assessment report (FAR) of the Intergovernmental
Panel on Climate Change (IPCC). However, they remain too coarse to resolve extreme
precipitation events such as thunderstorms. The IPCC states that it is likely that the
simulation of precipitation intensity will improve with sufficient resolution to explicitly
resolve at least the large convective systems without using parameterisations for deep
convection (Randall et al., 2007, p. 629). Iorio et al. (2004) as well as Duffy et al. (2003)
found improved patterns of precipitation of seasonal means in the USA with enhanced
spatial resolution of the Community Climate Model (CCM3) of the National Center for
Atmospheric Research (NCAR). Wehner et al. (2010) found patterns of extreme precipitation
(20 year return values) over the USA to improve with enhanced model resolution of the
same model in comparison to observations.
Many studies found extreme precipitation events being underestimated in GCMs (for

example Chen and Knutson (2008), Sun et al. (2006), Min et al. (2011), Allan and Soden
(2008), Wehner et al. (2010)). Iorio et al. (2004) solved the problem with underestimated
mean and extreme precipitation by embedding a cloud-resolving model at each grid cell
and thereby replacing convective and stratiform parameterisations. In contrast to the
highly resolved CCM3 this yielded too much precipitation in the form of extreme events
even though little improvement of spatial patterns of seasonal-mean precipitation could be
achieved (Iorio et al., 2004). The very large intermodel disagreements in the tropics suggest
that some physical processes associated with extreme precipitation are not well represented
in models (Kharin et al., 2007). This reduces confidence in the projected changes in extreme
precipitation (Kharin et al., 2007). Chen and Knutson (2008) compared area-averages of
different IPCC models to observations in the USA. They suggest this method rather than
point estimates for the comparison of different models.
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Figure 1.2: Geographic resolution characteristics of the generations of climate models used in the
IPCC Assessment Reports: First assessment report (FAR) (1990), second assessment report (SAR)
(1996), third assessment report (TAR) (2001), and fourth assessment report (AR4) (2007). The figures
above show how successive generations of these global models increasingly resolved northern Europe.
These illustrations are representative of the most detailed horizontal resolution used for short-term
climate simulations. The century-long simulations cited in IPCC Assessment Reports after the FAR
were typically run with the previous generations’s resolution. Vertical resolution in both atmosphere and
ocean models is not shown, but it has increased comparably with the horizontal resolution, beginning
typically with a single-layer slab ocean and ten atmospheric layers in the FAR and progressing to about
thirty levels in both atmosphere and ocean. Source: Le Treut et al. (2007, p. 113).



6 1 Introduction

1.3 Objectives

Atmospheric general circulation models (AGCMs) still have coarse horizontal resolutions,
much coarser than the scale of precipitation extremes. Hence, it is crucial to study the
impact of horizontal model resolution on the representation of extreme precipitation events.
Previous studies analysed the impact of horizontal model resolution on the representation
of patterns of extreme precipitation. Area-averages were only used to compare results of
different models with varying resolution. In this study, the scaling behaviour of area-averages
of the same model varying in horizonzal resolution is analysed. Therefore, the AGCM
ECHAM5 was run in different horizontal resolutions (T213, T159, T106, T63, T42, T31)
with the same boundary forcing used in each simulation. The scaling behaviour of area-
averages of return values, which are estimated quantiles of the generalised extreme value
(GEV) distribution, is studied. Different regions and seasons are investigated to identify the
impact of geographical region and season on the scaling behaviour of extreme precipitation.
It is assessed whether a general scaling relationship can be identified which would yield a
cheap and simple downscaling method. The highest resolution T213 averaged to coarser
grid sizes is compared to the coarser resolutions of ECHAM5 in order to distinguish between
the averaging effect and the physical representation effect. Thereby, the minimum AGCM
resolution to represent extremes is identified.
In this study, present day simulations of ECHAM5 were carried out. Thus, the results

can be validated by observational data. Amounts and scaling behaviours of mean precipi-
tation totals, mean precipitation intensity and return levels of ECHAM5 are compared to
observational datasets of the UK and the USA. The scaling behaviour of the observational
dataset E-OBS in the UK is also validated with the UKMO dataset to assess the impact of
the density of rain gauges included in observational datasets.

In chapter 2 the model as well as the observational datasets, which were used in this
study, are described. Chapter 3 explains the statistical methods used to analyse the datasets.
In chapter 4 the results of the ECHAM5 model resolution experiment are provided and
discussed. In chapter 5 the results of the model ECHAM5 as well as the E-OBS observational
dataset are validated with observational datasets. Finally, in chapter 6 a conclusion of the
results as well as an outlook are given.



2 Data

For obvious reasons, no experiments can be carried out to examine the response of the
Earth system to varying conditions, such as a higher amount of greenhouse gases in the
atmosphere. To study the impact of changed conditions on the atmospheric circulation,
mathematical models have been developed. These mathematical models present a very
powerful tool to carry out an enormous range of different experiments. Any atmospheric
general circulation model (AGCM) is based on the atmospheric primitive equations (Eq.
2.1 - 2.5) (Kiehl, 1992, p. 322).

∂v
∂t

= −v · ∇v− ω∂v
∂p

+ fk× v−∇Φ + DM (2.1)

∂T

∂t
= −v · ∇T + ω

(
κT

p
− ∂T

∂p

)
+ Q̃rad

cp
+ Q̃con

cp
+DH (2.2)

∂q

∂t
= −v · ∇q − ω∂q

∂p
+ E − C +Dq (2.3)

∂ω

∂p
= −∇ · v (2.4)

∂Φ
∂p

= −RT
p

(2.5)

7
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with:
v: three-dimensional velocity
ω: vertical p-velocity
p: pressure
k: unit vector in z-direction
f = 2Ω sinφ: Coriolis parameter
Ω: earth angular velocity
φ: latitude
Φ: geopotential
DM = (Dλ, DΦ): dissipation terms for momentum
T : temperature
κ: thermal conductivity
Q̃rad: net radiative heating
Q̃con: heating due to condensational processes
cp: specific heat at constant pressure
DH : diffusion term for heating
q: specific humidity
E: rate of evaporation
C: rate of condensation
Dq: diffusion term for moisture
R: gas constant

These highly nonlinear partial differential equations do not have closed-form solutions.
Hence, a numerical approximative solution is required.

2.1 ECHAM5

2.1.1 Model Description

To assess the impact of model resolution on extreme precipitation, the fifth generation of
the AGCM of ECHAM, developed at the Max Planck Institute for Meteorology (MPIM) is
used. ECHAM has evolved originally from the spectral weather prediction model of the
European Centre for Medium Range Weather Forecasts (ECMWF; Simmons et al. (1989))
(Roeckner et al., 2003), therefore its first letters EC. The parameterisation package was
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developed in Hamburg, therefore the end letters HAM. A detailed description of ECHAM5
and its parameterisation can be found in Roeckner et al. (2003).

As the variation of a quantity around a latitude zone is necessarily periodic, the atmospheric
fields can be held and manipulated in form of waves (Henderson-Sellers and McGuffie, 1987,
p. 141). The advantage is, that fewer numbers are required to represent a global field and
computation times are hence reduced (Henderson-Sellers and McGuffie, 1987, p. 141). The
dynamical part of ECHAM is formulated in spherical harmonics (see Eq. 2.6) (Roeckner
et al., 2003). Vorticity, divergence, temperature and the logarithm of surface pressure are
computed by these (Roeckner et al., 2003).
Non-linear terms, including parameterisations, are evaluated in physical space on an

associated rectangular finite-difference grid, the Gaussian grid (Roeckner et al., 2003). The
basic idea behind spectral AGCMs is, that on each time step spectral fields are transformed
into grid space and after the performance of grid point physics the selected variables are
transformed back into spectral space (Henderson-Sellers and McGuffie, 1987, p. 140).
This is shown for an arbitrary variable in spectral space

X =
M∑

m=−M

|m|+j∑
n=|m|

Xm
n Y

m
n

with Xm
n being the complex spectral coefficients. m denotes zonal wavenumber with the

spectral truncation limits M and |m|+ j. The spherical harmonics Y m
n , being a function

of longitude λ and latitude φ (Eq. 2.6) (Henderson-Sellers and McGuffie, 1987, p.142), is
the eigensolution of the barotropic wave equation in spherical coordinates and, as such,
constitute a complete and orthogonal expansion basis (Hack, 1992, p.302).

Y m
n = Pmn (sinφ) exp (imλ) (2.6)

with Pmn being a Legendre polynomial of degree n and zonal wavenumber m (Henderson-
Sellers and McGuffie, 1987, p. 142). To transform this variable X to the Gaussian grid
first a Legendre transform is evaluated for each spectral variable at each of the Gaussian
latitudes φj (Eq. 2.7). These latitudes are related to the resolution of the model such that
they are the roots of the associated Legendre polynomial of order zero (Henderson-Sellers
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and McGuffie, 1987, p. 143).

Xm
n → X(m) (φj ; t) =

|m|+j∑
n=|m|

Xm
n P

m
n (2.7)

The Fourier harmonics X(m) at each of the Gaussian latitudes φj and at time t resulting
from Eq. 2.7 are transformed via Fast Fourier transform (FFT) to longitudes λl = 2πl/L
with 1 < l < L (Eq. 2.8) (Henderson-Sellers and McGuffie, 1987, p. 143). The FFT is
computationally very efficient (Hack, 1992, p.302).

X(m) → Z (λl, φj ; t) =
M∑

m=−M
X(m) exp (imλl) (2.8)

Now, physical processes are computed in the Gaussian grid. Subsequently, variables are
transformed back into spectral space by FFT followed by the performance of the inverse
Legendre transformations for one latitude at a time using Gaussian quadrature (Eq. 2.9)
(Henderson-Sellers and McGuffie, 1987, p. 143).

Zmn =
k∑
j=1

wj,k (φj)Z(m) (φj)Pmn (sinφj) (2.9)

The values for the variables, being back in spectral space, are now computed for the
advanced time point etc..

The horizontal resolution of a spectral model is usually presented in terms of wavenumber
truncation. ECHAM5 is truncated triangularly (Roeckner et al., 2003). The “T” in the
resolution specification is for triangular truncation. The truncation number represents
the number of waves resolved around a latitude zone. More precisely, the number is a
description of the relationship between the largest Fourier wavenumber, the highest degree
of the associated Legendre polynomial and the highest degree of the Legendre polynomial
of order zero. These are termed M , K and N respectively. The triangular truncation
type is defined as M = N = K (Henderson-Sellers and McGuffie, 1987, p. 143). The
advantage of triangular truncation compared to rhomboidal truncation is that the solution
in a triangularly truncated system is invariant to an arbitrary coordinate rotation (Hack,
1992, p. 304).
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To resolve the vertical atmospheric structure ECHAM5 uses a number of horizontal
layers. The uppermost computational level is at 10 hPa with a total of either 19 or 31
layers (Roeckner et al., 2003).

2.1.2 Boundary and Initial Conditions of ECHAM5

For this study ECHAM5 has been run in resolutions of T213, T159, T106, T63, T42 and
T31. This corresponds to horizontal resolutions in grid space of approximately 0.56°×0.56°,
0.75°×0.75°, 1.13°×1.13°, 1.88°×1.88°, 2.81°×2.81° and 3.75°×3.75° respectively. T213,
T159, T106 and T63 have 31 vertical layers, whereas T31 and T42 have 19 vertical layers.

The model was forced with optimal interpolation 1/4 degree daily sea surface temperature
analysis (OISST) - version 2 of the National Oceancic and Atmospheric Administration
(NOAA) (Reynolds et al., 2007) and high resolution (12.7 km) observed sea ice cover (SIC)
from Grumbine et al. of the NOAA. NOAA produces two 0.25° daily SST products. One
product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite
SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR)
on the NASA Earth Observing System satellite SST data. Both products also use in situ data
from ships and buoys and include a large-scale adjustment of satellite biases with respect to
the in situ data (Reynolds et al., 2007). According to Reynolds et al. (2007), sea ice data
were smoothed with a seven day median filter. This reduced the influence of occasional
spurios day-to-day sea ice variation in summer resulting from satellite sensing errors of
wet surfaces. SST and SIC data were interpolated to ECHAM grid by N. Keenlyside. All
radiative forcing is kept constant at present day levels. Greenhouse gas forcing is observed
concentrations. For the resolutions T106, T63, T42 and T31 three ensemble member runs
with slightly different initial conditions have been carried out. The initial conditions are
the conditions of a day in December 1981. For the ensemble members the conditions of
different days in December 1981 were used. For the high resolution models T213 and T159,
it was not possible to run ensemble members due to limited computation time. The model
was run from 1982 - 2010, limited by the availability of the set of highly resolved boundary
conditions. These model runs have been performed by V. Semenov and W. Tseng on the
supercomputer of the North-German Supercomputing Alliance (HLRN).
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2.1.3 Averaging of T213 to Coarser Resolutions

To evaluate the effect of increasing grid box size on the representation of precipitation, the
daily precipitation of the T213 model run (corresponding to approximately 0.56°×0.56°) was
spatially averaged to coarser resolutions. The average of the precipitation was taken over
2×2, 3×3, 4×4, 5×5, 6×6 and 7×7 grid boxes respectively, resulting in grid resolutions of
approximately 1.125°×1.125°, 1.69°×1.69°, 2.25°×2.25°, 2.81°×2.81°, 3.38°×3.38° and
3.94°×3.94°. The original T213 model run will be refered to as T2131×1 in this study. The
coarser resolutions averaged from the T213 run will accordingly be refered to as T2132×2,
T2133×3, T2134×4, T2135×5, T2136×6 and T2137×7 in this study.

The statistics are applied after the working resolution is achieved.

2.2 Observational Datasets

For the validation of the ECHAM5 model results, the precipitation indices (see chapter 3)
have been compared to precipitation indices derived from observational datasets.

