Es gilt deutsches Urheberrecht.

Das Hochschulschrift darf zum eigenen Gebrauch kostenfrei heruntergeladen, konsumiert, gespeichert oder ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden ohne die schriftliche Einwilligung des Urheberrechtsinhabers. Es ist nicht gestattet, Kopien oder gedruckte Fassungen der freien Onlineversion zu veräußern.

German copyright law applies.

Copyright and Moral Rights for this thesis are retained by the author and/or other copyright owners. The work or content may be downloaded, consumed, stored or printed for your own use but it may not be distributed via the internet or passed on to external parties without the formal permission of the copyright holders. It is prohibited to take money for copies or printed versions of the free online version. Diversity and specificity of the teleost immune system

A transcriptome study on two fish species

Dissertation ur Erlangung des Doktorgrades

- Dr. rer. nat. -

der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel

vorgelegt von

David Haase

Kiel 2013

Diversity and specificity of the teleost immune system

A transcriptome study on two fish species

Dissertation zur Erlangung des Doktorgrades

- Dr. rer. nat. -

der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel

vorgelegt von

David Haase

Erster Gutachter: Prof. Dr. Thorsten B. H. Reusch

Zweiter Gutachter: Dr. Martin Kalbe

Tag der mündlichen Prüfung: 26.08.2013

Zum Druck genehmigt: 26.08.2013

gez. Prof. Dr. Wolfgang J. Duschl, Dekan

Content

Zusammenfassung	1
Summary	3
Introduction	5
The importance of immunity	5
The vertebrate immune system	5
Characteristics of the fish immune system	7
A classical fish model, the three-spined stickleback (Gasterosteus aculeatus)	8
An emerging model species, the broad-nosed pipefish (Syngnathus typhle)	9
Macroparasites as models in evolutionary ecology research	9
Transcriptome profiling via RNA-seq	11
Thesis outline	13
Chapter 1	15
Chapter 2	23
Chapter 3	41
Discussion	69
Beyond the vertebrate paradigm	69
Technology under development: issues in obtaining and analyzing RNA-seq data	71
The diversity of immune gene expression in fish	73
Perspectives	75
Eidesstattliche Erklärung	77
Author Contributions	78
Danksagung	79
List of publications	80
References	81
Appendix	91
Appendix Chapter 1	91
Appendix Chapter 2	125
Appendix Chapter 3	205

Zusammenfassung

Alle Lebewesen sehen sich einer konstanten Bedrohung durch Krankheitserreger ausgesetzt. Schutz vor Infektionen wird dabei durch das Immunsystem gewährt. Bei Wirbeltieren unterscheidet man üblicherweise zwischen der sofort aktiven, unspezifischen angeborenen Immunantwort und der verzögert aktivierten, hochspezifischen adaptiven Immunantwort, welche lebenslange Resistenz gegen Krankheitserreger erzeugen kann. Bis vor wenigen Jahren fußte unser Verständnis von Prozessen des Immunsystems auf der Annahme, dass sie bei allen Kiefermäulern (Gnathostomata) gleich seien und dass eine spezifische Immunantwort nur in diesem Taxon zu finden sei. Mittlerweile konnte allerdings bereits gezeigt werden, dass auch Wirbellose (Invertebrata) zu einer spezifischen Immunantwort in der Lage sind. Fische gehören zu den ursprünglichsten Wirbeltieren, die sowohl ein angeborenes, wie auch adaptives Immunsystem besitzen. Da sie wechselwarme (poikilotherme) Organismen sind, wird ihr Immunsystem von der Umgebungstemperatur beeinflusst, was sich hauptsächlich auf das adaptive Immunsystem auswirkt. Damit verstärkt sich die Bedeutung des angeborenen Immunsystems in Fischen und unterstreicht die besondere Stellung, die diese Organismen in der Evolution des Immunsystems einnehmen.

In dieser Arbeit habe ich das Transkriptom, konkreter die vorhandene mRNA, von zwei Teleostei (Echte Knochenfische) mit Hilfe von Hochdurchsatz-Sequenziertechniken untersucht. Ziel war es, mehr Informationen über die Diversität des Immunsystems bei Wirbeltieren zu gewinnen. In meinem ersten Projekt habe ich das bis dato unbekannte Immungen-Repertoire der Grasnadel (*Syngnathus typhle*) untersucht. Mitglieder der Gattung Syngnathus zeichnen sich dadurch aus, dass die männlichen Tiere nach der Paarung die befruchteten Eier in einer Bauchtasche bebrüten. Studien konnten in diesem Zusammenhang bereits zeigen, dass dadurch das Immunsystem der Nachkommen beeinflusst wird. In meiner Untersuchung habe ich herausgefunden, dass die Grasnadel neben dem Dorsch die zweite Spezies darstellt, die einen Genverlust des MHC (Haupthistokompatibilität) Klasse II Komplexes aufweist, einem sehr wichtigen Bestandteil der Immunerkennung. Da sich die Zusammensetzung der fehlenden Gene zwischen Grasnadel und Dorsch unterscheidet, können wir davon ausgehen dass der Verlust von MHC II unabhängig stattgefunden hat. Diese Beobachtung unterstreicht den Einfluss evolutionärer Prozesse auf Komponenten des Immunsystems in Wirbeltieren.

Neben der Grasnadel habe ich mich noch mit Studien zur Genexpression von Dreistacheligen Stichlingen (*Gasterosteus aculeatus*), einem bedeutenden Modellorganismus der Ökologie und Evolutionsbiologie, beschäftigt. Die Immunantwort von Echten Knochenfischen auf Viren-Infektionen wurde bereits in diversen Studien untersucht.

Zusammenfassung

Im Gegensatz dazu sind Informationen über Reaktionen auf parasitäre Würmer sehr spärlich. Daher habe ich die Genexpression von Stichlingen untersucht, die mit unterschiedlichen genetischen Linien einer parasitären Wurmart infiziert worden waren. Zunächst lag mein Augenmerk auf einer möglichen spezifischen Reaktion des angeborenen Immunsystems. Frühere Studien konnten bereits zeigen, dass der genetische Hintergrund innerhalb einer Parasitenart einen Effekt auf den Fisch haben kann, die dabei relevanten Immungene konnten jedoch bisher nicht gezeigt werden. In dieser Studie ist es mir gelungen sowohl Gene zu identifizieren, die eine allgemeine Reaktion auf die Wurmspezies darstellen, als auch eine Parasiten-Genotyp-spezifische Genexpression des angeborenen Immunsystems zu zeigen. Weiterhin habe ich den Effekt von wiederholten Infektionen verschiedener Parasiten-Linien auf die erworbene Immunität untersucht. Da angeborenes und adaptives Immunsystem unter gegenseitiger Einflussnahme stehen, hat mich besonders der Effekt Parasiten-Genotyp-spezifischer Immunisierung auf die Genexpressionsmuster interessiert. Die Resultate zeigen dabei einen großen Effekt kreuz-reaktiver Immunisierung und eine Reduzierung der Expression immunrelevanter Gene, unabhängig vom genetischen Hintergrund des Parasiten. Die in immunisierten Fischen aktiven Gene waren dabei größtenteils unterschiedlich zu denen, die in nicht-immunisierten Fischen zu finden waren. Dies zeigt, dass die adaptive Immunantwort einen Einfluss auf die Aktivierung von Genen des angeborenen Immunsystems ausübt und damit die Spezifität der Genexpression verändert. Aus meinen Resultaten kann ich schließen, dass die Immunantwort in Wirbeltieren sowohl von der untersuchten Spezies, als auch von möglichen vorherigen Infektionen abhängen kann. Daher ist es meines Erachtens nach wichtig, das Paradigma einer generellen Immunantwort in Gnathostomata hinter sich zu lassen und tiefer in die vergleichende Immunologie einzutauchen.

Summary

All living organisms are constantly surrounded by detrimental pathogens. Protection against those pathogens is realized by the immune system. In vertebrates, the immune system is classically divided into fast responding, unspecific innate immunity and slow-going, highly specific adaptive immunity, including immune memory. Until recently, our understanding of immune responses in vertebrates relied on the assumption that jawed vertebrates share common immune mechanisms and that adaptive immunity is a unique feature of this taxon. However, more recent studies have shown that invertebrates also possess specific immune responses and immune memory. Among extant vertebrates, fish are the most basal class of organisms which possess all elements of vertebrate immunity, is strongly influenced by the surrounding temperature. This elevates the importance of innate immune mechanisms in fish and highlights their unique role in the evolution of the vertebrate immune system.

In this work I used high-throughput sequencing of mRNA (RNA-seq) to investigate the transcriptome of two teleost fish species and to shed light on the diversity of vertebrate immunity. In my first project I examined the transcriptome of an emerging model species, the broad-nosed pipefish (*Syngnathus typhle*). The genus *Syngnathus* exhibits male pregnancy and recent studies have shown that male pipefish contribute to the immunization of their offspring. Here I found that, next to atlantic cod, pipefish is the second vertebrate species lacking genes of the MHC class II complex, a central part of adaptive immune memory. Due to a different set of absent genes compared to cod, the loss of MHC II has likely been independent, emphasizing the importance of evolutionary processes to shape immune system components in vertebrates.

Next to pipefish I worked on gene expression patterns of three-spined sticklebacks (*Gasterosteus aculeatus*), an important model organism in ecology and evolutionary biology, infected with distinct lineages of parasitic worms. The immune response of teleost fish to viruses has already been addressed in several studies while our understanding of immune responses against parasitic worms is much less advanced. I studied the specificity of innate immune reactions in the transcriptome of three-spined sticklebacks. Earlier studies have shown an effect of parasite genotypes on the fish host, the corresponding immune genes however, have not been identified yet. I found genes to be differentially expressed as a response to the parasite per se as well as treatment specific gene expression, indicating parasite genotype specific responses of the innate immune system in sticklebacks. I further examined the effect of immune memory on the gene expression patterns induced by consecutive infections of different parasite lineages. Since innate and adaptive immunity can

Summary

influence each other I was interested in the effect of genotype specific immunization on the gene expression responses. The results show a large effect of cross-reactive immunization, reducing the amount of differentially expressed genes regardless of the genotypic background of the parasite. The genes responsible for an immune response in non-immunized fish were largely different to consecutively infected fish. This suggests that the adaptive immune system in three-spined sticklebacks modulates the extent to which innate immunity is activated and the specificity of the corresponding gene expression. Taken together, I conclude that vertebrate immune responses can depend on the species of interest and are influenced by previous infections, changing the gene expression of the host. Thus, it is important to go beyond the paradigm of a general vertebrate immune system and delve deeper into comparative immunology.

Introduction

The importance of immunity

All living species are constantly exposed to and attacked by parasites (Windsor 1997, 1998, Janeway et al. 2008). Parasite infections are usually detrimental to the fitness of an exploited host organism and thus host bodies need protection from invading pathogenic agents. This protection is realized by a variety of effector cells and molecules which compose the immune system (Janeway et al. 2008). Immunology as a science dates back to the late 18th century when Edward Jenners demonstrated in 1796 that an inoculation with cowpox confers resistance to the fatal smallpox, the invention of vaccination (Janeway et al. 2008). Since then scientists were not only able to identify the causing agents of different parasite induced diseases but also described many different immune responses resulting from those pathogenic challenges (Janeway et al. 2008). The high selective pressure, maintained by a huge variety of pathogenic agents, led to the emergence of a large repertoire of immune relevant molecules which can be generated by organisms across all phyla (Janeway et al. 2008). Even bacteria are known to possess an immune response to protect them from viral DNA and induce resistance against phages (Horvath and Barrangou 2010). In my thesis I will focus on the immune system of teleost fish. Fish are the most basal class of organisms which possess all elements of a vertebrate immune response and thus have a unique role in the evolution of the vertebrate immune system (Whyte 2007).

The vertebrate immune system

According to our current understanding the vertebrate immune response can be divided into four main steps. First, an invading pathogen is detected via receptor molecules, the "immunological recognition", with the crucial step of discriminating self from non-self. The infection then has to be contained and eliminated, which is done by various "immune effector functions". This response needs to be self-regulated due to its tissue damaging potential which leads to "immune regulation" as third main task. The last feature may involve "immunological memory" which will confer long lasting resistance to specific pathogens in some but not all immune pathways (Janeway et al. 2008). This last mechanism was long thought to be an unique attribute of the vertebrate adaptive immune system (Janeway et al. 2008), but recent experimental evidence also highlights immune priming, memory and specificity in invertebrate responses (Kurtz and Franz 2003, Little et al. 2003, Robalino et al. 2005, Schmid-Hempel 2005, Sadd and Schmid-Hempel 2006, Schulenburg et al. 2007, Roth et al. 2009). However, at present the cellular mechanisms are not fully understood.

Vertebrate immunity can be distinguished in two major parts, innate and adaptive immunity. The first line of defense against invading pathogens and parasites is the, evolutionary older, innate immune response (Janeway et al. 2008). Recognition of pathogens is constrained by a limited set of invariant pattern recognition receptors (PRRs) which respond to conserved pathogen-associated molecular patterns (PAMPs) (Janeway et al. 2008). These PAMPs are the key structure which allows distinguishing between self and non-self, thus preventing an immune reaction against self peptides (Janeway et al. 2008). Upon an infection macrophages try to engulf an invading pathogen and simultaneously start secreting signaling proteins which induce an inflammatory response. Another option of inducing an innate immune response with a subsequent inflammation is the complement system, a group of plasma proteins which can be activated upon pathogen recognition, coat foreign organisms and induce destruction, e.g. by recruited macrophages (Janeway et al. 2008). This inflammation mediates the recruitment of additional components of the innate immune response, including neutrophils and dendritic cells (Janeway et al. 2008). Neutrophils also bear PRRs and are heavily attracted to sites of ongoing inflammation processes. Dendritic cells take up pathogenic material, either by ingestion or via cell surface receptors, and present it to inactive T lymphocytes which activates the adaptive immune system (Janeway et al. 2008).

The adaptive immune system has evolved under strong selection mediated by rapidly adapting parasites/pathogens. Microparasites, in particular viruses and bacteria, have huge population sizes and short generation times which allows them to evade the immune recognition (Janeway et al. 2008). Within the innate immune pathways, PAMPs are only being recognized if they are largely conserved and not subjected to rapid evolutionary changes (Janeway et al. 2008). In contrast, the adaptive immune response has evolved to counteract invading pathogens with a higher degree of specificity via somatic hypermutation (Janeway et al. 2008). Lymphocytes, B cells and T cells, are the key element of phenotypic variability in an adaptive immune response. B cell receptors (BCR) on the cell surface bind an antigen, the result of processed pathogenic material, and induce proliferation of B cells into plasma cells which secrete antibodies, known as immunoglobulins, specific to the targeted antigen (Janeway et al. 2008). This specificity is mostly achieved by somatic hypermutation, a process which starts upon activation of a B cell by T cells with antigenic material (Janeway et al. 2008). During this process point mutations are introduced at very high rates, producing mutant B cell receptors on the cell surface. This is followed by a selection process allowing only B cells with highest antigen affinity to develop into antibodysecreting cells, a process called affinity maturation (Janeway et al. 2008).

T cell receptors (TCR) also proliferate upon antigen detection, but are distinct from the immunoglobulins. Activated effector T lymphocytes can be distinguished into cytotoxic T cells, helper T cells and regulatory T cells (Janeway et al. 2008). The first group can kill cells infected with intracellular pathogens, helper T cells enhance activation of antigen stimulated B cells and the last group is involved in the regulation of lymphocytes and other immune responses (Janeway et al. 2008).

The most intriguing difference between B cell receptor and T cell receptor is their way of binding foreign antigens. The T cell receptor cannot bind antigens directly, instead short peptides derived from antigens are bound to glycoproteins from the major histocompatibility complex (MHC) and presented upon cell surfaces (Janeway et al. 2008). These MHC molecules are highly polymorphic and can be distinguished into two molecule groups, MHC class I and MHC class II. CD8 T cells recognize MHC class I molecules bound to antigen peptides from the cytosol and CD4 T cells, which can also activate naive B cells, respond to MHC class II molecules generated in intracellular vesicles (Janeway et al. 2008). The diversity of the major histocompatibility complex is so important for the immune response against invading pathogens that it influences mate choice in many species, including mice, humans, salmon and sticklebacks (Wedekind et al. 1995, Penn and Potts 1998, Reusch et al. 2001b, Jobling et al. 2004, Consuegra and Garcia de Leaniz 2008).

Characteristics of the fish immune system

Fish are the crucial transition point between species which depend only on innate immunity, e.g. invertebrates, and those that rely heavily on adaptive immunity, e.g. mammals (Workenhe et al. 2010). They are the most basal class of vertebrates which possesses both components, innate and adaptive immunity (Whyte 2007). Adaptive immunity in this case is defined as the classical mechanism of immunoglobulin based specific immune responses and T cell mediated immune memory (Janeway et al. 2008). This is not including jawless vertebrates (agnathans) which possess a form of somatic cell rearrangement which is different from the V(D)J system in jawed vertebrates (Alder et al. 2005, Janeway et al. 2008). Teleost fish do not possess red bone marrow or lymph nodes, where the central immune cells, i.e. granulocytes, macrophages, dendritic cells and lymphocytes, of higher vertebrates (mammals) are produced (Workenhe et al. 2010). Instead the head kidney is morphologically and functionally resembling the red bone marrow, producing myeloid (granulocytes, macrophages, dendritic cells) and lymphoid (lymphocytes, natural killer cells) progenitor cells (Workenhe et al. 2010). Next to thymus and spleen, the head kidney is one of the major immune organs in fish, a major site of antibody production and together with the thymus the primary T cell and B cell organ (Press and Evensen 1999, Whyte 2007, Workenhe et al.

2010, Rauta et al. 2012). Studies on immune responses against viruses have shown that bony fish and mammals exhibit a high similarity in the major mechanisms of their respective immune response (Workenhe et al. 2010). There is however one important difference, since most teleost fish are poikilothermic organisms, i.e. their body temperature varies depending on the environment (Fry 1967, Workenhe et al. 2010). It appears that at least certain stages of the adaptive immune response seem to be more sensitive to low temperatures than the innate immune response (Workenhe et al. 2010). In contrast to mammals, external temperature changes can delay the activation of adaptive immunity in fish for several weeks (Magnadóttir 2006). Therefore, studies on the innate immune response of fishes are crucial for our understanding on the concerted effort of innate and adaptive immune responses in teleost fishes (Workenhe et al. 2010). Here, studies on host-parasite interactions can provide fruitful insight into mechanisms that induce an immune response against invading pathogens.

A classical fish model, the three-spined stickleback (Gasterosteus aculeatus)

Three-spined sticklebacks (Gasterosteus aculeatus) belong to the Gasterosteids and are small plated fish distributed over the whole Northern Hemisphere (Bell and Foster 1994). Originating from the marine habitat they colonized lakes and rivers after the last glaciation period with populations being marine, freshwater resident or anadromous, i.e. living in marine environments and migrating to fresh or brackish water for reproduction (Bell and Foster 1994). They have become famous for their elaborate mating behavior (Tinbergen 1952, Bell and Foster 1994). Due to their wide distribution in many ecologically distinct subpopulations (Reusch et al. 2001a, Berner et al. 2009, Eizaguirre et al. 2011), sticklebacks have become a major model organism in ecological and evolutionary research (Bell and Foster 1994, Gibson 2005). Their small size and ability to cope with laboratory environments make sticklebacks to a perfect model system for experimental studies in fish (Bell and Foster 1994). Numerous ecological and evolutionary research questions have been addressed with studies on sticklebacks, including mating behavior (Eizaguirre et al. 2009), plate and spine morphology (le Rouzic et al. 2011, Leinonen et al. 2011), population genetics (Bolnick et al. 2009) and host-parasite interactions (Kalbe et al. 2002). Several studies have shown the importance of MHC class II mediated immunity in three-spined sticklebacks (Wegner et al. 2003b, Kalbe et al. 2009, Lenz et al. 2009a, Matthews et al. 2010, McCairns et al. 2011, Eizaguirre et al. 2012a), making the species a classical model for studies on vertebrate immune reactions in fish. Sticklebacks have been shown to display an effect of parasite genotypes on host genotypes, indicating specific innate immune responses (Rauch et al. 2006). Studies on host-parasite interactions have revealed genes important for immune responses against macroparasites, with differences between parasite adapted and non-adapted stickleback

populations (Lenz et al. 2013). However, the genetic basis for host-parasite genotype x genotype interactions remains to be discovered.

An emerging model species, the broad-nosed pipefish (Syngnathus typhle)

Broad-nosed pipefish (*Syngnathus typhle*) belong to the teleost group of Syngnathids, including pipefish, seahorses and sea dragons, which share a specific feature: the eggs produced by females are bred and nourished by the males in a ventral brood pouch (Roth et al. 2011). *S. typhle* is an emerging model species in the context of evolutionary ecology with an emphasis on the immune responses under parasite pressure (Landis et al. 2012, Roth et al. 2012a, Roth et al. 2012b). It has been shown that pipefish adapt to local bacteria (Roth et al. 2012a) but also that macroparasites can locally adapt to pipefish populations (Landis et al. 2012). Studies have revealed that males, which breed the fertilized eggs, have an increased immune response compared to females (Roth et al. 2011) and are contributing to the immunization of offspring (Roth et al. 2012b). To understand how an immunological contribution of breeding males influences offspring survival, knowledge about the activity of immunological memory and thus the adaptive immune system is a valuable contribution to our understanding of the vertebrate immune system. But so far, the immune gene repertoire of pipefish has not even been characterized yet.

Macroparasites as models in evolutionary ecology research

Parasites are disease causing organisms, which exploit their host organisms for nutrients. Ectoparasites live on the host surface while endoparasites enter their host organisms. Unicellular eukaryotes (protozoa) as well as viruses and bacteria are sometimes termed microparasites, whereas macroparasites can usually be seen by the naked eye and are mostly parasitic insects or parasitic flatworms (platyhelminths). The generation time of macroparasites is usually much longer compared to microparasites (Viney and Cable 2011). This results in sophisticated life history strategies for survival inside the host and led to the evolution of mechanisms to actively manipulate the host immune response (Viney and Cable 2011). Parasitic platyhelminths can be distinguished in three main groups, Monogenea, Digenea and Cestoda, with the Monogenea having direct life cycles, i.e. infective stages are directly released, and the Digenea having indirect/complex life cycles with intermediate hosts (Viney and Cable 2011). The majority of trematodes maintains three host stages, including free living stages and asexual reproduction in one intermediate host (Rauch et al. 2005). Different explanations have been suggested for this phenomenon, including increased growth and/or fecundity (Parker et al. 2003, Benesh et al. 2013), higher transmission rates

(Morand et al. 1995), higher mating success (Brown et al. 2001) and increased intermixture of clonal genotypes (Rauch et al. 2005).

Studies on viruses have shed light on the corresponding immune response in teleost fish hosts (reviewed in Magnadóttir 2006, Whyte 2007, Workenhe et al. 2010) but the knowledge about responses against parasitic worms is much less advanced (Rauch et al. 2006, Janeway et al. 2008, Lenz et al. 2013). In my thesis I am aiming for this gap by studying the transcriptome response of three-spined stickleback (*G. aculeatus*) to infections with controlled laboratory lines of the parasitic trematode *Diplostomum pseudospathaceum*.

Except from studies on natural parasite populations there are few studies that have used controlled lab bred lines of macroparasites, especially trematodes and other parasitic worms, to control breeding design and thus genetic background of the parasites. One example is the tapeworm *Schistocephalus solidus*, which has been used to study parasite-induced immune-modulation (Scharsack et al. 2004) and host specificity (Henrich et al. 2013) and can be successfully maintained with in vitro cultures (Smyth 1946, Jakobsen et al. 2012).

An ideal candidate to test the consequences of host-parasite interactions are parasites from the genus *Diplostomum*. This eye flukes maintain a complex life cycle with two intermediate and one final host. In the final host, a piscivorous bird, the parasite reproduces sexually, laying eggs which leave the host via the feces (Chappell et al. 1994). Free swimming larvae, called miracidia, hatch from the eggs and infect fresh water snails (Chappell et al. 1994). In the snail the parasite transforms to a sporocyst which can produce hundreds of thousands of clonal cercariae, the infective stage which actively attacks a fish host, e.g. three-spined sticklebacks. The parasite enters the blood vessel of the host from where it migrates to the eye lens, which is free of any immune response, thus protecting the parasite (Chappell et al. 1994). The diplostomula impair the host's visual capacities, increasing the chance for predation by the final bird host (Chappell et al. 1994). Although the life cycle of Diplostomum is not easy to handle or maintain in the lab, the parasite provides several advantages for experimental studies on host-parasite interactions. First, the fish-infecting stage is replicated clonally in the host snail, which is detectable by published microsatellite primers (Reusch et al. 2004) and thus allows to control the genetic background of the parasite without losing the ability to conduct replicated studies (Rauch et al. 2006). Second, the migration to the fish's eye lens needs less than 24 hours (Chappell et al. 1994). Since the adaptive immune response in poikilotherm organisms like fish is considerably slowed, single infectiontreatments need to be cleared by an innate immune response (Rauch et al. 2006). Third, the parasite load in the fish's eye lens can be counted non-invasively, leaving the potential for further experiments with the same fish including infection rate measurements (Wegner et al. 2007).

Transcriptome profiling via RNA-seq

My thesis attempts to characterize the innate and adaptive immune responses towards macroparasite infection via a characterization of the transcript abundance of all genes, also termed transcription profiling. To date, the most effective and insightful approach to sequence replicated expressed sequence tag libraries to a high depth of coverage is facilitated by next-generation sequencing technologies. The transcriptome can be defined as the total amount of transcripts expressed in the cell or tissue of an organism (Wang et al. 2009). This includes messenger RNA (mRNA) and all types of non-coding RNA (ncRNA) like tRNA and rRNA. Some ncRNAs, small interfering RNAs (siRNA), were even shown to induce post-transcriptional gene silencing, thus influencing the translation of mRNA to proteins (Hamilton and Baulcombe 1999). The presence of a transcript and its expression quantity can depend on the tissue type, developmental stage and/or physical condition (Wang et al. 2009). Considering these characteristics, including mRNA stability and translation efficiency, the abundance analysis of transcripts cannot be equated with the abundance of proteins but is still an essential tool to understand functional elements of the genome and how those vary under different conditions (Wang et al. 2009).

The research on transcriptome-wide gene expression has led to the development of various technologies, the most popular being microarray-based hybridization and sequence-based approaches (Wang et al. 2009). Hybridization via microarrays is usually realized by linking synthesized oligonucleotides on glass-like structures which then bind to fluorescent labelled cDNA fragments of interest (Maskos and Southern 1992, Wang et al. 2009). These approaches allow high-throughput estimation of gene expression combined with a relatively low cost per sample (Wang et al. 2009). They have been used to estimate expression of several thousand genes in fish, for example in medaka (Yao et al. 2012) or three-spined stickleback (Leder et al. 2009, Leder et al. 2010, Leveelahti et al. 2011, Sanogo et al. 2011). These approaches however are limited to existing knowledge, since the sequences needed for hybridization have to be synthesized beforehand (Wang et al. 2009). Thus they don't allow an estimation of the transcriptome without prior information.

Sequence-based approaches, which estimate the abundance of mRNA by direct sequencing of cDNA, have started with Sanger sequencing, leading to long but rather expensive nucleotide sequences (Shendure and Ji 2008, Wang et al. 2009). These have further developed into high-throughput sequencing technologies, also termed next-generation sequencing (NGS), different new sequencing methods capable of producing a large amount of short reads (Shendure and Ji 2008). Currently the three most widely distributed NGS-platforms for RNA sequencing are Illumina, 454 and SOLiD (Wang et al. 2009, Auer and

Doerge 2010). The general construction of sequencing libraries is similar for all technologies (Wang et al. 2009) with the general sequencing approach being quite diverse, ranging from color-coded nucleotide estimation (SOLiD) over pyrosequencing (454) to fluorescent labels in combination with Illumina bridge-PCR (Shendure and Ji 2008). Each technology has its advantages and disadvantages but all are very suitable for the estimation of gene expression even in non-model organisms without prior genetic information (Shendure and Ji 2008).

At first, the Sanger-based method of creating short tags to estimate expression of genes was transferred to NGS data, which allowed to estimate digital gene expression but was unable to distinguish between several isoforms of the same gene (Wang et al. 2009). Tag-based approaches have for example been used in three-spined sticklebacks to estimate immunological adaptation to macroparasites in connection with different habitats (Lenz et al. 2013). Later with increasing sequence (read) length the method was further developed to estimate the abundance of transcripts instead of sequence-associated tags, resulting in RNA sequencing (RNA-seq) approaches which allow mapping and quantification of the whole transcriptome (Wang et al. 2009) including the detection of unannotated transcripts and the estimation of splice variants (Trapnell et al. 2010). The increasing popularity of nextgeneration sequencing, including research on model and non-model organisms, facilitated the development of diverse software solutions for alignment (mapping) of large amounts of reads to a reference genome/transcriptome and for the de novo assembly of non-model organisms (Martin and Wang 2011). This included NGS technology specific solutions for de novo assembly and read mapping (Li and Durbin 2009, Mundry et al. 2012, Vijay et al. 2013) and the development of new statistical approaches (Auer and Doerge 2010, Soneson and Delorenzi 2013, Vijay et al. 2013). Since then, RNA-seg has been a widely used tool to investigate the transcriptome of several model and non-model fish (Greenwood et al. 2012, Gross et al. 2013, Palstra et al. 2013, Petzold et al. 2013, Yang et al. 2013) including studies on the fish immune system (Morera et al. 2011, Ordas et al. 2011, Zhang et al. 2011, Li et al. 2012, Sarropoulou et al. 2012, Sun et al. 2012).

In this work I used high-throughput sequencing of mRNA (RNA-seq) to explore the transcriptome of three-spined sticklebacks and broad-nosed pipefish. For the pipefish transcriptome I utilized a combination of 454 and Illumina reads. This approach combines the relatively long read length of 454 data and the high accuracy of the shorter Illumina reads to approximate the reconstruction of the whole pipefish transcriptome. In three-spined sticklebacks I used individual libraries of Illumina-sequenced reads aligned to a reference genome. The high amount of sequences produced by the Ilumina technology allows direct quantification of transcript abundance including an estimation of present splice variants.

Thesis outline

The results of my dissertation are structured in three chapters. All have the form of a manuscript, including: introduction, material & methods, results and discussion. The first chapter has already been published, the latter two are prepared for submission.

Chapter 1

In the first chapter I explored the immune repertoire of broad-nosed pipefish (*Syngnathus typhle*). For this purpose the transcriptome of wild caught individuals from the Baltic Sea and the Mediterranean Sea infected with pathogenic bacteria of the genus *Vibrio* was examined. Sequences were obtained via 454 and Illumina sequencing, assembled de novo and compared to a set of key immune genes that have been identified in other fish species.

Chapter 2

In the second chapter I investigated the specificity of the innate immune response in threespined sticklebacks (*Gasterosteus aculeatus*). Therefore, clonal lineages of the parasite *Diplostomum pseudospathaceum* were isolated and used to infect naive, lab bred sticklebacks with either one of two clonal lineages or a clone mixture. Illumina-based transcriptome sequencing was performed on two immunologically relevant host organs (head kidney and gills) to estimate which genes are commonly expressed among all treatments, compared to specific expression as response to each genetically distinct parasite line.

Chapter 3

The third Chapter is tightly linked to the second chapter, since the same clonal parasite lines (*D. pseudospathaceum*) were used for infection experiments and subsequent transcriptome sequencing of RNA from three-spined sticklebacks (*G. aculeatus*) was performed. Here the focus was on the specificity of the memory effect of the immune response, to this end the sticklebacks were exposed weekly over the course of 5 weeks with either one of our two clones or a mix of clonal parasite lineages. This pre-exposure was followed by a final infection, either similar or different to the pre-exposure. This design allows to estimate how preexposure influences parasite load and gene expression in subsequent infections of the fish host.

Chapter 1

Absence of major histocompatibility complex class II mediated immunity in pipefish, Syngnathus typhle: evidence from deep transcriptome sequencing

David Haase^{1,*}, Olivia Roth^{1,*}, Martin Kalbe², Gisela Schmiedeskamp², Jörn P. Scharsack³, Philip Rosenstiel⁴ and Thorsten B. H. Reusch¹

¹Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz-Centre for Ocean Research Kiel, 24105 Kiel, Germany
²Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
³Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
⁴Institute for Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany

Biol. Lett. 2013 9, 20130044, published 27 February 2013

*equal contribution

Abstract

The major histocompatibility complex (MHC)-mediated adaptive immune system is the hallmark of gnathostome immune defense. Recent work suggests that cod-like fishes (Gadidae) lack important components of the MHC class II mediated immunity. Here, we report a putative independent loss of functionality of this pathway in another species, the pipefish *Syngnathus typhle* that belongs to a distantly related fish family (Syngnathidae). In a deep transcriptome sequencing approach comprising several independent normalized and non-normalized expressed sequence tag (EST) libraries with approximately 750 million reads, sequenced with two next generation platforms (454 and Illumina), we were unable to identify MHC class IIa/b genes as well as genes encoding associated receptors. Along with the recent findings in cod, our results suggest that immune systems of the Euteleosts may be more variable than previously assumed.

Introduction

Given the ubiquitous abundance of parasites and pathogens (Windsor 1998), immune systems are of crucial importance for any species. Parasite pressure has resulted in the evolution of highly specific immune defense (Schmid-Hempel and Ebert 2003) that discriminates self from potentially dangerous non-self. Innate immune defense components recognize conserved pathogen-associated molecular patterns (Medzhitov and Janeway Jr 1997), but their repertoire diversity is limited. Hence, an important evolutionary innovation unique to gnathostomes (jawed vertebrates) is the adaptive immune system along with somatic diversification of receptors of the immunoglobulin family (Cooper and Alder 2006, Flajnik and Kasahara 2010). Foreign peptides (epitopes) are recognized upon presentation to specialized lymphocytes that requires the binding of epitopes to specialized receptor molecules, encoded by major histocompatibility complex (MHC) class I and II genes. Whereas MHC class I genes are expressed on all cells and present epitopes from within the cells, class II genes are only expressed on specialized antigen-presenting cells (APC) such as dendritic cells and macrophages. When APCs present motifs of extracellular danger signals from pathogens to specialized T cells (CD4+ type) the MHC II mediated immunity is activated.

Given the core function of the MHC class II mediated pathway in gnathostome immunity, it came as a surprise that members of the cod family lack MHC class IIa and b genes, as well as several important genes of this immune pathway (Star et al. 2011). Here, we report the absence of an MHC class II mediated immune pathway in a member of another, phylogenetically distant fish, the pipefish *Syngnathus typhle* (Syngnathidae) based on deep transcriptome sequencing, and compare the repertoire loss to the cod-like fishes.

Material and methods

Study species

As a sex-role reversed fish, the pipefish *S. typhle*, is a widely studied model species in evolutionary biology (Paczolt and Jones 2010, Roth et al. 2011). Females lay eggs into the male brood pouch, where they are fertilized and nourished (Kvarnemo et al. 2011). Pipefish are exposed to bacterial and metazoan pathogens in their coastal habitat (Landis et al. 2012, Roth et al. 2012a). Here, we analyzed pipefish from the Baltic Sea (Kiel Fjord) and from the Adriatic Sea (Lagoon of Venice). At both sites, fish are continually exposed to commensal and pathogenic Vibrio strains (Roth et al. 2012a). We thus assume that, if present, the MHC class II pathway would be activated. Individuals from Kiel Fjord were fed with live Vibrio isolated from their environment in order to stimulate their immune response. Individuals were killed with an overdose of MS222. RNA extracts were prepared immediately from freshly dissected organs.

Molecular methods

Our evidence of absence of the MHC class II pathway is based on three independent methodological approaches: (i) primer - directed approaches using conserved portions of the MHC class IIb-gene, (ii) preparation and sequencing of a normalized cDNA library and (iii) ultra-high-throughput sequencing of three non-normalized cDNA libraries using an Illumina HiSeq 2000 platform.

Using standard PCR-directed cloning and sequencing, we focused on the MHC class Ilbgene via primer-directed approaches with cDNA and gDNA as a template. Numerous published and self-developed primer pairs were tested in regions that are conserved across six acanthopterygian taxa according to alignments (see supplementary material, tables S.1.1 and S.1.2). PCR products were characterized using standard TA-cloning approaches and Sanger sequencing.

We performed deep-cDNA sequencing on a Roche 454 Titanium (normalized EST library, pool of individuals from Adriatic Sea/Baltic Sea) and on a Illumina Hi-Seq 2000 platform (nonnormalized cDNA, supplementary material, tables S.1.3 and S.1.4, fish only from Baltic Sea challenged with Vibrio). RNA quality was checked on an Experion RNA analyser (Qiagen). A normalized cDNA library was prepared (pool of five pipefish individuals; pool of gill, liver, head kidney) by GATC (Konstanz, Germany), and sequenced with Roche 454 FLX Titanium chemistry (526491 reads after quality clipping). On an Illumina HiSeq 2000 platform, we characterized the transcriptome to ultra-high coverage analyzing three independent libraries of above organs separately, each derived from Vibrio-infected pipefish. In total approximately 750 million paired-end reads were produced (see the electronic supplementary material, table S.1.3; Genbank accession no. SRP018381).

Bioinformatic pipelines and analyses

The raw 454 reads were adaptor and quality-trimmed with SEQCLEAN (Chen et al. 2007), and reads less than 50 bp were discarded, resulting in 468126 reads (length 100 – 951 bp, mean 278 bp). Illumina data were cleaned using SEQPREP and overlapping read-pairs were merged. PRINSEQ (Schmieder and Edwards 2011) was used to maximize read quality by discarding all reads with an undetermined base content of greater than 10 percent. Random subsamples of merged reads obtained by Illumina-sequencing (length 50 – 186 bp) were the basis of two hybrid assemblies. They contained all 454 reads and either 10 million subsampled reads of Vibrio-infected pipefish gills, or 5 million reads of each of the three tissues head kidney, gills and liver. The assemblies conducted in MIRA3 (Chevreux et al.

2004) produced 96333 contigs for the 454-gill hybrid data, and 170726 contigs for all three organ types. To estimate assembly quality, we mapped reads against the contigs resulting from both de novo hybrid assemblies of 454 data and Illumina reads (see supplementary material, table S.1.4) using the software BOWTIE (Langmead et al. 2009). For annotation of gene models, the resulting contigs from both de-novo assemblies were blasted (BLASTx) against the non-redundant protein database from NCBI, using an e-value cut-off of 0.00001. In the three-tissue assembly these were 106154 of a total of 170726 contigs (62.18%).

As a second search strategy, we retrieved a number of cDNA sequences of the most important MHC II pathway genes from GenBank (see supplementary material, S.1.1) which were queried against all raw reads (approx. 750 million) obtained here. We used tBLASTx with very high cut-off values (e-value 100). For every target gene, we collected the 5000 best hits, which were then annotated using tBLASTx (e-value 0.00001) against NCBI non-redundant protein database.

To validate our approach (assembly + tBLASTx), we spiked the pipefish read data with short (101 bp) MHC II fragments derived from three-spined sticklebacks (*Gasterosteus aculeatus*) and seahorse (*Hippocampus abdominalis*), and found successful recovery (details in supplementary material S.1.2).

Table 1.1 Immune gene repertoire of broad-nosed pipefish, *Syngnathus typhle*. The immune gene repertoire is compared with cod (Star et al. 2011). The last column indicates how the transcript was identified, either via contig annotation, or via reciprocal best tBLASTx using teleost queries to the *S. typhle* database (see S.1.1 and S.1.2 §2 for details). The results of the tBLASTx search are presented in the tables S.1.5 and S.1.6.

gene abbreviation	pathway	pipefish, this study	cod	identification
MHC I	MHC I	yes	yes	contig annot
B2-microglobulin	MHC I	yes	yes	contig annot
TAP1	MHC I	yes	yes	contig annot
TAP2	MHCI	yes	yes	contig annot
Tapasin	MHC I	yes	yes	contig annot
PSME1	MHC I	yes	yes	contig annot
PSME2	MHC I	yes	yes	contig annot
PSME3	MHC I	yes	yes	contig annot
PSMB1	MHC I	yes	yes	contig annot
PSMB2	MHC I	yes	yes	contig annot
PSMB3	MHC I	yes	yes	contig annot
PSMB4	MHC I	yes	yes	contig annot
PSMB5	MHC I	yes	yes	contig annot
PSMB6	MHC I	yes	yes	contig annot
PSMB7	MHC I	yes	yes	contig annot
PSMB8	MHC I	yes	yes	tBLASTx
PSMB9	MHC I	yes	yes	tBLASTx
PSMB10	MHC I	yes	yes	tBLASTx
GranzymeB	MHCI	yes	yes	contig annot
Perforin	MHC I	yes	yes	contig annot
FasL	MHC I	yes	yes	contig annot
Fas	MHC I	yes	yes	contig annot
Erap1	MHC I	yes	yes	contig annot
Erap2	MHC I	yes	yes	contig annot
Irap	MHCI	yes	yes	contig annot
UNC93B	MHC I	yes	yes	contig annot
RFXANK	MHC II	yes	yes	contig annot
RFXAP	MHC II	yes	yes	contig annot
RFX5	MHC II	yes	yes	contig annot
RFX7	MHC II	yes	yes	contig annot
CIITA	MHC II	no	yes	n.a.
MHC II alpha	MHC II	no	no	n.a.
MHC II beta	MHC II	no	no	n.a.
Invariant chain	MHC II	not functional	no	contig annot
CD3e	T-cell receptors	yes	yes	contig annot
CD8a	T-cell receptors	yes	yes	contig annot
CD8b	T-cell receptors	no	yes	n.a.
CD4	T-cell receptors	no	truncated	n.a.
CD3 zeta	T-cell receptors	yes	yes	contig annot
CD3 g/d	T-cell receptors	yes	yes	contig annot
TCR beta	T-cell receptors	yes	yes	contig annot
TCR alpha	T-cell receptors	yes	yes	contig annot
TCR gamma	T-cell receptors	no	yes	n.a.
AIRE	T-cell receptors	yes	yes	tBLASTx

gene abbreviation	pathway	pipefish, this study	cod	identification
AICDA	T-cell receptors	yes	yes	contig annot
RAG1	T-cell receptors	yes	yes	contig annot
RAG2	T-cell receptors	yes	yes	tBLASTx
IL1B	Interleukins and interferons	yes	yes	contig annot
IL6ST	Interleukins and interferons	yes	yes	contig annot
IL8	Interleukins and interferons	yes	yes	contig annot
IL10	Interleukins and interferons	yes	yes	contig annot
IL12B	Interleukins and interferons	yes	yes	tBLASTx
IL15	Interleukins and interferons	yes	yes	contig annot
IL17D	Interleukins and interferons	yes	yes	contig annot
IL17A F1	Interleukins and interferons	yes	yes	tBLASTx
IL22	Interleukins and interferons	yes	yes	contig annot
IL2RG	Interleukins and interferons	yes	yes	contig annot
IL2RB	Interleukins and interferons	yes	yes	contig annot
IL4RA	Interleukins and interferons	yes	yes	contig annot
IL8RB-Like	Interleukins and interferons	yes	yes	contig annot
IL12RB2	Interleukins and interferons	yes	yes	contig annot
IL17RA	Interleukins and interferons	yes	yes	contig annot
IL17RD	Interleukins and interferons	yes	yes	contig annot
FOXP3	Interleukins and interferons	yes	yes	tBLASTx
TNFa	Interleukins and interferons	yes	yes	contig annot
TGFB	Interleukins and interferons	yes	yes	contig annot
IFNG	Interleukins and interferons	yes	yes	contig annot
IPS1	Interleukins and interferons	yes	yes	contig annot
IKKG	Interleukins and interferons	yes	yes	contig annot
MYD88	Interleukins and interferons	yes	yes	contig annot
C1qT4	Complement cascade	yes	yes	tBLASTx
C1qT5	Complement cascade	yes	yes	contig annot
C3	Complement cascade	yes	yes	contig annot
C4	Complement cascade	yes	yes	tBLASTx
C5	Complement cascade	yes	yes	contig annot
C6	Complement cascade	yes	yes	contig annot
C7	Complement cascade	yes	yes	contig annot
C8	Complement cascade	yes	yes	contig annot
C9	Complement cascade	yes	yes	contig annot
lgM	B cells and APC's	yes	yes	contig annot
lgb	B cells and APC's	yes	yes	contig annot
lgD	B cells and APC's	yes	yes	contig annot
PTPRC	B cells and APC's	yes	yes	contig annot
CD79A	B cells and APC's	yes	yes	contig annot
CD79B	B cells and APC's	yes	yes	contig annot
CD226	B cells and APC's	yes	yes	tBLASTx
CD40L	B cells and APC's	yes	yes	contig annot
CD40	B cells and APC's	yes	yes	contig annot
BLNK	B cells and APC's	yes	yes	contig annot
IGBP1	B cells and APC's	yes	yes	contig annot
CXCR2	Chemokines and receptors	yes	yes	contig annot
CXCR3	Chemokines and receptors	yes	yes	contig annot
CXCR4	Chemokines and receptors	yes	yes	contig annot
CCR5	Chemokines and receptors	yes	yes	contig annot
CCR6	Chemokines and receptors	yes	yes	contig annot
CCR7	Chemokines and receptors	yes	yes	contig annot
CCR9	Chemokines and receptors	ves	ves	contig annot

Results and discussion

The initial purpose of our study was to characterize a putative standard MHC-based immune system of a teleost species with sex-role reversal, the broad-nosed pipefish *S. typhle*. With primer-directed cloning and sequencing approaches, no gene fragment could be identified that even distantly resembled MHC class IIb. We subsequently performed deep transcriptome sequencing of pathogen-challenged pipefish individuals, where we failed to detect genes crucial for the MHC class II mediated adaptive immune pathways (table 1.1). Most notable is the absence of genes encoding the MHC class IIa and b chain, as well as the CD4+ receptor. By contrast, all genes important for the MHC class I pathway were present, in particular MHC I, b-2 microglobulin, TAP1 and 2 and the complete complement cascade (table 1.1). Further, several chemokine genes and associated receptors, interferones and interleukins were identified (table 1.1).

While the absence of genes directly encoding MHC class II molecules was similar to the situation in cod (Star et al. 2011), the receptor encoding gene (CD8b), which is involved in MHC I recognition via the T-cell receptor (TCR) was absent in pipefish but not cod (table 1.1). Note that CD8b is not mandatory for a MHC I mediated immune response, as CD8a molecules may function as a homodimer (Gao et al. 1997). The antigen recognizing TCRg was also absent. Because the majority of TCRs consist of a/b-heterodimers, functionality of the TCR is still likely (Janeway et al. 2008).

As opposed to cod, where the CD4+ receptor was truncated and non-functional, this gene could not be identified among pipefish transcripts. For the invariant-chain gene, our annotation returned two contigs that aligned almost perfectly to each other, suggesting the same transcript. When translated into the appropriate amino acid sequence, the putative gene model revealed a stop codon approximately 20 amino acid distant from the 3'-end of the gene in other teleosts (see supplementary material, table S.1.7), suggesting a truncated and non-functional invariant-chain gene. However, the invariant chain also binds to MHC class I molecules (Basha et al. 2012).

Thus, even if the identified transcript was functional, this would not provide conclusive evidence for the presence of MHC class II molecules in pipefish.

In our study, we have only captured transcribed genes and not analyzed the genome. It is, therefore, possible that too few APCs carrying MHC class II molecules were present in our RNA preparations. This is unlikely, because all individuals were immune challenged with Vibrio bacteria, the examined tissues harbor specialized cells involved in the MHC class II pathway, and express MHC class II genes (Wegner et al. 2006). Second, we identified

receptors that are uniquely expressed on specialized immune cells such as RAG1 and RAG2 demonstrating that these cell types were present (Oettinger et al. 1990).

It was reported earlier that seahorses and pipefish lack spleen and gut associated lymphatic tissue (Matsunaga and Rahman 1998) and thus possess no morphologically detectable organ where T cells can reside and proliferate (Rauta et al. 2012). Syngnathidae are thus supposed to suffer immune deficiency owing to secondary reduction of the adaptive immune system (Matsunaga and Rahman 1998). Nevertheless, among the Syngnathidae, seahorses (*Hippocampus abdominalis*) are reported to possess a single functional MHC class Ilb-gene locus (Bahr and Wilson 2012) which is, however, divergent in terms of nucleotide sequences from all other Acanthopterygii, in particular in the second exon that codes for the peptide binding region (see supplementary material, table S.1.2). Because the *Syngnathus* genus diverged from the general Syngnathidae lineage 34 Mya (Wilson and Orr 2011), we postulate that the major immune system modification occurred during the cladogenesis of the genus *Syngnathus*.

All cod-like fishes examined thus far seem to lack the MHC class II pathway (Star et al. 2011), a trait previously thought to be a key innovation for vertebrate success. The families Syngnathidae and Gadidae are only distantly related and reciprocally monophyletic (Kawahara et al. 2008, Near et al. 2012), and fish orders that are phylogenetically younger than Syngnathidae possess MHC class II-genes (e.g. many Percomorpha—perch-like fishes). Hence, the absence of the MHC class II pathway in *Syngnathus* can only be explained as a secondary loss independent of (i.e. parallel to) that of cod-like fishes. In the Gadidae, it was speculated that habitats with few pathogens may have facilitated a loss of the MHC class II pathway. Given the ubiquity of macroparasites (Landis et al. 2012) and microparasites (Roth et al. 2012a) infecting *Syngnathus* species in shallow coastal waters, this explanation is unlikely to apply. This suggests that different selection pressures may result in a functional loss of MHC II mediated adaptive immunity. Moreover, the evolutionary flexibility in the organization of the vertebrate adaptive immune system seems to be higher than previously suggested (Star and Jentoft 2012).

Animal experiments were conducted under permission V312-72241.121-19.

This project was financially supported through Volkswagen foundation (to O.R.), and the German Science Foundation (DFG, within SPP1399) to T.B.H.R. We thank Louis Du Pasquier for helpful comments and Katrin Beining for laboratory support.

Chapter 2

Redundancy of the innate immune system results in genotype specific host transcriptome responses to clonal trematode parasite lines in three-spined sticklebacks, *Gasterosteus aculeatus*

David Haase¹, Jennifer K. Rieger¹, Anika Witten², Monika Stoll², Erich Bornberg-Bauer³, Martin Kalbe⁴ and Thorsten B. H. Reusch¹

¹Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz-Centre for Ocean Research Kiel, 24105 Kiel, Germany

²Leibniz Institute of Arteriosclerosis Research, 48149 Münster, Germany

³Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany ⁴Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany

Summary

There is increasing evidence that the distinction between a specific adaptive and an unspecific innate immune response is an oversimplification. The large array of identified receptor types in innate immunity may result in a wide range of possible responses activated by multiple signaling pathways already upon the first encounter of a parasite. Here we used 486 million Illumina RNA-seq reads to show the transcriptomic responses of lab-bred threespined sticklebacks (Gasterosteus aculeatus), singly infected with different clonal lineages of the trematode *Diplostomum pseudospathaceum*. Our data show 691 genes in head kidney and 1246 in gill tissue to be differentially expressed due to the parasite treatment with a clear distinction between shared and clone specific responses. Next to genes commonly expressed as a general response to D. pseudospathaceum infections (SOCS3, JUNB, THBS1, IRF4, IL4RA) we were able to detect the activation of distinct host response pathways depending on the parasite genotype, involving leukocyte-based or complementbased (C3, C4, C5) responses. Our data suggest that parasite genotype influences host receptor mechanisms, which can lead to alternative combinations of response pathways that might be activated upon first recognition of the parasite. The identified genes will provide insight into how the redundancy of the innate immune system can specifically counteract genetically different parasite lineages, further increasing our understanding about specific innate host immune responses.

Introduction

Vertebrate immunity consists of innate and adaptive components. Without delay, pathogens and parasites that enter a host organism are attacked by the innate immune response. It is mediated by macrophages and granulocytes, which detect conserved molecular patterns in pathogens, and enhanced through the activation of chemokines and cytokines (Janeway et al. 2008). Subsequently, after the processing of pathogenic epitopes, antigen-presenting cells trigger the proliferation of T-cells and B-cells, inducing a specific antibody-mediated adaptive immune response (Janeway et al. 2008). Since the receptors involved in innate immunity detect evolutionarily conserved molecular patterns (PAMP = pathogen associated molecular patterns), it is considered to be rather unspecific with respect to the pathogen species, let alone the genotype of a particular pathogen or parasite (Medzhitov and Janeway Jr 1997). However, growing evidence suggests that the distinction between the innate immune response being unspecific and the adaptive response being specific is an oversimplification (Flajnik and Du Pasquier 2004). For example, the large array of already identified receptor types may result in a wide range of possible innate immune responses activated by multiple signaling pathways (Kumar et al. 2011). Second, the innate immune response influences the subsequent activation of the adaptive immune system, for example through activation of T lymphocytes by antigen-presenting cells (Janeway et al. 2008). Taken together, we can expect a combination of innate immune responses and an antibody-mediated adaptive immunity, resulting in a very specific response to foreign pathogens (Nish and Medzhitov 2011). Both elements of the immune system co-occur for the first time in teleost fishes, making them a cornerstone for further understanding the evolution of basic features in vertebrate immune responses (Whyte 2007). Poikilothermic teleosts are well-suited organisms for studying the relative roles of innate vs. adaptive immunity because their adaptive immune system needs up to several weeks (Magnadóttir 2006) to be fully functional against a parasite or pathogen.

At the phenotypic level, it has been shown that upon first exposure the infection success of a parasite depends on the genotype x genotype interactions of host and parasite (Rauch et al. 2006, Lazzaro and Little 2009, Seppälä et al. 2009, De Roode and Altizer 2010), although the genetic basis is currently unknown. In line with these findings, host immune reactions were found to be parasite-clone specific (Koehler and Poulin 2012). This suggests a genetic basis for variation of the innate immune response (Rauch et al. 2006). If the variation exists during pathogen recognition, signaling and/or response is what we want to further explore with this study.

Our study species is the three-spined stickleback (*Gasterosteus aculeatus*), a recently emerging model fish species with outstanding genomic and transcriptomic resources (Gibson 2005, Jones et al. 2012, Feulner et al. 2013). Local adaptation of stickleback populations in northern Germany seems to be, at least partly, driven by different compositions of parasite species (Kalbe et al. 2002) and thus habitat specific immune gene responses (Lenz et al. 2012). Studies on the adaptive immune response of sticklebacks have shown a correlation between macroparasite fauna and diversity of antigen presenting MHC class II alleles in nature (Wegner et al. 2003b). This link between MHC II diversity and resistance to multiple parasite infections has also been proven in experimental studies (Wegner et al. 2003a).

In our experiment we used the digenean trematode *Diplostomum pseudospathaceum* to elicit a specific innate immune response in its fish host. This parasite has a complex life cycle, using freshwater snails and fish as intermediate hosts, before reproducing sexually in piscivorous birds (Chappell et al. 1994). Due to a clonal reproduction stage in the snail host, trematodes are ideal candidates to investigate genotype-specific performance of parasites (Koehler and Poulin 2012). The parasite invades the fish's eye lens to evade the adaptive immune system. Since the time between initial penetration and invasion of the eye lens is less than 24 h (Chappell et al. 1994), innate immunity serves as key response to *D. pseudospathaceum* (Kalbe and Kurtz 2006). In larger doses, the parasite reduces the visual capacities of its fish host, impending feeding efficiency and predator avoidance (Crowden and Broom 1980, Owen et al. 1993).

Here we used next generation mRNA sequencing (RNA-seq) to describe the transcriptional response of naive lab-bred three-spined sticklebacks (*G. aculeatus*) as hosts to mono-clonal and multi-clonal infections with the eye fluke *D. pseudospathaceum*. Transcriptome-wide RNA-seq is a powerful tool to assess expression patterns independent of a candidate gene approach by addressing the whole transcriptome, including the detection of low-expressed genes and alternative splice variants (Marioni et al. 2008). Gene expression differences can be affected by natural selection (Whitehead and Crawford 2006), leading to habitat specific immune responses (Lenz et al. 2013). This makes RNA-seq an appropriate method to investigate specific host gene expression patterns shaped by host-parasite antagonistic coevolution (Lenz et al. 2013).

We examined the mRNA expression patterns in head kidneys, the principal immune organ in fishes (Press and Evensen 1999, Rauta et al. 2012). Our second target organ was the gills, one of the preferred spots for cercarial penetration (Whyte et al. 1990).

We first investigated how a general transcriptomic response against *D. pseudospathaceum* in three-spined sticklebacks is realized by assessing all genes differentially expressed as a function of parasite treatment. Here we expect a set of genes to be differentially expressed in all fishes treated with *D. pseudospathaceum*. In a second step we compared the genes uniquely expressed due to a specific monoclonal treatment, investigating the specificity of a transcriptomic response against a certain parasite genotype and how this influences gene expression patterns.

We also examined the expression of a set of prior defined immune relevant genes in *G. aculeatus*. Our objective was to identify a distinct subset of immune genes putatively responsible as key elements against infections with the parasitic trematode *D. pseudospathaceum* that possess polymorphism at the level of gene expression.

Material & Methods

Establishment of clonal parasite lineages & experimental infection

Clonal lines of *D. pseudospathaceum* were established by collecting parasite eggs from gull feces at the shore of the "Großer Plöner See" (Great Plön Lake) in Plön, Germany (54.159632°N, 10.425442°E). Hatched miracidia were used to infect lab bred freshwater snails of the species Lymnaea stagnalis, the first intermediate host of D. pseudospathaceum. Snails were exposed to single miracidia under controlled conditions in 12-well-plates, ensuring mono-miracidial infections. Eight weeks post infection, snails were isolated and exposed to light for 3h to check for cercaria production. From each of 4 snail pools, infected with miracidia from eggs originating from 4 different gull feces samples, the snail with the highest visible amount of cercaria production was chosen. Genotypes of cercariae emerging from snails were verified using the polymorphisms of 4 microsatellite loci (Diplo08, Diplo09, Diplo23 and Diplo29; Reusch et al. 2004). To increase the amount of available cercariae and avoid snail effects we decided to multiply and propagate specific clonal parasite lineages by establishing each lineage in several host snails. Therefore, groups of lab bred marine sticklebacks (Gasterosteus aculeatus) were exposed to cercariae from individual monomiracidial infected snails to serve as parasite reservoirs. Those fish were sacrificed and fed together with the infective parasite stages to uninfected European Herring Gulls (Larus argentatus). We collected gull feces of all infected gulls over several weeks and used single hatched inbred miracidia to infect in total 692 lab bred L. stagnalis, thus increasing the amount of snails available for a specific clonal parasite lineage. For a larger experiment we thus created several inbred monoclonal parasite lines and outcrossed lines of several genotype combinations (Rieger et al. 2013). Only a subset of those lines was used in this study.

Lab bred three-spined stickleback (*G. aculeatus*) of 4 fish families, originating from the lake "Großer Plöner See", were bred and raised under standardized conditions (Kalbe and Kurtz 2006). After 7 months we randomly selected 12 fish per family and placed them in 11 aquaria. Three individuals per family were either exposed to 100 cercariae of clone I, clone XII, a clone mix (several clonal lineages, containing inbred and outcrossed parasite genotypes; Rieger et al. 2013) or not infected for use as control. All surviving infected snails were assessed for their respective parasite genotype prior to the infection experiment using microsatellites (Rieger et al. 2013). Only cercariae from snails where parasite genotype was unambiguous were used for the infection procedure.

Fish were killed 4h after infection by an incision into the brain, followed by immediate decapitation and separation of gills. Body cavities were opened for instantaneous exposure of inner organs to preserving buffer (RNAlater, Qiagen), in order to avoid RNA degradation. Likewise, fish bodies and separated gills were immediately stored in RNAlater. Since parasite larvae reach the fish eye lens and thus escape the immune system within only a few hours we decided to sample tissues that are likely to show a response to an ongoing infection.

On the other hand, since infection success cannot be reliably determined 4h post infection, an additional 3 fish from the same 4 fish families were exposed to the same parasite treatment under the exact same conditions as mentioned above. After 4 weeks, fish were dissected and eye lenses were checked for metacercariae of *D. pseudospathaceum*.

RNA extraction, library preparation & sequencing of cDNA libraries

After the experiment, whole fish were stored at -20°C in 5 ml tubes filled with RNAlater. Before extraction, gills and head kidney of 48 fish each were extracted via dissection and placed in lysis buffer and β-mercaptoethanol. Extraction was performed using the Macherey-Nagel NucleoSpin 96 RNA kit following the standard protocol. Quantity of RNA was checked using the Qubit Fluorometer (life technologies), and quality using an Experion Automated Electrophoresis system (Bio-Rad). Where RNA concentration was not sufficient, samples were replaced. Resulting total RNA was stored at -80°C. Samples were prepared for sequencing using the Illumina TruSeq RNA Sample Preparation Kit, following the standard protocol. Quality control and quantification of libraries was done using the LapChip® GX (Caliper) and the HT DNA High Sensitivity Kit. For sequencing run, a 1% PhiX control library (PhiX Control Kit v3, Illumina) was added to each Iane. cDNA libraries were sequenced on the Illumina HiScan SQ platform for 2*101 cycles (paired-end), yielding a read length of 101 bp on both ends of the target sequence. We sequenced 32 indexed samples (as part of a 96

sample setup) distributed over one flowcell. Raw image data were transformed and demultiplexed using CASAVA 1.8 software.

DNA extraction & microsatellite PCR

Single cercariae emerging from infected snails were placed in 2 ml Eppendorf tubes. For extraction, 10 μ l 5% Chelex suspension and 1 μ l proteinase K (14 mg/ml dissolved in Tris-HCl, pH 7.5) were added, followed by shaking at 55°C for 15 minutes and 100°C for 30 minutes. Afterwards samples were immediately placed on ice. For PCR, 3 μ l of extracted samples (centrifuged for 1 minute at 4000 rpm) were used. Conditions for PCR were initial denaturation 94°C, 3 minutes followed by 30 cycles of denaturation 94°C, annealing 56°C, elongation 72°C, 30 seconds each and final 72°C elongation for 5 minutes.

Data Analysis

Parasite infection statistics and data visualization

To estimate differences in parasite infection success, a two-way analysis of variance (ANOVA) was performed. Tukey's test was used as posthoc test, including Bonferroni correction to account for multiple testing. Data were square-root transformed to meet assumptions of normality and homogeneity of variances.

Visualization and modification of data sets, as well as statistical analysis of parasite infection data, was done with R (version 2.14.1) (R Core Development Team, 2012) including the software package CUMMERBUND, version 0.1.3 (Goff 2011) and custom made PYTHON scripts, version 3.1.2.

Read alignment and quantification of gene expression

Sequence reads were aligned to the *G. aculeatus* reference genome, version 67, available from ensembl (www.ensembl.org) using TOPHAT (Trapnell et al. 2009) with standard parameters. For statistical analysis we used normalized gene expression values as fragments per kilobase of exon model per million mapped reads (FPKM) modified for paired-end data after RPKM (Mortazavi et al. 2008). The software CUFFLINKS (version 1.3.0) was used for calculation of differential expression with parasite infections as treatments and fish families as replicates within a treatment. CUFFLINKS produces parsimonious sets of transcripts from alignment input leading to an estimation of relative abundances for those transcripts (Trapnell et al. 2010), thus taking biases of library preparation into account. In connection with the reference annotation based transcript (RABT) assembly method

(Roberts et al. 2011) we intended to obtain optimized alignment of reads to their respective gene down to the splice variant level. CUFFLINKS was used with the -N option, providing upper quartile normalization (see CUFFLINKS Manual) which improves the robustness of differential expression calls for less abundant transcripts. The software calculates log2 transformed fold change between two treatments for each gene of a stickleback reference transcriptome for each possible combination of treatments. P-values indicate significance of estimated fold changes with a correction for multiple testing (false discovery rate, FDR < 0.05; Benjamini and Hochberg 1995).

GO annotation and GO term enrichment analysis

The Gene Ontology (GO) project allows a standardized representation of genes and gene product attributes across species (<u>www.geneontology.org</u>). With GO terms we can test for enrichment of specific gene groups expressed under a given treatment against a reference set. This approach allows us to estimate differences between functional characteristics of two distinct gene sets.

Since the annotation of the stickleback reference transcriptome (version 67, <u>www.ensembl.org</u>) is incomplete, BLAST2GO was used for annotation of all referencetranscripts (Conesa et al. 2005). A Blastx search with an e-value threshold of 1e-05 was executed. In addition we performed a GO mapping for all sets of differentially expressed genes, using standard parameters.

GO term enrichment was done using the enrichment analysis function of BLAST2GO. The analysis conducts a Fisher's exact test, testing for the increased presence or absence of functional categories in a given subset of genes, compared to a different set. We tested for differences between both mono-clonal treatments as well as for all genes differentially expressed compared to control versus all known stickleback genes. FDR correction was applied after testing (FDR < 0.05).

Identifying immunity related genes

To estimate differential expression of genes known to be involved in an immune response we extracted human genes tagged with the GO-term "immune system process" (GO:0002376) from the ensembl database (www.ensembl.org) and compared to the stickleback transcriptome. Only genes that could be unambiguously identified in the genome of *G. aculeatus* were kept for further analyses. This set of putative immune relevant genes was completed with a set of selected core immune genes (Star et al. 2011, Haase et al. 2013), resulting in a list containing 1067 putatively immune relevant genes (Supplementary table S. 2.4).

Results

Parasite load (infection success)

Parasite load of infected sticklebacks ranged from 0-4 metacercariae in the eye lenses for *D. pseudospathaceum*-clone I, 0-6 for clone XII and 1-17 for the clone mix treatment (Fig. 2.1). Infection intensity varied significantly among parasite treatments (ANOVA, F = 9.595, P = 0.000867). Fish family as main factor and fish family x treatment interactions had no significant effect on parasite infection success (Table 2.1). A post-hoc test (Tukey's test) showed that differences in parasite infection success were driven by the difference among clone mix vs. single clone treatments (p = 0.0056 against clone I, p = 0.0034 against clone XII) while there were no significant differences between both single *D. pseudospathaceum* clones (Table 2.2).

Fig. 2.1 Parasite load of three-spined sticklebacks, infected with *Diplostomum pseudospathaceum* cercariae. Distribution of total cercaria in stickleback eye lenses per infection treatment.

Table 2.1 Analysis of Variance (ANOVA) for testing differences in infection success of *D. pseudospathaceum* clones in three-spined sticklebacks (*G. aculeatus*) including treatment and fish family (sibship) interactions. Significance codes: *** 0.001 ** 0.01 * 0.05

	df	sum sq	mean sq	F-value	p-value
treatment	2	10.768	5.384	9.595	0.000867 ***
family	3	2.660	0.887	1.580	0.220169
treatment:family	6	7.428	0.8671	2.206	0.077697
residuals	24	13.467	0.561		

Table 2.2 Tukey multiple comparisons of means; 95% family-wise confidence level. The difference in the observed means is displayed by *diff*, *lwr* and *upr* are showing the lower and upper end point of the interval and *p adj* is giving the p-value after bonferroni adjustment for multiple comparisons.

	diff	lwr	upr	p adj
clone XII - clone I	-0.250000	-3.483550	2.983550	0.9803658
clone mix - clone I	4.416667	1.183117	7.650217	0.0055979 **
clone mix - clone XII	4.666667	1.433117	7.900217	0.0033804 **
Read mapping & differential gene expression

RNA sequencing on the Illumina platform led to 29 individual libraries with 486 million valid paired-end reads of 101 nucleotides length, after removal of two samples from gills (clone I, control) and one sample from head kidneys (control). Of those TOPHAT aligned 265 million reads with an average distribution of ~9 million reads per sample (supplementary table S. 2.1). Since CUFFLINKS calculates fold-changes for each gene of any possible combination of two treatments for all 4 treatments, 0.63 million comparisons were made of which 0.36 million were valid. Of those 37945 (10.5%) were significantly differentially expressed. To reliably account only for differences due to our infection treatments, only genes that were significantly different from the tissue specific controls were considered. This further data reduction (filtering) resulted in 1415 and 1060 differentially expressed gene comparisons in gills and head kidneys, respectively. When taking only unique transcripts that were differentially expressed into account, we found 1246 in gill and 691 in head kidney tissue (supplementary table S.2.2 and S.2.3). A subsequent multidimensional scaling plot (MDS, Robinson et al. 2010a) showed a clear distinction between all parasite treatments and a higher divergence among head kidney samples compared to gill tissue derived RNA (supplementary figure S. 2.1). Only a subset thereof was linked to known immune functions (figure 2.2). Distribution of differentially expressed genes can be further divided into genes only active due to a specific parasite clone treatment, genes shared between combinations of two treatments and genes differentially expressed due to the parasite infection in general (supplementary figure S.2.2).

GO term enrichment

We performed a GO term enrichment analysis for the general response against *D. pseudospathaceum*, including only up- or down-regulated genes in either of the two organs. We identified significant enrichment of GO terms under category "Biological Process" in gills as well as head kidneys. Genes belonging to the category "generation of precursor metabolites and energy" (GO:0006091) were down-regulated genes in gills, whereas in head kidneys 7 GO terms were enriched for down-regulated genes (supplementary table S.2.5). Important enriched down-regulated genes in head kidney tissue belonged to metabolic processes (GO:0008152) or to category "response to stimulus" (GO:0050896).

Up-regulated genes show a more complex pattern, revealing a higher number of enriched GO terms (supplementary table S.2.5). In gills, we can find GO terms corresponding to the development of cells and the organization of cellular components as well as genes playing a role in a response to stimulus or in signaling. Up-regulated genes in head kidney tissue revealed enrichment of GO terms related to cell production and cell organization. Abundant interleukins (IL22RA, IL4R, IL6) and interferons (IRF4) indicated the production of immune

relevant cells. This also applies to chemokines (c-c chemokine receptor type 9, c-c chemokine 19 precursor) which play a central role in inflammatory responses (Janeway et al. 2008). We found no GO terms significantly enriched as a function of the infection treatment.

Specific gene expression as a response to parasite genotype

To estimate genes expressed specifically due to a given treatment we assessed the specificity of the gene expression response in sticklebacks due to a mono-clonal infection treatment as well as the differences of a mono-clonal infection and a multi-clonal infection. In order to do so we investigated the expression of genes compared to a set of putative immune genes and observed differential expression in 139 out of 1067 genes. Broken down into tissue specific expression, this led to the detection of 55 immune genes in head kidney and 95 in gills (supplementary table S.2.6 and S.2.7; figure 2.2), which responded to the parasite infection. Interesting patterns emerged from the joint analysis of differential expression of immune relevant genes among both tissues. The majority of differentially expressed immune genes were down-regulated in head kidneys (31 out of 55) and upregulated in gills (85 out of 95). Second, 20 out of 139 immune genes were related to the complement system, including several isoforms of complement component 3 (C3). The complement system is composed of several proteins and can be activated through three pathways: the classical pathway, involving antibodies, the antibody-independent alternative pathway, and the lectin pathway, all of which lead to the generation of factor C3 (Whyte 2007). The distribution of differentially expressed immune related genes allowed us to identify genes concertedly expressed between all treatments as a factor of D. pseudospathaceum infections in general. In head kidney samples, 6 genes were jointly upregulated (THBS1, two isoforms of SOCS3, JUNB, IRF4, IL4RA). In gills only 3 shared upregulated genes could be detected (THBS1, SOCS3, C4A).

Further, we were able to detect infection treatment dependent differences in expression of several genes (supplementary table S.2.6 and S.2.7). In up-regulated genes of head kidney samples, we find 2 only responding to infection by *D. pseudospathaceum*-clone I (HYAL2, PRF1), 3 to clone XII (RGCC, CYP27B1, CCR9) and 6 to the clone mix treatment (ITGA5, SIX1, ATP1B3, MEF2C, MLF1, MYLPF). Uniquely down-regulated were 3 genes in the clone I treatment (KYNU, C3, C7), 2 in clone XII (COL1A1, ZC3HAV1) and 1 in clone mix (VTN).

Up-regulated immune related genes in gills could only be found in clone XII (ITGB1, C6, SLC3A2) and clone mix samples (70 genes, see supplementary table S.2.7). Treatment with clone I resulted in 4 down-regulated genes (GATA2, CASP3, F11R, EPHA2), whereas treatment with the clone mix caused down-regulation of 6 genes (PFDN1, EXOSC5, ATG12, ELMOD2, PRDX3, MHC II beta).

В

A

Fig. 2.2 Venn-Diagram for clone-wise distribution of differentially expressed immune genes in threespined sticklebacks (*G. aculeatus*). Displayed are up-regulated (black) and down-regulated (white) genes in (A) head kidney and (B) gill tissue. Genes shared between treatments and regulated in both

Discussion

With this study we wanted to show differences in host gene expression patterns due to infections with genetically distinct parasite lineages. We provide transcriptomic evidence for innate immune responses in replicated three-spined sticklebacks that are specific to parasite genotypes infecting the fish host. Parasite clones collected under natural conditions are usually connected to a specific host snail individual. Thus, a clone-specific effect in an experimental setup cannot be distinguished from a snail-based effect (Koehler et al. 2012). Since we replicated clonal parasite lineages in a bird host and infected several snails with resulting miracidia, we can rule out this uncertainty.

Hence, we were able to discriminate between genes commonly expressed as a response to *D. pseudospathaceum* infections and those which are uniquely activated as a response against specific clonal lineages of the parasite. The innate immune system is characterized by a coordinated temporal sequence of activation of different parts, which can be activated upon epitope encounter while being down-regulated upon clearance of infection (Janeway et al. 2008). Depending on the receptor types activated during an infection a clone specific combination of innate immune responses might be induced (Kumar et al. 2011).

As a first step towards understanding the interaction of host x parasite genotype interactions, our experiment has not been designed to detect genetic effects on the host side. However, it is likely that host genotype specific changes in immune gene expression would have been detected with a larger setup (Rauch et al. 2006), given that immunity data of another study show that fish family influences immune responses at least partly (Jennifer Rieger, personal communication). Nevertheless, in one of the first deep RNA-seq approaches dealing with different genotypes of a macroparasite, we identified a number of responsive host immune genes that differed among clonal infection treatments.

At the phenotypic level, several studies have found lineage-specific differences in infectivity among trematode clonal lineages which suggest a role of the genetic background of the parasite in infection success (Rauch et al. 2006, Rauch et al. 2008, Koehler and Poulin 2012). In some of these studies, the genetic background of the host was also included into the design to estimate the influence of genotype specific host defenses on parasite infection success (Rauch et al. 2006).

Our data on the transcriptomic reaction of the host to *D. pseudospathaceum* infections are in line with those findings and represent a major step towards understanding the genetic basis of the reported differences. Although we did not observe a significantly different parasite load in sticklebacks between both mono-clonal infection treatments due to high variances, a diverse genetic background resulted in higher infection success compared to both mono-

clonal experimental infections (fig. 2.1). The expression of treatment specific genes seemed at odds with a realized infection rate that was not significantly different among parasite genotypes (table 2.2 and fig. 2.2). It is possible that our estimation of differential gene expression was more precise than the measurement of the infection success.

This was in line with our finding of significant differences in infection success of the multiclonal infection treatment. It has been shown that the infection success of *D. pseudospathaceum* can be higher in mixed infections than in single genotypes, which is primarily due to the genetic diversity of exposure (Karvonen et al. 2012). In addition, a lake environment might harbor a dense population of infected snails, making simultaneous infections with several parasite genotypes more likely than single genotype infections (Rauch et al. 2005, Karvonen et al. 2012).

It has been hypothesized that multiple infections decrease the effectiveness of resource allocation in defense mechanisms (Jokela et al. 2000). If the enhanced diversity of combined *D. pseudospathaceum* lineages increases the pressure on the host, this can reduce the effectiveness of an immune response (Jokela et al. 2000). In this case theory predicts a shift from optimal resource allocation to damage toleration, which could explain the higher infection rates in the clone mix treatment (Jokela et al. 2000).

The down-regulation of genes in head kidneys termed as "response to stimulus" (GO:50896) indicates that the infection triggers a signal which induces the release of immune relevant cells from the head kidney to the site of infection. In gills we could observe that gene groups were involved in signaling (supplementary table S.2.5) and acting as a "response to stimulus" (GO:50896). Considered together, we interpreted this pattern as an activity of gene products released from the immune-relevant organ, head kidney (Press and Evensen 1999, Rauta et al. 2012), to the site of infection, gills (Whyte et al. 1990). Given this assumption, we expected genes which were down-regulated in head kidney samples to be migrating to the site of infection and thus not down-regulated because of deactivation.

The potential to detect significant enrichment of GO terms depends on the quality of an actual GO annotation. A low number of entries in the test sets, compared with an unknown GO-term quality might explain why we don't observe significant over- or underrepresentation between uniquely expressed gene sets. However, the vertebrate immune system is known to exhibit redundancy and alternative routes in a response against pathogens are likely (Nish and Medzhitov 2011). Thus, both gene sets might exert similar functions.

The general immune response against a parasitic worm seems to involve a wide variety of mechanisms. Upon recognition of the parasite the response starts with macrophages and the

activation of the complement system, which are generally present in the surrounding tissue (Janeway et al. 2008) and start attacking upon identification of the parasite. Macrophages are migratory phagocytic cells, capable of pathogen-recognition, cytokine production and antigen-presentation (Janeway et al. 2008). They are influenced by interleukins, which are cytokines produced by lymphocytes, white blood cells involved in the adaptive immune response (Janeway et al. 2008). The complement system is a set of different plasma proteins, involved in pathogen opsonization and induction of inflammatory processes (Janeway et al. 2008). Both macrophages and the complement system have been shown to significantly effect diplostomula survival in rainbow trout (*Oncorhynchus mykiss*; Whyte et al. 1990).

The activated macrophages are additionally expressing and attracting pro-inflammatory gene products like integrins, interferons and interleukins (Janeway et al. 2008). Those further attract macrophages, as well as eosinophil granulocytes, leukocytes which are typically considered the major response against macroparasites like digenean trematodes (Janeway et al. 2008).

For the general immune response against *D. pseudospathaceum* infections many genes were involved in macrophage activation, for example the interleukin-associated gene products THBS1, IRF4 and IL4RA. We can observe cytokine signaling (SOCS3, JUNB), where cytokines are small proteins that influence the behavior of other cells. In addition we find activation of the complement system (C4A). The complement system with its several effector proteins can be activated through three pathways all of which lead to the generation of factor C3 (Whyte 2007). The activation of C3 in turn, is involved in enhanced phagocytosis, recruitment of immune cells, stimulation of B-cell proliferation, activation of inflammatory responses and the membrane attack complex (Whyte 2007).

Among genes differentially expressed due to a specific clonal infection treatment we need to distinguish between head kidney and gill tissue. In head kidneys, we can observe up-regulation of genes involved in cytolytic processes (PRF1) as well as cytokine activation (HYAL2) due to the clone I treatment, but this can also be found in the clone XII treatment (RGCC, CYP27B1) (www.uniprot.org). Contrary to the clone I response we also find CCR9 to be up-regulated in the clone XII treated samples. CCR9 is a chemokine receptor interacting with its ligand TECK, which has been shown to attract dendritic cells and macrophages (Zaballos et al. 1999). Among down-regulated genes we can observe reduced interferon activity (KYNU in clone I, ZC3HAV1 in clone XII) suggesting a migration of macrophage-mediated immunity (Janeway et al. 2008). On the other hand, we observe down-regulation of complement genes in the clone I treatment (C3, C7) and a decreased amount of leukocyte

activity in the clone XII response (COL1A1) (<u>www.uniprot.org</u>). Since we expect immunerelevant cells to migrate from the head kidney to the gills as a response to the parasite treatment, these observations suggest an increased complement-based response due to the clone I treatment compared to an increased leukocyte activity due to the clone XII treatment. This is supported by the genes differentially expressed in the gill tissue, where we observe an increase in leukocyte related genes (ITGB1, SLC3A2) due to the clone XII treatment and a decrease in the clone I treatment (F11R, EPHA2) (<u>www.uniprot.org</u>). However, we do see complement activity due to clone XII (C6) as well as leukocyte activation as a response to clone I (GATA2, CASP3) (<u>www.uniprot.org</u>), which is mediated as decreased expression of negative leukocyte regulation.

Different isoforms of C3 have been detected in other fish species and it seems that antibody reactivities and binding affinities are affected by the type of isoform expressed (Whyte 2007). Interestingly, changes in expression of C3 isoforms due to *D. pseudospathaceum* infections seem to be limited to the treatments involving clone I and/or clone mix (supplementary table S.2.6 and S.2.7). The activation of C4A in gills of all infected fish indicates an activated classical pathway of the complement system, which should also involve C3 (www.uniprot.org). The up-regulation of C6 in gills of fish infected with clone XII however suggests an increased amount of activity for the membrane attack complex (www.uniprot.org). One possible interpretation would be that the complement system as central part in the response to *D. pseudospathaceum* infections is activated via different pathways depending on genotypic background of the parasite strain involved. It has already been proposed that the innate immune response shows a large amount of redundancy at the level of pathogen detection (Nish and Medzhitov 2011).

This redundancy of the innate immune system is also apparent in the clone specific upregulation of the chemokine receptor CCR9 in gills as response to clone I and clone mix infections compared to an up-regulation in head kidneys as a response to clone XII (supplementary table S.2.6). The observed expression pattern may indicate a time shift in the host response to an infection against a specific parasite genotype mediated by a different combination of response pathways (Kumar et al. 2011). Since we cannot fully control the time point or location of an infection but have sequenced replicated fish RNA, the observed differences in expression of CCR9 can be attributed to specific parasite treatments. *D. pseudospathaceum* actively penetrates the skin and migrates to the eye lens of the fish host, it thus needs to produce enzymes capable of disrupting host tissue and protecting itself from the host immune system (Mikeš and Horák 2001). Unfortunately, we cannot distinguish between a delayed activation of specific genes due to an evasion strategy of the parasite

38

towards host immune responses or a delayed infection, e.g. through variable effectiveness of lytic enzymes.

Studies on host responses against pathogenic viruses have shown that the main mechanisms of both innate and adaptive immunity in bony fish are similar to those in mammals (Workenhe et al. 2010). Lenz and colleagues (2013) have shown that population-specific gene expression responses in *G. aculeatus* to parasite exposure, including *D. pseudospathaceum* exist, in line with local adaptation patterns of lake vs. river sticklebacks to their respective parasite assemblages (Lenz et al. 2013). The gene products involved in immune responses against macroparasites such as the genus *Diplostomum* seem to involve macrophages and the complement system but are still not well defined (Whyte et al. 1990, Janeway et al. 2008, Lenz et al. 2013). To the best of our knowledge, there are no data on the host gene expression levels as a function of within-species genetic affiliation and diversity in experimental infection by any macroparasite species.

The observed differences between both single clone treatments can be explained by the redundant possibilities for an innate immune response (Kumar et al. 2011, Nish and Medzhitov 2011). The interactions of host defense pathways can be described as cooperation, complementation and compensation (Nish and Medzhitov 2011). In cooperation, several individual pathways induce an optimal activation of the same effector mechanism, while complementation describes the activation of distinct effector mechanisms that have an additive effect in their combined response (Nish and Medzhitov 2011). Compensation becomes important when host defense pathways are inactivated, for example by parasite induced host immune-modulation or immune system evasion, and receptors can compensate for each other or different effector mechanisms exert functions that have a similar effect (Nish and Medzhitov 2011).

Thus, the genetic background of a specific parasite influences the combination of triggered host receptor mechanisms, resulting in alternative combinations of response pathways (Kumar et al. 2011). One could expect that genetically different *D. pseudospathaceum* lineages are recognized by a different set of receptor molecules, leading to the observed differences in gene expression. This might even involve a regulatory strategy concerning fitness costs, in terms of tissue damaging potential of the immune response, which dictates the order of activated response pathways (Nish and Medzhitov 2011).

Since we sequenced individual samples and used them as replicates in the statistical analysis, taking into account only genes that were differentially expressed compared to control, our findings can only be explained by the genetic background of parasite genotypes used in the infection treatments. This clearly indicates a specific transcriptomic response in the fish host due to a genetically defined parasite infection.

The genes determined to respond to an infection challenging the innate immune response will support new studies focusing on selected immune relevant genes, further increasing our knowledge about vertebrate immune systems.

Acknowledgements

We want to thank Gisela Schmiedeskamp, Gerhard Augustin and Daniel Martens for support with animal care and sample collection. The study was financially supported by the Deutsche Forschungsgemeinschaft (DFG, Priority Programme on Host-parasite Coevolution – SPP 1399), GEOMAR Helmholtz Centre for Ocean Research Kiel and the Max Planck Institute for Evolutionary Biology. Animal experiments were conducted under permission by the 'Ministry of Energy, Agriculture, the Environment and Rural Areas' of the state of Schleswig-Holstein, Germany (reference number: V 313-72241.123-34).

Chapter 3

Transcriptome analysis reveals complex interplay of adaptive and innate immunity in consecutively infected three-spined sticklebacks, *Gasterosteus aculeatus*

Jennifer K. Rieger^{1,*}, David Haase^{1,*}, Anika Witten², Monika Stoll², Erich Bornberg-Bauer³, Martin Kalbe⁴ and Thorsten B. H. Reusch¹

¹Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz-Centre for Ocean Research Kiel, 24105 Kiel, Germany

²Leibniz Institute of Arteriosclerosis Research, 48149 Münster, Germany

³Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany

⁴Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany

*equal contribution

Summary

While innate immune responses in vertebrates are the first line of defense against invading pathogens, the specific adaptive immune response can confer immunological memory and thus increased resistance to certain pathogens. The importance of components of the adaptive immune system in parasite resistance and mate choice have been shown in numerous studies. Additionally it has been shown that gene expression patterns may be specific to particular parasite genotypes, even if these can only be attacked by the innate immune system. However, how the vertebrate immune system reacts to repeated exposure of specific parasite genotypes is poorly understood. In this study, we used transcription profiling via next generation sequencing to investigate the effects of consecutive infections with distinct clonal lineages of the eye fluke Diplostomum pseudospathaceum on gene expression patterns in three-spined sticklebacks (Gasterosteus aculeatus). Specifically, we were interested in identifying a general adaptive immune response to D. pseudospathaceum on the one hand and specific adaptive responses to certain parasite lineages on the other. By subjecting fish to homologous exposures, as well as heterologous final and heterologous pre-exposures, we were able to investigate the relative contributions of immunization and final exposure on gene expression patterns. Finally, we examined differences between innate and adaptive immune mechanisms. We found a significant reduction of infection rates upon repeated exposure to D. pseudospathaceum. In general, the expression patterns of consecutively infected fish showed only very few differentially expressed immune genes regardless of whether they were exposed to homologous or heterologous parasite lineages. Instead, the genetic identity of the first encounter with the parasite appeared to have a larger effect on immune gene expression. Very few genes were jointly up- or down-regulated in both single and multiple exposures. Additionally, the complement system appeared to play an important role for both naive and pre-exposed fish, which is an indication for the close connection of innate and adaptive immune responses.

Introduction

The vertebrate immune system is capable of precise and specific detection of parasites, with the ultimate goal to clear or at least prevent the proliferation of infections. While specificity to certain pathogen epitopes has classically been attributed to adaptive immunity, recent years have seen growing evidence of parasite genotype-specific innate responses on the host side. Both parts of the immune system are intertwined and many researchers are inclined to move away from the artificial dichotomy between the innate and adaptive system and towards an integrative understanding of immunity (Tort et al. 2003, Gardy et al. 2009, Criscitiello and de Figueiredo 2013). While the innate immune response has long been known to activate cell proliferation for an adaptive response (Janeway et al. 2008), adaptive regulation of the innate system is also being increasingly recognised (Shanker 2010).

Classical V(D)J-based adaptive immunity first evolved in poikilothermic jawed fish (Gnathostomata), and has long been regarded similar to that found in mammals (Sunyer 2013). Polymorphism at the major histocompatibility complex (MHC) loci plays a central role in the specific recognition of pathogens. One theory, the optimal diversity hypothesis (Nowak et al. 1992, Wegner et al. 2003a) posits that MHC diversity is under selection by two opposing forces. Selection for receptor diversity via gene duplication and allelic repertoire expansion allows the immune system to recognize more divergent foreign antigen molecules. On the other hand, models have predicted that too many different MHC alleles increase the risk of binding self peptides and autoimmune symptoms (Nowak et al. 1992, Woelfing et al. 2009), and there is empirical evidence from various taxa to supporting this assumptions (Wegner et al. 2003a, Wegner et al. 2003b, Westerdahl et al. 2005, de Bellocg et al. 2008, Kalbe et al. 2009, Lenz et al. 2009b). In three-spined sticklebacks (Gasterosteus aculeatus), this directly involves female mate choice for an optimal set of alleles (Reusch et al. 2001b), leading to enhanced fitness (Eizaguirre et al. 2009). Over longer time scales (~100s of generations) this possibly led to habitat specific immune responses (Lenz et al. 2013) and thus local adaptation of stickleback populations (Kalbe et al. 2002) with habitat-specific immunocompetence (Kalbe and Kurtz 2006).

42

Similar polymorphisms also play a role in innate immunity. For example, different studies have found that variation in toll-like receptor loci translates to variation in pathogen resistance (Schroder and Schumann 2005, Villasenor-Cardoso and Ortega 2011). Thus, genetic vanability in both innate and adaptive immune systems interact to determine the interactions of host and parasite populations. Studies have shown that there is reciprocal interaction between innate and adaptive immune components (Kurtz et al. 2006, Wegner et al. 2007, Shanker 2010) and that there are genotype x genotype interactions influencing parasite infection and innate immune responses in fish (Rauch et al. 2006, chapter 2). The extent to which the genetic diversity within single parasite species influences immune memory and the subsequent activation of adaptive and innate immune responses is still poorly understood.

Here, we use an RNA sequencing approach to investigate underlying gene expression patterns of an adaptive immune response in three-spined sticklebacks, a model fish species with increasing genomic and transcriptomic resources (Gibson 2005, Jones et al. 2012, chapter 2). The adaptive immune response was triggered by consecutive mono-clonal and multi-clonal infections with the eye fluke Diplostomum pseudospathaceum that involved homologous and heterologous challenges with respect to parasite genotype, as well as genetically less diverse (single genotype) and more diverse (multi-clonal = multiple genotype) challenges. This study is part of a larger experiment, where we examined RNA expression patterns of innate immune responses due to genotypically diverse parasite infections (chapter 2). In this paper, we will refer to our findings from the preceding publication and draw upon the data for direct comparison between innate and adaptive immune responses to D. pseudospathaceum clones. Our model parasite has a complex life cycle involving freshwater snails and fish as intermediate hosts, before undergoing sexual reproduction in the intestine of piscivorous birds (Chappell et al. 1994). The snail host harbours a clonal reproduction stage, making trematodes ideal candidates to investigate genotype-specific performance of parasites (Koehler and Poulin 2012). In the fish host, the parasite migrates to the eye lens where it causes cataracts and blindness, thus hampering feeding efficiency and predator avoidance (Crowden and Broom 1980, Owen et al. 1993). Since the parasite quickly invades the fish's eye lens, where it is protected from the immune system, it is of paramount importance for the host to be able to mount a fast and effective response.

The direct sequencing of whole transcriptomes (RNA-seq) is a powerful tool to assess expression patterns with the advantage of being independent of candidate genes (Wang et al. 2009). This includes the detection of low-expressed genes and the expression of alternative splice isoforms (Marioni et al. 2008, Trapnell et al. 2010). We examined the mRNA expression patterns in head kidneys, one of the major immune organs in fishes (Press

and Evensen 1999, Rauta et al. 2012) and gills, one of the preferred spots for cercarial penetration (Whyte et al. 1990).

Next-generation sequencing approaches have already revealed that adaptation of sticklebacks to different environments can lead to habitat-specific immune responses (Lenz et al. 2013). Since we used fish whose parents originated from a population naturally exposed to *D. pseudospathaceum*, we therefore expect similar adaptations in our experimental animals. To further investigate the genetic mechanisms underlying specific adaptive responses to distinct parasite lineages, we repeatedly subjected naïve, laboratory-bred fish to monoclonal or multiclonal mixes of *D. pseudospathaceum* cercariae. We were interested in investigating the expression patterns induced by repeated infection with distinct parasite lineages as well as finding out whether the genetic identity of the priming infections affects the outcome of the final infection. By switching the final infection treatment to a different lineage in part of the experimental fish, we were able to compare transcription patterns induced by homologous and heterologous infections.

In our previous experiment on naive fish (chapter 2), we identified general patterns of gene expression to infection with *D. pseudospathaceum* as well as specific responses to individual parasite clones. In line with these results, we hypothesize to find expression patterns in adaptive immunity that are shared between all consecutive treatments, as well as specific adaptive responses to different *D. pseudospathaceum* genotypes. In addition, we expect to identify genes differentially expressed as a result of a certain pre-exposure, as well as genes being influenced by the final treatment. Finally, by examining differences and similarities of gene expression patterns induced by consecutive infection treatments and those found in single infections, we will investigate the interplay between a mounting adaptive immune memory and innate immune processes.

We will tackle these hypotheses by comparison of different sets of single and consecutive infection treatments. The hypothesized effects on differential gene expression (up- or down-regulation) can be summarized as follows:

H1. General adaptive immune response to *D. pseudospathaceum*, i.e. expression patterns that are shared between all consecutive treatments;

H2. Parasite lineage-specific adaptive response to *D. pseudospathaceum*, i.e. expression patterns that are unique to specific homologous consecutive infections, and may be reflected in the phenotype as differing infection rates;

H3A. Effects of alternative final exposures, i.e. between groups pre-exposed to the same clones and

H3B. Effects of alternative pre-exposures, i.e. between groups with the same final exposure;
H4. Differences between innate and adaptive immune responses, i.e. comparison of singly
exposed naïve fish with consecutively exposed fish.

Overall, this study aimed to reveal how specific different parasite genotypes, here of a **digenean** trematode, influence immune memory in fish and how this is reflected in the **interaction** of innate and adaptive immune responses.

Material & Methods

Initiation of clonal parasite lineages & experimental infection

Snails of the species *Lymnaea stagnalis* were exposed to single *Diplostomum pseudospathaceum* miracidia under controlled conditions. The polymorphisms of 4 microsatellite loci (Diplo08, Diplo09, Diplo23 and Diplo29) were used to verify genotypes of cercariae emerging from snails (Reusch et al. 2004). Lab bred marine sticklebacks (*Gasterosteus aculeatus*) were used as parasite reservoir, sacrificed and fed to uninfected European Herring Gulls (*Larus argentatus*). As part of a larger experiment, gull faeces of all infected gulls were collected over several weeks and lab bred *L. stagnalis* were infected with single hatched parasite larvae, called miracidia (Rieger et al. 2013). Thus we increased the amount of snails containing a specific clonal parasite lineage (see chapter 2 for a full description). Of those established lines the same subset was used as in chapter 2.

The same 4 fish families (sibships) of lab-bred three-spined stickleback as described in chapter 2 were used for the infection treatment. Fish were selected for infection trials 6 months after hatching. We randomly selected 36 fish per sibship and placed them in three 16I aquaria in groups of 12 fish. Over the course of 5 weeks we exposed the fish to either clone I, clone XII or a mix of clonal lineages, containing inbred and outcrossed parasite genotypes (Rieger et al. 2013). To do so, we pooled cercariae, the fish infecting parasite stage, collected from all available snails infected with the same parasite clone and estimated cercariae density per ml. We then added a volume of cercariae suspension to the fish tanks equivalent to the desired amount of 240 cercariae per tank, i.e. 20 per fish. This procedure will be termed pre-exposure throughout this study. Two weeks after the fifth pre-exposure, 6 fish per family pre-exposed to the clone mix and 12 fish per family pre-exposure to single clones ($6^{4}4+12^{4}4^{2} = 120$) were placed into 11 aquaria. 3 fish per sibship per pre-exposure were either exposed to controlled doses of 100 cercariae of clone I, clone XII, clone mix or not infected for use as control (table 3.1); this procedure will be termed final exposure. To

ensure that parasite genotype was unambiguous, the respective parasite genotypes in all surviving infected snails were determined by microsatellite PCR prior to the infection experiment.

Penetrating *D. pseudospathaceum* larvae (termed metacercariae) can take up to 24h to reach the fish's eye lens (Chappell et al. 1994). In order to be able to reliably assess infection rates in fish used for RNA extraction, the controlled-dose infection was repeated after 2 days. Fish were sacrificed 4h after the final treatment (infection or control) by immediate decapitation, separation of gills and lateral incisions for faster penetration with preserving buffer (RNAlater, Qiagen). The fish heads were kept in 0.64% physiological NaCl solution for later assessment of infection rates. Fish were immediately stored in RNA later and frozen after 24h.

final exposure pre-exposure	1	XII	Mix	Control
	НО	-	HE	×
XII		НО	HE	×
Mix	-		НО	×
Control	х	X	х	X

Table 3.1 Overview of pre-exposure - final exposure combinations. Including homologous (HO) and heterologous (HE) infections.

RNA extraction, Library preparation & Sequencing of cDNA libraries

Gills and head kidneys were excised from 48 fish stored in preserving buffer and placed in lysis buffer and β -mercaptoethanol. RNA extraction was performed using the Macherey-Nagel NucleoSpin 96 RNA kit following the standard protocol. Quantity and quality measurements of RNA as well as library preparation and final sequencing were conducted as described in chapter 2 together with the samples analyzed in that study. We sequenced a 96 sample setup on one flow cell with 12 samples per lane distributed over 8 lanes respectively for 2*101 base pairs (paired-end).

DNA extraction & microsatellite PCR

We collected single cercariae from infected snails and placed them in 2ml Eppendorf tubes. Extraction of DNA was performed with 10μ l 5% Chelex suspension and 1μ l proteinase K (14mg/ml dissolved in Tris-HCl, pH 7.5), shaken at 55°C for 15 minutes and 100°C for 30 minutes. 3 μ l of extracted samples were used for PCR. Conditions were initial denaturation for 3 minutes at 94°C followed by 30 cycles of denaturation 94°C, annealing 56°C, elongation 72°C, 30 seconds each and final 72°C elongation for 5 minutes (chapter 2).

Parasite infection statistics

All statistical analyses of parasite infection data were carried out using R (version 2.14.1; R Core Development Team, 2012). A full negative binomial generalized linear model was fitted to the infection rate data, including *pre-exposure*, *treatment*, *fish sibship* and interactions thereof as explanatory variables (Venables et al. 2002). We reduced the model by removing insignificant terms and compared it to the null model using the *anova* function. Individual levels of the treatments were compared with Tukey contrasts using the glht function (package multcomp). Since we were only interested in comparing the levels of the treatments and pre-exposures rather than the interactions, and since the treatments and pre-exposures were not fully factorial, contrasts were calculated from a reduced model excluding interaction terms.

The software package cummeRbund, version 0.1.3 (Goff and Trapnell 2011), edgeR (Robinson et al. 2010b) and custom made Python scripts, version 3.1.2, were used for data modification and visualization.

Read alignment and quantification of gene expression

Estimation of differential expression was performed as described in chapter 2. Version 67 of the *G. aculeatus* reference genome (www.ensembl.org) was used to align sequence reads using tophat (Trapnell et al. 2009) with standard parameters. Values for aligned reads were normalized as fragments per kilobase of exon model per million mapped reads (FPKM) modified for paired-end data after RPKM (Mortazavi et al. 2008). Differential expression was calculated with Cufflinks (version 1.3.0), including with parasite infections as treatments and fish families as replicates within a treatment (Trapnell et al. 2010). Calculations were made together with samples from chapter 2 to allow for direct compatibility of significantly expressed genes. Estimated fold changes were corrected for multiple testing (false discovery rate, FDR < 0.05, Benjamini and Hochberg 1995).

GO annotation & GO term enrichment

For estimation of GO term enrichment we used a self-made GO-annotation of the stickleback reference transcriptome (version 67, <u>www.ensembl.org</u>) as described in chapter 2.

Blast2GO (Conesa et al. 2005) was used to calculate GO term enrichment. A Fisher's exact test was conducted, testing for the increased presence or absence of functional categories in a given subset of genes, compared to a different set.

In order to investigate the categories listed in the introduction, a total of 143 separate pairwise comparisons between treatment groups were carried out. These included both comparisons between pooled up- and down-regulated genes and between up-regulated and down-regulated genes considered separately. GO terms that were significantly over- or underrepresented in different treatment groups were determined by direct pairwise comparison of each combination of these groups according to the pre-formulated hypotheses, with always one arbitrary group serving as the respective reference. Groups consisted of genes that were either unique to a specific treatment groups or all genes differentially expressed within a given treatment group. For a general representation of GO terms, groups were also tested using the entire transcriptome as a reference. Only GO terms that are classed as 'biological process' include information on immune processes and were thus considered further. FDR correction was applied after testing (FDR < 0.05).

Putative immune genes

We estimated differential expression of putative immune-relevant genes by extracting human genes tagged with the GO-term "immune system process" (GO:0002376) from the ensembl database (www.ensembl.org) and compared them to the stickleback transcriptome (chapter 2). Only genes that could be unambiguously identified in *G. aculeatus* were kept for further analyses and completed with a set of selected immune genes identified in cod and pipefish (Star et al. 2011, Haase et al. 2013). This led to 1067 putatively immune relevant genes (supplementary table S.2.4). Since in our previous experiment on innate immunity (chapter 2) we found the complement system to play a key role in sticklebacks' immune defense against *D. pseudospathaceum*, the corresponding expression patterns have been regarded in more detail.

Results

Parasite infection rates

A total of 118 fish were infected, of which only a subset (one per sibship*pre-exposure*final exposure combination, equalling 48 fish) was subjected to mRNA-sequencing. Since not enough fish from sibship 10x15 that were pre-exposed to clone XII were available, 2 replicates had to be omitted. Thus, treatment groups XII- M and XII-control had to be reduced by 1 fish each (final no = two per sibship*pre-exposure*final exposure combination).

Infection rates ranged from 0-17 metacercariae per fish. The highest infection rates were caused by the clone mix (mean 3.3 ± 3.8 metacercariae per fish). Treatment with clone I and XII resulted in mean infection rates of 1.25 ± 1.42 and 1.8 ± 1.4 metacercariae per fish, respectively. Pre-exposure to either clone considerably lowered infection rates in all treatment groups when compared to controls. On average, naive fish exhibited infection rates of 4.1 ± 3.9 metacercariae per fish, whereas fish pre-exposed to clone I, XII or a mix of clones had 1.0 ± 1.3 , 1.0 ± 1.3 and 0.8 ± 1.6 metacercariae per fish, respectively (figure 3.1 & 3.2).

Chapter 3

Figure 3.2 Barplot showing infection rates (mean ± SD) within A) different pre-exposure and B) different final exposure groups. Stars indicate the results of Tukey contrasts. Significance codes: <0.001 '***', 0.001 '**'

The best fitting model included *final exposure*, *pre-exposure*, *fish sibship* as well as interactions between *final exposure* and *pre-exposure* and between *final exposure* and *sibship* (table 3.2A). Removing any of these terms from the model resulted in a worse model fit, as indicated by a higher AIC value (Akaike information criterion; see table 3.2B).

Table 3.2 Comparison of generalized linear models fit to infection rates of *Diplostomum pseudospathaceum* in the three-spined stickleback, *Gasterosteus aculeatus*. final=final exposure; pre=pre-exposure; sib=fish sibship; The Akaike information criterion (Akaike 1981) is defined as: _2 maximized log-likelihood + 2 number of parameters. Significance codes: <0.001 '**' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

	Model fit	Comparison to null model		
Effect (Model formula)	Residual Deviance	AIC	P-value	
(A) pre + final + sib + pre:final + final:sib + pre:sib	127.40	455.62	5.990e ⁻⁰⁹ ***	
(B) pre + final + sib + pre:final + final:sib	132	446.24	2.604e ⁻¹⁰ ***	
(C) pre + final + sib + pre:final	137.24	451.05	1.683e ⁻⁰⁹ ***	
(D) pre + final + sib + final:sib	134.97	451.07	1.842e ⁻⁰⁹ ***	

An analysis of deviance revealed a strong effect of both pre-exposure and final exposure (P<0.001, table 3.3), as well as an interaction effect of both final exposure and pre-exposure and final exposure and sibship (P=0.011 and 0.007, respectively). The latter may point to genotype x genotype interactions between host and parasite that have been observed earlier (Rauch et al. 2006). While the interaction term between pre-exposure and final exposure may suggest clone-specific priming effect, the post-hoc test suggests a rather stronger effect of pre-exposure, with all priming treatments being significantly different from controls but no differences between the different pre-exposures (table 3.4, table 3.5). The difference between final exposures is driven by infection rates caused by the clone mix, which is significantly higher than both those of clone I and clone XII. We fitted an additional generalized linear model to the data dividing experimental fish into homologous, heterologous and naive groups only. Infection rates significantly differed between these groups (analysis of deviance, p=9.208e-09). However, while all pre-exposed fish had significantly lower infection rates than naive fish, there was no significant difference between homologous and heterologous groups (Tukey contrasts, naive-homologous: z=-5.072, p<1e-05; naive-heterologous: z=-4.844, p<1e-05; homologous-heterologous: z=0.711, p=0.756).

51

Table 3.3 Results of deviance analysis, indicating the respective contributions of final exposure, preexposure, fish sibship and second-degree interactions to infection intensities of *Diplostomum pseudospathaceum* in three-spined stickleback, *Gasterosteus aculeatus*. Significance codes: <0.001 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effect	Df	Deviance	Resid. Df	Resid. Dev	P-value	
pre-exposure	3	61.527	118	200.94	2.773e-13	***
final exposure	2	33.536	116	167.41	5.220e-08	***
sibship	3	4.697	113	162.71	0.195	
pre x final	4	13.059	109	149.65	0.011	*
final x sibship	6	17.600	103	132.05	0.007	**

Table 3.4 Tukey contrasts comparing the infection rates of single clones of *Diplostomum pseudospathaceum* (I, XII), as well as a mix of clones (M) in three-spined sticklebacks, *Gasterosteus aculeatus*, averaged over pre-exposure and sibship. Tukey contrasts were calculated from a reduced generalized linear model including final exposure, pre-exposure and fish sibship without interaction terms. Signif. codes: <0.001 '***' 0.001 '**' 0.05 '.' (Adjusted p values reported -- single-step method)

Comparison	Estimate	Std. Error	z value	P-value	
XII vs. I	0.4530	0.2334	1.941	0.1263	
M vs. I	1.0118	0.2162	4.681	<1e-04	***
M vs. XII	0.5588	0.1958	2.853	0.0119	*

Table 3.5 Tukey contrasts comparing infection success of *Diplostomum pseudospathaceum* in threespined sticklebacks, *Gasterosteus aculeatus*, that were pre-exposed to different clones of *D. pseudospathaceum* (I, XII) a mix of clones (M), or sham-exposed as a control. Infection rates were averaged over final exposure and sibship. Tukey contrasts were calculated from a reduced model including final exposure, pre-exposure and fish sibship without interaction terms. Signif. codes: <0.001 '***' 0.001 '**' 0.01 '*' 0.05 '.' (Adjusted p values reported -- single-step method)

Comparison	Estimate	Std. Error	z value	P-value	
I vs. control	-1.0032	0.2055	-4.882	< 1e-04	***
XII vs. control	-1.0246	0.2090	-4.902	< 1e-04	***
Mix vs. control	-1.3374	0.3130	-4.273	0.000103	***
XII vs. I	-0.0214	0.2407	-0.089	0.999737	
Mix vs. I	-0.3342	0.3354	-0.996	0.743881	
Mix vs. XII	-0.3128	0.3385	-0.924	0.785206	

Read mapping & differential gene expression

Illumina sequencing produced a total of 990 million valid paired-end reads of 101 nucleotides length. 7 samples from gills were of low quality and had to be removed from further analyses. This led to samples with 4 replicates for the treatments I-I, I-C and XII-C in gills but only 3 replicates per treatment for I-M, XII-XII, M-M and 2 replicates for M-C and XII-M in gills. All samples of head kidney tissue were valid, resulting in a total of 57 individual libraries. Of those TOPHAT aligned 530 million reads with an average distribution of ~9 million reads per sample (supplementary table S.3.1).

We checked for differential expression of genes in all homologous consecutive treatments (H1, H2) and all heterologous consecutive treatments (H3a, H3b). Significant differences were filtered with reference to the respective control treatments, i.e. I-I and I-M compared to I-C, XII-XII and XII-M to XII-C and M-M to M-C. This will account for gene expression differences induced by the final exposure including the effect of the consecutive pre-exposure. We incorporated this filtering step to remove gene expression differences induced by the pre-exposure, which will allow us to identify only genes that were differentially expressed during the last step of the parasite treatments. We found 1946 differentially expressed gene comparisons, consisting of 1187 genes. 690 unique transcripts were differentially expressed in gill and 585 in head kidney tissue (supplementary table S.3.2 and S.3.3).

Identified genes were visualized in a multidimensional scaling plot (MDS, Robinson et al. 2010b). The plots display similarity of the treatments by means of proximity, i.e. increasing divergence between gene expression patterns with increasing distance. In gill tissue, we observed little differentiation between treatments on both axes without clear groupings; in particular the homologous treatments were not clearly separated from one another. In head kidney samples we observed a clear distinction between the homologous consecutive treatments and a tight clustering of heterologous samples. The heterologous treatments, on the other hand, were quite distinct from each other and from their respective homologous counterparts. Interestingly, in the first dimension we saw a clear grouping after final infection (I, XII or M) whereas the second dimension displays the pre-exposure with no clear distinction between monoclonal infections (I and XII) and a clear difference to the multi-clonal pre-exposure (figure 3.3).

Figure 3.3 Multidimensional scaling (MDS) plot based on all genes differentially expressed in A) stickleback gill tissue or B) head kidneys in response to combinations of pre-exposure and treatment with different clones of *Diplostomum pseudospathaceum*. Consecutive treatments are labelled in the format *pre-exposure – final exposure*. Plots were made using the function plotMDS.DGEList of the R package edgeR. Distances are calculated as coefficients of variation of expression between samples for all genes given as input.

Gene ontology (GO) term enrichment

GO term enrichment revealed that most genes discriminating different treatment groups belonged to functional categories involving cellular movement, organization and signaling (see supplementary table S.3.4). Out of the 143 comparisons that were carried out, only 11 yielded significant differences in functional class 'biological process' and were thus considered further. The majority of significant differences were found in head kidneys. Most terms appeared in all of the 5 comparison categories (H1: general adaptive response, H2: specific adaptive response, H3a: effects of alternative final and H3b: alternative pre-exposures, H4: comparison of innate and adaptive immune mechanisms). It may be noted that, in groups treated with clone I, most GO terms were overrepresented when compared to groups treated with different clones. In addition, GO terms were always underrepresented in single-exposure groups when compared to multiple-exposure groups.

Specific gene expression

We compared all differentially expressed genes to the a priori list of putative immune genes. Out of 1067 putative immune-relevant genes, we were able identify 87 to be differentially expressed between the pre-exposure – final exposure combinations in our experiment. 49 putative immune genes were found in gill samples whereas 45 were distributed over head kidney samples. Among those we could identify up- and down-regulated genes with respect to a given treatment (supplementary table S.3.5 and S.3.6). An overview of the numbers of unique and shared genes in the different comparison categories can be found in figures 3.4.1 and 3.4.2. In the following section, we describe the treatment-specific gene expression for both organs and each hypothesis.

Gills

H1: General adaptive response

Among the shared genes, one (LGALS8 (2 of 2)) was different between I-I (up-regulated) and XII-XII (down-regulated) whereas one gene displayed common up-regulation in the XII-XII and M-M treatment (THBS1 (2 of 2)). No genes were jointly expressed between all three treatments.

H2: Specific adaptive response

The comparison of homologous consecutively exposed sticklebacks (I-I, XII-XII, M-M) showed 11 genes uniquely up-regulated in the I-I treatment (CASP3 (4 of 4), ELMOD2, GRAP2, PGLYRP2 (1 of 2), SLC3A2 (2 of 2), SOCS3 (1 of 2), ENSGACG00000001729, VIPR1 (2 of 2), CRISP3, RAG1, RAG2), one in the XII-XII (PVRL1 (2 of 2)) and two in the M-

M treatment (C3 (4 of 8), C7 (1 of 2)). Uniquely down-regulated were only 11 genes in the XII-XII treatment (GEM, ENSGACG0000012797, ENSGACG00000012799, ENSGACG00000012781, IRF4 (2 of 2), ATG12, TAL1, ENSGACG00000019078, ENSGACG00000012783, SOCS1 (2 of 2), ENSGACG0000000336).

H3a: Differences between alternating final exposures

The gene expression response of sticklebacks to an alternating final exposure was estimated by a comparison of I-I vs I-M and XII-XII vs XII-M. In I-I we found 10 genes uniquely upregulated (LGALS8 (2 of 2), ELMOD2, GRAP2, PGLYRP2 (1 of 2), SLC3A2 (2 of 2), ENSGACG00000001729, VIPR1 (2 of 2), CRISP3, RAG1, RAG2) while in I-M 20 genes were uniquely up-regulated (ITGB1 (1 of 2), WAS, KLC1, KIFAP3 (2 of 2), CASP8, HYAL2 (1 of 2), ADSS, PIK3R1 (1 of 2), ENSGACG00000016298, DAB2, C4A, NCF1, ENSGACG00000012769, C6, NFKBIA (1 of 2), CCR9 (1 of 2), RSAD2, USP18, C7 (1 of 2), ENSGACG00000012792). No genes were uniquely down-regulated in either of both treatments, while two genes (CASP3 (4 of 4), SOCS3 (1 of 2)) were jointly up-regulated in I-I and I-M. In XII-XII two genes were unique in XII-XII (GEM, ENSGACG00000012781, IRF4 (2 of 2), ATG12, TAL1, ENSGACG00000019078, ENSGACG00000012783, SOCS1 (2 of 2), LGALS8 (2 of 2), ENSGACG0000000336) and four in XII-M (CXCL12 (2 of 2), C4A, IREB2, AP2S1). Both treatments showed joint down-regulation of two genes (ENSGACG00000012797, ENSGACG00000012799).

H3b: Differences between alternating pre- exposures

When comparing alternative pre-exposure (I-M, XII-M, M-M) we found 20 genes uniquely upregulated in I-M (ITGB1 (1 of 2), WAS, KLC1, KIFAP3 (2 of 2), CASP8, HYAL2 (1 of 2), ADSS, PIK3R1 (1 of 2), ENSGACG00000016298, DAB2, NCF1, ENSGACG00000012769, CASP3 (4 of 4), C6, NFKBIA (1 of 2), CCR9 (1 of 2), RSAD2, USP18, SOCS3 (1 of 2), ENSGACG00000012792) and two in M-M (C3 (4 of 8), THBS1 (2 of 2)). Five genes were uniquely down-regulated in XII-M (ENSGACG00000012797, ENSGACG00000012799, CXCL12 (2 of 2), IREB2, AP2S1). Among shared genes, one (C4A) showed up-regulation in I-M while it was down-regulated in XII-M. One gene displayed common up-regulation between I-M and M-M (C7 (1 of 2)).

H4: Differences between innate and adaptive immune responses

The comparison of consecutive (I-I, XII-XII, M-M) vs single exposure (I, XII, M) showed 10 genes uniquely up-regulated in I-I (LGALS8 (2 of 2), ELMOD2, GRAP2, PGLYRP2 (1 of 2),

SLC3A2 (2 of 2), ENSGACG00000001729, VIPR1 (2 of 2), CRISP3, RAG1, RAG2) and six in I (COL1A1 (2 of 2), C4A, PIK3R1 (1 of 2), NFKBIA (1 of 2), CCR9 (1 of 2), THBS1 (2 of 2)). Uniquely down-regulated were only three genes in I (GATA2 (1 of 2), F11R, EPHA2 (1 of 2)). Shared expression of genes showed one jointly up-regulated in I and I-I (SOCS3 (1 of 2)) as well as one gene (CASP3 (4 of 4)) with up-regulation in I-I and down-regulation in I.

Between XII-XII and XII, one gene was uniquely up-regulated in XII-XII (PVRL1 (2 of 2)) and 10 genes in XII (ITGB1 (1 of 2), C4A, DAB2, C6, SLC3A2 (2 of 2), JUNB (2 of 2), SOCS3 (2 of 2), ITGA5 (1 of 2), ADAM8 (1 of 2), SOCS3 (1 of 2)). Among down-regulated genes only XII-XII showed 12 to be differentially expressed (GEM, ENSGACG00000012797, ENSGACG00000012799, ENSGACG0000012781, IRF4 (2 of 2), ATG12, TAL1, ENSGACG00000019078, ENSGACG00000012783, SOCS1 (2 of 2), LGALS8 (2 of 2), ENSGACG0000000336). One gene was jointly up-regulated of XII-XII and XII (THBS1 (2 of 2)). Among mixed clone exposure, two genes were uniquely up-regulated in M-M (C3 (4 of 8), C7 (1 of 2)) and 81 genes in M (see supplementary table S.2.7 for M and S.3.6 for M-M). Among down-regulated genes, six were present in M (PFDN1, EXOSC5, ATG12, ELMOD2, ENSGACG000000336, PRDX3). One gene was jointly up-regulated in M-M and M (THBS1 (2 of 2)).

Head kidney

H1: General adaptive response

Among shared genes, one was commonly down-regulated in XII-XII and M-M (MYLPF (2 of 2)) whereas one was down-regulated in XII-XII and up-regulated in I-I (MASP1 (2 of 2)). Furthermore 19 genes were down-regulated in XII-XII and up-regulated in M-M, 10 of them complement related genes (APOB (1 of 5), APOB (5 of 5), C3 (1 of 8), C3 (2 of 8), C3 (3 of 8), C3 (4 of 8), C3 (5 of 8), C8A, C8G, C9, CFB, CFP, ENPP2 (2 of 2), ENSGACG0000003030, ENSGACG0000014811, ENSGACG00000014852, PGLYRP2 (2 of 2), SERPING1, SUSD2).

H2: Specific adaptive response

When looking at homologous consecutively exposed sticklebacks (I-I, XII-XII, M-M) we found four genes uniquely up-regulated in I-I (ELMOD2, VTN (2 of 2), APOB (2 of 5), PRG4), five in XII-XII (STXBP2, AP2S1, KIF23 (2 of 2), RPA1 (1 of 2), CDK1) and four genes in M-M (ADAMTS13, C8B, CHIA, PVRL1 (2 of 2)). Among uniquely down-regulated genes, we found four in XII-XII (PLG, KYNU, IRF6, C4A) and one in M-M (ADSSL1).

H3a: Differences between alternating final exposures

The alternating final exposure (I-I vs I-M and XII-XII vs XII-M) showed no immune-related genes in I-M, thus only in I-I were 5 genes uniquely up-regulated (ELMOD2, PRG4, VTN (2 of 2), APOB (2 of 5), MASP1 (2 of 2)). Between XII-XII and XII-M, five genes were uniquely up-regulated in XII-XII (STXBP2, AP2S1, KIF23 (2 of 2), RPA1 (1 of 2), CDK1) and one gene in XII-M (ITGA6 (1 of 2)). Among down-regulated genes, 15 were found in XII-XII (PLG, ENSGACG00000014811, C3 (4 of 8), APOB (5 of 5), C3 (3 of 8), C9, APOB (1 of 5), C3 (1 of 8), C3 (5 of 8), C3 (2 of 8), MASP1 (2 of 2), KYNU, SERPING1, ENPP2 (2 of 2), C4A) and seven in XII-M (MYLPF (1 of 2), ADSSL1, PGLYRP2 (1 of 2), ATP1B3, C7 (1 of 2), APOB (2 of 5), GAS6). Jointly down-regulated in XII-XII and XII-M were 10 genes (C8A, C8G, CFB, CFP, ENSGACG0000003030, ENSGACG0000014852, IRF6, MYLPF (2 of 2), PGLYRP2 (2 of 2), SUSD2).

H3b: Differences between alternating pre- exposures

The comparison of genes differentially expressed due to an alternating preexposure (I-M, XII-M, M-M) showed 15 genes uniquely up-regulated in M-M (ADAMTS13, ENPP2 (2 of 2), SERPING1, C9, C3 (5 of 8), APOB (1 of 5), C3 (1 of 8), C3 (3 of 8), C3 (4 of 8), C8B, C3 (2 of 8), CHIA, APOB (5 of 5), PVRL1 (2 of 2), ENSGACG00000014811) and one in XII-M (ITGA6 (1 of 2)). Among down-regulated genes only XII-M showed seven to be differentially expressed (MYLPF (1 of 2), IRF6, PGLYRP2 (1 of 2), ATP1B3, C7 (1 of 2), APOB (2 of 5), GAS6). Shared genes were two jointly down-regulated in XII-M and M-M (ADSSL1, MYLPF (2 of 2)) and eight down-regulated in XII-M while up-regulated in M-M (C8A, C8G, CFB, CFP, ENSGACG0000003030, ENSGACG0000014852, PGLYRP2 (2 of 2), SUSD2).

H4: Differences between innate and adaptive immune responses

The comparison of consecutive (I-I, XII-XII, M-M) vs single exposure (I, XII, M) showed four genes uniquely up-regulated in I-I (ELMOD2, APOB (2 of 5), PRG4, MASP1 (2 of 2)) and nine in I (HYAL2 (1 of 2), IRF4 (2 of 2), JUNB (1 of 2), ENSGACG00000016298, PRF1 (2 of 5), THBS1 (2 of 2), SOCS3 (2 of 2), JUNB (2 of 2), SOCS3 (1 of 2))). Unique down-regulation of 31 genes was observed in I (APOB (5 of 5), PGLYRP2 (2 of 2), APOB (1 of 5), C8G, C3 (1 of 8), C8B, C3 (4 of 8), C3 (5 of 8), C3 (3 of 8), PLG, CFP, C8A, SUSD2, C9, ENSGACG00000014852, PVRL1 (2 of 2), ENSGACG00000014811, C3 (2 of 8), ENSGACG00000014852, PVRL1 (2 of 2), CFB, SERPING1, C6, ENPP2 (2 of 2), KYNU, C7 (1 of 2), ADSSL1, C3 (8 of 8), MYLPF (2 of 2), C3 (7 of 8), ADAMTS13). One gene was up-regulated in I-I while down-regulated in I (VTN (2 of 2)).

When looking at XII-XII and XII, we found five genes uniquely up-regulated in XII-XII (STXBP2, AP2S1, KIF23 (2 of 2), RPA1 (1 of 2), CDK1) and 13 in XII (ADAMTS13, IRF4 (2 of 2), RGCC, ENSGACG0000016298, CYP27B1, THBS1 (2 of 2), JUNB (1 of 2), CCR9 (1 of 2), CRIP2 (2 of 2), PIP5K1C (2 of 2), JUNB (2 of 2), SOCS3 (2 of 2), SOCS3 (1 of 2)). Down-regulated were genes 22 in XII-XII (C8G, PLG, PGLYRP2 (2 of 2), ENSGACG0000014811, C8A, C3 (4 of 8), APOB (5 of 5), C3 (3 of 8), C9, APOB (1 of 5), C3 (1 of 8), C3 (5 of 8), C3 (2 of 8), SUSD2, CFP, MASP1 (2 of 2), CFB, KYNU, SERPING1, ENPP2 (2 of 2), IRF6, C4A) and three genes in XII (PVRL1 (2 of 2), COL1A1 (2 of 2), ZC3HAV1). Among shared genes, one was jointly down-regulated in XII-XII and XII (MYLPF (2 of 2)), while two were down-regulated in XII-XII and up-regulated in XII (ENSGACG0000003030, ENSGACG0000014852).

The mixed clone exposure revealed three genes uniquely up-regulated in M-M (ADAMTS13, CHIA, PVRL1 (2 of 2)) and 14 in M (IRF4 (2 of 2), ITGA5 (1 of 2), THBS1 (2 of 2), ENSGACG00000016298, SOCS3 (2 of 2), SIX1, JUNB (2 of 2), PIP5K1C (2 of 2), ATP1B3, CRIP2 (2 of 2), MEF2C (2 of 2), SOCS3 (1 of 2), MLF1, MYLPF (1 of 2)). Uniquely down-regulated was one gene in M-M (MYLPF (2 of 2)) and six genes in M (VTN (1 of 2), PLG, G6PD (2 of 2), VTN (2 of 2), C6, C3 (8 of 8)). Among shared genes, one (ADSSL1) was down-regulated in M-M and up-regulated in M, whereas 20 genes were up-regulated in M-M while down-regulated in M (APOB (1 of 5), APOB (5 of 5), C3 (1 of 8), C3 (2 of 8), C3 (3 of 8), C3 (4 of 8), C3 (5 of 8), C8A, C8B, C8G, C9, CFB, CFP, ENPP2 (2 of 2), ENSGACG0000003030, ENSGACG0000014811, ENSGACG00000014852, PGLYRP2 (2 of 2), SERPING1, SUSD2).

Among differentially expressed genes, the clearest pattern could be found in the regulation of genes involved in the complement and coagulation cascades. Genes of the complement system (C3, C4, C5, C6, C7, C8, C9, CFP, CFB, PLG, MASP1, SERPING1) were found to be active in all treatments. When clustered for similarity of expression, head kidney samples of consecutively exposed fish showed a clear distinction between I-I and XII-XII, whereas samples with M as final exposure (I-M, XII-M, M-M) cluster in between, with a I-M and XII-M being more similar to each other than to M-M (figure 3.5).

		Cha	apter 3			
I-I 04 00 00 00 00	00 00 01 00 00 00 00 00	XII-XII 05 04 00 01 19		I-M 00 00 00 00 00	00 00 00 00 00 00 15 00	XII-M 01 07 00 02 08
	M-N	1 a			M-M	b
1-1		I-M		XII-XII		XII-M
05 00	00 00 00	00 00		05 15	00 10 00	01 07
	С				d	
1-1		1		XII-XII		XII
04 00	00 00 01	09 31		05 22	00 01 02	13 03
	е				f	
		M-M		М		
		03 01	00 00 21	14 06		
					g	

Figure 3.4.1 Differentially expressed immune genes in head kidney samples. Shown are up- and down-regulated genes (numbers from top down, first and second) as well as genes with different direction of regulation (third number if present) and whether they are shared or uniquely expressed between treatments. a) consecutive homologous infections; b) alternative pre-exposure; c & d) alternative final exposure; e - g) multiple vs single exposure. See also supplementary table S.3.5.

Chapter 3

I-I 11 00 00 00 00	00 00 01 00 00 00 00 00 00 M-M	XII-XII 01 11 00 00	a		I-M 20 00 01 00 00	00 00 01 00 00 00 02 00 M-M	XII-M 00 05 00 00 00	b
I-I		I-M			XII-XII		XII-M	
10 00	02 00 00	20 00			02 10	00 02 00	00 04	
	С					d		
1-1		I			XII-XII		XII	
10 00	01 00 01	06 03			01 12	01 00 00	10 00	
	е					f		
		N	1-M		М			
		02 00		01 00 00	81 00			
						g		

Figure 3.4.2 Differentially expressed immune genes in gill samples. Shown are up- and down-regulated genes (numbers from top down, first and second) as well as genes with different direction of regulation (third number if present) and whether they are shared or uniquely expressed between treatments. a) consecutive homologous infections; b) alternative pre-exposure; c & d) alternative final exposure; e - g) multiple vs single exposure. See also supplementary table S.3.6.

Chapter 3

B Head kidneys

Figure 3.5 Heatmap of gene expression values of genes in the complement pathway in A) gill tissue and B) head kidneys of consecutively infected sticklebacks. Treatments are coded pre-exposure.final_exposure, showing homologous (I.I, XII.XII, M.M) and heterologous (I.M, XII.M) treatments as well as uninfected controls. Hierarchical clustering was performed on log10+1 exposure.final_exposure, showing homologous (I.I, XII.XII, M.M) and heterologous treatments as well as uninfected controls. Hierarchical clustering was performed transformed FPKM values with the function heatmap.2 of the R-package gplots.

Discussion

We observed that the clone mix caused the highest infection rates when compared to single clones, which is similar to what we have found in previous experiments (Rieger et al. 2013, chapter 2). This may be due to inbreeding effects lowering the virulence in single clonal lines, whereas cercariae used in mixed infections were allowed to outcross. Moreover, multiple genotype infections may pose an additional challenge for the host immune system and thus result in higher infection rates, a process generally referred to as facilitation (Karvonen et al. 2012). This has been demonstrated for D. pseudospathaceum by Karvonen et al (2012). Even more noticeable, however, was the reduction in final infection rates by pre-exposure to D. pseudospathaceum which points to a gradual built up of immune memory in the fish host. How this is reflected in the gene expression patterns, in particular in immune genes, will be elucidated in the following section where we will attempt to identify general adaptive responses to D. pseudospathaceum in the transcription patterns measured in sticklebacks (H1); identify clone-specific adaptive responses to D. pseudospathaceum (H2); compare groups pre-exposed to the same clones but subjected to different final exposures and vice versa in order to gauge the relative importance of the genetic identity of the first and final infections (H3a and b); contrast our results to the findings from our earlier experiment in order to identify differences between innate and adaptive immune responses (H4).

One of the most surprising results was that we did not find clear and consistent gene transcription patterns that could be identified as a general response to repeated infections with *D. pseudospathaceum*. While there were no differentially expressed genes that were shared between all samples in gill tissue as a function of repeated vs single exposure (figure 3.4.2), the few genes that were shared among head kidney samples followed different directions of regulation, thus they are not indicating a functionally consistent response (figure 3.4.1). Instead, consecutive infection lead to a transcription pattern that is not only distinct from those induced by single infections, but also differs between parasite genotypes entering the fish. This is already apparent from the MDS plot, which shows a clear distinction of transcriptomic responses between different homologous consecutive infections, and is particularly pronounced in the head kidney (figure 3.3).

From the genes that were differentially expressed in response to the different consecutive parasite treatments in our experiment, we can deduce some mechanisms that may be involved in specific immunity against individual clones of *D. pseudospathaceum*. The differing up-regulation of immune genes in head kidneys of homologous-consecutively infected fish indicates a variety of mechanisms in the response to the different parasite genotypes. In treatment I-I we see genes involved in phagocytosis (ELMOD2) and cell migration (VTN and

63

APOB), whereas XII-XII treated fish show activity of genes involved in endocytosis (STXBP2, AP2S1) and antigen presentation (KIF23). In fish subjected to M-M, interleukin related (ADAMTS13, CHIA) and complement activation genes (C8B) are up-regulated (www.uniprot.org). In contrast, we found no or only few differentially expressed genes in heterologous consecutive infections.

When considering the gills as representatives of the periphery of the fishes' bodies, where contact and interaction between parasite and immune system actually takes place, it appears that only fish pre-exposed to clone I exhibit pronounced expression of immune-related genes. Here we find indications of T- and B-cell activation in treatment I-I (up-regulation of CASP3, IL8, RAG1, RAG2) on the one hand, down-regulation of interferon gamma (PGLYRP2) and cytokine signalling (SOCS3) on the other, both of which are involved in macrophage activation (www.uniprot.org). We previously found macrophage activity to be among the first reactions to D. pseudospathaceum (chapter 2). Gene expression patterns in I-I suggest a shift from macrophage activity to a specific adaptive immune response. In I-M treatments we additionally see more complement genes (C4, C6, C7) as well as interleukin (IL4RA), chemokine (CCR9) and immunoglobulin (IgM) activity when compared to I-I (www.uniprot.org). Fish subjected to the M-M and XII-XII treatments show little or no differential expression of immune genes in gill tissue (supplementary table S.3.5 and S.3.6). Comparison of alternative pre-exposures showed hardly any immune genes that were commonly regulated between fish subjected to the same final treatment. So again, we find a strong effect of parasite genotype upon gene expression patterns. Alternative final exposures on the other hand indicated slightly more similarities between different treatment groups preexposed to the same parasite genotype. While treatment I-M showed no differentially expressed immune genes and thus no overlap with treatment I-I, treatment groups XII-XII and XII-M shared more differentially expressed genes than XII-M and I-M (figure 3.4.1 and 3.4.2). In combination with the generally low amount of differentially expressed genes, this indicates that the nature of the final infection influences the composition of the immune response only little, regardless of its genotypic diversity (single clone or clone mix). Instead, the immune response appears to be influenced more strongly by the first encounter with the parasite. This is also reflected by the infection rates, which show a significant decrease of infection success in pre-exposed sticklebacks, regardless of the parasite's genotype or whether the infection was homologous or heterologous.

When comparing our results to the immune response of naïve fish receiving only a single infection (chapter 2), it is clear that consecutive exposure to *Dipostomum* cercariae leads to a more effective immune response, visible as lowered infection rates. Since single and

consecutive infections with the same parasite genotype do not share many differentially expressed genes, the observed pattern is unlikely to be caused solely by a reactivation of proteins already present during an innate response in naive fish (figure 3.4.1 and 3.4.2). Instead, it is possible that consecutive infections induce a number of signaling cascades that in turn activate components of the adaptive immune response. When looking more closely at the response of putative immune genes, however, it is difficult to discern expression patterns that would be unambiguously classified as belonging to the adaptive immune system. This may be due to the nature of RNA sequencing: since our data set encompasses all mRNA present in head kidneys and gills at the time of sampling, we have not only quantified transcripts of cellular immune activity but also any cell migration and proliferation that goes along with it. This is also reflected in the GO term analysis, where enriched terms showed mainly cell movement and organization activity as a response to different parasite treatments (supplementary table S.3.4). These terms were present in all 5 comparison categories (H1: general adaptive response, H2: specific adaptive response, H3a: alternative final exposure, H3b: alternative pre-exposure, H4: innate vs. adaptive), which may indicate replication and migration of immune-relevant cells but cannot be directly identified as immunity related processes.

The clearest pattern within the combined dataset can be found in the complement system, which is best known for eliminating pathogens directly by forming pores in their cell surfaces (Peitsch and Tschopp 1991), but is also involved in opsonization, attracting phagocytes and modulating the adaptive immune response (Winkelstein 1973, Frank and Fries 1991, Carroll 1998). The presence of a large array of complement isoforms when compared to mammals indicates a particularly important role of the complement system in fish, possibly because of the delay in mounting an adaptive immune response in poikilothermic animals (Whyte 2007). In our previous experiment, we already found considerable differences in complement gene expression between fish subjected to the individual clone treatments (chapter 2).

In consecutively exposed fish, a clear clustering could only be observed in head kidney samples, while gill samples showed a generally weaker expression of genes and no distinct treatment clusters (figure 3.5). In fish pre-exposed to clone XII (XII-M, XII-XII), we find a down-regulation of complement genes in head kidneys without a simultaneous up-regulation in gills (supplementary tables S.3.5 and S.3.6). This may be an indication of immune-modulatory activities by the parasite, or of migration of effector cells to peripheral areas of the body other than the gills. Interestingly, a similar set of genes found down-regulated in XII-XII samples was up-regulated in head kidneys in the M-M treatment (supplementary table S. 3.5). Gills of both I-I and XII-XII treated fish showed no differential expression of complement-related genes, whereas C3 and C7 were up-regulated in M-M (supplementary table S.3.6).

65

This highlights the importance of the complement system in both effecting innate immunity as well as mediating adaptive responses. The differences between the expression patterns in the different clonal treatments demonstrate the potential of the stickleback immune system to react specifically to certain parasite genotypes on both innate and adaptive levels. There are indications that the pre-exposure plays a larger role than the final infection itself, as we can see from heterologous consecutive infections (H3). Accordingly, in the XII-M treatment, complement genes are also down-regulated in head kidney (C7, C8, CFP, CFB) as well as gill tissue (C4) (www.uniprot.org). In I-M treated fish, we find no up- or down-regulation of complement genes in HK and up-regulation of C6 and C7 in gills. Thus, expression profiles of treatments with alternating final exposure (I-M, XII-M) are more similar to those found in homologous-infected fish pre-exposed to the same genotypes (I-I, XII-XII) than to each other. This is in line with our findings concerning parasite infection rates, where pre-exposure had the strongest effect and only weak interactions between pre-exposure and treatment could be observed.

Different strategies to attack and clear pathogenic infections have been shown to exist in different fish species. For example, Atlantic cod have recently been shown to have lost the entire MHC class II gene pathway (Star et al. 2011) without compromising their ability to withstand parasite attacks. In pipefish, MHC II also appears to be functionally absent (Haase et al. 2013). In stickleback populations, it has been shown that MHC diversity coincides with the amount and diversity of parasites the fish are likely to encounter during their lifetime (Eizaguirre et al. 2012b). Experiments have confirmed that fish with intermediate, optimised numbers of alleles have the highest parasite resistance (Wegner et al. 2003a, Kurtz et al. 2004), and maximal lifetime reproductive success (Kalbe et al. 2009), when compared to individuals with very high or very low numbers of alleles. MHC based adaptive immunity has also been demonstrated to be subjected to female mate choice (Reusch et al. 2001b), leading to enhanced fitness (Eizaguirre et al. 2009).

It is likely that any adaptation to specific habitats and their characteristic parasite/pathogen assemblage also acts on components of the immune system other than the MHC pathway. For instance, previous studies have shown stickleback ecotypes from lake and river habitats to have differing immunocompetences, probably owing to the larger diversity of parasites present in lakes (Kalbe and Kurtz 2006, Lenz et al. 2013). The evolution of specific responses to certain parasite genotypes, however, is likely to depend on the ecology and population genetics of the respective parasite species. *D. pseudospathaceum*, for example, is a generalist parasite with regard to its fish vector, infecting many freshwater species (Chappell et al. 1994). In addition, it has highly mobile final hosts that are able to disperse the worms over long distances and thus cause admixing. Therefore, populations of *D.*

pseudospathaceum are genetically highly diverse while exhibiting little genetic structuring over large geographical ranges (Louhi et al. 2010). In a study by Rauch et al (2005) very few instances of stickleback infected with more than one of any given *D. pseudospathaceum* clone were found (Rauch et al. 2005). As fish accumulate metacercariae in their eye lenses during the summer season, we would expect sticklebacks to mount an adaptive immune response that is effective against different clones in order to reduce the risk of cataracts and blindness. Nevertheless, genotype x genotype interactions between *D. pseudospathaceum* and uninfected three-spined sticklebacks have been demonstrated (Rauch et al. 2006). Due to considerable redundancy within both innate and adaptive immune systems (Nish and Medzhitov 2011), it is possible that different pathways all lead to similar responses. In addition, many specific immune receptors are able to cross-react with different antigens. A recent study has demonstrated that humans can harbour specific immune memory against foreign antigens which they have not been exposed to (Su et al. 2013). Even though natural populations of *D. pseudospathaceum* are genetically highly polymorphic, our results suggest similar antigenic patterns that may be recognised by the immune system.