2.2.1 UK

The gridded dataset of the UK Meteorological Office (UKMO) which is based on 2000 -
6000 rain gauges (Perry et al., 2009) has been used. The grid has a resolution of 5 km×5
km (Perry et al., 2009). To compare this dataset to the model output, its grid has to
be transformed to a Gaussian grid. The difference between two latitudes corresponds to
111.325 km. Hence, 5 km on a longitude λ are equivalent to 0.045°. A distance on a
latitude φdist can be calculated as in Eq. 2.10, dependent on the latitude φ.

φdist = cos (φ)× 111.325 (2.10)

With the assumption that the UK is situated on average at 55°N, 5 km correspond to
0.078°. The period from 1958 to 2005 is covered by this dataset. Thus, it ends before the
time period of the ECHAM5 model output. Consequently, a slightly different time period
is analysed. According to chapter 2.1.3, this dataset was averaged to coarser resolutions
which are provided in Table A.2.
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Table 2.1: Averaged resolutions of the UKMO dataset.

Averaged grid boxes Grid box size [km×km] Gaussian grid box size [°×°]

1×1 5×5 0.045×0.078
2×2 10×10 0.090×0.156
3×3 15×15 0.135×0.234
4×4 20×20 0.180×0.312
5×5 25×25 0.225×0.390
7×7 35×35 0.315×0.546

10×10 50×50 0.450×0.780
15×15 75×75 0.675×1.17
20×20 100×100 0.900×1.56
25×25 125×125 1.13×1.95
30×30 150×150 1.35×2.34
35×35 175×175 1.58×2.73
40×40 200×200 1.80×3.12
45×45 225×225 2.03×3.51

2.2.2 E-OBS

The European daily high-resolution (0.25°×0.25°) gridded data set (E-OBS) of precipitation
is used (Haylock et al., 2008). It has been developed in the framework of the ENSEMBLES
project. The density of rain gauges is very irregular and in some regions very sparse, such
as for the UK only 137 rain gauges are considered (Haylock et al., 2008). The same
time period as for the ECHAM5 model runs is taken for analyses. According to chapter
2.1.3, this dataset was averaged to coarser resolutions. Therefore, the mean of 2×2 to
11×11 grid boxes respectively was taken, yielding resolutions of approximately 0.5°×0.5°
to 2.75°×2.75°.
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2.2.3 USA

The NOAA CPC (Climate Prediction Center) “US Unified Precipitation” dataset (Higgins
et al., 2000) was used to validate the model results for the USA. It is based on approximately
35 000 rain gauges over the whole USA, sparsest in the western USA, and gridded to
0.25°×0.25° (Higgins et al., 2000). Data from before 1999 are not produced exactly the
same way as data from 1999 onwards (Higgins et al., 2000). The same time period as for
the ECHAM5 model runs is taken for analyses. According to chapter 2.1.3, this dataset
was averaged to coarser resolutions. Therefore, the mean of 2×2 to 15×15 grid boxes was
taken respectively, yielding resolutions of approximately 0.5°×0.5° to 3.75°×3.75°.
A summary of resolutions used in this study is given in appendix A.



3 Methods

The ECHAM5 model output of six hourly precipitation data was summed to daily data.
Subsequently seasonal maxima for December, January and February (DJF) as well as for
June, July and August (JJA) were taken. Furthermore, seasonal maxima were taken from
daily observational precipitation and analysed by the methods described in this chapter.

3.1 Extreme Value Theory

In this section a statistical model for extreme value theory (EVT) is introduced. It focuses
on the behaviour of

Mn = max {X1,...,Xn}

where X1, . . . ,Xn is a sequence of independent and identically distributed random variables
having a common distribution function F . Mn represents the maximum of a process over n
time units. In the block maxima approach which is used in this study X1,...,Xn is broken
up into blocks of size n. Mn is consequently the maximum of the block. n must be large
enough to make sure, that the block maxima are independent events (Coles, 2004, p. 45).
The limit distribution of Mn is the Generalised Extreme Value (GEV) family of distributions
(Eq. 3.1) (Coles, 2004, p. 47).

G(z) = exp
{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}

(3.1)

with the location parameter µ, the scale parameter σ and the shape parameter ξ. µ

describes the location of the distribution. Hence, an increasing µ yields a shift of the whole
distribution towards higher values. σ specifies the width of the distribution. Thus, an
enhanced σ results in a widening of the distribution, implicating higher variability. The

15
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assymetry and hence, the tail of the distribution is determined by ξ as follows (Coles, 2004,
p. 46):

• Extreme Value Type I: Gumbel ξ → 0: infinite smooth tail

• Extreme Value Type II: Fréchet ξ > 0: infinite heavy tail

• Extreme Value Type III: Weibull ξ < 0: bounded tail

In Figure 3.1 a the probability density function and in Figure 3.1 b and c the corresponding
random time series with added maxima for a block length of 20 for constant µ and σ but
varying ξ are provided.

It can be clearly seen, that a larger value for ξ yields a heavier tail (see Figure 3.1 a)
and accordingly higher maxima (see Figure 3.1 b). An enhanced positive ξ results in a
lengthening of the high-end tail, indicating a tendency towards rare, but extreme events
(see Figure 3.1 a and c). Hence, an increase in µ, σ and/or ξ leads to more extreme events.

Estimation of Return Values

In this study the block length is chosen to be 3 months, i.e. n is the number of observations
of 3 months and the block maxima are seasonal maxima. Estimates of extreme quantiles
can be obtained by inverting Eq. 3.1, yielding Eq. 3.2.

zp =

µ−
σ
ξ

[
1− {− log(1− p)}−ξ

]
for ξ 6= 0

µ− σ log {− log(1− p)} for ξ = 0
, (3.2)

where G(zp) = 1− p (Coles, 2004, p. 49). zp is the return value associated with the return
period 1/p, since the value zp is expected to be exceeded on average once in 1/p seasons,
i.e. zp is exceeded by the seasonal maximum in any particular season with probability p
(Coles, 2004, p. 49).

Since the parameters of the GEV distribution are not estimated independently (see
chapter 3.2), the following analyses compare quantiles of the GEV distribution, namely
return values.



3.1 Extreme Value Theory 17

−20 0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

0.
08

z

P
ro

ba
bi

lit
y 

de
ns

ity

ξ = − 0.3
ξ = 0
ξ = 0.3
ξ = 0.8

(a)

0 100 200 300 400 500

10
20

30
40

50
60

70

Time

z

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
● ●

● ●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

ξ = − 0.3
ξ = 0
ξ = 0.3

(b)

0 100 200 300 400 500

5
50

50
0

50
00

Time

z

●

●

●
●

● ●

●
● ●

●

● ●

● ●

●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

● ●

● ●

●

●

●

●

●

●

●

ξ = 0.3
ξ = 0.8

(c)

Figure 3.1: Probability density functions for varying ξ with constant µ = 12 and σ = 6 (a) for an
arbitrary variable z. Randomly generated time series with added maxima for a block length of 20 for
the probability density functions shown in a (b and c). Note the logarithmic y-scale in c.
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3.2 Probability Weighted Moments

The GEV model was fitted to the seasonal maxima by the method of probability weighted
moments (PWM). The sample size is quite small as the model runs only cover 29 years,
yielding 29 seasonal maxima per season. The power of PWM is its good performance for
small sample sizes as well as its computational simplicity (Hosking et al., 1985). The biases
of the estimators are small, except when estimating quantiles in the extreme tails of the
GEV distribution (Hosking et al., 1985). Thus, this study compares 20 season return values
(see Eq. 3.2 for the computation of return values).

The probability-weighted moments of a random variable X with distribution function
F (x) = P (X ≤ x) are given by Eq. 3.3.

Mp,r,s = E [Xp {F (X)}r {1− F (X)}s] (3.3)

p, r, and s are real numbers (Greenwood et al., 1979). According to Hosking et al.
(1985) the moments βr = M1,r,0 = E [X {F (X)}r] (r = 0,1,2, . . .) are considered.

Hence, the probability-weighted moments of the GEV distribution (Eq. 3.1) for ξ 6= 0
are shown in Eq. 3.4 (Hosking et al., 1985).

βr = (r + 1)−1
[
µ+ σ

{
1− (r + 1)−ξ Γ (1 + ξ)

}
/ξ
]
, ξ > −1 (3.4)

For ξ ≤ −1, β0 which is the mean of the distribution, and the rest of the βr do not exist
(Hosking et al., 1985).

Eq. 3.4 leads to Eq. 3.5, Eq. 3.6 and Eq. 3.7 (Hosking et al., 1985).

β0 = µ+ σ {1− Γ (1 + ξ)} /ξ (3.5)

2β1 − β0 = σΓ (1 + ξ)
(
1− 2−ξ

)
/ξ (3.6)
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3β2 − β0
2β1 − β0

= 1− 3−ξ
1− 2−ξ (3.7)

The PWM estimators µ̂, σ̂ and ξ̂ are the solutions of Eq. 3.5 - Eq. 3.7 for µ, σ and ξ
when βr are replaced by their estimators.

The estimation of βr for a random sample of size n from the distribution F is based
on the ordered sample x1 ≤ x2 ≤ · · · ≤ xn. br in Eq. 3.8 is an unbiased estimator of βr
(Landwehr et al., 1979).

br = n−1
n∑
j=1

(j − 1) (j − 2) · · · (j − r)
(n− 1) (n− 2) · · · (n− r)xj (3.8)

Eq. 3.7 is almost linear over the range of values −1
2 < ξ < 1

2 . Hence, low-order
polynomial approximations for ξ̂ are very accurate. Thus, Hosking et al. (1985) suggest the
estimator Eq. 3.9 rather than Eq. 3.7.

ξ̂ = 7.8590c+ 2.9554c2, c = 2b1 − b0
3b2 − b0

− log 2
log 3 (3.9)

With ξ̂, the scale and location parameters can be estimated according to Eq. 3.10 and
Eq. 3.11 respectively.

σ̂ = (2b1 − b0) ξ̂
Γ
(
1 + ξ̂

) (
1− 2−ξ̂

) (3.10)

µ̂ = b0 + σ̂
{

Γ
(
1 + ξ̂

)
− 1

}
/ξ̂ (3.11)

The PWM estimation in this study has been performed with the “fExtremes“ package
(Wuertz et al., 2009) of the R-Project (R Development Core Team, 2011).
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3.3 Analysis of the Scaling Behaviour of Return Values

Only terrestrial extreme precipitation is studied. Therefore, the matrices of calculated return
values were multiplied with a landmask. On the one hand, extreme precipitation is mainly
studied with the aim to better understand the impact of extreme precipitation events on
human society and ecosystems. On the other hand, ECHAM5 overestimates precipitation
over the oceans, particularly in high-resolution simulations (Hagemann et al., 2006). This
is a genereal problem in current GCMs, which could be due to insufficient atmospheric
absorption of solar radiation by aerosols, water vapor or clouds (Hagemann et al., 2006).

The estimated return values are spatially averaged over certain regions (see section 3.4)
within each resolution. For the resolutions T106, T63, T41 and T31 ensemblemeans of
the calculated return values were taken, i.e. for each region the return values of the three
ensemble runs were averaged. Additionally the 95 % confidence interval for each region
was calculated and added as error bars.

Subsequently, the averaged return values are plotted against their associated spatial
length scale. The spatial length scale is the length of one side of the rectangular grid boxes,
such as the spatial length scale of a 2°×2° grid box is 2°. T2131×1 - T2137×7 as well as
the coarser resolutions T159, T106, T63, T42 and T31 are plotted in the same plot to
compare their scaling behaviours. In the comparisons to observational datasets, these are
added to the plots.
The UK dataset is on a 0.045° × 0.078° grid. As this is not a rectangular grid,
√

0.045× 0.078 = 0.059° was supposed to be the spatial length scale of UK1×1. Accordingly
the spatial length scales for UK2×2 - UK45×45 are 0.118°, 0.177°, 0.236°, 0.295°, 0.413°,
0.590°, 0.885°, 1.180°, 1.475°, 1.770°, 2.065°, 2.360° and 2.655° respectively.

3.4 Definition of Regions

For the comparison of area averages, regions have to be defined. In order to avoid averaging
over areas with substantially different values, the studied regions were defined according to
the slopes of the GEV location parameter µ of T2131×1 - T2137×7 in the plots, described
in section 3.3, which can be seen for return values in section 4.2. The coarsest resolution
of the averaged T213 resolutions is the T2137×7 grid (corresponding to a spatial length
scale of approximately 3.94°). Therefore, µ of every T213 resolution (T2131×1 - T2136×6)
was averaged to the T2137×7 grid. As the T2137×7 grid was originally averaged from
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the T2131×1 grid (see section 2.1.3), µ in the T2131×1 resolution can easily be averaged
over 7×7 grid boxes to be on a T2137×7 grid. However, this is not possible for T2132×2 -
T2136×6.Therefore, the nearest neighbour of the T2137×7 grid boxes for each grid box
of T2132×2 - T2136×6 respectively was identified by Euclidean distance measure using
the ”fields” package (Furrer et al., 2010) of the R-project (R Development Core Team,
2011). Hence, per T2137×7 grid box a certain number of T2131×1 - T2136×6 grid boxes are
averaged respectively. Finally T2131×1 - T2137×7 are on the same horizontal grid, namely
the T2137×7 grid.
Thereupon, a moving average of µ over 3x3 grid boxes of T2131×1 - T2137×7 on the

T2137×7 grid respectively was carried out. Subsequently, within each grid box a linear
regression of the µ values of T2131×1 - T2137×7 against the associated spatial length scale
was performed.

Finally, a map containing the slopes of these linear regressions was plotted. According to
this map the regions have been defined by identifying patterns of equal or similar slopes. The
moving average was used to smooth the patterns. These maps of the seasons being analysed
in this study, DJF and JJA, are provided in Figure 3.2 and Figure 3.3 respectively. In Figure
3.3 a the whole range of slopes is shown to identify the patterns of heavy slopes whereas
in Figure 3.3 b the range of slopes has been limited at the bottom to −10 mm(d◦)−1 to
better identify the patterns of less heavy slopes in JJA. The defined regions are provided in
Table 3.1.
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Figure 3.2: Slopes
[
mm(d◦)−1] of linear regressions of the GEV - location parameter µ

[
mm(d)−1]

in DJF of the resolutions T2131×1 - T2137×7 of ECHAM5, being all on a T2137×7 grid (approximately
3.94°×3.94°), against their associated spatial length scale [°]. A moving average over 3×3 grid boxes
was applied before the regression. From this map patterns of equal or similar slopes were identified for
December, January, February (DJF).
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(a)

(b)

Figure 3.3: Slopes
[
mm(d◦)−1] of linear regressions of the GEV - location parameter µ

[
mm(d)−1]

in JJA of the resolutions T2131×1 - T2137×7 of ECHAM5, being all on a T2137×7 grid (approximately
3.94°×3.94°), against their associated spatial length scale [°]. A moving average over 3×3 grid boxes
was applied before the regression. From these maps patterns of equal or similar slopes were identified
for June, July, August (JJA). In (a) the plot range is unlimited, allowing mainly to identify patterns of
heavy slopes, in (b) the plot range is limited at the bottom to −10

[
mm(d◦)−1] to indentify patterns

of less heavy slopes.
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Table 3.1: The regions for the analysis of the region specific scaling behaviour for DJF and JJA, as
identified from Figure 3.2 and Figure 3.3. Note that several regions are different in DJF and JJA.

Region Latitudes [°] Longitudes [°]

DJF and JJA
Northern Europe 47 N - 75 N 10 W – 40 E
Southern Europe 35 N – 47 N 10 W – 40 E
Eastern Asia 20 N – 50 N 110 E – 150 E
Eastern Australia-New Zealand 52 S – 20 S 145 E – 180 E
Western Siberia 50 N – 75 N 60 E – 90 E
Central USA 30 N – 50 N 110 W – 100 W
Northeastern USA 40 N – 50 N 100 W – 60 W
Southeastern USA 25 N – 40 N 100 W – 60 W
Canada-Alaska-Greenland 50 N – 85 N 180 W – 20 W
Southwestern South America 60 S – 20 S 80 W – 60 W
Southeastern South America 40 S – 20 S 60 W – 40 W
DJF (December, January, February)
Central Africa 10 S - 0 5 E - 40 E
Southern Africa 35 S – 10 S 10 E – 50 E
Indonesia-northern Australia 15 S – 20 N 90 E – 160 E
Western USA 30 N – 50 N 130 W – 110 W

20 S – 10 S 60 W – 35 WAmazon region 10 S – 0 70 W – 35 W
20 S – 10 S 85 W – 60 WPeru-Bolivia-Ecuador 10 S – 0 85 W – 70 W

Northern South America-
southern Central America 0 – 12 N 90 W – 50 W

12 N – 25 N 115 W – 82 WCentral America 25 N – 30 N 120 W – 100 W
JJA (June, July, August)
India 5 N – 25 N 65 E – 93 E
Indonesia 10 S – 20 N 90 E – 160 E
Russia 50 N – 70 N 40 E – 180 E
Central Africa 10 S – 12 N 20 W – 40 E

20 S – 10 S 85 W – 60 WSouthern Peru-Bolivia-central Amazon 10 S – 5 S 85 W – 35 W
Northern Peru-Ecuador-Colombia 5 S – 8 N 82 W – 70 W
Northeastern South America 0 – 12 N 70 W – 50 W
Central America 5 N – 22 N 110 W – 80 W
Western USA-northern Mexico 30 N – 50 N 130 W – 110 W
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3.5 Validation of Model Data by Comparison to Observational Data

The return values, which have been calculated from the model output of ECHAM5 have been
compared to return values, that were calculated from observational datasets. Furthermore,
the scaling behaviour of mean precipitation totals as well as of mean precipitation intensities
are examined and compared to the scaling behaviour of extremes. The seasonal mean
precipitation totals are the total precipitation over each whole season respectively summed
over the whole period, divided by the number of years. The mean precipitation intensity is
the mean precipitation total divided by the mean number of wet days. A wet day is defined
as a day with at least 1 mm of precipitation. These indices are averaged over the regions
defined in section 3.4 and plotted as described in section 3.3.





4 Results of the ECHAM5 Resolution Experiment

In this chapter the results of the modeled datasets, yielding from the ECHAM5 model, are
presented. The influence of spatial scale on the representation of patterns of 20 season
return values over Europe is assessed in section 4.1. Subsequently in section 4.2 the scaling
behaviour of area averaged 20 season return values for different regions is shown.

4.1 The Impact of Model Resolution on Precipitation Return Value
Patterns over Europe

To check the representation of patterns of the 20 season DJF return values in the model
ECHAM5, maps of different spatial resolutions are examined. Since the spatial scale of
heavy precipitation events is often less than all considered resolutions, the return values are
expected to decrease with bigger grid size due to the effect of describing a small scaled
event in a bigger area, i.e. point processes are represented in grid boxes. To account
for the averaging effect, the patterns in the coarser model resolutions T159 - T31 are
compared to those in the respective equal or most similar resolution of T2132×2 - T2137×7.
Consequently, the averaging effect is included in both graphics. Hence, the visible difference
is due to a different model performance in coarser resolutions such as unresolved physical
processes. In Figure 4.1 a the 20 season return values of Europe in DJF of the T213 model
run in its original resolution T2131×1 as well as of those of the coarser model resolutions
Figure 4.1 b - f T159, T106, T63, T42 and T31 are shown. In Figure 4.2 a - f the 20
season return values of Europe in DJF of the T213 model run, spatially averaged to coarser
resolutions T2132×2, T2133×3, T2134×4, T2135×5, T2136×6 and T2137×7, respectively are
provided.

27
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(a) T2131×1 (≈ 0.56°×0.56°) (b) T159 (≈ 0.75°×0.75°)

(c) T106 (≈ 1.13°×1.13°) (d) T63 (≈ 1.88°×1.88°)

(e) T42 (≈ 2.81°×2.81°) (f) T31 (≈ 3.75°×3.75°)

Figure 4.1: Maps of Europe showing the 20 season DJF return value in mm/d of T2131×1 (a) and
the coarser model resolutions T159 - T31 (b - f).
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(a) T2132×2 (≈ 1.125°×1.125°) (b) T2133×3 (≈ 1.69°×1.69°)

(c) T2134×4 (≈ 2.25°×2.25°) (d) T2135×5 (≈ 2.81°×2.81°)

(e) T2136×6 (≈ 3.375°×3.375°) (f) T2137×7 (≈ 3.94°×3.94°)

Figure 4.2: Maps of Europe showing the 20 season DJF return value in mm/d of the original T213
model resolution (a) and the T213 model run spatially averaged over a different number of grid boxes
(b - f). The indices of T213 show the number of grid boxes averaged before the statistics are applied.
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It can be seen that the highest 20 season return values in the maps decrease, as expected,
with increasing grid box size in the averaged T213 resolutions T2131×1 - T2137×7 (see
Figure 4.1 a and 4.2) as well as in the decreasing model resolutions T2131×1 - T31 (see
Figure 4.1). However, in the averaged T213 model resolutions T2131×1 - T2137×7 the
return values show a higher variability than in the coarser model resolutions T159 - T31.
This is due to fewer physical processes resolved in the coarser model resolutions. T159
yields a similar pattern as T2131×1, although some maximum return values such as at the
west coasts of Scandinavia and in the Alps are lower in T159.

T106 is in general able to reproduce a similar pattern as T2132×2 (see Figure 4.1 c and
4.2 a respectively). However, slight differences are detected in the spatial extent of several
patterns between T106 and T2132×2. Additionally, the maximum 20 season return values
are higher in T2132×2 than in T106, for example at the west coast of Scandinavia.

T63 is still able to capture the general pattern of the 20 season return values compared
to T2133×3 (see Figure 4.1 d and 4.2 b respectively). However, the extent of the pattern is
generally slightly less in T63 than in T2133×3. The highest return values of T2133×3 such
as at the west coast of Scandinavia are not reproduced by T63.
T42 compared to T2135×5 does not reproduce the general pattern anymore, such as

the Alps having the same 20 season return values in T42 as the surrounding regions (see
Figure 4.1 e and 4.2 d respectively). The only elementary pattern which can be seen in
T42 is the enhanced return values at the west coasts of Scandinavia, Denmark, the Iberian
peninsula, Albania, Turkey as well as at the west coast of Ireland. T31 does not reproduce
any pattern that can be seen in T2137×7. For example,the higher 20 season return values
at the Scandinavian west coast are not visible at all (see Figure 4.1 f versus 4.2 f).

Summarised, a decline in the ability to simulate the variety of precipitation over Europe
with decreasing model resolution is obvious. T63 appears to be the minimal required model
resolution to capture the pattern of precipitation return values. Certainly, higher model
resolutions always yield a better representation of this pattern, e.g. T106 shows an improved
pattern compared to T63. T213 as well as T159 resolve very detailed variabilities. T42 can
only detect some very basic schemes such as west coasts, whereas T31 is not even able to
capture those very simple properties. Maps of further regions are not provided as this study
focuses on area averages. Since for the validation of extreme precipitation in Europe no
appropriate observational dataset is available, the patterns are not validated.



4.2 Scaling Behaviour of Area Averaged Return Values 31

4.2 Scaling Behaviour of Area Averaged Return Values

To assess the scaling behaviour, the 20 season return values were averaged over the
geographic regions described in section 3.4 (note that some geographic regions are defined
differently in DJF and JJA) and plotted against their corresponding spatial length scale.
The scaling behaviour of the return values of the model run with the highest resolution
T213 averaged to coarser resolutions is compared to the scaling behaviour of the return
values of the coarser model resolutions T159 - T31 for the seasons DJF as well as JJA.

In the averaged T213 resolutions T2131×1 - T2137×7 the effect of increasing grid box
size on the representation of the return values is covered whereas the decreasing model
resolutions T213 - T31 show the effect of increasing grid box size as well as the effect of
physical representation in the coarser model resolution. Hence, the difference between the
two curves should be mainly due to physical processes which are not resolved by the coarser
model resolutions.

Main Scaling Behaviours

According to the position of the curve of the area averaged return values of T2131×1 -
T2137×7 in relation to the position of the curve of the area averaged return values of
T2131×1 - T31, in DJF and JJA roughly three different main qualitative scaling behaviours
and three further qualitative scaling behaviours, which are in between of these main scaling
behaviours, could be identified. In this section examples of each qualitative scaling behaviour
are provided.
Figure 4.3 shows the scaling behaviour of northern Europe (a) as well as the scaling

behaviour of the northeastern USA (b) in DJF. As can be seen in Figure 4.3, in northern
Europe as well as in the northeastern USA the 20 season DJF return value of the aver-
aged T213 model resolutions T2131×1 - T2137×7 decreases more steeply with increasing
spatial length scale than the return values of the lower model resolutions T2131×1 - T31.
Surprisingly, the coarser model resolutions yield higher return values than expected due
to the averaging effect. The responsible mechanism is unclear. A possible explanation is
that physical model parameterisations in the coarser resolutions of ECHAM5 lead to more
intense return values and hence, overestimate the latter compared to the expected intensity
from the averaging effect. Another potential reason is that parameterisations in the highest
resolution T213 lead to the simulation of comparably low extreme precipitation in these
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(a) Northern Europe DJF
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(b) Northeastern USA DJF

Figure 4.3: Area-averaged total precipitation 20 season return values over northern Europe (a)
and the northeastern USA (b) in DJF estimated from ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are
the 95 % confidence interval of the area average. Note the different scales of the y-axes.

regions.
A similar scaling behaviour was found for the regions Canada-Alaska-Greenland, Western

Siberia and Eastern Asia in DJF, as well as for eastern Australia-New Zealand in JJA (see
Figure B.1 a - d respectively). Apparently this scaling behaviour is only found in several
regions in winter.

Figure 4.4 shows the scaling behaviours of eastern Australia-New Zealand (a) as well as
of the southeastern USA (b) in DJF, which is summer in eastern Australia-New Zealand
and winter in the southeastern USA. In eastern Australia-New Zealand as well as in the
southeastern USA in DJF the 20 season return values of T2131×1 - T2137×7 show the
same decreasing behaviour as those of the lower model resolutions T213 - T31 (Figure
4.4), i.e. the return values are in the 95 % confidence interval. Thus, the decreasing return
values can be explained by grid box effects only.

Indonesia-northern Australia shows in DJF the same scaling behaviour as eastern Australia-
New Zealand (see Figure B.2 a). Similarly does Central America in DJF, except for the T106
return value, being slightly higher (see Figure B.2 b). In JJA in Indonesia, southwestern
South America as well as southern Europe the scaling behaviours of T2131×1 - T2137×7

and T213 - T31 are in their reciprocal 95 % confidence interval (see Figure B.3 a - c
repectively). Furthermore, the western as well as the central USA in DJF show similar
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(a) Eastern Australia-New Zealand DJF
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(b) Southeastern USA DJF

Figure 4.4: Area-averaged total precipitation 20 season return values over eastern Australia-New
Zealand (a) and the southeastern USA (b) in DJF estimated from ECHAM5 model output in the
resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The
error bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.

scaling behaviours (see Figure B.4). However, the return values of T2131×1 - T2137×7

have much larger error bars than in the other regions. In contrast, T159 - T31 do not have
larger error bars than those in the other regions with this scaling behaviour. Hence, the
return values of T2131×1 - T2137×7 in the western and the central USA in DJF seem to be
more variable than those of T159 - T31 and those in other regions.

In Figure 4.5 the scaling behaviours of the Amazon region (a) as well as of southwestern
South America (b) are shown. In the Amazon region as well as in southwestern South
America a scaling behaviour of faster decreasing 20 season return values in the coarser
model resolutions T213 - T31 than in the averaged T213 resolutions T2131×1 - T2137×7

was found (see Figure 4.5). However, in the Amazon region the T2131×1 - T31 return
values decrease much steeper than in southwestern South America. In southwestern South
America T31 is on the same level as T42. The return values of T2131×1 - T42 decrease
almost linearly.
The difference between the T2131×1 - T2137×7 and the T2131×1 - T31 return values

can be explained by physical processes which are not resolved in the models with coarser
resolutions. A scaling behaviour like this has been expected for every grid box, only being
variable in the slopes, the space between the two curves and their curvature, such as the
difference between the Amazon region and southwestern South America.
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(a) Amazon region DJF
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(b) Southwestern South America DJF

Figure 4.5: Area-averaged total precipitation 20 season return values over the Amazon region (a)
and southwestern South America (b) in DJF estimated from ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are
the 95 % confidence interval of the area average. Note the different scales of the y-axes.