While we found genotype-specific immune gene expression in response to different parasite clones in naive fish (chapter 2), pre-exposed fish did not exhibit specific adaptive immune mechanisms that coincided with the genotype of the final infection. This may be an indication of the necessity to mount an effective adaptive immune response covering as much genetic parasite diversity as possible. Nevertheless, our results indicate that the genetic prerequisites for specific immune responses are available as the necessary components for local adaptation. This is in line with the findings of Wegner et al (2007), who found that resistance to D. pseudospathaceum in sticklebacks increased within only one generation of artificial selection (Wegner et al. 2007). The importance of complement-based immunity in an immune response against D. pseudospathaceum as well as the observed differences between singly and consecutively infected fish may be interpreted as a representation of the close interconnection between the innate and adaptive immune systems (Gardy et al. 2009, Shanker 2010, Criscitiello and de Figueiredo 2013). By showing the complex parasite genotype dependencies of host gene expression, our results contribute significantly to the current understanding of the diversity of immune mechanisms in vertebrates. While mRNA abundance cannot be taken as a proxy for protein activity (Feder and Walser 2005), RNA sequencing provides us with a holistic view of the molecular mechanisms triggered upon exposure to a parasite.
Acknowledgements

We would like to thank Gisela Schmiedeskamp, Gerhard Augustin and Daniel Martens who were very helpful with animal care and sample collection. The study was financially supported by the Deutsche Forschungsgemeinschaft (DFG, Priority Programme on Host-parasite Coevolution – SPP 1399), GEOMAR Helmholtz Centre for Ocean Research Kiel and the Max Planck Institute for Evolutionary Biology. Animal experiments were conducted with permission of the 'Ministry of Energy, Agriculture, the Environment and Rural Areas' of the state of Schleswig-Holstein, Germany (reference number: V 313-72241.123-34).

Discussion

Beyond the vertebrate paradigm

In this thesis I have explored transcriptome-wide expression patterns of broad-nosed pipefish (*Syngnathus typhle*) and three-spined sticklebacks (*Gasterosteus aculeatus*) to investigate the specificity and diversity of teleost immune responses. I have shown that broad-nosed pipefish (*S. typhle*) do not show expression of MHC class II associated immune genes (chapter 1). This extraordinary feature has to date been shown only in one other species, the atlantic cod (*Gadus morhua*), although MHC mediated immune memory has long been thought to be a key element in specific immune memory of jawed vertebrates (Janeway et al. 2008, Star et al. 2011). The assumption that only long-lived vertebrates are able to mount a specific immune response with subsequent immune memory has been found to be an oversimplification. Recent experimental work was able to point out immune priming, memory and specificity in invertebrate immune responses (Kurtz and Franz 2003, Little et al. 2003, Robalino et al. 2009). The cellular mechanisms of those immune systems are to date not fully understood.

I have also shown that innate immune responses can depend on the genotypic background of an invading pathogen (chapter 2). On the phenotypic level this has been known before (Rauch et al. 2006) but in the experiment presented here I was able to identify gene expression changes attributable to genetically very distinct trematode infections. Apparently, the innate immune system possesses a variety of receptor mechanisms with the ability to detect pathogenic invaders by several receptor types (Gardy et al. 2009, Nish and Medzhitov 2011). The resulting responses thus show a large amount of diversity within defense mechanisms. They can be limited to certain tissue types and depending on a hierarchy determined by fitness costs of a specific response (Nish and Medzhitov 2011). This knowledge however is mostly based on pathogenic bacteria and viruses, with little knowledge of the mechanisms of innate immunity as a response to macroparasites, such as trematodic worms (Nish and Medzhitov 2011). Due to the tissue damaging potential, innate immunity needs to be efficiently controlled to prevent damage to the host while exerting sufficient pressure on the invading pathogen (Goldszmid and Trinchieri 2012). This control seems to be partly mediated by the activated adaptive immune response (Shanker 2010). It has been shown for example, that T-cells can suppress an innate immune response by down-regulating associated genes (Kim et al. 2007, Shanker 2010). This process even requires MHC molecules but is independent of antigen specificity (Kim et al. 2007, Shanker 2010). Interactions among innate and adaptive immunity in vertebrates have been known for some time. For example, parts of the innate immune response activate and mediate adaptive T cell and B cell based immune responses (Janeway et al. 2008).

To examine the effect of an activated adaptive immune system on gene expression patterns of fish, sticklebacks were consecutively infected over several weeks, including alternating final infections to estimate specificity and variability of the resulting immune gene responses (chapter 3). Interestingly, next to parasite genotype specific responses and a strong effect of previous infections on the gene expression patterns, also differences in genes related to innate immunity were found. Apparently, next to suppression, adaptive immunity can also activate parts of an innate immune response, compensate absent innate responses and can induce combined effects of innate and adaptive immunity resulting in fine-tuning of a maximized host defense (Shanker 2010). Additionally, characteristics of immunological memory have been shown in components of the innate immune system with NK cells bearing virus-specific receptors and macrophages undergoing differentiation and adaptation to repeated exposure (Foster and Medzhitov 2009, Sun et al. 2009, Shanker 2010). The idea that features of adaptive immunity are present in the evolutionary older innate immune system (Shanker 2010) is supported by the accumulating evidence for specific immune responses and immune memory in invertebrates which do not possess a classical V(D)Jbased adaptive immunity (Kurtz 2004).

The complexity of an immune system response is not limited in the interaction of adaptive and innate components. Furthermore, expression of immune relevant genes is controlled via post-transcriptional regulation by microRNAs and post-translational modifications (Gardy et al. 2009). The reaction to repeated pathogen exposure in macrophages for example involves modification of gene packaging histones (Foster and Medzhitov 2009, Shanker 2010). Protein-protein interactions can vary depending on nucleotide variation in the protein binding sites of the host population and innate responses can also depend on the species examined (Gardy et al. 2009). It has already been shown that mouse models, which are commonly used in clinical studies, differ at several points of the adaptive and innate immune system when compared to humans (Mestas and Hughes 2004, Gardy et al. 2009). Although the mechanisms of innate and adaptive immune systems in fishes have been regarded as being similar to mammals (Workenhe et al. 2010, Sunyer 2013), their repertoire and combination of immune relevant mechanisms is more different than previously thought. Teleost fish seem to lack antibody isotope switching (Sunyer 2013) while their innate immune repertoire is more diverse than in mammals (Magnadóttir 2006, Sunyer 2013). Although antibody diversity in fish is lower than in mammals (Du Pasquier 1982, Magnadóttir 2006), with only three immunoglobulin (Ig) classes, IgM, IgD and IgT (Fillatreau et al. 2013), the complexity of immunoglobulin loci of some fish is at least as large as in mammalian species (Fillatreau et

al. 2013). Natural antibodies, as part of an innate immune response, and phagocytic B-cells also seem to play a large role in fish, but similarities to the situation in mammals have still to be examined (Magnadóttir 2006, Whyte 2007). In cod, which lack a MHC class II mediated adaptive immune response (Star et al. 2011), natural antibodies have been shown to mimic a specific antibody response (Magnadóttir 2006). Another feature of teleost fish is the adaptation of the complement system to cold environments where it can remain active at very low (0-4°C) temperatures (Whyte 2007). It is additionally more diversified with several isoforms of C3, one of the central complement component proteins (Whyte 2007), a pattern which plays a role in innate immune reactions of sticklebacks to parasite infections (chapter 2).

Technology under development: issues in obtaining and analyzing RNA-seq data

In my thesis I studied the transcriptomes of two fish species and their gene expression responses to pathogenic challenges. The most popular approaches to study global patterns of RNA abundance are microarray-based hybridization and sequence-based approaches (Wang et al. 2009). Microarray approaches however rely on synthesized sequences and thus are limited to existing knowledge (Wang et al. 2009). RNA-seq is a powerful tool to estimate transcript levels without the need for candidate genes. Both approaches rely on the expectation that a specific stress response induces measurable changes in the transcription of genes. Since mRNA abundances do not equal protein levels, due to several subsequent RNA modification steps, gene expression changes should not be mistaken as indicators for fitness differences (Feder and Walser 2005). Instead I used the transcriptome approach to a specific stress response (Feder and Walser 2005, chapter 1) and to identify genes linked to a specific stress response (Feder and Walser 2005, chapter 2, chapter 3).

In next-generation sequencing, the production of millions of reads is a multistep procedure containing some pitfalls which have to be additionally accounted for when preparing and analyzing RNA-seq data. The preparation of sequencing libraries for instance can introduce a bias, depending on the fragmentation method used (Wang et al. 2009). Most challenges however, come after the sequencing step. All NGS platforms have distinct error profiles that should be accounted for when analyzing the respective sequence data (Miller et al. 2010, Nakamura et al. 2011), although the effects of sequencing errors seem to have low effect on the estimation of differential gene expression (Vijay et al. 2013).

After assessing the quality of my data sets, I either aligned the sequenced reads to a reference genome (chapter 2, chapter 3) or assembled them de novo (chapter 1). To this end many software tools for alignment of reads, like BOWTIE, SOAP and ELAND, or de novo assembly of transcriptomes/genomes, e.g. ABYSS, VELVET or MIRA, have been developed

(see <u>www.seganswers.com</u> for an extended list). The amount of contigs, i.e. contiguous sequences built from short reads, in de novo assemblies depends on the assembly software, coverage and parameters used (Mundry et al. 2012, <u>www.seganswers.com</u>). In case of the MIRA-assembled pipefish transcriptome different transcript isoforms and intronic sequences led to an unusually high amount of contigs. Further filtering steps were not appropriate to gain support for the absence of specific transcripts (chapter 1).

The aligned stickleback reads were further subjected to statistical software packages for quantification and comparison of transcript abundances. To estimate differential expression of transcripts between samples, reads need to be either mapped to a reference genome/ transcriptome or to de novo assembled gene models, quantified and subsequently analyzed by appropriate statistical approaches (Vijay et al. 2013). Statistical analyses of microarray studies have been developed over several years, including guidelines for research design and the development of study-specific statistical models for a better explanation of the observed data (Brazma et al. 2001, Cui and Churchill 2003, Gibson 2003, Zang et al. 2007, Nam and Kim 2008). Since RNA-seq is a relatively new method, compared to microarrays, the statistical framework is less developed, with a higher degree of uncertainty which mathematical model describes the data best (Auer and Doerge 2010, Katz et al. 2010, Trapnell et al. 2010, Kvam et al. 2012, www.seganswers.com). I decided to analyze the stickleback transcriptome data with respect to potentially differential expression of splice variants (chapter 2, chapter 3). For this purpose I chose a software package which combined fast read alignment to a reference genome with the estimation of splice variants and a subsequent statistical test including corrections for multiple testing (Trapnell et al. 2010).

After alignment and quantification of reads I performed an assessment of functional gene categories and their distribution over the dataset. GO term analysis, the characterization of genes into gene groups defined by their "Biological Process", "Molecular Function" or "Cellular Component", is widely used (www.geneontology.org). However, the definition of a certain gene belonging to a specific functional group depends on an annotation process not always directly backed by experimental evidence (www.blast2go.com, Conesa et al. 2005). Functional categorizations can be different between annotations, depending on the parameters used (chapter 2, Conesa et al. 2005). This can lead to incomplete GO annotations or the attribution of genes to very basic functions, e.g. "Biological Process", which have no further discriminatory value. Still the approach is valid to characterize the composition of a set of genes or to examine differences between given datasets, if the limitations of a given GO annotation are known. To extract immune function related genes by their GO term annotation if important immune relevant genes, e.g. the complement system, are not termed as immune related would be misleading (chapter 2). Nonetheless, it is still

possible to estimate differences between gene groups and then have a detailed look at the genes driving an observed difference.

During the fish transcriptome analyses I experienced a more general obstacle in the analysis of NGS data, limitations in computing resources. The output of sequencing machines in terms of base-pairs is increasing since the invention of next-generation sequencing (Mardis 2011), combined with an exponential decrease of the costs per sequenced base (Stein 2010). While large re-sequencing projects such as the "1000 Genomes Project" massively increase the available amount of sequence data via parallel genome sequencing of human genomes (http://www.1000genomes.org/), the cost of storage space is predicted to overtake the costs of data acquisition during the coming "tsunami of genome data" (Stein 2010). Next to hard disk space, bioinformatic analyses can require large amounts of RAM (randomaccess memory), in de novo assemblies currently exceeding the hundredfold of memory available in desktop computers, or CPUs (central processing unit), e.g. in BLAST annotations. I experienced both limitations during the analysis of the S. typhle data, which forced me to subsample datasets for the de novo transcriptome assembly (chapter 1). These analyses require the maintenance of local computing clusters, which need additional resources and need to be upgraded regularly to keep pace with increasing amounts of data (Stein 2010). Bioinformaticians already work on enhancement and development of algorithms to reduce computer resources needed. This includes digital normalization of sequence data, including a reduction of sequence errors (Brown et al. 2012) and enhanced read mapping by including graphical processing power (GPU) to increase performance (http://cibiv.github.com/NextGenMap/). Another solution might be cloud computing, where a distinct amount of computer resources can be virtually rented, allowing calculations without maintaining expensive cluster systems (Stein 2010). However, to date this approach is limited by network bandwidth, not fully developed for NGS data analyses and at the moment marginally more expensive then maintaining an own computer cluster (Stein 2010).

The diversity of immune gene expression in fish

With the onset of next-generation sequencing technologies, studies on repertoire and evolution of fish immune systems have greatly expanded (Morera et al. 2011, Ordas et al. 2011, Star et al. 2011, Zhang et al. 2011, Li et al. 2012, Sarropoulou et al. 2012, Sun et al. 2012, Lenz et al. 2013, Sunyer 2013). With my thesis I contributed to this growing knowledge, being able to show that more than one fish species lack certain features of the adaptive immune response (chapter 1, Star et al. 2011). I have shown that innate immunity shows specific transcriptomic responses depending on the genotypic background of a certain parasite species and that gene expression patterns of consecutively infected sticklebacks are

influenced by previous infections (chapter 2, chapter 3). Especially innate immunity of teleost fish has been of special interest in the last years (Magnadóttir 2006, Whyte 2007, Workenhe et al. 2010). As teleost fish are poikilothermic, adaptive immunity is relatively slow and hence, innate immunity is supposed to play a much more important role in the defense against invading pathogens (Whyte 2007). As with humans and mice, the importance of the innate immune response has been shown to be depending on the fish species of interest and can be different compared with others (Whyte 2007). These findings underline the importance of variation in immune responses in general. Unraveling this variation is our main objective as evolutionary biologists since variation is not only the product but also the source of adaptation and diversification in living organisms. From an evolutionary perspective I can clearly say that the observed gene expression differences are likely the result of selective processes. Depending on the fish species this led to selection against central components of V(D)J-mediated immune memory in pipefish (chapter 1), as well as to a vast amount of possibilities for a specific innate immune response (chapter 2) and parasite genotype dependent cross-reactive immunization mechanics in sticklebacks (chapter 3). Taken together I want to underline that the idea of one archetypical pathway for all vertebrate species is an oversimplification by classical molecular immunology and thus a paradigm which should be changed.

Perspectives

In my thesis I have shown that immune related gene expression of three-spined sticklebacks depends on the genotypic background of a parasite strain (chapter 2, chapter 3). As a next step I want to investigate the genetic contribution of the host to gene expression patterns of an innate immune response. More precisely, I want to disentangle how much of the variability can either be attributed to a random composition of several alternative immune responses or is predetermined by the genetic background of the host in response to the interaction with a certain parasite genotype, which would then be expressed as heritability. To this end a selection experiment was performed with the clonal Diplostomum pseudospathaceum lineages from chapter 2 and chapter 3 to infect three-spined sticklebacks (G. aculeatus) and then those individuals were selected for breeding, which were infected the lowest. Studies on sticklebacks infected with *Diplostomum* have already shown that one generation of selection for resistance can decrease the susceptibility of stickleback offspring against the respective parasite (Wegner et al. 2007). Sticklebacks with a defined genetic background were already selected for resistance against different genotypic lineages of D. pseudospathaceum. I will analyze the transcriptome of those fish by means of Illumina-based RNA-seq to estimate gene expression patterns of fish bred resistant against and then infected with the same or different lineages of Diplostomum. To embed those transcriptome data into an integrated approach, infection success of the parasite and diverse body condition parameters including immune cell production have already been taken. Combined with a thorough statistical analysis this study will boost our understanding on the heritability of gene expression patterns under a selective environment in combination with an in depth knowledge of the phenotypic responses.

I have shown that the transcriptome of broad-nosed pipefish (*S. typhle*) lacks the expression of MHC class II related genes (chapter 1). Together with the absence of MHC class II in cod (*Gadus morhua*), this provides strong evidence that even within the jawed vertebrates different frameworks of adaptive immunity can exist. Different hypotheses are discussed as possible explanations for this unexpected phenomenon (Star and Jentoft 2012). However, evidence in favor for one hypothesis is still scarce (Star and Jentoft 2012). It has been shown that big-belly seahorse (*Hippocampus abdominalis*), a close relative to the Syngnathidae, possess an MHC class II mediated adaptive immune response (Bahr and Wilson 2011), although allelic diversity is surprisingly low (Bahr and Wilson 2012). This, among other factors, makes it very likely that both species lost their MHC class II genes independently,

Perspectives

raising the question of the underlying evolutionary processes which shaped the immune repertoire of both species (chapter 1). These findings challenge our view that differences in the evolution of adaptive immunity in jawed vertebrates are only limited to different preferences in the generation of immunoglobulin diversity (Janeway et al. 2008). Since I could only show that pipefish don't express MHC class II related genes, the amount of traces possibly left in the genome are not known. There are clearly differences in the absence of genes compared to cod, thus further genomic information might highlight species specific compensation for the loss of MHC II in *S. typhle* (chapter 1). Additionally, the sequencing of a pipefish genome would facilitate new studies on different research fields, including ecology, evolution and immunity. We have seen already, that the components of a fish immune system and the importance of adaptive and innate responses depends on the fish species (Whyte 2007) and our understanding on fish immunity comes from a limited subset of the 40,000 known fish species (Fillatreau et al. 2013). Therefore, the immune repertoire of pipefish will be further investigated by a genome sequencing project.

These two projects will help us to unravel the composition of immune relevant genes in broad-nosed pipefish and the heritability of gene expression patterns in three-spined sticklebacks. Taken together this will further increase our knowledge about the evolution of vertebrate immunity and the diversity of immune responses in fish.

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation mit dem Titel:

Diversity and specificity of the teleost immune system

A transcriptome study on two fish species

selbstständig, mit der Unterstützung meiner Betreuer, verfasst habe. Ich habe keine anderen als die angegebenen Hilfsmittel und Quellen verwendet und die Arbeit unter Einhaltung der Regeln guter wissenschaftlicher Praxis der Deutschen Forschungsgemeinschaft erstellt.

Diese Arbeit wurde an keiner anderen Stelle im Rahmen eines Prüfungsverfahrens vorgelegt und ist mein bisher erstes und einziges Promotionsverfahren.

Kapitel 1 dieser Arbeit wurden in der wissenschaftlichen Fachzeitschrift "Biology Letters" veröffentlicht. Die Koautoren aller drei Kapitel finden sich zu Beginn des jeweiligen Kapitels in der Autorenliste. Der Anteil der Autoren an den Manuskripten wird im Abschnitt "Author contributions" erläutert.

Kiel, im Mai 2013

David Haase

Author Contributions

Chapter 1

Haase D*, Roth O*, Kalbe M, Schmiedeskamp G, Scharsack JP, Rosenstiel P, Reusch TBH (2013) Absence of major histocompatibility complex class II mediated immunity in pipefish, *Syngnathus typhle*: evidence from deep transcriptome sequencing. Biol. Lett. 2013 Feb 27;9(2) *equal contribution

TBHR and OR conceived the project. OR performed PCR directed cloning and analyzed the data. PR contributed with sequencing facilities. **DH analyzed high-throughput sequencing data. TBHR wrote the manuscript together with DH and OR.** All authors contributed to the manuscript.

Chapter 2

Haase D, Rieger JK, Witten A, Stoll M, Bornberg-Bauer E, Kalbe M, Reusch TBH: Redundancy of the innate immune system results in genotype specific host transcriptome responses to clonal trematode parasite lines in three-spined sticklebacks, *Gasterosteus aculeatus* (prepared for submission)

TBHR conceived the project. TBHR, EBB and MS applied for funding. **DH and JKR designed and conducted the experiment under the supervision of TBHR and MK.** MK also took part in the experiment. MS and AW contributed with sequencing facilities, EBB with bioinformatic input. **DH analyzed the data and wrote the manuscript under supervision of TBHR.** All authors contributed to the manuscript.

Chapter 3

Rieger JK*, **Haase D***, Witten A, Stoll M, Bornberg-Bauer E, Kalbe M, Reusch TBH: Transcriptome analysis reveals complex interplay of adaptive and innate immunity in consecutively infected three-spined sticklebacks, *Gasterosteus aculeatus* (prepared for submission) *equal contribution

TBHR conceived the project. TBHR, EBB and MS applied for funding. **DH and JKR designed and conducted the experiment under the supervision of TBHR and MK.** MK also took part in the experiment. MS and AW contributed with sequencing facilities, EBB with bioinformatic input. **DH and JKR analyzed the data and wrote the manuscript under supervision of TBHR.** All authors contributed to the manuscript.

Danksagung

Zuerst möchte ich Prof. Dr. Thorsten Reusch für die Gelegenheit zu Promotion, sowie seine Betreuung und Unterstützung bei der Fertigstellung der Arbeit danken.

Dr. Martin Kalbe gebührt großer Dank für seinen unermüdlichen Einsatz im Aufbau und der Durchführung der Experimente. Unvergessen bleibt seine neuentdeckte Freude an Heatmaps und die große Begeisterung bei der Möwenaufzucht.

Ich möchte mich auch bei Jennifer Rieger für die gute Zusammenarbeit bedanken. Ohne ihre Unterstützung wäre dieses Projekt sehr viel schwieriger zu bewältigen gewesen.

Der B45-WG danke ich für den besten Büroalltag, den man sich vorstellen kann. Danke auch an Christophe und Livia für die fachliche Unterstützung. Vielen Dank auch an Sören, Kai, Philipp, Susie, Simone, Regina, Tina und Katrin für die Hilfe bei Fischen, Würmern und anderen Nöten sowie an die EV für die kollegiale Atmosphäre und das tolle Arbeitsklima.

Großer Dank geht auch an Gerhard Augustin und Daniel Martens vom MPI Plön für die viele Hilfe bei der Versorgung der Fische, sowie an Gisela Schmiedeskamp für ihre Unterstützung bei der Möwenaufzucht.

Danke an Mini und Chaperone für Starthilfe und Rückhalt.

Vielen Dank an meine Familie, inklusive Kira. Ebenfalls vielen Dank an Natascha für ihre Unterstützung und die Geduld an stressigen Schreibtagen.

Zu guter Letzt möchte ich noch der "wilden 13" und den "glorreichen 7" für ihren unermüdlichen Einsatz in der Parasitenvermehrung danken. Sollte Ihnen, lieber Leser, einmal eine Möwe auf dem Kopf sitzen, einfach Katzenfutter hinzugeben.

List of publications

I have coauthored the following publication during the time of my dissertation but not included it in my thesis:

Rieger JK, Haase D, Reusch TB, and Kalbe M (2013) Genetic compatibilities, outcrossing rates and fitness consequences across life stages of the trematode *Diplostomum pseudospathaceum*. International journal for parasitology 43:485-491.

References

- Akaike H (1981) Citation Classic a New Look at the Statistical-Model Identification. Cc/Eng Tech Appl Sci:22-22.
- Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, and Pancer Z (2005) Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310:1970-1973.
- Auer PL and Doerge RW (2010) Statistical design and analysis of RNA sequencing data. Genetics 185:405-416.
- Bahr A and Wilson AB (2011) The impact of sex-role reversal on the diversity of the major histocompatibility complex: insights from the seahorse (*Hippocampus abdominalis*). BMC evolutionary biology 11:121.
- Bahr A and Wilson AB (2012) The evolution of MHC diversity: evidence of intralocus gene conversion and recombination in a single-locus system. Gene 497:52-57.
- Basha G, Omilusik K, Chavez-Steenbock A, Reinicke AT, Lack N, Choi KB, and Jefferies WA (2012) A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat Immunol 13:237-245.
- Bell MA and Foster SA (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford ; New York.
- Benesh DP, Chubb JC, and Parker GA (2013) Complex Life Cycles: Why Refrain from Growth before Reproduction in the Adult Niche? Am Nat 181:39-51.
- Benjamini Y and Hochberg Y (1995) Controlling the false discovery rate A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57:289-300.
- Berner D, Grandchamp AC, and Hendry AP (2009) Variable Progress toward Ecological Speciation in Parapatry: Stickleback across Eight Lake-Stream Transitions. Evolution 63:1740-1753.
- Bolnick DI, Snowberg LK, Patenia C, Stutz WE, Ingram T, and Lau OL (2009) Phenotypedependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63:2004-2016.
- Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FCP, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, and Vingron M (2001) Minimum information about a microarray experiment (MIAME) - toward standards for microarray data. Nature Genetics 29:365-371.
- Brown CT, Howe A, Zhang Q, Pyrkosz AB, and Brom TH (2012) A reference-free algorithm for computational normalization of shotgun sequencing data. arXiv preprint arXiv: 1203.4802.
- Brown SP, Renaud F, Guegan JF, and Thomas F (2001) Evolution of trophic transmission in parasites: the need to reach a mating place? Journal of Evolutionary Biology 14:815-820.
- Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annual review of immunology 16:545-568.
- Chappell LH, Hardie LJ, and Secombes CJ (1994) Diplostomiasis: the disease and hostparasite interactions. Pp. 59-86 *in* A. W. Pike, and J. W. Lewis, eds. Parasitic diseases of fish. Samara Publishing Limited, Dyfed, UK.
- Chen YA, Lin CC, Wang CD, Wu HB, and Hwang PI (2007) An optimized procedure greatly improves EST vector contamination removal. BMC genomics 8:416.

- Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, and Suhai S (2004) Using the miraEST Assembler for Reliable and Automated mRNA Transcript Assembly and SNP Detection in Sequenced ESTs. Genome Research 14:1147-1159.
- Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, and Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676.
- Consuegra S and Garcia de Leaniz C (2008) MHC-mediated mate choice increases parasite resistance in salmon. Proceedings. Biological sciences / The Royal Society 275:1397-1403.
- Cooper MD and Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815-822.

Criscitiello MF and de Figueiredo P (2013) Fifty Shades of Immune Defense. Plos Pathog 9.

- Crowden AE and Broom DM (1980) Effects of the eyefluke, *Diplostomum spathaceum*, on the behaviour of dace (*Leuciscus leuciscus*). Animal Behaviour 28:287-294.
- Cui XQ and Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome biology 4.
- de Bellocq JG, Charbonnel N, and Morand S (2008) Coevolutionary relationship between helminth diversity and MHC class II polymorphism in rodents. Journal of Evolutionary Biology 21:1144-1150.
- De Roode JC and Altizer S (2010) Host-parasite genetic interactions and virulencetransmission relationships in natural populations of monarch butterflies. Evolution 64:502-514.
- Du Pasquier L (1982) Antibody diversity in lower vertebrates--why is it so restricted? Nature 296:311-313.
- Eizaguirre C, Lenz TL, Kalbe M, and Milinski M (2012a) Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecology letters 15:723-731.
- Eizaguirre C, Lenz TL, Kalbe M, and Milinski M (2012b) Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nature communications 3:621.
- Eizaguirre C, Lenz TL, Sommerfeld RD, Harrod C, Kalbe M, and Milinski M (2011) Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging three-spined stickleback ecotypes. Evol Ecol 25:605-622.
- Eizaguirre C, Yeates SE, Lenz TL, Kalbe M, and Milinski M (2009) MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol Ecol 18:3316-3329.
- Feder ME and Walser JC (2005) The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol 18:901-910.
- Feulner PGD, Chain FJJ, Panchal M, Eizaguirre C, Kalbe M, Lenz TL, Mundry M, Samonte IE, Stoll M, Milinski M, Reusch TBH, and Bornberg-Bauer E (2013) Genome-wide patterns of standing genetic variation in a marine population of three-spined sticklebacks. Molecular Ecology 22:635-649.
- Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, and Boudinot P (2013) The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Frontiers in immunology 4:28.
- Flajnik MF and Du Pasquier L (2004) Evolution of innate and adaptive immunity: can we draw a line? Trends in immunology 25:640-644.
- Flajnik MF and Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature reviews. Genetics 11:47-59.

- Foster SL and Medzhitov R (2009) Gene-specific control of the TLR-induced inflammatory response. Clin Immunol 130:7-15.
- Frank MM and Fries LF (1991) The role of complement in inflammation and phagocytosis. Immunology today 12:322-326.
- Fry FEJ (1967) Responses of vertebrate poikilotherms to temperature. Pp. 375-409 *in* A. H. Rose, ed. Thermobiology. A.C. Press.
- Gao GF, Tormo J, Gerth UC, Wyer JR, McMichael AJ, Stuart DI, Bell JI, Jones EY, and Jakobsen BK (1997) Crystal structure of the complex between human CD8 alpha alpha and HLA-A2. Nature 387:630-634.
- Gardy JL, Lynn DJ, Brinkman FS, and Hancock RE (2009) Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 30:249-262.
- Gibson G (2003) Microarray analysis Genome-scale hypothesis scanning. Plos Biol 1:28-29.
- Gibson G (2005) The Synthesis and Evolution of a Supermodel. Science 307:1890-1891.
- Goff L and Trapnell C (2011) cummeRbund: The finishing touch on your Tuxedo workflow. Analysis, exploration, manipulation, and visualization of Cufflinks HTS data.
- Goff LT, Cole (2011) cummeRbund: The finishing touch on your Tuxedo workflow. Analysis, exploration, manipulation, and visualization of Cufflinks HTS data.
- Goldszmid RS and Trinchieri G (2012) The price of immunity. Nat Immunol 13:932-938.
- Greenwood AK, Cech JN, and Peichel CL (2012) Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks. Evolution & development 14:351-362.
- Gross JB, Furterer A, Carlson BM, and Stahl BA (2013) An Integrated Transcriptome-Wide Analysis of Cave and Surface Dwelling Astyanax mexicanus. PloS one 8:e55659.
- Haase D, Roth O, Kalbe M, Schmiedeskamp G, Scharsack JP, Rosenstiel P, and Reusch TBH (2013) Absence of major histocompatibility complex class II mediated immunity in pipefish, *Syngnathus typhle*: evidence from deep transcriptome sequencing. Biology Letters 9.
- Hamilton AJ and Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950-952.
- Henrich T, Benesh D, and Kalbe M (2013) Hybridization between two cestode species and its consequences for intermediate host range. Parasites & Vectors 6:33.
- Horvath P and Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167-170.
- Jakobsen PJ, Scharsack JP, Hammerschmidt K, Deines P, Kalbe M, and Milinski M (2012) In vitro transition of *Schistocephalus solidus* (Cestoda) from coracidium to procercoid and from procercoid to plerocercoid. Experimental parasitology 130:267-273.
- Janeway C, Murphy K, Travers P, Walport M, and Janeway C (2008) Janeway's immunobiology. Garland Science.
- Jobling MA, Hurles M, and Tyler-Smith C (2004) Human evolutionary genetics : origins, peoples & disease. Garland Science, New York.
- Jokela J, Schmid-Hempel P, and Rigby MC (2000) Dr. Pangloss restrained by the Red Queen steps towards a unified defence theory. Oikos 89:267-274.
- Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang H, Pollen AA, Howes T, Amemiya C, Baldwin J, Bloom T, Jaffe DB, Nicol R, Wilkinson J, Lander ES, Di Palma F, Lindblad-Toh K, and Kingsley DM (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55-61.

- Kalbe M, Eizaguirre C, Dankert I, Reusch TBH, Sommerfeld RD, Wegner KM, and Milinski M (2009) Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proceedings of the Royal Society B: Biological Sciences 276:925-934.
- Kalbe M and Kurtz J (2006) Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology 132:105-116.
- Kalbe M, Wegner KM, and Reusch TBH (2002) Dispersion patterns of parasites in 0+ year three-spined sticklebacks: a cross population comparison. Journal of Fish Biology 60:1529-1542.
- Karvonen A, Rellstab C, Louhi K-R, and Jokela J (2012) Synchronous attack is advantageous: mixed genotype infections lead to higher infection success in trematode parasites. Proceedings of the Royal Society B: Biological Sciences 279:171-176.
- Katz Y, Wang ET, Airoldi EM, and Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nature methods 7:1009-1015.
- Kawahara R, Miya M, Mabuchi K, Lavoue S, Inoue JG, Satoh TP, Kawaguchi A, and Nishida M (2008) Interrelationships of the 11 gasterosteiform families (sticklebacks, pipefishes, and their relatives): A new perspective based on whole mitogenome sequences from 75 higher teleosts. Mol Phylogenet Evol 46:224-236.
- Kim KD, Zhao J, Auh S, Yang X, Du P, Tang H, and Fu YX (2007) Adaptive immune cells temper initial innate responses. Nature medicine 13:1248-1252.
- Koehler AV and Poulin R (2012) Clone-specific immune reactions in a trematode-crustacean system. Parasitology 139:128-136.
- Koehler AV, Springer YP, Randhawa HS, Leung TLF, Keeney DB, and Poulin R (2012) Genetic and phenotypic influences on clone-level success and host specialization in a generalist parasite. Journal of Evolutionary Biology 25:66-79.
- Kumar H, Kawai T, and Akira S (2011) Pathogen Recognition by the Innate Immune System. International Reviews of Immunology 30:16-34.
- Kurtz J (2004) Memory in the innate and adaptive immune systems. Microbes and Infection 6:1410-1417.
- Kurtz J and Franz K (2003) Innate defence: evidence for memory in invertebrate immunity. Nature 425:37-38.
- Kurtz J, Kalbe M, Aeschlimann PB, Häberli MA, Wegner KM, Reusch TBH, and Milinski M (2004) Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proceedings of the Royal Society of London. Series B: Biological Sciences 271:197-204.
- Kurtz J, Wegner KM, Kalbe M, Reusch TB, Schaschl H, Hasselquist D, and Milinski M (2006) MHC genes and oxidative stress in sticklebacks: an immuno-ecological approach. Proceedings. Biological sciences / The Royal Society 273:1407-1414.
- Kvam VM, Liu P, and Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. American journal of botany 99:248-256.
- Kvarnemo C, Mobley KB, Partridge C, Jones AG, and Ahnesjo I (2011) Evidence of paternal nutrient provisioning to embryos in broad-nosed pipefish *Syngnathus typhle*. J Fish Biol 78:1725-1737.
- Landis SH, Kalbe M, Reusch TB, and Roth O (2012) Consistent pattern of local adaptation during an experimental heat wave in a pipefish-trematode host-parasite system. PloS one 7:e30658.
- Langmead B, Trapnell C, Pop M, and Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology 10.

- Lazzaro BP and Little TJ (2009) Immunity in a variable world. Philosophical Transactions of the Royal Society B: Biological Sciences 364:15-26.
- Ie Rouzic A, Ostbye K, Klepaker TO, Hansen TF, Bernatchez L, Schluter D, and Vollestad LA (2011) Strong and consistent natural selection associated with armour reduction in sticklebacks. Mol Ecol 20:2483-2493.
- Leder EH, Cano JM, Leinonen T, O'Hara RB, Nikinmaa M, Primmer CR, and Merila J (2010) Female-Biased Expression on the X Chromosome as a Key Step in Sex Chromosome Evolution in Threespine Sticklebacks. Mol Biol Evol 27:1495-1503.
- Leder EH, Merila J, and Primmer CR (2009) A flexible whole-genome microarray for transcriptomics in three-spine stickleback (*Gasterosteus aculeatus*). BMC genomics 10:426.
- Leinonen T, Herczeg G, Cano JM, and Merila J (2011) Predation-imposed selection on threespine stickleback (*Gasterosteus aculeatus*) morphology: a test of the refuge use hypothesis. Evolution 65:2916-2926.
- Lenz TL, Eizaguirre C, Rotter B, Kalbe M, and Milinski M (2012) Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis. Molecular Ecology:n/a-n/a.
- Lenz TL, Eizaguirre C, Rotter B, Kalbe M, and Milinski M (2013) Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis. Mol Ecol 22:774-786.
- Lenz TL, Eizaguirre C, Scharsack JP, Kalbe M, and Milinski M (2009a) Disentangling the role of MHC-dependent 'good genes' and 'compatible genes' in mate-choice decisions of three-spined sticklebacks *Gasterosteus aculeatus* under semi-natural conditions. J Fish Biol 75:2122-2142.
- Lenz TL, Wells K, Pfeiffer M, and Sommer S (2009b) Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the Long-tailed giant rat (*Leopoldamys sabanus*). BMC evolutionary biology 9:269.
- Leveelahti L, Leskinen P, Leder EH, Waser W, and Nikinmaa M (2011) Responses of threespine stickleback (*Gasterosteus aculeatus*, L) transcriptome to hypoxia. Comp Biochem Phys D 6:370-381.
- Li C, Zhang Y, Wang R, Lu J, Nandi S, Mohanty S, Terhune J, Liu Z, and Peatman E (2012) RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following *Edwardsiella ictaluri* infection in channel catfish, *Ictalurus punctatus*. Fish Shellfish Immunol 32:816-827.
- Li H and Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760.
- Little TJ, O'Connor B, Colegrave N, Watt K, and Read AF (2003) Maternal transfer of strainspecific immunity in an invertebrate. Current biology : CB 13:489-492.
- Louhi K-R, Karvonen A, Rellstab C, and Jokela J (2010) Is the population genetic structure of complex life cycle parasites determined by the geographic range of the most motile host? Infection, Genetics and Evolution 10:1271-1277.
- Magnadóttir B (2006) Innate immunity of fish (overview). Fish & Shellfish Immunology 20:137-151.
- Mardis ER (2011) A decade's perspective on DNA sequencing technology. Nature 470:198-203.
- Marioni JC, Mason CE, Mane SM, Stephens M, and Gilad Y (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18:1509-1517.
- Martin JA and Wang Z (2011) Next-generation transcriptome assembly. Nature reviews. Genetics 12:671-682.

- Maskos U and Southern EM (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic acids research 20:1679-1684.
- Matsunaga T and Rahman A (1998) What brought the adaptive immune system to vertebrates? The jaw hypothesis and the seahorse. Immunol Rev 166:177-186.
- Matthews B, Harmon LJ, M'Gonigle L, Marchinko KB, and Schaschl H (2010) Sympatric and allopatric divergence of MHC genes in threespine stickleback. PloS one 5:e10948.
- McCairns RJS, Bourget S, and Bernatchez L (2011) Putative causes and consequences of MHC variation within and between locally adapted stickleback demes. Molecular Ecology 20:486-502.
- Medzhitov R and Janeway Jr CA (1997) Innate Immunity: The Virtues of a Nonclonal System of Recognition. Cell 91:295-298.
- Mestas J and Hughes CCW (2004) Of Mice and Not Men: Differences between Mouse and Human Immunology. The Journal of Immunology 172:2731-2738.
- Mikeš L and Horák P (2001) A protein with lectin activity in penetration glands of *Diplostomum pseudospathaceum* cercariae. International journal for parasitology 31:245-252.
- Miller JR, Koren S, and Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95:315-327.
- Morand S, Robert F, and Connors VA (1995) Complexity in Parasite Life-Cycles Population Biology of Cestodes in Fish. J Anim Ecol 64:256-264.
- Morera D, Roher N, Ribas L, Balasch JC, Donate C, Callol A, Boltana S, Roberts S, Goetz G, Goetz FW, and MacKenzie SA (2011) RNA-Seq reveals an integrated immune response in nucleated erythrocytes. PloS one 6:e26998.
- Mortazavi A, Williams BA, McCue K, Schaeffer L, and Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 5:621-628.
- Mundry M, Bornberg-Bauer E, Sammeth M, and Feulner PG (2012) Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach. PloS one 7:e31410.
- Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa S, Linak MC, Hirai A, Takahashi H, Altaf-Ul-Amin M, Ogasawara N, and Kanaya S (2011) Sequence-specific error profile of Illumina sequencers. Nucleic acids research.
- Nam D and Kim SY (2008) Gene-set approach for expression pattern analysis. Brief Bioinform 9:189-197.
- Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, and Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences of the United States of America 109:13698-13703.
- Nish S and Medzhitov R (2011) Host Defense Pathways: Role of Redundancy and Compensation in Infectious Disease Phenotypes. Immunity 34:629-636.
- Nowak MA, Tarczyhornoch K, and Austyn JM (1992) The optimal number of major histocompatibility complex molecules in an individual. Proc Natl Acad Sci USA 89:10896-10899.
- Oettinger MA, Schatz DG, Gorka C, and Baltimore D (1990) Rag-1 and Rag-2, Adjacent Genes That Synergistically Activate V(D)J Recombination. Science 248:1517-1523.
- Ordas A, Hegedus Z, Henkel CV, Stockhammer OW, Butler D, Jansen HJ, Racz P, Mink M, Spaink HP, and Meijer AH (2011) Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to *Salmonella* infection. Fish Shellfish Immunol 31:716-724.

- Owen SF, Barber I, and Hart PJB (1993) Low level infection by eye fluke, Diplostomum spp., affects the vision of three-spined sticklebacks, *Gasterosteus aculeatus*. Journal of Fish Biology 42:803-806.
- Paczolt KA and Jones AG (2010) Post-copulatory sexual selection and sexual conflict in the evolution of male pregnancy. Nature 464:401-404.
- Palstra AP, Beltran S, Burgerhout E, Brittijn SA, Magnoni LJ, Henkel CV, Jansen HJ, van den Thillart GE, Spaink HP, and Planas JV (2013) Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish. PloS one 8:e53171.
- Parker GA, Chubb JC, Ball MA, and Roberts GN (2003) Evolution of complex life cycles in helminth parasites. Nature 425:480-484.
- Peitsch MC and Tschopp J (1991) Assembly of macromolecular pores by immune defense systems. Current opinion in cell biology 3:710-716.
- Penn D and Potts W (1998) MHC-disassortative mating preferences reversed by crossfostering. Proceedings. Biological sciences / The Royal Society 265:1299-1306.
- Petzold A, Reichwald K, Groth M, Taudien S, Hartmann N, Priebe S, Shagin D, Englert C, and Platzer M (2013) The transcript catalogue of the short-lived fish Nothobranchius furzeri provides insights into age-dependent changes of mRNA levels. BMC genomics 14:185.
- Press CM and Evensen \emptyset (1999) The morphology of the immune system in teleost fishes. Fish & Shellfish Immunology 9:309-318.
- Rauch G, Kalbe M, and B.H. Reusch T (2008) Partitioning average competition and extremegenotype effects in genetically diverse infections. Oikos 117:399-405.
- Rauch G, Kalbe M, and Reusch TBH (2005) How a complex life cycle can improve a parasite's sex life. Journal of Evolutionary Biology 18:1069-1075.
- Rauch G, Kalbe M, and Reusch TBH (2006) One day is enough: rapid and specific hostparasite interactions in a stickleback-trematode system. Biology Letters 2:382-384.
- Rauta PR, Nayak B, and Das S (2012) Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunology letters 148:23-33.
- Reusch TB, Wegner KM, and Kalbe M (2001a) Rapid genetic divergence in postglacial populations of threespine stickleback (*Gasterosteus aculeatus*): the role of habitat type, drainage and geographical proximity. Mol Ecol 10:2435-2445.
- Reusch TBH, Haberli MA, Aeschlimann PB, and Milinski M (2001b) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300-302.
- Reusch TBH, Rauch G, and Kalbe M (2004) Polymorphic microsatellite loci for the trematode *Diplostomum pseudospathaceum*. Molecular Ecology Notes 4:577-579.
- Rieger JK, Haase D, Reusch TB, and Kalbe M (2013) Genetic compatibilities, outcrossing rates and fitness consequences across life stages of the trematode *Diplostomum pseudospathaceum*. International journal for parasitology 43:485-491.
- Robalino J, Bartlett T, Shepard E, Prior S, Jaramillo G, Scura E, Chapman RW, Gross PS, Browdy CL, and Warr GW (2005) Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? Journal of virology 79:13561-13571.
- Roberts A, Pimentel H, Trapnell C, and Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27:2325-2329.
- Robinson MD, McCarthy DJ, and Smyth GK (2010a) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139-140.

- Robinson MD, McCarthy DJ, and Smyth GK (2010b) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139-140.
- Roth O, Keller I, Landis SH, Salzburger W, and Reusch TB (2012a) Hosts are ahead in a marine host-parasite coevolutionary arms race: innate immune system adaptation in pipefish *Syngnathus typhle* against Vibrio phylotypes. Evolution 66:2528-2539.
- Roth O, Klein V, Beemelmanns A, Scharsack JP, and Reusch TB (2012b) Male pregnancy and biparental immune priming. Am Nat 180:802-814.
- Roth O, Sadd BM, Schmid-Hempel P, and Kurtz J (2009) Strain-specific priming of resistance in the red flour beetle, *Tribolium castaneum*. P Roy Soc B-Biol Sci 276:145-151.
- Roth O, Scharsack JP, Keller I, and Reusch TB (2011) Bateman's principle and immunity in a sex-role reversed pipefish. J Evol Biol 24:1410-1420.
- Sadd BM and Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Current Biology 16:1206-1210.
- Sanogo YO, Hankison S, Band M, Obregon A, and Bell AM (2011) Brain Transcriptomic Response of Threespine Sticklebacks to Cues of a Predator. Brain Behav Evolut 77:270-285.
- Sarropoulou E, Galindo-Villegas J, Garcia-Alcazar A, Kasapidis P, and Mulero V (2012) Characterization of European sea bass transcripts by RNA SEQ after oral vaccine against V. anguillarum. Mar Biotechnol (NY) 14:634-642.

Scharsack JP, Kalbe M, Derner R, Kurtz J, and Milinski M (2004) Modulation of granulocyte responses in three-spined sticklebacks Gasterosteus aculeatus infected with the tapeworm *Schistocephalus solidus*. Diseases of aquatic organisms 59:141-150.

- Schmid-Hempel P (2005) Natural insect host-parasite systems show immune priming and specificity: puzzles to be solved. Bioessays 27:1026-1034.
- Schmid-Hempel P and Ebert D (2003) On the evolutionary ecology of specific immune defence. Trends in ecology & evolution 18:27-32.
- Schmieder R and Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863-864.
- Schroder NW and Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. The Lancet infectious diseases 5:156-164.
- Schulenburg H, Boehnisch C, and Michiels NK (2007) How do invertebrates generate a highly specific innate immune response? Mol Immunol 44:3338-3344.
- Seppälä O, Karvonen A, Tellervo Valtonen E, and Jokela J (2009) Interactions among coinfecting parasite species: a mechanism maintaining genetic variation in parasites? Proceedings of the Royal Society B: Biological Sciences 276:691-697.
- Shanker A (2010) Adaptive control of innate immunity. Immunology letters 131:107-112.
- Shendure J and Ji H (2008) Next-generation DNA sequencing. Nature biotechnology 26:1135-1145.
- Smyth JD (1946) Studies on tapeworm physiology, the cultivation of *Schistocephalus solidus* in vitro. The Journal of experimental biology 23:47-70.
- Soneson C and Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC bioinformatics 14:91.
- Star B and Jentoft S (2012) Why does the immune system of Atlantic cod lack MHC II? Bioessays 34:648-651.
- Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzen A, Winer R, Knight J, Vogel J-H, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjoen

T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, and Jakobsen KS (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207-210.

- Stein LD (2010) The case for cloud computing in genome informatics. Genome biology 11:207.
- Su LF, Kidd BA, Han A, Kotzin JJ, and Davis MM (2013) Virus-Specific CD4(+) Memory-Phenotype T Cells Are Abundant in Unexposed Adults. Immunity 38:373-383.
- Sun F, Peatman E, Li C, Liu S, Jiang Y, Zhou Z, and Liu Z (2012) Transcriptomic signatures of attachment, NF-kappaB suppression and IFN stimulation in the catfish gill following columnaris bacterial infection. Developmental and comparative immunology 38:169-180.
- Sun JC, Beilke JN, and Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557-561.
- Sunyer JO (2013) Fishing for mammalian paradigms in the teleost immune system. Nat Immunol 14:320-326.
- Tinbergen N (1952) The Curious Behavior of the Stickleback. Scientific American 187:22-26.
- Tort L, Balasch JC, and Mackenzie S (2003) Fish immune system. A crossroads between innate and adaptive responses. Immunología 22:277-286.
- Trapnell C, Pachter L, and Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.
- Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, and Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech 28:511-515.
- Venables WN, Ripley BD, and Venables WN (2002) Modern applied statistics with S. Springer, New York.
- Vijay N, Poelstra JW, Kunstner A, and Wolf JB (2013) Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 22:620-634.
- Villasenor-Cardoso MI and Ortega E (2011) Polymorphisms of innate immunity receptors in infection by parasites. Parasite immunology 33:643-653.
- Viney M and Cable J (2011) Macroparasite life histories. Current biology : CB 21:R767-774.
- Wang Z, Gerstein M, and Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews. Genetics 10:57-63.
- Wedekind C, Seebeck T, Bettens F, and Paepke AJ (1995) MHC-dependent mate preferences in humans. Proceedings. Biological sciences / The Royal Society 260:245-249.
- Wegner KM, Kalbe M, Kurtz J, Reusch TBH, and Milinski M (2003a) Parasite Selection for Immunogenetic Optimality. Science 301:1343.
- Wegner KM, Kalbe M, Rauch G, Kurtz J, Schaschl H, and Reusch TB (2006) Genetic variation in MHC class II expression and interactions with MHC sequence polymorphism in three-spined sticklebacks. Mol Ecol 15:1153-1164.
- Wegner KM, Kalbe M, and Reusch TBH (2007) Innate versus adaptive immunity in sticklebacks: evidence for trade-offs from a selection experiment. Evol Ecol 21:473-483.
- Wegner KM, Reusch TBH, and Kalbe M (2003b) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. Journal of Evolutionary Biology 16:224-232.

- Westerdahl H, Waldenstrom J, Hansson B, Hasselquist D, von Schantz T, and Bensch S (2005) Associations between malaria and MHC genes in a migratory songbird. P Roy Soc B-Biol Sci 272:1511-1518.
- Whitehead A and Crawford DL (2006) Variation within and among species in gene expression: raw material for evolution. Molecular Ecology 15:1197-1211.
- Whyte SK (2007) The innate immune response of finfish A review of current knowledge. Fish & Shellfish Immunology 23:1127-1151.
- Whyte SK, Chappell LH, and Secombes CJ (1990) Protection of rainbow trout, Oncorhynchus mykiss (Richardson), against *Diplostomum spathaceum* (Digenea): the role of specific antibody and activated macrophages. Journal of Fish Diseases 13:281-291.
- Wilson AB and Orr JW (2011) The evolutionary origins of Syngnathidae: pipefishes and seahorses. J Fish Biol 78:1603-1623.
- Windsor DA (1997) Equal rights for parasites. Perspectives in biology and medicine 40:222-229.
- Windsor DA (1998) Most of the species on Earth are parasites. International journal for parasitology 28:1939-1941.
- Winkelstein JA (1973) Opsonins: their function, identity, and clinical significance. The Journal of pediatrics 82:747-753.
- Woelfing B, Traulsen A, Milinski M, and Boehm T (2009) Does intra-individual major histocompatibility complex diversity keep a golden mean? Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364:117-128.
- Workenhe ST, Rise ML, Kibenge MJT, and Kibenge FSB (2010) The fight between the teleost fish immune response and aquatic viruses. Mol Immunol 47:2525-2536.
- Yang CH, Wang C, Chen X, Chen SD, Zhang YN, Zhi F, Wang JJ, Li LM, Zhou XJ, Li NY, Pan H, Zhang JF, Zen K, Zhang CY, and Zhang CN (2013) Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer 132:116-127.
- Yao ZL, Wang H, Chen L, Zhou K, Ying CQ, and Lai QF (2012) Transcriptomic profiles of Japanese medaka (*Oryzias latipes*) in response to alkalinity stress. Genetics and molecular research : GMR 11:2200-2246.
- Zaballos Á, Gutiérrez J, Varona R, Ardavín C, and Márquez G (1999) Cutting Edge: Identification of the Orphan Chemokine Receptor GPR-9-6 as CCR9, the Receptor for the Chemokine TECK. The Journal of Immunology 162:5671-5675.
- Zang SZ, Guo RF, Zhang L, and Lu YY (2007) Integration of statistical inference methods and a novel control measure to improve sensitivity and specificity of data analysis in expression profiling studies. J Biomed Inform 40:552-560.
- Zhang Y, Stupka E, Henkel CV, Jansen HJ, Spaink HP, and Verbeek FJ (2011) Identification of common carp innate immune genes with whole-genome sequencing and RNA-Seq data. Journal of integrative bioinformatics 8:169.

Appendix

Appendix Chapter 1

The following Appendix is identical to the supplementary material from the publication: Haase D, Roth O, Kalbe M, Schmiedeskamp G, Scharsack JP, Rosenstiel P, Reusch TBH (2013) Absence of major histocompatibility complex class II mediated immunity in pipefish, *Syngnathus typhle*: evidence from deep transcriptome sequencing. Biol. Lett. 2013 Feb 27;9(2)

Content

Supplementary material S.1.1 Nucleotide sequences and accession numbers of nucleotide sequences retrieved from GENBANK used to query all 750 mio. Illumina reads via a reciprocal tBLASTx-approach.

Supplementary material S.1.2 Detailed description of validation of bioinformatical search strategies to identify MHC class IIβ genes

Supplementary Table S.1.1 Overview on PCR-primers used in the targeted cloning **Supplementary Table S.1.2** Nucleotide alignment of MHC class IIβ coding sequences of 6 Actinopterygii species along with the seahorse (*Hippocampus abdominalis*, Syngnathidae). **Supplementary Table S.1.3** *Syngnathus typhle*: expressed sequence tag (EST) library

types, tissue, sequence reads statistics

Supplementary Table S.1.4 Syngnathus typhle: mapping statistics of reads

Supplementary Table S.1.5 Bit scores and read statistics for 7 immune genes identified via reciprocal tblastx search in 750 mio *S. typhle* ESTs.

Supplementary Table S.1.6 Read and annotation statistics of 4 immune genes with contigs that were identified in the reciprocal tBLASTx search

Supplementary Table S.1.7 Amino acid alignment of putative invariant chain genes from 10 teleost species including *Syngnathus typhle*

Supplementary material S.1.1 Nucleotide sequences and accession numbers of nucleotide sequences retrieved from GENBANK or ENSEMBL used to query all 750 mio. Illumina reads via a reciprocal tblastx-approach.

>gi|226443287 Salmo salar T-cell surface glycoprotein CD4 (cd4), mRNA AGATTTCAGATAAAATGTTCAATATGAAGACTTTCTCCTGGTTTGTGTTCGCCCTGTGTATTCTCCATGT AAGGATGTAGAGTGGAGACATAAAGCTGTGGGGTGGAAGTGAATCTGTGCTGATCATGGACATTAAAGGGA AGAGTGGCAAGCAGCGGAAAGGAAAGGCTCCCATGGTTGAAAGGGCGAAAGTGAGAGGGGACGGGCTGGA AATCTCTGCTCTAAATGATGGTGATGCCGGACTTTACATCTGTATGGTGGACAGGAAAGAGATGGATCAC AGACTCGACTTTGTCACAGTCAATGTCCACCCCTCCAATGTCCTCATCGAAGGCACCAATGCTATCCTCG AGTGCCAGGTGACAGGAGTGGATCCCTTGCCCAGTGTGGAGTGGCGTAGTCCAGGTGGAACGGTGGAAGG GGCCCCTGGACGACCTGGCTCTTGGAAAGTCTCTTTCAACTCTGTGGCCCTGTCAGACACAGGAGACTGG ACATGTCAGATTACTCAGGATGAGAAGACACACAAAGAGACTCAGACCATCAACGTGAGAAGTTTGTCGC CGGACAAGGGCCAAGATGATGGGCAGGGGCACAGTGGACCTAACTCTAATGTAAACACAGTGACACCTTG CAATCACTGTACCACAGGCAGCCAGCAGCCCGTTGAGTGGGTGTCCATTCTGGGCTTAAGCCTGTGGGTG TGGGTGGCAGTGGGAGCAGGATGCCTGGTGGTGGTCTTACTCCTGGTGACCATTGTTCTCCTGCACCTCA GGAACAAAAGAATGAAGAGAAGAAGACCGGAAGATGAAGAACATCAGAGTGCCCCTGAAGTCCAACGACTA CGGAAACAGCGCTGATGGAGCGGAGTATTATGGGCTGGAACATGATTGCTTGACGACACGGGGCGGATGG GAAAATCACACATTGAAAATAATCACATATTCTTACCTATATGTTATTGAATGTCATCTGACGTCTTCCT CGCATTGTCAGAGCATCCTCTACTGCATTGCATCTTTGTGCTTAGATCATTTTCAATGATTATTCATTTT CACACAAAGACGGATACTTATACTGTACGGTTTTAGAATGATTCTTGCTGTGATATCATTTAGTGTGGCA TATTTACAAATGCTTGTTATGTTATGAATTAATATACCTGTTAAATTAAAGTGTTTTCTTGTTGAAGGGA ATATAGATCA

>gi|319921951|gb|GU550706.1| Siniperca chuatsi T cell surface glycoprotein CD4 mRNA, complete cds

GCTCATGTCAACAACAGGGACAGAAGAGGTGGTATATGCTCAGGTGGGAGATACGGTTACGCTAAAGCCT CCAAGGAGGGATAATTTAAAGGATCATTATTTGTACTGGTCATTGGTCATGAGGACCTTCAACTTGCCT GGCGGAATCCCCATGGCGGACAGGGGTTCGACAAAAGCCCATGGAACCATTCTTTGTCCATGTCTGACGA CTCACTGGTCATCCACCACCATCAAACAAGAACACTTTGGGACTTTTATCTGTAAACTGACTATGAATCGT AATTCATTCGTAATCACATATAAACTACTCAAACTCAACGTGATTATGAACCCACCATTTCCTCTGTTGC CTTTGGAATCTCTGTCTCTGGTCTGCAACGCAGAGTCTCCTCAGAGTCTCATGAAGCCAGAGATATACTG AGTGGCGAGTGGACCTGTGTTGTGACAAATGGTGAAAAAGAATACAAGGCCACAGAATCTGTTATAGTTG TGGACCTCTCCCCAGCTCCTTTACGTCCTCAGTATACGTCTAAATCCTCGCCTCTCACTGTCCCCTCTCC TCAGAGTCTCATGAAGCCAGAGATATACTGGCTGACTCCCCAGGGAGAGAAAATAAAAATTAACGAAGGA AGACTCACCATGAGAGCCAACAAGCCAACACAGTGGCGAGTGGACCTGTGTTGTGACAAATGGTGAAAAAG GATACAAGGCCACAAAATCTGTTATAGTTGTGGACCTCTCCCCAGCTCCTTTACGTCCTCAGTATACGTC TAAATCCTCGCCTCTCACTGTCCCCTGTTCCATTGCCCCTCACATCTCCTGGGACAAAATCATAGCCAAG GGCATCCAGGGAGCTCACTGGGACTTCTTCCCCTATATCAGGTCTCAGTTCTGCTGTTCCACAGAAGCTCT TCTCCCTGTGTCTGGGGGGATGAACTGACCTGGAAGACAGAAAAAAACACAGGACTGAAACCCGTGAAAGA CCTTAAAAAAGGAAATTTGACTTTGATCGGAAAACTACGGAGTGAAGAAGACGCAGGGGACTATGTGTGC GCCCTGAATTTCACAAATGGTGTAGTTCTGAAGAGGACTGTACATGTAAATGTGCTGCAAATCATCTCCT CCCCAGGAACAGACTTCATTTCTGGCCAGCAGGTCAACCTGACTTGCAGCATTGGCCATCCGCTGCCCTC TGACCTGCAAGTGAAATGGATCCCACCTAAAGCATTGTCCCTTCCGTCTCTGAGACCTGACCATCACCAT CTCACCATCCCGGAAGTGGGGACAGGAGATAGCGGACCATGGAGGTGTGAGCTGTGGCAGAACAGCACAC TGCTGACGTCAGCTACGATAGTGCTGAAGATTGAATCCAAGCTGAGTGTGGGATGCTGGTGATCATATG TAGTGTCATAGTCATCGCAATCCTCCTCCTCGTACTCATTTTCATCCTCTACCGACGCAAACAACGGAAG ATGAGACACCTCAGGCATCGACTCTGCCAATGCAAAAACCCCAAAGGCCCAAAGGATTCTACAGAACATAAT ATCTCCCACAAAGACATTTTCAAGAGGACATCGCAACCAATTGAATTTCTGTCCAGATAAGATGGATTTT TCTGTCATATTTACTAAACTGTGAACCTCTGTTAGGTGTGTGATGCGGGCCTGAAAGTTCAGTCATTGTT GAAATGTCAGAAAATGTATTTTACAGTTGTACATATCAGCCAGTTTGGATAGTTTTTATATTTGTAATGT AACATGTAATTGATTTCTTCGGGACTTTTATATTTCACAGAATTTCTCATTGAAACTATGCTATGTTCCA >gi|118344617|ref|NM_001078623.1| Takifugu rubripes T-cell surface glycoprotein CD4 (cd4), mRNA

AGAGCTGAGGTCTTCGCTGTACAGACAACATCACATGTGTCTTCCATCAGAATCAGAATCACCGCGCCAC AGGCCGGGAGGAAGAAGGCTGCGTGCGGTAGCCGCACGTTACAGGAGCTGAGACGCCAAGCCTCAGAGGG AACAGAAGCAGGCCAACCGCCGGAGAGGGGAGGCGCTTTAAAGGCGAGGCTGCGATAAATACGCCACCTTT CATCCTGGCCCCAGAACCGGGCCCCGGCGCACACGTATGACCTTCGTCAGCAGACACATTCCGGACATGG AACCGCTTCCCTCTGGCCTCCTGCTGCTCACTGCGCTCCTGTCAGCATCACGAGCCGAAGAGCTCATATA TGCCCAGGTGGGACAGACGGTCACTCTGAAACCTCCAGAAAATTATAAGACACCGACCTACTACTTGTCC TGGCATTTCGGAGAACTTGAGCTGGCCTGGACTAATCACATGAGTGGAAACAAAGTCATAAAACATGAAA CAAATGTAATGTGAATGAGAAGATATGGACCTACAAAGTTCTCCGTCTCAAGGTGTCGGCAGAGCCGCCG TCTCTGGTGCTTTCTGGACGAACCGTGACTCTGGTCTGCGATGCAGAACCTCCCAACAGTCTGCAGAAGC CGGGGATACACTGGCTGAACCCACAGGGAGAGAAAATTACCCAGGCGACTCACAGCGTGCAAGTCAGCAG CCGCCACAGCGGTCGGTGGACCTGCGTCGTCACCCTGGATAGAAAAGAAGCCACGGCCCAGATCTCCGTC ACGGTGGTCGACCTCTACTCGCCCCCATGGCGTATACATCCACATCCTCCCCCCTGGCCGTCCCCTGCT CCGTCCCCAAAGTTTCCTGGGAGCAAATCAAATCCCTGGGCCTCCGAGAGGGACACTGGCAGTTCTTCCC CAGATCGAAGTCAAACCTGGTTTCTGCTGACGCGCAGAGGCTCTTCACCCTCTCCCTGGAGGAGCCGGTC TCCTGGAAGGCCAACCAAACCAGAGGCCTGACCCCGGTTTCAGATTTCAAAAACCCCTAATCTCTCCTTGG GCAGAACGCTGGGGAGAGCCCAACGACCGCGGTGACTACGTGTGCACCCTGAAGTTTGAAAGCGGCCCACC GCTCAGCACCGACCGTTCGGGTGAACGTGTTGGAAATTGCCGCGTCGCCGGGAACAGTCTTGATTTCGGGC CAGCAGCTCAACCTGACCTGCGGCCTCGGCGTCCCCCTGACCTCTGACCTGCATCTGAAATGGATCTCAC GAGGTGTGAGCTGTGGCGGAACGATACCCCGGCTGACGTCAGCCGTGATAACGCTGAAGATTGAGCCCAAG CTGAGCGTGTGGATGCTGGTGATCATATGCAGCGTCGCAGTCATCGTCCTCCTCCTCCTCCTCCGGTT TCATCCTCTGCCGGCGCAGACGAGCACGGGTGAGACACGTCAGACATCAACTGTGCCAGTGCAAAAACCC CAAACCTAAAGGCTTCTACAGGACGTGACGCCTCCCGCTGAGTCGACCCCACGAGCTTCAAACTCCTGCC GGCTGCACTGAGATGAGGCTGCGGGGAAAGTTTAGAGCGCAGAACAAAGTATATTAAACTTGTTTTATTC GTATCGACCACGTTCTTCCTGTTAGATGTGGACAGGAATAATCCCCAATCTGCATCATGTACATTGTAAAT ATTGCGCAACATTGTTTATTATGTTCTTTAATTCACCGTCATATATGTGATGATGCTCTTGTATGTTATT GAGCAAATGCTCACAGGCAAATGATAATGGGCATTTAACAATAGCTGATACATAGCATTAAAAATTAGCC TTCTGTCTGGTAAAGGGGGGGGTTCTAAATAGTAACCAATTATTAGTTTCTAAAAACAAAGGTATGATGTG AAGATGATCATATTTATTATTATTACCACCAGATGTCTGCTGTGCCTCTCCAGCAGTGTCAACACTGCTGTT TGTCCATTTATTATTTAATTCTTGGCATTTATTCCCCCCAGCCATCGTCAGCAGCTCCACTTCCAGAGGCT GGGTTATTCTAACCGAGCTAATTAAACCAGAGGAGAGCAGGAGTGTCTGTTTATCTCTGCCTGTAGTTCC TCTATTTTTAACTTCAATTTTCCGGGGTGTCATGTTTATGTTTAACATGGTCCCACATCATCACAATTA GAAAAATAGCTCTTTCCTAAGACAGCATATAGGTTCTGTGACTAAATGGTGCTAAATGTTCTCCTTACAA AAAA

>gi|145870286|gb|ES376374.1|ES376374 Tra_Liver_1-3_B01 Guppy pDNR_LIB Tranquille Liver Poecilia reticulata cDNA clone Tra_Liver_1-3_B01 5' similar to low molecular mass polypeptide subunit PSMB8 [Takifugu rubripes], mRNA sequence

>gi|253945025|gb|GR705396.1|GR705396 cNOnTE2024_D17.ab1_c Tilapia adult testis library Oreochromis niloticus cDNA 5' similar to Proteasome subunit beta type-8 in Bos taurus (Q3T112), mRNA sequence

>gi|224230652|gb|GH692384.1|GH692384 CBZB36091.g1 CBZB: Normalized channel catfish cDNA library from head kidney, gill, intestine, spleen, skin and liver (mixed tissue 1, AUK M) Ictalurus punctatus cDNA 3' similar to zebrafish RefSeq, NP_571467.2, proteasome (prosome, macropain) subunit, beta type, 8 [Danio rerio], mRNA sequence

>ENSGACG0000001293 | PSMB8 (1 of 10)

AGACGCATCTCTTCGACCGAACCAACCACTACAACTTCGGGACCAAAACGCAGGAATTTGCTGTCCCTCT GGGTGTAGACCCTTCAGGGTTTCTAGGAACCTGCAGCCGTGATGGTGGTGTGAGTATAGACCTGAACCAC GGGACGACCACCCTGGCCTTCAAGTTCAGACATGGAGTCATTGTGGCTGTGGACTCCAGAGCCTCAGCAG GCCGTTACTTGGCGTCCAACGACGTCAACAAGGTGATAGAGATCAACCCCTACCTGCTGGGCACCATGTC GGGCAGCGCTGCAGACTGCCAGTACTGGGAGAGACTCCTGGCCAAAGAATGCAGGCTGTACAGGCTGAGG AGCAACCACAGGATCTCTGTGGCTGCTGCCCCCAAGCTGCTGTGCAACATGATGCTGGGCTACAGAGGCA TGGGCCTCTCTATGGGAAGCATGATCTGTGGGATGGGACAAAGAGGGTCCCGGTCTGTACTACGTGGACGA CCGAGGGACGCGTCTGTCCGGCCGCATGTTCTCCACCGGCTGTGGGAGCAGCTACGCCTACGGCGTGGTG GACAGCGGCTACAGGGAGGACATGGCGGTGGAGGAGGCGTACGAGCTGGGCCGCCGGGGCATCGCTCACG CCACACACAGGGACGCCTACTCTGGAGGGGGGGGGCGATCAACATGTACCACATGCAGCAGGACGGCTGGATAAA GGTGTGTAAGGACGACGTATCCGAGTTGATCCACCGCTACAGGAAGGGAATGTTCTGAATGCTCAGCACT CTGAACACGACTGATGATGCGTTTCTTCCCCAAAAGATTCTTTGTCCACTTTTCTAATAGTGATTTTGGAA AGGTTCTGTGTGTGTGATCCTCACGTGCTTCTGTGTAGTAGTTTGTTCTTTGTTAACCAGACATGCTGT TAAAATACTTTCACCAAAACAACACACAGTCCCAA

>gi|145871330|gb|ES377418.1|ES377418 Tra_Liver_7-4_F01 Guppy pDNR_LIB Tranquille Liver Poecilia reticulata cDNA clone Tra_Liver_7-4_F01 5' similar to PSMB9 [Oryzias latipes], mRNA sequence GGGAAAAAATGGAGTCTGTCTGATGTTTTAATAATGGAATGGTGTGTAACTCCAATTGCTAGGCACTTTT GAGCGTTACATATCGGTTTCTAAATCAAGTGAACCGCTGCAAACAAGGTCTACTCCTTCCGCGTCAGTGA GTGTCAGCTTCTGGTAAGTTACACTAATTCCAGTTCGGCGTCGTCGTTAAAAAGAGTCTGCCATGTTGGG AGAAACGGAGCCGCAGTGGTTGTCCGAAGAAGTGAAAACTGGAACAACCATCATTGCCATAGAGTTTAAT GGAGGCGTCGTATTAGGGTCTGATTCCAGATGGCCCTGTCAGGAGTCGGTGGTTAACAGGGTGATGAATA AATTGTCTCCACTTCATGATAAGATTTACTGTGCCCTGTCAGGATCTGCAGCAGATGCTCAAACCATCGC TGAGGCAGTCAACTACCAACTAGATGTCCACAGTATGGAAAATAGGTGAGGACCCAAAGGTTCGATCAGCT GCCACTTTGGTGAAGAACATTTCATACAAATACAAGGAGGAGCTGTCGGCTCATTTCATTGTTGCAGGAT GGGACAGAAAAGATGGAGGACAGGTTTTTGCAACCATGAAAGGTATCCGAACAAGCCATGCT TGGCGGGTCAAGCACCTCCTACGTTTATGGAATTGGTAAGGTTGGCTGAAAAGGAAAGGAATGAGCAGGAG TGGCGGGTCAGGCAGCTCCTACGTTTATGGATTTGTTGATGCTGAGCAGAAAGGAATGAGCAGGAGC TGGCGGGTCAGGCAGCTCCTACGTTTATGGATTTGTTGATGCTGAGCAGATTCGAAAAGGAATGAGCAGGAG

GAGTGCCAGCAGTTTGTGGTTAACACCCTCGCTTTGGCCATGAACCGTGACGGCTCCAGCGGTGGTGTGG

>gi|327414615|gb|FF280943.1|FF280943 AQAH-SP-0340 Spleen of Oreochromis niloticus infected with Streptococcus agalactiae Oreochromis niloticus cDNA clone SP466 5' similar to Proteasome subunit beta type 9 precursor, mRNA sequence

>gi|294489128|gb|GW787388.1|GW787388 NBFGR-CbSpn1650 Normalized Clarias batrachus spleen cDNA library Clarias batrachus cDNA clone S1650 5' similar to ACO08445.1 Proteasome subunit beta type 9 precursor (Oncorhynchus mykiss), mRNA sequence

>ENSGACG0000000129|PSMB9 (1 of 5)

>gi|115425768|gb|CX348814.1|CX348814 pls_0003H06.z1.abd spleen expressed sequence tags library Larimichthys crocea cDNA 5' END, mRNA sequence PSMB10 AGTGTGCTGGAATTCGGCCATTACGGCCGGGGAGTCAGATGCAGTATGGCGCTATCAAATGTCCTCGAAC CTCCTGTCTCTGGGTTTAATTTCGACCGAAGCGCAGCGAGGAATGCTGCATTAGAGGGGTCTGTTTGAATG GAGGACAGGCACCTAAACCTCTGAAAACAGGCACCACGATCGCAGGAGTGGTGTTCAAGGATGGGGTGGT GCTCGGAGCAGCACGAGAGCTACCTCCAGTGAAGTGGTGGCGACAAGATGTGTGCAAAGATCCATTAC ATTGCTCCAAATATATACTGTTGTGGAGCAGGTACAGCAGCAGCAGCAGAAGAAGAACCACAGAGGCTCCTCT CCTCCCAACCTCACCATCTTCTCTCTGAACAGCGGGAGGAGCACCCTCGTGTCGTCATGGCTGTCAACATACT ACAGGACATGCTGTACAGGTATCACGGTCAAATTGGTGCTAATCTTATACTGGGAGGAGGAGTACATGCT GGGAATCACCTGTACAAGTGGGGCCCATATGGAAGTGTAAATCAGGTGCCTTACCTTGCAATGGGATCTG GTGATCTGGCTGCTCTTGGGATCCTAGAGGACGGGTTCAAACCCGATCTAGAGTTGGAAAAGGCAAAGGA GCTCGTGCGTAATGCCATCCA

>gi|224274161|gb|GH683973.1|GH683973 CB2B31134.g1 CB2B: Normalized channel catfish cDNA library from head kidney, gill, intestine, spleen, skin and liver (mixed tissue 1, AUK_M) Ictalurus punctatus cDNA 3' similar to zebrafish RefSeq, NP_571752.1, proteasome subunit, beta type, 10 [Danio rerio], mRNA sequence

CCAGGATATCATGCATTTATTACAAAATCATTATATCAATAACCATTAACAAAAGTTATTGATGATGGTA ATAAATGGTGAATAAATGGTACTGAATAACAAACATCATGACTGATTGTGCTTTCTTAGCTCAGGCTGTT TCCATAGTCTGAACTGTCTCGTGCAGTAGCTCCAGATCCAGACCAACATTCTCTGTCAAAACTGGGG >gi|200928525|gb|FC996846.1|FC996846 CBNG3047.b1 CBNG: Normalized channel catfish cDNA library from head kidney, gill, intestine, spleen, skin and liver (mixed issue 1, AUK) Ictalurus punctatus cDNA 5' similar to zebrafish RefSeq, NP_571752.1, proteasome subunit, beta type, 10 [Danio rerio], mRNA sequence

TACTGTCAAGACTGGCACAACCATCGCAGGAGTGGTGTTTAAGGATGGTGTGGTCCTGGGAGCTGACACA AGGGCTACCTCCCGCGAAGTATAAGCTGACAAAATGTGTGAAAAAATTCACTACATTGCTCCAAACATAT ATTGTTGCGGAGCAGGGACAGCAGCAGCAGACACATTTAAAACTACAGAATTGCTCTCTTCCAACCTCAC

>ENSGACG0000018551|PSMB10

>gi|25134315|gb|CA589737.1|CA589737 hab37g08.y1 Fugu UT6 adult gut Takifugu rubripes cDNA clone IMAGE:6350798 5' similar to TR:078109 078109 MHC CLASS II TRANSACTIVATOR CIITA FORM IV. [1] ;, mRNA sequence AGAAAACGCAACAGGGAAGAGAACCAGCCAAAGAACACATTCTGCTGTGGGCCCAATCCTTACCTGCAGAG

>gi|211910008|gb|GE616627.1|GE616627 cd8b Oreochromis niloticus adult liver Oreochromis niloticus cDNA clone cd8b, mRNA sequence CATTATGCTGAGTGATATCTTTTTTTTTACAGCCTAATGATGGCCTCCTTCACTTGCATCAACAACTTT TGGACCTCATTTTGAGAATTTCAGTAAAAAGCTGGAAAATACAAATTCAACACTTGAAATTGATTCCAGA TATTTTGTCTGCTTAATGTGTCACAGAGCAACAAGAAAATAGGCCTCACGTGGCCTTAAAACTACCTTCT CAACTGACCAATTATTTTTAAGCCTCTGAAAATAGGGCACTGTAACTCCTAGACTGTTGATGCAATACTT

>ENSGACG0000008960 CD8 beta chain

TTGATAAAGCTCTTCATATCCCCAGCATTTAGTGAGGGTTAAT

CTTTCCATTCTTGCGAAACGTTGGGTTACAGTTGTAGGTTTTGTACCATATTACCAACTTCAGGACACGG TGAAGATTCAGTATCCCGTGCTCCACAGTACGGAGGTCATTGAATGTGACTGCGGTAACGTCCTATGTGA CAATGTGTACTGGTTCCGCAGCATCCACAACCACGAAAAACTAGAGTTCCTCGGCAGATTCAACAACGCT GGCCGTGGATCTCCAGTGGACGAGGCCCACTTCAAATTAAGCAGGAAGACAATACGTGCTTTGCGCTAT TCATCAACGTGACAGAGGAGGACACAGGGAGTATCTTCTTGTGTTCTGAAGGACAGGAAAAACACAGA AACATGGAAGTCCGGGGATTCTTCTTCGGCCGGGAGTGACCGCTCCAACGCTACCTCCTCACACGAAAACC AAACCCCCAGTGGAGCCAGTGTGCGGCTGCCCTACGAAGGATCCTTCACAGGGCGACTGCGGCTCCCTGG TGCTGTGGCCCTTGGTTGGACTGGTTGCGGCGTTGGCTCTGGCCCTCATCGGCACCCTGTACTACTTCAG CCGGCTACCCAAAAAATGTCGGCACCACTTTGTGAATAAGAATCGTTCTGTTAAA >gi|78229885|gb|DV569890.1|DV569890 Pf_IL_305C11_TriplEx-5LD Flounder IL Induced Liver library Platichthys flesus cDNA clone Pf_IL_305C11 5' similar to AB076073 (Paralichthys olivaceus) T cell receptor gamma chain V-J-C1 %ID = 57 E-value = 2.00E-52, mRNA sequence

>gi|52852390|gb|CF752916.1|CF752916 om_C001.58 12hr LPS Zap Express Library Oncorhynchus mykiss cDNA 5' similar to T cell receptor gamma chain V-J-C1, mRNA sequence

>ENSGACG00000015763 T cell receptor gamma chain

>ENSGACG0000008369 Autoimmune regulator

>gi|9913504|gb|BE630816.1|BE630816 uu49c07.x1 Soares_thymus_2NbMT Mus musculus cDNA clone IMAGE:3375276 3' similar to TR:Q9Z0E3 Q9Z0E3 AIRE PROTEIN. ;, mRNA sequence

>gi|5884455|gb|AI981427.1|AI981427 pat.pk0053.c5.f chicken activated T cell cDNA Gallus gallus cDNA clone pat.pk0053.c5.f 5' similar to AUTOIMMUNE REGULATOR (APECED PROTEIN) AIRE-1, mRNA sequence

>ENSGACG0000011461|RAG2

ATGACCCTTCAACCATTAACTCCAGTGAACTGTGCAGGCCTTCTGCAGCCCGGCTTCTCTCTGCTGCAGC TGGATGGGGAAGTTCTTCTGTTTGGCCAGAAGGGTTGGCCCAAGCGCTCATGTCCAACTGGCATGTTTAG TGTTCGCTTTAAATGTGGAGAGATGAAGCTGAGGGCCATCTCCTTCTCCAACGACTCATGCTACCTCCCT CCATTGCGCTGCCCGGCTGTTTGCCGCCTTGACCCGTACGACGGCCTCCCAGAGAGTTACCTCATCCACG TCGCAAGCTCACCCTGTGCTGCAAAGAGAAGGAACTCGTGGGAGAAGTGCCGGGGGCCAGGTACGGCCAC ACAATGAGCGTGGTCCACAGCCACGGGAAGACGGCCTGTGTGTTGTTCGGCGGTCGATCTTACATGCCTG GGAGTTCGGTTGCTGCTCCGCCCACGCTCTCCCCGCGCTCACAGACGGCCAGTCTTTCCATCTGGCCCTC GCCAGAGAAGACTGCGTCTACCTCATCGGGGGTCACTCCGTGGCCTCTGACTCTCGGCCCCCTCGGCTCT TCCGTCTACGCGTGGAGCTCCTGCAGGGCAGCCCCTTGCTTTCCTGTGAGACTCTTACGACGGGCATGTC CATCTCCAGTGCCATAATTAACCGCACAGGTCGCGCTCACAATTACATCATATTGGGCGGGTATCAGTCG GACTCTCAGAAGAGGATGGAGTGCAGCGCTGTGAGCGTCAATGAGAGCGGGATCCATTTTGAGCCACTGG CATCCTACTCGCTGTCCCCACTGAAGGAAGGCCATCCCAAGCCGATATGCATTACTTCTACAAGGTGAGC TTCCCGACAGAAGAAGAGGCCAGGGAGGAAGAAGGAACCCAGGGCTGCAGCCAGGATTCAACCGAGTACG ACGACTCCACTCCCCTGGAAGACTCCGAGGAGCTCTACTTCGGTCGCGAGCCGCACGAGCTGGAGGACAG CGACGACGGACGAGTTGATAATTACAACGAGGAGGACGAGGAAGACGAATCGCAAGCGGGCTACTGGATC AAATGCTGCCTGGGCTGTCAGGTGGACCCCCAACATCTGGGAGCCCTACTACTCCACCGAGCTCCACCGGC CGGCCATGATCTTCTGCTCCAGAGGGGGAAGGGGGACACTGGGTCCATGCCCAGTGCATGGACCTGTCTGA CAGGAGATGACCCCGCCCGACAGGTCCAGCCTCTGAAGCTCACACCCATGAAGGTTAAGGACAGGAAAA CTCCTCCTACAATTAAGATGTCCCCTGCCAAAAAACTCTTTTTGAGAAGGCTTTTTGAATGA

>ENSGACG0000008005|IL2RB

>gi|50569243|gb|CO647749.1|CO647749 ILLUMIGEN_MCQ_40902 Katze_MMPB2 Macaca mulatta cDNA clone IBIUW:23374 5' similar to Bases 334 to 964 highly similar to human IL2RB (Hs.75596), mRNA sequence

>ENSGACG0000012777 | FOXP3

GCCCTGTTTGTGAGTGGCTTCTGTCGCTGGCCGGGCTGTGACGTGATGTCTGAAGATTTCCCTAGTTTCT TAAAGCATCTCCATTCTGAACACAGTCATGGGGAGAAAAGCATTGCGCAGTGGAAGGTCCAGCAAGATAT TGTTCAGTGCATGGAAAGTCAGCTCATCCTGGAAAAACAGAAACTCATTGCGATGCAACTTCATCTGCAC CTATCTGGACACAAACACACACTGATATGACTCTTGAATGTACTTTTTGTCATTCTGTGGCTGAAGGCAGCGT CTGAGTGGCCGCACAGTCTTCCTCGTTCCTGCCCCAGCCTCAGCATGGCTACAGCATGGCTGCTGGGGC CGCACACATTCTCCCAGGTACCACACTTTTTATGGTTTTTATGGTAAATATTGAATGTTACAAATACAGC AACATCAGGCCTCCGTACACCTACGCATACTTGATAAGATGGTCGATCCTGGAGGCCTGCTAGACAACACACGC GCACTCTGAATGAGATTTACAACTGGTTCACCACCATGTTCTTCTACTTCAGACAACACTGCTACCACG GAACATGCAGGCGCACAACCTCAGCCTGCACAAGTGTTTTGTGCGA

>ENSGACG0000017381|C1QTNF4 (1 of 2)

>ENSGACG0000007933|C4A

CTCAACATTGTCTGAACGTTTTGGCCTCAGCTACCTTCTGCTGGTGGCAGAGAGCCCCTCCTTCGGTAGG TCTATACCCCGGCACAGAATGTGCGATACAGGATATTCACTCTTGACCACACATTGAGGCCTCATGATGA GGTGTTCCACATAAAAGTATATAATTCTGCTGGAAATAGAGTCATCAAAAGCCAAAAGATTGCAGATAGA GGAATACTCCAAGGATCATTTCCGCTACCTGATGTATCAAAACAAAGATTGGGCACATGGAAGATTACAG CACACTATGTTGATGATGCATATGCTGCTTCCCGAGAGTTCAAAGTCCAAAAATTTGTTTTACCAAGTTT TGAGGTGAACATTGAAATGGAGCAGAGGTTTATTTTGTTGAAGACAGAACAGCTCAACTTCTCCATATCG GCAAAGTATTCGCATGGCGAGCAAGCAAAAGGGGGCTTACCACTGCCAATTTGGAGTGATAGAAAGAGATA AAACCCACGGCCAAAAAACGAAGCCTGTGTTTATCAGGGGGGTTGGAGCTAACTGGGAGGATCAACGGTGG CGCCGAAGCAGCATCTGTTCAGATAGCAAACCTAAATGCTCACCTCGAAAAACAGCAGAACAAATCCTTC TCTGAGCTACAGCGAAGTGGAGGACAACTATACTTGAGAGTATTTGTAACCAATATACAAAGTGGTGAAA ATATTTCCTCCCCGGATACCCACTAGATGTGGTGCTGGTCGTGAGTCTCCCCGACGGGTCCCCAGCAGCT GGTGTGGGAGTAAAGATTGATGTTCCCACCTCTACAGAGACATCTTGGGAAGGCAAAACCGACGGGGAGG GGGCAGTGTTTCCTGTCTTTAATATTCCCTCTGGTGCTCAGATTACAGTTGACGTGTCGGCAGACGGCCA GACGCAAACAAAAGTGCTTCGGCGCGCTTCATCTCCGACTAATAGCTACCTTTACCTGAGTTTTACCAAC AGGATGTACTCTGTGGGCGAGTCAATGACAGTAACTTACAACACCATCAACAGCCCAAACGTTGGGTTTA TATACTTCATGGTCTTAAGTCGCGGGATCCTAATAAAACATGGCTCTCTCCGATTGGGCACTTCAGTGAA AGACCACCTGCAAATAACATCTGATATGGTGCCATCCTTCCGTCTGATTGGCTACTACTACAACGAGCGC GGTGACATCATTGCAGACTCTGTGTGGGTAGATGTCAGCGATGAGTGTGAGATGAAAGTCAAGGTGGAGG CACAAGGTCTGTTCGAACCGGGGAAAAAAGCTGCGATAGAATTTGATTTATATGGTCAGAGAGCCACAGT GGCTTTATTGGCTGTGGATAAGGCAATCTACGCTCTGAATGCCGATAATAAACTCACAGGCAAACAGGTG TTTTCCTCCATGCAGTCATATGACCTCGGGTGCTCGTACAGCGGAGGATCTGATCCTGCAGCTGTACTAA CAAATGCTGGCCTGTCTTCTGTATCTCAGTCGCAGTCAATGTGGAAAAGATCTGACTGCGGTTCACAAAA TGCACGACAAAAGCGCGCAGTGGACCTTCAACAAGAAATGATGACCATAAAATCAAATTTTTCCGATGAA CAGATGCAAGAATGTTGTGTTCGCGGGTTTTCTCTCATCCCTATGAGACGAACATGTCAGGAAAGAGTGA AGAGAGTCTCTATGGTGAAGAATAATCCTGCTTGTGCAGACACCTTTTTAAAATGCTGCCTTGAAGGACA GCGACTGAGACAAAAAAAGATTCGAGACGACGACGAGAAAGGACTTGGCAGGACTGCGGAAGTAGCAGAC ATTGAGCAGTTCTTCTGGGACACTGGTGCTCAATACATTCGACGATATTTCCCCCCCGAGCTTTGGATTCA CAACATCTGATATAAATGGGAAAGGACGGATGTCTTTGACTCTGCCTGACTCAATCACCACATGGGAGAT TCAGGTTGTCACTTTGTCTGCAGCCACTGGTTTCTGTGTAGTTAAGCCGTTGGAGGTCAGATCGTTCAAG GCGGCATTTGTCTCCCTGCAACTTCCTTACTCAGTGAAGAGATATGAGCAAATATCCATTTCGCCTGTTA TCTACAACTATGGCCAGGACCAACTGCAGGTGGCAGTTCATATGGAACAAACTGAAGGCCTTTGCTCCCC CGGCTCAGCCACCGCCGTGGCTTTTGTTAACATTACTGTGGAGCCAGAGTCGTCACAGTTAGTGTCCTTC TCCGCTGTTCCCATGGTAACCGGCTCAATACCCATCAAAATACGTCTCTATGACATGGAGAAAGAGTTTG GAATTGATGCAATTGAAAAAGACTTTGAGCGTGATGACAGAAGGACTGGAAAAGAGAATACAAGAAACCCA AGTGTTTAAATTAGACGGGAAGAGCACAAAATCATTCCAAATTGACGGAATGTTACCAGATGAAACAGTC TTCTTTCGCCTGAGAAGGTTTTCAGTCTGATCCAATTGCCTACAGGATGTTTACAACAGACAACGTTAAG ACTCACCCCAACATTGTCAGCCGTGCGCTACCTCGACATGAGTGACCAGTGGGAAGACCTGCCTCCTGGT ACCAGAGATGATGCCCTTGATAAAATCGAGACAGGCTTTATAAGGATATTTCCAAAGGAGAAACCCAATA GTTCTTATGGATCATGGTTTTCAACGCCAGCTAGTAATTGGTTGACTGCACTCATACTGAAAGTGCTATC GTTGATGGCGGAGCGTCAGTCAGTGGCTTTTGGAGAGAGGGCCGAAAGACTACGATCGCACCTGATGAA AAGATCAAAAACGTAGTCAATTACTTGCTCACAGCCCAGAACACTGATGGGTCATTCCGTGACCCAAATC CAGTGCTACACAGAGGAGTTCTGAATGGACCAGACCAACACGCAGCCATGACGGCATTCATAAATCTTGC ACAAACTATCTCCTGTTGCACCTGGAGGAGCTTCAGCATCCATTGGCTGTTGCCATCACAGTCTACTGCC TCGCAGTCTGCCTTCCACAGGGAACAGATCATTCATCTGCCTGGACAAGACTCAAAACAATGGCTACTCA AGATGACAATGGCTGTTATCTGTGGACAACAACCCAACGGAATCAAGTCCGTGCAGACGCCATCACAGTA GAGACCACCGCCTATGCTCTGCTCGCAGCAGTGGAACTCGGACATACTAAGGAGGCAGACAAAATAGCCT GCTGGTTAACCACCCAAGAAAACTATTTTGGAGGCTATAAATCATCACAGGATACAATCATGGTATTGGA AGCCCTGGCAGAGTATGAGCTGAAGGGGCCCGTCCGCTCTGAAGTAAATCTAGTAGCTGAGTTCACAGTC AGTTTTCTGGGAACAACATTAAGGTGCAAATGACAGGAAACGGCGATGCCAAGATTAAAATCGTTAAGGC CTACCATGTGCTGGACCCTGTGGACAGTTGTGACTTACTGTCAATCAGTGTCACGGTGGAAGGGAAAGTC AAGTACACCGACAAGATCATAGAAAACTATGAATACTACGATGACGATGATAACAAGGAGGAAAAAGGAGG GGCGCCGAAACAAGAGAGACCTTGATAGTAACTTCATTTCAGAAGATGCTGTCACCTACACAATCTGTGT CAGTCATAGCCTGAAGAGGAATCTCACAGGGATGGGTATTGCTGACGTCACACTTCTGAGTGGATTTGAG GTCGTTATCGAGGACTTGGACAAGCTACGAGAGACACCTGAGGAATACATTTCTCATTATGAGGTCTCCA ATGGAAGAGTGCTGCTTTATTTCAATGAGCTCTTTGACTCAGAGGAATGTATTAGTTTTGATGCCATACA GAGAGTACCAGTTGGTCTTCTACAGCCTGCTTCAGCTGTGTTCTATGATTATTATGAACCAAACAGAATG TGCACTGTGTCCTACTCCGCCCCCGAAGGAGCAACATGGTCTCCAGACTGTGCTCAGAGGATGTGTGCC AATGTGCAGAAAGACCCTGTCATAAAATACAAAATACAATTCAAATCACAAATTCGTCAGAAGGTCCCCCAA

GAGTGTCCGTCTAGAACATGCTTGCTTCTTCCCTACAGTGGATTACGCATACTTGGTGGAAATCCTTAAC GTTTCCATGAAGAGTAACTTTGACATGTACAAAACGCGTGTAAACGAGGTGCTCAGATCACATGGAGATA CGGGAGTGGGTGAGGATTCTATTCGAGTGTTCGCTAAGCGGCGTCAGTGCAAAGGACAGTTGGACGTGGG AAAACAGTATCTCATCATGGGCAAAGATGGCTCCACGACGGACTCCAGTGGGAAGATTCAGTATCTTTTG GAGTCCAACACTTGGGTGGAAAGAAAGCCTTTGGAAGAAGAATGCAAAAAAATCTGCACATAGAACCGCCT TCCACCGGTTTAATGTGTTTAAAGATGAGTACAAGATATATGGCTGCAGACAGTGAAACGGACAAGTCCT TTCATCCACGGGACGCACCCTCAGCATAAATGTTTGGTGCTCTTTTTTAACCTTTTATAATCATAAACGC ATAGTATGAGAACATGCTTGGAATGAATATTGCCTTGATAGAACGACAACTTTAGTATAATTTG AAAGTTTACTACACTTGGAATGAGACTATTGCCCATGAATTCATGTCCAATACAGCTACCAGTTTTAAA TAAATAAAAACCTTTACCTTTGAATGTATTATGTTTTAAATATAATGATTTCAAAATGTATCACACT

>gi|387145078|gb|JK823217.1|JK823217 CA1110_P14 Clinocottus analis liver, muscle, gill library Clinocottus analis cDNA clone 1110_P14 5' similar to Complement C4 (Fragments), mRNA sequence

>gi|338827443|gb|GW606365.1|GW606365 LFSSH-Li-Nor-Hyp-#230 P. annectens normoxia and hypoxia SSH library Protopterus annectens cDNA 5' similar to Complement C4, mRNA sequence

>gi|253919982|gb|GR677478.1|GR677478 cNOnOV1017_J07.ab1_c Tilapia adult ovary library Oreochromis niloticus cDNA 5' similar to Complement C4 in Rattus norvegicus (P08649), mRNA sequence

GGGGAACCCAAGGATGATTGTGACCATCTGTTAATCAGTGTCAGAGTGGAGGGGAAAGTGAAGTACACAC TTCCGGTATTAGAAAACTATGAATACTATGACTACGACGACGATGAGAAACAAGACCAGGAAGACTTGGGACG AACAGCCATTGAGGGGTCTGATGCTCACACCCGATACAGGAGAACTGTTGATAACAACTTAAGTACAAAA GAGGCTGTTACTTACACTGTCTGTGTCAGGCAGAAGAGCAATCTTACAGGAATGGCCATTGCTGACATCA CATTACTGAGTGGATTTAAGGCTGAAACTAAAACTTTGGAGAGGATCGAAAGTGTACTGTGTTCTATTCT GCACCGCAAAGAAGCAAGATGGTCTCCAAATTGTGTTCAGAGAGCAGTGTGCCAATGCGCAGAAAGACCTT GTCATAAACTACAAGATACATTCAATCGAAGAAGAAGAATTAGGAAGATTAACCGTGTCCAACATGCTTG CTTCTTCCCTATCGTAGATTATGCATATATTGTTGAAGCCCTTCGTGAGAGAGTAACTTTGAG CTGTACACTACTTCTGTAATTGACGTTCTCAGATCAAATAACGATGTGTCCAGTGAGGAG CTGTACACTACTTCTGTAATTGACGTTCTCAGATCAAATAACGATGTGTCCAGTGAGGAG

>gill18496533|gb|EE993227.2|EE993227 AUF_IfSpn_231_p21 Ictalurus furcatus spleen cDNA library Ictalurus furcatus cDNA 5' similar to CD226 antigen; adhesion glycoprotein; platelet and T cell activation antigen 1; DNAX accessory molecule-1; T lineage-specific activation antigen 1 antigen, mRNA sequence

CCACGCGTCCGGAGAGTCATCCGGATTCTCAGAACCCGAGTTATCGTGAAAGAGCTCATTTCTTCATTGA GGAGATCGCTCAGGGAAACTTCTCTCTCTCTTACGAACGTGACCCGGGAAGACGCAGGAGTTTATAAG TGTGCTGTTTACACAAACCATGACTCCTATGAAACTCTGATTGAAATAAAGGAGATTGAGCGTTTGATCG

>ENSGACG0000002708|CD226

> il17a f3-001 ENSDART00000061523

> Il17a-001 ENSMUST00000027061

ATGAGTCCAGGGAGAGCTTCATCTGTGTCTCTGATGCTGTTGCTGCTGCTGAGCCTGGCG GCTACAGTGAAGGCAGCAGCGATCATCCCTCAAAGCTCAGCGTGTCCAAACACTGAGGCC AAGGACTTCCTCCAGAATGTGAAGGTCAACCTCAAAGTCTTTAACTCCCTTGGCGCAAAA GTGAGCTCCAGAAGGCCCTCAGACTACCTCAACCGTTCCACGTCACCCTGGACTCTCCAC CGCAATGAAGACCCTGATAGATATCCCTCTGTGATCTGGGAAGCTCAGTGCCGCCACCAG CGCTGTGTCAATGCGGAGGGAAAGCTGGACCACCACATGAATTCTGTTCTCATCCAGCAA GAGATCCTGGTCCTGAAGAGGGAGCCTGAGAGCTGCCCCTTCACTTTCAGGGTCGAGAAG ATGCTGGTGGGGTGTGGGCTGCACCTGCGTGGCCTCGATTGTCCGCCAGGCAGCCTAA

> IL17A-001 ENST00000340057

>gi|148277545|ref|NM 001098262.1| Danio rerio similar to MHC class II antigen beta chain (LOC100002901), mRNA AAACAGAACCACTTTTTACCAGCACAACGGAACTAATTGTTCTTTATACAGCTTTAAGACGAGTCTTTTC AACGACAGACATGGAAGTGTTCACTGTCCGAGCATCTCTGTTAACTCTTCTGCTGTATCCACACATCATC ATAACATGGACAGATTACCATACAGTAAATATTCTGGCCTACACAAGGGTGATGGGAAACGGCTCCATAG ATCAGACAGTGGTTGTTTTAGTAAACGACGCCATATTTGCACACATTTGACAAAGCGAACAACACATTTGC CTTAAATCCCACTGCAAGTGCTGGCTTTTCAGTTCTGGAGAAACGTGAAAGCATTTTCTGCCTCGGAGAG GTGAATAAGGGATTTCATCGACAAACCGAATACCTGGAGAAACTTAAAAAAGAAACAAAATCCTCAAAGA CACTTTTTGTACGCCCTTCAGTCATTATGTATGCTGAGTTTCCTGAAGAAGAAGGAAAAGCAAATGTCCT TTACTGCTATGCTACCGGGTTTTACCCTGGTGACATTGATATAAGATTTTTCCTAAATGGCCAAAAATCC ACTGCAAAACTAGAGACATCTGACCTAATGTATGGGGAAGACTGGACCTTCAGAGTCTTCAAGTATATGA AGATCACCCCACAGACTGGAGACGAGTACACATGTGAAGTCAGACACAGCAGCATGTCTGAACCCAAAAT CACAGTGTGGAGGCCTGAGTTTTCATCATCAACATCACATCCATACTGGGCTTATACAACGGCTCTCGGG GTCATGTCGGGCATCGGGACATCTACCCTGATTTTGAAAAGAAAACATTGCTCTCAACTTTAAAGGCTTA ATACTGGGTCCTGTTTTGTTCTCCCTTTACTTCCGTTAGGAAAAATTTGTGAAAAGCATGGCATAAATTA CCATCTATATGCTGATGACTCTCAAATCTACTTCCCTATAAAATCTACACTACAAAAATTCGGCTAATTT AAAAGTAAACAAAAATGTCAATTACTTTTAAACAATATTTAACTTGTAGCAACCCAAAGAAATTGAGTTG ATAACTCAATTTTTCCACGTTAATGGAGTTGTTTTGTATATTTCCACACACTGATGTTTTTGCTGTTTTT

>gi|374082910|gb|JN827383.1| Gasterosteus aculeatus clone GN709K12 MHC class II antigen beta chain (Gaac-DXB) gene, exon 2 and partial cds GAGTTCATCGACTCTTATTACTACAACAAGTTAGAACTCACGAGGTTCAGCAGCTCAGTGGGGAAGTATG TCGGCTTCACTGAGTACGGAGTGAGGAACGCTGAATACTGGAACAACGACGCTTCACTTCTGAGTGCTAT GAGAGCTCAGAAGGAGGTTTACTGTCTGAACCACGTCCCGGTCTATTACAGCAATGCTCTGACTAAGTCC GGTGAGTCAGAGCGACATTATTATTATCATCGTTATTATTATCACATTATGATAAATGTCATTACATTAT TATCACATATTGATCAAATAACGTGAACTAAACGCTGACGTCAGACTGAAGTCTTTCTCCACCTTGTGGT GAAGTTGTGCTACTACAGCTCCGACTAATATTACTACTATTCATGTGCTCATCACTCATCACCTCATCG ACGCGGTAGTTTATTCTAAAGTAAAGATCATTTATTAGGAAATCCAACTAGAACCTGATACACATCTTCT GTAATAAATGATTCACGTTGTTATACATATTTTATATAGTTTACTCGTGTGGTTTAATATGTAACACATT TATAAATAATAATGATGTTGTTTTTACACCAAATCATATAATAATAATAATGATCAAAATATTAAACAG AAGAAACACTTTGAATTCAAGTATCAAGTATTTATGGACACTTTATGGATATTATTGAGTAGAACATTTT ATCTGTGAGTACATGACTGGTACTTGTACTGCAGCTGGTACTACTGCTACTACCTTAAGTACTCCTAGTA CTAATCCTCGTACCTGTAAGCTCATAGAACAAACCCTCACCATGTCATATTGTCTCCAG

>gi|300791239|gb|HM596888.1| Salmo trutta MHC class II antigen beta chain (Satr-DAB) gene, Satr-DAB*n allele, partial cds GATGGATATTTTTATCAGAGGGTGGCAGAGTGCCGATTCTCCTCAAAGGACCTGCAGGGGTATAGAGTTGA TAGACTCTTATGTTTTCAATCAGGCTGAACATATCAGATTCAACAGCACTGTGGGGAAGTATGTTGGATA CACTGAGCATGGAGTGTACAATGCAGAAGCCTGGAACCAGTGATGCTGCGTTCCTGGCTCCAAGAGCGAGGG GAGCTGGAGCGTGTCTGTAAGCATAACGCTGATCTCCACTACAGCGC
Supplementary material S.1.2 Detailed description of validation of bioinformatical search strategies to identify MHC class IIβ genes in *Syngnathus typhle*

To validate our bioinformatical approaches for identifying key immune genes in the transcriptome of *Syngnathus typhle* (assembly + tBLASTx) we spiked the real read data with short MHC II fragments derived from three-spined sticklebacks (*Gasterosteus aculeatus*) and seahorse (*Hippocampus abdominalis*) and found successful recovery.

- To test de novo assembly and contig annotation, a MHC class IIβ gene from *Gasterosteus* aculeatus was randomly cut into 15 sequences of 101 bp length, resembling typical Illumina sequences. These sequences were added to a subsample of 10 million reads and then used in a de novo assembly. Subsequent annotation of resulting contigs successfully recovered an annotated MHC class IIβ contig consisting of stickleback sequences.
- 2. To test the tBLASTx sensitivity, a MHC class IIβ gene from *Hippocampus abdominalis* (JN398460) was randomly shortened to 15 sequences 101 bp long, resembling typical Illumina sequences. These sequences were added to 250 million single end rawreads. The modified raw reads were transformed into a blast database and used in a subsequent tBLASTx search, using MHC class II sequences from 3 fish species as query. Hippocampus sequences were excluded as query to account for a possible sequence divergence due to phylogenetic distances. The approach identified 13 of the 15 *Hippocampus* sequences (87%), all by amino acid sequence similarity to *Gasterosteus aculeatus*.

A clustalw based alignment between translated coding sequences of stickleback (gil 374082910lgblJN827383.1) and seahorse (gil363409072lgblJN398460.1) MHC class IIβ chains reveals 70 overlapping amino acids, of which 33 (47%) are a perfect match, 25 (36%) are non-perfect similarities and 12 (17%) are total substitutions. Since we include the *Hippocampus* MHC class IIβ sequence in our regular tBLASTx search and seahorses are more closely related to pipefish than to sticklebacks, we are confident that our approach would display detectable MHC class II sequences of pipefish. To account additionally for complexity based assembly problems, MHC class IIβ sequences of seahorses and sticklebacks were analysed via RepeatMasker, using *Danio rerio* (zebrafish) settings as reference (the only teleost, see <u>www.repeatmasker.org</u>). Of the longer stickleback sequence, 5.67% were marked as simple repeats, while the rest was free of any repeat structure. In the seahorse sequence no repeats could be detected. Thus, abundant repeats in our major target genes cannot be responsible for any failure to detect MHC.

Supplementary Table S.1.1 Overview on PCR-primers used in the targeted cloning approaches to identify MHC class IIβ-genes, either in combination, or in a 3'-RACE approach. The nucleotide alignment that served to design our own primers is given in Supplementary Table S2.

Primer	Nucleotide sequence 5'->3'	Reference
Sato GA11	AACTCCACTGAGCTGAAGGACATC	Sato et al. 1998
Sato GA11 mod1	AACTCCACGGAGCTGAAGGACAT	own alignment
Pipe_MHCf2	CGTCTACGACTTCTACCCCA	own alignment
Pipe_MHCf3	CGACTTCTACCCCAAACAGATC	own alignment
Pipe_MHCrl	TGGACCTGGTAGTACCAGTC	own alignment
Pipe_MHCr2	GAGTGGATCTGGTAGTACCAGTC	own alignment
Pipe_MHCr3	TAGACCAGGTGAGAGTGGA	own alignment
Pipe_MHCr4	CCAGGTGGGAGTGGA	own alignment
MHC_pipe_wob_r1_2	GAGTGGATCTGGTAGTACCAGTC	own alignment
MHC_pipe_wob_r3_4	TAGACCAGGTGAGAGTGGA	own alignment
MHC_pipe_fr3	GATCTGTTTGGGGGTAGAAGTCG-	own alignment
Sato_Gal1_mod_rev	ATGTCCTTCAGCTCCGTGGAGTT-	own alignment
Sato_Gall_wob_rev	ATGTCCTTCAGCTCAGTGGAGT	own alignment
GAIIEx1F	CAGCGTCTCCCTCCTCTTCA	Lenz et al. 2009
GAIIEx2startF	GTCTTTAACTCCACGGAGCTGAAGG	Lenz et al. 2009
GAIIExon2R_RSCA	ACTCACCGGACTTAGTCA	Lenz et al. 2009
MHCIIB-E3F2	GCCTTACGTCAGACTTCACTCG	Bahr & Wilson 2012
MHCIIb-E3R3	GGCGTGTAGACCAGGTGAGA	Bahr & Wilson 2012

Supplementary table S.1.2 Nucleotide alignment of MHC class IIβ coding sequences of 6 Actinopterygii species along with the seahorse (*Hippocampus abdominalis*, Syngnathidae). Given are the locations of all 18 PCR primers used for cloning approaches.

····						
	100) 20) 30) 4() 50	60
70 80 90	100 ATCCCTCCAT	CCTTCATCAC	CGTCTCCCTC	CTCTTCAT	CGGCCTC	CACCACCAC
ATGGATTCAT GGAGTTTAGG ACGTT	TCGTT GTGTC	TTTAA	COICICCCIC	CICITCAI	COUCCIC	CACOCAGCAG
gb/EF681865.1/Larimichthy	ATGGCTTCAT	CCTTCATCAG	CTTCTCCCTG	CTCTTCATCA	GCCTCTG	CACAGCAG
ATGGATTCAT GGAATCATTT TTGGG	CCGTT GTGTT	TTTAA				
gb DQ821113.1 Dicentrarch	ATGGCTTCAT	CCTTTCTCAG	CTTCTCCCTC	CTCTTCATCA	TCAGCCTCTA	CACAGCAG
ATGGATTCCG GAGTTATGAC ATAGA	TCGCT GTGTG	TTTAA			1. S. S. W.	and the second second
gb EU399186.1 Epinephel	ATGGCTTCAT	CCTTTCTCAG	CTTCTCCCTC	CTCTTCAT	-CAGCCTCTA	CACAGCAG
ATGGGTTTAG GTGTTATAGT CTGTT	CCGCT GTGAC					
gb/E0909404.2 Archoprice						
gb AY158838.1 Stizostedi	ATGGCTTCAT	CCTTTCTCAG	CGTCTCCCTG	CTCTTCAT	-CAGCCTCTA	CACAGCAG
ATGGATTCAT GGAATATAAT CTGGC	CCGTT GTGTGT	TTCAA				
AFI42568.1 [Hippocampus a	ATGGCTACGT	TTGCTCGGGT	CGCCTGCCTC	CTTTTCCTCA	CCTTCTACGT	GACAGATGGC
TACCTGTTTC ATACGGACGT TGGTT	GTGTG TTCAA	CTCGA				
primerSato_GA11						
primerSato GAll modl		AA				
		AA				
MHC_pipe_f2						
MHC_Pipe_f3		*********				
MHC nine rl						
MHC_pipe_r2						
MHC_pipe_r3		*********				
MHC pipe r4						
MHC_pipe_wob_r1_2						
MHC_pipe_wob_r3_4						
MUC pipe fr3						
Mic_pipe_115						
SatoGA11 mod 1						
		AA				
SatoGA11_wob_1						
CALTE-1E		AA				
GALLEXIF		CAG	CGTCTCCCTC	CTCTTCAT		
GAIIEx2startF						
	GTC	TTTAA				
GAIIExon2R_RSCA		$(1,\infty,m) = (1,\infty,m) = (1,\infty,m) = (1,\infty,m)$				
MHCIIB-E3F2	*******		********	********	*******	~~~~~~~~
MHCITh-F3P3		*****				
ANGLIN ESKS						

····· [·····]····· [·····]·····]·····]·····]·····]·····]·····]·····]·····] 120 130 140 150 160 110 170 190 180 200 BT027207.1|Gasterosteus a CTCCACGGAG CTGAAGGACA TCGAGTACAT CGACTCGTAT TTCTTCAACA AGTTAGAACT CACGAGGTTC AGCAGCTCAG TGGGGAAGTT TGTCGGCTTC gb|EF681865.1|Larimichthy CTCGACTGAT CTGAAGAACA TTGAGTTCAT CGCCTCTTGG TATTACAACA AGATGGAGTA CACCAGGTTC AGCAGCAGTG TGGGGAAGTT TGTTGGATTC gb|DQ821113.1|Dicentrarch CTCCACTGAT CCGAAGAACA TCGAGTACAT CTACTCTCAA TATTACAACA AGTTGGAGTT CACCAGGTTC AGCAGCAGTG TGGGAGAGTA TGTTGGTTAC gb|EU399186.1| Epinephel CTCCACTGAT CTGAAGGACA TCGAGTACAT CTACTCTGAA TATTACAACA AGCTGGAGAT CGCCAGGTTC AGCAGCAGTG TGGGGAAGTA TGTTGGATAC

bellering to the start the start bellering					AACA	ATGACGAGTA
CATCAGGTTC AGCAGCAGTG TGGGG gb AY158838.1 Stizostedi	CAGCA TGTTGO CTCCTCTGAT	GATAC CTGAAGGACA	TCGAGTTCAT	CTACTCAATG	ТАСТАСААСА	AGTTAGAGTT
AFI42568.1 [Hippocampus a	GTGACCTGAA	TGACATCGAG	TACTTCCAGA	ТТТАСААСТА	СААСАААСТС	AAGCTTTTCC
primerSato_GAll	CTCCACTGAG	CTGAAGGACA	ТС			
primerSato_GAll_modl	CTCCACGGAG	CTGAAGGACA	T			
MHC_pipe_f2						
MHC Pipe f3			********			
MHC pipe rl			*********			
MHC nine r2						
MUC pipe r2						
Mhc_pipe_is						
MHC_pipe_r4					********	
MHC_pipe_wob_r1_2						
MHC_pipe_wob_r3_4						
MHC_pipe_fr3						
SatoGA11_mod_1	CTCCACGGAG	CTGAAGGACA	T			
SatoGA11_wob_1	CTCCACWGAW	CTGAAGWACA	T			
GAIIEx1F						
GAIIEx2startF	CTCCACGGAG	CTGAAGG				
GAIIExon2R_RSCA						
MHCIIB-E3F2	~~~~~~~	~~~~~~~~~~	~~~~~~~~~	~~~~~~~~~	~~~~~~	~~~~~~~
MHCIIb-E3R3	~~~~~	~~~~~ ~~~~~~~~~	~~~~~~~~	~~~~~~	~~~~~~	~~~~~~~
~~~~~ ~		*****				
270 280 290	300	0 22	) 230	) 24(	250	260
BT027207.1   Gasterosteus a	ACTGAGTACG	CACTCACCAA				
ATGAAGGCTC AGAAGGAGGT TTAC.	GTCTG AACCA	CGTCC	CGCTGAATAC	TGGAACAACA	ACCCTTCATA	TCTGAGTGCT
gb EF681865.1 Larimichthy	ACAGAGTACG	CGTCC GTGTGAAGAA CATTC	CGCTGAATAC CGCAGAGTAC	tggaacaaca tggaacaatg	АСССТТСАТА АТGCTTCATT	TCTGAGTGCT TCTGGCTCAG
arGAAGGCTC AGAAGGAGGT TTAC gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC gb DQ821113.1 Dicentrarch	IGTCTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG	CGTCC GTGTGAAGAA CATTC GAGTGAAACA	CGCTGAATAC CGCAGAGTAC GGCTAAATAC	tggaacaaca tggaacaatg tttaacagta	асссттсата атдсттсатт атссттсаат	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG
ATGAAGGCTC AGAAGGAGGT TTAC gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC gb EU399186.1  Epinephel	IGTCTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG	CGTCC GTGTGAAGAA CATTC GAGTGAAACA CGTTA GTGTGAAGCA	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG	асссттсата атдсттсатт атссттсаат аттсттсада	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG
ATGAAGGCTC AGAAGGAGGT TTAC gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC gb EU909404.2  Archoplite	ACTGACTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGTCTG AACAA ACTGAGCATG	CGTCC GTGTGAAGAA CATTC GAGTGAAACA CGTTA GTGTGAAGCA CATTG GAGTGAAGAA	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG TGGAACAAAG	асссттсата атдсттсатт атссттсаат аттсттсада атдстддааа	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG
ATGAAGGCTC AGAAGGAGGT TTAC gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC gb DQ821113.1 Dicentrarch AGGAGGGTG AGAAGGAGAG GTAC gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC gb EU909404.2  Archoplite ATGAGAGCTC AGAAGGAGAC GTAC gb AY158838.1  Stizostedi	ACTGACTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGTCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG	CGTCC GTGTGAAGAA CATTC GAGTGAAACA CGTTA GTGTGAAGCA CATTG GAGTGAAGAA CGTTG GAGTGAAGAA	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG TGGAACAAAG CTCAACAATG	ACCCTTCATA ATGCTTCATT ATCCTTCAGA ATGCTGGAAA ATCCTTCAGA	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG ACTGGCTGCG
ATGAAGGCTC AGAAGGAGGT TTAC: gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC' gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC' gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC' gb EU909404.2  Archoplite ATGAGAGCTC AGAAGGAGAG GTAC' gb AY158838.1  Stizostedi AGGAAAGCTG ATAAGGAGAG ATAC' AFI42568.1 [Hippocampus a	IGTCTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGTCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG IGCAAA CACAA GTTTGGCATC	CGTCC GTGTGAAGAA CATTC GAGTGAAAGAA CGTTA GTGTGAAAGAA CATTG GAGTGAAGAA CATTG AAGCAAGACTA	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT CCGCCTTCAA	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG TGGAACAAAG CTCAACAATG CAACGACAAA	АСССТТСАТА АТССТТСАТТ АТССТТСААТ АТССТТСАGА АТССТТСАGА G-АСАТСАТС	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG ACTGGCTCGG GCCGACGCCA
ATGAAGGCTC AGAAGGAGGT TTAC: gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC: gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC' gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC' gb EU909404.2  Archoplite ATGAGAGCTC AGAAGGAGAG GTAC' gb AY158838.1  Stizostedi AGGAAAGCTG ATAAGGAGAG ATAC' AFI42568.1 [Hippocampus a GAGCCAGGAA AGAATACATT TGTT' primerSato GAl1	ACTGACTTG AACCA ACAGAGTACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGCCTG AACCA ACTGAGTTTG IGTCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG IGCAAA CACAA GTTTGGCATC IAAACA ATATT	CGTCC GTGTGAAGAA CATTC GAGTGAAACA CGTTA GTGTGAAAGAA CATTG GAGTGAAGAA CATTG AAGCAGGCTA AAGCAGGCTA	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT CCGCCTTCAA	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG CTCAACAAAG CAACGACAAA	ACCCTTCATA ATGCTTCATT ATCCTTCAAT ATTCTTCAGA ATGCTGGAAA ATCCTTCAGA G-ACATCATC	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG ACTGGCTCGG GCCGACGCCA
ATGAAGGCTC AGAAGGAGGT TTAC: gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC: gb DQ821113.1 Dicentrarch AGGAGGGTG AGAAGGAGAG GTAC' gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC' gb EU909404.2  Archoplite ATGAGAGCTC AGAAGGAGAG GTTC' gb AY158838.1  Stizostedi AGGAAAGCTG ATAAGGAGAG ATAC' AFI42568.1 [Hippocampus a GAGCCAGGAA AGAATACATT TGTT' primerSato_GA11 	ACTGACTTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGTCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG IGCAAA CACAA GTTTGGCATC	GAGTGAGAGAA CATTC GAGTGAAAACA CGTTA GTGTGAAGAA CATTG GAGTGAAGAA CGTTG GAGTGAAGAA CATTG AAGCAGGCTA AAGCAGGCTA	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT CCGCCTTCAA	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG CTCAACAAATG CAACGACAAA	ACCCTTCATA ATGCTTCATT ATCCTTCAGA ATGCTGGAAA ATCCTTCAGA G-ACATCATC	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG ACTGGCTCGG GCCGACGCCA
ATGAAGGCTC AGAAGGAGGT TTAC: gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC' gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC' gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC' gb EU909404.2  Archoplite ATGAGAGCTC AGAAGGAGAG GTTC' gb AY158838.1  Stizostedi AGGAAAGCTG ATAAGGAGAG ATAC' AFI42568.1 [Hippocampus a GAGCCAGGAA AGAATACATT TGTT' primerSato_GA11 	ACTGAGTATG ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGCCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG IGCAAA CACAA GTTTGGCATC IAAACA ATATT	CGTCC GTGTGAAGAA CATTC GAGTGAAAGAA CGTTA GTGTGAAGCA CATTG GAGTGAAGAA CATTG AAGCAGGCTA AAGCAGGCTA AAGCT	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT CCGCCTTCAA	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG CTCAACAAAG CAACGACAAA 	ACCCTTCATA ATGCTTCATT ATCCTTCAGA ATGCTGGAAA ATCCTTCAGA G-ACATCATC 	TCTGAGTGCT TCTGGCTCAG ACTGGCTCGG ACTGGCTGCG ACTGGCTCGG GCCGACGCCA
ATGAAGGCTC AGAAGGAGGT TTAC: gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAGA ATAC: gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC' gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC' gb EU909404.2  Archoplite ATGAGAGCTC AGAAGGAGAG GTTC' gb AY158838.1  Stizostedi AGGAAAGCTG ATAAGGAGAG ATAC' AFI42568.1 [Hippocampus a GAGCCAGGAA AGAATACATT TGTT' primerSato_GAl1 	ACTGACTTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGCCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG IGCAAA CACAA GTTTGGCATC	CGTCC GTGTGAAGAA CATTC GAGTGAAACA CGTTA GTGTGAAGCA CATTG GAGTGAAGAA CATTG GAGTGAAGAA CATTG AAGCAGGCTA AAGCT	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT CCGCCTTCAA	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG CTCAACAATG CAACGACAAA 	ACCCTTCATA ATGCTTCATT ATCCTTCAAT ATTCTTCAGA ATGCTGGAAA ATCCTTCAGA G-ACATCATC 	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG ACTGGCTCGG GCCGACGCCA
ATGAAGGCTC AGAAGGAGGT TTAC: gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC' gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC' gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC' gb EU399186.1  Epinephel AGGAGGCTC AGAAGGAGAG GTTC' gb AY158838.1  Stizostedi AGGAAAGCTG ATAAGGAGAG ATAC' AFI42568.1 [Hippocampus a GAGCCAGGAA AGAATACATT TGTT' primerSato_GA11 	ACTGAGTTG ACCAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGTCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG IGCAAA CACAA GTTTGGCATC IAAACA ATATT	GAGTGAAGAA GAGTGAAGAA CATTC GAGTGAAAGAA CGTTA GTGTGAAGCA CATTG GAGTGAAGAA CGTTG GAGTGAAGAA CATTG AAGCAGGCTA AAGCA 	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT CCGCCTTCAA	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG CTCAACAAAG CAACGACAAA 	ACCCTTCATA ATGCTTCATT ATCCTTCAGA ATGCTGGAAA ATCCTTCAGA G-ACATCATC 	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG ACTGGCTGCG GCCGACGCCA
ATGAAGGCTC AGAAGGAGGT TTAC: gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC' gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC' gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTTC' gb EU909404.2  Archoplite ATGAGAGCTC AGAAGGAGAG GTTC' gb AY158838.1  Stizostedi AGGAAAGCTG ATAAGGAGAG ATAC' AFI42568.1 [Hippocampus a GAGCCAGGAA AGAATACATT TGTT' primerSato_GA11 	IGTCTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGCCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG IGCAAA CACAA GTTTGGCATC	CGTCC GTGTGAAGAA CATTC GAGTGAAGAA CGTTA GTGTGAAGCA CATTG GAGTGAAGAA CATTG AAGCAGGCTA AAGCAGGCTA AAGCAT 	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT CCGCCTTCAA	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG CTCAACAAAG CAACGACAAA 	ACCCTTCATA ATGCTTCATT ATCCTTCAGA ATGCTGGAAA ATCCTTCAGA G-ACATCATC 	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG ACTGGCTCGG GCCGACGCCA
ATGAAGGCTC AGAAGGAGGT TTAC: gb EF681865.1 Larimichthy ACGAGAGGCG AGAAGGAGAG ATAC: gb DQ821113.1 Dicentrarch AGGAGAGGTG AGAAGGAGAG GTAC' gb EU399186.1  Epinephel AGGAGTGCTG AGAAGGAGAG GTAC' gb EU909404.2  Archoplite ATGAGAGCTC AGAAGGAGAG GTAC' gb AY158838.1  Stizostedi AGGAAAGCTG ATAAGGAGAG ATAC' AFI42568.1 [Hippocampus a GAGCCAGGAA AGAATACATT TGTT' primerSato_GAl1 	GTCTG AACCA ACAGAGTACG IGTCTG AACCA ACTGAGTTCG IGCCTG AACCA ACTGAGTTTG IGTCTG AACAA ACTGAGCATG IGCCTA AACAA ACTGAGTTTG IGCAAA CACAA GTTTGGCATC	GAGTGAGAGAA CATTC GAGTGAAAACA CGTTA GAGTGAAAGAA CATTG GAGTGAAGAA CATTG GAGTGAAGAA CATTG AAGCAGGCTA AAGCAGGCTA 	CGCTGAATAC CGCAGAGTAC GGCTAAATAC GGCTGAGAAC CGCTGAGGCC CGCAGAACGT CCGCCTTCAA	TGGAACAACA TGGAACAATG TTTAACAGTA TGGAACAAAG CTCAACAATG CAACGACAAA 	ACCCTTCATA ATGCTTCATT ATCCTTCAGA ATGCTGGAAA ATGCTGGAAA ATCCTTCAGA G-ACATCATC 	TCTGAGTGCT TCTGGCTCAG ACTGGCTCAG ACTGGCTCGG ACTGGCTCGG GCCGACGCCA

MHC_pipe_r4									
	h 1 0								
MHC_pipe_wc	ob_r1_2								
MHC_pipe_wo	b_r3_4								
MHC_pipe_fr	3								
SatoGA11_mc	_1								CALCENCERS.
SatoGA11 wo	b 1								
GAIIEx1F									
GAIIEx2star	tF						*******	********	
CATTR									
GAIIEXONZR_	RSCA								
MHCITB-E3F2	· · · · · · · · · · · · · · · · · · ·		~~~~	~~~~~	~~~~~~	~~~~~~~	~~~~~~	~~~~~~~	~~~~~~
~~~~~~~	~~~~~~~~	~~~~~	.~~~~	~~~~~	~~~~				
MHCIIb-E3R3	3		~~~~~	~~~~~	~~~~~~~~	~~~~~~~~	~~~~~~~~	~~~~~~~~	~~~~~~~
~~~~~~	*******	~~~~~		~~~~					
						1 1	1	1 1	1 1
-				310	32	0 33	0 340	350	0 360
370	380	390		400					
BT027207.1	Gasterosteu	is a	CGGTC	CTATTA	CAGCAATGCI	CTGACTAAGT	CCGCTGAGCC	CTACGTCAGG	CTGCACTCTG
AGACGCCCCC	TGGTGGTGGA	CCTTTG	STCCA	TGTTG	GTCTG		CACCUAACCC	CTATCTCACC	CIECCA CIECTEC
TGACGCCCCC	TGGTGGTCAC	CATCCC	TCCA	TGCTG	CAGCCACACI STCTG	CIGGAIAAGI	CAGCIAAGCC	GIAIGICAGG	CIGCACICIG
qb   D0821113	3.1 Dicentra	arch	ACGCI	TACTA	CCCGCATGCI	CTGGATAAAT	CAGTTAAGCC	CTATGTCAGA	CTGCGCTCGG
TGGCGCCCCC	TGCTGGTAAA	CATCCO	CTCCA	TGTTG	GTCCG				
gb EU399186	5.1  Epinep	phel	AGGCI	TTTCTA	CCCAAATATI	CTGACTAAGC	CAGCTGAGCC	GTATGTCAGG	CTGCACTCTG
TGACGCCCTC	TGGAGGTAAA	CATTCA	AGCCA	TGTTG	GTCTG				
gb1E0909404	TCCTCCTDDD	CATCCC	GGATC	GACTA	CCAGGCTGCT	CTGACTAAGT	CAGCTGAGCC	CTACGTGTTC	CTGAGCTCTG
ab AY158838	3.11 Stizost	edi	ATATO	CGGTA	CCACGCTGCT	СТБАСТАААТ	CAGCTGAGCC	GTATGTCAGA	СТСАССТСТА
CGGCGTCCCC	TGGTGGTAAA	CATTCA	AGCCA	TGTTG	GTCTG	010110111111	0110010110000	0111101011011	01010010111
AFI42568.1	[Hippocampu	is a	TGACT	TACGAA	AGTGCGCTCA	CCAAGTCAGC	CAAGCCTTAC	GTCAGACTTC	ACTCGGAGTC
TCCT~~~~CC	GGAGGGCTCC	CACTCO	CGCCA	TGCTG	GTGTG				
primerSato_	_GA11								
primorCoto	CAll modi								
primersato	_GATI_MOUT	10222							
MHC pipe f:	2								
	*********								
MHC_Pipe_f	3								
MIC									
MHC_pipe_r	1								********
MHC pipe r	2								
MHC_pipe_r	3								
MHC_pipe_r	4								
MHC pipe w	ob r1 2								CONTRACT STREET
""C"brbe_w									

CTTCACTCG. .....

----- -----GAIIExon2R_RSCA ----- CTGACTAAGT

-----

-----

------

-----

The second second

------

----

-----

MHC_pipe_wob_r3_4

MHC_pipe_fr3

SatoGA11 mod 1

SatoGA11_wob_1

GAIIEx1F

GAIIEx2startF

-----

-----

_ __ _

____

-

---

MHCIIb-E3R3			*******			********		~~~~~~
********		~~~~~~	~~ ~~~~~	*****				
170 10	20	400	41	0 42	430	0 440	) 450	460
470 48 BT027207.1 Ga	asterosteu	490 sa CA	GCGTCTAT	GACTTCTAC	CCAAGAAGAT	CATAGTGAGG	TGGACCAGAG	ACGG~AGGCC
AGAGACCACC GG	GGGTCACTT	CTACCGAC	GA GCTGG	CAGAC	CCCAACACAT	CAACCTCACC	ͲϹϹϪͲϹϪϹϪϹ	ACCCA+ACCA
AGTCACCTCT GA	ATGTCACTT	CCACTGAT	GA GCTGG	CAGAC	CUCAACACAI	CAAGGIGAGC	IGGAICAGAG	ACGGA~AGGA
gb DQ821113.1	Dicentra	rch CA	GCGTCTAC	GACTTCTTCC	CCAAACACAT	CAGAGTGAGC	TGGCTCAGAG	ACGGA~AGGA
gb EU399186.1	L  Epinep	hel CA	GCGTCTTC	AACTTCTAC	ССАААААДАТ	CAAAGTCAGC	TGGCTCAGAG	ACGGA~AGGA
gb EU909404.2	2   Archopl	ite CA	GCGTCTTC	GACTTCTAC	C CCAAACAGAT	CAGAGTGGGC	TGGCTCAGAG	ACGGA~AGGA
AGTCAGCTCT GA	ATGTCACTT	CCACTGAT	GA GCTGG	CAGAC	CCANACACAM	CACACTCACC	BCCACCACAC	20002.2002
AGTCACCTCT GA	ATGTCACTT	CCACTGAT	GA GCTGG	CAGAC	CCAAACAGAI	CAGAGIGAGC	IGGACCAGAG	ACGGA~AGGA
AFI42568.1 [H AGCCACGGGC GA	Hippocampu AGGTGACCT	s a CA CCACCGAC	TCGTCTAC GA GATGC	GACTTCTACO CCGAC	CCAAGCAGAT	CCGCGTCAAC	TGGCTGAGGG	ACGGCCAGGA
primerSato_GA	A11							
primerSato_GA	AII_modI							
MHC_pipe_f2			-CGTCTAC	GACTTCTAC	2			
CCA		******	•• •••••	GACTTCTAC		•••••		
C								
MHC_pipe_rl								
MUC pipe r2								
MHC_pipe_iz								
MHC_pipe_r3								
MUC pipe pl								
MHC_pipe_r4								
MHC_pipe_wob_	_r1_2						********	
MHC_pipe_wob_	r3_4							
						2		
MHC_pipe_fr3				GACTICIACO	CCAAACAGAT	C		
SatoGAl1_mod_	_1							
SatoGA11 wob	1	* * * * * * * *	•• •••••					
GAIIEx1F							****	
GAIIEx2start	F			********				
GAIIExon2R_R	SCA					••••••	• • • • • • • • • • • •	•••••
MHCIIB- E3F2			** *****					
MHCIIb-E3R3		~~	~~~~~~~	~~~~~~~~	~~~~~~~~~~	~~~~~~~~~	~~~~~~~~	~~~~~~~~
				0 5	20 53			· ·
BT027207.1 G	asterosteu	is a GG	GGATTGGT	ACTACCAGA	CCACTCCCAC	CTGGAGTACA	CGCCC	
gb EF681865.	1 Larimich	thy GC	TGATTGGT	ACTACCAGA	CCACTCTCAC	CTGGAGTACA	CGCCC	
gb DQ821113.	1 Dicentra	urch GC	TGATTGGT	TCTACCAGA	CCACTCTCAC	CTGGAGTACA	CGCCC	**
AD1E0222100.	ri chrueb	mer Go	I GATIGGI	ACTACCAGA.	CCACICICAC	CIGGAGIACA		2.5

MHC_pipe_r4 MHC_pipe_wob_r1_2 MHC_pipe_wob_r3_4 MHC_pipe_fr3 SatoGAl1_mod_1 SatoGAl1_wob_1 GAIIEx1F GAIIEx2startF GAIIExon2R_RSCA MHCIIB-E3F2 MHCIIb-E3R3

	IC	CACICCCACC	TGG	*********	
GACTGGTA	CTACCAGWTC	CACTC			
	TC	CACTCWCACC	TGGTCTA		12
					• •
		********			• •
	********		********		12
			6.2.4	********	e.e.
********	********	********	********		12
*********			*********		
~~~~~~~	~~~~~~~~	~~~TCTCACC	TGGTCTACAC	GCC	

Supplementary Table S.1.3 Syngnathus typhle: EST library types, tissue, sequence reads statistics

				Reads after		
			Raw reads	clipping	Merged	Mean length
Library type	tissue	#individuals	(106)	(106)	only (10 ⁶)	merged (bp)
454	Head kidney/	5 (3 Baltic,	0.90	0.57	84	278
normalized	gill/liver	2 Adriatic Sea)				
Ilumina	Head kidney	1 (Baltic)	257	213	84	149
paired end Ilumina	liver	1 (Baltic)	240	220	38	146
paired end Ilumina	gill	1 (Baltic)	246	123	93	149
paired end			and the state			

Supplementary Table S.1.4 *Syngnathus typhle*: mapping statistics of all quality checked reads against mixed assembly (454 plus 5 mio reads each tissue)

Illumina library	Total reads (10 ⁶)	Reads mappable (10 ⁶)	Reads left (10 ⁶)
Head kidney	220	177	42
liver	123	98	25
gill	213	167	45

Supplementary Table S.1.5 Bit scores and read statistics for 11 immune genes identified via reciprocal tBLASTx search in 750 mio *Syngnathus typhle* ESTs. Genes with several identified reads (PSMB8, RAG2, complement C4 and C1qT4, IL12A, IL17A) were successfully assembled into respective contigs based on the short reads identified via tblastx. The retrieved sequence reads representing genes PSMB9, PSMB10, AIRE, FOXP3 and CD226 were not sufficient in number to produce contigs. However, here annotation metrics for single sequences are similar or better than in the assembled genes and above commonly used thresholds (supplementary table S6). This suggests that the annotation of those reads is correct as well.

gene_name	bit_score	e-value	read retrieved
AIRE	62	3.00E-08	HWI-ST758:61:B0272ACXX:7:1304:1508:118853 1:N:0:
C1QT4	62	3.00E-08	HWI-ST758:61:B0272ACXX:5:1303:2064:126331 2:N:0:
C1QT4	64.3	6.00E-09	HWI-ST758:61:B0272ACXX:7:1204:19035:199665 2:N:0:
C1QT4	73.9	8.00E-12	HWI-ST758:61:B0272ACXX:5:1303:2064:126331 1:N:0:
C1QT4	60.5	9.00E-08	HWI-ST758:61:B0272ACXX:7:2106:9864:124661 1:N:0:
C1QT4	72.4	2.00E-11	HWI-ST758:61:B0272ACXX:5:1302:2389:105196 1:N:0:
C1QT4	57.8	6.00E-07	HWI-ST758:61:B0272ACXX:7:2302:16517:143923 1:N:0:
C1QT4	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:5:2308:16930:62378 1:N:0:
C1QT4	64.3	6.00E-09	HWI-ST758:61:B0272ACXX:7:1204:19035:199665 1:N:0:
C1QT4	55.5	3.00E-06	HWI-ST758:61:B0272ACXX:5:2306:4682:89923 1:N:0:
C1QT4	68.2	4.00E-10	HWI-ST758:61:B0272ACXX:5:1207:12107:179321 1:N:0:
C1QT4	68.9	3.00E-10	HWI-ST758:61:B0272ACXX:5:1105:12955:119811 1:N:0:
C1QT4	62.8	2.00E-08	HWI-ST758:61:B0272ACXX:5:1108:9040:115759 1:N:0:
C1QT4	64.7	5.00E-09	HWI-ST758:61:B0272ACXX:7:2107:9602:22927 1:N:0:
C1QT4	64.3	6.00E-09	HWI-ST758:61:B0272ACXX:5:2301:13356:32512 1:N:0:
C1QT4	61.2	5.00E-08	HWI-ST758:61:B0272ACXX:7:2302:16517:143923 2:N:0:
C1QT4	63.5	1.00E-08	HWI-ST758:61:B0272ACXX:7:2105:15452:137119 1:N:0:
C1QT4	60.5	9.00E-08	HWI-ST758:61:B0272ACXX:7:2206:3891:60758 1:N:0:
C1QT4	68.2	4.00E-10	HWI-ST758:61:B0272ACXX:5:1101:7058:145154 1:N:0:
C1QT4	62.4	2.00E-08	HWI-ST758:61:B0272ACXX:5:1101:7058:145154 2:N:0:
C1QT4	73.9	8.00E-12	HWI-ST758:61:B0272ACXX:7:1101:7776:98987 2:N:0:
C1QT4	62.4	2.00E-08	HWI-ST758:61:B0272ACXX:7:1203:4549:143045 1:N:0:
C4	43.5	0.011	HWI-ST758:61:B0272ACXX:6:1208:5336:200109 1:N:0:

C4	37.4	0.81	HWI-ST758:61:B0272ACXX:6:1107:15871:189465 1:N:0:
C4	38.1	0.48	HWI-ST758:61:B0272ACXX:6:1304:11188:95458 1:N:0:
C4	45.8	0.002	HWI-ST758:61:B0272ACXX:5:2303:5338:9783 1:N:0:
C4	43.9	0.009	HWI-ST758:61:B0272ACXX:6:1205:18270:88600 1:N:0:
C4	42.4	0.025	HWI-ST758:61:B0272ACXX:6:1204:10963:162144 1:N:0:
C4	41.6	0.043	HWI-ST758:61:B0272ACXX:6:1202:16419:25413 1:N:0:
C4	41.6	0.043	HWI-ST758:61:B0272ACXX:6:1103:9493:96981 1:N:0:
C4	47.4	8.00E-04	HWI-ST758:61:B0272ACXX:6:1205:3425:145758 1:N:0:
C4	43.1	0.015	HWI-ST758:61:B0272ACXX:6:1305:4469:52712 1:N:0:
C4	39.7	0.16	HWI-ST758:61:B0272ACXX:6:1308:8340:120393 1:N:0:
C4	38.1	0.48	HWI-ST758:61:B0272ACXX:6:1108:13369:25399 1:Y:0:
C4	42.4	0.025	HWI-ST758:61:B0272ACXX:6:1101:14449:195331 1:N:0:
C4	45.1	0.004	HWI-ST758:61:B0272ACXX:6:1202:5574:165585 1:N:0:
C4	42.4	0.025	HWI-ST758:61:B0272ACXX:6:1303:17014:40973 1:N:0:
C4	42.4	0.025	HWI-ST758:61:B0272ACXX:6:1108:7308:33557 1:Y:0:
C4	47.4	8.00E-04	HWI-ST758:61:B0272ACXX:6:1301:9506:96445 1:N:0:
C4	38.5	0.37	HWI-ST758:61:B0272ACXX:6:1108:15170:32787 1:N:0:
C4	42.4	0.025	HWI-ST758:61:B0272ACXX:6:1307:3128:23958 1:N:0:
C4	43.1	0.015	HWI-ST758:61:B0272ACXX:6:1208:18541:63322 1:N:0:
C4	41.6	0.043	HWI-ST758:61:B0272ACXX:6:1101:20086:193057 1:N:0:
C4	43.5	0.011	HWI-ST758:61:B0272ACXX:6:1308:8297:78269 1:N:0:
C4	43.9	0.009	HWI-ST758:61:B0272ACXX:6:1107:14404:139980 1:N:0:
C4	42.7	0.019	HWI-ST758:61:B0272ACXX:6:1202:20789:56796 1:N:0:
C4	42.7	0.019	HWI-ST758:61:B0272ACXX:6:1205:17187:2520 1:N:0:
C4	47.4	8.00E-04	HWI-ST758:61:B0272ACXX:6:1305:15018:145829 1:N:0:
C4	41.6	0.043	HWI-ST758:61:B0272ACXX:6:1108:17995:195062 1:N:0:
C4	45.4	0.004	HWI-ST758:61:B0272ACXX:6:1207:15676:65975 1:N:0:
CD226	59.7	2.00E-07	HWI-ST758:61:B0272ACXX:5:1302:19959:117238 1:N:0:
CD226	71.6	4.00E-11	HWI-ST758:61:B0272ACXX:6:1107:12197:143109 1:N:0:
CD226	68.2	4.00E-10	HWI-ST758:61:B0272ACXX:5:2308:12201:95985 1:Y:0:
CD226	69.3	2.00E-10	HWI-ST758:61:B0272ACXX:5:1102:14786:42822 1:N:0:

CD226	63.5	1.00E-08	HWI-ST758:61:B0272ACXX:5:2308:12201:95985 2:Y:0:
CD226	63.9	8.00E-09	HWI-ST758:61:B0272ACXX:5:1107:18373:170532 1:N:0:
FOXP3	74.7	5.00E-12	HWI-ST758:61:B0272ACXX:6:1103:18464:146927 1:N:0:
FOXP3	63.2	1.00E-08	HWI-ST758:61:B0272ACXX:6:2201:1976:27936 2:Y:0:
PSMB10	67	1.00E-09	HWI-ST758:61:B0272ACXX:7:2305:4496:54842 1:N:0:
PSMB10	52.4	2.00E-05	HWI-ST758:61:B0272ACXX:7:2304:10049:73896 1:N:0:
PSMB8	54.3	6.00E-06	HWI-ST758:61:B0272ACXX:7:2102:8017:148789 1:N:0:
PSMB8	45.1	0.004	HWI-ST758:61:B0272ACXX:7:1301:12993:187278 1:N:0:
PSMB8	60.5	9.00E-08	HWI-ST758:61:B0272ACXX:5:1305:15838:28010 1:N:0:
PSMB8	49.7	2.00E-04	HWI-ST758:61:B0272ACXX:7:2206:5522:122302 1:N:0:
PSMB8	57	1.00E-06	HWI-ST758:61:B0272ACXX:7:1203:18495:95027 1:N:0:
PSMB8	44.7	0.005	HWI-ST758:61:B0272ACXX:5:2108:17397:140779 1:N:0:
PSMB8	56.2	2.00E-06	HWI-ST758:61:B0272ACXX:7:2202:15441:186712 1:N:0:
PSMB8	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:5:1304:19264:13475 1:N:0:
PSMB8	59.7	2.00E-07	HWI-ST758:61:B0272ACXX:5:1203:5360:151559 1:N:0:
PSMB8	57.8	6.00E-07	HWI-ST758:61:B0272ACXX:7:2208:14055:27771 1:N:0:
PSMB8	42.4	0.025	HWI-ST758:61:B0272ACXX:7:1303:2436:182110 1:N:0:
PSMB8	54.3	6.00E-06	HWI-ST758:61:B0272ACXX:7:1103:16385:7695 1:N:0:
PSMB8	54.3	6.00E-06	HWI-ST758:61:B0272ACXX:5:2102:15231:187289 1:N:0:
PSMB8	58.5	3.00E-07	HWI-ST758:61:B0272ACXX:5:2208:14134:197344 1:N:0:
PSMB8	56.2	2.00E-06	HWI-ST758:61:B0272ACXX:7:1304:8742:187782 1:N:0:
PSMB8	42.7	0.019	HWI-ST758:61:B0272ACXX:6:1207:16182:65882 1:N:0:
PSMB8	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:5:1102:6504:99697 1:N:0:
PSMB8	57.8	6.00E-07	HWI-ST758:61:B0272ACXX:6:1208:20666:168709 1:N:0:
PSMB8	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:7:1102:9359:118970 1:N:0:
PSMB8	52.4	2.00E-05	HWI-ST758:61:B0272ACXX:5:2204:17690:90029 1:N:0:
PSMB8	45.5	0.003	HWI-ST758:61:B0272ACXX:7:2108:20239:140194 1:N:0:
PSMB8	49.7	2.00E-04	HWI-ST758:61:B0272ACXX:7:1108:10208:171825 1:N:0:
PSMB8	54.3	6.00E-06	HWI-ST758:61:B0272ACXX:7:2201:5387:20281 1:N:0:
PSMB8	53.5	1.00E-05	HWI-ST758:61:B0272ACXX:5:2208:8952:182418 1:N:0:
PSMB8	55.8	3.00E-06	HWI-ST758:61:B0272ACXX:7:1104:15433:125689 1:Y:0:

PSMB8	55.5	3.00E-06	HWI-ST758:61:B0272ACXX:5:2208:7212:190335 1:N:0:
PSMB8	58.5	3.00E-07	HWI-ST758:61:B0272ACXX:7:1202:4052:183177 1:N:0:
PSMB8	53.9	8.00E-06	HWI-ST758:61:B0272ACXX:5:2203:6719:23707 1:N:0:
PSMB8	52.8	2.00E-05	HWI-ST758:61:B0272ACXX:7:2208:9259:170110 1:N:0:
PSMB8	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:7:2108:4215:36681 1:N:0:
PSMB8	54.7	5.00E-06	HWI-ST758:61:B0272ACXX:7:1105:10360:190457 1:N:0:
PSMB8	58.5	3.00E-07	HWI-ST758:61:B0272ACXX:5:2303:6784:184938 1:N:0:
PSMB8	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:7:2304:4534:179269 2:N:0:
PSMB8	48.5	4.00E-04	HWI-ST758:61:B0272ACXX:7:1208:2854:31543 1:Y:0:
PSMB8	38.1	0.48	HWI-ST758:61:B0272ACXX:7:2307:12673:76874 1:N:0:
PSMB8	57	1.00E-06	HWI-ST758:61:B0272ACXX:7:1107:18994:121708 2:N:0:
PSMB9	69.7	1.00E-10	HWI-ST758:61:B0272ACXX:6:1107:19813:33744 2:N:0:
PSMB9	38.1	0.48	HWI-ST758:61:B0272ACXX:7:2105:8896:37271 1:N:0:
RAG2	66.6	1.00E-09	HWI-ST758:61:B0272ACXX:5:1203:7888:280301:N:0:
RAG2	61.6	4.00E-08	HWI-ST758:61:B0272ACXX:5:2306:8921:1873631:N:0:
RAG2	65.5	3.00E-09	HWI-ST758:61:B0272ACXX:5:2207:11226:1117871:N:0:
RAG2	68.9	3.00E-10	HWI-ST758:61:B0272ACXX:5:1104:7486:813092:N:0:
RAG2	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:5:1303:20920:1529011:N:0:
RAG2	64.3	6.00E-09	HWI-ST758:61:B0272ACXX:5:1303:12044:838381:N:0:
RAG2	69.3	2.00E-10	HWI-ST758:61:B0272ACXX:5:1205:13304:1538021:N:0:
RAG2	63.2	1.00E-08	HWI-ST758:61:B0272ACXX:5:2203:2640:1288891:N:0:
RAG2	59.7	2.00E-07	HWI-ST758:61:B0272ACXX:5:2102:15722:1648461:N:0:
RAG2	50.8	7.00E-05	HWI-ST758:61:B0272ACXX:5:2208:18308:1332641:N:0:
RAG2	57	1.00E-06	HWI-ST758:61:B0272ACXX:5:2205:20343:169212:N:0:
RAG2	57.4	8.00E-07	HWI-ST758:61:B0272ACXX:5:2201:8406:1340201:N:0:
RAG2	67.4	7.00E-10	HWI-ST758:61:B0272ACXX:5:2207:12567:1167311:N:0:
RAG2	60.1	1.00E-07	HWI-ST758:61:B0272ACXX:5:2303:15121:44132:N:0:
RAG2	71.2	5.00E-11	HWI-ST758:61:B0272ACXX:5:2203:11708:841682:N:0:
RAG2	57	1.00E-06	HWI-ST758:61:B0272ACXX:5:2202:16912:1012982:N:0:
RAG2	68.6	3.00E-10	HWI-ST758:61:B0272ACXX:5:2201:13057:776461:N:0:
RAG2	55.1	4.00E-06	HWI-ST758:61:B0272ACXX:5:1205:4564:848922:N:0:

RAG2	43.5	0.011	HWI-ST758:61:B0272ACXX:5:1107:16468:683711:N:0:
RAG2	55.1	4.00E-06	HWI-ST758:61:B0272ACXX:5:1106:6404:1156192:N:0:
RAG2	63.9	8.00E-09	HWI-ST758:61:B0272ACXX:5:1205:4564:848921:N:0:
RAG2	57.8	6.00E-07	HWI-ST758:61:B0272ACXX:5:2101:11373:85912:N:0:
RAG2	67	1.00E-09	HWI-ST758:61:B0272ACXX:5:1304:4933:1582451:N:0:
RAG2	71.6	4.00E-11	HWI-ST758:61:B0272ACXX:5:2105:8559:778292:N:0:
RAG2	71.2	5.00E-11	HWI-ST758:61:B0272ACXX:5:2106:10244:281702:N:0:
RAG2	67	1.00E-09	HWI-ST758:61:B0272ACXX:5:1108:13951:1141761:N:0:
RAG2	58.2	4.00E-07	HWI-ST758:61:B0272ACXX:5:1302:19609:1637261:N:0:
RAG2	55.1	4.00E-06	HWI-ST758:61:B0272ACXX:5:1303:3166:767302:N:0:
RAG2	67	1.00E-09	HWI-ST758:61:B0272ACXX:5:2206:18528:155402:N:0:
RAG2	39.3	0.21	HWI-ST758:61:B0272ACXX:5:2108:18419:1019181:N:0:
RAG2	66.2	2.00E-09	HWI-ST758:61:B0272ACXX:5:1201:6019:80592:N:0:
RAG2	58.9	3.00E-07	HWI-ST758:61:B0272ACXX:5:1305:4088:1555121:N:0:
RAG2	53.9	8.00E-06	HWI-ST758:61:B0272ACXX:5:2302:20525:825621:N:0:
RAG2	71.2	5.00E-11	HWI-ST758:61:B0272ACXX:5:2206:21096:1748262:N:0:
RAG2	46.6	0.001	HWI-ST758:61:B0272ACXX:5:2206:19001:698591:N:0:
RAG2	53.5	1.00E-05	HWI-ST758:61:B0272ACXX:5:1206:16951:521741:N:0:
RAG2	64.7	5.00E-09	HWI-ST758:61:B0272ACXX:7:2207:3809:1143341:N:0:
RAG2	62.8	2.00E-08	HWI-ST758:61:B0272ACXX:5:1304:19224:1839201:N:0:
RAG2	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:7:1308:8984:1996511:Y:0:
RAG2	68.9	3.00E-10	HWI-ST758:61:B0272ACXX:5:1206:6016:969591:N:0:
RAG2	62.8	2.00E-08	HWI-ST758:61:B0272ACXX:5:2108:6240:983361:N:0:
RAG2	63.2	1.00E-08	HWI-ST758:61:B0272ACXX:5:2206:12309:250031:N:0:
RAG2	60.8	7.00E-08	HWI-ST758:61:B0272ACXX:5:1108:19677:1941892:N:0:
RAG2	66.2	2.00E-09	HWI-ST758:61:B0272ACXX:7:1302:10176:1089701:N:0:
RAG2	62	3.00E-08	HWI-ST758:61:B0272ACXX:5:1107:14960:494941:N:0:
RAG2	48.5	4.00E-04	HWI-ST758:61:B0272ACXX:5:1108:14666:1600011:N:0:
RAG2	65.1	4.00E-09	HWI-ST758:61:B0272ACXX:5:1107:4097:1331482:N:0:
RAG2	60.5	9.00E-08	HWI-ST758:61:B0272ACXX:5:1206:15216:404402:N:0:
RAG2	70.5	9.00E-11	HWI-ST758:61:B0272ACXX:5:1208:9491:226111:N:0:

RAG2	55.1	4.00E-06	HWI-ST758:61:B0272ACXX:5:1303:3639:911252:Y:0:
RAG2	69.3	2.00E-10	HWI-ST758:61:B0272ACXX:5:2104:16038:440401:N:0:
RAG2	44.3	0.007	HWI-ST758:61:B0272ACXX:5:1207:4940:1932441:N:0:
RAG2	45.1	0.004	HWI-ST758:61:B0272ACXX:5:2106:8426:45571:N:0:
RAG2	57.4	8.00E-07	HWI-ST758:61:B0272ACXX:5:1207:8368:1502781:N:0:
RAG2	61.2	5.00E-08	HWI-ST758:61:B0272ACXX:5:2206:14239:365452:N:0:
RAG2	51.6	4.00E-05	HWI-ST758:61:B0272ACXX:5:1207:8598:1870001:N:0:
RAG2	66.2	2.00E-09	HWI-ST758:61:B0272ACXX:5:2208:2082:1204351:N:0:
RAG2	63.2	1.00E-08	HWI-ST758:61:B0272ACXX:7:2308:5092:176821:N:0:
RAG2	67.8	6.00E-10	HWI-ST758:61:B0272ACXX:7:1107:13505:886651:N:0:
RAG2	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:5:2202:8809:938851:N:0:
RAG2	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:5:1107:4097:1331481:N:0:
RAG2	61.2	5.00E-08	HWI-ST758:61:B0272ACXX:5:2204:4838:876652:N:0:
RAG2	57.4	8.00E-07	HWI-ST758:61:B0272ACXX:5:1106:3308:1766791:Y:0:
RAG2	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:5:1208:17481:723041:N:0:
RAG2	65.1	4.00E-09	HWI-ST758:61:B0272ACXX:5:2102:12591:397022:N:0:
RAG2	65.1	4.00E-09	HWI-ST758:61:B0272ACXX:5:2205:12993:1397391:N:0:
RAG2	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:5:2106:6735:312141:N:0:
RAG2	33.5	0.012	HWI-ST758:61:B0272ACXX:5:2103:4525:212261:N:0:
RAG2	57	1.00E-06	HWI-ST758:61:B0272ACXX:5:1303:13015:1206252:N:0:
RAG2	60.1	1.00E-07	HWI-ST758:61:B0272ACXX:5:2104:1651:819491:N:0:
RAG2	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:5:1205:14568:90671:N:0:
RAG2	68.2	4.00E-10	HWI-ST758:61:B0272ACXX:5:2204:20896:493701:N:0:
RAG2	65.1	4.00E-09	HWI-ST758:61:B0272ACXX:5:1204:13133:1297942:N:0:
RAG2	50.4	9.00E-05	HWI-ST758:61:B0272ACXX:5:2108:12303:436891:N:0:
RAG2	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:5:1106:17261:950291:N:0:
RAG2	66.6	1.00E-09	HWI-ST758:61:B0272ACXX:5:2105:21054:1092551:N:0:
RAG2	45.8	0.002	HWI-ST758:61:B0272ACXX:7:1303:11617:1921651:N:0:
RAG2	66.6	1.00E-09	HWI-ST758:61:B0272ACXX:5:2304:12243:1161782:N:0:
RAG2	65.5	3.00E-09	HWI-ST758:61:B0272ACXX:5:2202:16912:1012981:N:0:
RAG2	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:5:1201:10420:1725471:N:0:

RAG2	55.1	4.00E-06	HWI-ST758:61:B0272ACXX:5:2104:5840:753171:N:0:
RAG2	70.1	1.00E-10	HWI-ST758:61:B0272ACXX:5:1308:13425:298731:N:0:
RAG2	55.5	3.00E-06	HWI-ST758:61:B0272ACXX:5:1103:7098:1851491:N:0:
RAG2	53.9	8.00E-06	HWI-ST758:61:B0272ACXX:5:2208:11210:856262:N:0:
RAG2	60.1	1.00E-07	HWI-ST758:61:B0272ACXX:5:1102:1546:667852:N:0:
RAG2	55.1	4.00E-06	HWI-ST758:61:B0272ACXX:5:2106:17337:549112:Y:0:
RAG2	67.4	7.00E-10	HWI-ST758:61:B0272ACXX:5:2203:3771:1947282:N:0:
RAG2	66.2	2.00E-09	HWI-ST758:61:B0272ACXX:5:2205:2664:222401:N:0:
RAG2	63.9	8.00E-09	HWI-ST758:61:B0272ACXX:5:2107:8046:59211:N:0:
RAG2	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:5:2202:9496:1138061:N:0:
RAG2	68.2	4.00E-10	HWI-ST758:61:B0272ACXX:5:2308:9828:463552:N:0:
RAG2	53.9	8.00E-06	HWI-ST758:61:B0272ACXX:5:1102:2747:1043761:N:0:
RAG2	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:5:2108:8706:1139452:Y:0:
RAG2	60.8	7.00E-08	HWI-ST758:61:B0272ACXX:5:2202:15493:1303211:N:0:
RAG2	64.7	5.00E-09	HWI-ST758:61:B0272ACXX:5:2305:2369:1024081:N:0:
RAG2	70.1	1.00E-10	HWI-ST758:61:B0272ACXX:5:1306:17892:725782:N:0:
RAG2	63.9	8.00E-09	HWI-ST758:61:B0272ACXX:5:2107:20771:1299832:N:0:
RAG2	57	1.00E-06	HWI-ST758:61:B0272ACXX:5:1302:10952:114911:N:0:
RAG2	55.8	2.00E-06	HWI-ST758:61:B0272ACXX:5:2208:13709:823271:N:0:
RAG2	60.8	7.00E-08	HWI-ST758:61:B0272ACXX:5:2102:19868:732531:N:0:
RAG2	70.1	1.00E-10	HWI-ST758:61:B0272ACXX:7:2107:7775:34572:N:0:
RAG2	67.8	6.00E-10	HWI-ST758:61:B0272ACXX:5:1101:3645:1399041:N:0:
RAG2	58.9	3.00E-07	HWI-ST758:61:B0272ACXX:5:1102:18614:380881:N:0:
RAG2	55.5	3.00E-06	HWI-ST758:61:B0272ACXX:5:1207:12052:1814052:N:0:
RAG2	64.3	6.00E-09	HWI-ST758:61:B0272ACXX:5:2101:1959:1925521:N:0:
RAG2	59.7	2.00E-07	HWI-ST758:61:B0272ACXX:5:2108:10403:261012:N:0:
RAG2	63.5	1.00E-08	HWI-ST758:61:B0272ACXX:5:2107:10413:55201:Y:0:
RAG2	63.9	8.00E-09	HWI-ST758:61:B0272ACXX:5:2203:4957:487101:N:0:
RAG2	61.6	4.00E-08	HWI-ST758:61:B0272ACXX:5:2301:15417:1387491:N:0:
RAG2	67	1.00E-09	HWI-ST758:61:B0272ACXX:5:1108:5808:1000561:N:0:
RAG2	62.8	2.00E-08	HWI-ST758:61:B0272ACXX:5:1105:5437:1630552:N:0:
RAG2	51.6	4.00E-05	HWI-ST758:61:B0272ACXX:5:1206:7889:89471:N:0:

RAG2	59.7	2.00E-07	HWI-ST758:61:B0272ACXX:5:1208:16939:1507821:Y:0:
RAG2	55.1	4.00E-06	HWI-ST758:61:B0272ACXX:5:1203:14958:168821:N:0:
RAG2	70.5	9.00E-11	HWI-ST758:61:B0272ACXX:5:2202:7941:182662:N:0:
RAG2	48.5	4.00E-04	HWI-ST758:61:B0272ACXX:5:1203:8378:1980591:N:0:
RAG2	65.5	3.00E-09	HWI-ST758:61:B0272ACXX:5:1105:5437:1630551:N:0:
RAG2	64.7	5.00E-09	HWI-ST758:61:B0272ACXX:5:2106:21192:1466282:N:0:
RAG2	53.9	8.00E-06	HWI-ST758:61:B0272ACXX:5:1207:19232:602731:N:0:
RAG2	66.2	2.00E-09	HWI-ST758:61:B0272ACXX:7:1101:7957:606191:N:0:
RAG2	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:5:2103:1810:1760991:Y:0:
RAG2	81.3	5.00E-14	HWI-ST758:61:B0272ACXX:7:2104:16053:1367511:N:0:
RAG2	56.6	1.00E-06	HWI-ST758:61:B0272ACXX:5:2106:20468:827031:N:0:
RAG2	61.6	4.00E-08	HWI-ST758:61:B0272ACXX:5:2107:5705:1167591:N:0:
RAG2	65.9	2.00E-09	HWI-ST758:61:B0272ACXX:7:2102:18773:1135511:N:0:
RAG2	67.8	6.00E-10	HWI-ST758:61:B0272ACXX:5:2104:13568:1488201:N:0:
RAG2	60.5	9.00E-08	HWI-ST758:61:B0272ACXX:7:2203:8164:436241:N:0:
RAG2	70.1	1.00E-10	HWI-ST758:61:B0272ACXX:5:1202:15128:971901:N:0:
RAG2	67.4	7.00E-10	HWI-ST758:61:B0272ACXX:5:1201:10726:1925872:N:0:
RAG2	57	1.00E-06	HWI-ST758:61:B0272ACXX:5:1203:10908:1140601:N:0:
IL12B	56,6	1,00E-06	HWI-ST758:61:B0272ACXX:5:1307:11362:152989 1:N:0:
IL12B	54,3	6,00E-06	HWI-ST758:61:B0272ACXX:5:1308:10350:89504 1:N:0:
IL12B	57	1,00E-06	HWI-ST758:61:B0272ACXX:5:1305:15764:82865 2:N:0:
IL12B	57	1,00E-06	HWI-ST758:61:B0272ACXX:5:1104:13591:130392 2:N:0:
IL12B	59,3	2,00E-07	HWI-ST758:61:B0272ACXX:5:1101:2747:25400 2:N:0:
IL12B	54,3	6,00E-06	HWI-ST758:61:B0272ACXX:5:1104:19117:56844 2:N:0:
IL12B	59,3	2,00E-07	HWI-ST758:61:B0272ACXX:7:1101:13556:143617 1:N:0:
IL12B	54,3	6,00E-06	HWI-ST758:61:B0272ACXX:7:1105:1545:89558 2:N:0:
IL17A	54,29	6,44E-06	HWI-ST758:61:B0272ACXX:7:1301:2749:143329 2:N:0:
IL17A	62,77	1,81E-08	HWI-ST758:61:B0272ACXX:7:2106:18709:200715 2:N:0:
IL17A	55,83	2,21E-06	HWI-ST758:61:B0272ACXX:7:2206:14404:129038 2:N:0:
IL17A	55,06	3,77E-06	HWI-ST758:61:B0272ACXX:7:2305:18032:47034 2:N:0:
IL17A	86,65	1,19E-15	HWI-ST758:61:B0272ACXX:5:2108:11269:58964 1:N:0:
IL17A	60,46	9,03E-08	HWI-ST758:61:B0272ACXX:5:2301:15999:147251 1:N:0:

IL17A	85,11	3,46E-15	HWI-ST758:61:B0272ACXX:5:1106:9953:128048 1:N:0:
IL17A	69,32	1,96E-10	HWI-ST758:61:B0272ACXX:5:1307:18409:198874 1:N:0:
IL17A	71,63	3,92E-11	HWI-ST758:61:B0272ACXX:5:2207:15090:171603 1:N:0:
IL17A	64,69	4,82E-09	HWI-ST758:61:B0272ACXX:5:2208:4721:182741 1:N:0:
IL17A	55,06	3,77E-06	HWI-ST758:61:B0272ACXX:5:1206:2716:6001 1:N:0:
IL17A	59,69	1,56E-07	HWI-ST758:61:B0272ACXX:5:1105:16236:200307 1:N:0:
IL17A	56,22	1,74E-06	HWI-ST758:61:B0272ACXX:5:2304:18427:10652 1:N:0:
IL17A	60,07	1,17E-07	HWI-ST758:61:B0272ACXX:5:1208:13261:22642 1:N:0:
IL17A	62,77	1,81E-08	HWI-ST758:61:B0272ACXX:5:1105:16413:26952 1:N:0:
IL17A	62,77	1,81E-08	HWI-ST758:61:B0272ACXX:5:1302:11483:8784 1:N:0:
IL17A	62,77	1,81E-08	HWI-ST758:61:B0272ACXX:5:1101:13228:165881 1:N:0:
IL17A	68,55	3,40E-10	HWI-ST758:61:B0272ACXX:5:2203:2862:130019 1:N:0:
IL17A	59,69	1,57E-07	HWI-ST758:61:B0272ACXX:5:2106:16260:82621 1:N:0:

in de la composition de la com

Supplementary Table S.1.6 read and annotation statistics of 6 immune genes that were identified in the reciprocal tBLASTx search where single retrieved reads could be re-assembled into contigs.

PSMB 8 36 reads of which 34 were assembled into a contig; bit score 92.4; evalue 2e-20

>PSMB8 tblastx 20130107 c01

RAG2 130 reads, which resulted in 2 non-overlapping contigs

RAG2 contig 01; 90 reads; bit score 230; e-value 5e-70

>RAG2 tblastx 20130107 c02

RAG2 contig 02; 36 reads; bit score 128; e-value 2e-33

>RAG2 tblastx 20130107 c03

ggatgactctgcaaccattaaagccagtcaactgcgaarrtcttctgcaacctggctgtt ctsttctgcagcttgacggtgaagttctcctgtttggccagaaaggatggccaaagcgct cctgtccaacaggagtatttggtgtgcgcttgaaacatggygagctgaggttgagagcca tatctttctccaatgactcccagtaccttcctc

C1qT4: 21 reads of which 9 were assembled into 1 contig; bit score 159; evalue 1e-45

>syt ClqT4_tblastx 20130107_c05

C4 28 reads of which 26 were assembled into 1 contig; bit score 55.5; evalue 2e-07

>syt_C4_tblastx_20130107_c04
gcctccagagtcaagaccgtgtcctgcagtgagtagaatccctscccgtagtgctgatcc
wgggtcagccaggacacgatggggktggcgtacggaatccggccmttcagyagcgcsctg
agcarcccktaggctgtcgtctccaccgtcakgccactggc

IL17A/F1 19 reads of which 18 were assembled into a contig; bit score 94.0; e-value 1e-22

>IL17A/F1 tblastx 20130107 rep c6

gcgcgtctgatgcgggtgggcgcccgacgacttgacgcggcgcagcagcagaacctgatg caggatgggccgcgactccagcctcaggtcttccacgcygctcgagtccaggcagccgcg caacacgcagcgggcctcagacacgggaggaaagagcgccgcgtcctgcgacacgttata cgtccagggtgagatggagcggttgtgcagcg

IL12B 8 reads; bit score 76.6; e-value 1e-15

>IL12B tblastx 20130107 c7

ctcttcttggtgaagtcctcttgaataaggacaacagtgtaattgagaagagatccattt gagctgtggcagctgtagttgcctcctcccaaactctcctcgagctttaccaggtatgaa ttacccctctgtgccttttc **Supplementary table S.1.7** Amino acid alignment of putative invariant chain genes from 10 teleost species and a truncated gene found in Syngnathus typhle (pos 279 of alignment, bottom).

····|····| ····|····| ····|····| ····| 30 40 10 20 60 70 80 50 Q8JFN4| [Oncorhynchus mykiss] ----- -- MEEQQQQR HDDALLERAG SQDVILPITT NTRASNSRAF KVAGLTVLAC LLLAGQALTT YLVLNQRGQI Q6EE25| [Siniperca chuatsi] MH -----MADSAED APMARGSLAG SDEALILPAG PTGGSNSRAL KVAGLTTLTC LLLASQVFTA YMVFGQKEQI B6VAR1 EPIAK [Epinephelus akaa ---------MAEPAEG APLAAGSLAS SEEDLLPLTA QRGGSNSRAL KIVGLTTLAC LLLASQVFTA VMVFDQKQQI Q06KB6 [Dicentrarchus labrax] ----- --- MAHS-ED APLATGSLAG SEEALVLSGR PTGGSNSRAL KIAGLTTLAC LLLASQVFTA YMVFGQKEQI ACM09693.1| [Salmo salar] HLA ----- --MEEQQQQR HDDALLERAG SQDVILPITT NTRASNSRAF KVAGLTVLAC LLLAGQALTA YLVFNQRGQI RRTSNSRAF KVAGFTLLAC LLLAGQGLTA YLVFNQRGQI ACO10022.1| [Osmerus mordax] H ------ --MEDHQP-- QDDSLLR-AG SEEALVSPRA PPGGSNNRAF KVAGLTVLAC LLLASQGLTA YLVISQRGQI AAS77256.1| [Siniperca chuatsi -----MADSAED APMARGSLAG SDEALILPAG PTGGSNSRAL KVAGLTTLTC LLLASQVFTA YMVFGQKEQI ABH09445.1| [Dicentrarchus lab ----- ---MAHS-ED APLATGSLAG SEEALVLSGR PTGGSNSRAL KIAGLTTLAC LLLASQVFTA YMVFGQKEQI PAGGSNSHAL KVAGLTTLVC LLLCSQVFTA YMVFCQRQQI hybrid_3x5mio_20120605_c6693_s LWVQCNRKKL AVKQSQMEKT GENTPMQRTG SAEPLVGGAR YRGRPTGYAL KVASLTILAC LLVASQVFVA IMVFSQKQQI 110 120 100 90 160 140 150 130 Q8JFN4| [Oncorhynchus mykiss] YDMQKSNGNM RKQLRNRPPA VAPVKMQTPM LNMARLIDFT DEDVKT---- PMTNLEATAV AIVSLEEQVK NLLQ-NPQLP Q6EE25| [Siniperca chuatsi] MH HTLQKNSERM SKQLTRSSQA VAPMKMHMPM NSLPLLMDFT PNED---SKT PLTKLQDTA- -VVSVEKQLK DLMQ-DSQLP B6VAR1 EPIAK [Epinephelus akaa HSLQRNSDKL GRQLTRSSQA VAPVRMHMPM NSLPLLMDFD ADANTKPKKT PLTKLQEA-- - VVSVEAQLK ELLQEDSQLP Q06KB6 [Dicentrarchus labrax] HTLQKNSERM TKQLTRSSQA VAPVRMHMPM SSLPMLMDFT DEDSK-ATKT PLTKLQDT-- -VVSVEKQVK DLIQ-DSQLP ACM09693.1| [Salmo salar] HLA HDMQKSNDNM RKQLRNRPLA VAPVKMQMPM LNMARLIDFT DEDSKT---- PMTNLEATAI AIVSLEDQVK DLLQ-NPQLP ACO13218.1| [Escx lucius] H-2 NDMQKNNDNM RKQLRNRP-P VAPVQMHMPM LNMPRLIDFS EEDSQTTKNS PMTKLENTAV AIQSLEKQVK DLLQ-NPELP ACO10022.1| [Osmerus mordax] H HNLQKNTDKM NKKITIRS-H VAPVQMHVPM NTMPLLKDFS DEEPKE-AQT PMSKLQFT-- AIVSVEKQVK DLLQ-NVSLP AAS77256.1| [Siniperca chuatsi HTLQKNSERM SKQLTRSSQA VAPMKMHMPM NSLPLLMDFT PNED---SKT PLTKLQDTA- -VVSVEKQLK DLMQ-DSQLP ABH09445.1| [Dicentrarchus lab HTLQKNSERM TKQLTRSSQA VAPVRMHMPM SSLPMLMDFT DEDSK-ATKT PLTKLQDT-- -VVSVEKQVK DLIQ-DSQLP 47215554| [Tetraodon nigroviri RELQGNNKRI SNQLTRSSQ- -APVRMQVPM RSLPMMRAFD PDTDT--PIM PKAAVOET-- -VVSVETOVK DLLO-NFTLP hybrid 3x5mio 20120605 c6693 S HTLQKDFDGL SRQLHAAQ-- VAPFKLRQPM NHFPQMQAFA DLDSVA-TKA PVKQEEKK-M ESIGVDEMLG -LMEENFEMP ···· [···· [····] ···· [···· [····] ····] ···· [····] 170 180 190 200 230 210 220 240

Appendix

KPPVI.PTPOP	QFNETFLANL	QSLKKQVEET	EWEGFETWAR	YWLLFQMAQE	
Q6EE25 [Siniperca chuatsi] MH PVPPTADP ASLIKTKCOM ESAPGVSKIG S	QFNETFLANL KPOCDEOG	QGLKQQMNES	EWKSFESWMR	YWLIFQMAQQ	K-
B6VAR1_EPIAK [Epinephelus akaa PAPPTAEP TTAPLTKCOO EAAPGPSKIG SY	QFNETFLANL KPOCDEOG	QGMKQHVNET	DWKSFESWMR	YWLIFQIAQR	Τ-
Q06KB6 [Dicentrarchus labrax] PVPPTADP ASLIKTKCQM EAAPGPSKIG SY	QFNETFMANL KPQCDEQG	QSLKQHINES	EWQSFESWMR	YWLIFQMAQK	Τ-
ACM09693.1 [Salmo salar] HLA KPPAPPTPQP	QFNETFLANL	QSLKQQVEET	EWEGFETWVR	YWLLFQMAQE	
AC013218.1 [Esox lucius] H-2 KTAVSATPKP STGLQTKCSE VKDSLKHMLG	QFNETFLANL TYVPQCDEQG	QGLKKQMESN	EWKDFETWTR	NWLIFQMAQE	
ACO10022.1 [Osmerus mordax] H SPPVPASALQ TKCRLQTRILG	EFNQSFLKNV SYQPQCDAQG	QSLQTKMESE	EWMSFETWMR	HWLIFQMAQQ	
AAS77256.1 [Siniperca chuatsi PVPPTADP ASLIKTKCQM ESAPGVSKIG SY	QFNETFLANL KPQCDEQG	QGLKQQMNES	EWKSFESWMR	YWLIFQMAQQ	K-
ABH09445.1 [Dicentrarchus lab PVPPTADP ASLIKTKCOM EAAPGPSKIG SY	CFNETFMANL KPQCDEQG	QSLKQHINES	EWQSFESWMR	YWLIFQMAQK	T-
PPTITATP AP-VMTKCQK EAASVKHLLG TH	RKPQCDELG	REI KKOI NOS	NMKSEESMID	NWITEHMSOO	<u>_</u>
TPPTPTGSST KTKCQI RAEVKSSQLD	PFRPVCDLKG	KSTKKÖTNÖ2	NWKST LSWER	NWIII MASQQ	
290 300 310	320	200	21	200	,
Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE			VP		
Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ	RYKPMQCWHA	TGFCWCVDET	VP	RGRPDCQRR-	
Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ B6VAR1_EPIAK [Epinephelus akaa SLYPRRVM LAPRLMQKTL SLDDDTN	RYKPMQCWHA	TGFCWCVDET TGFCWCVDEF	VP -GAVIEGTTM -GNVVEGTRM	RGRPDCQRR- RGRPDCQRA-	
Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ B6VAR1_EPIAK [Epinephelus akaa SLYPRRVM LAPRLMQKTL SLDDDTN Q06KB6_[Dicentrarchus labrax] GSMPRRVM LAPRLMQKTL SFDDQ	RYKPMQCWHA RYKPMQCWHA RYKPMQCWHA	TGFCWCVDET TGFCWCVDEF TGYCWCVDET	VP -GAVIEGTTM -GNVVEGTRM -GTAIEGTTM	RGRPDCQRR- RGRPDCQRA- RGRPDCQR	
Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ B6VAR1 EPIAK [Epinephelus akaa SLYPRRVM LAPRLMQKTL SLDDDTN Q06KB6 [Dicentrarchus labrax] GSMPRRVM LAPRLMQKTL SFDDQ ACM09693.1 [Salmo salar] HLA HORMA AYPRMMQLKE YKNE	RYKPMQCWHA RYKPMQCWHA RYKPMQCWHA	TGFCWCVDET TGFCWCVDEF TGYCWCVDET	VP -GAVIEGTTM -GNVVEGTRM -GTAIEGTTM VP	RGRPDCQRR- RGRPDCQRA- RGRPDCQR	
Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ B6VAR1_EPIAK [Epinephelus akaa SLYPRRVM LAPRLMQKTL SLDDDTN Q06KB6_[Dicentrarchus labrax] GSMPRRVM LAPRLMQKTL SFDDQ	RYKPMQCWHA RYKPMQCWHA RYKPMQCWHA	TGFCWCVDET TGFCWCVDEF TGYCWCVDET TGFCWCVDKT	VP -GAVIEGTTM -GNVVEGTRM -GTAIEGTTM VP -GQTIPGTAV	RGRPDCQRR- RGRPDCQRA- RGRPDCQR RGRASCN	
Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ B6VAR1_EPIAK [Epinephelus akaa SLYPRRVM LAPRLMQKTL SLDDDTN Q06KB6_[Dicentrarchus labrax] GSMPRRVM LAPRLMQKTL SFDDQ	RYKPMQCWHA RYKPMQCWHA RYKPMQCWHA NYLPMQCWHA HFMPMQCWHS	TGFCWCVDET TGFCWCVDEF TGYCWCVDET TGFCWCVDKT TGFCWCVDSE	VP -GAVIEGTTM -GNVVEGTRM -GTAIEGTTM VP -GQTIPGTAV -GTAIPGTEM	RGRPDCQRR- RGRPDCQRA- RGRPDCQR RGRASCN RGKPTCGGVP	
Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ B6VAR1_EPIAK [Epinephelus akaa SLYPRRVM LAPRLMQKTL SLDDDTN Q06KB6 [Dicentrarchus labrax] GSMPRRVM LAPRLMQKTL SFDDQ	RYKPMQCWHA RYKPMQCWHA RYKPMQCWHA NYLPMQCWHA HFMPMQCWHS RYKPMQCWHA	TGFCWCVDET TGFCWCVDEF TGYCWCVDET TGFCWCVDKT TGYCWCVDSE TGFCWCVDET	VP -GAVIEGTTM -GNVVEGTRM -GTAIEGTTM VP -GQTIPGTAV -GTAIPGTEM -GAVIEGTTM	RGRPDCQRR- RGRPDCQRA- RGRPDCQR RGRASCN RGRASCN RGKPTCGGVP RGRPDCQRR-	
<pre>Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ B6VAR1_EPIAK [Epinephelus akaa SLYPRRVM LAPRLMQKTL SLDDDTN Q06KB6_[Dicentrarchus labrax] GSMPRRVM LAPRLMQKTL SFDDQ</pre>	RYKPMQCWHA RYKPMQCWHA RYKPMQCWHA NYLPMQCWHA HFMPMQCWHS RYKPMQCWHA	TGFCWCVDET TGFCWCVDEF TGYCWCVDET TGFCWCVDKT TGYCWCVDSE TGFCWCVDET	VP -GAVIEGTTM -GNVVEGTRM -GTAIEGTTM VP -GQTIPGTAV -GTAIPGTEM -GAVIEGTTM -GTAIEGTTM	RGRPDCQRR- RGRPDCQRA- RGRPDCQR RGRASCN RGRASCN RGKPTCGGVP RGRPDCQR	
<pre>Q8JFN4 [Oncorhynchus mykiss] HQRRP SYPRMMQLKE YKNE Q6EE25 [Siniperca chuatsi] MH ALAPRRMA FAPSLMQKTI SIDDQ B6VAR1_EPIAK [Epinephelus akaa SLYPRRVM LAPRLMQKTL SLDDDTN Q06KB6_[Dicentrarchus labrax] GSMPRRVM LAPRLMQKTL SFDDQ</pre>	RYKPMQCWHA RYKPMQCWHA RYKPMQCWHA NYLPMQCWHA HFMPMQCWHA RYKPMQCWHA RYKPMQCWHA QYTPIQCWPA FRLSQVKL	TGFCWCVDET TGFCWCVDET TGYCWCVDET TGFCWCVDKT TGYCWCVDSE TGFCWCVDET TGYCWCVDET	VP -GAVIEGTTM -GNVVEGTRM -GTAIEGTTM -GTAIPGTAV -GTAIPGTEM -GAVIEGTTM -GTAIEGTTM	RGRPDCQRR- RGRPDCQRA- RGRPDCQR RGRASCN RGRASCN RGRPDCQRR- RGRPDCQR RGRPDCQR	

Q8JFN4| [Oncorhynchus mykiss] Q6EE25| [Siniperca chuatsi] MH -----B6VAR1_EPIAK [Epinephelus akaa Q06KB6_[Dicentrarchus labrax] -----ACM09693.1| [Salmo salar] HLA AC013218.1| [Esox lucius] H-2 AC010022.1| [Osmerus mordax] H -------------AAS77256.1| [Siniperca chuatsi ABH09445.1| [Dicentrarchus lab 47215554| [Tetraodon nigroviri ---NI hybrid_3x5mio_20120605_c6693_S ----

...

Appendix Chapter 2

Supplementary figure S.2.1 Multidimensional scaling plot for *D. pseudospathaceum* infection treatments. FPKM values for all genes significantly differentially expressed, compared to control, in either gills (A) or head kidney (B) were used for calculations.

Supplementary figure S.2.2 Venn-Diagram for differentially expressed genes. Displayed are number of genes significantly differentially expressed due to either one, two or all infection treatments. Upregulated genes are written in black, down-regulated genes in grey. Genes where expression was significantly different in more than one treatment and regulated in both directions are not shown. See also supplementary tables S.2.2 and S.2.3.

126

Supplementary table S.2.1 Number of reads per sample, including treatment, fish family, organ type, flowcell lane number, total reads and mapped reads. Two samples from gills and one sample from head kidney were of reduced quality and had to be removed from further analysis. This led to 4 samples in gills (clone XII, clone mix) and head kidney (clone I, clone XII, clone mix) as well as 3 samples in gills (clone I, control) and head kidney (control), resulting in 29 individual libraries.

sample	fish family	treatment	organ	lane no	total reads	aligned reads	% aligned
1	10-10x15	control	gills	L006	11193950	6374910	56,95
2	10-13x12	control	gills	L001	6542490	3710021	56,71
3	10-2x1	control	gills	L002	11781202	6625186	56,24
4	10-10x15	clone mix	gills	L007	9034308	4817625	53,33
5	10-11x16	clone mix	gills	L006	10700158	6461189	60,38
6	10-13x12	clone mix	gills	L004	24710382	11990896	48,53
7	10-2x1	clone mix	gills	L003	12123212	6914101	57,03
8	10-10x15	clone I	gills	L004	11070914	5252831	47,45
9	10-11x16	clone I	gills	L008	12455600	6233762	50,05
10	10-13x12	clone I	gills	L004	13034054	6891659	52,87
11	10-10x15	clone XII	gills	L008	14880032	6888039	46,29
12	10-11x16	clone XII	gills	L007	9508384	4819680	50,69
13	10-13x12	clone XII	gills	L006	9498616	5792914	60,99
14	10-2x1	clone XII	gills	L005	9015786	4803562	53,28
15	10-10x15	control	head kidney	L005	10356510	5845850	56,45
16	10-11x16	control	head kidney	L008	16185886	8286884	51,20
17	10-2x1	control	head kidney	L004	19945222	10646606	53,38
18	10-10x15	clone mix	head kidney	L001	31556086	17647114	55,92
19	10-11x16	clone mix	head kidney	L008	20305784	9906271	48,79
20	10-13x12	clone mix	head kidney	L005	14366550	7398995	51,50
21	10-2x1	clone mix	head kidney	L006	18581584	11015042	59,28
22	10-10x15	clone I	head kidney	L005	14538858	7900850	54,34
23	10-11x16	clone I	head kidney	L007	14744676	8186321	55,52
24	10-13x12	clone I	head kidney	L004	20077788	11469317	57,12
25	10-2x1	clone I	head kidney	L003	28496486	19646137	68,94
26	10-10x15	clone XII	head kidney	L008	23881298	12756204	53,42
27	10-11x16	clone XII	head kidney	L008	42804942	21061942	49,20
28	10-13x12	clone XII	head kidney	L003	22337552	12241427	54,80
29	10-2x1	clone XII	head kidney	L001	22988590	13737901	59,76

Supplementary table S.2.2 Cufflinks output, list of differentially expressed genes in head kidney tissue of three-spined sticklebacks. Differentially expressed is defined by comparison to uninfected controls. The term "gene" is the name for a specific gene as taken from the *G. aculeatus* reference genome, "sample_2" is the infection treatment group, log2(fold change) displays the transformed fold change in "sample_2" compared to control, p value and q value are given for each test (only significant differences shown).

A1CF clone I -8,26234 6,08E-012 1,27E-009 ABCB11 clone I -7,66416 1,63E-007 9,85E-006 ABCF2 clone I -6,98155 2,19E-007 1,27E-005 ABCF2 clone I -3,58254 0,00030208 0,00145583 ACADL clone I -3,58254 0,00030208 0,000312622 ADAMTS13 clone I -3,14657 0,000262256 0,000312632 AGT clone I -6,34674 6,64E-008 4,54E-006 AGXT (1 of 2) clone I -6,36872 2,12E-008 1,77E-006 AGXT (1 of 2) clone I -5,65852 8,35E-005 0,00028477 AGXT2 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (1 of 2) clone I -3,87058 6,48E-005 0,00160033 ALDHA11 clone I -3,67058 6,48E-005 0,00160033 ALDH31 (1 of 2) clone I -4,55334 0,0023928 0,0363962 ALDDA1 (1 of 2) clone I	gene	sample_2	log2(fold_change)	p_value	q_value
ABCB11 clone I -7,66416 1,63E-007 9,85E-006 ABCB4 clone I -6,98155 2,19E-007 1,27E-005 ABCF2 clone I 1,75392 0,0003081 0,0145583 ACADL clone I -3,58254 0,00032908 0,00077917 ACMSD clone I -6,47473 9,33E-006 0,000312622 ADAMTS13 clone I -6,47473 9,33E-006 0,000312622 AGT clone I -3,14657 0,000262256 0,001312622 AGXT (1 of 2) clone I -6,34674 6,64E-008 4,54E-006 AGXT (2 of 2) clone I -5,05852 8,55E-006 0,00028477 AGXT2 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 ALDH8A1 clone I -3,8758 6,48E-005 0,00041432 ALDH9A1 (1 of 2) clone I -2,12538 1,25E-007 4,54E-005 ALDH8A1 clone I	A1CF	clone I	-8,26234	6,08E-012	1,27E-009
ABCB4 clone I -6,98155 2,19E-007 1,27E-005 ABCF2 clone I 1,75392 0,000306081 0,0145563 ACADL clone I -3,58254 0,000302908 0,00577917 ACMSD clone I -6,47473 9,33E-006 0,000312622 ADAMTS13 clone I -1,96941 0 0 AGST clone I -6,347473 9,33E-006 0,000312622 AGAT clone I -6,34677 0,000262256 0,00513046 AGT clone I -6,34674 6,64E-008 4,54E-006 AGXT (1 of 2) clone I -5,65821 2,24E-008 1,77E-006 AGXT2 (1 of 2) clone I -5,05852 8,35E-005 0,002023358 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,022358 ALDH31 clone I -3,87058 6,48E-005 0,00160033 ALDH411 clone I -3,64688 0 0 ALDB41 clone I -3,64688 0 0	ABCB11	clone I	-7,66416	1,63E-007	9,85E-006
ABCF2 clone I 1,75392 0,000306081 0,0145583 ACADL clone I -3,58254 0,000302908 0,00577917 ACMSD clone I -6,47473 9,33E-006 0,000312622 ADAMTS13 clone I -1,96941 0 0 ADSSL1 clone I -3,14657 0,000262256 0,00513046 AGT clone I -6,34674 6,64E-008 4,54E-006 AGXT (2 of 2) clone I -5,85821 2,24E-008 1,7E-006 AGXT2 (1 of 2) clone I -5,85821 2,24E-008 1,7TE-006 AGXT2 (1 of 2) clone I -5,85821 2,24E-008 1,7TE-006 ACKTD1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-007 4,54E-005 ALDH4L1 clone I -6,32151 9,65E-007 4,54E-005 ALDH411 clone I -3,66488 0 0 ALDOA (1 of 2) clone I -4,52534	ABCB4	clone I	-6,98155	2,19E-007	1,27E-005
ACADL clone I -3,58254 0,000302908 0,00577917 ACMSD clone I -6,47473 9,33E-006 0,000312622 ADAMTS13 clone I -1,96941 0 0 ADSSL1 clone I -3,14657 0,00022256 0,00513046 AGT clone I -6,34674 6,64E-008 4,54E-006 AGXT (1 of 2) clone I -5,85821 2,24E-008 1,77E-006 AGXT2 (1 of 2) clone I -5,05852 8,35E-005 0,00284477 AGXT2 (1 of 2) clone I -3,88978 8,53E-005 0,0021361 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH8A1 clone I -6,32151 9,65E-007 4,54E-005 ALDH9A1 (1 of 2) clone I -2,12538 1,25E-005 0,00401432 ALDB clone I -4,58242 0,10233298 0,036396 ALDH9A1 (1 of 2) clone I <td< td=""><td>ABCF2</td><td>clone I</td><td>1,75392</td><td>0,000936081</td><td>0,0145583</td></td<>	ABCF2	clone I	1,75392	0,000936081	0,0145583
ACMSD clone I -6,47473 9,33E-006 0,000312622 ADAMTS13 clone I -1,96941 0 0 ADSSL1 clone I -3,14657 0,000262256 0,00513046 AGT clone I -6,33674 6,64E-008 4,54E-006 AGXT (1 of 2) clone I -5,85821 2,24E-008 1,77E-006 AGXT2 (1 of 2) clone I -5,05852 8,35E-005 0,00284477 AGXT2 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (1 of 2) clone I -3,87058 6,48E-005 0,00160033 ALDH8A1 clone I -3,67058 6,48E-005 0,000401432 ALDH9A1 (1 of 2) clone I -2,12538 1,25E-005 0,00401432 ALDOA (1 of 2) clone I -4,5834 0,00293298 0,036396 ALLC clone I -4,5834 0,00293298 0,036396 ALLDK clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I <t< td=""><td>ACADL</td><td>clone I</td><td>-3,58254</td><td>0,000302908</td><td>0,00577917</td></t<>	ACADL	clone I	-3,58254	0,000302908	0,00577917
ADAMTS13 clone I -1,96941 0 0 ADSSL1 clone I -3,14657 0,000262256 0,00513046 AGT clone I -6,03987 2,12E-008 1,69E-006 AGXT (1 of 2) clone I -6,34674 6,64E-008 4,54E-006 AGXT (2 of 2) clone I -5,85821 2,24E-008 1,77E-006 AGXT2 (1 of 2) clone I -5,05852 8,35E-005 0,00201361 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH11 clone I -3,87058 6,48E-005 0,00160033 ALDH8A1 clone I -6,32151 9,65E-007 4,54E-005 ALD0A (1 of 2) clone I -2,12538 1,25E-005 0,000401432 ALDOA (1 of 2) clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,55834 0,00293298 0,036396 ALDC3 clone I -4,22	ACMSD	clone I	-6,47473	9,33E-006	0,000312622
ADSSL1 clone I -3,14657 0,000262256 0,00513046 AGT clone I -6,03987 2,12E-008 1,69E-006 AGXT (1 of 2) clone I -6,34674 6,64E-008 4,54E-006 AGXT (2 of 2) clone I -5,85821 2,24E-008 1,77E-006 AGXT2 (1 of 2) clone I -5,05852 8,35E-005 0,00224477 AGXT2L1 clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -3,87058 6,48E-005 0,000160033 ALDH41 clone I -3,87058 6,48E-005 0,000401432 ALDB41 clone I -2,12538 1,25E-005 0,000401432 ALDOA (1 of 2) clone I -4,5884 0 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,52633 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone	ADAMTS13	clone I	-1,96941	0	0
AGT clone I -6,03987 2,12E-008 1,69E-006 AGXT (1 of 2) clone I -6,34674 6,64E-008 4,54E-006 AGXT (2 of 2) clone I -5,85821 2,24E-008 1,77E-006 AGXT2 (1 of 2) clone I -5,05852 8,35E-006 0,00284477 AGXT2L1 clone I -3,88978 8,53E-005 0,0021361 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH1L1 clone I -6,31304 3,02E-005 0,00160033 ALDH8A1 clone I -6,32151 9,65E-007 4,54E-005 ALD0A (1 of 2) clone I -2,12538 1,25E-005 0,00401432 ALDOA (1 of 2) clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,55834 0,00293298 0,036396 ALLC clone I -6,70697 3,67E-007 1,98E-005 AMBP clone I	ADSSL1	clone I	-3,14657	0,000262256	0,00513046
AGXT (1 of 2) clone I -6,34674 6,64E-008 4,54E-006 AGXT (2 of 2) clone I -5,85821 2,24E-008 1,77E-006 AGXT2 (1 of 2) clone I -5,05852 8,35E-006 0,000284477 AGXT2L1 clone I -3,88978 8,53E-005 0,0021361 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH1L1 clone I -3,87058 6,48E-005 0,00160033 ALDH8A1 clone I -2,12538 1,25E-005 0,000401432 ALDOA (1 of 2) clone I -3,66488 0 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,66484 0 0 0 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMBP clone I -4,02717 5,61E-005 0,00141944 ANGPTL3 (1 of 2) clone I<	AGT	clone I	-6,03987	2,12E-008	1,69E-006
AGXT (2 of 2) clone I -5,85821 2,24E-008 1,77E-006 AGXT2 (1 of 2) clone I -5,05852 8,35E-006 0,000284477 AGXT2L1 clone I -3,88978 8,53E-005 0,0021361 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH1L1 clone I -3,87058 6,48E-005 0,00160033 ALDH8A1 clone I -6,32151 9,65E-007 4,54E-005 ALDOA (1 of 2) clone I -2,12538 1,25E-005 0,000401432 ALDOB clone I -3,66488 0 0 ALDCB clone I -4,55834 0,00232938 0,036396 ALLC clone I -4,5834 0,00232938 0,00782273 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMBP clone I -2,42623 0,00050154 0,00782273 ANGPTL3 (1 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I <t< td=""><td>AGXT (1 of 2)</td><td>clone I</td><td>-6,34674</td><td>6,64E-008</td><td>4,54E-006</td></t<>	AGXT (1 of 2)	clone I	-6,34674	6,64E-008	4,54E-006
AGXT2 (1 of 2) clone I -5,05852 8,35E-006 0,000284477 AGXT2L1 clone I -3,88978 8,53E-005 0,00201361 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH1L1 clone I -3,87058 6,48E-005 0,00160033 ALDH8A1 clone I -6,32151 9,65E-007 4,54E-005 ALDH9A1 (1 of 2) clone I -2,12538 1,25E-005 0,00401432 ALDOA (1 of 2) clone I -3,66488 0 0 ALDC clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,82042 1,18E-006 5,37E-005 AMBP clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -2,42623 0,00050154 0,00875473 APOB (1 of 5) clone I -7,2866 3,55E-015 1,43E-012 APOB (2 of 2) c	AGXT (2 of 2)	clone l	-5,85821	2,24E-008	1,77E-006
AGXT2L1 clone I -3,88978 8,53E-005 0,00201361 AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH1L1 clone I -6,32151 9,65E-007 4,54E-005 ALDH8A1 clone I -2,12538 1,25E-005 0,000401432 ALDOA (1 of 2) clone I -3,66488 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,82042 1,18E-006 5,37E-005 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMBP clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -2,42623 0,00050154 0,00875473 APOB (1 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOB (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOB (2 of 2) clone I	AGXT2 (1 of 2)	clone I	-5,05852	8,35E-006	0,000284477
AKR1D1 (1 of 2) clone I -2,94657 0,00159121 0,0223358 AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH1L1 clone I -3,87058 6,48E-005 0,00160033 ALDH8A1 clone I -2,12538 1,25E-007 4,54E-005 ALDH9A1 (1 of 2) clone I -2,12538 1,25E-005 0,000401432 ALDOA (1 of 2) clone I -3,66488 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -6,70697 3,67E-007 1,98E-005 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMBP clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -2,42623 0,00050154 0,00875473 APOB (1 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOB (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone	AGXT2L1	clone I	-3,88978	8,53E-005	0,00201361
AKR1D1 (2 of 2) clone I -6,31304 3,02E-009 3,10E-007 ALDH1L1 clone I -3,87058 6,48E-005 0,00160033 ALDH8A1 clone I -6,32151 9,65E-007 4,54E-005 ALDH9A1 (1 of 2) clone I -2,12538 1,25E-005 0,000401432 ALDOA (1 of 2) clone I -3,66488 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,82042 1,18E-006 5,37E-005 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMDHD1 clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I -4,02717 5,61E-005 0,00141944 ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,97217 2,25E-011 4,07E-009 APOB (1 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clon	AKR1D1 (1 of 2)	clone I	-2,94657	0,00159121	0,0223358
ALDH1L1 clone I -3,87058 6,48E-005 0,00160033 ALDH8A1 clone I -6,32151 9,65E-007 4,54E-005 ALDH9A1 (1 of 2) clone I -2,12538 1,25E-005 0,000401432 ALDOA (1 of 2) clone I -3,66488 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,82042 1,18E-006 5,37E-005 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMDHD1 clone I -3,28757 0,000437066 0,00782273 ANGPTL3 (1 of 2) clone I -4,02717 5,61E-005 0,00141944 ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,97217 2,25E-011 4,07E-009 APOB (1 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 ARG1 clone I	AKR1D1 (2 of 2)	clone I	-6,31304	3,02E-009	3,10E-007
ALDH8A1 clone I -6,32151 9,65E-007 4,54E-005 ALDH9A1 (1 of 2) clone I -2,12538 1,25E-005 0,000401432 ALDOA (1 of 2) clone I -3,66488 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,82042 1,18E-006 5,37E-005 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMDHD1 clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I -4,02717 5,61E-005 0,001411944 ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,97217 2,25E-011 4,07E-009 APOB (1 of 5) clone I -7,28866 3,55E-015 1,43E-012 APOB (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -7,7363 1,28E-006 5,77E-005 ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARC2 clone I	ALDH1L1	clone I	-3,87058	6,48E-005	0,00160033
ALDH9A1 (1 of 2) clone I -2,12538 1,25E-005 0,0004014322 ALDOA (1 of 2) clone I -3,66488 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,55834 0,00293298 0,036396 AMBP clone I -4,82042 1,18E-006 5,37E-005 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMDHD1 clone I -3,28757 0,000437006 0,00782273 ANGPTL4 (2 of 2) clone I -4,02717 5,61E-005 0,00141944 ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,49435 0,00231658 0,0301725 APOB (1 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I </td <td>ALDH8A1</td> <td>clone I</td> <td>-6,32151</td> <td>9,65E-007</td> <td>4,54E-005</td>	ALDH8A1	clone I	-6,32151	9,65E-007	4,54E-005
ALDOA (1 of 2) clone I -3,66488 0 0 ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,82042 1,18E-006 5,37E-005 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMDHD1 clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I -4,02717 5,61E-005 0,00141944 ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,49435 0,00231658 0,0301725 APOB (1 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -7,7363 1,28E-006 5,77E-005 ARG1 clone I -4,69825 0,00115952 0,0173272 ARG1 clone I -4,69825 0,00115952 0,0173272 ARG1 clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I -1,8	ALDH9A1 (1 of 2)	clone I	-2,12538	1,25E-005	0,000401432
ALDOB clone I -4,55834 0,00293298 0,036396 ALLC clone I -4,82042 1,18E-006 5,37E-005 AMBP clone I -6,70697 3,67E-007 1,98E-005 AMDHD1 clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I -4,02717 5,61E-005 0,00141944 ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,49435 0,00231658 0,0301725 APOB (1 of 5) clone I -6,97217 2,25E-011 4,07E-009 APOB (5 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 ARG1 clone I -4,69825 0,00115952 0,0173272 ARG1 clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I	ALDOA (1 of 2)	clone I	-3,66488	0	0
ALLCclone I-4,820421,18E-0065,37E-005AMBPclone I-6,706973,67E-0071,98E-005AMDHD1clone I-3,287570,0004370060,00782273ANGPTL3 (1 of 2)clone I-4,027175,61E-0050,00141944ANGPTL4 (2 of 2)clone I-2,426230,000501540,00875473APOA1clone I-6,494350,002316580,0301725APOB (1 of 5)clone I-6,972172,25E-0114,07E-009APOB (5 of 5)clone I-7,298663,55E-0151,43E-012APOB (2 of 2)clone I-7,185218,66E-0111,35E-008APOH (2 of 2)clone I-5,773631,28E-0065,77E-005ARG1clone I-4,698250,001159520,0173272ARL14 (2 of 2)clone I-1,80E+3080,0004832620,00849264ARRDC2clone I1,253420,001241410,0183076ASGR1clone I-6,562463,28E-0082,47E-006	ALDOB	clone I	-4,55834	0,00293298	0,036396
AMBPclone I-6,706973,67E-0071,98E-005AMDHD1clone I-3,287570,0004370060,00782273ANGPTL3 (1 of 2)clone I-4,027175,61E-0050,00141944ANGPTL4 (2 of 2)clone I-2,426230,000501540,00875473APOA1clone I-6,494350,002316580,0301725APOB (1 of 5)clone I-6,972172,25E-0114,07E-009APOB (5 of 5)clone I-7,298663,55E-0151,43E-012APOE (2 of 2)clone I-7,185218,66E-0111,35E-008APOH (2 of 2)clone I-5,773631,28E-0065,77E-005ARG1clone I-4,341491,80E-0081,47E-006ARHGEF38 (1 of 2)clone I-1,80E+3080,0004832620,00849264ARRDC2clone I-1,253420,001241410,0183076ASGR1clone I-6,562463,28E-0082,47E-006	ALLC	clone I	-4,82042	1,18E-006	5,37E-005
AMDHD1 clone I -3,28757 0,000437006 0,00782273 ANGPTL3 (1 of 2) clone I -4,02717 5,61E-005 0,00141944 ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,49435 0,00231658 0,0301725 APOB (1 of 5) clone I -6,97217 2,25E-011 4,07E-009 APOB (5 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARHGEF38 (1 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I -1,80E+308 0,000483262 0,00849264 ARRDC1 clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I -1,80E+308 0,000235119 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	AMBP	clone I	-6,70697	3,67E-007	1,98E-005
ANGPTL3 (1 of 2) clone I -4,02717 5,61E-005 0,00141944 ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,49435 0,00231658 0,0301725 APOB (1 of 5) clone I -6,97217 2,25E-011 4,07E-009 APOB (5 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	AMDHD1	clone I	-3,28757	0,000437006	0,00782273
ANGPTL4 (2 of 2) clone I -2,42623 0,00050154 0,00875473 APOA1 clone I -6,49435 0,00231658 0,0301725 APOB (1 of 5) clone I -6,97217 2,25E-011 4,07E-009 APOB (5 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARHGEF38 (1 of 2) clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	ANGPTL3 (1 of 2)	clone I	-4,02717	5,61E-005	0,00141944
APOA1 clone I -6,49435 0,00231658 0,0301725 APOB (1 of 5) clone I -6,97217 2,25E-011 4,07E-009 APOB (5 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARHGEF38 (1 of 2) clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	ANGPTL4 (2 of 2)	clone I	-2,42623	0,00050154	0,00875473
APOB (1 of 5) clone I -6,97217 2,25E-011 4,07E-009 APOB (5 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARHGEF38 (1 of 2) clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	APOA1	clone I	-6,49435	0,00231658	0,0301725
APOB (5 of 5) clone I -7,29866 3,55E-015 1,43E-012 APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARHGEF38 (1 of 2) clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	APOB (1 of 5)	clone I	-6,97217	2,25E-011	4,07E-009
APOE (2 of 2) clone I -7,18521 8,66E-011 1,35E-008 APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARHGEF38 (1 of 2) clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	APOB (5 of 5)	clone I	-7,29866	3,55E-015	1,43E-012
APOH (2 of 2) clone I -5,77363 1,28E-006 5,77E-005 ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARHGEF38 (1 of 2) clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	APOE (2 of 2)	clone I	-7,18521	8,66E-011	1,35E-008
ARG1 clone I -4,34149 1,80E-008 1,47E-006 ARHGEF38 (1 of 2) clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006	APOH (2 of 2)	clone I	-5,77363	1,28E-006	5,77E-005
ARHGEF38 (1 of 2) clone I -4,69825 0,00115952 0,0173272 ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006 ATR2A1 (1 of 2) clone I 2,82553 0,000225118 0,00452056	ARG1	clone I	-4,34149	1,80E-008	1,47E-006
ARL14 (2 of 2) clone I -1,80E+308 0,000483262 0,00849264 ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006 ATR2A1 (1 of 2) clone I 2,82552 0,000225118 0,00452056	ARHGEF38 (1 of 2)	clone l	-4,69825	0,00115952	0,0173272
ARRDC2 clone I 1,25342 0,00124141 0,0183076 ASGR1 clone I -6,56246 3,28E-008 2,47E-006 ATR2A1 (1 of 2) clone I 2,82552 0.000225118 0.00452056	ARL14 (2 of 2)	clone I	-1,80E+308	0,000483262	0,00849264
ASGR1 clone l -6,56246 3,28E-008 2,47E-006	ARRDC2	clone I	1,25342	0,00124141	0,0183076
ATD2A1 (1 of 2) clope l 2 92552 0 000225119 0 00452054	ASGR1	clone I	-6,56246	3,28E-008	2,47E-006
ATEZAT (TUTZ) CIUTET -2,03000 0,000220110 0,00402000	ATP2A1 (1 of 2)	clone I	-2,83553	0,000225118	0,00452056
ATP2A1 (2 of 2) clone l -3,71322 9,01E-005 0,00210823	ATP2A1 (2 of 2)	clone I	-3,71322	9,01E-005	0,00210823
ATP7B clone l -5,99769 0,00102015 0,015612	ATP7B	clone I	-5,99769	0,00102015	0,0156127
BAIAP2L1 (1 of 2) clone l -4,01322 0,00284242 0,03549	BAIAP2L1 (1 of 2)	clone l	-4,01322	0,00284242	0,03549
BCO2 (3 of 3) clone l -4,31316 2,00E-005 0,000595804	BCO2 (3 of 3)	clone I	-4,31316	2,00E-005	0,000595804
BRIX1 clone I 0,938478 0,00308099 0,037834	BRIX1	clone I	0,938478	0,00308099	0,037834
C3 (1 of 8) clone I -6,88346 1,17E-007 7,41E-006	C3 (1 of 8)	clone I	-6,88346	1,17E-007	7,41E-006
C3 (2 of 8) clone I -5,45179 8,49E-007 4,07E-009	C3 (2 of 8)	clone I	-5,45179	8,49E-007	4,07E-005

gene	sample_2	log2(fold_change)	p_value	q_value
C3 (3 of 8)	clone I	-6,41276	3,83E-006	0,000146982
C3 (4 of 8)	clone I	-6,65395	0,000252949	0,0049805
C3 (5 of 8)	clone I	-6,51416	1,17E-006	5,37E-005
C3 (7 of 8)	clone I	-2,72404	0,00157496	0,0221546
C3 (8 of 8)	clone I	-3,05116	0	0
C6	clone I	-3,96029	0	0
C6orf58	clone I	-5,7995	4,61E-009	4,49E-007
C7 (1 of 2)	clone I	-3,47181	0,000115251	0,0025901
C8A	clone I	-6,25739	2,04E-008	1,63E-006
C8B	clone I	-6,86441	6,66E-016	3,01E-013
C8G	clone I	-6,95663	1,16E-009	1,34E-007
C9	clone I	-5,89096	1,15E-006	5,27E-005
CA6 (1 of 2)	clone I	3,38416	3,35E-006	0,000131179
CASQ1 (1 of 2)	clone I	-5,2741	0,000254702	0,00500872
CD2	clone I	-0,85864	0,00420864	0,0483043
CDO1	clone I	-2,93771	0,000690453	0,011363
CEBPB	clone I	2,13349	0,000583176	0,0098995
CELA1 (1 of 2)	clone I	-3,38608	0,00348941	0,0417143
CETP	clone I	-7,11618	3,70E-010	4,89E-008
CFB	clone I	-4,35573	9,21E-006	0,000309066
CFP	clone I	-6,34205	1,73E-008	1,42E-006
CIDEB	clone I	-6,30322	4,00E-007	2,13E-005
CKM (1 of 2)	clone I	-3,10984	0,000456821	0,00811188
CKM (2 of 2)	clone I	-3,348	0,000214047	0,00433574
CLDN2	clone I	-4,28803	0,000852125	0,0134805
CLDN3 (2 of 4)	clone I	2,66856	3,38E-005	0,000927284
CNDP1	clone I	-7,2812	0,00187385	0,0254777
CREB3L3	clone I	-4,19135	0,000135954	0,00297071
CROT (2 of 2)	clone I	-1,28362	1,25E-006	5,65E-005
CSRNP1 (1 of 2)	clone I	2,51791	0,00139468	0,0200985
CTBS	clone I	-0,301773	0,00121522	0,017992
CYP24A1	clone I	-5,54853	0	0
CYP2C9	clone I	-6,1389	0,000127764	0,00282169
CYP2J2 (1 of 6)	clone I	-5,94602	2,25E-011	4,07E-009
CYP2J2 (2 of 6)	clone I	-5,9798	9,89E-007	4,63E-005
CYP2J2 (3 of 6)	clone I	-5,91664	3,62E-010	4,79E-008
CYP2W1 (1 of 5)	clone I	-6,70341	1,05E-011	2,06E-009
CYP46A1	clone I	-1,59514	0,000147666	0,00318336
CYP7A1	clone I	-4,02521	0	0
CYP8B1	clone I	-5,38991	2,05E-006	8,64E-005
DDIT4 (1 of 2)	clone I	3,897	6,75E-009	6,25E-007
DENND4A (2 of 2)	clone I	4,08973	1,24E-010	1,86E-008
DGAT2	clone I	-3,12191	0,000455311	0,00808893
DIABLO (1 of 2)	clone I	-6,89981	1,27E-007	7,95E-006
DMGDH	clone I	-4,27203	1,06E-005	0,000347971
DNAJC22	clone I	-1,80E+308	0,000506774	0,00882908
DPYS	clone I	-4,99891	3,89E-005	0,00104265
DUSP1	clone I	1,94075	0,000484509	0,00851018
DUSP26 (2 of 2)	clone I	-6,65077	0,000703562	0,0115414
EGFR (2 of 2)	clone I	-2,9445	0,000583696	0,00990652
ELL (2 of 2)	clone I	2,65453	5,22E-005	0,00133663
ELTD1	clone I	0,992205	0,00328525	0,0397884
ENPP2 (2 of 2)	clone I	-3,92879	3,94E-005	0,00105437