In DJF, central Africa, southern Africa, Peru-Bolivia-Ecuador, northern South America-
southern Central America as well as southeastern South America (see Figure B.5 a - e
respectively) and in JJA central Africa, Northern Peru-Ecuador-Colombia, northeastern
South America and southeastern South America (see Figure B.6 a - d respectively) show
similar scaling behaviours, only varying in their slopes, their curvature and the interspace
between the T2131×1 - T2137×7 and the T2131×1 - T31 return values. T31 is not following
the scaling behaviour of T2131×1 - T42. This supports the hypotheses stated above.
Furthermore, India in JJA shows a similar scaling behaviour (see Figure B.6 e). It is again
noticeable that T31 is not further decreasing, suggesting again T31 being too coarse to
represent extreme precipitation. Additionally, western Siberia as well as Russia show a similar
scaling behaviour in JJA (see Figure B.7). However, both show a scaling behaviour which
is almost linear for T2131×1 - T2137×7 as well as for T2131×1 - T31 with a steeper slope
for the return values T2131×1 - T31. Furthermore, the central as well as the southeastern
USA in JJA show similar scaling behaviours (see Figure B.8). However, it is noticeable
that T2131×1 - T2137×7 and T159 - T31 have very different slopes, namely the slope of
T159 - T31 being much steeper. Further, it is remarkable that in the central as well as in
the southeastern USA the return value of T159 is higher than the one of T2131×1.



4.2 Scaling Behaviour of Area Averaged Return Values 35

Intermediate Scaling Behaviours

In Figure 4.6 the scaling behaviours of Southern Europe in DJF (a) and Canada-Alaska-
Greenland in JJA (b) are provided. The scaling behaviours of southern Europe in DJF
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(b) Canada-Alaska-Greenland JJA

Figure 4.6: Area-averaged total precipitation 20 season return values over southern Europe (a) in
DJF and Canada-Alaska-Greenland (b) in JJA estimated from ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are
the 95 % confidence interval of the area average. Note the different scales of the y-axes.

(Figure 4.6 a) and Canada-Alaska-Greenland in JJA (Figure 4.6 b) are in between of those
of northern Europe/the northeastern USA in DJF (Figure 4.3) and eastern Australia-New
Zealand/the southeastern USA DJF (Figure 4.4). According to northern Europe and the
northeastern USA in DJF the 20 season return values of T2131×1 - T2137×7 decrease
steeper than those of T2131×1 - T31 although the interspace between them is much less.
In contrast to Australia-New Zealand and the southeastern USA in DJF, the difference
between T2131×1 - T2137×7 and T2131×1 - T31 exceeds the 95 % confidence interval.
In Figure 4.7 the scaling behaviours of northern Europe as well as the northeastern

USA in JJA are provided. The scaling behaviours of northern Europe (Figure 4.7 a) and
the northeastern USA in JJA (Figure 4.7 b) are inverse to southern Europe in DJF and
Canada-Alaska-Greenland in JJA, namely T2131×1 - T31 decreases slightly faster than
T2131×1 - T2137×7. Hence, the scaling behaviours of northern Europe and the northeastern
USA in JJA are in between of those of the Amazon region/southwestern South America in
DJF (see Figure 4.5) and eastern Australia-New Zealand/the southeastern USA in DJF
(see Figure 4.4).
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(a) Northern Europe JJA
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(b) Northeastern USA JJA

Figure 4.7: Area-averaged total precipitation 20 season return values over northern Europe (a)
and the northeastern USA (b) in JJA estimated from ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are
the 95 % confidence interval of the area average. Note the different scales of the y-axes.

A similar scaling behaviour was found for eastern Asia and Central America in JJA (see
Figure B.9 a and b respectively).

In Figure 4.8 the scaling behaviours of Southern Peru-Bolivia-central Amazon as well as
of the western USA-northern Mexico in JJA are provided. The scaling behaviours of the
20 season return value of Southern Peru-Bolivia-central Amazon as well as of the western
USA-northern Mexico in JJA are a special case as the return values of T159 - T63 are in
the 95 % confidence interval of those of T2131×1 - T2134×4 even though those of T42 as
well as of T31 are below those of T2135×5 - T2137×7. This suggests the resolutions T42
and T31 being too coarse to represent extremes.

ECHAM5 distinguishes in the model output between large scale and convective precipita-
tion. So far, the return values estimated from their sum were compared. The results of the
separate analyses of large scale and convective precipitation are provided in appendix B.2.
The separate analysis yields that the extreme precipitation events in all studied regions are
due to large scale precipitation. The area-averaged return values estimated from large scale
precipitation are higher in all regions than those estimated from convective precipitation.
This is due to the parameterisations of ECHAM5. In ECHAM5, cumulus convection con-
tributes to large scale air moisture, resulting in large scale precipitation (Roeckner et al.,
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(a) Southern Peru-Bolivia-central Amazon
JJA
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(b) Western USA JJA

Figure 4.8: Area-averaged total precipitation 20 season return values over Southern Peru-Bolivia-
central Amazon (a) and the western USA (b) in JJA estimated from ECHAM5 model output in the
resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The
error bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.

2003). Convective rainfall is only the excess moisture falling to the surface where the
convectional updraft happens (Roeckner et al., 2003). Hence, the amount of convective
precipitation in the model output does not represent the amount of precipitation due to
cumulus convective processes (Roeckner et al., 2003). However, it indicates convectional
processes happening in that grid box (Roeckner et al., 2003). Therefore, it is not useful to
analyse the scaling behaviour of large scale and convective precipitation separately with the
aim to better understand the responsible processes leading to extreme precipitation events.
Thus, the separate analyses of convective and large scale precipitation are not discussed
in detail. It is remarkable that the 20 season return value of convective precipitation in
most regions does not change significantly with increasing spatial scale in T2131×1 - T63.
However, in several regions the return values of T42 and T31 are significantly below (such
as Figure B.13 d) or above (such as Figure B.26 b) those of T213 - T63.
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Discussion

A limitation of this study is that due to long computation time, the highest resolutions
T213 and T159 do not have several ensemble members. However, all area-averages of
the ensemble members of the lower resolutions do not show significant differences (see
Figure B.29). This study shows that it is not reliable to compare results of one model with
results of another model having a different resolution. Extreme precipitation of different
resolutions has to be compared dependent on the respective spatial scale. This is consistent
with Chen and Knutson (2008). It is shown in Figure 1.1 in section 1.2 that atmospheric
phenomena of small spatial scales, have small time scales. In this experimental setup only
daily precipitation is investigated. For events on a very low scale this time scale might be
too long. The model run ECHAM5 only covers 29 years. This yields only 29 data points
per season to fit the distribution parameters. However, in much longer times series a trend
might be present and hence, the time series would have to be broken into several periods to
have stationary time series that would be analysed separately. Using a shorter block length
to get more values has the disadvantage that some regions could not be analysed anymore
as there are not enough heavy rain events for a reliable fit, for example the Mediterranean
region in JJA. Another limit of the block maxima approach is that much data is wasted by
only taking seasonal maxima. For example, in one season the second highest event might
be the second highest event in the whole time series, which is neglected.



5 Comparison of Model Results to Observations

To validate the results of the model study the results derived from the model output are
compared to observational datasets, namely the UKMO dataset for the UK, the E-OBS
dataset for Europe and the NOAA CPC dataset for the USA. Thereby, the E-OBS dataset is
validated. Due to the number of included rain gauges, the UKMO dataset is more reliable
than the E-OBS dataset. Thus, the UKMO dataset is used to validate the E-OBS dataset.
Initially the scaling behaviours of mean precipitation totals, the mean precipitaiton intensity
and precipitation extremes, namely 20 season return values over the UK are validated in
section 5.1, followed by the same indices over the central, the northeastern and the total
continental USA (excluding Alaska and Hawaii) in 5.2 and finally in section 5.3 over the
southeastern USA. The western USA have not been examined separately as the density of
rain gauges is sparsest in this part of the USA (Higgins et al., 2000). Furthermore, the
mountaineous region is very inhomogenous. Therefore, a very high density of rain gauges is
required to estimate reliable precipitation indices.

5.1 UK

Mean Precipitation Totals

Figure 5.1 shows the scaling behaviours of area-averages of mean precipitation totals over
the UK of the averaged T213 resolutions T2131×1 - T2137×7, the coarser model resolutions
T159 - T31 as well as of the observational datasets UKMO and E-OBS in DJF (a - b) and
JJA (c - d). The precipitation totals of the averaged T213 resolutions T2131×1 - T2137×7

show a decreasing scaling behaviour in DJF as well as in JJA, whereas those of the coarser
model resolutions T2131×1 - T31 stay almost constant. In JJA the mean return values of
T31 and especially of T42 are on a lower level than the other return values. This indicates
T42 and T31 being too coarse to represent precipitation totals correctly in the UK in JJA.
However, the UK is rather small, hence, T42 and T31 only have very few grid boxes over the

39
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Figure 5.1: Area-averaged mean precipitation totals of total precipitation over the UK in DJF (a) -
(b) and JJA (c) - (d) of ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106,
T63, T42 and T31 and of the observational datasets UKMO and E-OBS against spatial length scale
(a) and (c) and zoomed to the scaling behaviour of UKMO and E-OBS precipitation totals only (b)
and (d). The error bars are the 95 % confidence interval of the area average. Note the different scales
of the y-axes.

UK. The precipitation totals of the observations do not show a scaling behaviour. The only
scaling effect in the observational datasets is an increasing 95 % confidence interval with
enhanced spatial scale. The precipitation totals of the models overestimate the observed
precipitation totals approximately by a factor of three. In T213 precipitation totals are less
spatial coherent than in the observations. Hence, the qualitative scaling behaviour is not
well represented in T213. The spatial correlation length of precipitation totals is too short
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in T213.
The precipitation totals of the E-OBS dataset are in the 95 % confidence interval of those

of the UKMO dataset in DJF as well as in JJA. This indicates that the E-OBS dataset is
appropriate to validate precipitation totals of climate models, at least in the UK.

Mean Precipitation Intensity

In Figure 5.2 the scaling behaviours of area-averages of the mean precipitation intensity
in the UK of T2131×1 - T2137×7, T159 - T31 as well as of the observational datasets
UKMO and E-OBS in DJF (a - b) and JJA (c - d) are provided. In DJF as well as in
JJA the mean precipitation intensity of the averaged T213 resolutions T2131×1 - T2137×7

decreases. However, in DJF the mean precipitation intensity of the coarser model resolutions
T159 - T31 stays almost constant on the same level as T2131×1, whereas in JJA the mean
precipitation intensity of T213 - T106 shows only a slightly varying behaviour, followed by
T42 on a much lower level, and T31 below T213 - T106 as well but slightly higher than
T42. This indicates, as stated in chapter 4, T42 and T31 being too coarse. The mean
precipitation intensity is overestimated by the model with approximately a factor between
two and three.
In DJF the difference between the mean precipitation intensity of the E-OBS and the

UKMO dataset is low. Primarily, the mean precipitation intensity of the UKMO dataset
starts higher and decreases more steeply. Subsequently, the mean precipitation intensity of
the E-OBS dataset is in the 95 % confidence interval of the mean precipitation intensity
of the UKMO dataset. However, in JJA the mean precipitation intensity of the E-OBS
dataset is below the UKMO dataset. Additionally, their scaling behaviours look qualitatively
different. This indicates that the E-OBS dataset is not appropriate for the validation of
climate models in JJA.

Return Values

In Figure 5.3 the scaling behaviour of the 20 season return values of the UK, estimated
from the datasets obtained by the ECHAM5 model, is compared to the scaling behaviours
of the 20 season return values estimated from the UKMO as well as from the E-OBS
oberservational datasets for DJF (a - b) and JJA (c - d). It is obvious that the ECHAM5
model runs overestimate the 20 season return value, approximately by a factor between four
and five. Hence, in the UK the bias in the return values is higher than in the precipitation
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Figure 5.2: Area-averaged mean precipitation intensity of total precipitation over the UK in DJF (a)
and JJA (b) of ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42
and T31 and of the observational datasets UKMO and E-OBS against spatial length scale. The error
bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.

totals. However, without regard to the order of magnitude, the decreasing UKMO values
(Figure 5.3 b and d) show a similar qualitative behaviour to those of T2131×1 - T2137×7.
For the comparison of the scaling behaviours of T2131×1 - T2137×7 and T159 - T31, see
section 4.2.



5.1 UK 43

spatial length scale [°]

20
−

se
as

 D
JF

 r
et

ur
n 

va
lu

e 
[m

m
/d

]

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

50

100

150

●

●

T213
T159,T106,T63,T42,T31
E−OBS
UKMO

(a) DJF

spatial length scale [°]

20
−

se
as

 D
JF

 r
et

ur
n 

va
lu

e 
[m

m
/d

]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

25

30

35

40

45

50 E−OBS
UKMO

(b) DJF

spatial length scale [°]

20
−

se
as

 J
JA

 r
et

ur
n 

va
lu

e 
[m

m
/d

]

●

●

●

●

●

●

●

●

●

●

● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

50

100

150

200 ●

●

T213
T159,T106,T63,T42,T31
E−OBS
UKMO

(c) JJA

spatial length scale [°]

20
−

se
as

 J
JA

 r
et

ur
n 

va
lu

e 
[m

m
/d

]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

20

25

30

35

40

45

50 E−OBS
UKMO

(d) JJA

Figure 5.3: Area-averaged total precipitation 20 season return values over the UK in DJF (a) - (b)
and JJA (c) - (d) estimated from ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159,
T106, T63, T42 and T31 and estimated from the observational datasets UKMO and E-OBS against
spatial length scale (a) and (c) and zoomed to the scaling behaviour of UKMO and E-OBS return
values only (b) and (d). The error bars are the 95 % confidence interval of the area average. Note the
different scales of the y-axes.