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000000007	clone I	-7,10752	1,98E-008	1.59E-006
ENSGACG0000000231	clone I	-4.28609	8.84E-005	0.00207364
ENSGACG0000000272	clone I	-3 81325	0 000297829	0.00569912
ENSGACG0000000614	clone l	0 893794	0.00392023	0.0457139
ENSGACG0000000665	clone l	-3 51876	0.000458751	0.00813988
ENSGACG0000001260	clone l	-6 43989	2 16E-006	9.02E-005
ENSGACG0000001261	clone	-4 31609	4.04E-005	0.00107651
ENSCACG0000001/201	clone l	-8 0299	4,04E-003	8 9/F-010
ENSCACC0000001548	clone I	1 8/892	0.0008311	0,042-010
ENSGACG0000001733	clone	-7 0658	6.48F-012	1 34 = 009
ENSGACG0000001736	clone	-2 71167	0.00338299	0.0407239
ENSGACG0000001742	clone l	-2 87035	0,00000200	0,0407200
ENSGACG0000002588	clone l	-2 37304	0.00364568	0.0431855
ENSCACG0000002300	clone l	-2,57504	0,00304300	0,0431033
ENSCACC0000002003	clone l	-5 69265	0,00120415	0.0105763
ENSGACG0000002032	clone I	-5,05203	3 55E-005	0,0103703
ENSCACG0000003050	clone l	-5,77095	2,41E-006	0,000907077
ENSGACG0000003467	clone	-0,30104	0.000534784	9,902-003
ENSGACG0000003407	clone l	6 33723	7 20 = 007	3 57E 005
ENSGACG0000003475	clone l	-0,33723	0.000528880	0,00014422
ENSGACG00000000000000000000000000000000000	clone	-3,34307	3 755 005	0,00914422
ENSGACG0000004324		7 06247	3,73E-003	2 065 012
ENSCACC0000004413	clone l	-7,00247	4,44E-010	2,000-013
ENSGACG0000004403		-4,54100	0,000930003	0,0147431
ENSGACG0000004622	cione l	-4,00540	9 655 005	0,00274005
ENSGACG000000000023	cione i	-3,27403	0,00221705	0,00203762
ENSGACG0000000000007		-3,09301	0,00221703	0,029132
ENSGACG0000005133		-1,01077	0,00120775	0,0100172
ENSGACG00000005228		-3, 1393	0,00210001	0,0200072
ENSGACG00000005204		-0,30423	0,000710230	0,0117097
ENSGACG00000000402	clone I	-2,15047	2 165 005	0,0400203
ENSCACC0000005700	clone	2,20093	2,102-003	0,000030033
ENSGAC G00000000000000000000000000000000000	clone	-0,30034	4,402-012	9,032-010
ENSCACC0000000023	clone	-0,00171	0,00132730	0,021010
ENSGACG0000000551	clone	-4,52090	4 17E 007	2 215 005
ENSGACG0000000000045	clone l	-3,30002	4,17E-007	2,212-003
ENSGACG0000000044	clone	-7,4040	1 71E 006	9,13E-000
ENSCACC0000000730	clone l	-4,17900	1,712-000	7,402-005
ENSCACG0000000023	clone I	-3,30302 1 80E+308	0.000126401	0.00270651
ENSGACG0000000033	clone	-1,002+300	0,000120401	0,00279031
ENSCACG0000007030	clone l	-1,45594	6 055 007	3 43 5 005
ENSGACG0000007337	clone l	-1,4740	0,952-007	0.00848312
ENSGACG0000007411	clone l	-3,00122	5 30E-007	2 71E-005
ENSGACG0000007505	clone I	-1,90952	0.00154558	0.0218252
ENSGAC G0000007507	clone I	-0,23203	2 90E-005	0,0210232
ENSGACG0000007640	clone	-4,21205	2,99E-005	0,000050544
ENSGACG0000007642	clone l	-4,01700	1,90E-005	7 15E-005
ENSGACG0000007054	clone I	-0,57212	1,040-000	2 04E 007
ENSGACG0000007934	clone	-0,00002	7 165 005	2,040-007
ENSGACG0000008055	clone	2,90015	0.000204269	0.00173090
	clone	2,70934	0.0014206	0,0041701
ENSGACG0000000004	clone	3,10009	0,00143950	0,0200125
ENSGACG00000000173	clone	6,7207	1 21E 007	2 225 005
		-0,1231	T, ZIL-00/	Z.ZJL-000

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000009188	clone I	2,31671	0,00144135	0,0206325
ENSGACG0000009200	clone I	2,50991	8,86E-006	0,000299218
ENSGACG0000009583	clone I	-5,6853	1,41E-006	6,26E-005
ENSGACG0000009592	clone I	-6,1302	2,16E-011	3,93E-009
ENSGACG0000009633	clone I	-4,31968	3,77E-008	2,78E-006
ENSGACG0000009880	clone I	-6,41272	8,53E-007	4,09E-005
ENSGACG0000009883	clone I	-6,70551	9,91E-008	6,42E-006
ENSGACG0000009952	clone I	-5,55089	6.20E-008	4,28E-006
ENSGACG00000010000	clone I	-4,00092	2,08E-005	0,000615638
ENSGACG00000010018	clone I	-4,6013	9,43E-006	0,000315442
ENSGACG00000010050	clone I	2,44672	3,63E-007	1,96E-005
ENSGACG00000010145	clone I	-6,23799	2,48E-008	1,94E-006
ENSGACG00000010196	clone I	-6,79781	7,43E-008	5,01E-006
ENSGACG00000010247	clone I	-1,80E+308	0,00338142	0,040709
ENSGACG00000010476	clone I	4,33386	6,27E-009	5,86E-007
ENSGACG00000010478	clone I	-1,22907	5,48E-006	0,000199077
ENSGACG00000010933	clone I	-6,7886	7,76E-007	3,77E-005
ENSGACG00000011392	clone I	-7,01174	0	0
ENSGACG00000011617	clone I	-6,61204	0,000225791	0,00453209
ENSGACG00000011633	clone I	-2,4338	0,00273144	0,0343844
ENSGACG00000011676	clone I	1,82014	0,00203001	0,0271622
ENSGACG00000011846	clone I	-6,39995	1,44E-012	3,47E-010
ENSGACG00000011851	clone I	-6,55997	0	0
ENSGACG00000011882	clone I	-4,29853	0,00351179	0,0419258
ENSGACG00000012174	clone I	-3,01963	0,000368091	0,00679049
ENSGACG00000012189	clone I	-2,0248	0,00316587	0,0386472
ENSGACG0000012381	clone I	-5,7883	1,40E-008	1,18E-006
ENSGACG0000012390	clone I	-2,36126	4,05E-006	0,000154115
ENSGACG0000012414	clone I	-6,07395	7,40E-006	0,000256922
ENSGACG0000012464	clone I	4,27211	1,63E-007	9,85E-006
ENSGACG00000012473	clone l	-2,96294	0,00304768	0,0375179
ENSGACG0000013449	clone I	-3,7927	0,000543925	0,00935562
ENSGACG0000013769	clone I	-6,61335	0,000185053	0,00384112
ENSGACG00000013793	clone I	-5,87914	3,30E-007	1,81E-005
ENSGACG00000013996	clone I	-4,65379	0,000300255	0,00573683
ENSGACG00000014312	clone I	1,92572	0,00105527	0,0160488
ENSGACG00000014348	clone I	-5,24718	1,37E-006	6,11E-005
ENSGACG00000014547	clone I	-2,84255	0,000275864	0,00534929
ENSGACG00000014675	clone I	-2,25811	0,00101936	0,0156029
ENSGACG00000014699	clone I	-1,80E+308	0,000131837	0,00289605
ENSGACG00000014752	clone I	-3,99578	7,08E-006	0,000247575
ENSGACG00000014811	clone I	-5,51263	8,13E-006	0,000278366
ENSGACG00000014852	clone I	-4,45739	5,17E-005	0,0013255
ENSGACG00000014915	clone I	1,54522	3,58E-006	0,000138829
ENSGACG00000015411	clone I	-7,4861	6,66E-016	3,01E-013
ENSGACG00000015464	clone I	-5,98109	0	0
ENSGACG0000015472	clone I	-6,76234	1,54E-009	1,72E-007
ENSGACG00000015778	clone I	-3,83301	0,00126482	0,0185838
ENSGACG00000015857	clone I	-5,85485	1,08E-008	9,39E-007
ENSGACG00000015947	clone I	-6,76683	1,59E-007	9,032-000
ENSGACG0000016093	clone I	-4,65403	1,06E-005	0,000347233
ENSGACG0000016104	clone I	-7,09803	2,61E-007	1,48E-005
ENSGACG00000016168	clone I	-3,7682	0,000207965	0,00423221

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG00000016298	clone I	2,68674	1,75E-007	1,05E-005
ENSGACG00000016669	clone I	-5,09526	3,08E-013	8,60E-011
ENSGACG00000016687	clone I	-4,86618	3,64E-006	0,000140877
ENSGACG00000016696	clone I	-4,46761	1,11E-005	0,000360747
ENSGACG00000016946	clone I	3,74269	6,34E-005	0,00157196
ENSGACG00000017299	clone I	-3,22936	0,000295118	0,0056563
ENSGACG00000017655	clone I	-5,14812	0,00314064	0,0384026
ENSGACG00000017681	clone I	-5,83825	1,44E-009	1,62E-007
ENSGACG00000017758	clone I	5,49079	0,0022066	0.029023
ENSGACG0000018216	clone I	1,08904	1,39E-005	0.000437473
ENSGACG00000018662	clone I	5,08244	1.20E-006	5.49E-005
ENSGACG0000019066	clone I	-8,0083	2,02E-010	2.86E-008
ENSGACG00000019454	clone I	-4,9021	7.96E-007	3.85E-005
ENSGACG0000019517	clone I	-5,63956	1.22E-005	0.000392214
ENSGACG00000019604	clone I	-6,1084	0.000206805	0.00421261
ENSGACG00000019794	clone I	-0,975571	5,67E-008	3.95E-006
ENSGACG0000019954	clone I	-1,80E+308	0,000184771	0.00383646
ENSGACG00000019958	clone I	-4,65059	0,00024363	0.00482813
ENSGACG0000020003	clone I	1,51637	0,00371209	0,0438077
ENSGACG0000020047	clone I	-6,28332	1,89E-009	2,06E-007
ENSGACG0000020141	clone I	3,18032	0,000240639	0,00477727
ENSGACG0000020145	clone I	3,23431	0,00232098	0,0302184
ENSGACG0000020249	clone I	-5,39847	0,00274362	0,0345076
ENSGACG0000020469	clone I	5,55826	3,01E-006	0,000119773
ENSGACG0000020566	clone I	-6,44754	1,79E-007	1,07E-005
ENSGACG0000020613	clone I	-5,35313	0,0020998	0,0279061
ENSGACG0000020614	clone I	-3,66215	0,00239987	0,0310392
ENSGACG0000020653	clone I	-7,47581	2,22E-015	9,22E-013
ENSGACG0000020833	clone I	-1,80E+308	0,00120415	0,0178592
ENSGACG0000020873	clone I	-5,45036	0,00237727	0,0308005
ENSGACG0000020917	clone I	-5,5049	2,26E-011	4,10E-009
EPS8	clone I	-2,30336	0,000745276	0,0120925
F10	clone I	-6,60835	2,13E-008	1,69E-006
F2	clone I	-5,8185	2,46E-005	0,000709851
F3 (1 of 2)	clone I	3,10255	0,000143546	0,00310933
F5	clone I	-5,99715	5,07E-007	2,61E-005
F9 (1 of 2)	clone I	-5,29892	5,86E-005	0,0014714
F9 (2 of 2)	clone I	-5,0986	7,02E-007	3,46E-005
FABP1	clone I	-5,38724	2,38E-006	9,79E-005
FEIUB (1 of 3)	clone I	-4,91123	6,29E-006	0,000223929
FETUB (2 of 3)	clone I	-5,86012	7,13E-006	0,000249092
FETUB (3 of 3)	clone I	-7,04398	5,88E-007	2,97E-005
FGA	clone I	-6,22383	5,93E-011	9,64E-009
FGB	clone I	-6,65833	3,13E-005	0,000869675
FGG	clone I	-6,16835	1,54E-005	0,000477944
FKBP5	clone I	3,27635	1,15E-007	7,28E-006
FUSL1	clone I	6,12055	1,24E-007	7,82E-006
FUXA3	clone I	-5,23203	2,89E-005	0,000813889
FKZB	clone I	-1,77075	0,000531798	0,00918551
	clone I	-5,91183	6,03E-007	3,03E-005
	clone I	-4,32502	3,60E-006	0,000139466
	clone I	-5,5826	6,79E-009	6,28E-007
G6PD (2 of 2)	clone I	-5,75639	0,0010316	0,0157559

Appendix

gene	sample_2	log2(fold_change)	p_value	q_value
GADD45A (2 of 2)	clone I	2,20338	0,000304648	0,00580618
GAPDH (1 of 2)	clone I	-3,23816	5,24E-010	6,64E-008
GAPDH (2 of 2)	clone I	-6,33017	3,35E-009	3,39E-007
GLUL (1 of 2)	clone I	1,73336	0,000330657	0,0062155
GPX4 (2 of 4)	clone I	-4,63893	3,23E-006	0,000127237
GPX4 (3 of 4)	clone I	-4,68482	0,001237	0,0182546
GRAMD3 (2 of 2)	clone I	-1,80E+308	0,000678638	0,0112038
GSTZ1	clone I	-3,03798	0,00195257	0,026323
GZMM (2 of 5)	clone I	-1,00054	0,000693498	0,0114051
GZMM (3 of 5)	clone I	-1,18532	1,62E-006	7,08E-005
HAAO	clone I	-7,22313	9,77E-015	3,62E-012
HABP2 (1 of 2)	clone I	-8,10124	1,11E-015	4,85E-013
HABP2 (2 of 2)	clone I	-6,99357	6,58E-010	8,12E-008
HAL	clone I	-5,62892	5,81E-007	2,94E-005
HAO1	clone I	-5,51087	2,55E-010	3,52E-008
HGD	clone I	-6,0564	5,24E-006	0,000191702
HNF1A	clone I	-4,51967	0,000572722	0,00975457
HNF4A	clone I	-5,88247	2,07E-006	8,69E-005
HNMT (2 of 2)	clone l	-2,78906	0,00117596	0,0175251
HPD	clone I	-7,23769	1,98E-007	1,16E-005
HPN	clone I	-5,19908	0,000132058	0,00289982
HPX	clone I	-6,49736	4,00E-015	1,59E-012
HSD17B3	clone I	-4,90298	8,25E-007	3,97E-005
HYAL2 (1 of 2)	clone I	1,17095	0,00281202	0,0351816
IGFALS	clone I	-5,30884	2,22E-006	9,25E-005
IGFBP1 (2 of 2)	clone I	-5,31957	5,43E-006	0,000197849
IGFBP2 (2 of 2)	clone I	-4,3574	0,00369335	0,0436332
IL22RA1	clone I	1,80E+308	0,000758843	0,0122712
ILDR1 (1 of 2)	clone I	-5,08095	4,75E-006	0,00017641
IRF4 (2 of 2)	clone I	1,41405	0,00137279	0,0198463
ITIH2	clone I	-7,41664	5,28E-011	8,71E-009
ITIH4 (2 of 2)	clone I	-5,96859	3,83E-005	0,00102914
IYD	clone I	-3,55059	0,00126153	0,0185457
JUNB (1 of 2)	clone I	2,3601	0,000315549	0,00597811
JUNB (2 of 2)	clone I	3,92283	8,39E-007	4,03E-005
KL	clone I	-5,42654	2,58E-006	0,000105166
KMO	clone I	-3,75426	0,000639928	0,0106796
KNG1	clone I	-7,19528	1,37E-009	1,55E-007
KYNU	clone I	-3,68863	0,00144268	0,0206476
LCAT, PLA2G15	clone I	-1,7575	0,0011699	0,0174532
LECT2	clone I	-6,76975	8,65E-010	1,03E-007
LIPC	clone I	-5,81958	1,28E-010	1,91E-008
LPAR2 (2 of 2)	clone I	-0,858139	0,00306445	0,0376745
LRCH2	clone I	1,30146	0,000121702	0,00270948
LRG1	clone I	-5,4962	1,73E-007	1,04E-005
LYZ	clone I	-6,36612	9,20E-009	8,18E-007
MAT1A (2 of 2)	clone I	-8,99792	1,04E-005	0,000342925
MCFD2	clone I	-2,55399	0,00186398	0,0253707
METTL21C (2 of 2)	clone I	-4,61001	0,00101504	0,0155482
MINPP1 (1 of 2)	clone l	-3,96668	4,04E-005	0,00107799
MIOX	clone I	-6,84743	4,34E-007	2,29E-005
MLXIPL	clone I	-6,44768	4,23E-007	2,24E-005
MMD2 (2 of 2)	clone I	-4,66782	0,000384744	0,00704481

gene	sample_2	log2(fold_change)	p_value	q_value
MOGAT2	clone I	-6,00351	0,000310383	0,00589669
MOV10 (2 of 2)	clone I	1,64233	0.00185727	0.0252981
MPHOSPH10	clone I	0,745934	0.000788192	0.0126571
MPZL3	clone I	-4.84542	0.00428842	0.0490083
MST1P9	clone I	-6.83764	2.11E-007	1.23E-005
MYBPC2 (1 of 2)	clone I	-4.06022	2.64E-006	0.000107191
MYL1	clone I	-4,15649	1 76E-005	0 000534414
MYLPE (2 of 2)	clone I	-2 82307	0.00135674	0.0196593
NAALADL1	clone I	-2 52696	0.00425799	0.0487389
NCOA7 (2 of 2)	clone I	2 43613	0.000503136	0.00877779
NIPSNAP1	clone I	-4 45659	3 87E-005	0.00103927
NMF4	clone I	-6 77302	7.06E-008	4 79E-006
NR0B2	clone I	-1 80E+308	0.00178359	0.0244808
NR1H4	clone I	-5 0432	1 92E-008	1 55E-006
OVGP1 (3 of 5)	clone I	-6 17641	2 05E-008	1,55E-000
PACSIN3	clone l	-2 90943	0.00230907	0 030003
PCSK6	clone I	-5 51117	0,00230307	0,0000000
PDIA4	clone I	1 00239	0,000114000	0,00207090
PEKEB3	clone I	2 32/18	0.00241536	0,0407297
PEKM(2 of 2)	clone I	-1 48603	0,00241550	0,0311909
PGAM2	clone I	-4 72246	1,13E-005	0,000323233
PGC	clone I	3 15127	0.000825514	0,000307394
PGI YRP2 (2 of 2)	clone I	7 08313	0,000023314	0,0131356
PIM1	clone l	2 30227	0 000228820	0 00459259
	clone I	2,35227	0,000220029	0,00436236
PKIR	clone l	2 07201	0,000737302	0,0119907
PLA2G12B (1 of 2)	clone l	-2,07291	0,0014556	0,020775
	clone I	-5,55177	0,000000224	0,0139170
PPDPE $(2 \text{ of } 2)$	clone I	-0,41202	1 755 005	0 000522005
PPM1.I	clone I	-4,00000	0.00151534	0,000532905
PPP1B15B	clone I	1,41010	0,00131334	0,0214775
PRF1 (2 of 5)	clone I	2 79254	0,00303017	0,0379903
PRHOXNB	clone I	-6.48664	2 70E-006	0,0100142
PROC	clone l	-0,40004	1 97E-007	1 16E 005
PRODH2	clone I	-3 72383	0.00/35356	0.0405752
PROM1 (1 of 2)	clone I	-3,72303	0,00433350	0,0493732
PROZ (2 of 2)	clone I	5 96611	0.34E 010	1 115 007
PVRI 1 (2 of 2)	clone I	-4,41888	0,00704006	0.0115502
PYGM (2 of 2)	clone I	-4,41000	7 17E 006	0,0115595
OPCT	clone I	-3,40430	0.00018762	0,000230079
OPRT	clone I	-4 33523	0,00010702	0,00300310
RARG (1 of 2)	clone I	1 6569	0,000374030	0,00009103
RFK	clone l	1,05868	0,00301313	0,0420032
RGS5	clone l	0 761822	0,00203034	0,0273004
SCARF1	clone I	2 / 3577	0,000352095	0,00024974
SDC2	clone I	2,45577	0,00339740	0,0427390
SERPINA10 (1 of 2)	clone I	-2,20010	2 005 015	0,041209
SERPINC1	clone I	-0,75501	2,00E-013	0,30E-013
SERPIND1	clone	-0,70303	4,10E-001	2,485-005
SERPINE2	clone	-0,09117	3,70E-009	3,10E-UU/
SERPING1	clone I	-0,12000	2,34E-009	2,40E-007
SHBG	clone I	-4,31792	1 295 006	5 775 005
SLC13A3	clone I	-3,24712	7 395-005	0.00178489

gene	sample_2	log2(fold_change)	p_value	q_value
SLC13A5 (2 of 2)	clone I	-6,13999	1,22E-008	1,05E-006
SLC1A5	clone I	2,50444	2,28E-005	0,000665632
SLC22A13	clone I	-5,19422	0,00109333	0.016519
SLC22A14	clone I	-3,48402	0,000883453	0.0138823
SLC22A16	clone I	-6,38717	0,0013388	0.0194484
SLC25A34	clone I	-3,30934	0,00260614	0.0331358
SLC27A2 (1 of 3)	clone I	-4,73123	1.42E-005	0.000447399
SLC27A2 (2 of 3)	clone I	-2,99604	0.000794409	0.0127377
SLC27A6	clone I	-3,54959	0.00021688	0.00438382
SLC2A2	clone l	-1,80E+308	0,00418103	0.0480541
SLC7A2	clone I	-3,35522	0.00321126	0.0390847
SMOX	clone I	4,79144	3,71E-014	1.24E-011
SOAT2	clone I	-2,97793	9.41E-005	0.00218518
SOCS3 (1 of 2)	clone I	5,02142	5,49E-011	9.00E-009
SOCS3 (2 of 2)	clone I	3,52158	2.31E-005	0.00067399
SUSD2	clone I	-5,9516	0.00287635	0.0358288
TAT	clone I	-5,62239	2.27E-008	1.79E-006
TDO2	clone I	-7,12716	2.49E-007	1.42E-005
TF	clone I	-6,59198	0.0010223	0.0156394
TFR2	clone I	-3,453	0.00131914	0.0192224
THBS1 (2 of 2)	clone I	2,96688	5.01E-006	0.000184648
TIMP2 (1 of 2)	clone I	1,70064	0.00389634	0.0454923
TLR3	clone I	-3.94611	9.93E-006	0.000329494
TM4SF4	clone I	-1,80E+308	8.85E-005	0.00207617
TM7SF2	clone I	-3,43438	0.000767822	0.0123918
TMEM79 (1 of 2)	clone I	-3,65948	0.00214352	0.0283688
TNNC2 (1 of 2)	clone l	-3,35039	0,000219396	0.00442627
TNNI2 (1 of 5)	clone l	-3,46452	0,00180689	0,0247394
TNNI2 (3 of 5)	clone I	-3,42707	0,000178817	0,00373263
TNNT3 (2 of 2)	clone I	-3,31293	0,00101584	0,0155582
TPM2	clone I	-0,698659	5,27E-005	0,00134639
TTC36	clone I	-4,17839	1,50E-005	0,00046637
TYMP	clone l	-4,915	1,64E-006	7,12E-005
UCP1	clone l	-4,89081	5,12E-008	3,62E-006
UGT2A3 (3 of 4)	clone l	-1,93469	0,00321186	0,0390901
UGT2A3 (4 of 4)	clone I	-3,99779	0,00187631	0,0255049
UPB1	clone I	-3,73042	3,37E-007	1,84E-005
UPP2	clone I	-5,37939	7,27E-006	0,000253128
UROC1	clone I	-5,03856	3,59E-007	1,94E-005
VTN (2 of 2)	clone I	-6,63193	0	0
ZFP36	clone I	1,5808	0,00349363	0,0417529
ZNFX1	clone I	1,4393	0,00211641	0,0280832
A1CF	clone mix	-9,45232	3,57E-009	3,58E-007
ABCB11	clone mix	-7,20081	1,08E-006	4,99E-005
ABCB4	clone mix	-5,10158	9,21E-006	0,000309099
ACAA2	clone mix	1,7751	9,61E-005	0,00222532
ACMSD	clone mix	-5,96738	8,37E-007	4,02E-005
ACSF2 (2 of 2)	clone mix	-3,3142	4,28E-005	0,00113007
ACSL4	clone mix	1,21208	0,00124195	0,0183141
ACTN2	clone mix	7,04617	9,38E-008	6,12E-006
ADPRH	clone mix	2,39927	0,00168406	0,0233792
ADPRHL1	clone mix	6,84139	1,39E-006	6,17E-005
ADSSI 1	clone mix	4 31808	0 000163499	0 00346497

aene	sample_2	log2(fold_change)	p_value	q_value
AGT	clone mix	-7,72347	1,96E-008	1,58E-006
AGXT (1 of 2)	clone mix	-8,48385	2,78E-005	0,000786698
AGXT (2 of 2)	clone mix	-8,02024	3,67E-008	2,72E-006
AGXT2 (1 of 2)	clone mix	-4,88925	0,00024886	0,00491356
AHSG	clone mix	-9,47625	0	0
AKR1D1 (2 of 2)	clone mix	-7,87448	1,55E-008	1,29E-006
	clone mix	-7,33055	4,87E-006	0,000180375
ALLC	clone mix	-5,00936	3,43E-006	0,000133802
AL PK3 (1 of 2)	clone mix	5,71732	8,82E-005	0,00207101
AL PK3 (2 of 2)	clone mix	6,36627	7,19E-006	0,000250879
AMBP	clone mix	-8,36261	5,34E-007	2,73E-005
AMDHD1	clone mix	-4,93734	0,000186495	0,0038655
ANGPTI 3 (1 of 2)	clone mix	-5,8661	2,38E-005	0,000691078
ANGPTI 5	clone mix	2,82959	0,000890158	0,0139683
ANGPTL7	clone mix	6,88492	0,000942395	0,0146378
ANK3 (1 of 2)	clone mix	2.93732	0,000919295	0,0143441
	clone mix	4.22764	5.88E-005	0,00147707
	clone mix	-9.06207	2.51E-005	0.000722663
APOB (1 of 5)	clone mix	-8,46904	1,26E-009	1,44E-007
APOB (5 of 5)	clone mix	-9.07721	8.88E-016	3.93E-013
$\Delta POBEC2 (2 of 2)$	clone mix	4 66589	1.21E-006	5.52E-005
APOE(2 of 2)	clone mix	-1 80E+308	0 000207215	0.00421955
APOH(2 of 2)	clone mix	-6.5211	2 25F-005	0.000659304
APOIL(2012)	clone mix	-3 79611	0.00069419	0 0114144
ADUCEE38 (1 of 2)	clone mix	-4 77493	0 000542882	0.00934037
ARTIGET 30 (1 01 2) API 14 (2 of 2)	clone mix	-1 80E+308	0.000483262	0.00849264
ARE 14 (2012)	clone mix	5 63141	0.000235194	0.00468914
ASB5	clone mix	5 61327	0.00182838	0.0249823
ASCP1	clone mix	-8 05254	2 91F-009	3.01E-007
ATD1R3	clone mix	4 15556	0 000122693	0.00272753
ATE201 (1 of 2)	clone mix	5 55016	9 79E-007	4 59E-005
ATP2A2 (1 of 2)	clone mix	2 45458	0.00252052	0.032273
ATD7P	clone mix	-5 43213	5 28E-005	0.00134971
RMD10 (2 of 2)	clone mix	6 16807	0.000354888	0.0065878
DIVIF 10 (2 01 2)	clone mix	2 84616	0.000755338	0.0122242
DVE3	clone mix	-7 32688	1.64E-006	7 15E-005
$C_{2}(1010)$	clone mix	-6.09692	4 24E-006	0.000160231
$C_{2}(2 \text{ of } 8)$	clone mix	-7 56018	5 76E-007	2 92E-005
$C_{3}(3 0 0)$	clone mix	-7,00010	2 27E-005	0.000663285
$C_3(4010)$	cione mix	-7,37232	7 55E-007	3.68E-005
$C_3(5018)$	cione mix	-7,33330	2 22 016	1.07E-013
	cione mix	-2,97049	2,22E-010	1,072-013
C0 CCorfE0	cione mix	-3,91030	2 825 008	2 17E-006
000000000000000000000000000000000000000	cione mix	-7,17017	2,022-000	1.95E-005
C8A	cione mix	-0,1/2	5,000-007	0.000213606
C8B	cione mix	-9,38/31	5,90E-000	1 705 009
086	cione mix	-0,00119	1,19E-010	1,79E-000
C9	clone mix	-6,48627	1,47E-006	0,49E-005
CA6 (1 of 2)	clone mix	4,4/25	4,4/E-00/	2,34E-005
CA6 (2 of 2)	clone mix	4,4454	0,000531458	0,00918072
CACNG1 (2 of 2)	clone mix	4,86771	0,00112121	0,0168613
CAP2	clone mix	4,37013	1,12E-006	5,15E-005
CASQ1 (1 of 2)	clone mix	2,62435	0,00028387	0,00547686
CAV3	clone mix	3.64534	1.17E-005	0,000377137

gene	sample_2	log2(fold_change)	p_value	q_value
CBX7 (2 of 2)	clone mix	1,6102	0,00200657	0,026912
CCRN4L (2 of 2)	clone mix	1,86769	0,00103641	0.0158156
CDH15	clone mix	4,23794	0,000667444	0,0110521
CETP	clone mix	-8,57613	2,71E-007	1,53E-005
CFB	clone mix	-5,21265	1,15E-005	0.000374249
CFP	clone mix	-7,5473	4,38E-007	2,31E-005
CHCHD3 (2 of 2)	clone mix	1,01126	0,00194734	0,0262684
CIDEB	clone mix	-7,08005	4,82E-008	3,44E-006
CKMT2 (1 of 2)	clone mix	6,38005	0	0
CLDN2	clone mix	-1,80E+308	0,00263022	0,0333755
CLIC5 (2 of 2)	clone mix	4,13361	0,00073087	0,0119035
CNDP1	clone mix	-7,21208	0,000148379	0,00319605
CORO6	clone mix	3,15266	0,000214551	0,00434446
COX6B1 (1 of 2)	clone mix	3,9819	0,000809981	0,012938
COX7A1	clone mix	2,89271	0,00167906	0,0233233
CPT1B	clone mix	4,03752	8,17E-005	0,001942
CREB3L3	clone mix	-4,86036	0,000995133	0,0153012
CRIP2 (2 of 2)	clone mix	4,18652	0,000814347	0,0129932
CROT (2 of 2)	clone mix	-1,21466	1,72E-005	0,000524368
CSRP3	clone mix	6,68479	0,000769387	0,0124122
CTDSPL (1 of 2)	clone mix	2,16458	0,000360289	0,00667151
CYP24A1	clone mix	-7,47787	4,30E-011	7,25E-009
CYP2C9	clone mix	-6,59934	0,000173139	0,00363377
CYP2J2 (1 of 6)	clone mix	-6,90308	1,13E-009	1,31E-007
CYP2J2 (2 of 6)	clone mix	-7,58652	0,000513823	0,00893042
CYP2J2 (3 of 6)	clone mix	-3,98974	0,000150853	0,00324077
CYP2W1 (1 of 5)	clone mix	-1,80E+308	0,000180018	0,0037538
CYP7A1	clone mix	-4,33877	9,23E-010	1,10E-007
CYP8B1	clone mix	-4,81158	0,000105939	0,00241293
DAG1 (1 of 2)	clone mix	2,29277	0,00435256	0,049567
DDIT4 (1 of 2)	clone mix	4,37605	3,67E-007	1,98E-005
DENND4A (2 of 2)	clone mix	4,71111	2,65E-008	2,05E-006
DES	clone mix	5,9404	9,54E-009	8,45E-007
DHRS7C (1 of 2)	clone mix	4,11315	0,000480846	0,00845817
DHRS7C (2 of 2)	clone mix	4,24917	2,75E-005	0,000781284
DIABLO (1 of 2)	clone mix	-8,63579	5,87E-008	4,08E-006
DMD	clone mix	3,33467	0,000235213	0,00468941
DNAJC22	clone mix	-1,80E+308	0,000506774	0,00882908
DPYS	clone mix	-1,80E+308	8,28E-006	0,00028259
DTNA	clone mix	4,88119	2,56E-005	0,000735057
DUSP26 (2 of 2)	clone mix	-4,84748	1,24E-005	0,000397841
EGF	clone mix	3,04227	0,00246946	0,0317477
ELL (2 of 2)	clone mix	3,00113	0,000263951	0,00515684
ELTD1	clone mix	1,60145	0,00246475	0,0317003
ENO3	clone mix	2,9872	0,00141613	0,0203434
ENPP2 (2 of 2)	clone mix	-3,66921	0,00101657	0,0155675
ENSGACG0000000007	clone mix	-8,11472	1,83E-009	2,00E-007
ENSGACG0000000272	clone mix	3,54269	3,55E-005	0,000966521
ENSGACG0000000300	clone mix	4,92423	5,55E-007	2,82E-005
ENSGACG0000000547	clone mix	4,74245	0,00202181	0,0270772
ENSGACG0000001073	clone mix	5,16748	0,0010648	0,0161686
ENSGACG0000001260	clone mix	-8,16523	1,06E-007	6,81E-006
ENSGACG0000001261	clone mix	-4,9603	7,43E-006	0,000257758

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000001432	clone mix	-8,38559	2,16E-009	2,32E-007
ENSGACG0000001733	clone mix	-7,26937	9,46E-009	8,38E-007
ENSGACG0000001742	clone mix	-2,84172	0	0
ENSGACG0000002089	clone mix	5,01119	8,53E-007	4,09E-005
ENSGACG0000002738	clone mix	3,1554	0,00275341	0,0346035
ENSGACG0000002791	clone mix	1,80E+308	0,000800079	0,0128101
ENSGACG0000002805	clone mix	-1,80E+308	0,00120415	0,0178592
ENSGACG0000002832	clone mix	-5,58718	9,02E-005	0,00211034
ENSGACG0000002902	clone mix	7,61526	0,000600187	0,0101358
ENSGACG0000003003	clone mix	8,67502	0,000237202	0,00472103
ENSGACG0000003030	clone mix	-5,21788	0,00049831	0,00870816
ENSGACG0000003435	clone mix	-5,39212	0,00422824	0,0484796
ENSGACG0000003461	clone mix	-8,65825	4,69E-008	3,36E-006
ENSGACG0000003467	clone mix	-9,94776	2,22E-006	9,23E-005
ENSGACG0000003473	clone mix	-6,1975	6,61E-006	0,000233408
ENSGACG0000003501	clone mix	2,71534	0,00343187	0,0411803
ENSGACG0000003651	clone mix	3,67353	0,00113529	0,0170326
ENSGACG0000004200	clone mix	10,4072	2,85E-008	2,19E-006
ENSGACG0000004413	clone mix	-9,54121	9,05E-012	1,81E-009
ENSGACG0000004463	clone mix	-4,79157	0,00120635	0,0178864
ENSGACG0000004822	clone mix	-4,28271	0,000809453	0,0129317
ENSGACG0000004971	clone mix	4,617	4,61E-006	0,000172237
ENSGACG0000005023	clone mix	3,96559	0,0003643	0,00673245
ENSGACG0000005264	clone mix	-5,09263	4,94E-005	0,00127506
ENSGACG0000005365	clone mix	2,97659	0,000240806	0,00478006
ENSGACG0000005883	clone mix	-6,39573	1,67E-008	1,38E-006
ENSGACG0000005916	clone mix	-5,06856	0,00372467	0,0439226
ENSGACG0000005973	clone mix	2,65704	0,000610459	0,0102753
ENSGACG0000006029	clone mix	-9,14545	1,45E-005	0,000454108
ENSGACG0000006109	clone mix	4,1981	0,00104704	0,0159464
ENSGACG0000006351	clone mix	-3,66544	0,00138272	0,0199588
ENSGACG0000006530	clone mix	4,30505	8,60E-005	0,0020269
ENSGACG0000006644	clone mix	-7,50861	6,77E-010	8,32E-008
ENSGACG0000006790	clone mix	-4,44725	4,46E-005	0,00117029
ENSGACG0000006829	clone mix	-1,80E+308	0,00348204	0,0416455
ENSGACG0000006833	clone mix	-7,19262	1,09E-005	0,000357722
ENSGACG0000007038	clone mix	-8,0323	2,59E-005	0,000743096
ENSGACG0000007411	clone mix	-1,67337	9,99E-015	3,70E-012
ENSGACG0000007507	clone mix	-3,96162	0,000458463	0,00813578
ENSGACG0000007622	clone mix	3,18314	0,000789668	0,0126754
ENSGACG0000007640	clone mix	-5,83486	0,000106101	0,00241612
ENSGACG0000007661	clone mix	7,941	1,40E-005	0,000439815
ENSGACG0000007954	clone mix	-7,64659	1,12E-007	7,15E-006
ENSGACG0000008064	clone mix	3,41811	0,00204422	0,0273142
ENSGACG0000008706	clone mix	3,18777	0,000956924	0,0148199
ENSGACG0000009173	clone mix	-9,32742	1,57E-006	6,89E-005
ENSGACG0000009200	clone mix	2,15006	0,000803965	0,0128611
ENSGACG0000009409	clone mix	8,714	1,18E-010	1,77E-008
ENSGACG0000009583	clone mix	-4,34612	0,00107373	0,0162786
ENSGACG0000009592	clone mix	-5,19627	5,11E-013	1,36E-010
ENSGACG0000009633	clone mix	-4,62296	2,74E-005	0,000777028
ENSGACG0000009821	clone mix	4,14856	0,00128021	0,0187634
ENSGACG0000009825	clone mix	0,80967	0,0029731	0,0367932

Appendix

gene	sample_2	log2(fold_change)	p value	a value
ENSGACG0000009880	clone mix	-9,2888	6.70E-007	3 32E-005
ENSGACG0000009883	clone mix	-9,40461	2 37E-005	0.000689702
ENSGACG0000009952	clone mix	-7.60972	0.00274343	0.0345057
ENSGACG00000010050	clone mix	2,44667	1.04E-005	0.000343556
ENSGACG00000010126	clone mix	7,15861	2 19E-005	0.000644025
ENSGACG00000010127	clone mix	3 4267	0.00198807	0.0267137
ENSGACG00000010145	clone mix	-5,98309	5 24F-007	2 69E-005
ENSGACG00000010184	clone mix	5 39047	4.63E-006	0.000172874
ENSGACG00000010196	clone mix	-8 07504	1.34E-006	5 99E-005
ENSGACG00000010476	clone mix	3.6596	1,64E 000	6.45E-005
ENSGACG00000010623	clone mix	8,28426	1 49E-006	6.56E-005
ENSGACG00000010757	clone mix	3,60422	0.00070724	0.0115896
ENSGACG00000010837	clone mix	3.30196	0.00311893	0.0381901
ENSGACG00000010933	clone mix	-7.76623	3 35E-007	1.83E-005
ENSGACG00000011294	clone mix	2.05134	0.00229546	0.0299512
ENSGACG00000011392	clone mix	-9.67169	3 24F-014	1 10F-011
ENSGACG00000011617	clone mix	-9.09182	1.69E-006	7.31E-005
ENSGACG00000011846	clone mix	-9 1225	1,61E-011	3.02E-009
ENSGACG00000011851	clone mix	-9.65967	9.97E-010	1 17E-007
ENSGACG00000011882	clone mix	-1.80E+308	0.00318018	0.0387864
ENSGACG00000012174	clone mix	5.41496	0.00235428	0.0305623
ENSGACG00000012381	clone mix	-8.60602	8 21F-006	0.00028048
ENSGACG00000012414	clone mix	-9,20094	3.91E-008	2 87E-006
ENSGACG00000012464	clone mix	2.8934	0 000917222	0.0143167
ENSGACG00000012473	clone mix	-4.25753	0.00373041	0.043977
ENSGACG00000012546	clone mix	4,36428	5.41E-007	2 76E-005
ENSGACG00000012590	clone mix	3.62915	0.000539175	0.00928892
ENSGACG00000012592	clone mix	3,17343	0.000859312	0.0135726
ENSGACG00000012654	clone mix	8.432	1.17E-005	0.000377388
ENSGACG00000012657	clone mix	7.79734	2.75E-007	1.54E-005
ENSGACG00000012663	clone mix	4,59504	5.12E-005	0.0013149
ENSGACG00000012954	clone mix	6,47443	2.11E-005	0.00062499
ENSGACG00000012962	clone mix	9,61108	3,13E-007	1,73E-005
ENSGACG00000013326	clone mix	2,23475	0,0029096	0.036166
ENSGACG00000013564	clone mix	1,80E+308	6.01E-005	0.00150263
ENSGACG0000013583	clone mix	2,93448	0,0015206	0,021538
ENSGACG0000013712	clone mix	1,4635	0,00363968	0,043131
ENSGACG0000013769	clone mix	-6,08426	0,00243402	0,0313869
ENSGACG0000013782	clone mix	8,88738	2,55E-008	1,98E-006
ENSGACG0000013793	clone mix	-6,19303	1,90E-006	8,11E-005
ENSGACG0000013996	clone mix	-4,5489	0,000458371	0,00813449
ENSGACG00000014348	clone mix	-5,64324	1,36E-005	0,000430949
ENSGACG00000014547	clone mix	-3,55635	0,0010022	0,01539
ENSGACG00000014699	clone mix	-5,99861	3,25E-006	0,000127809
ENSGACG00000014752	clone mix	4,26222	0,000336452	0,00630562
ENSGACG00000014811	clone mix	-8,47799	3,14E-008	2,37E-006
ENSGACG00000014852	clone mix	-4,8164	4,56E-005	0,00119375
ENSGACG00000014922	clone mix	4,24362	2,37E-005	0,000688445
ENSGACG00000014948	clone mix	8,17823	0,00306636	0,0376933
ENSGACG00000014960	clone mix	8,77795	8,05E-009	7,29E-007
ENSGACG00000015168	clone mix	4,84033	8,30E-006	0,000283264
ENSGACG00000015248	clone mix	4,14657	1,74E-005	0,000529666
ENSGACG00000015265	clone mix	4,51299	5,69E-005	0,00143615
gene	sample_2	log2(fold_change)	p_value	q_value
--------------------	-----------	-------------------	-------------	-------------
ENSGACG0000015407	clone mix	3,10252	0,0020882	0,0277831
ENSGACG00000015411	clone mix	-9,40632	2.53E-005	0.000728333
ENSGACG00000015464	clone mix	-7.79816	2.62E-009	2.74E-007
ENSGACG00000015472	clone mix	-8.22622	4.39E-008	3.17E-006
ENSGACG0000015778	clone mix	4,63744	8.36E-005	0.00198065
ENSGACG00000015857	clone mix	-8.36516	1.55E-009	1.73E-007
ENSGACG00000015947	clone mix	-7.9605	1.98E-007	1.17E-005
ENSGACG0000016031	clone mix	3 70453	0.000381856	0.0070004
ENSGACG0000016045	clone mix	5 50674	5.66E-006	0 000204499
ENSGACG0000016073	clone mix	3 14627	0.0020555	0 0274327
ENSGACG0000016093	clone mix	-5 64742	5 49F-005	0.00139269
ENSGACG0000016104	clone mix	-10.0841	5.78E-009	5.46E-007
ENSGACG0000016298	clone mix	2,55669	4.71E-005	0.00122545
ENSGACG00000016669	clone mix	-4,98091	9.28E-011	1.44E-008
ENSGACG0000016687	clone mix	-4,92367	4.74E-005	0.00123278
ENSGACG0000016696	clone mix	-6.64583	2 20E-005	0 000646483
ENSGACG0000017655	clone mix	-4.32298	0.00206708	0.0275538
ENSGACG00000017681	clone mix	-6,17273	3.25E-006	0.000128022
ENSGACG00000017683	clone mix	4.7162	7.79E-006	0.000268433
ENSGACG0000017758	clone mix	5.88708	0.00151364	0.0214597
ENSGACG00000018177	clone mix	-1.80E+308	0.000538967	0.00928614
ENSGACG00000018499	clone mix	4,18979	3.73E-005	0.00100711
ENSGACG00000018662	clone mix	4,50171	8.58E-005	0.00202406
ENSGACG00000018776	clone mix	-8.21294	1.13E-010	1.71E-008
ENSGACG00000018832	clone mix	4,38728	0.000241803	0.00479694
ENSGACG00000018908	clone mix	3,77047	7.13E-005	0,00173363
ENSGACG0000018934	clone mix	3,60144	0,000579002	0,00984081
ENSGACG00000019066	clone mix	-9,12381	9,66E-010	1,14E-007
ENSGACG00000019454	clone mix	-5,88264	1,20E-005	0,000385487
ENSGACG00000019517	clone mix	-1,80E+308	0,00305528	0,0375886
ENSGACG00000019604	clone mix	-1,80E+308	1,01E-007	6,52E-006
ENSGACG00000019624	clone mix	4,32767	0,00138722	0,0200102
ENSGACG00000019744	clone mix	7,66271	5,68E-008	3,96E-006
ENSGACG0000019784	clone mix	6,30711	4,12E-007	2,18E-005
ENSGACG0000019954	clone mix	-5,33707	1,24E-005	0,000396448
ENSGACG0000019958	clone mix	-3,80775	0,00397733	0,0462224
ENSGACG0000020047	clone mix	-7,57813	1,28E-008	1,09E-006
ENSGACG0000020469	clone mix	4,38933	0,000880791	0,0138487
ENSGACG0000020566	clone mix	-1,80E+308	5,70E-005	0,00143887
ENSGACG0000020614	clone mix	-4,16206	0,00219492	0,0288996
ENSGACG00000020615	clone mix	-3,85397	0,00177518	0,0243874
ENSGACG00000020653	clone mix	-8,53252	1,66E-010	2,41E-008
ENSGACG0000020833	clone mix	-1,80E+308	0,00120415	0,0178592
ENSGACG00000020917	clone mix	-7,70784	8,34E-009	7,52E-007
ESYT2 (2 of 2)	clone mix	4,01851	0,00101574	0,0155568
F10	clone mix	-7,67275	4,09E-008	2,98E-006
F2	clone mix	-7,10922	4,66E-006	0,000173562
F3 (1 of 2)	clone mix	3,31364	0,000319824	0,00604585
F5	clone mix	-6,60978	5,83E-006	0,000209847
F9 (1 of 2)	clone mix	-5,78317	0,00113102	0,016982
F9 (2 of 2)	clone mix	-5,86491	3,68E-008	2,72E-006
FABP1	clone mix	-7,52754	0,000137803	0,00300485
FABP2 (2 of 2)	clone mix	5,54522	1,41E-005	0,000442383

gene	sample_2	log2(fold_change)	p value	a value
FER1L6	clone mix	6.02657	0.00344332	0.0412879
FERMT2	clone mix	1,29243	0.00133136	0.0193611
FETUB (1 of 3)	clone mix	-5.58163	1 47E-005	0.00046061
FETUB (2 of 3)	clone mix	-5,17161	0.00023219	0.004639
FETUB (3 of 3)	clone mix	-8 28839	1 22E-007	7 71E-006
FGA	clone mix	-9.38095	1.04E-010	1.59E-008
FGB	clone mix	-8 85037	6 79E-008	1,59E-000
FGG	clone mix	-8 72605	2 01E-007	4,03E-000
FHI 1 (1 of 2)	clone mix	3 24257	3 18E-000	2 24E 007
FHL 2 (1 of 2)	clone mix	4 38662	9.10E-009	0,000317101
FHOD3 (1 of 2)	clone mix	3 98885	9,49E-000	0,000317191
FILIP1 (1 of 2)	clone mix	4 25565	4,13E-005	0,00111007
FKBP5	clone mix	4,2000	2 38E-007	1 375 005
FLNC(1 of 2)	clone mix	3 24023	2,30L-007	0.00212251
FLNC(2 of 2)	clone mix	5 28118	5,09E-003	2 705 006
FOSL1	clone mix	4 77764	0,202-000	3,70E-000
EPGT-TNNI3K	clone mix	3 523/5	0,000130331	0,00323100
FSD2	clone mix	2 55681	0,00110923	0,0170017
G0S2	clone mix	-1 65133	2 27E 005	0,0424511
G6PC (1 of 2)	clone mix	6 11270	3,37E-003	1,000920006
G6PC (2 of 2)	clone mix	-0,11379	3,21E-007	1,77E-000
G6PD (2 of 2)	clone mix	-0,70090	0,492-003	0,000954200
CAPDH (1 of 2)	clone mix	-4,00002	0,000422030	0,00760138
GMPR	clone mix	4,00909	4,02E-000	3,31E-000
GPM6B (2 of 2)	clone mix	1 49009	0,000300271	0,00706093
GPX4 (2 of 4)	clone mix	1,40900	2 265 005	0,0201277
GPX4 (3 of 4)	clone mix	-4,92009	3,20E-003	0,000699041
GPX4 (0 of 4)	clone mix	-4,0933	0,0021903	0,0200013
GRAMD3 (2 of 2)	clone mix	1 205-202	0,00347004	0,0415565
GZMM(2 of 5)	clone mix	-1,000+300	1.01E.009	1,0112030
	clone mix	-1,00021	1,91E-000	1,55E-000
HABP2 $(1 \text{ of } 2)$	clone mix	-9,01293	1,900-012	4,03E-010
HABP2 $(2 \text{ of } 2)$	clone mix	-3,47400	4,302-000	3, TOE-000
	clone mix	-5,71709	4,33E-014	0.000677307
	clone mix	-1.80E+308	2,32E-005	5.035.005
HGD	clone mix	-1,002+300	0.000716314	0.0117104
HHATL $(2 \text{ of } 2)$	clone mix	6 38501	2 005 007	1.625.005
HIVEP2 (2 of 2)	clone mix	5 08855	0 000208060	0.0057026
HNE1A	clone mix	-1 15/2/	0,000290009	0,0057020
HNE4A	clone mix	-7,10406	0,00394309	0,0433330
HPD	clone mix	-7,10400	0,000244959 4 83E-007	2 50E, 005
HPN	clone mix	-1,1300 4 -1 2277	0.00120046	0.0178164
HPX	clone mix	-8,2277	0,00120040	2 31E-010
HRC	clone mix	4 72011	1,22E-015	0.000426888
HSD17B3	clone mix	-3 89208	5.96E-007	3.00E-005
HSP90AA1 (2 of 2)	clone mix	5 / 11/1	0.00021015	0.00426072
HSPB1	clone mix	3 78324	8 28E-008	5 50E-006
HSPB7	clone mix	5 4009	2,65E-006	0.000107539
IGFALS	clone mix	-6 09706	6 34 F-006	0 00022534
IGFBP1 (2 of 2)	clone mix	-6 58674		7 395-005
IGEN1 (4 of 5)	clone mix	8 /6112	8 21 E-006	0 000280602
IGSF5 (2 of 2)	clone mix	_4 78368	0 000871581	0 0137208
ILDR1 (1 of 2)	clone mix	-3 47813	1 20 -005	0.000385761

gene	sample_2	log2(fold_change)	p_value	q_value
IPO13 (2 of 2)	clone mix	3,80229	0,00214249	0,0283576
IRF4 (2 of 2)	clone mix	1,78947	0.000811916	0.0129617
ITGA5 (1 of 2)	clone mix	2,31389	0.00213492	0.0282792
ITIH2	clone mix	-8,56165	7.14E-008	4.84E-006
ITIH4 (2 of 2)	clone mix	-5.80946	0.00015352	0.00328764
JPH1 (1 of 2)	clone mix	4,44618	5.61E-005	0.0014192
JPH2	clone mix	3.92328	1.08E-005	0.000354458
JUNB (2 of 2)	clone mix	3,41232	0,000229937	0.00460136
KBTBD10 (1 of 2)	clone mix	3,9268	0,000124546	0.00276196
KBTBD12	clone mix	4,52109	3.72E-005	0.00100584
KCNJ14	clone mix	5,2533	0,00362084	0,0429571
KL	clone mix	-5,27582	2,99E-005	0,000836716
KLF13	clone mix	3,31945	0,00164226	0,0229142
KLF9	clone mix	2,68032	0,000737203	0,0119868
KLHL30	clone mix	4,86814	7,33E-006	0,000254858
KLHL31	clone mix	5,55851	3,86E-008	2,84E-006
KLHL38 (2 of 2)	clone mix	5,93881	3,83E-006	0,000147046
KNG1	clone mix	-8,23173	8,27E-010	9,96E-008
LDB3	clone mix	4,31541	0,000156193	0,00333485
LECT2	clone mix	-9,45427	3,62E-009	3,63E-007
LIMCH1 (2 of 2)	clone mix	2,89254	0,00439358	0,0499249
LIPC	clone mix	-6,18618	1,07E-008	9,33E-007
LMOD3	clone mix	2,24621	0,00118012	0,0175748
LRG1	clone mix	-8,44941	7,86E-005	0,00188079
LRRC14B	clone mix	2,9663	0,00317895	0,0387757
LRRC2	clone mix	3,74612	0,000351851	0,00654066
LYZ	clone mix	-8,08362	3,11E-009	3,19E-007
MAT1A (2 of 2)	clone mix	-8,37152	7,87E-009	7,15E-007
MDH1 (2 of 2)	clone mix	2,95913	0,0023995	0,031035
MEF2C (2 of 2)	clone mix	4,59457	0,000129711	0,00285762
MICAL2 (2 of 2)	clone mix	2,28887	0,00419306	0,0481628
MINPP1 (1 of 2)	clone mix	-3,91478	0,000484058	0,00850407
MIOX	clone mix	-9,41505	3,18E-007	1,75E-005
MLF1	clone mix	4,79993	0,00427236	0,0488688
MLXIPL	clone mix	-2,91059	0,00197395	0,0265615
MMP9	clone mix	1,99427	5,33E-010	6,73E-008
MOGAT2	clone mix	-7,02163	0,000875855	0,0137844
MPZL3	clone mix	-3,90013	0,000748888	0,0121397
MSS51	clone mix	3,32715	0,00136932	0,0198057
MST1P9	clone mix	-8,37176	8,86E-007	4,22E-005
MYL1	clone mix	3,71807	0,00209093	0,0278127
MYL7	clone mix	7,67761	2,24E-007	1,30E-005
MYLK	clone mix	2,3793	0,00238843	0,030918
MYLK4 (1 of 2)	clone mix	6,40473	2,67E-005	0,000760614
MYLK4 (2 of 2)	clone mix	4,33414	1,96E-005	0,00058648
MYLPF (1 of 2)	clone mix	11,08	1,32E-005	0,000419886
MYO18A (2 of 2)	clone mix	5,3749	1,32E-005	0,000420355
MYOC	clone mix	5,15953	0,00071554	0,0117003
MYOM1 (2 of 2)	clone mix	4,39973	2,69E-008	2,07E-006
MYOZ1 (1 of 2)	clone mix	5,16977	1,98E-006	8,38E-005
MYOZ2 (1 of 2)	clone mix	5,87713	4,85E-007	2,51E-005
MYOZ2 (2 of 2)	clone mix	3,94155	0,000852697	0,0134876
MYOZ3	clone mix	3,87792	0,00368452	0,0435503

gene	sample 2	log2(fold change)	p value	a value
MYPN	clone mix	3 99614	0.00262405	0.0333144
NAALADL1	clone mix	-3 52012	0.000124103	0.00275382
NBEA (2 of 2)	clone mix	1 74561	0.000199285	0.00408555
NDRG2	clone mix	2 24207	0.00319011	0.0388804
NDUFA4 (2 of 2)	clone mix	5.47042	0 000224137	0 00450499
NEB	clone mix	5,26732	8.88E-016	3 93E-013
NEBL	clone mix	3,55025	0.0020965	0.0278716
NEXN	clone mix	4.20174	6.03E-006	0.000215899
NIPSNAP1	clone mix	-4.37953	8.55E-005	0.00201707
NR0B2	clone mix	-5,25379	0.00241866	0.0312296
NR1H4	clone mix	-7,39419	1.52E-005	0.000473756
NRAP	clone mix	3,8403	0.00365405	0.0432675
OBSCN	clone mix	4,26785	2,77E-009	2.87E-007
OBSL1 (2 of 2)	clone mix	5,42834	7.21E-006	0.00025144
OVGP1 (3 of 5)	clone mix	-8,19648	8,96E-009	8.00E-007
PABPC4	clone mix	5,16538	1,99E-007	1,17E-005
PCSK6	clone mix	-5,21122	0,000123615	0.00274499
PDLIM1	clone mix	6,03339	1,51E-008	1,26E-006
PDLIM7	clone mix	2,23115	0,000412819	0,00746505
PFKFB3	clone mix	3,42098	4,48E-005	0.00117453
PFKFB4 (2 of 2)	clone mix	0,656039	0,000712586	0,0116608
PFKM (1 of 2)	clone mix	3,99804	0,000256282	0,00503408
PFKM (2 of 2)	clone mix	3,27751	0,00064485	0,0107454
PGAM2	clone mix	3,52473	0,000101531	0,00233007
PGLYRP2 (2 of 2)	clone mix	-9,26656	4,80E-006	0,000178235
PIP5K1C (2 of 2)	clone mix	3,61921	0,000692464	0,0113909
PLA2G12B (1 of 2)	clone mix	-4,59073	0,000347477	0,00647535
PLG	clone mix	-9,12264	2,33E-011	4,20E-009
PPM1J	clone mix	1,9346	0,00101316	0,0155252
PPM1K (2 of 2)	clone mix	3,94667	0,000393509	0,00717548
PPP1R27 (1 of 2)	clone mix	4,36266	2,91E-005	0,000817678
PRHOXNB	clone mix	-1,80E+308	8,85E-005	0,00207617
PRODH2	clone mix	-5,19772	0,00203898	0,0272568
PROZ (2 of 2)	clone mix	-8,18804	2,32E-005	0,000676432
PYGM (2 of 2)	clone mix	3,65248	0,000539476	0,00929305
QPCT	clone mix	-3,60227	0,00369209	0,0436205
QPRT	clone mix	-3,69464	0,0035321	0,042121
RAMP1 (2 of 2)	clone mix	4,45678	0,00229099	0,0299031
RBM24 (1 of 2)	clone mix	3,57947	0,00432338	0,0493158
RGR	clone mix	4,31277	0,00409694	0,0472994
RPL3L	clone mix	5,371	1,48E-005	0,000462417
RRAD	clone mix	3,81035	0,0012415	0,0183088
RYR1 (1 of 2)	clone mix	4,43723	1,88E-005	0,000567537
RYR1 (2 of 2)	clone mix	5,84703	6,73E-007	3,33E-005
SCN4A (2 of 2)	clone mix	3,10989	0,00175349	0,0241486
SERPINA10 (1 of 2)	clone mix	-6,69702	5,52E-013	1,45E-010
SERPINC1	clone mix	-8,55003	3,57E-008	2,65E-006
SERPIND1	clone mix	-8,75629	1,15E-008	9,93E-007
SERPINF2	clone mix	-7,83308	2,59E-008	2,01E-006
SERPING1	clone mix	-3,96492	0,0017837	0,0244818
SGCA	clone mix	4,67637	0,0026369	0,033442
SGCG	clone mix	1,94602	0,00379814	0,0445955
SHBG	clone mix	-7,27206	2,53E-007	1,44E-005

gene	sample_2	log2(fold_change)	p_value	q_value
SIX1	clone mix	3,41225	0,000122339	0,00272123
SLC13A3	clone mix	-5,52726	4,13E-005	0,00109701
SLC13A5 (2 of 2)	clone mix	-8,04321	2,99E-010	4,05E-008
SLC1A5	clone mix	2,8761	0,000146143	0,00315609
SLC22A13	clone mix	-1,80E+308	0,000223494	0,00449408
SLC22A16	clone mix	-2.8213	0.00434832	0.0495314
SLC25A43	clone mix	4.95184	1.33E-005	0.000421351
SLC26A11	clone mix	1.21159	0,000101424	0.00232801
SLC27A2 (1 of 3)	clone mix	-4,5458	0,000133652	0.00292919
SLC27A6	clone mix	-3.57811	0.000981181	0.015127
SLC2A2	clone mix	-1.80E+308	0.00418103	0.0480541
SLC34A2 (1 of 2)	clone mix	5.43395	4.17E-005	0.00110654
SLC41A3 (1 of 2)	clone mix	4,75892	0.00216692	0.0286111
SLC4A3	clone mix	4.90025	2.79E-005	0.000789973
SLC8A1 (2 of 2)	clone mix	7.94778	5.91E-005	0.00148222
SMOX	clone mix	5,1103	5.75E-008	4.00E-006
SMPX	clone mix	4 3406	1 19E-005	0.000382418
SNRNP70	clone mix	0.687726	0.000727284	0.0118546
SOAT2	clone mix	-6 06704	3 02E-006	0.000120103
SOCS3 (1 of 2)	clone mix	4 7558	9.08E-008	5 95F-006
SOCS3 (2 of 2)	clone mix	2 95157	0.00197091	0.026528
SORBS1	clone mix	2 23338	0.000668673	0.0110688
SORBS2	clone mix	4 46058	0.000325318	0.00613056
SPAG17	clone mix	4 65399	0.00213446	0.0282737
SPEG (1 of 2)	clone mix	3 0298	0.0020106	0.0269555
SPEG (2 of 2)	clone mix	2 72837	0.00121844	0.0180301
SPP2	clone mix	-6.30087	0 000202476	0.00413994
SPTBN1 (1 of 2)	clone mix	0.912046	0.00335708	0.0404783
SRL (1 of 2)	clone mix	4.59616	6.80E-006	0.000239138
SRL (2 of 2)	clone mix	3,17943	0.000336483	0.00630598
SUSD2	clone mix	-6.4255	0.000127073	0.00280852
SVIL (2 of 2)	clone mix	2.95952	0.000662983	0.0109918
SYNE2 (1 of 3)	clone mix	5,21479	2.08E-006	8.75E-005
SYNPO2L (1 of 2)	clone mix	4,28236	0.000148378	0.00319605
SYNPO2L (2 of 2)	clone mix	6.82575	1.59E-005	0.000490919
TAT	clone mix	-6.321	5.87E-006	0.00021096
TCAP	clone mix	4,34303	3,60E-005	0.00097753
TDO2	clone mix	-8,39853	3,12E-007	1.72E-005
TF	clone mix	-7,44169	0,000461348	0.00817794
THBS1 (2 of 2)	clone mix	2,41748	0,00310704	0.0380761
TJP1 (1 of 2)	clone mix	2,0736	0,0030529	0,0375677
TKT (2 of 2)	clone mix	4,89647	8,14E-005	0,00193685
TLR3	clone mix	-4,06587	4,65E-005	0.00121238
TM4SF4	clone mix	-1,80E+308	8,85E-005	0.00207617
TM4SF5	clone mix	-3.87002	0.00403026	0.046702
TM7SF2	clone mix	-4,31474	0.00129959	0.0189922
TMEM182	clone mix	4,92927	4,99E-011	8.28E-009
TMOD1	clone mix	3,64627	0.00225948	0.029573
TMOD4	clone mix	2.09525	4,77E-007	2.48E-005
TNNC1	clone mix	8.92128	9,06E-008	5.94E-006
TNNC2 (1 of 2)	clone mix	4,19605	0,000130627	0,00287404
TNNC2 (2 of 2)	clone mix	3,46013	0,000301462	0,00575604
TNNI2 (1 of 5)	clone mix	3,15294	0.00209209	0.0278249

gene	sample_2	log2(fold_change)	p_value	q_value
TNNI2 (3 of 5)	clone mix	2,98901	0,0041025	0,047349
TNNI2 (4 of 5)	clone mix	6,23861	0,000744837	0,0120866
TNNI2 (5 of 5)	clone mix	6,30029	2,80E-007	1,57E-005
TNNT2 (1 of 2)	clone mix	7,7103	3,13E-006	0,000123832
TNNT2 (2 of 2)	clone mix	2,69605	0,00315082	0,0385008
TNNT3 (2 of 2)	clone mix	3,2295	0,000167344	0,00353286
TPM2	clone mix	3,05966	0,000576159	0,0098013
TPM3	clone mix	5,07827	2,34E-005	0,000681963
TRAK1 (1 of 2)	clone mix	1,01685	0,00134123	0,0194768
TRDN	clone mix	4,39318	2,88E-006	0,000115199
TRIM63	clone mix	3,61258	0,00018636	0,00386321
TTN	clone mix	5,64727	6,33E-006	0,000225115
TXLNB (1 of 2)	clone mix	4,6162	3,25E-007	1,78E-005
TXLNB (2 of 2)	clone mix	5,16277	1,21E-006	5,52E-005
TYMP	clone mix	-3,9567	0,000999553	0,0153574
UCP1	clone mix	-7,74551	1,09E-007	6,97E-006
UPP2	clone mix	-6,33611	1,24E-005	0,000396673
UROC1	clone mix	-8,00731	8,50E-007	4,07E-005
USP13	clone mix	5,67653	4,49E-007	2,35E-005
USP2	clone mix	3,69078	0,000154815	0,00331004
USP28	clone mix	4,96192	1,36E-006	6,07E-005
VTN (1 of 2)	clone mix	-9,96102	2,06E-009	2,22E-007
VTN (2 of 2)	clone mix	-4,25722	8,86E-009	7,92E-007
XIRP2 (1 of 2)	clone mix	3,63989	7,51E-005	0,00181064
ZFP106 (1 of 2)	clone mix	3,63206	6,70E-005	0,00164672
ACADL	clone XII	1,90467	1,30E-009	1,49E-007
ACE	clone XII	1,22001	0,0025577	0,032646
ACSL4	clone XII	1,51213	0,00169672	0,0235202
ACTN2	clone XII	6,14374	0,000200904	0,00411318
ADAMTS13	clone XII	0,797039	3,60E-007	1,95E-005
ADPRHL1	clone XII	5,29602	0,000216518	0,00437762
ALPK3 (1 of 2)	clone XII	5,03258	0,00176154	0,0242358
ALPK3 (2 of 2)	clone XII	4,49	0,00195363	0,0263343
ANO1 (1 of 2)	clone XII	1,41167	0,00158354	0,0222503
ANXA6	clone XII	3,58389	0,00145263	0,0207619
AVPI1	clone XII	2,65988	0,00373378	0,0440063
BAG3	clone XII	3,88254	0,00277896	0,0348567
BLVRB	clone XII	-1,06469	0,00280186	0,0350824
BMP10 (2 of 2)	clone XII	5,7565	0,000991652	0,015258
CA6 (1 of 2)	clone XII	4,91299	1,17E-006	5,37E-005
CA6 (2 of 2)	clone XII	4,93474	0,000150373	0,00323204
CASQ1 (1 of 2)	clone XII	-5,09569	5,92E-005	0,00148545
CASQ2 (1 of 2)	clone XII	2,7988	0,00031225	0,00592639
CCR9 (1 of 2)	clone XII	3,61821	0,00142329	0,0204245
CCRN4L (1 of 2)	clone XII	4,21047	0,00179793	0,0246392
CKMT2 (1 of 2)	clone XII	2,55885	0,000207135	0,00421821
COL1A1 (2 of 2)	clone XII	-1,17237	7,04E-005	0,00171469
COX6B1 (1 of 2)	clone XII	3,99961	0,00249279	0,0319907
CPO (1 of 2)	clone XII	3,36757	0,00337791	0,0406752
CRIP2 (2 of 2)	clone XII	3,83058	0,00372596	0,0439342
CSRNP1 (1 of 2)	clone XII	3,29314	0,000344783	0,00643374
CSRP3	clone XII	6,64921	0,000953306	0,014776
CYP27B1	clone XII	2,77632	0,000286586	0,00552035