Limitations of the E-OBS Dataset

The return values of the E-OBS dataset in DJF are in the corresponding 95 % confidence
interval of the UKMO return values. However, in JJA the return values of the E-OBS
dataset are considerably lower than those of the UKMO dataset. Furthermore, the scaling
behaviour of the E-OBS dataset in JJA is almost linear whereas the return values derived
from the UKMO dataset decrease primarily very fast and later slower, hence, the scaling
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behaviours of the UKMO and the E-OBS datasets are quantitatively as well as qualitatively
significantly different. In the UK, precipitation is frequent but not heavy (Manley, 1970, p.
115). December is the month with the highest number of rain days (Manley, 1970, p. 117),
which are mainly due to large scale warm and cold fronts (Manley, 1970, p. 119). Hence,
the spatial correlation length of precipitation events in DJF is relatively high. However, in
JJA, due to thunderstorms, heavy precipitation events of short time scales occur (Manley,
1970, p. 99), and thus, have a lower spatial correlation length. It can be clearly seen
in Figure 5.3 d that the spatial correlation lengths of heavy precipitation in JJA is much
smaller than the distance between rain gauges, included in the E-OBS dataset. Hence,
the E-OBS dataset is not appropriate for the validation of precipitation return values in
climate models whenever precipitation on small spatial scales is present. It should only
be used very carefully for the validation of climate models. Consequently, in this study
it is not further used to validate other European regions. In other European regions, the
density of rain gauges in the E-OBS dataset can be considerably different than in the
UK. Hence, the usability of the E-OBS dataset can not be extrapolated to other regions.
The result that the applicability of the E-OBS dataset to validate or to study extreme
precipitation is questionable, is consistent with Hofstra et al. (2009). Furthermore, Maraun
et al. (2011) found the location and the scale parameter of the GEV distribution as well as
the amplitude of the airflow relationships to be considerably underestimated. Additionally,
the spatial variability of the considered validation indices in the E-OBS dataset is often too
low, indicating the rather poor representation of local features (Maraun et al., 2011).
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5.2 USA

Mean Precipitation Totals

Mean precipitation totals of the central USA (a), the northeastern USA (b) and the total
USA (c) of the resolutions T2131×1 - T2137×7 and T159 - T31 of the model ECHAM5 in
comparison to the observations as well as only the observational precipitation totals (d)
are provided for DJF in Fig 5.4 and for JJA in Figure 5.5. In Figure 5.4 as well as in
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Figure 5.4: Area-averaged mean precipitation totals of total DJF precipitation over the central USA
(a), the northeastern USA (b) and the total USA (c) of ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 and of the observational dataset NOAA CPC
against spatial length scale and zoomed to the scaling behaviour of the observational return values
only (d). The error bars are the 95 % confidence interval of the area average. Note the different scales
of the y-axes.
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(c) Total USA
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Figure 5.5: Area-averaged mean precipitation totals of total JJA precipitation over the central USA
(a), the northeastern USA (b) and the total USA (c) of ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 and of the observational dataset NOAA CPC
against spatial length scale and zoomed to the scaling behaviour of the observational return values
only (d). The error bars are the 95 % confidence interval of the area average. Note the different scales
of the y-axes.

Figure 5.5 no scaling behaviour can be identified for the mean precipitation totals in the
model resolutions T2131×1 - T31. In the northeastern USA as well as in the total USA
the mean precipitation totals of T2131×1 - T2137×7 show a shallow decreasing behaviour,
however, in the central USA no scaling behaviour can be detected in T2131×1 - T2137×7

and additionally, the values of T159 - T31 are in the 95 % confidence interval of T2131×1

- T2137×7 in the central USA. In the northeastern USA as well as in the total USA the
interspace between T2131×1 - T2137×7 and T159 - T31 is only small. The observational
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precipitation totals show no important scaling behaviour. The only difference is the enhanced
95 % confidence interval with increasing spatial length scale. This confirms the results that
precipitation totals are not sensitive to spatial scale from section 5.1. Furthermore, the
shallow decreasing behaviour of precipitation totals of T2131×1 - T2137×7 in DJF as well
as in JJA indicates again precipitation totals in T213 being less spatial coherent than in the
observations. In the central USA in JJA (see Figure 5.5 a) the 95 % confidence intervals of
T42 and T31 are considerably higher than those of the other precipitation totals. In the
USA, mean precipitation totals in DJF are overestimated by the models approximately by a
factor between five and six, in JJA approximately by a factor between three and five. Thus,
the bias in precipitation totals of ECHAM5 is higher over the USA than over the UK.

Mean Precipitation Intensity

The mean precipitation intensity of the central USA (a), the northeastern USA (b) and the
total USA (c) of the resolutions T2131×1 - T2137×7 and T159 - T31 of the model ECHAM5
in comparison to the observations as well as only the observational mean precipitation
intensity (d) are given for DJF in Fig 5.6 and for JJA in Figure 5.7. The mean precipitation
intensity in DJF (see Figure 5.6) as well as in JJA (see Figure 5.7) is slightly decreasing with
spatial scale in the central USA, the northeastern USA and the total USA in the averaged
T213 resolutions T2131×1 - T2137×7 as well as in the coarser model resolutions T2131×1

- T31. However, the mean precipitation intensity of T159 - T31 stays slightly above the
mean precipitation intensity of T2131×1 - T2137×7 in the northeastern USA as well as in
the total USA. In the central USA in DJF the mean precipitation intensity of T159 - T31 is
in the 95 % confidence interval of the mean precipitation intensity of T2131×1 - T2137×7.
The mean precipitation intensity in the observations shows no scaling behaviour in DJF.
Hence, in the model ECHAM5 the mean precipitation intensity is dependent on spatial scale,
whereas it is not in the observations. However, in JJA the observations show a qualitatively
similar scaling behaviour as the model, namely decreasing. The mean precipitation intensity
in the model is biased approximately by a factor between three and four, thus, a higher bias
than the mean precipitation intensity in the UK and lower than the bias in their respective
precipitation totals.
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Figure 5.6: Area-averaged mean precipitation intensity of total DJF precipitation over the central
USA (a), the northeastern USA (b) and the total USA (c) of ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 and of the observational dataset NOAA CPC
against spatial length scale. The error bars are the 95 % confidence interval of the area average. Note
the different scales of the y-axes.

Return Values

The 20 season return values of the central USA (a), the northeastern USA (b) as well as the
total USA (c) of the model resolutions T2131×1 - T2137×7 and T159 - T31 in comparison
to 20 season return values of observational data as well as only the observational 20 season
return values (d) are given for DJF in Fig 5.8 and for JJA in Figure 5.9. The model bias of
20 season return values over the USA is similar to the UK, namely approximately a factor
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(b) Northeastern USA
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Figure 5.7: Area-averaged mean precipitation intensity of total JJA precipitation over the central
USA (a), the northeastern USA (b) and the total USA (c) of ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 and of the observational dataset NOAA CPC
against spatial length scale. The error bars are the 95 % confidence interval of the area average. Note
the different scales of the y-axes.

between four and five (see Figure 5.8 a - c and 5.9 a - c respectively). As observed in the
UK, the decreasing scaling behaviour of the observational data (Figure 5.8 d and 5.9 d
respectively) is qualitatively similar to T2131×1 - T2137×7. In JJA, the return values derived
from model output as well as those derived from observational data decrease steeper for all
shown regions than in DJF, indicating a lower spatial correlation length of precipitation
events in JJA. This is generally expected over the USA as thunderstorms supply summer
rainfall over almost the whole USA (Court, 1974, p. 226). In the central USA in winter
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Figure 5.8: Area-averaged total precipitation 20 season DJF return values over the central USA
(a), the northeastern USA (b) and the total USA (c) estimated from ECHAM5 model output in the
resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31, and estimated from the observational
dataset NOAA CPC against spatial length scale and zoomed to the scaling behaviour of the observational
return values only (d). The error bars are the 95 % confidence interval of the area average. Note the
different scales of the y-axes.

precipitation is mainly due to warm and cold fronts (Court, 1974, p. 213), however, in
summer the largest and most intense thunderstorms appear, tending to form in the lee of
the Rocky Mountains and propagate eastward (Court, 1974, p. 227).
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Figure 5.9: Area-averaged total precipitation 20 season JJA return values over the central USA
(a), the northeastern USA (b) and the total USA (c) estimated from ECHAM5 model output in the
resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31, and estimated from the observational
dataset NOAA CPC against spatial length scale and zoomed to the scaling behaviour of the observational
return values only (d). The error bars are the 95 % confidence interval of the area average. Note the
different scales of the y-axes.
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5.3 Southeastern USA

Mean Precipitation Totals

Figure 5.10 shows the scaling behaviour of area-averages of mean precipitation totals over
the southeastern USA of the averaged T213 resolutions T2131×1 - T2137×7, the coarser
model resolutions T159 - T31 as well as of the observational data in DJF (a - b) and
JJA (c - d). In the southeastern USA in DJF as well as in JJA the precipitation totals of
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(d) Observations JJA

Figure 5.10: Area-averaged mean precipitation totals of total precipitation over the southeastern
USA in DJF (a) and JJA (c) of ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159,
T106, T63, T42 and T31 and of the observational dataset NOAA CPC against spatial length scale and
zoomed to the scaling behaviour of the observational mean precipitation totals in DJF (b) and JJA (d)
only. The error bars are the 95 % confidence interval of the area average. Note the different scales of
the y-axes.
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T2131×1 - T2137×7 show a very shallow decreasing behaviour, however, the precipitation
totals of the observations only show an enhanced variability with increasing grid box size.
In DJF the precipitation totals of T2131×1 - T31 are only slightly varying, whereas in JJA
the precipitation totals of T42 and T31 are considerably higher than the others (see Figure
5.10 c), indicating T42 and T31 being too coarse to represent precipitation totals in JJA in
the southeastern USA. The precipitation totals in the southeastern USA are overestimated
by ECHAM5 approximately by a factor of six, thus, the bias in precipitation totals in the
southeastern USA is in the same range as in the other US regions.

Mean Precipitation Intensity

In Figure 5.11 the scaling behaviours of area-averages of the mean precipitation intensity
over the southeastern USA of the averaged T213 resolutions T2131×1 - T2137×7, the
coarser model resolutions T159 - T31 as well as of the observational data in DJF (a - b)
and JJA (c - d) are provided. The mean precipitation intensity in DJF (see Figure 5.11 a) as
well as in JJA (see Figure 5.11 c) is slightly decreasing with spatial scale in the southeastern
USA in the averaged T213 resolutions T2131×1 - T2137×7 as well as in the coarser model
resolutions T2131×1 - T31 of ECHAM5. The mean precipitation intensity of T159 - T31
stays slightly above the mean precipitation intensity of T2131×1 - T2137×7 in DJF. However,
in JJA T2131×1 - T31 stay constantly on the same level whereas T2131×1 - T2137×7 show
a decreasing scaling behaviour (see Figure 5.11 c). In DJF the mean precipitation intensity
in the observations stays constant (see Figure 5.11 b) whereas in JJA the latter decreases
shallow. Hence, the mean precipitation intensity in the southeastern USA is only slightly
dependent on spatial scale. The bias in the mean precipitation intensity in the southeastern
USA is higher than in other US regions, i.e. approximately a factor between five and eight.
The amount of mean precipitation intensity in the observations is similar in DJF and JJA
whereas the latter in ECHAM5 is considerably higher than in JJA, indicating that ECHAM5
is not able to simulate the seasonal cycle correctly in the southeastern USA.

Return Values

In Figure 5.12 the scaling behaviour of the 20 season return value of the decreasing T213
model resolutions T2131×1 - T2137×7 as well as of the model runs with coarser resolutions
T159 - T31, compared to 20 season return values of observational data of the southeastern
USA in DJF (a) as well as in JJA (c) are provided. In Figure 5.12 b and d only the
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(c) JJA
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Figure 5.11: Area-averaged mean precipitation intensity of total precipitation over the southeastern
USA in DJF (a) and JJA (c) of ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159,
T106, T63, T42 and T31 and of the observational dataset NOAA CPC against spatial length scale and
zoomed to the scaling behaviour of the observational mean precpitation intensity in DJF (b) and JJA
(d) only. The error bars are the 95 % confidence interval of the area average. Note the different scales
of the y-axes.

observational return values of DJF and JJA respectively are shown. In the return values
of the southeastern USA the bias is higher than in the other regions, namely the return
values estimated from ECHAM5 model output are approximately between six and seven
times higher than those derived from the observational dataset. Again, the averaged return
values of the model output T2131×1 - T2137×7 look qualitatively similar to those of the
observations in DJF as well as in JJA. For the comparison of the scaling behaviours of
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Figure 5.12: Area-averaged total precipitation 20 season return values over the southeastern USA in
DJF (a) and JJA (c) estimated from ECHAM5 model output in the resolutions T2131×1 - T2137×7,
T159, T106, T63, T42 and T31, and estimated from the observational dataset NOAA CPC against
spatial length scale and zoomed to the scaling behaviour of the observational return values of DJF
(b) and JJA (d) only. The error bars are the 95 % confidence interval of the area average. Note the
different scales of the y-axes.

T2131×1 - T2137×7 and T159 - T31, see section 4.2. In contrast to the UK as well as to
the other regions of the USA, the scaling behaviours of DJF and JJA are very similar for
return values estimated from the model output as well as for those estimated from the
observations. In JJA the scaling behaviour is only slightly steeper. However, in the model
output the return values are higher in DJF than in JJA, although in T106 the return value
in JJA is higher than in DJF. This is inconsistent with the observations. Thus, the model
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was found to have a bias in this region in the seasonal cycle, at least in the high resolutions.
Most of the eastern third of the USA has no dominant month or season of precipitation

(Court, 1974, p. 213). However, along the east coast, especially in the south, in the
hurricane season from June-November 10-15 % of total rainfall are due to tropical cyclones,
yielding very heavy precipitation events (Court, 1974, p. 225). Even though tropical
cyclones are large scale phenomena over the ocean, they cover small spatial scales over land
as they die quickly when they are cut off from their oceanic energy source (Emanuel, 2005, p.
57). These cyclones as well as summer thunderstorms explain the slightly steeper decreasing
return values in JJA. Furthermore, the tropical cyclones are a possible explanation for the
bias in the seasonal cycle. ECHAM5 might not be able to simulate the frequency and
intensity of tropical cyclones correctly.

5.4 Discussion

The observation that precipitation totals do not show a scaling behaviour whereas return
values do can be explained by the fact that return values are rare events of extremely
high precipitation that are mainly due to low scale heavy precipitation. These rare events
are only a very small part of total precipitation. Most precipitation is due to large scale
fronts. In the UK only about 3 % of total precipitation over the whole year can be ascribed
to thunderstorm rains (Manley, 1970, p. 119), however the amount of thunderstorms
in summer is notably higher than in the rest of the year (Manley, 1970, p. 99). In the
central USA 83 % of precipitation is due to frontal precipitation, however, these frontal
effects are less in summer (Court, 1974, p. 213). At the east coast of the USA 10-15 % of
total rainfall are due to tropical cyclones (Court, 1974, p. 225). If only the extremes are
analysed, mainly these heavy events influence the results. In this study, the return values
are estimated from seasonal maxima. It is likely that the highest seasonal event was on a
small spatial scale. In contrast, its contribution to the respective precipitation total is low.
Thus, for analyses of extremes higher resolutions are required than for the investigation of
precipitation totals. Additionally, extremes can not be projected from precipitation totals as
their scales are due to different physical processes. For example in the southeastern USA
the bias in precipitation totals is similar to the bias in the other regions, even though the
bias in the 20 season return values is notably higher than the bias in the other regions. The
mean precipitation intensity seems to be independent on spatial scale in DJF and slightly
dependent on spatial scale in JJA. This confirms the argumentation that in DJF the main
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part of precipitation is due to large scale fronts, whereas in summer a considerable part
of precipitation is due to small scale mechanisms, also influencing the mean precipitation
intensity.

Various studies show that extreme precipitation is underestimated in AGCMs (see section
1.2) even when mean precipitation is realistically captured. In contrast, the model setup of
ECHAM5, used in this study, overestimates extreme precipitation. However, in the central,
the northeastern and the total USA precipitation totals are overestimated by a higher
factor than precipitation extremes. In the southeastern USA the bias in precipitation totals
and return values is similar. In the UK the bias of return values is slightly higher than in
precipitation totals. Certainly, as only the UK and the USA were compared to observational
datasets, the bias found in this regions cannot be extrapolated to other regions.
Hagemann et al. (2006) found the sensitivity to horizontal resolution of annual mean

precipitation over land in ECHAM5 to be relatively low. This is consistent with the results
of this study. In this study only in JJA even precipitation totals seem to be badly captured
by T42 and T31 however. Hagemann et al. (2006) found precipitation in DJF to be
overestimated along steep mountain slopes (Andes, Himalaya, Rocky Mountains), over
Europe and in a region stretching from the southwestern USA to the west coast of South
America. In JJA precipitation is too high at high northern latitudes (Canada and Siberia).
Hence, Hagemann et al. (2006) found as well a tendency of ECHAM5 to overestimate
precipitation in certain regions. However, the results of their study can not be directly
compared to this study as their experiment covers a different time period (Hagemann et al.,
2006). The model in their experiment is forced with observed sea surface temperature and
sea ice concentrations like in this study. However, due to the different time period, the
boundary forcing is slightly different. Hagemann et al. (2006) found precipitation being
underestimated in some regions such as Australia and the rainforest climate in central
Africa during the dry season. In this study only extremely heavy precipitation was analysed.
Therefore, particularly dry regions were not studied.

Wehner et al. (2010) found the resolution 0.5°×0.675° (similar to T213) of the finite
volume dynamics version of the Community Atmospheric Model (fvCAM2) being a break-
through resolution for the representation of extreme precipitation. On coarser resolutions
the resolution itself limits extreme events rather than any model parameterisation effect
(Wehner et al., 2010). 0.5°×0.675° is found to still limit precipitation intensity, particularly
for tropical cyclones (Wehner et al., 2010). However, their study only compares spatial
patterns of the USA but no area averages or other regions (Wehner et al., 2010). In the
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present study, it appears that tropical cyclones are not simulated correctly, especially in
the high resolutions T213 and T159. For tropical cyclones T106 was identified to be the
qualitatively most realistic resolution. However, in the other regions of the USA as well as
the UK T63 was identified to be the minimal required model resolution. All resolutions
analysed here are limited by resolution itself, namely the averaging effect. In the UK the
spatial coherence of precipitation in T213 appears to be too low.

Roeckner et al. (2004) found higher resolutions of ECHAM5 not automatically reducing
the systematic errors. However, there are indications that some individual processes are
better captured at higher horizontal resolutions (Roeckner et al., 2004). This is consistent
with this study. Bengtsson et al. (1995) found high resolution in ECHAM3 to be particularly
important in the tropics. For example tropical cyclones are hardly resolved at T42 resolution
but well captured in a T106 model simulation with respect to structure and frequency of
occurence (Bengtsson et al., 1995). In this study, T106 appears to be the most appropriate
resolution to represent tropical cyclones, however, enhanced resolutions than T106 yield
worse results in the model setup of ECHAM5 analysed in this study.



6 Conclusion and Outlook

In this diploma thesis the impact of spatial resolution on the representation of present day
extreme precipitation in terms of area-averages of return values in the AGCM ECHAM5
was investigated. The highest resolution T213 averaged to coarser grid sizes (T2131×1 -
T2137×7) was compared to the coarser resolutions (T159 - T31) to analyse the scaling
behaviour of return values as well as to distinguish between the averaging effect and
the physical representation effect. Furthermore, the minimal required model resolution
of ECHAM5 to represent extremes was sought after. The representation of extreme
precipitation in terms of return values was found to be strongly dependent on model
resolution. This result is consistent with Wehner et al. (2010) and Chen and Knutson
(2008). No simple general relationship between area averages of the 20 season return value
and the spatial length scale could be detected. Different qualitative scaling behaviours
were found, varying dependent on region and season. Wehner (2004) already found the
representation of return values being strongly dependent on the seasonal cycle. However,
the regional differences were not studied before. The only obvious common feature of all
regions and seasons is that the 20 season return value decreases as expected with increasing
grid box size. The scaling behaviour of the area-averages shows that on lower resolutions
than T63 the scaling behaviour of 20 season return values changes qualitatively. Thus,
T63 is is the model resolution that is minimally required to represent extremes, although
higher model resolutions than T63 certainly improve the result. This is confirmed by the
patterns of return values over Europe. The varying scaling behaviours indicate that results
from different resolutions are not directly comparable. If extreme precipitation of different
resolutions is compared, it should only be done with respect to spatial scale as suggested by
Chen and Knutson (2008). Additionally, the respective region and season should be taken
into account. When comparing annual return values, differences in the return values could
also be due to the extreme event being located in a different season and therefore due to
a different process. The performance of ECHAM5 in simulating extreme precipitation is
dependent on season and region. A possible explanation is that model performance could

59
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depend on the responsible physical process and its associated spatial scale, and different
processes are important depending on region.

Furthermore, area-averages of mean precipitation totals, the mean precipitation intensity
as well as of return values, derived from the ECHAM5 model output of the resolutions
T2131×1 - T2137×7 as well as T159 - T31 were compared to area-averages of mean
precipitation totals, the mean precipitation intensity and of return values estimated from
observational datasets of the UK and the USA in order to examine the performance of
ECHAM5 and to identify whether a general relationship exists that would allow to rescale
heavy precipitation to higher resolutions. The observational indices were compared to the
indices of ECHAM5 with respect to spatial scale. Precipitation return values, precipitation
totals as well as the mean precipitation intensity of the model ECHAM5 were found to have
a bias over the UK as well as over the USA. This result is in accordance with Hagemann
et al. (2006), who found ECHAM5 to overestimate mean precipitation. Many GCMs were
found in previous studies (for example Chen and Knutson (2008), Sun et al. (2006), Min
et al. (2011), Allan and Soden (2008), Wehner et al. (2010)) to underestimate extreme
precipitation. In contrast, extreme precipitation was found to be overestimated by ECHAM5
in this study. The ratio between the bias in precipitation totals and the bias in return values
is regionally varying. In the UK the bias in the area-averaged return values exceeds the
bias in the area-averaged total precipitation whereas in the southeastern USA the bias in
return values is similar to the bias in precipitation totals. In the remaining USA regions
the bias in precipitation totals exceeds the bias in return values. This shows that the
performance of ECHAM5 in simulating precipitation characteristics is regionally varying.
Regional differences in the performance of ECHAM5 to simulate the hydrological cycle
were also found by Hagemann et al. (2006). Wehner et al. (2010) found 0.5°×0.675°
(similar to T213) of the fvCAM2 to be a breakthrough resolution for the representation of
patterns of return values over the USA by validating the latter with observational patterns
of return values. In this experiment T63 was found to be the minimally required resolution
by comparing qualitative scaling behaviours of area-averages. The model ECHAM5 was
found to be generally able to reproduce the qualitative scaling behaviour of return values.
However, the highest resolutions T213 and T159 were found to simulate the seasonal cycle
in the southeastern USA incorrectly. This might be due to a lack in the ability of ECHAM5
to simulate the tropical storms correctly in high resolutions. The fact that higher resolutions
not automatically reduce systematic errors in ECHAM5 was also found by Roeckner et al.
(2004). Kharin et al. (2007) stated that the very large intermodel disagreements in the
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tropics suggest that some physical processes associated with extreme precipitation are not
well represented in models, which is confirmed by this study. Precipitation totals were found
to be independent on spatial scale. This is consistent with Hagemann et al. (2006). A
simple general law to rescale heavy precipitation events to higher resolutions could not be
identified. This is very likely due to regionally and seasonally different underlying processes.
Finally, the E-OBS dataset of Haylock et al. (2008), which was designed to evaluate

regional climate models, was also validated with the UKMO dataset. The E-OBS dataset
was found to be inappropriate for the validation of extreme precipitation in climate models
over the UK in JJA. However, in DJF the E-OBS dataset shows realistic return values
compared to the UKMO dataset. Mean precipitation totals in the E-OBS and the UKMO
dataset are not significantly different. The applicability of the E-OBS precipitation dataset
was already qestioned previously by Hofstra et al. (2009) and Maraun et al. (2011). In the
E-OBS dataset the representation of return values is dependent on the spatial correlation
length of the responsible events. This is due to not enough rain gauges being included in
the E-OBS dataset to capture small scaled heavy precipitation extremes.

Outlook

In order to gain more information on the performance of ECHAM5 in simulating precipitation
extremes, more regions, especially the tropics should be validated with observational datasets.
For this purpose, gridded datasets with a high density of rain gauges are required. The
availability of such datasets will limit furhter studies. To increase available possibilities for
the validation of model results, an analysis would be useful, which tackles the question
whether area-averaged precipitation indices derived from station data could be used to
validate model data in regions, where no gridded dataset is provided. For this purpose, the
minimum rain gauge density in this area-average has to be identified. Furthermore, the
minimal required density of rain gauges in gridded datasets should be investigated.
Since no simple relationship could be identified to describe the scaling behaviour of

extreme precipitation, it can be examined whether more sophisticated functions are able to
describe the scaling behaviour of extreme precipitation. Such a function would yield a cheap
and straightforward downscaling method that could be applied in cases where a better
downscaling approach is not available. However, the complicated relationships influencing
extreme precipitation will render it difficult, if not impossible to find such a function.
This function must be dependent on at least region, season and spatial scale. Further
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understanding has to be gained on factors and processes influencing the representation of
extreme precipitation such as different time scales. In this study, only the dependence of
extreme precipitation on spatial scales is analysed. Extreme precipitation is also dependent
on time scales. On the one hand, very extreme events often happen on small time scales,
on the other hand severe flooding can be due to rainfall that is not extreme in one event
whereas it is extreme by covering a longer time period. To improve the understanding
of the dependence of extreme weather events on spatial scale, more weather parameters
should be studied such as extreme wind speeds.
To gain a better understanding of regional and seasonal dependence of the spatial

scaling behaviour, the spatial pattern of the scaling behaviour of extreme precipitation
will be analysed seasonwise. A seasonal shift in the patterns is expected to yield further
understanding of responsible processes. In preparation for this analysis a scan of the
performance of this method is given in Figure 6.1.
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(a) DJF

(b) JJA

Figure 6.1: Scan of the performance of the method to study seasonal shifts in spatial patterns of the
spatial scaling behaviour of area-averages of return values for DJF (a) and JJA (b). For this purpose,
a linear regression of the T2131×1 - T2137×7 as well as of the T213 - T31 curve in each studied
region was carried out. The slopes of both regressions were compared. If the slope of T213 - T31
is equal to the slope of T2131×1 - T2137×7 ± 20 % they are assumed to be equal (green). If the
slope of T213 - T31 exceeds the slope of T2131×1 - T2137×7 in more than 20 %, it was considered
to be higher, i.e. flatter (red). If the slope of T213 - T31 is more than 20 % lower than the slope
of T2131×1 - T2137×7, it is considered to be lower, i.e. steeper (blue). This method will be further
developed such that more increments and smaller regions will be used.





Acknowledgements

Place of work for this diploma thesis was the Helmholtz Centre for Ocean Research
(GEOMAR) in Kiel. I would like to thank Prof. Dr. Mojib Latif, Head of Department of
Marine Meteorology, for giving me the opportunity to work on this very intersting topic
and for institutional support as well as fruitful discussions. I thank Prof. Dr. Douglas
Maraun, Dr. Vladimir Semenov and Prof. Dr. Otto Richter for supervising my thesis and
for valuable feedback and helpful suggestions and discussions. I wish to thank Dr. Vladimir
Semenov, Wan-Ling Tseng and Prof. Dr. Noel Keenlyside for running ECHAM5 in different
resolutions and support in post processing of model output.
Dr. Peter Stott from the UK Met Office is acknowledged for providing the high res-

olution UKMO precipitation dataset of the UK. CPC US Unified Precipitation data are
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site
at http://www.esrl.noaa.gov/psd/. I acknowledge the E-OBS dataset from the EU-FP6
project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the
ECA&D project (http://eca.knmi.nl). Warm regards and thanks to colleagues of the Dept.
of Marine Meteorology for fruitful discussions and the very nice working climate. A special
thanks here to Ana and Yann for the nice office atmosphere. Thanks to Leo, the online
dictionary. I thank my parents for supporting and funding me during my whole studies.