gene	sample_2	log2(fold_change)	p_value	q_value
DDIT4 (1 of 2)	clone XII	5,13059	3.45E-006	0.000134727
DENND4A (2 of 2)	clone XII	4.02434	1.17E-005	0.000377426
ELL (2 of 2)	clone XII	3.14847	0.000483939	0.00850258
ELTD1	clone XII	2,64973	8.27E-005	0.00196096
ENSGACG00000001073	clone XII	5 75389	0.000355838	0.00660242
ENSGACG0000001311	clone XII	-4 17047	0.0041242	0.0475451
ENSGACG0000001522	clone XII	-4 25436	0.00053952	0.00929369
ENSGACG0000003030	clone XII	5 79286	0.00150825	0.021398
ENSGACG0000005023	clone XII	-4 2235	0.000690882	0.0113689
ENSGACG0000005760	clone XII	2 27393	8 93E-005	0.00209134
ENSGACG0000006109	clone XII	4 58495	0.00389729	0.0455018
ENSGACG0000007447	clone XII	1 29747	0.00173823	0.0239772
ENSGACG0000007661	clone XII	7 83442	9 50E-005	0.00220425
ENSGACG0000008053	clone XII	3 26477	0 000614647	0.0103346
ENSGACG0000008055	clone XII	2 90306	0.0014699	0.0209609
ENSGACG0000008064	clone XII	4 14393	0.000476233	0.00839255
ENSGACG0000008242	clone XII	-3 19841	0.00156927	0.0220915
ENSGACG0000009559	clone XII	3 11869	0.00416257	0.0478894
ENSGACG0000009825	clone XII	1 63884	4 68E-007	2 44E-005
ENSGACG0000010050	clone XII	3 63451	4 18E-011	7 08E-009
ENSGACG00000010126	clone XII	6 79735	0.000132529	0.00290846
ENSGACG0000010476	clone XII	5 40943	2 64E-005	0.000754814
ENSGACG00000010623	clone XII	7 30947	0.000218405	0 00440972
ENSGACG0000011845	clone XII	4 5453	0 000459224	0.00814659
ENSGACG00000011846	clone XII	-3 66598	0.00154755	0.0218473
ENSGACG00000012228	clone XII	4 29271	2 65E-005	0.000756896
ENSGACG00000012245	clone XII	3,18824	0.00422023	0.0484099
ENSGACG00000012464	clone XII	3,54413	4 64E-005	0.00120915
ENSGACG00000012654	clone XII	7,71157	6.99E-005	0.00170479
ENSGACG0000012657	clone XII	6,79796	0.000186833	0.00387162
ENSGACG0000012663	clone XII	4,17545	0.00247655	0.0318205
ENSGACG0000013326	clone XII	2.27882	0.00423595	0.0485501
ENSGACG0000013782	clone XII	5,83863	0.000288207	0.00554683
ENSGACG0000014752	clone XII	-3,47107	0.00123559	0.0182374
ENSGACG00000014852	clone XII	5,28503	0.00333253	0.0402405
ENSGACG00000014960	clone XII	7,82835	1.87E-005	0.000565075
ENSGACG0000015110	clone XII	3,481	0,000352268	0.00654712
ENSGACG0000015175	clone XII	2,63764	0,00373337	0.0440022
ENSGACG0000016298	clone XII	2,67699	1,52E-005	0.000473464
ENSGACG0000016813	clone XII	2,17407	6,35E-006	0.000225556
ENSGACG0000018662	clone XII	5,35673	4,25E-006	0,000160752
ENSGACG0000019744	clone XII	7,05129	0,00017644	0,0036912
ENSGACG0000020727	clone XII	4,31392	6,65E-006	0,000234774
ENTPD4	clone XII	1,07019	0,000659864	0,0109496
FAM102B (2 of 2)	clone XII	3,32537	0,00331975	0,0401188
FERMT2	clone XII	1,32919	0,00331657	0,0400882
FHL1 (1 of 2)	clone XII	2,4312	0,00437216	0,0497423
FHL2 (1 of 2)	clone XII	4,21511	0,00235361	0,0305561
FKBP5	clone XII	5,3293	3,14E-005	0,000872874
FLNC (2 of 2)	clone XII	4,67479	0,000596803	0,0100888
FOSL1	clone XII	6,5125	9,47E-007	4,47E-005
GADD45B (1 of 2)	clone XII	2,20549	0,00386086	0,0451694
GZMM (3 of 5)	clone XII	-2,84743	0	0

	debe	sample 2	log2/fold change)	n value	a voluo
				p_value	q_value
	HSD00AA1(2 of 2)		5,09109	0,00333421	0,0402571
			5,57,597	0,00113414	0,0170196
			5,4552	0,000223452	0,00449394
			5,37510	0,000531145	0,00917649
			5,87281	0,00046516	0,00823314
		cione XII	2,25575	0,000622756	0,0104458
		cione XII	3,32459	0,00134064	0,0194701
	JUNB (1 of 2)	clone XII	2,83099	0,00422861	0,0484831
	JUNB (2 of 2)	clone XII	4,51802	1,85E-005	0,000558641
	KLF13	clone XII	3,26084	0,00269023	0,0339758
	KLF9	clone XII	3,73408	0,000394239	0,00718671
	LDB3	clone XII	3,8337	0,00161777	0,0226343
	LMOD2 (1 of 2)	clone XII	5,25465	0,00299241	0,0369881
	LRCH2	clone XII	1,05445	0,00428167	0,0489486
	LRRC10	clone XII	4,99886	0,00169482	0,0234988
	LRRFIP1 (1 of 2)	clone XII	1,11668	2,50E-006	0,000102155
	MYBPC2 (1 of 2)	clone XII	-3,53404	0,00014781	0,00318601
	MYL1	clone XII	-4,26532	0,000338662	0,00633876
	MYL7	clone XII	7,1239	0,000123576	0,00274436
	MYLK4 (1 of 2)	clone XII	5,95708	0,000782943	0,0125899
	MYLK4 (2 of 2)	clone XII	3,76457	0,000976123	0,015064
	MYLPF (2 of 2)	clone XII	-3,0921	0,0030704	0.0377321
	MYOM1 (1 of 2)	clone XII	4,21035	1.14E-008	9.83E-007
	MYOZ2 (1 of 2)	clone XII	5,02413	9.01E-005	0.00210714
	NR0B2	clone XII	-3,10311	0.00254404	0.0325081
	OBSCN	clone XII	3,1224	0.000261055	0.00511107
	PAFAH1B3	clone XII	-0.571056	2.69E-010	3.68E-008
	PFKFB3	clone XII	3.07407	0.000609832	0.0102663
	PFKM (1 of 2)	clone XII	-4.38725	0.00280291	0.0350929
	PIP5K1C (2 of 2)	clone XII	3 94477	0 000274262	0.00532287
	PLEKHG5	clone XII	2 028	4 29F-006	0.000162043
	PRAM1	clone XII	-2 57198	0.00125151	0.0184265
	PROM2	clone XII	3 10851	0.00253599	0.0324275
	PVRL1 (2 of 2)	clone XII	-4 35336	0.00377867	0.0024275
	RGCC	clone XII	2 17955	0,00077007	0,0444155
	RRAD	clone XII	2,47,555	0,00332402	0,0457505
	SCARE1	clone XII	3,7170	0,00103503	0,0105155
	SEMA3A (2 of 2)	clone XII	3,04034	0,000702390	0,0113270
	SIK1	clone XII	3,047.50	0,000124020	0,0027073
	SI C13A2 (1 of 2)		3,32091	7 415 006	0,00454595
	SLC145		4,39743	7,412-000	0,000257352
	SLC 1A3		3,51114	7,14E-005	0,00173578
	SLC23443		2,00662	1,08E-009	1,26E-007
			0,575455	0,00261144	0,0331865
	SLC4 IA3 (1 OI 2)		5,34339	0,00109175	0,0165003
	SLCBAT (2 OF 2)		7,03531	0,00217029	0,0286471
	SMOX	clone XII	5,81048	2,61E-006	0,00010597
	SMINL2	clone XII	3,57082	0,00185121	0,0252328
	SNKNP/U	clone XII	0,705332	2,72E-006	0,000109908
	SUCS3 (1 of 2)	clone XII	6,20923	1,96E-007	1,15E-005
	SOCS3 (2 of 2)	clone XII	4,52403	7,45E-005	0,00179809
	SORBS2	clone XII	4,05282	0,00120357	0,0178536
	SYNPO2L (2 of 2)	clone XII	6,2532	0,000135171	0,00295699
•	TCAP	clone XII	4 51621	774E-005	0.00185575

gene	sample_2	log2(fold_change)	p_value	q_value
THBS1 (2 of 2)	clone XII	2,7921	0,00139455	0,0200972
TJP1 (1 of 2)	clone XII	2,10649	0,00335018	0,0404128
TNNC1	clone XII	8,53184	2,09E-006	8,77E-005
TNNC2 (1 of 2)	clone XII	-3,43356	0,00206096	0,0274915
TNNI2 (1 of 5)	clone XII	-4,43371	0,000839432	0,0133171
TNNI2 (3 of 5)	clone XII	-4,21155	0,00032296	0,00609449
TNNT2 (1 of 2)	clone XII	7,51055	5,15E-005	0,00132201
TPM2	clone XII	-1,23705	4,44E-016	2,06E-013
UROS	clone XII	-1,20225	0,00202598	0,0271208
ZC3HAV1	clone XII	-0,707299	0,00264566	0,0335286

Supplementary table S.2.3 Cufflinks output, list of differentially expressed genes in gill tissue of three-spined sticklebacks. Differentially expressed is defined by comparison to uninfected controls. The term "gene" is the name for a specific gene as taken from the *G. aculeatus* reference genome, "sample_2" is the infection treatment group, log2(fold change) displays the transformed fold change in "sample_2" compared to control, p value and q value are given for each test (only significant differences shown).

gene	sample_2	log2(fold_change)	p_value	q_value
ACE	clone I	1,1921	6,35E-006	0,00022556
ADPRHL1	clone I	3,4272	0,0039553	0,0460285
AOC2	clone I	1,56223	0,0019519	0,0263151
ARRDC2	clone I	2,45006	1,32E-007	8,25E-006
ASL	clone I	-0,635794	0,0029484	0,0365495
BTBD10 (1 of 2)	clone I	-0,3405	0,0013549	0,0196386
C4A	clone I	0,753185	0,0013315	0,0193631
CANT1 (1 of 2)	clone I	-0,659822	0,0032816	0,0397541
CASP3 (4 of 4)	clone I	-0,73709	0,0001404	0,00305316
CCR9 (1 of 2)	clone I	1,47913	0,0003232	0,00609843
CDCP1 (1 of 3), CDCP1 (3 of 3)	clone I	-0,897406	0,0035536	0,0423252
CEBPB	clone I	1,90909	1,93E-005	0,00057973
CEBPD	clone I	1,52203	0,0014414	0,0206331
CKMT1A	clone I	0,96786	0,0010129	0,0155223
COL11A1 (2 of 2)	clone I	1,83854	0,0012542	0,0184586
COL1A1 (2 of 2)	clone I	0,701278	0,001486	0,0211432
CYP1B1	clone I	1,29966	0,0037904	0,0445283
DDIT4 (1 of 2)	clone I	3,48533	2,11E-011	3,84E-009
DIO3	clone I	2,30949	0,0024666	0,0317198
DYNLL1	clone I	-0,742202	1,82E-005	0,00055031
EHF	clone I	-0,774701	0,0001261	0,00279071
EIF4G2 (1 of 2)	clone I	0,396751	0,0036589	0,0433112
ENSGACG0000000208	clone I	2,99665	0,0006386	0,0106607
ENSGACG0000000614	clone I	2,07415	8,88E-016	3,93E-013
ENSGACG0000000849	clone I	3,19785	0,0007687	0,0124025
ENSGACG0000001127	clone I	1,80E+308	4,47E-006	0,00016756
ENSGACG0000001198	clone I	4,37351	0,0013312	0,0193595
ENSGACG0000001671	clone I	-2,99591	0,0004994	0,00872448
ENSGACG0000001749	clone I	2,91183	0,0001453	0,00314077
ENSGACG0000001763	clone I	3,13646	1,34E-006	6,00E-005
ENSGACG0000002902	clone I	3,30513	9,37E-007	4,43E-005
ENSGACG0000002933	clone I	3,55921	5,28E-008	3,72E-006
ENSGACG0000002955	clone I	3,71769	0	0
ENSGACG0000003003	clone I	3,44935	2,13E-009	2,28E-007
ENSGACG0000003420	clone I	-1,32249	0,0009942	0,0152893
ENSGACG0000003503	clone I	-2,25998	2,00E-005	0,00059715
ENSGACG0000003612,STK35 (1 of 2)	clone 1	1,61227	5,53E-005	0,00140301
ENSGACG0000004079	clone I	3,52026	2,40E-006	9,88E-005
ENSGACG0000004200	clone I	3,87245	1,46E-008	1,22E-006
ENSGACG0000004247	clone I	1,80E+308	0,0004547	0,00807937
ENSGACG0000005904	clone I	1,82422	0,0004744	0,00836619
ENSGACG0000006044	clone I	3,1804	8,68E-006	0,00029408
ENSGACG0000006048	clone I	2,33507	0,0003743	0,00688626

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000006109	clone I	3,44969	1,34E-006	6,01E-005
ENSGACG0000007447	clone I	-1,93989	2,89E-007	1,62E-005
ENSGACG0000007449	clone I	-2,20367	2,41E-005	0,00069822
ENSGACG0000007454	clone I	-1,46359	0,0028336	0,0354025
ENSGACG0000007661	clone I	3,90263	1.23E-007	7.75E-006
ENSGACG0000008353	clone I	1.60309	0.0012893	0.0188717
ENSGACG0000009409	clone I	2,56142	0.0007044	0.0115523
ENSGACG0000009417	clone I	1.5094	0.0014299	0.0204997
ENSGACG0000010050	clone I	1 44926	7 10E-006	0.00024826
ENSGACG00000010476	clone I	3,28382	6 72E-011	1 08E-008
ENSGACG0000010501	clone I	-1 13185	1.60E-006	6 99E-005
ENSGACG0000010623	clone I	7 62581	1 24E-009	1 42E-007
ENSGACG0000011767	clone I	2 98067	0 0030003	0.0464266
ENSGACG0000012654	clone I	1 80E+308	1 31 E-006	5,005,005
ENSGACG0000012657	clone I	6 35163	2 55E-000	2,50E-005
ENSGACG0000012962	clone I	5 7337	5.02E.005	0.00120282
ENSGACG0000013327	clone I	2,0605	5,022-005	0,00129302
ENSGACG0000014948	clone l	5,9003	1 705 000	1 97E 007
ENSGACG0000015897	clone I	0,92049	1,702-009	1,072-007
ENSGACG0000016379	cione l	-0,400343	0.0015657	0 0000500
ENSGACG0000017093	clone I	0.574076	0,0013657	0,0220526
ENSGACG0000017095	cione I	0,574976	0,0014511	0,020743
ENSGACG0000018557 ENSGACG0000	cione i	5,07397	0,0001475	0,00318105
0018560	clone I	0 700344	4 78E-008	3 41E 006
ENSGACG0000018802	clone I	1 02049	4,70L-000	0,00052206
ENSGACG0000018840	clone I	2 13567	1,75E-003	4 225 005
ENSGACG0000018993	clone I	2,15507	9,122-007	4,32E-003
ENSGACG0000019023	clone l	-1,40000	0,0005551	0,00950967
ENSGACG00000190252	cione i	0,453711	0,0004694	0,00829426
ENSGACG0000019202		1,01014	0,0025604	0,0326731
ENSCACC0000019744		1,21309	0,0004952	0,00866407
ENSCACC00000019952		1,52714	0,0029961	0,0370231
ENSGACG0000020181		2,47328	3,48E-006	0,00013543
		2,33056	2,60E-006	0,00010583
	cione i	0,405147	0,0007548	0,0122171
	cione i	-0,411225	0,001256	0,0184807
	cione i	-0,595993	0,0003122	0,00592568
	cione i	0,955827	0,0025933	0,0330062
	cione i	4,09051	8,91E-012	1,78E-009
	cione i	1,41296	2,37E-007	1,36E-005
	cione i	-1,33523	0,0041212	0,0475193
	clone I	1,28745	0,0004489	0,00799541
	clone I	-0,779088	5,02E-005	0,00129381
	clone I	7,07117	5,00E-006	0,00018451
	clone I	-0,515671	0,0037348	0,0440147
KLF13	clone I	1,80E+308	0,0003868	0,00707433
KLF9	clone I	2,76989	9,27E-007	4,39E-005
MYBPC1	clone I	0,488438	2,61E-005	0,00074664
MYL/	clone I	7,97234	2,87E-010	3,91E-008
MYOM1 (1 of 2)	clone I	0,958314	0,0016399	0,0228865
NCOA7 (2 of 2)	clone I	-1,51921	0,0010537	0,0160297
NDUFS8 (2 of 2)	clone I	-0,314304	1,67E-005	0,00051148
NEB	clone I	0,579602	0,0002232	0,00448927
NFKBIA (1 of 2)	clone I	1,3429	0,000867	0,0136703

gene	sam	ple_2	log2(fold_change)	p_value	q_value
NR1D2 (2 of 2)	clone	1	2,57249	5,92E-009	5,57E-007
PAQR5	clone	1	-0,621558	9,69E-005	0,00224123
PCTP	clone	1	-0,490294	0,0001559	0,00332977
PDGFRA	clone	1	1,0041	0,0006473	0,0107791
PIK3R1 (1 of 2)	clone	1	1,22818	0,0001446	0,00312788
PNISR	clone	1	0,665106	0,0008837	0,0138853
PPP1R15B	clone	1	1,46665	0,0005836	0,00990473
RGS13 (2 of 2)	clone	1	1,37077	0,0041918	0,0481519
SELE	clone	1	1,76081	0,0008449	0,0133884
SLC25A43	clone	1	0,915771	2,02E-005	0,00060263
SLC7A8	clone	1	0,837094	0,0002611	0,00511129
SLC8A1 (2 of 2)	clone	1	1,80E+308	0,0002751	0,00533715
SLCO2A1	clone	1	1,43784	0,003383	0,0407239
SMOX	clone	1	1,71728	2,47E-006	0,00010113
SOCS3 (1 of 2)	clone	1	2,58154	5,22E-008	3,68E-006
SULT1E1	clone	1	-0,374183	0,0004212	0,00758966
SULT6B1	clone	1	-0,314315	2,67E-006	0,00010815
TG	clone	1	2,06179	0,000914	0,0142743
THBS1 (2 of 2)	clone	1	2,42189	1,00E-005	0,00033216
TIPRL	clone	1	-0,370412	0,0009819	0,0151353
TNNC1	clone	1	4,90297	3,81E-007	2,05E-005
TNNT2 (1 of 2)	clone	1	5,24213	2,41E-008	1,89E-006
TSC22D3	clone	1	2,18233	7,18E-006	0,00025055
TUFT1 (2 of 2)	clone	1	0,905713	0,0004328	0,00776063
UBID1 (2 of 2)	clone	1	-0,9526	0,0002083	0,00423736
VWA1 (2 of 2)	clone	1	-0,915985	1,10E-006	5,08E-005
ZFP36	clone	4	1,56034	0,0007207	0,0117672
AADACL2	clone	mix	-2,98837	4,28E-005	0,00113186
AARSD1	clone	mix	-0,59341	0,002518	0,0322484
AASS	clone	mix	1,3189	0,0023446	0,030466
ABCA1 (1 of 2)	clone	mix	1,52269	0,0006071	0,0102301
ABCA1 (2 of 2)	cione	mix	1,30216	0,0019408	0,0262009
ABI3BP	clone	mix	2,08093	4,43E-007	2,32E-005
ABL2	cione	mix	1,8/0/5	1,78E-011	3,30E-009
ABR	cione	mix	1,75035	2,50E-007	1,42E-005
ACAPT	cione	mix	0,958463	5,40E-006	0,00019669
ACE	cione	mix	2,25916	5,63E-009	5,34E-007
ACIN I	cione	mix	1,25957	0,0013703	0,0198171
	cione	mix	-1,40044	2,88E-008	2,21E-006
ACSL4	cione	mix	1,25529	3,272-007	1,79E-005
	cione	mix	2,0432	3,365-005	0,00097342
	cione	mix	1,44232	0,0016249	0,0249441
ADAMS (1 of 2)	cione	mix	1,95255	2,055,006	0,0214310
ADAMIS (1 01 2)	cione	mix	2,90113	3,03L-000	0,00012121
ADAMTS15 (2 of 2)	clone	mix	2 07367	0,0042072	0,0409901
ADAMTS2	clone	mix	2,07307	0,0021221	0,0201433
	clone	mix	1,0730	0,0003037	0.0165317
$\Delta EBP1 (2 \text{ of } 2)$	clone	mix	1 7704	2 36E-006	0,0103317
	cione	miy	-1 25217	0 0007667	0.0122764
ALDIZ (I UI Z), NDUFAS	cione	miy	-1,20017	0.001211	0.0123/04
AK1	cione	miy	-0 8311/0	0.001660	0.0191209
ΔΚΔΡ11	clone	mix	1 82062	1 /2 -005	0,023212
	CIOTIE	THA	1,02903	1,422-005	0,00044010

gene	sample_2	log2(fold_change)	p_value	q_value
AKAP13 (1 of 2)	clone mix	1,42365	0,0021055	0,0279672
AKAP13 (2 of 2)	clone mix	1,1726	0,0039878	0,046319
AKAP9	clone mix	1,23942	0,0017438	0,0240392
ALDH18A1 (1 of 2)	clone mix	0,66589	7,56E-006	0,00026166
ALDH1A2	clone mix	1,72314	1,82E-005	0,00055187
ALDH3B2	clone mix	1,45525	0,0003354	0,00628831
AMD1	clone mix	1,66411	0,0001273	0,00281343
AMPD3 (1 of 2)	clone mix	1,29514	1,34E-005	0,0004237
ANAPC16	clone mix	-1,53253	0,000208	0,00423315
ANGPTL2 (1 of 2)	clone mix	1,9765	0,0001468	0,00316686
ANGPTL2 (2 of 2)	clone mix	1,90234	0,001554	0,0219183
ANK3 (2 of 2)	clone mix	1,20681	0,0007019	0,0115186
ANKIB1	clone mix	1,84547	0,0001712	0,00360075
ANKRD11	clone mix	1,51751	0,0003192	0,00603549
ANO5 (2 of 2)	clone mix	1,52788	0,0005233	0,00906498
ANXA9	clone mix	-0,764217	5,63E-005	0,00142251
AOC2	clone mix	1,4928	0,00195	0,0262965
AP3D1	clone mix	1,21533	0,0039849	0,0462933
APPL2	clone mix	1,38412	0,0030678	0,0377067
ARHGAP21 (1 of 2)	clone mix	2,23518	3,95E-007	2,11E-005
ARHGAP24	clone mix	1,66713	0,0010807	0,0163628
ARHGAP29 (1 of 2)	clone mix	2,11859	5,56E-006	0,00020156
ARHGAP31	clone mix	2,10044	0,0012889	0,018867
ARHGAP40	clone mix	1,7626	0,0019038	0,0258016
ARHGAP6 (1 of 2)	clone mix	2,12721	0,0005658	0,00965918
ARHGEF11	clone mix	1,51459	0,0004812	0,00846367
ARHGEF17	clone mix	1,91161	0,0002196	0,00442999
ARHGEF26	clone mix	1,92709	0,0001727	0,00362646
ARID3A	clone mix	1,96505	3,86E-005	0,00103608
ARMC9	clone mix	1,64028	0,0004663	0,00825012
ARPC3	clone mix	-1,56115	0,0008984	0,0140731
ARPC4 (1 of 2)	clone mix	-1,48982	0,0008356	0,0132671
ARRDC2	clone mix	3,04941	2,11E-009	2,27E-007
ARVCF (1 of 2)	clone mix	1,84461	0,0002084	0,00424003
ASB2 (2 of 2)	clone mix	2,09231	0,0013435	0,0195048
ASB5	clone mix	2,09855	0,0001984	0,00407092
ASH1L	clone mix	1,1791	0,0030482	0,0375235
ASL	clone mix	-0,811455	5,28E-005	0,00134837
ASPN	clone mix	1,93933	0,0004179	0,00753915
ATG12	clone mix	-1,64264	0,0008327	0,0132286
ATP11C (2 of 2)	clone mix	1,25457	0,0016847	0,0233861
ATP13A3 (2 of 2)	clone mix	1,50644	0,0006143	0,0103301
ATP2A3	clone mix	1,24846	9,57E-007	4,51E-005
ATP2B4	clone mix	1,27099	0,0011649	0,0173922
ATP5J (1 of 2)	clone mix	-1,5082	0,0002848	0,00549194
ATP50	clone mix	-1,52446	0,0042898	0,0490203
ATP8A1	clone mix	1,4227	0,0021857	0,0288037
B3GNT2	clone mix	2,32016	1.19E-005	0.00038341
BAG6 (1 of 2)	clone mix	1.0888	6,30E-006	0,00022415
BANF1	clone mix	-1,26732	0,0012015	0,0178286
BAZ2B	clone mix	1.67987	0,0003591	0,00665285
BCKDK	clone mix	0.590005	0.0030646	0.0376763
BCL9	clone mix	1.24393	0,0030697	0,0377251

gene	sample 2	log2(fold change)	p value	a value
BCB (2 of 2)	clone mix	2.80207	1 27E-008	1.08E-006
BDH1	clone mix	1,22457	0.0025397	0.0324632
BICC1	clone mix	3.324	0.001689	0.023434
BIBC6	clone mix	0.978342	0.0005279	0.00912954
BLOCISI	clone mix	-1 53113	0,0003052	0.00581429
BLVBB	clone mix	-0 772047	0,0000002	0.01/1707
BMP1 (1 of 2)	clone mix	1 86276	3 08E 008	2245 006
BMPP2(2 of 2)	clone mix	2 2/272	3,00L-008	2,341-000
BNIP1(2 of 2)	clone mix	-1 32520	0,0010102	0,0133029
	clone mix	1 0292	0,000901	0,014100
RDNT1	clone mix	-1,9202	0,0022008	0,0209595
		-0,000932	2,615,005	0,0111102
$ \begin{array}{c} BRDD(1 0 2) \\ BRDD(2 0 0 2) \\ \end{array} $		0.547069	3,012-005	0,00097963
		0,54/900	0,0030335	0,0373606
		1,1001	0,0031591	0,0305022
		1,32313	0,0031814	0,038/9/3
C140143 (2 012)	cione mix	2,07717	0,0001781	0,00372116
	cione mix	1,2/802	0,0006186	0,010388
	cione mix	-0,891323	0,001932	0,0261065
	cione mix	-1,5594	0,0003653	0,00674895
C190rf42	cione mix	-1,91338	0,0003903	0,00/12/39
C19ort53	clone mix	-1,38243	0,003/248	0,0439236
	clone mix	-1,514//	0,003372	0,040617
C1orf116 (2 of 2)	clone mix	1,41683	0,0014907	0,0211973
C1orf31	clone mix	-1,38673	5,90E-005	0,00148057
C1ort51	clone mix	1,28825	0,0027556	0,0346259
C20orf194	clone mix	1,52852	0,0003874	0,00708348
C2ort40	clone mix	-1,51566	0,0041296	0,047595
C3 (6 of 8)	clone mix	1,25104	0,002269	0,029674
C3 (8 of 8)	clone mix	1,32199	0,0024086	0,0311274
C4A	clone mix	1,35585	0	0
C5orf43	clone mix	-1,19142	0,0021476	0,0284117
C6orf162	clone mix	-1,74666	0,0006626	0,0109863
C7 (2 of 2)	clone mix	1,59683	0,0001389	0,00302433
C7orf58	clone mix	1,37379	0,002064	0,027523
C7orf59	clone mix	-1,60346	3,44E-007	1,87E-005
C8orf59	clone mix	-1,85349	2,33E-006	9,64E-005
CABP5 (1 of 2)	clone mix	-5,73117	7,02E-007	3,46E-005
CAD	clone mix	1,05303	0,0025778	0,0328518
CALB2 (1 of 2)	clone mix	1,32122	0,0007421	0,0120503
CAMK1D (2 of 2)	clone mix	1,87079	0,0009895	0,0152318
CAMSAP2 (2 of 2)	clone mix	1,55046	0,0004149	0,00749462
CBX7 (2 of 2)	clone mix	1,49522	3,13E-005	0,0008689
CCBL1	clone mix	-0,671809	0,0031114	0,0381177
CCDC136 (1 of 2)	clone mix	3,12127	0,0017312	0,0239002
CCDC142	clone mix	1,15358	0,003731	0,0439816
CCDC72	clone mix	-1,58516	0,000122	0,00271532
CCDC80	clone mix	1,69627	0,000137	0,00298962
CCDC88C	clone mix	1,9504	0,0002248	0,00451625
CCNL1	clone mix	1,81294	7,22E-006	0,00025158
CCR9 (1 of 2)	clone mix	2,04877	5,43E-006	0,00019772
CCRN4L (1 of 2)	clone mix	2,80429	0,0002419	0,00479778
CD44	clone mix	1,62775	0,0001367	0,00298531
CDC14A (1 of 2)	clone mix	1 45073	0.0021572	0.0285113

1000000000000	gene	sample 2	log2(fold change)	p value	a value
	Jone	clone mix	1 32674	0.0015615	0.0220029
		clone mix	1 18225	0.0007697	0.0124155
		clone mix	1,10220	0.0013827	0.0124133
CDH2 (1 of 2)		clone mix	1,69706	0.0019493	0.0262896
		clone mix	2 74703	4 16E-005	0,0202030
CERDR		clone mix	2,74703	4,10E-003	1.625.009
		clone mix	1 75518	0.255.005	0.00215477
		clone mix	2,73310	9,232-003	0,00215477
CERDI		clone mix	-3,03043	1 94E 005	0,0145641
CEP250		clone mix	1 27/05	1,042-003	0,00033071
CETNO		clone mix	1,07420	0,0003101	0,00009202
		clone mix	-1,4904	0,0015079	0,0213943
CGN(1012)		cione mix	1,00290	0,0030707	0,0377352
		clone mix	1,21401	0,0021740	0,0200097
		clone mix	1,03709	0,0015661	0,0223008
СНОЗ		clone mix	1,29000	0,0022029	0,0296077
		clone mix	1,0929	0,001017	0,0155752
		cione mix	1,20302	0,0024108	0,0311509
		cione mix	1,33520	0,0008148	0,0129988
		cione mix	1,10109	5,19E-005	0,00132967
		cione mix	1,910/0	0,0027501	0,0345705
		cione mix	0,859/19	0,0002005	0,00410642
		cione mix	-1,14907	0,0039682	0,046144
		cione mix	1,1910	0,0033414	0,0403279
		cione mix	2,00354	0,0001957	0,00402452
		cione mix	3,13319	8,03E-007	3,88E-005
CKADE		cione mix	-1,07269	0,0002346	0,00467989
		cione mix	1,10485	0,0037318	0,0439883
CLASP1 (1 of 2)		cione mix	-1,354/4	0,0042537	0,0487036
CLASPI(1012)		cione mix	2,03853	2,26E-005	0,00066044
CLASF2 (2012)		cione mix	1,14394	0,0038008	0,0446195
		cione mix	-1,14499	0,0026332	0,0334035
		clone mix	2,000	3,24E-005	0,00089487
		clone mix	1,00031	8,60E-009	7,72E-007
CMIP		clone mix	1,31004	0,0025045	0,032106
CNOT1		clone mix	1,20909	0,0022725	0,0297099
CNOTE		clone mix	1,03033	0,23E-007	3,972-005
CNTN1 (1 of 2)		clone mix	1,24000	0,0036592	0,0451554
$CO[11\Delta 1 (2 of 2)]$		clone mix	2,52034	0,0002009	4.525.007
COL 11 A2		clone mix	2,90907	4,002-009	4,522-007
COL 12A1 (1 of 2)		clone mix	1 95752	6.235.006	0,00249720
COL 12A1 (2 of 2)		clone mix	2 02021	0,23E-000	1 73E 006
COL 15A1 (2 of 2)		clone mix	2 07771	2,102-000	0.0170612
COL 16A1		clone mix	1 65505	4 13 5 005	0,0170012
COL 17A1 (1 of 2)		clone mix	1 1/789	4,132-003	0,00103040
COI 18A1 (2 of 2)		clone mix	1 30338	0,0033331	0,0403073
COL 1A1 (2 of 2)		clone mix	1 37/03	0,0014001	0,0202024
COL 1A2		clone mix	1 0136	0.0001348	0.00295102
COL 21A1		clone mix	1 53154	0,0001340	0,00233102
COL22A1		clone mix	2 56056	0.0001851	0.0038/105
COL24A1		clone mix	1 27521	0.0001001	0.0202021
COL 2A1 (1 of 2)		clone mix	1,27301	2 90E-005	0,0292921
COL4A1		clone mix	2 14350	3.84E-007	2 06E-005
		3.0.10 min	2,11000	3,012 007	2,002 000

gene	sample_2	log2(fold_change)	p_value	q_value
COL4A2	clone mix	1,84043	0,0004332	0,00776733
COL5A1	clone mix	1,9487	3,05E-006	0,00012111
COL5A2 (2 of 2)	clone mix	1,78346	0,0001601	0,00340433
COL5A3 (2 of 2)	clone mix	1,22147	0,0036237	0,0429831
COL6A1	clone mix	2,11634	6,00E-007	3,02E-005
COL6A2 (1 of 2)	clone mix	1,7478	2,04E-005	0,00060588
COL6A2 (2 of 2)	clone mix	1,62342	9,09E-005	0,00212345
COL6A3	clone mix	1,90043	1,39E-006	6,20E-005
COL6A6	clone mix	2,08236	1,32E-007	8,23E-006
COL7A1	clone mix	1,89201	8,70E-005	0,00204626
COL8A1 (1 of 2)	clone mix	1,76592	9,42E-005	0,00218682
COL8A2	clone mix	2,43965	4,58E-006	0,00017115
COLEC12 (2 of 2)	clone mix	1,94117	1,45E-005	0,00045485
COQ5	clone mix	-0,779522	0,000308	0,00585994
CORT	clone mix	-1,35618	0,0011724	0,0174825
COX7A2L	clone mix	-1,29134	0,001165	0,0173934
COX7C	clone mix	-2,01274	6,34E-007	3,17E-005
CREM	clone mix	1,57504	0,0009259	0,0144277
CRIPT	clone mix	-2,09269	6,43E-008	4,42E-006
CRLF1 (1 of 2)	clone mix	1,48172	0,0019984	0,0268244
CSNK1E (2 of 2)	clone mix	0,968664	3,22E-005	0,00089026
CSRNP1 (1 of 2)	clone mix	2,24237	5,96E-005	0,00149236
CSTA	clone mix	-1,88151	8,35E-006	0,00028449
CTBS	clone mix	-0,866002	9,03E-005	0,00211097
CTDSP1 (2 of 2)	clone mix	-0,853645	0,0003707	0,00683144
CXCL12 (2 of 2)	clone mix	1,0789	9,29E-006	0,00031148
CYP1B1	clone mix	2,72572	1,47E-008	1,23E-006
CYP26C1	clone mix	1,00656	0,0010326	0,0157686
CYP8B1	clone mix	1,47458	0,0022543	0,0295232
CYR61 (1 of 2)	clone mix	1,67213	7,69E-005	0,00184566
CYSLTR2	clone mix	1,51573	0,0025911	0,0329859
CYTH1 (1 of 2)	clone mix	1,20359	0,0029611	0,0366755
DAAM2	clone mix	1,59988	0,000434	0,00777921
DAB2	clone mix	2,01014	1,47E-008	1,23E-006
DAB2IP (1 of 2)	clone mix	1,32247	0,0012189	0,0180352
DAPK3	clone mix	1,28045	0,0043102	0,0492014
DAXX	clone mix	1,22873	0,0014052	0,0202195
DBI	clone mix	-1,55595	4,17E-011	7,06E-009
DCTN1 (2 of 2)	clone mix	0,695912	7,00E-007	3,45E-005
DCUN1D1	clone mix	-1,16085	0,0038463	0,0450365
DDIT4 (1 of 2)	clone mix	4,05636	1,98E-012	4,62E-010
DDX17 (1 of 3)	clone mix	1,34867	0,0020182	0,0270368
DENND2A (1 of 2)	clone mix	2,22538	0,0007434	0,0120666
DENND4A (2 of 2)	clone mix	4,69472	2,58E-011	4,59E-009
DHRS13 (1 of 3)	clone mix	-1,75812	5,00E-009	4,82E-007
DHTKD1	clone mix	1,09472	0,0019956	0,0267956
DIO3	clone mix	3,56329	1,02E-006	4,78E-005
DIP2B (1 of 2)	clone mix	1,64535	3,60E-005	0,0009774
DISP1	clone mix	1,49972	0,0014143	0,0203225
DLC1	clone mix	1,68455	0,0001073	0,00243964
DMD	clone mix	1,73201	2,65E-005	0,00075568
DMXL1	clone mix	1,33795	0,0006663	0,0110367
DMXL2	clone mix	1,30181	0,0019628	0,0264377

gene	sample 2	log2(fold change)	p_value	q_value
DNAJC19	clone mix	-1,43261	0,0003223	0,00608485
DOCK10	clone mix	1,84711	4,62E-005	0,00120544
DOCK7	clone mix	1.56731	1.96E-009	2.12E-007
DOCK9 (1 of 2)	clone mix	1,44453	0.0002278	0.00456492
DOCK9 (2 of 2)	clone mix	1,45696	0.0006764	0.0111734
	clone mix	-1.04709	0.0015041	0.0213506
	clone mix	-0.800988	1.38E-010	2 04E-008
DPV30	clone mix	-1 78084	6.24E-005	0.00155013
DPVSI3	clone mix	2 11697	1 74E-005	0.00053074
	clone mix	1 4832	0.0014108	0.0202821
	clone mix	1 45994	6.00E-005	0.0015017
	clone mix	1 92831	1.03E-005	0.00034032
	clone mix	1,52001	9.64E-006	0.0003213
	clone mix	2 71669	1 59E-007	9.66E-006
	clone mix	2,71003	0.0020838	0.0277343
	clone mix	-2 20238	0,0020000	0,0277040
DYSE	clone mix	1 08601	0 000105	0 00230565
	clone mix	2 02100	2.07E-006	9 70E 005
EBF3		2,92109	2,07 E-000	0,700-000
ECMI	cione mix	1,54205	0,0029042	0,0301131
		2,05540	0,0004536	0,00000777
	cione mix	2,07092	0,49E-005	0,00160279
		1,40910	0,001116	0,010/969
EGFR (1 of 2)	cione mix	1,38805	0,0003842	0,00703663
	cione mix	1,48617	0,0004036	0,00732797
	cione mix	2,00954	5,40E-006	0,00019675
	cione mix	1,0902	0,0024091	0,0311335
EIF4G1 (2 01 2),FAM131A	cione mix	1,218/2	0,0014755	0,021025
EIF4G3	cione mix	1,40106	0,0009831	0,0151505
	cione mix	1,25907	0,0034718	0,0415523
ELL (2 of 2)	cione mix	1,97803	0,0019199	0,0259727
	cione mix	0,08472	0,004177	0,0480197
	cione mix	1,4065	0,0003478	0,00647922
ELMOD2	cione mix	-1,06397	8,26E-010	9,94E-008
	cione mix	1,35819	0,0014774	0,0210465
	cione mix	1,44294	0,0003236	0,006103/2
ENSGACG0000000026	clone mix	2,28847	2,48E-005	0,000/162/
ENSGACG0000000063	cione mix	1,852/3	9,41E-005	0,00218509
ENSGACG0000000208	cione mix	3,57764	2,01E-005	0,00059826
ENSGACG0000000234,SULF2 (2 0f 2)	cione mix	1,14983	0,0037429	0,0440886
ENSGACG00000002/2	clone mix	1,35607	0,0010944	0,0165313
ENSGACG0000000300	clone mix	1,/1123	0,000683	0,0112614
ENSGACG0000000336	clone mix	-0,723854	7,66E-005	0,00183993
ENSGACG0000000350	clone mix	-0,786931	0,0005159	0,00895946
ENSGACG0000000424	clone mix	-1,88833	0,0001249	0,00276941
ENSGACG0000000454	clone mix	-1,02347	8,17E-005	0,00194183
ENSGACG0000000849	clone mix	3,75332	5,26E-005	0,00134414
ENSGACG0000000989	clone mix	1,28943	0,000996	0,0153126
ENSGACG0000001072	clone mix	-1,25306	0,0015349	0,0217041
ENSGACG0000001172	clone mix	2,6896	0,0002327	0,00464711
ENSGACG0000001189	clone mix	-1,38062	0,0006639	0,0110042
ENSGACG0000001192	clone mix	1,21734	0,0033449	0,0403607
ENSGACG0000001319	clone mix	-1,46014	0,0003227	0,006091
ENSGACG0000001322	clone mix	-1,24313	0,0012484	0,0183904

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000001373	clone mix	1,54372	0,0021236	0,028159
ENSGACG0000001460	clone mix	-1,68906	9,95E-006	0,0003302
ENSGACG0000001482	clone mix	-1,80E+308	0,0029358	0,0364263
ENSGACG0000001633	clone mix	-1,46904	0,0003363	0,00630341
ENSGACG0000001671	clone mix	-5,05472	8,61E-005	0,00202884
ENSGACG0000001749	clone mix	3,5425	1,90E-006	8,07E-005
ENSGACG0000001804	clone mix	-1,39224	0,0012648	0,0185834
ENSGACG0000001847	clone mix	-2,70142	1,25E-005	0,00039955
ENSGACG0000001919	clone mix	1,41213	0,0002523	0,00497016
ENSGACG0000002069	clone mix	-1,18715	9.14E-006	0.00030728
ENSGACG0000002123	clone mix	1,16484	0,0039318	0,0458199
ENSGACG0000002145	clone mix	2,3253	9,80E-008	6,36E-006
ENSGACG0000002153	clone mix	1,84736	0,0007793	0,0125423
ENSGACG0000002176	clone mix	1,2873	0,0030517	0.0375576
ENSGACG0000002243	clone mix	1,18819	1,24E-005	0,00039679
ENSGACG0000002354	clone mix	1,20796	2.74E-005	0.00077838
ENSGACG0000002748	clone mix	-1,18438	0.0020478	0.0273518
ENSGACG0000002918	clone mix	-4,25874	3.99E-006	0.00015215
ENSGACG0000002933	clone mix	1,80582	0.0039765	0.0462178
ENSGACG0000002952	clone mix	1,4924	0.0002654	0.00517984
ENSGACG0000003003	clone mix	1,83449	3.26E-007	1.79E-005
ENSGACG0000003019	clone mix	-1,5608	0.0004137	0.00747783
ENSGACG0000003132	clone mix	2.19703	5.17E-005	0.00132523
ENSGACG0000003234	clone mix	1,42018	0.0025513	0.0325793
ENSGACG0000003241	clone mix	-1.34058	0.0041588	0.0478573
ENSGACG0000003347	clone mix	0,945187	0.0038002	0.0446145
ENSGACG0000003404	clone mix	1,70974	4,46E-005	0.00117156
ENSGACG0000003405	clone mix	1,6694	0.0002859	0.00550988
ENSGACG0000003407	clone mix	1,90396	5.02E-006	0.0001849
ENSGACG0000003464	clone mix	1.09714	0.0027833	0.0348996
ENSGACG0000003503	clone mix	-2,70709	2.34E-007	1.35E-005
ENSGACG0000003835	clone mix	1,16495	0.0036875	0.0435802
ENSGACG0000003971	clone mix	1.986	4.19E-005	0.00111065
ENSGACG0000004060	clone mix	-1,1607	0.00189	0.0256546
ENSGACG0000004079	clone mix	2,18103	0.0007277	0.0118608
ENSGACG0000004139	clone mix	1,23773	0.0011242	0.016898
ENSGACG0000004200	clone mix	2,41456	8,48E-006	0.00028821
ENSGACG0000004211	clone mix	1,56138	0.0018495	0.0252152
ENSGACG0000004248	clone mix	1,15505	0.0040202	0.0466126
ENSGACG0000004599	clone mix	1.80E+308	0.0018689	0.0254236
ENSGACG0000004652	clone mix	-1.49589	0.0025749	0.0328235
ENSGACG0000004694	clone mix	-1.72877	0.0006867	0.0113122
ENSGACG0000004701	clone mix	-1.69121	0.0011055	0.0166689
ENSGACG0000004703	clone mix	-1.81915	0.0001009	0.00231751
ENSGACG0000004731	clone mix	1.01595	0.000272	0.00528624
ENSGACG0000004818	clone mix	-1,49542	0.0003691	0.00680708
ENSGACG0000005133	clone mix	-0.921689	0.0004189	0.00755459
ENSGACG0000005228	clone mix	1.29179	0.0030181	0.0372307
ENSGACG0000005363	clone mix	1,54865	0.0008259	0.0131404
ENSGACG00000005541	clone mix	1.36795	0.0014103	0.0202769
ENSGACG00000005569	clone mix	2,43577	9.19E-006	0.00030871
ENSGACG00000005736 SDC3	clone mix	1,39309	1.07E-005	0.00035122
ENSGACG00000005767	clone mix	1.34352	0.0007385	0.0120034
	0.0.10 HIIA	.,0.002	.,	-,

gene	sample 2	log2(fold change)	p value	a value
ENSGACG0000005903	clone mix	-1,27527	0,0022855	0.029848
ENSGACG0000005904	clone mix	3,14706	1.93E-010	2.75E-008
ENSGACG0000006044	clone mix	2,5535	0,0001872	0,00387762
ENSGACG0000006048	clone mix	1,99105	0,0013807	0.0199361
ENSGACG0000006109	clone mix	2,03798	0,0011755	0.0175199
ENSGACG0000006530	clone mix	1,40026	0,0024209	0,031253
ENSGACG0000006908	clone mix	-2,9515	5,22E-011	8,61E-009
ENSGACG0000006931	clone mix	1,7093	0,0035178	0,041983
ENSGACG0000007329	clone mix	-1,5013	3,11E-015	1,26E-012
ENSGACG0000007447	clone mix	-1,40809	3,01E-005	0,00084281
ENSGACG0000007488	clone mix	3,37052	0,0032	0,0389743
ENSGACG0000007525	clone mix	2,22641	4,93E-006	0,00018202
ENSGACG0000007639	clone mix	1,2305	0,0005639	0,00963287
ENSGACG0000007673	clone mix	1,53829	0,0030153	0,0372052
ENSGACG0000007787	clone mix	1,17001	0,0030749	0,0377758
ENSGACG0000007796	clone mix	-1,25814	0,0013507	0,0195887
ENSGACG0000007854	clone mix	1,80E+308	0,0007251	0,0118264
ENSGACG0000007857	clone mix	-0.709295	0.0005278	0.00912784
ENSGACG0000007958	clone mix	0.591984	0.0003536	0.00656789
ENSGACG0000008205	clone mix	-1.28114	0.000845	0.0133902
ENSGACG0000008258	clone mix	2,17014	8.04E-005	0.00191669
ENSGACG0000008263	clone mix	1,22606	3.49E-005	0.00095409
ENSGACG0000008353	clone mix	2,79539	7.85E-009	7.13E-007
ENSGACG0000008466	clone mix	1.30148	0.0009631	0.0149
ENSGACG0000008485	clone mix	-1.07053	0.0004596	0.00815229
ENSGACG0000008510	clone mix	-1,20121	0,0017352	0,0239431
ENSGACG0000008661,ENSGACG0000		and they	10131000000	0.0.01
0008663	clone mix	1,19891	6,46E-005	0,00159707
ENSGACG0000008777	clone mix	1,6746	0,0012964	0,0189547
ENSGACG0000008819	clone mix	-1,46604	2,24E-006	9,32E-005
ENSGACG0000008820	clone mix	2,18134	0,0006684	0,0110647
ENSGACG0000008828	clone mix	-1,31017	0,0007893	0,0126709
ENSGACG0000009171	clone mix	-1,86502	1,74E-006	7,51E-005
ENSGACG0000009182	clone mix	0,821515	0,0004833	0,00849355
ENSGACG0000009200	clone mix	1,75203	7,98E-007	3,86E-005
ENSGACG0000009229	clone mix	-2,48882	2,22E-008	1,76E-006
ENSGACG0000009326	clone mix	-0,912265	0,0002976	0,00569642
ENSGACG0000009356	clone mix	1,86868	2,54E-005	0,00073013
ENSGACG0000009409	clone mix	-3,04254	5,98E-006	0,00021454
ENSGACG0000009417	clone mix	2,87517	8,55E-008	5,65E-006
ENSGACG0000009596	clone mix	1,33074	0,0004789	0,00842987
ENSGACG0000009715	clone mix	1,17048	0,0014491	0,0207207
ENSGACG0000009863	clone mix	2,12619	0,0002162	0,0043722
ENSGACG0000009946	clone mix	-1,63191	7,79E-005	0,0018659
ENSGACG00000010018	clone mix	1,95164	0,0002444	0,00483985
ENSGACG0000010050	clone mix	2,67786	7,24E-013	1,86E-010
ENSGACG0000010154	clone mix	-1,57825	0,0022428	0,0294027
ENSGACG0000010162	clone mix	1,522	0,0009343	0,0145353
ENSGACG00000010374	clone mix	-1,18904	0,0030734	0,0377616
ENSGACG00000010457	clone mix	-2,10177	4,66E-007	2,43E-005
ENSGACG0000010476	clone mix	4,33743	0	0
ENSGACG00000010501	clone mix	-1,34792	3,12E-009	3,19E-007
ENSGACG0000010548	clone mix	1,20325	0,0028774	0,0358387

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000010688	clone mix	-0,791243	0,0036293	0,0430358
ENSGACG00000010749	clone mix	0,849583	0,0008352	0,0132613
ENSGACG00000010785	clone mix	-1,23175	0,000308	0,0058594
ENSGACG00000010905	clone mix	1,78136	0,0003582	0,00663963
ENSGACG0000010910	clone mix	3,45773	0,0002102	0,00427
ENSGACG00000011085	clone mix	1,40325	0,0029993	0,0370558
ENSGACG00000011111	clone mix	1,42744	0,0004054	0,0073543
ENSGACG00000011143	clone mix	1,7385	0,0006174	0,0103715
ENSGACG00000011165	clone mix	1,21107	0,0004797	0,00844171
ENSGACG00000011219	clone mix	-1,3095	0,0021986	0,0289373
ENSGACG00000011342	clone mix	0,913561	0,0040729	0,0470787
ENSGACG00000012174	clone mix	-2,2784	0,0005348	0,00922898
ENSGACG00000012247	clone mix	-1,34699	0,002937	0,0364383
ENSGACG00000012285	clone mix	2,00731	9,14E-005	0,00213412
ENSGACG00000012290	clone mix	2,5985	1,11E-007	7,09E-006
ENSGACG00000012340	clone mix	1,4346	0,0021623	0,0285647
ENSGACG0000012348	clone mix	-1,11961	0,0035734	0,0425099
ENSGACG0000012358	clone mix	2,45907	0,003922	0,0457317
ENSGACG00000012434	clone mix	1,37119	0,0008132	0,0129787
ENSGACG0000012548	clone mix	-1,82428	0,0005021	0,00876251
ENSGACG00000012556	clone mix	-1,52945	0,0003872	0,00708081
ENSGACG00000012592	clone mix	2,16546	1,67E-006	7,25E-005
ENSGACG00000012655	clone mix	1,02541	1,25E-005	0,00040031
ENSGACG00000012835	clone mix	1,7424	0,0004452	0,00794105
ENSGACG00000012912	clone mix	1,24444	0,0026153	0,0332262
ENSGACG00000012954	clone mix	-1,99583	0,0011209	0,0168576
ENSGACG0000013109	clone mix	0,670536	0,0006455	0,0107542
ENSGACG0000013161	clone mix	1,91657	6,83E-006	0,0002401
ENSGACG0000013327	clone mix	2,93684	0,0001402	0,00304868
ENSGACG00000013590	clone mix	-1,15408	0,002033	0,0271925
ENSGACG00000013762	clone mix	1,88156	7,65E-010	9,27E-008
ENSGACG0000013782	clone mix	2,03193	0,0008258	0,0131395
ENSGACG00000013891	clone mix	-2,57409	0,0026503	0,0335742
ENSGACG00000014109	clone mix	1,5978	3,33E-005	0,0009155
ENSGACG00000014131	clone mix	-1,39809	0,0014373	0,020585
ENSGACG00000014494	clone mix	1,47028	0,0005286	0,00913951
ENSGACG00000014579	clone mix	1,77056	0,0008492	0,0134424
ENSGACG00000014599	clone mix	1,63356	6,62E-005	0,00162915
ENSGACG0000014616	clone mix	0,496088	0,0022422	0,0293958
ENSGACG0000014629	clone mix	-0,781649	0,0028267	0,0353332
ENSGACG00000014744	clone mix	-0,42482	0,0042156	0,0483679
ENSGACG00000014774	clone mix	-1,46958	0,0005037	0,00878578
ENSGACG0000015058	clone mix	1,67001	0,004091	0,04/2429
ENSGACG0000015110	clone mix	1,13082	0,0042244	0,0484471
ENSGACG0000015177	clone mix	1,21577	0,0025718	0,0327916
ENSGACG0000015193	clone mix	1,38119	0,002613	0,0332034
ENSGACG0000015196	clone mix	0,880938	0,0025656	0,0327283
ENSGACG00000015718	clone mix	-1,46391	0,0001828	0,00380123
ENSGACG00000015846	clone mix	1,87049	3,13E-005	0,00087065
ENSGACG0000015956	clone mix	2,2688	0,0002088	0,0042456
ENSGACG00000015960	clone mix	3,20456	0,0003268	0,00615466
ENSGACG00000016075	clone mix	1,41675	0,0032807	0,0397455
ENSGACG0000016174	clone mix	2,61135	0,0028941	0,0360107

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG00000016379	clone mix	1,10143	0,0002404	0,00477396
ENSGACG00000016410	clone mix	1,26383	0,0022152	0,0291135
ENSGACG00000016422	clone mix	-1,9554	0,0039155	0,045671
ENSGACG00000016599	clone mix	-1,16004	0,0025838	0,0329144
ENSGACG00000016601	clone mix	2,05377	0,0001569	0,00334778
ENSGACG00000016901	clone mix	1,38676	0,0038727	0,0452799
ENSGACG00000016917	clone mix	2,13714	0,0007529	0,0121919
ENSGACG00000017045	clone mix	1,41113	0,0019758	0,0265813
ENSGACG00000017117	clone mix	2,23161	9,09E-005	0,00212356
ENSGACG00000017174	clone mix	1,39573	0,0021602	0,0285427
ENSGACG00000017278	clone mix	-1,089	0,0038541	0,0451073
ENSGACG00000017622	clone mix	1,44987	0,000337	0,00631358
ENSGACG00000017657	clone mix	-1,18118	0,0023365	0,0303797
ENSGACG00000017894	clone mix	1,76294	6,96E-005	0,00169847
ENSGACG00000017988	clone mix	-2,24129	6,83E-008	4,66E-006
ENSGACG00000017995	clone mix	-2,45774	5,36E-010	6,77E-008
ENSGACG00000018191	clone mix	1,52115	0,000537	0,00925842
ENSGACG00000018216	clone mix	1,20483	0,0023329	0,0303445
ENSGACG00000018380	clone mix	1,6284	0,0032907	0,0398408
ENSGACG00000018802	clone mix	3,00049	1,36E-009	1,54E-007
ENSGACG00000018832	clone mix	2,13146	0,0004639	0,00821494
ENSGACG00000018835	clone mix	1,48412	5,32E-007	2,72E-005
ENSGACG00000018840	clone mix	2,70347	1,47E-010	2,16E-008
ENSGACG00000018866	clone mix	1,6225	0,0010782	0,0163313
ENSGACG00000018954	clone mix	2,78159	0,0012747	0,0186976
ENSGACG00000018993	clone mix	-2,19321	4,37E-007	2,30E-005
ENSGACG00000019088	clone mix	1,62948	0,002848	0,0355455
ENSGACG00000019128	clone mix	1,49302	0,0012901	0,0188815
ENSGACG00000019173	clone mix	1,05771	0,0001847	0,00383513
ENSGACG00000019252	clone mix	1,31496	0,0013217	0,0192503
ENSGACG0000019285	clone mix	2,14907	0,0004728	0,00834292
ENSGACG0000019342	clone mix	2,36635	0,0033131	0,0400553
ENSGACG0000019361	clone mix	1,68073	0,0006436	0,0107284
ENSGACG0000019390	clone mix	-1,20156	0,0001435	0,00310904
ENSGACG00000019470	clone mix	2,24134	0,000185	0,00383962
ENSGACG0000019794	clone mix	-0,922832	0,0028706	0,0357706
ENSGACG0000019819	clone mix	-2,61279	1,77E-008	1,44E-006
ENSGACG0000019899	clone mix	1,38365	0,0033573	0,0404807
ENSGACG0000019921	clone mix	2,78947	2,01E-006	8,50E-005
ENSGACG0000019933	clone mix	1,35843	0,0007506	0,0121617
ENSGACG0000019951	clone mix	3,18536	8,78E-007	4,19E-005
ENSGACG0000019952	clone mix	2,87677	6,26E-010	7,77E-008
ENSGACG0000020003	clone mix	1,85921	0,0012234	0,0180896
ENSGACG0000020005	clone mix	2,60203	0,0032943	0,0398738
ENSGACG0000020034	clone mix	-3,26582	0,0029547	0,036613
ENSGACG0000020145	clone mix	2,90481	7,94E-009	7,21E-007
ENSGACG0000020180	clone mix	1,28424	0,0043138	0,0492315
ENSGACG00000020243	clone mix	-1,13963	0,0035015	0,0418289
ENSGACG0000020365	clone mix	-3,96316	4,82E-006	0,00017889
ENSGACG0000020469	clone mix	-1,48675	0,0005973	0,0100957
ENSGACG0000020633	clone mix	-3,96601	6,55E-010	8,09E-008
ENSGACG0000020852	clone mix	2,3146	5,85E-006	0,00021047
ENSGACG0000020858	clone mix	1,66655	0,0013909	0,020053

gene	sample_2	log2(fold_change)	p_value	g value
ENTPD3	clone mix	0,817447	0,0040791	0.0471366
EP300 (1 of 2)	clone mix	1,47468	0,0002506	0,00494172
EP400NL	clone mix	1,1207	0,003227	0,0392352
EPHA3	clone mix	2,48924	0,0003471	0,00646924
ERBB2IP	clone mix	1,1431	0,0032956	0,0398865
ERGIC1	clone mix	1,03741	0,0008743	0,0137637
ERRFI1	clone mix	1,95878	0,0001082	0,00245595
ESYT1 (1 of 2)	clone mix	1,4769	0,0005427	0,00933842
EVC2	clone mix	1,07134	0,0027021	0,0340939
EXOC1	clone mix	0,793591	0,0008704	0,0137148
EXOSC1	clone mix	-1,64163	1,76E-005	0,00053487
EXOSC5	clone mix	-1,66835	0,0004797	0,00844117
EZH1	clone mix	1,15934	0,0031262	0,0382591
F3 (1 of 2)	clone mix	1,43614	0,0012001	0,0178116
F8	clone mix	1,62357	0,000141	0,0030629
FAM115A	clone mix	0,749156	0,0002881	0,00554526
FAM167B	clone mix	-1,2655	0,0001372	0,00299344
FAM193A	clone mix	1,18299	0,000172	0,00361372
FAM32A	clone mix	-1,4104	0,0002068	0,00421261
FAM65A	clone mix	2,29524	0,000421	0,00758596
FAM82A1	clone mix	1,23151	0,0040126	0,0465434
FAM96B	clone mix	-1,55313	0,0009965	0,0153182
FAR1	clone mix	1,36346	0,0007711	0,0124345
FAT1	clone mix	1,509	0.0002054	0.00418844
FBLN1 (1 of 2)	clone mix	1,24884	3,89E-007	2,08E-005
FBLN2 (1 of 2)	clone mix	1,86469	0,0003341	0,00626783
FBLN2 (2 of 2)	clone mix	2,47266	1,82E-006	7,81E-005
FBN1	clone mix	2,40121	3,97E-007	2,12E-005
FBN3	clone mix	2,90924	1,23E-008	1,06E-006
FCGBP (1 of 2)	clone mix	1,45989	4,66E-007	2,43E-005
FER1L6	clone mix	1,26646	0,0010117	0,0155067
FERMT2	clone mix	1,64941	0,0001787	0,00373046
FGD5 (2 of 2)	clone mix	2,7913	0,0020696	0,0275803
FGFR1 (2 of 2)	clone mix	1,30964	0,001157	0,0172951
FGFR2	clone mix	1,17367	0,0039425	0,0459178
FGFR4	clone mix	2,10564	0,0007507	0,0121631
FGL2	clone mix	2,01362	1,33E-005	0,00042305
FHL2 (1 of 2)	clone mix	-0,853669	0,0003674	0,0067802
FHL5	clone mix	-1,33072	1,60E-006	7,00E-005
FHOD1	clone mix	1,15929	1,76E-005	0,00053459
FIBIN (1 of 2)	clone mix	1,99351	0,0017506	0,0241158
FILIP1L	clone mix	2,16529	4,01E-007	2,13E-005
FKBP5	clone mix	5,18889	2,22E-015	9,22E-013
FLI1	clone mix	1,65068	0,0004886	0,008569
FLII	clone mix	1,14532	0.0026136	0.0332088
FLNA (2 of 2)	clone mix	1.33794	0.0005216	0.00904095
FLNC (2 of 2)	clone mix	2.1811	1.04E-009	1.22E-007
FLT1	clone mix	1.91872	0.0005644	0.00963953
EN1 (1 of 2)	clone mix	2.08289	8.96E-008	5.89E-006
EN1 (2 of 2)	clone mix	2,00699	5.06F-007	2.61E-005
FNBP4	clone mix	1,51856	0.000173	0.00363121
FOSI 1	clone mix	3 79548	0.0039621	0.0460893
FOXK1	clone mix	1 31993	0.0011531	0.0172485

gene	sample 2	log2(fold_change)	p_value	q_value
FOXK2 (2 of 2)	clone mix	0,726217	0,0012626	0,018559
FBFM1	clone mix	1,56928	0,0001193	0,00266554
FBK	clone mix	1,16932	0,0041834	0,0480759
FBMD4A	clone mix	2,14418	4,52E-005	0,00118374
FRMD4B(1 of 2)	clone mix	1,3493	0,0013543	0,0196324
FRY(1 of 2)	clone mix	1,5478	0,0001324	0,00290516
FBY (2 of 2)	clone mix	1.74599	5,05E-006	0,00018607
FRYL (1 of 2)	clone mix	1.25377	0.00119	0,0176919
FB7B	clone mix	1.06268	0.003559	0,0423744
FSTL1 (1 of 2)	clone mix	1,48993	0.0002524	0.00497146
FSTL3	clone mix	2,19555	3.34E-006	0.00013076
FUK	clone mix	1.34793	0.0013605	0.0197029
FUNDC1	clone mix	-0.618472	0.0005169	0.00897488
FUTA	clone mix	-1.2133	0.0002043	0.00417093
GADD45B (1 of 2)	clone mix	1.31273	9.59E-005	0.00222004
GADD45G (1 of 3)	clone mix	1.67327	0.0001723	0.00361841
GAK	clone mix	1 24254	0.0018373	0.0250823
GAL3ST1 (1 of 2)	clone mix	2 60358	0.0020498	0.0273743
GALM	clone mix	-1 04671	4.58E-008	3.29E-006
GALNTI 1	clone mix	-1 22982	0.0014699	0.0209612
GAPVD1	clone mix	1 05938	0.0005107	0.00888559
GCNT1	clone mix	5 78438	0.0001946	0.00400541
GHB (1 of 2)	clone mix	1,20946	0.0039302	0.0458045
GIB1	clone mix	1 885	0.0005731	0.00976072
GL G1 (1 of 2)	clone mix	1,18187	0.0034559	0.0414039
GLI2	clone mix	1.26719	0.0043446	0.0494997
GLUL (1 of 2)	clone mix	1,18276	0.0039508	0.0459911
GNAO1 (1 of 2)	clone mix	1.37946	0.0002282	0.00457157
GNGT1	clone mix	-1.80E+308	4.05E-007	2.15E-005
GOLGA2	clone mix	1.27538	0.0020549	0.0274264
GOLGA7 (2 of 2)	clone mix	-1.24047	0.0005407	0.0093098
GOSR1 (2 of 2)	clone mix	-1.69532	0.0001289	0.00284352
GPATCH8	clone mix	1.53484	9.68E-005	0.00223898
GPC4	clone mix	1.22116	0.0035679	0.0424563
GPR124	clone mix	1,40477	0.0036468	0.043197
GPR133	clone mix	2.08997	0.0002718	0.00528377
GRB10 (2 of 2)	clone mix	1,92341	0.0006084	0.0102474
GTF2H5	clone mix	-1,58058	0.0015103	0.0214209
H2AFV	clone mix	-1,68524	5.55E-005	0.00140579
HDAC4 (1 of 2)	clone mix	2.04922	3.46E-005	0.00094548
HELZ	clone mix	1,2447	0.0017369	0,0239623
HGF (2 of 2)	clone mix	2,18345	0.0033868	0,0407602
HGS	clone mix	1,11854	0.0040188	0.0465996
HIGD1A	clone mix	-1,21619	1,22E-007	7,68E-006
HIVEP1	clone mix	1,34371	0,0003884	0,0070986
HIVEP2 (1 of 2)	clone mix	1,44173	0,0001711	0,00359772
HLA-DMA (4 of 5)	clone mix	-1,62961	6,41E-005	0,0015862
HLF (1 of 2)	clone mix	1,56886	0,0013057	0,0190635
HM13	clone mix	1,00659	1,53E-005	0,00047405
HNMT (2 of 2)	clone mix	-1,28655	0,0005398	0,00929641
HNRNPUL1	clone mix	1,11921	0,0023539	0,0305587
HOOK3	clone mix	1,07486	0,0019126	0,0258923
HSD3B7	clone mix	1,27704	0,0017813	0,0244563