65





Bibliography

Alexander, L. V.; Zhang, X.; Peterson, T. C.; Caesar, J.; Gleason, B.; Klein Tank, a. M. G.;
Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; Tagipour, A.; Rupa Kumar, K.;
Revadekar, J.; Griffiths, G.; Vincent, L.; Stephenson, D. B.; Burn, J.; Aguilar, E.; Brunet,
M.; Taylor, M.; New, M.; Zhai, P.; Rusticucci, M. and Vazquez-Aguirre, J. L. 2006.
Global observed changes in daily climate extremes of temperature and precipitation.
Journal of Geophysical Research, 111(D05109).

Allan, Richard P and Soden, Brian J. 2008. Atmospheric warming and the amplification of
precipitation extremes. Science (New York, N.Y.), 321(5895), 1481–4.

Allen, Myles R and Ingram, William J. 2002. Constraints on future changes in climate and
the hydrologic cycle. Nature, 419(6903), 224–32.

Bengtsson, L; Botzet, M and Esch, M. 1995. Hurricane-type vortices in a general circulation
model. Tellus, 47 A.(2), 175–196.

Chen, Cheng-Ta and Knutson, Thomas. 2008. On the verification and comparison of
extreme rainfall indices from climate models. Journal of Climate, 21(7), 1605–1621.

Coles, Stuart. 2004. An introduction to statistical modeling of extreme values. London:
Springer-Verlag.

Court, A. 1974. The Climate of the Conterminous United States. Chap. 3, pages 193–343
In: Landsberg, H.E:; Bryson, R.A. and Hare, F.K. (Editor), World Survey of Climatology
Volume 11. Amsterdam, London, New York: Elsevier.

Duffy, P. B.; Govindasamy, B.; Iorio, J. P.; Milovich, J.; Sperber, K. R.; Taylor, K. E.;
Wehner, M. F. and Thompson, S. L. 2003. High-resolution simulations of global climate,
part 1: present climate. Climate Dynamics, 21(5-6), 371–390.

67



68 Bibliography

Emanuel, K. 2005. Divine Wind: the history and science of hurricanes. Oxford University
Press.

Emori, S. and Brown, Simon J. 2005. Dynamic and thermodynamic changes in mean and
extreme precipitation under changed climate. Geophysical Research Letters, 32(L17706).

Furrer, Reinhard; Nychka, Douglas and Sain, Stephen. 2010. fields: Tools for spatial data.
R package version 6.3.

Greenwood, J Arthur; Landwehr, J M; Matalas, N C and Wallis, J R. 1979. Probability
Weighted Moments: Definition and Relation to Parameters of Several Distributions
Expressable in Inverse Form. Water Resources Research, 15(5), 1049–1054.

Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C. and Razuvaev,
V.N. 2005. Trends in intense precipitation in the climate record. Journal of Climate,
18(9), 1326–1350.

Grumbine, et al. Sea ice cover data. NOAA. http://polar.ncep.noaa.gov/seaice/.

Hack, J J. 1992. Climate system simulation: basic numerical & computational concepts.
Chap. 9, pages 283–317 In: Trenberth, K (Editor), Climate system modeling. Cambridge
University Press.

Hagemann, S; Arpe, K and Roeckner, E. 2006. Evaluation of the hydrological cycle in the
ECHAM5 model. Journal of climate, 19(16), 3810–3827.

Haylock, M. R.; Hofstra, N.; Klein Tank, a. M. G.; Klok, E. J.; Jones, P. D. and New, M.
2008. A European daily high-resolution gridded data set of surface temperature and
precipitation for 1950–2006. Journal of Geophysical Research, 113(D20119), 1–12.

Henderson-Sellers, A and McGuffie, K. 1987. A climate modelling primer. John Wiley &
Sons Ltd.

Higgins, RW; Shi, W; Yarosh, E and Joyce, R. 2000. Improved US Precipitation Quality
Control System and Analysis. NCEP/Climate Prediction Center ATLAS No. 7, National
Centers for Environmental Prediction, Climate Prediction Center, Camp Springs, Maryland.
Available at http://www.cpc.ncep.noaa.gov/research.



Bibliography 69

Hofstra, Nynke; Haylock, Malcolm; New, Mark and Jones, Phil D. 2009. Testing E-OBS
European high-resolution gridded data set of daily precipitation and surface temperature.
Journal of Geophysical Research, 114(D21101).

Hosking, JRM; Wallis, J.R. and Wood, EF. 1985. Estimation of the generalized extreme-
value distribution by the method of probability-weighted moments. Technometrics,
27(3), 251–261.

Iorio, J.P.; Duffy, P.B.; Govindasamy, B.; Thompson, S.L.; Khairoutdinov, M. and Randall,
D. 2004. Effects of model resolution and subgrid-scale physics on the simulation of
precipitation in the continental United States. Climate Dynamics, 23(3-4), 243–258.

Kharin, Viatcheslav V.; Zwiers, Francis W.; Zhang, Xuebin and Hegerl, Gabriele C. 2007.
Changes in temperature and precipitation extremes in the IPCC ensemble of global
coupled model simulations. Journal of Climate, 20(8), 1419–1444.

Kharin, VV and Zwiers, FW. 2005. Intercomparison of near-surface temperature and
precipitation extremes in AMIP-2 simulations, reanalyses, and observations. Journal of
Climate, 18(24), 5201–5223.

Kiehl, J T. 1992. Atmospheric general circulation modeling. Chap. 10, pages 319–368 In:
Trenberth, K E (Editor), Climate system modeling. Cambridge University Press.

Landwehr, J.M.; Matalas, NC and Wallis, JR. 1979. Probability weighted moments compared
with some traditional techniques in estimating Gumbel parameters and quantiles. Water
Resources Research, 15(5), 1055–1064.

Latif, M. 2009. Klimawandel und Klimadynamik. Stuttgart: Eugen Ulmer.

Le Treut, H.; Cubasch, U and Allen, M. 2007. Historical Overview of Climate Change
Science. Chap. 1, pages 93–128 In: Solomon, S.; Qin, D; Manning, M; Marquis, M;
Averyt, K B; Tignor, M; Miller, H L and Chen, Z (Editor), Climate Change 2007: The
Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and
New York, NY, USA: Cambridge University Press.

Lorenz, E.N. 1970. Climatic change as a mathematical problem. Journal of Applied
Meteorology, 9(3), 325–329.



70 Bibliography

Manley, G. 1970. The Climate of the British Isles. pages 81–133 In: Landsberg, H.E.;
Bryson, R.A.; Flohn, H.; Gentilli, J.; Arakawa, H; Griffiths, J.F.; Lydolph, P.E.; Orvig, S.;
Rex, D.F.; Schwerdtfeger, W.; Thomsen, H. and Wallen, C. C. (Editor), World Survey
of Climatology Volume 5. Amsterdam, London, New York: Elsevier.

Maraun, Douglas; Osborn, Timothy J. and Rust, Henning W. 2011. The influence of
synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and
E-OBS data validation. Climate Dynamics, 36(1-2), 261–275.

Meehl, Gerald A; Arblaster, J M and Tebaldi, C. 2005. Understanding future patterns of
increased precipitation intensity in climate model simulations. Geophysical Research
Letters, 32(18).

Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis W and Hegerl, Gabriele C. 2011. Human
contribution to more-intense precipitation extremes. Nature, 470(7334), 378–81.

Osborn, TJ and Hulme, M. 1997. Development of a relationship between station and
grid-box rainday frequencies for climate model evaluation. Journal of Climate, 10(8),
1885–1908.

Perry, Matthew; Hollis, Dan and Elms, Margaret. 2009. The generation of daily gridded
datasets of temperature and rainfall for the UK. Climate Memorandum, No 24.

R Development Core Team. 2011. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.;
Pitman, A.; Shukla, J.; Srinivasan, J. and Others. 2007. Climate models and their
evaluation. Chap. 8, pages 589–662 In: Solomon, S.; Qin, D.; Manning, M.; Chen, Z.;
Marquis, M.; Averyt, K.B.; Tignor, M. and Miller, H.L. (Editor), Climate Change 2007:
The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, vol. 323. Cambridge, United
Kingdom and New York, NY, USA: Cambridge University Press Cambridge, UK and New
York.

Reynolds, Richard W.; Smith, Thomas M.; Liu, Chunying; Chelton, Dudley B.; Casey,
Kenneth S. and Schlax, Michael G. 2007. Daily High-Resolution-Blended Analyses for
Sea Surface Temperature. Journal of Climate, 20(22), 5473–5496.



Bibliography 71

Roeckner, E; Bäuml, G; Bonaventura, L; Brokopf, R; Esch, M; Giorgetta, M; Hagemann,
S; Kirchner, I; Kornblueh, L; Manzini, E; Rhodin, A; Schlese, U; Schulzweida, U and
Tompkins, A. 2003. The atmospheric general circulation model ECHAM5. Part I: Model
description. In: Rep. 349, vol. No. 349. Hamburg, Germany: Max-Planck-Institute for
Meteorology.

Roeckner, E; Brokopf, R; Esch, M; Giorgetta, M; Hagemann, S; Kornblueh, L; Manzini,
E; Schlese, U and Schulzweida, U. 2004. The atmospheric general circulation model
ECHAM5 - Part II : Sensitivity of simulated climate to horizontal and vertical resolution.
In: Rep. 354, vol. No. 354. Hamburg, Germany: Max-Planck-Institute for Meteorology.

Russo, Simone and Sterl, Andreas. 2012. Global changes in seasonal means and extremes
of precipitation from daily climate model data. Journal of Geophysical Research,
117(November 2011).

Schlünzen, K. Heinke; Grawe, David; Bohnenstengel, Sylvia I.; Schlüter, Ingo and Koppmann,
Ralf. 2011. Joint modelling of obstacle induced and mesoscale changes—Current limits
and challenges. Journal of Wind Engineering and Industrial Aerodynamics, 99(4),
217–225.

Semenov, V and Bengtsson, L. 2002. Secular trends in daily precipitation characteristics:
greenhouse gas simulation with a coupled AOGCM. Climate Dynamics, 19(2), 123–140.

Simmons, AJ; Burridge, DM; Jarraud, M; Girard, C and Wergen, W. 1989. The ECMWF
medium-range prediction models development of the numerical formulations and the
impact of increased resolution. Meteorology and Atmospheric Physics, 40(1), 28–60.

Sun, Y.; Solomon, S.; Dai, A. and Portmann, R.W. 2006. How often does it rain? Journal
of Climate, 19(6), 916–934.

Trenberth, K.E. 1999. Conceptual framework for changes of extremes of the hydrological
cycle with climate change. Climatic Change, 42(1), 327–339.

Wehner, M.F. 2004. Predicted twenty-first-century changes in seasonal extreme precipitation
events in the parallel climate model. Journal of climate, 17(21), 4281–4290.

Wehner, Michael F.; Smith, Richard L.; Bala, G. and Duffy, Phillip. 2010. The effect of
horizontal resolution on simulation of very extreme US precipitation events in a global
atmosphere model. Climate Dynamics, 34(2-3), 241–247.



72 Bibliography

Wuertz, Diethelm; many others and see the SOURCE file. 2009. fExtremes: Rmetrics -
Extreme Financial Market Data. R package version 2100.77.



A Tables of Resolutions

Table A.1: Resolutions used in this study of the model ECHAM5.

Denotation Gaussian grid box size [°×°]

ECHAM5
T2131×1 0.56×0.56
T2132×2 1.125×1.125
T2133×3 1.69×1.69
T2134×4 2.25×2.25
T2135×5 2.81×2.81
T2136×6 3.38×3.38
T2137×7 3.94×3.94
T159 0.75×0.75
T106 1.13×1.13
T63 1.88×1.88
T42 2.81×2.81
T31 3.75×3.75

I



II A Tables of Resolutions

Table A.2: Resolutions used in this study of the UKMO observational dataset.

Denotation Gaussian grid box size [°×°]

UKMO
UKMO1×1 0.045×0.078
UKMO2×2 0.090×0.156
UKMO3×3 0.135×0.234
UKMO4×4 0.180×0.312
UKMO5×5 0.225×0.390
UKMO7×7 0.315×0.546
UKMO10×10 0.450×0.780
UKMO15×15 0.675×1.17
UKMO20×20 0.900×1.56
UKMO25×25 1.13×1.95
UKMO30×30 1.35×2.34
UKMO35×35 1.58×2.73
UKMO40×40 1.80×3.12
UKMO45×45 2.03×3.51

Table A.3: Resolutions used in this study of the E-OBS observational dataset.

Denotation Gaussian grid box size [°×°]

E-OBS
E-OBS1×1 0.25×0.25
E-OBS2×2 0.5×0.5
E-OBS3×3 0.75×0.75
E-OBS4×4 1×1
E-OBS5×5 1.25×1.25
E-OBS6×6 1.5×1.5
E-OBS7×7 1.75×1.75
E-OBS8×8 2.×2
E-OBS9×9 2.25×2.25
E-OBS10×10 2.5×2.5
E-OBS11×11 2.75×2.75



III

Table A.4: Resolutions used in this study of the CPC US Unified Precipitation observational dataset.

Denotation Gaussian grid box size [°×°]

USA
USA1×1 0.25×0.25
USA2×2 0.5×0.5
USA3×3 0.75×0.75
USA4×4 1×1
USA5×5 1.25×1.25
USA6×6 1.5×1.5
USA7×7 1.75×1.75
USA8×8 2.×2
USA9×9 2.25×2.25
USA10×10 2.5×2.5
USA11×11 2.75×2.75
USA12×12 3×3
USA13×13 3.25×3.25
USA14×14 3.5×3.5
USA15×15 3.75×3.75





B Area Averaged Return Values

In appendix B the Figures referred to in section 4.2 are given.
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(a) Canada-Alaska-Greenland DJF
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(b) Western Siberia DJF
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(c) Eastern Asia DJF
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(d) Eastern Australia-New Zealand JJA

Figure B.1: Area-averaged total precipitation 20 season return values over Canada-Alaska-Greenland
in DJF (a), Western Siberia in DJF (b), Eastern Asia in DJF (c) and Eastern Australia-New Zealand in
JJA (d) in JJA estimated from ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159,
T106, T63, T42 and T31 against spatial length scale. The error bars are the 95 % confidence interval
of the area average. Note the different scales of the y-axes. The scaling behaviours are similar to
northern Europe and the northeastern USA in DJF shown in section 4.2.
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(a) Indonesia DJF
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(b) Central America DJF

Figure B.2: Area-averaged total precipitation 20 season return values over Indonesia in DJF (a)
and Central America in DJF (b) estimated from ECHAM5 model output in the resolutions T2131×1 -
T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are the 95 %
confidence interval of the area average. Note the different scales of the y-axes. The scaling behaviours
are similar to eastern Australia-New Zealand in DJF and the southeastern USA in DJF shown in section
4.2.
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(a) Southwestern South America JJA
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(b) Southern Europe JJA
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(c) Indonesia JJA

Figure B.3: Area-averaged total precipitation 20 season return values over southwestern South
America in JJA (a), southern Europe in JJA (b) and Indonesia in JJA estimated from ECHAM5 model
output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length
scale. The error bars are the 95 % confidence interval of the area average. Note the different scales
of the y-axes. The scaling behaviour is similar to eastern Australia-New Zealand in DJF and the
southeastern USA in DJF shown in section 4.2.
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(a) Western USA DJF
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(b) Central USA DJF

Figure B.4: Area-averaged total precipitation 20 season return values over the western USA in DJF
(a) and the central USA in DJF (b) estimated from ECHAM5 model output in the resolutions T2131×1
- T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are the 95 %
confidence interval of the area average. Note the different scales of the y-axes. The scaling behaviours
are similar to eastern Australia-New Zealand in DJF and the southeastern USA in DJF shown in section
4.2.
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(a) Central Africa DJF
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(b) Southern Africa DJF
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(c) Peru-Bolivia-Ecuador DJF
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(d) Northern South America-southern Cen-
tral America DJF
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(e) Southeastern South America DJF

Figure B.5: Area-averaged total precipitation 20 season return values over central Africa in DJF
(a), southern Africa in DJF (b), Peru-Bolivia-Ecuador in DJF (c), northern South America-southern
Central America in DJF (d) and southeastern South America in DJF (e) estimated from ECHAM5
model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial
length scale. The error bars are the 95 % confidence interval of the area average. Note the different
scales of the y-axes. The scaling behaviours are similar to the Amazon region in DJF and southwestern
South America in DJF shown in section 4.2.
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(a) Central Africa JJA
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(b) Northern Peru-Ecuador-Colombia JJA
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(c) Northeastern South America JJA
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(d) Southeastern South America JJA
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(e) India JJA

Figure B.6: Area-averaged total precipitation 20 season return values over central Africa in JJA (a),
northern Peru-Ecuador-Colombia in JJA (b), northeastern South America in JJA (c), southeastern
South America in JJA (d) and India in JJA (e) estimated from ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are
the 95 % confidence interval of the area average. Note the different scales of the y-axes. The scaling
behaviours are similar to the Amazon region in DJF and southwestern South America in DJF shown in
section 4.2.
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(a) Western Siberia JJA
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(b) Russia JJA

Figure B.7: Area-averaged total precipitation 20 season return values over Western Siberia in JJA (a)
and Russia in JJA (b) estimated from ECHAM5 model output in the resolutions T2131×1 - T2137×7,
T159, T106, T63, T42 and T31 against spatial length scale. The error bars are the 95 % confidence
interval of the area average. Note the different scales of the y-axes. The scaling behaviour is similar to
the Amazon region in DJF and southwestern South America in DJF shown in section 4.2.
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(a) Central USA JJA
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(b) Southeastern USA JJA

Figure B.8: Area-averaged total precipitation 20 season return values over the central USA in JJA
(a) and the southeastern USA in JJA (b) estimated from ECHAM5 model output in the resolutions
T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are
the 95 % confidence interval of the area average. Note the different scales of the y-axes. The scaling
behaviour is similar to the Amazon region in DJF and southwestern South America in DJF shown in
section 4.2.
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(a) Eastern Asia JJA
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Figure B.9: Area-averaged total precipitation 20 season return values over eastern Asia in JJA (a)
and Central America in JJA (b) estimated from ECHAM5 model output in the resolutions T2131×1 -
T2137×7, T159, T106, T63, T42 and T31 against spatial length scale. The error bars are the 95 %
confidence interval of the area average. Note the different scales of the y-axes. The scaling behaviour
is similar to northern Europe in JJA and the northeastern USA in JJA shown in section 4.2.
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(a) Northern Europe DJF large scale
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(b) Northern Europe DJF convective
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(c) Northeastern USA DJF large scale
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(d) Northeastern USA DJF convective

Figure B.10: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over northern Europe (a, b) and the northeastern USA (c, d) in DJF estimated from ECHAM5
model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial
length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The
error bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Canada-Alaska-Greenland DJF large
scale
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(b) Canada-Alaska-Greenland DJF con-
vective
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(c) Western Siberia DJF large scale
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(d) Western Siberia DJF convective

Figure B.11: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over Canada-Alaska-Greenland (a, b) and the Western Siberia (c, d) in DJF estimated from
ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against
spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and
T31. The error bars are the 95 % confidence interval of the area average. Note the different scales of
the y-axes.
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(a) Eastern Asia DJF large scale
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(b) Eastern Asia DJF convective
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(c) Eastern Australia-New Zealand JJA
large scale
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(d) Eastern Australia-New Zealand JJA
convective

Figure B.12: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over eastern Asia in DJF (a, b) and the eastern Australia-New Zealand in JJA (c, d) estimated
from ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31
against spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42
and T31. The error bars are the 95 % confidence interval of the area average. Note the different scales
of the y-axes.
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(a) Eastern Australia-New Zealand DJF
large scale
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(b) Eastern Australia-New Zealand DJF
convective
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(c) Southeastern USA DJF large scale
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(d) Southeastern USA DJF convective

Figure B.13: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over eastern Australia-New Zealand (a, b) and the southeastern USA (c, d) in DJF estimated
from ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31
against spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42
and T31. The error bars are the 95 % confidence interval of the area average. Note the different scales
of the y-axes.
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(a) Indonesia DJF large scale
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(c) Central America DJF large scale
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(d) Central America DJF convective

Figure B.14: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over Indonesia (a, b) and Central America (c, d) in DJF estimated from ECHAM5 model output
in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale of
ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The error bars are
the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Indonesia JJA large scale
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(b) Indonesia JJA convective
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(c) Southwestern South America JJA large
scale
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(d) Southwestern South America JJA con-
vective

Figure B.15: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over Indonesia (a, b) and the southwestern South America (c, d) in JJA estimated from ECHAM5
model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial
length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The
error bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Southern Europe JJA large scale
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(b) Southern Europe JJA convective
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(c) Western USA DJF large scale
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(d) Western USA DJF convective
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(e) Central USA DJF large scale
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(f) Central USA DJF convective

Figure B.16: Area-averaged large scale (a, c, e) and convective precipitation (b, d, f) 20 season
return values over southern Europe in JJA (a, b), the western USA in DJF (c, d) and the central
USA in DJF (e, f) estimated from ECHAM5 model output in the resolutions T2131×1 - T2137×7,
T159, T106, T63, T42 and T31 against spatial length scale of ECHAM5 in the resolutions T2131×1 -
T2137×7, T159, T106, T63, T42 and T31. The error bars are the 95 % confidence interval of the area
average. Note the different scales of the y-axes.
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(a) Amazon region DJF large scale
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(b) Amazon region DJF convective
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(c) Southwestern South America DJF large
scale
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(d) Southwestern South America DJF con-
vective

Figure B.17: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over the Amazon region (a, b) and southwestern South America (c, d) in DJF estimated from
ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against
spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and
T31. The error bars are the 95 % confidence interval of the area average. Note the different scales of
the y-axes.
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(a) Central Africa DJF large scale
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(b) Central Africa DJF convective
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(c) Southern Africa DJF large scale
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(d) Southern Africa DJF convective

Figure B.18: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over central Africa (a, b) and southern Africa (c, d) in DJF estimated from ECHAM5 model
output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length
scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The error
bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Peru-Bolivia-Ecuador DJF large scale
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(b) Peru-Bolivia-Ecuador DJF convective
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(c) Northern South America-southern Cen-
tral America DJF large scale
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(d) Northern South America-southern Cen-
tral America DJF convective

Figure B.19: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over Peru-Bolivia-Ecuador (a, b) and northern South America-southern Central America (c, d)
in DJF estimated from ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106,
T63, T42 and T31 against spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7,
T159, T106, T63, T42 and T31. The error bars are the 95 % confidence interval of the area average.
Note the different scales of the y-axes.
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(a) Southeastern South America DJF large
scale

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

40

60

80

100

120

140

160

spatial scale [°]

20
−

se
as

 D
JF

 r
et

ur
n 

va
lu

e 
[m

m
/d

]

●
●

●

●
●

●

●

T213
T159,T106,T63,T42,T31

(b) Southeastern South America DJF con-
vective

●

●

●

●

●
●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

50

100

150

200

spatial length scale [°]

20
−

se
as

 J
JA

 r
et

ur
n 

va
lu

e 
[m

m
/d

]

●

●

●

●
●

●

●

T213
T159,T106,T63,T42,T31

(c) Central Africa JJA large scale
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(d) Central Africa JJA convective

Figure B.20: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over southeastern South America in DJF (a, b) and central Africa in JJA (c, d) estimated from
ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against
spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and
T31. The error bars are the 95 % confidence interval of the area average. Note the different scales of
the y-axes.
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(a) Northern Peru-Ecuador-Colombia JJA
large scale
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(b) Northern Peru-Ecuador-Colombia JJA
convective
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(c) Northeastern South America JJA large
scale
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(d) Northeastern South America JJA convec-
tive

Figure B.21: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over northern Peru-Ecuador-Colombia (a, b) and northeastern South America (c, d) in JJA
estimated from ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42
and T31 against spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106,
T63, T42 and T31. The error bars are the 95 % confidence interval of the area average. Note the
different scales of the y-axes.
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(a) Southeastern South America JJA large
scale
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(b) Southeastern South America JJA convec-
tive

●

●

●

●

●

●
●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

200

400

600

800

spatial length scale [°]

20
−

se
as

 J
JA

 r
et

ur
n 

va
lu

e 
[m

m
/d

]

●

●

●

● ●

●

●

T213
T159,T106,T63,T42,T31

(c) India JJA large scale
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(d) India JJA convective

Figure B.22: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over southeastern South America (a, b) and India (c, d) in JJA estimated from ECHAM5 model
output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length
scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The error
bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Western Siberia JJA large scale
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(b) Western Siberia JJA convective
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(c) Russia JJA large scale
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(d) Russia JJA convective

Figure B.23: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over western Siberia (a, b) and Russia (c, d) in JJA estimated from ECHAM5 model output in
the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length scale of
ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The error bars are
the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Central USA JJA large scale
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(b) Central USA JJA convective
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(c) Southeastern USA JJA large scale
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(d) Southeastern USA JJA convective

Figure B.24: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over the central USA (a, b) and the southeastern USA (c, d) in JJA estimated from ECHAM5
model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial
length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The
error bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Southern Europe DJF large scale
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(b) Southern Europe DJF convective
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(c) Canada-Alaska-Greenland JJA large
scale
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(d) Canada-Alaska-Greenland JJA convec-
tive

Figure B.25: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over southern Europe in DJF (a, b) and Canada-Alaska-Greenland in JJA (c, d) in DJF estimated
from ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31
against spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42
and T31. The error bars are the 95 % confidence interval of the area average. Note the different scales
of the y-axes.
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(a) Northern Europe JJA large scale
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(b) Northern Europe JJA convective
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(c) Northeastern USA JJA large scale
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(d) Northeastern USA JJA convective

Figure B.26: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over northern Europe (a, b) and the northeastern USA (c, d) in JJA estimated from ECHAM5
model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial
length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The
error bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Eastern Asia JJA large scale
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(b) Eastern Asia JJA convective
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(c) Central America JJA large scale
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(d) Central America JJA convective

Figure B.27: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over eastern Asia (a, b) and Central America (c, d) in JJA estimated from ECHAM5 model
output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31 against spatial length
scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42 and T31. The error
bars are the 95 % confidence interval of the area average. Note the different scales of the y-axes.
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(a) Southern Peru-Bolivia-central Amazon
region JJA large scale
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(b) Southern Peru-Bolivia-central Amazon
region JJA convective
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(c) Western USA JJA large scale
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(d) Western USA JJA convective

Figure B.28: Area-averaged large scale (a, c) and convective precipitation (b, d) 20 season return
values over southern Peru-Bolivia-central Amazon region (a, b) and the western USA (c, d) in JJA
estimated from ECHAM5 model output in the resolutions T2131×1 - T2137×7, T159, T106, T63, T42
and T31 against spatial length scale of ECHAM5 in the resolutions T2131×1 - T2137×7, T159, T106,
T63, T42 and T31. The error bars are the 95 % confidence interval of the area average. Note the
different scales of the y-axes.
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Figure B.29: Area-averaged total precipitation 20 season return values over northern Europe (a)
and the Amazon region (b) in DJF estimated from three ensemble members of the resolutions T106,
T63, T42 and T31 from ECHAM5 model output against spatial length scale. The error bars are the 95
% confidence interval of the area average. Note the different scales of the y-axes.
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