	gene	sample 2	log2(fold	change)	n value	a value
HSPG2 (1 of 2)	J	clone mix	10g2(1014_	1 90905	8 21 E-005	0 00195049
HSPG2 (2 of 2)		clone mix		2 42932	0.000215	0.0043526
HTT		clone mix		1 13888	0.0039399	0.0458928
HUWE1		clone mix		1 08798	2 23E-006	9 26E-005
IEB3IP1		clone mix		-1 84029	0,0006459	0.0107599
IEB51 (2 of 2)		clone mix		-1 7023	0.0001058	0.00241113
IGE1B (2 of 2)		clone mix		1 75874	0.0001682	0.00354904
IGEBP1 (1 of 2)		clone mix		2 84828	0.0003835	0.00702534
IL6ST		clone mix		1,19771	0.0018801	0.0255464
INPP4B		clone mix		1.04095	0.0002736	0.00531276
INPPL1		clone mix		1,55027	0.001002	0.0153876
INSR (2 of 2)		clone mix		1,22164	0.0023247	0.0302564
IRS2 (1 of 2)		clone mix		2,44104	1 90E-008	1.53E-006
IBS2 (2 of 2)		clone mix		1,26101	0.001887	0.0256232
ITCH (2 of 2)		clone mix		1.50676	0.0021509	0.0284449
ITGA1		clone mix		2.13788	3.24E-007	1.78E-005
ITGA2		clone mix		1.28825	0.0013395	0.0194558
ITGA4		clone mix		2.27446	0.0001005	0.00231031
ITGA5 (1 of 2)		clone mix		2.22833	0.0003431	0.0064079
ITGA8		clone mix		2.37947	0.0005793	0.00984406
ITGB2		clone mix		0,64577	6.10E-005	0.00152228
ITIH4 (1 of 2)		clone mix		-2,74219	0,0001092	0,00247491
ITIH4 (2 of 2)		clone mix		-3,22584	8,75E-005	0,00205648
ITIH5		clone mix		1,41706	0,0032643	0,0395911
ITPKC (1 of 2)		clone mix		1,77319	3,55E-005	0,00096693
ITPR1 (2 of 2)		clone mix		1,39985	0,0004621	0,00818921
ITPR2		clone mix		1,18149	0,0024181	0,0312248
ITPR3		clone mix		1,26078	0,0009958	0,0153095
ITSN2 (2 of 2)		clone mix		1,23929	0,0016317	0,0227914
JAG2		clone mix		1,52232	0,0008314	0,0132112
JAK1		clone mix		1,19508	0,0036571	0,0432964
JMJD1C		clone mix		1,46572	0,0008589	0,0135677
JUNB (1 of 2)		clone mix		2,62527	1,29E-008	1,10E-006
JUNB (2 of 2)		clone mix		2,1281	1,12E-005	0,00036411
KAT6B		clone mix		1,39374	7,50E-005	0,00180718
KDM2B (1 of 2)		clone mix		1,12231	0,0037736	0,0443727
KDM2B (2 of 2)		clone mix		1,24478	0,0021418	0,0283505
KDM6B		clone mix		2,39651	1,42E-007	8,77E-006
KDR		clone mix		1,47225	0,0024989	0,032052
KEAP1		clone mix		1,31854	0,0010766	0,016312
KIAA0182		clone mix		1,18573	0,0032195	0,0391611
KIAA0284 (2 of 2)		clone mix		0,945483	0,0014782	0,0210551
KIAA0907		clone mix		0,963339	2,94E-005	0,00082637
KIAA1033		clone mix		1,18341	0,003259	0,039541
KIAA1109		clone mix		1,45493	0,000256	0,00502931
KIAA1199		clone mix		1,64697	0,0008341	0,0132477
KIAA1217		clone mix		1,34335	0,0007845	0,0126104
KIAA1274		clone mix		1,27572	0,0027879	0,0349447
KIAA1/9/		clone mix		1,46796	0,0005628	0,00961892
		clone mix		1,00748	0,0006031	0,0101757
KIF21A (1 of 2)		cione mix		1,58643	0,0009721	0,0150129
		cione mix		2,29334	3,49E-005	0,00095339
NLU I		CIONE MIX		1.14/95	0.0006371	0.0106428

gene	sample_2	log2(fold_change)	p_value	q_value
KLF13	clone mix	1,80E+308	1,15E-006	5,28E-005
KLF6 (1 of 2)	clone mix	1,72399	3,19E-005	0,00088284
KLF9	clone mix	3,87628	1,51E-012	3,63E-010
KLHDC10 (2 of 2)	clone mix	-2,96365	0,0029594	0,0366587
KLHL30	clone mix	1,63618	0,0014495	0,0207254
KLHL38 (2 of 2)	clone mix	2,18608	0,0009972	0,0153278
KRI1	clone mix	0,83717	0,0041333	0,0476279
KRT23 (5 of 7)	clone mix	-1,15449	2,22E-009	2,36E-007
LAMA2	clone mix	1,56706	0,0004522	0,00804558
LAMA3	clone mix	1,20688	0,002467	0,0317244
LAMA4	clone mix	1,69479	9,06E-005	0,00211783
LAMB2	clone mix	1,33861	0,0037058	0,0437497
LAMC2 (2 of 2)	clone mix	1,51831	3,88E-005	0,00104076
LAMC3	clone mix	1,68328	4,60E-005	0,00120217
LCP2	clone mix	1,02247	0,000185	0,00384046
LDLR (1 of 2)	clone mix	1,63578	0,0001714	0,00360418
LDLR (2 of 2)	clone mix	1,40693	0,0003628	0,00670906
LENG8	clone mix	1,75151	9,53E-006	0,00031823
LITAF	clone mix	-2,93932	0,0001449	0,00313416
LLPH	clone mix	-1,32634	0,0020929	0,0278333
LMOD1	clone mix	1,90133	0,0002115	0,00429239
LOX	clone mix	1,01333	0,001773	0,0243633
LOXL1	clone mix	1,41266	0,0028426	0,0354916
LOXL2 (1 of 2)	clone mix	2,05422	0,0002494	0,00492362
LOXL4	clone mix	1,7859	0,0029438	0,0365048
LPAR2 (2 of 2)	clone mix	-0,699581	0,0038246	0,0448359
LPHN1 (2 of 2)	clone mix	2,78901	1,28E-008	1,09E-006
LRP1 (1 of 2)	clone mix	1,54933	7,57E-005	0,00182137
LRP1 (2 of 2)	clone mix	2,09264	4,77E-008	3,40E-006
LRP4	clone mix	1,87782	2,25E-005	0,00065971
LRRC14B	clone mix	1,40134	0,004082	0,0471633
LRRC32	clone mix	1,97226	0,0004246	0,00763933
LRRC39	clone mix	-1,67212	0,0038726	0,0452792
LRRFIP1 (1 of 2)	clone mix	1,67544	2,03E-009	2,19E-007
LRRK2	clone mix	1,48702	0,0005256	0,00909851
LSM1	clone mix	-1,53817	0,0014148	0,0203286
LSM6	clone mix	-1,60661	0,0013211	0,019244
LTBP1	clone mix	1,58089	0,0004692	0,00829135
LTBP3	clone mix	1,77086	5,28E-005	0,0013494
LUM	clone mix	1,54568	0,0001427	0,00309388
LYST	clone mix	1,18814	0,0036561	0,0432867
LZIC	clone mix	-1,19959	3,96E-008	2,90E-006
MACF1	clone mix	1,31365	0,00137	0,0198136
MAD2L2	clone mix	-1,91643	1,42E-010	2,10E-008
MADD	clone mix	1,64519	0,0016384	0,0228686
MALT1	clone mix	1,20969	0,0008812	0,0138535
MAP3K6	clone mix	0,78318	0,0001139	0,00256364
MAP4K2	clone mix	1,38881	0,0002969	0,00568467
MAPK12 (2 of 2)	clone mix	0,819093	2,24E-006	9,30E-005
MAPK14 (1 of 2)	clone mix	1,23813	1,62E-005	0,00049806
MARK4 (2 of 2)	clone mix	1,32589	0,0039625	0,0460932
MAST2	clone mix	1,36967	0,0015534	0,0219114
MATR3	clone mix	1.84815	0.0001388	0.00302275

gene	sample_2	log2(fold_change)	p_value	q_value
MCAM (2 of 2)	clone mix	1,04019	7,53E-005	0,0018134
MCEE	clone mix	-1,67039	0,0002393	0,00475418
MDN1	clone mix	1,37261	0,0005874	0,00995799
MECOM	clone mix	1,67321	0,0023507	0,0305272
MED13 (1 of 2)	clone mix	1,29918	0,0023452	0,0304713
MEGF8	clone mix	1,2546	0,0016072	0.0225158
MET	clone mix	1,38607	0.001123	0.0168837
METTL10	clone mix	-1,28798	5.88E-006	0.00021129
METTL5	clone mix	-1,69459	0.0001791	0.00373836
MFGE8 (2 of 2)	clone mix	1,50353	0.0007317	0.011914
MGP	clone mix	1,7956	0.0031193	0.0381936
MGST1	clone mix	-1,49634	6.53E-005	0.00161157
MIB1	clone mix	1,41436	0.000736	0.0119716
MIB2	clone mix	1,40679	0.0015758	0.0221634
MID1 (2 of 2)	clone mix	1,57027	0.0021755	0.0286984
MINK1	clone mix	1,14903	0,0033775	0.0406713
MINOS1 (1 of 2)	clone mix	-1,67538	8.28E-005	0.00196317
MKL2 (2 of 2)	clone mix	2,65376	4.91E-008	3.49E-006
MKNK2	clone mix	1,85189	4.96E-006	0.00018319
MLL	clone mix	1,43732	0.0001306	0.00287415
MLL2	clone mix	1,29399	0,0006892	0.0113455
MLL3 (1 of 2)	clone mix	1,40997	0,0002661	0,00519204
MLL3 (2 of 2)	clone mix	1,36276	0,0012253	0,0181125
MMP14 (1 of 2)	clone mix	1,35097	0,0009403	0,0146108
MMP2	clone mix	1,74294	2,69E-005	0,00076687
MMP9	clone mix	1,60722	0	0
MORC4	clone mix	0,926759	6,56E-005	0,00161758
MRC2	clone mix	1,90768	0,0001228	0,00272932
MRPL14	clone mix	-1,33254	0,0019354	0,026144
MRPL18	clone mix	-1,38682	0,0017116	0,0236842
MRPL28	clone mix	-0,665718	0,0029699	0,0367605
MRPL33	clone mix	-1,43232	0,0001926	0,003971
MRPS10	clone mix	-1,59734	3,13E-012	6,98E-010
MRVI1	clone mix	3,14034	1,68E-006	7,27E-005
MTMR11	clone mix	1,68279	0,0039848	0,0462925
MTMR4	clone mix	1,18082	0,0025974	0,0330487
MXRA8 (2 of 2)	clone mix	1,49011	0,0003908	0,00713531
MYCBP2	clone mix	1,2928	0,0014512	0,020744
MYH10 (2 of 2)	clone mix	1,7458	0,0022821	0,0298136
MYH11 (1 of 2)	clone mix	2,24022	3,68E-006	0,00014203
MYLK	clone mix	1,77046	1,64E-005	0,000505
MYO1B	clone mix	1,47759	0,0005541	0,0094956
MYO1D	clone mix	1,17476	0,0041572	0,0478429
MYO5C	clone mix	1,5749	0,0004373	0,0078272
MYO9A (2 of 2)	clone mix	1,32125	6,13E-005	0,00152861
MYO9B (1 of 2)	clone mix	1,134	0,0033037	0,039963
MYOF (1 of 2)	clone mix	1,477	0,0003199	0,00604714
MYOF (2 of 2)	clone mix	1,17402	0,0029949	0,0370126
NAA10	clone mix	-1,27002	0,0012628	0,0185609
NACC2	clone mix	1,86546	0,0012114	0,0179476
NAV3	clone mix	2,0056	0,0006137	0,0103202
NCOA6	clone mix	1,22269	0,0040553	0,0469265
NDRG2	clone mix	1.38006	0.0014033	0.0201985

gene	sample_2	log2(fold_change)	p_value	q_value
NDUFA1	clone mix	-1,48889	0,0002415	0,00479196
NDUFA12	clone mix	-1,5868	4,28E-005	0,00113019
NDUFA13	clone mix	-1,58196	0,0001071	0,00243594
NDUFB1	clone mix	-1,57531	4,38E-005	0,00115282
NDUFB2	clone mix	-1,63432	0,0001443	0,00312288
NDUFB3	clone mix	-1,82146	8,96E-006	0,00030212
NDUFB8	clone mix	-1,5454	0,0001024	0,00234605
NDUFS6	clone mix	-1,24505	0,0023949	0,0309862
NEDD4L	clone mix	1,36545	0,001303	0,0190313
NF1	clone mix	1,20975	0,0021531	0,0284678
NFATC3	clone mix	1,15805	0,0041956	0,0481869
NFKBIA (1 of 2)	clone mix	2,16166	7,35E-010	8,96E-008
NHSL1	clone mix	1,30597	0,0024377	0,0314244
NID1 (1 of 2)	clone mix	1,36969	0,0009515	0,0147541
NKTR,ZBTB47	clone mix	1,16511	0,0006989	0,0114771
NLRC5	clone mix	1,23256	0,0040035	0,0464653
NR1D2 (2 of 2)	clone mix	3,31029	2,83E-009	2,93E-007
NRG2 (1 of 2)	clone mix	1,81825	0,0001758	0,00368067
NRK	clone mix	1,74381	0,0025825	0,0329008
NUAK1	clone mix	1,27433	0,0042871	0,0489973
NUCB2 (2 of 2)	clone mix	1,8959	0,001659	0,0231005
NXF3	clone mix	1,30415	0,0017087	0,023653
NYNRIN	clone mix	1,51887	0,0009451	0,0146712
OBSCN	clone mix	1,83204	0,0003255	0,00613406
OCRL	clone mix	1,62142	1,89E-006	8,04E-005
ODZ3 (1 of 2)	clone mix	1,53338	0,0003241	0,00611138
OGT	clone mix	1,28839	0,0016461	0,0229577
OLFML1	clone mix	1,63092	0,0009022	0,0141243
OLFML2A	clone mix	1,82337	1,37E-005	0,00043208
OLFML2B (2 of 2)	clone mix	2,10647	0,0002487	0,0049111
ORMDL3	clone mix	2,87915	0,0001076	0,00244483
OSBPL8	clone mix	1,34981	0,002417	0,0312137
OSMR (1 of 2)	clone mix	1,35592	0,001096	0,0165524
OTOF (1 of 2)	clone mix	2,66876	5,94E-005	0,00148805
PANK4	clone mix	1,19784	0,0029772	0,0368332
PARK2	clone mix	-0,828898	0,0033034	0,03996
PARP4	clone mix	1,19922	0,0040794	0,0471389
PCDH12	clone mix	2,55205	0,0006075	0,0102358
PCDH20	clone mix	2,46875	0,0001662	0,00351287
PCF11	clone mix	1,39614	0,0004896	0,00858334
PCK1	clone mix	3,39367	1,30E-005	0,00041336
PCNX	clone mix	1,03919	0,0035072	0,0418822
PCOLCE (2 of 2)	clone mix	0,972031	0,003598	0,0427445
PDE1B	clone mix	1,37799	0,0017127	0,0236959
PDGFRB	clone mix	1,48335	0,0036516	0,0432445
PDK2 (2 of 2)	clone mix	1,58189	0,0004716	0,00832604
PDS5B	clone mix	0,810839	0,0041886	0,048123
PFDN1	clone mix	-1,75764	1,98E-005	0,00059306
PFDN5	clone mix	-1,37492	1,43E-005	0,0004501
PGLYRP2 (1 of 2)	clone mix	1,83379	0,0002707	0,00526473
PHEX	clone mix	1,79068	0,0002922	0,00560992
PHKA1	clone mix	1,3131	0,0011424	0,0171184
PHLDB2 (1 of 2)	clone mix	1 09554	0.00051	0.00887444

gene	sample 2	log2(fold change)	n value	a value
PHI DB2 (2 of 2)	clone mix	2 15268	1 01E-005	0.00033436
PI4KA(1 of 2)	clone mix	1 22285	0.0007949	0.0127443
PIGN	clone mix	1 00396	0,000689	0.0113429
PIK3C2A	clone mix	1 76895	1 92E-005	0.00057758
PIK3CB	clone mix	1 2076	0.0019858	0.0266883
PIK3CG	clone mix	1 34641	0.0027874	0.03/0301
PIK3B1 (1 of 2)	clone mix	2 08068	3 20E-006	0,0043031
PIM3 (1 of 2)	clone mix	1 46414	0,0031027	0.0380374
	clone mix	2 36/88	1 56E-007	0,0000074
	clone mix	0.012738	5.83E-005	9,502-000
PKN1 (1 of 2)	clone mix	1 13896	6.03E-005	0,00150745
PKN2	clone mix	0 713472	0,002-000	0.04661
PLCB2	clone mix	1 08/20	2.56E-005	0,04001
PLCB4	clone mix	1 81868	2,50L-005	0,00075451
PLCD4 (2 of 2)	clone mix	2 1633	1,0E-005	0,00020142
PLCE1	clone mix	1 /21	0.0038080	0,000455173
PLCH2 (2 of 2)	clone mix	1 80E 1308	0,0036969	0,0455175
PLD1 (1 of 2)	clone mix	1 22220	0,0000945	0,0114191
PLEC(2 of 2)	clone mix	1,20229	0,005515	0,0419579
PLEKHA5 (1 of 2)	clone mix	1,09999	0,0000580	0,010932
PLEKHA5 (2 of 2)	clone mix	1,442.52	0,0024302	0.0324165
	clone mix	1,3002	0,0020344	0,0334105
PLEKHGAB	clone mix	1,11002	7 475 005	0,0482705
	clone mix	2 /115/	1,47 E-005	0,00160225
PNISB	clone mix	1 57074	1,712-005	2.065.012
PNPL A2	clone mix	2 70163	4,442-010	2,002-013
PODXI	clone mix	2,73100	0,0002050	0,00410203
POL B2A	clone mix	1 /2182	0,0003365	0,00704508
POL B2I	clone mix	-1.83	6 20E-005	0,000505050
POLB3K	clone mix	-1 67895	0,202-005	0.0161697
POSTN (2 of 2)	clone mix	1 47413	0,0010049	0.0465538
PPDPE (1 of 2)	clone mix	-1 51358	9 15E-012	1.82E-009
PPM1.I	clone mix	1 47926	2 06E-005	0.00061234
PPP1B15B	clone mix	2 01 19	2,00E-005	8.64E-005
PPP2B3A	clone mix	1 4842	0,0009516	0,042-005
PPP2B5C	clone mix	1 11008	0,0001345	0,0147555
PPP4B1	clone mix	1 02255	0.002142	0.0283528
PPT2	clone mix	2 3316	4 21 E-007	2 23E-005
PPTC7 (1 of 2)	clone mix	1 54193	0.0006118	0.0102947
PBADC1	clone mix	-1 7438	0.0001433	0.00310418
PRDM16	clone mix	2 46786	0.0017668	0.0242928
PBDX3	clone mix	-0 556329	1 04E-009	1 22F-007
PRELP	clone mix	1 29964	0.0014764	0.0210352
PREX1	clone mix	1 65518	8 51 E-005	0.0020101
PBKCA (2 of 2)	clone mix	1 26312	0.0003442	0.00642398
PBKDC	clone mix	1 05364	1.39E-005	0 00043887
PBB14I	clone mix	1 47179	0.0027958	0.0350235
PBBC2B	clone mix	1 12363	0.0038551	0.0451159
PSENEN	clone mix	-1 65368	4.31E-005	0.00113717
PSMA3	clone mix	-0.990015	0.0005136	0.00892639
PSMA8	clone mix	-1 23066	7.13E-005	0.00173444
PSME4 (1 of 2)	clone mix	1 29137	0.001305	0.0190559
PTGES3 (2 of 2)	clone mix	-1 1347	0.0035228	0.042031

gene	sample_2	log2(fold_change)	p_value	q_value
PTGIS (2 of 2)	clone mix	1,80526	2,23E-005	0,00065344
PTPMT1	clone mix	-1,05691	2,13E-013	6,14E-011
PTPN1	clone mix	1,62685	0,0006217	0,0104321
PTPN9	clone mix	2,81856	8,34E-005	0,00197533
PTPRB	clone mix	2,26292	1,84E-006	7,85E-005
PTPRD	clone mix	1,89604	5,25E-009	5,02E-007
PTPRF (2 of 2)	clone mix	1,31407	0,0035081	0,0418906
PTPRJ	clone mix	1,66511	7,46E-005	0,00180008
PTPRK	clone mix	1,26294	0,0034915	0,0417345
PTPRS (1 of 3)	clone mix	1,55095	0,0005758	0,00979633
PTTG1IP (1 of 2)	clone mix	-1,37292	0,0035685	0,0424611
PWP2	clone mix	0,967521	2,97E-005	0,00083166
PXDN	clone mix	1,6366	0,0001007	0,00231479
QRICH1 (2 of 2)	clone mix	1,0804	0,0025195	0,032263
RABGAP1L	clone mix	1,42795	0,0014061	0,0202292
RAD54L2 (1 of 2)	clone mix	1,31989	0,0022876	0,0298693
RALGAPB	clone mix	1,28552	0,0008716	0,0137304
RAPGEF1	clone mix	1,51866	0,0014003	0,0201643
RAPGEF6	clone mix	1,6209	0,0005116	0,00889854
RAPH1 (1 of 2)	clone mix	2,45057	0,0003405	0,00636735
RARG (2 of 2)	clone mix	1,54453	0,0009637	0,0149075
RASAL3 (2 of 2)	clone mix	1,23246	0,0043061	0,0491625
RASGEF1B (1 of 2)	clone mix	2,0876	0,0004269	0,00767428
RASGEF1B (2 of 2)	clone mix	3,50041	1,25E-007	7,85E-006
RASSF6	clone mix	-1,33047	0,0014837	0,0211169
RASSF7 (1 of 2)	clone mix	1,15176	0,0034465	0,0413172
RBM25 (1 of 2)	clone mix	1,56752	7,72E-005	0,00185206
RBM45	clone mix	0,806559	0,0009748	0,0150477
RBM5 (2 of 2)	clone mix	1,14031	0,0005176	0,00898436
RBMS1 (2 of 2)	clone mix	1,52473	2,79E-005	0,00078968
RECK	clone mix	1,58701	0,0025866	0,0329407
REEP5	clone mix	-1,38541	0,0024872	0,0319302
RERE	clone mix	1,17793	0,0025846	0,0329209
RGL1	clone mix	2,13087	1,15E-005	0,00037404
RGL2	clone mix	0,890003	0,0010272	0,0157002
RGS5	clone mix	0,590287	0,0025012	0,0320757
RHPN2	clone mix	1,34411	0,0014574	0,0208147
RICTOR	clone mix	1,24674	0,0017603	0,0242227
RIN3	clone mix	1,37589	0,000585	0,00992426
RNF19B	clone mix	1,5853	9,39E-006	0,00031426
RNPEPLI	clone mix	1,26631	0,0018535	0,025258
	clone mix	1,1926	0,0013755	0,0198782
	clone mix	1,5438	0,0004986	0,0087124
RUCK2 (2 of 2)	clone mix	1,26643	0,0015179	0,0215076
RPA3	clone mix	-1,81933	2,14E-005	0,00063159
RPL22L1	clone mix	-1,2272	0,0015563	0,0219441
RPLP2	clone mix	-1,47352	0,00115114	0,0172258
RPS29	clone mix	-1,91107	2,22E-016	1,07E-013
	clone mix	1,47385	0,0007361	0,0119719
	clone mix	1,16688	0,003779	0,0444224
RYR1 (2 01 2)	clone mix	1,32321	0,0012067	0,017891
S100A1	clone mix	-4,206	6,62E-005	0,00162985
S100A10 (1 of 2)	clone mix	-1,83685	6.87E-006	0.00024112

gene	sample_2	log2(fold_change)	p_value	q_value
SAFB	clone mix	1,31669	0,0006592	0,0109403
SAMD10	clone mix	-1,48231	0,0025135	0,0322005
SAMSN1	clone mix	1,32175	0,0003426	0,00640068
SARNP	clone mix	-1,36723	0,0005113	0,00889393
SBNO2	clone mix	1,78291	4,87E-006	0,00018037
SCARA3	clone mix	1,78097	0,0023627	0,0306475
SCARF2	clone mix	2,72884	1,02E-005	0,00033579
SCGN (1 of 2)	clone mix	-1,96895	1,71E-005	0,00052319
SCTR	clone mix	-1,28593	0,0030624	0,0376535
SDC2	clone mix	1,14154	0,0043171	0,0492606
SDHAF2	clone mix	-0,778801	8,49E-005	0,00200615
SEC14L1 (1 of 2)	clone mix	1,32445	1,06E-005	0,00034817
SEC16A	clone mix	1,36654	0,0006502	0,0108178
SELE	clone mix	2,25665	3,53E-006	0,00013728
SELENBP1	clone mix	-2,66047	6,77E-007	3,35E-005
SEMA3D	clone mix	1,5052	0,0026232	0,0333052
SEMA4B (1 of 2)	clone mix	1,83003	0,001895	0,0257081
SEMA4C	clone mix	1,9183	0,0021004	0,0279119
SEPT9 (1 of 2)	clone mix	0,614001	0,0018448	0,0251641
SESN1	clone mix	1,35397	0,0016875	0,0234185
SF3B5	clone mix	-1,5325	9,41E-005	0,00218524
SFI1	clone mix	1,54495	0,0031433	0,038429
SFPQ	clone mix	0,990684	0,0005581	0,00955298
SFRP2	clone mix	1,83627	9,94E-005	0,00228861
SFSWAP	clone mix	1,57078	1,76E-006	7,58E-005
SH3BP1	clone mix	1,43575	4,31E-006	0,00016237
SH3BP2	clone mix	2,24389	0,0003691	0,00680614
SH3PXD2B	clone mix	1,6/444	0,0004058	0,00/360/9
SHANK2	clone mix	2,20616	0,0009674	0,0149544
	cione mix	-1,43562	0,0001754	0,00367245
SHROOM3	cione mix	1,00113	1,0001186	7.045.005
	cione mix	2,40444	1,012-000	7,04E-005
		1,59007	0,0003992	0.0366725
SICIL SICIL A_2 (1 of 2)	clone mix	1,01057	0.001681	0.0233435
SLC16A1 (1 of 2)	clone mix	1 76292	2 92E-005	0.00082045
SLC16A2	clone mix	2 45192	2 22E-005	0.0006524
SL C1A5	clone mix	1 79334	0.0001259	0.00278716
SL C20A1 (1 of 2)	clone mix	1,50606	0.0004984	0.00870914
SL C25A25 (2 of 2)	clone mix	1.86451	0.0005294	0.00915112
SLC27A2 (2 of 3)	clone mix	1,62602	0,0019832	0,0266592
SLC37A2 (1 of 2)	clone mix	0,710298	0,0015821	0,0222332
SLC38A10	clone mix	1,45508	0,002306	0,0300593
SLC38A2	clone mix	1,58625	0,0003151	0,0059706
SLC4A2 (3 of 3)	clone mix	2,01217	0,0017048	0,023608
SLC4A4 (1 of 2)	clone mix	0,759482	3,14E-007	1,73E-005
SLC9A5	clone mix	-3,91334	2,55E-012	5,80E-010
SLCO2A1	clone mix	2,67898	4,29E-009	4,21E-007
SLIRP	clone mix	-1,64959	0,0003749	0,00689572
SLIT1	clone mix	2,10058	1,95E-006	8,27E-005
SLIT2	clone mix	2,20422	0,000615	0,0103398
SLIT3	clone mix	1,6756	0,0001517	0,00325552
SMOX	clone mix	2,99311	1,95E-013	5,68E-011

gene	sample_2	log2(fold_change)	p_value	q_value
SMTN	clone mix	1,41508	0,0010022	0.0153897
SNRNP27	clone mix	-1,2544	0,0018229	0.024922
SNRNP70	clone mix	1,44364	4,65E-013	1,25E-010
SNRPD2	clone mix	-1,64929	2,98E-005	0,00083414
SNRPE	clone mix	-1,28508	0,0009913	0,0152543
SNX1 (2 of 2)	clone mix	1.02927	5.83E-005	0.00146557
SNX18 (1 of 2)	clone mix	1,61846	0,0019981	0.0268223
SNX33	clone mix	1,17631	0,0036154	0.0429039
SNX9	clone mix	0,705947	0,0016876	0,0234195
SOCS3 (1 of 2)	clone mix	3,72776	1,04E-014	3,85E-012
SOCS3 (2 of 2)	clone mix	2,97734	2,75E-006	0,00011111
SORBS3	clone mix	1,78808	0,0001495	0,00321661
SOS1	clone mix	1,17081	0,0001619	0,00343688
SPAG9 (1 of 2)	clone mix	1,38311	0,0008611	0,0135957
SPCS1	clone mix	-1,71541	1,15E-005	0,00037293
SPCS3	clone mix	-1,59879	5,79E-005	0,0014582
SPEN (2 of 2)	clone mix	1,43775	0,0002596	0,00508737
SPTBN1 (1 of 2)	clone mix	1,70488	4,62E-006	0,0001724
SPTBN1 (2 of 2)	clone mix	1,954	4,09E-007	2,17E-005
SRCAP	clone mix	1,49197	0,0009474	0,0147029
SREBF2	clone mix	1,47166	0,0010965	0,0165575
SRF (2 of 2)	clone mix	2,07322	0,0017872	0,0245192
SRGAP3 (2 of 2)	clone mix	1,36029	0,0005903	0,00999705
SRSF5	clone mix	1,61625	0,0001184	0,00264771
SRSF7	clone mix	0,975591	7,24E-005	0,00175606
STEAP4 (1 of 2)	clone mix	1,35154	0,0006004	0,0101377
STK17B	clone mix	1,34915	0,0019495	0,0262916
STMN1 (2 of 2)	clone mix	-1,44567	1,44E-011	2,75E-009
SULF1	clone mix	1,38388	0,0002092	0,00425412
SUMO4	clone mix	-1,58727	0,0001497	0,00322085
SUPT5H	clone mix	0,711749	5,96E-005	0,00149382
SUPT6H	clone mix	1,02009	7,62E-005	0,00183145
SWAP70 (1 of 2)	clone mix	1,55995	9,20E-007	4,36E-005
SYNE1 (2 of 2)	clone mix	1,48041	0,0002474	0,00488905
SYNE2 (3 of 3)	clone mix	1,2968	0,0014343	0,0205502
TANC1 (1 of 2)	clone mix	1,24175	4,23E-006	0,00016011
TANC2 (1 of 2)	clone mix	1,04652	0,0018308	0,025009
TAOK1 (1 of 2)	clone mix	1,45462	0,0007491	0,0121432
TARBP1	clone mix	1,58312	0,001339	0,019451
TARS	clone mix	0,910829	0,0040427	0,0468144
TATDN3	clone mix	-0,961499	2,31E-005	0,00067379
TBC1D1	clone mix	1,02151	0,0002348	0,00468332
TBC1D7	clone mix	-1,20832	0,002827	0,0353363
TBCB	clone mix	-1,59075	3,91E-006	0,00014949
TCERG1	clone mix	0,837936	0,001754	0,0241534
TCF3 (1 of 2)	clone mix	1,22193	0,0003945	0,00719105
TECPR2	clone mix	1,23381	0,0027174	0,0342437
TEF (1 of 2)	clone mix	2,6477	8,17E-008	5,44E-006
TENC1 (1 of 2)	clone mix	2,21059	9,11E-008	5,97E-006
TEP1	clone mix	1,36848	0,000428	0,00769127
TF	clone mix	-2,01686	0,0006484	0,0107935
TG	clone mix	4,10894	3,11E-015	1,26E-012
TGFB1	clone mix	1 54946	1.05E-005	0.00034558

gene	sample_2	log2(fold_change)	p_value	q_value
TGFB1I1	clone mix	2,25787	0,0005879	0,00996345
TGFBR3	clone mix	1,20837	0,001182	0,0175962
THBS1 (2 of 2)	clone mix	3,72154	4,96E-013	1,32E-010
THBS2 (1 of 2)	clone mix	2,41909	6,13E-006	0,00021913
THBS4 (1 of 2)	clone mix	1,80428	5,97E-006	0,00021416
THOC2	clone mix	1,16643	0,003106	0,0380681
THOC7	clone mix	-1,35791	0,0016033	0,0224724
THRA (1 of 2)	clone mix	1,73506	0,0042081	0,0482999
TIE1	clone mix	1,7574	0,0002071	0,00421822
TIMM8A	clone mix	-1,62349	7,08E-005	0,00172314
TIMM9	clone mix	-1,48041	0,0037115	0,0438023
TIMP2 (1 of 2)	clone mix	1,4363	0,0001471	0,003174
TIMP2 (2 of 2)	clone mix	1,28131	0,0016455	0,02295
TIMP3	clone mix	2,08806	2,57E-006	0,00010478
TINAGL1	clone mix	1,99684	1,59E-006	6,96E-005
TJP1 (2 of 2)	clone mix	1,54611	5,52E-005	0,0013997
TJP3	clone mix	1,16507	0,0026806	0,0338773
TK2	clone mix	-0,727228	0,0013378	0,019437
TMC8	clone mix	1,11575	9,12E-006	0,0003065
TMEM14E	clone mix	-1,51153	0,0007049	0,011559
TMEM18	clone mix	-1,58365	4,68E-005	0,00122017
TMEM2	clone mix	1,88846	0,0001453	0,00314141
TMEM54 (1 of 2)	clone mix	-1,12412	6,13E-013	1,60E-010
TMOD1	clone mix	1,56413	0,0030194	0,0372437
TNIK (2 of 2)	clone mix	1,09572	0,0036257	0,043003
TNKS (2 of 2)	clone mix	1,5979	0,0021728	0,0286705
TNNI2 (5 of 5)	clone mix	-2,3038	9,94E-005	0,00228963
TNPO1	clone mix	1,29952	0,0017628	0,0242486
TNRC18 (1 of 2)	clone mix	1,6305	0,0006087	0,0102516
TNRC18 (2 of 2)	clone mix	1,30764	0,0016956	0,0235072
TNRC6C (2 of 2)	clone mix	1,47264	0,0018324	0,0250261
TNS1 (1 of 2)	clone mix	1,75016	3,73E-005	0,00100768
TNS1 (2 of 2)	clone mix	1,93444	0,0003135	0,0059459
TOB1 (2 of 2)	clone mix	0,871034	0,0003049	0,00580974
TOP2B	clone mix	1,51499	0,0006864	0,0113076
TOR1B	clone mix	-0,648802	0,0014369	0,0205818
TPPP3	clone mix	1,61326	0,0040793	0,0471378
TRIM8 (1 of 2)	clone mix	1,27629	0,0034105	0,0409784
TRIO (2 of 2)	clone mix	1,55555	0,0003681	0,00679078
TRIP10 (1 of 2)	clone mix	1,45215	0,0028728	0,035794
TRPM4 (2 of 2)	clone mix	1,18494	0,003457	0,0414147
TRRAP	clone mix	1,24203	0,0026967	0,0340412
TSC22D3	clone mix	3,20421	7,42E-011	1,18E-008
TSHZ3 (2 of 2)	clone mix	1,88851	0,0016207	0,0226662
TTC14	clone mix	1,37838	0,0017181	0,0237531
TTC32	clone mix	-1,67312	0,0027037	0,0341089
TTC36	clone mix	-2,17972	1,43E-005	0,00044956
TTN	clone mix	1,85068	0,0001616	0,00343055
TXNDC17	clone mix	-1,25532	0,0020475	0,0273486
TXNL4A	clone mix	-1,40504	0,0003818	0,00699903
UBE3B	clone mix	1,2876	0,0037476	0,044131
UBL5	clone mix	-1,79158	1,83E-005	0,00055376
LIBP1	clone mix	1 14038	0.0010214	0.0156282

qe	ne sa	ample 2	log2(fold_change)	p_value	g value
UBR4	clo	ne mix	1.35428	0.0012627	0.0185597
UBTD1 (2 of 2)	clo	one mix	-1.0295	1.64E-007	9.90E-006
ULK2	clo	one mix	1,61131	0.0001342	0.0029383
UNC13B (2 of 2)	clo	one mix	1,78858	0.0012606	0.0185351
UPF1 (2 of 2)	clo	ne mix	1,15737	0.0038849	0.0453915
UQCB10	clo	one mix	-1.37075	0.0019636	0.0264467
LIOCBB	clo	one mix	-1 45922	0.0001982	0.00406727
UQCBH (1 of 2)	clo	ne mix	-1.90668	5.90E-006	0.00021211
	clo	one mix	0.692411	0.0023926	0.0309621
USP24	clo	one mix	1.34281	0.0007943	0.0127364
USP34	clo	one mix	1,22812	0.0016601	0.0231127
USP9X	clo	one mix	1,25591	0.00132	0.0192319
USPI 1	clo	ne mix	1.39397	0.0030682	0.03771
UTRN	clo	one mix	1,28776	0.0020937	0.0278423
UXT	clo	one mix	-1.34292	0.0029748	0.0368089
VAV3 (2 of 2)	clo	one mix	1,12506	0.0005817	0.00987833
VHI	clo	one mix	-1,24329	0.0016499	0.0229999
VIT	clo	one mix	1,28509	0.0010349	0.0157965
VPS13A	clo	one mix	1,30029	0.0006287	0.0105281
VPS13C	clo	one mix	1.07078	1.61E-013	4.77E-011
VPS13D	clo	one mix	1.3113	0.0010487	0.0159675
VWF	clo	one mix	2.02221	1.46E-006	6.46E-005
WAC (1 of 2)	clo	one mix	0.9681	0.0001862	0.00386105
WAPAL $(2 \text{ of } 2)$	clo	one mix	0.650213	0.0018842	0.0255925
WASI	clo	one mix	0.738968	0.004353	0.0495703
WDEY3	clo	one mix	1.83562	3.94E-005	0.00105516
WDFY4	clo	one mix	1.02484	0.0001037	0.00237078
WDR90	clo	one mix	1.4556	0.0037671	0.0443133
WNK1 (1 of 2)	clo	one mix	1,17979	0.0030923	0.0379413
WNK1 (2 of 2)	clo	one mix	1.32838	0.0015632	0.022023
WSB2	cle	one mix	1,25118	0.0017601	0.0242205
XPO4 (1 of 2)	cl	one mix	1,1487	0.0037992	0.0446058
XRN2	cl	one mix	0,736139	0,004344	0,0494943
XYLT2	cl	one mix	2,03662	0,0029554	0,0366197
YEATS4	cl	one mix	-1,32467	0,0039827	0,0462731
YTHDC1	cl	one mix	1,28033	0,0035919	0,0426872
ZBTB20	cl	one mix	1,42414	0,002074	0,0276285
ZC3H11A	cl	one mix	1,49262	0,0001893	0,00391328
ZC3H12A (1 of 2)	cl	one mix	1,30748	3 0,0015109	0,0214279
ZC3H12A (2 of 2)	cl	one mix	1,1617	7 0,0038391	0,0449722
ZC3HAV1	cl	one mix	0,829933	8,28E-006	0,00028265
ZCCHC8	C	one mix	0,760552	2 0,0010209	0,0156228
ZCRB1	C	lone mix	-1,2585	0,0043468	0,049518
ZEB2 (1 of 2)	С	lone mix	1,812	6 0,0005175	0,00898338
ZFAND5 (1 of 2)	с	lone mix	1,4036	9 0,0020149	0,0270023
ZFC3H1	С	lone mix	1,6509	6 5,81E-007	2,94E-005
ZFHX3	c	lone mix	1,2561	5 0.0008133	0,0129802
ZFHX4	C	lone mix	1,953	7 4,19E-005	0.00111064
ZFP36	0	lone mix	2.6609	5 4,12E-009	4,07E-007
ZHX2 (2 of 2)	0	lone mix	2.6229	1 0,0042073	0,0482935
ZNF292 (1 of 2)	C	lone mix	1.232	9 0,0039968	0,046403
ZNF292 (2 of 2)	C	lone mix	1.5299	3 0,0006569	0,0109085
ZNF521	c	lone mix	1.8734	8 4.62E-005	0,0012066

gene	sample_2	log2(fold_change)	p_value	q_value
ZNF593	clone mix	-0,935372	0,0010378	0,0158333
ZNF646 (2 of 3)	clone mix	1,50275	0,0003858	0,0070605
ZNF711	clone mix	0,974845	0,0028841	0,0359072
ZNFX1	clone mix	1,64115	0,0002284	0,00457582
ZZEF1	clone mix	1,18647	0,0019496	0,0262921
ABL2	clone XII	1,71619	0,003217	0,0391373
ACP1	clone XII	-0,936496	0,0015726	0,0221283
ACSL4	clone XII	1,17819	2,20E-005	0,00064764
ADAM8 (1 of 2)	clone XII	2,81508	0,0005305	0,00916727
ADAMTS15 (2 of 2)	clone XII	2,4143	0,0041499	0,0477789
ADPRHL1	clone XII	4,69151	0,000127	0,0028064
ALPK3 (1 of 2)	clone XII	3,46598	0,0004928	0,00862902
ALPK3 (2 of 2)	clone XII	2,14886	0,0036776	0,0434877
ALPL	clone XII	1,18492	0,0035557	0,0423446
ANO9 (1 of 2)	clone XII	-0,748815	0,0037834	0,044463
AOC2	clone XII	2,51015	4,03E-006	0,00015373
ARRDC2	clone XII	2,44276	0,0016101	0,0225474
BAG3	clone XII	2,40186	0,0010202	0,0156133
BAG6 (1 of 2)	clone XII	0,849364	0,0014168	0,0203509
BAG6 (2 of 2)	clone XII	0,530867	0,0040542	0,0469169
BMP1 (1 of 2)	clone XII	1,65706	0,0039855	0,0462977
C4A	clone XII	1,15954	5,32E-009	5,08E-007
C6	clone XII	1,48911	0,0010866	0,0164358
CASQ2 (1 of 2)	clone XII	1,40759	0,003079	0,0378144
CBX7 (2 of 2)	clone XII	1,41355	0,0007368	0,0119811
CEBPB	clone XII	2,42574	0,0001205	0,00268807
CSNK1E (2 of 2)	clone XII	0,95828	0,0019388	0,0261808
DAB2	clone XII	1,47193	6,17E-005	0,00153559
DDIT4 (1 of 2)	clone XII	3,69054	2,10E-006	8,82E-005
DENND4A (2 of 2)	clone XII	3,45285	8,91E-005	0,00208854
DHRS13 (1 of 3)	clone XII	-1,49902	5,04E-006	0,00018578
DIO3	clone XII	3,01096	0,0006606	0,0109589
EDNRA	clone XII	2,11959	0,0033693	0,0405912
EHF	clone XII	-2,01067	0	0
EIF5B	clone XII	0,718096	0,0008796	0,0138336
ENSGACG0000000208	clone XII	3,44122	7,08E-005	0,001/2361
ENSGACG0000000272	clone XII	2,02155	0,000/136	0,011674
ENSGACG0000000300	clone XII	2,21811	0,0014653	0,0209078
ENSGACG0000000849	clone XII	3,2855	0,0021198	0,0281181
ENSGACG0000001749	clone XII	2,97222	0,0003272	0,00616061
ENSGACG0000002902	clone XII	2,89507	0,0002357	0,00469788
ENSGACG0000002933	clone XII	3,33311	1,92E-006	8,14E-005
ENSGACG0000003003	clone XII	3,48081	0,0030598	0,0376296
ENSGACG0000003464	clone XII	1,448/8	0,003/581	0,0442279
ENSGACG00000003612,STK35 (1 of 2)	clone XII	1,81609	1,92E-007	1,13E-005
ENSGACG0000004079	clone XII	4,49951	8,44E-006	0,00028709
ENSGACG0000004200	clone XII	2,318/3	0,000464	0,00821685
ENSGACG0000005904	clone XII	2,9548	8,41E-006	0,00028631
ENSGACG0000006048	clone XII	2,6865	0,002418	0,0312234
ENSGACG0000006109	clone XII	5,29596	6,5/E-006	0,00023243
ENSGACG0000006530	clone XII	1,98222	0,0010583	0,0160868
ENSGACG0000007447	clone XII	-1,68661	0,0004396	0,00786092
ENSGACG0000007661	clone XII	5,71207	3,10E-005	0,00086201

gene	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000008353	clone XII	2,38765	0,0008087	0,012922
ENSGACG0000008661,ENSGACG0000	C clone XII	0,879168	0,0029556	0,0366216
ENSGACG0000008779	clone XII	-0,99187	8,00E-005	0,00190918
ENSGACG0000008872	clone XII	-1,22474	0,0039624	0,0460921
ENSGACG0000009229	clone XII	-2,08331	0,0003682	0,00679296
ENSGACG0000009520,ENSGACG0000	C clone XII	1,0074	0,0030575	0,0376081
ENSGACG0000009715	clone XII	1,44465	0,0002091	0,00425162
ENSGACG0000009825	clone XII	2,23619	1,77E-007	1,06E-005
ENSGACG0000010050	clone XII	2,23323	6,46E-006	0,00022909
ENSGACG0000010476	clone XII	4,15084	1,61E-010	2,33E-008
ENSGACG0000010478	clone XII	1,98345	0,0041169	0,04748
ENSGACG0000010501	clone XII	-1,52744	4,78E-006	0,00017757
ENSGACG0000010623	clone XII	8,74215	7,37E-008	4,97E-006
ENSGACG00000011294	clone XII	1,5189	1,12E-005	0,00036514
ENSGACG00000011767	clone XII	3,52681	0,0035157	0,0419643
ENSGACG0000012657	clone XII	7,46295	1,85E-008	1,50E-006
ENSGACG0000012663	clone XII	2,72269	0,00033 (0,00620401
ENSGACG0000013327	clone XII	3,31805	0,0002644	0,00516375
ENSGACG0000013782	clone XII	3,77565	1,16E-005	0,00037448
ENSGACG00000014109	clone XII	1,89089	0,004339	0,0494517
ENSGACG00000014948	clone XII	8,09567	3,06E-005	0,0008537
ENSGACG00000014960	clone XII	2,55214	0,0031035	0,0380444
ENSGACG00000018580	clone XII	2,30513	1,74E-005	0,00052994
ENSGACG00000018802	clone XII	2,16961	0,0002563	0,00503493
ENSGACG00000018840	clone XII	2,49532	2,57E-007	1,46E-005
ENSGACG00000019023	clone XII	0,647488	0,0014032	0,0201973
ENSGACG0000019819	clone XII	-1,78849	0,0031727	0,0387159
ENSGACG0000019951	clone XII	2,4068	0,0037367	0,0440323
ENSGACG0000019952	clone XII	2,48159	9,45E-005	0,00219424
ENSGACG0000020145	clone XII	3,16214	9,27E-007	4,39E-005
ENSGACG0000020852	clone XII	1,89304	0,001604	0,0224793
F8	clone XII	2,52914	0,0008433	0,0133667
FHL1 (1 of 2)	clone XII	1,29869	0,0016597	0,0231076
FHOD3 (1 of 2)	clone XII	2,44033	0,0013946	0,0200974
FKBP5	clone XII	4,47993	1,28E-008	1,09E-006
FMNL1 (2 of 2)	clone XII	0,608382	0,00331117	0,0400362
FOSL1	clone XII	4,41723	0,0018847	0,0255974
GADD45B (1 of 2)	clone XII	1,54716	0,0037936	0,0445552
GADD45G (1 of 3)	clone XII	2,01489	0,0005543	0,00949883
GLB1L	clone XII	2,05182	8,65E-005	0,00203729
GPX3	clone XII	2,88363	0,0039939	0,0463754
	clone XII	3,05781	0,0003716	0,0068446
HSP90AA1 (2 of 2)	clone XII	2,83595	0,0010858	0,0164249
IGFBP1 (1 of 2)	clone XII	2,76504	0,0042645	0,0488
IRS2 (1 of 2)	clone XII	2,06855	0,0019171	0,0259422
ITGA5 (1 of 2)	clone XII	2,69698	0,0026006	0,0330809
ITGB1 (1 of 2)	clone XII	0,629352	2,54E-005	0,00072976
JUNB (2 of 2)	clone XII	2,0575	0,0021262	2 0,0281882
KCNB1	clone XII	3,35689	3,52E-008	3 2,62E-006
KIAA0907	clone XII	1,04458	0,0002769	0,00536508
KLF9	clone XII	3,36244	1,65E-006	7,18E-005
KLHL30	clone XII	2,23929	0,0005901	0,009995
KLHL38 (2 of 2)	clone XII	3,06114	0,0001186	6 0.00265181

gene	sample_2	log2(fold_change)	p_value	q_value
LMOD2 (1 of 2)	clone XII	2,65843	0,0002852	0,00549748
LRRFIP1 (1 of 2)	clone XII	1,48271	1,28E-007	8,00E-006
MAD2L2	clone XII	-1,53477	0,0005821	0,0098846
MKL2 (2 of 2)	clone XII	2,06823	0,0028171	0,0352331
MMP9	clone XII	1,84036	0,0004848	0,00851444
MRPS10	clone XII	-0,949657	0,001061	0,0161199
MYL7	clone XII	8,00201	4,45E-007	2,33E-005
MYLK	clone XII	1,91033	0,0031178	0,03818
MYLK4 (1 of 2)	clone XII	3,66086	0,0002184	0,00441022
MYOM1 (2 of 2)	clone XII	0,845752	0,003683	0,0435377
NAPSA	clone XII	1,21821	4,34E-007	2,29E-005
NAV3	clone XII	2,72356	1,46E-005	0,00045693
NID2	clone XII	1,35594	0,0003728	0,00686296
NR1D2 (2 of 2)	clone XII	2,48143	0,0001907	0,00393907
OBSL1 (2 of 2)	clone XII	1,66439	0,0016022	0,0224604
PCDH20	clone XII	2,63281	0,0016473	0,022971
PDK2 (2 of 2)	clone XII	2,30963	0,000429	0,00770546
PDLIM2	clone XII	0,929548	0,0012074	0,0178988
PPP1R15B	clone XII	2,09803	0,0003971	0,00723149
PPT2	clone XII	1,88014	0,0041917	0,0481513
PTGIS (2 of 2)	clone XII	1,66641	0,0023446	0,0304657
PTRF (1 of 2)	clone XII	1,91687	0,0005214	0,00903934
RNF19B	clone XII	1,22362	0,0006173	0,0103695
RPS29	clone XII	-0,94273	0,0012327	0,0182012
SCN4A (2 of 2)	clone XII	3,59807	8,44E-006	0,00028706
SLC25A43	clone XII	1,12733	1,60E-005	0,00049419
SLC25A44 (2 of 2)	clone XII	-0,920373	0,0004977	0,00869976
SLC3A2 (2 of 2)	clone XII	1,82001	0,0023198	0,0302066
SLC41A3 (1 of 2)	clone XII	4,73896	0,000638	0,0106543
SLC4A2 (3 of 3)	clone XII	2,5205	0,0002663	0,00519505
SLCO2A1	clone XII	2,68145	4,63E-005	0,00120776
SMOX	clone XII	3,1819	4,31E-014	1,42E-011
SOCS3 (1 of 2)	clone XII	3,31067	4,85E-006	0,00017958
SOCS3 (2 of 2)	clone XII	2,51164	0,0021381	0,0283133
SORBS2	clone XII	4,1215	0,0002797	0,00541025
SVIL (1 of 2)	clone XII	1,17834	0,0027908	0,0349739
TEF (1 of 2)	clone XII	2,22288	0,0017015	0,0235716
TG	clone XII	2,53461	0,0017886	0,0245357
THBS1 (2 of 2)	clone XII	3,70595	2,17E-005	0,00063812
TIMELESS	clone XII	3,42301	0,0024441	0,0314901
TMEM54 (1 of 2)	clone XII	-0,735023	1,90E-006	8,07E-005
TNNC1	clone XII	6,68797	2,33E-007	1,34E-005
TNNT2 (1 of 2)	clone XII	6,18283	2,94E-007	1,64E-005
TRIM63	clone XII	2,08566	0,0013545	0,0196346
TSC22D3	clone XII	2,19202	0,0009183	0,0143307
UCP2	clone XII	2,02682	0,0019288	0,0260708
VWA1 (2 of 2)	clone XII	-0,778383	1,24E-012	3,03E-010
WAC (1 of 2)	clone XII	1,17662	9,66E-005	0,00223429
ZFP36	clone XII	2,24571	0,00161/7	0,0226335
Supplementary table S.2.4 Putative immune system related genes in three-spined stickleback. Gene names were obtained either via the ensembl biomart filter, querying the *Homo sapiens* transcriptome for genes belonging to "immune system process" (GO:0002376), or via a published list containing immune genes identified in cod (*Gadus morhua*) and pipefish (*Syngnathus typhle*).

stickleback_gene_name	human_gene_name	source
ACIN1	ACIN1	ensembl biomart, HSA, GO:0002376
ACTR1B	ACTR1B	ensembl biomart, HSA, GO:0002376
ADA	ADA	ensembl biomart, HSA, GO:0002376
ADAM10	ADAM10	ensembl biomart, HSA, GO:0002376
ADAM17 (1 of 2)	ADAM17	ensembl biomart, HSA, GO:0002376
ADAM17 (2 of 2)	ADAM17	ensembl biomart, HSA, GO:0002376
ADAM8 (1 of 2)	ADAM8	ensembl biomart, HSA, GO:0002376
ADAM8 (2 of 2)	ADAM8	ensembl biomart, HSA, GO:0002376
ADAM9	ADAM9	ensembl biomart, HSA, GO:0002376
ADAMTS13	ADAMTS13	ensembl biomart, HSA, GO:0002376
ADAR	ADAR	ensembl biomart, HSA, GO:0002376
ADORA3 (1 of 2)	ADORA3	ensembl biomart, HSA, GO:0002376
ADORA3 (2 of 2)	ADORA3	ensembl biomart, HSA, GO:0002376
ADSS	ADSS	ensembl biomart, HSA, GO:0002376
ADSSL1	ADSSL1	ensembl biomart, HSA, GO:0002376
AICDA	AICDA	ensembl biomart, HSA, GO:0002376
AIMP1 (1 of 2)	AIMP1	ensembl biomart, HSA, GO:0002376
AIMP1 (2 of 2)	AIMP1	ensembl biomart, HSA, GO:0002376
AK7 (1 of 2)	AK7	ensembl biomart, HSA, GO:0002376
AK7 (2 of 2)	AK7	ensembl biomart, HSA, GO:0002376
AKIRIN2 (1 of 2)	AKIRIN2	ensembl biomart, HSA, GO:0002376
AKIRIN2 (2 of 2)	AKIRIN2	ensembl biomart, HSA, GO:0002376
AKT1	AKT1	ensembl biomart, HSA, GO:0002376
ALAS2	ALAS2	ensembl biomart, HSA, GO:0002376
ANGPT1	ANGPT1	ensembl biomart, HSA, GO:0002376
ANGPT2	ANGPT2	ensembl biomart, HSA, GO:0002376
ANK1 (1 of 2)	ANK1	ensembl biomart, HSA, GO:0002376
ANK1 (2 of 2)	ANK1	ensembl biomart, HSA, GO:0002376
ANXA1 (1 of 2)	ANXA1	ensembl biomart, HSA, GO:0002376
ANXA1 (2 of 2)	ANXA1	ensembl biomart, HSA, GO:0002376
ANXA3 (1 of 2)	ANXA3	ensembl biomart, HSA, GO:0002376
ANXA3 (2 of 2)	ANXA3	ensembl biomart, HSA, GO:0002376
AP1B1	AP1B1	ensembl biomart, HSA, GO:0002376
AP1G1	AP1G1	ensembl biomart, HSA, GO:0002376
AP1M1	AP1M1	ensembl biomart, HSA, GO:0002376
AP1M2	AP1M2	ensembl biomart, HSA, GO:0002376
AP1S1	AP1S1	ensembl biomart, HSA, GO:0002376
AP1S2 (1 of 2)	AP1S2	ensembl biomart, HSA, GO:0002376
AP1S2 (2 of 2)	AP1S2	ensembl biomart, HSA, GO:0002376
AP1S3 (1 of 2)	AP1S3	ensembl biomart, HSA, GO:0002376
AP2A1	AP2A1	ensembl biomart, HSA, GO:0002376
AP2A2	AP2A2	ensembl biomart, HSA, GO:0002376
AP2B1	AP2B1	ensembl biomart, HSA, GO:0002376
AP2M1	AP2M1	ensembl biomart, HSA, GO:0002376
AF231	AP2S1	ensembl biomart, HSA, GO:0002376
AP3B1 (1 of 2)	AP3B1	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
AP3B1 (2 of 2)	AP3B1	ensembl biomart, HSA, GO:0002376
AP3D1	AP3D1	ensembl biomart, HSA, GO:0002376
APC	APC	ensembl biomart, HSA, GO:0002376
APOB (1 of 5)	APOB	ensembl biomart, HSA, GO:0002376
APOB (2 of 5)	APOB	ensembl biomart, HSA, GO:0002376
APOB (3 of 5)	APOB	ensembl biomart, HSA, GO:0002376
APOB (4 of 5)	APOB	ensembl biomart, HSA, GO:0002376
APOB (5 of 5)	APOB	ensembl biomart, HSA, GO:0002376
APP (1 of 2)	APP	ensembl biomart, HSA, GO:0002376
APP (2 of 2)	APP	ensembl biomart, HSA, GO:0002376
AQP4	AQP4	ensembl biomart, HSA, GO:0002376
AQP9 (1 of 2)	AQP9	ensembl biomart, HSA, GO:0002376
AQP9 (2 of 2)	AQP9	ensembl biomart, HSA, GO:0002376
ARG2	ARG2	ensembl biomart, HSA, GO:0002376
ARHGEF5	ARHGEF5	ensembl biomart, HSA, GO:0002376
ASS1	ASS1	ensembl biomart, HSA, GO:0002376
ATF1	ATF1	ensembl biomart, HSA, GO:0002376
ATF2	ATF2	ensembl biomart, HSA, GO:0002376
ATG12	ATG12	ensembl biomart, HSA, GO:0002376
ATG5	ATG5	ensembl biomart, HSA, GO:0002376
ATG9A	ATG9A	ensembl biomart, HSA, GO:0002376
ATM (1 of 2)	ATM	ensembl biomart, HSA, GO:0002376
ATM (2 of 2)	ATM	ensembl biomart, HSA, GO:0002376
ATP1B1 (1 of 2)	ATP1B1	ensembl biomart, HSA, GO:0002376
ATP1B1 (2 of 2)	ATP1B1	ensembl biomart, HSA, GO:0002376
ATP1B2 (1 of 2)	ATP1B2	ensembl biomart, HSA, GO:0002376
ATP1B2 (2 of 2)	ATP1B2	ensembl biomart, HSA, GO:0002376
ATP1B3	ATP1B3	ensembl biomart, HSA, GO:0002376
ATP6V0A2 (1 of 2)	ATP6V0A2	ensembl biomart, HSA, GO:0002376
ATP6V0A2 (2 of 2)	ATP6V0A2	ensembl biomart, HSA, GO:0002376
ATP7A	ATP7A	ensembl biomart, HSA, GO:0002376
AXL	AXL	ensembl biomart, HSA, GO:0002376
B4GALT1	B4GALT1	ensembl biomart, HSA, GO:0002376
BANK1	BANK1	ensembl biomart, HSA, GO:0002376
BARX1	BARX1	ensembl biomart, HSA, GO:0002376
BAX	BAX	ensembl biomart, HSA, GO:0002376
BCAP31	BCAP31	ensembl biomart, HSA, GO:0002376
BCL10	BCL10	ensembl biomart, HSA, GO:0002376
BCL11A (1 of 2)	BCL11A	ensembl biomart, HSA, GO:0002376
BCL11A (2 of 2)	BCL11A	ensembl biomart, HSA, GO:0002376
BCL2	BCL2	ensembl biomart, HSA, GO:0002376
BCL2L1 (1 of 2)	BCL2L1	ensembl biomart, HSA, GO:0002376
BCL2L1 (2 of 2)	BCL2L1	ensembl biomart, HSA, GO:0002376
BCL6 (1 of 2)	BCL6	ensembl biomart, HSA, GO:0002376
BCL6 (2 of 2)	BCL6	ensembl biomart, HSA, GO:0002376
BDKRB2 (1 of 4)	BDKRB2	ensembl biomart, HSA, GO:0002376
BDKRB2 (2 of 4)	BDKRB2	ensembl biomart, HSA, GO:0002376
BDKRB2 (3 of 4)	BDKRB2	ensembl biomart, HSA, GO:0002376
BDKRB2 (4 of 4)	BDKRB2	ensembl biomart, HSA, GO:0002376
BECN1	BECN1	ensembl biomart, HSA, GO:0002376
BLM	BLM	ensembl biomart, HSA, GO:0002376
BLMH	BLMH	ensembl biomart, HSA, GO:0002376
BLNK	BLNK	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
BMI1	BMI1	ensembl biomart, HSA, GO:0002376
BMP4	BMP4	ensembl biomart, HSA, GO:0002376
BMP6	BMP6	ensembl biomart, HSA, GO:0002376
BMPR1A	BMPR1A	ensembl biomart, HSA, GO:0002376
BNIP3	BNIP3	ensembl biomart, HSA, GO:0002376
BNIP3L (1 of 2)	BNIP3L	ensembl biomart, HSA, GO:0002376
BNIP3L (2 of 2)	BNIP3L	ensembl biomart, HSA, GO:0002376
BPGM	BPGM	ensembl biomart, HSA, GO:0002376
BRCA2	BRCA2	ensembl biomart, HSA, GO:0002376
ВТК	ВТК	ensembl biomart, HSA, GO:0002376
C11orf82	C11orf82	ensembl biomart, HSA, GO:0002376
C1QBP	C1QBP	ensembl biomart, HSA, GO:0002376
C1QC	C1QC	ensembl biomart, HSA, GO:0002376
C3 (1 of 8)	C3	ensembl biomart, HSA, GO:0002376
C3 (2 of 8)	C3	ensembl biomart, HSA, GO:0002376
C3 (3 of 8)	C3	ensembl biomart, HSA, GO:0002376
C3 (4 of 8)	C3	ensembl biomart, HSA, GO:0002376
C3 (5 of 8)	C3	ensembl biomart, HSA, GO:0002376
C3 (6 of 8)	C3	ensembl biomart, HSA, GO:0002376
C3 (7 of 8)	C3	ensembl biomart, HSA, GO:0002376
C3 (8 of 8)	C3	ensembl biomart, HSA, GO:0002376
C5AR1	C5AR1	ensembl biomart, HSA, GO:0002376
C6	C6	ensembl biomart, HSA, GO:0002376
C7 (1 of 2)	C7	ensembl biomart, HSA, GO:0002376
C7 (2 of 2)	C7	ensembl biomart, HSA, GO:0002376
C8A	C8A	ensembl biomart, HSA, GO:0002376
C8B	C8B	ensembl biomart, HSA, GO:0002376
C8G	C8G	ensembl biomart, HSA, GO:0002376
C9	C9	ensembl biomart, HSA, GO:0002376
CACNB4 (1 of 2)	CACNB4	ensembl biomart, HSA, GO:0002376
CACNB4 (2 of 2)	CACNB4	ensembl biomart, HSA, GO:0002376
CALCA	CALCA	ensembl biomart, HSA, GO:0002376
CALCR	CALCR	ensembl biomart, HSA, GO:0002376
CAMK2A	CAMK2A	ensembl biomart, HSA, GO:0002376
CAMK4	CAMK4	ensembl biomart, HSA, GO:0002376
CANX	CANX	ensembl biomart, HSA, GO:0002376
CARD11	CARD11	ensembl biomart, HSA, GO:0002376
CARD9	CARD9	ensembl biomart, HSA, GO:0002376
CASP3 (1 of 4)	CASP3	ensembl biomart, HSA, GO:0002376
CASP3 (2 of 4)	CASP3	ensembl biomart, HSA, GO:0002376
CASP3 (3 of 4)	CASP3	ensembl biomart, HSA, GO:0002376
CASP3 (4 of 4)	CASP3	ensembl biomart, HSA, GO:0002376
CASP8	CASP8	ensembl biomart, HSA, GO:0002376
	CAVI	ensembl biomart, HSA, GO:0002376
CBFA213	CBFA213	ensembl biomart, HSA, GO:0002376
		ensembl biomart, HSA, GO:0002376
	CONRO	ensembl biomart, HSA, GO:0002376
CNR2 (2 of 2)	CONRO	ensembl biomart USA CO:0002376
CCR6(1 of 2)	CCR6	ensemblishingt HSA CO:0002376
CCR6(2 of 2)	CCB6	ensemblibiomart HSA GO:0002376
CCB9 (1 of 2)	CCB9	ensemblibiomart HSA CO.0002376
CCB9 (2 of 2)	CCB9	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
CCRL1 (1 of 2)	CCRL1	ensembl biomart, HSA, GO:0002376
CCRL1 (2 of 2)	CCRL1	ensembl biomart, HSA, GO:0002376
CD164	CD164	ensembl biomart, HSA, GO:0002376
CD276	CD276	ensembl biomart, HSA, GO:0002376
CD74 (1 of 2)	CD74	ensembl biomart, HSA, GO:0002376
CD93	CD93	ensembl biomart, HSA, GO:0002376
CD97 (1 of 2)	CD97	ensembl biomart, HSA, GO:0002376
CD97 (2 of 2)	CD97	ensembl biomart, HSA, GO:0002376
CDK1	CDK1	ensembl biomart, HSA, GO:0002376
CDK13	CDK13	ensembl biomart, HSA, GO:0002376
CDK6	CDK6	ensembl biomart, HSA, GO:0002376
CENPE	CENPE	ensembl biomart, HSA, GO:0002376
CFB	CFB	ensembl biomart, HSA, GO:0002376
CFI	CFI	ensembl biomart, HSA, GO:0002376
CFP	CFP	ensembl biomart, HSA, GO:0002376
CHD7	CHD7	ensembl biomart, HSA, GO:0002376
CHIA	CHIA	ensembl biomart, HSA, GO:0002376
CHID1	CHID1	ensembl biomart, HSA, GO:0002376
CHRNA4	CHRNA4	ensembl biomart, HSA, GO:0002376
CHRNB2	CHRNB2	ensembl biomart, HSA, GO:0002376
CHST3 (1 of 2)	CHST3	ensembl biomart, HSA, GO:0002376
CHST3 (2 of 2)	CHST3	ensembl biomart, HSA, GO:0002376
CHUK (1 of 2)	CHUK	ensembl biomart, HSA, GO:0002376
CHUK (2 of 2)	CHUK	ensembl biomart, HSA, GO:0002376
CIAPIN1	CIAPIN1	ensembl biomart, HSA, GO:0002376
CLEC4M	CLEC4M	ensembl biomart, HSA, GO:0002376
CLNK	CLNK	ensembl biomart, HSA, GO:0002376
CLTA	CLTA	ensembl biomart, HSA, GO:0002376
CLU	CLU	ensembl biomart, HSA, GO:0002376
CMKLR1 (1 of 2)	CMKLR1	ensembl biomart, HSA, GO:0002376
CMKLR1 (2 of 2)	CMKLR1	ensembl biomart, HSA, GO:0002376
	CNN2	ensembl biomart, HSA, GO:0002376
$\begin{array}{c} \text{COLIAT} (1 \text{ of } 2) \\ \text{COLIAT} (2 \text{ of } 2) \end{array}$	COLIAI	ensembl biomart, HSA, GO:0002376
		ensemblibiomart, HSA, GO:0002376
		ensemblibiomart, HSA, GO.0002376
COL4A3BP(2 of 2)		ensemblibiomart, HSA, GO.0002376
COLE(12) (1 of 2)		ensemblibiomart, HSA, GO:0002376
COLECT2 (1 of 2)	COLECT2	ensemblibiomart, HSA, GO:0002376
		ensemblibiomart, HSA, GO:0002376
CPL X2	CPL X2	ensembl biomart, HSA, GO:0002376
CRCP	CRCP	ensembl biomart, HSA, GO:0002376
CBEB1 (1 of 2)	CREB1	ensembl biomart, HSA, GO:0002376
CBEB1 (2 of 2)	CREB1	ensembl biomart, HSA, GO:0002376
CREBBP (1 of 2)	CREBBP	ensembl biomart, HSA, GO:0002376
CREBBP (2 of 2)	CREBBP	ensembl biomart, HSA, GO:0002376
CRHR1	CBHB1	ensembl biomart, HSA, GO:0002376
CBIP2 (1 of 2)	CBIP2	ensembl biomart, HSA, GO:0002376
CRIP2 (2 of 2)	CRIP2	ensembl biomart, HSA, GO:0002376
CRISP3	CRISP3	ensembl biomart, HSA, GO:0002376
CRKL	CRKL	ensembl biomart, HSA, GO:0002376
CSF1R (1 of 2)	CSF1R	ensembl biomart. HSA. GO:0002376
CSF1R (2 of 2)	CSF1R	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
CSK (1 of 2)	CSK	ensembl biomart, HSA, GO:0002376
CSK (2 of 2)	CSK	ensembl biomart, HSA, GO:0002376
CTNNBL1	CTNNBL1	ensembl biomart, HSA, GO:0002376
CTSB	CTSB	ensembl biomart, HSA, GO:0002376
CTSC	CTSC	ensembl biomart, HSA, GO:0002376
CTSD	CTSD	ensembl biomart, HSA, GO:0002376
CTSE	CTSE	ensembl biomart, HSA, GO:0002376
CTSF	CTSF	ensembl biomart, HSA, GO:0002376
CTSH	CTSH	ensembl biomart, HSA, GO:0002376
CTSK	CTSK	ensembl biomart, HSA, GO:0002376
CTSS (1 of 2)	CTSS	ensembl biomart, HSA, GO:0002376
CTSS (2 of 2)	CTSS	ensembl biomart, HSA, GO:0002376
CXADR	CXADR	ensembl biomart, HSA, GO:0002376
CXCL12 (1 of 2)	CXCL12	ensembl biomart, HSA, GO:0002376
CXCL12 (2 of 2)	CXCL12	ensembl biomart, HSA, GO:0002376
CXCR4 (1 of 2)	CXCR4	ensembl biomart, HSA, GO:0002376
CXCR4 (2 of 2)	CXCB4	ensembl biomart, HSA, GO:0002376
СУВА	СҮВА	ensembl biomart, HSA, GO:0002376
СҮВВ	СУВВ	ensembl biomart, HSA, GO:0002376
CYFIP2	CYFIP2	ensembl biomart, HSA, GO:0002376
CYP19A1 (1 of 2)	CYP19A1	ensembl biomart, HSA, GO:0002376
CYP19A1 (2 of 2)	CYP19A1	ensembl biomart, HSA, GO:0002376
CYP27B1	CYP27B1	ensembl biomart, HSA, GO:0002376
CYSLTR2	CYSLTB2	ensembl biomart, HSA, GO:0002376
DAB2	DAB2	ensembl biomart, HSA, GO:0002376
DCLRE1C	DCLRE1C	ensembl biomart, HSA, GO:0002376
DCTN1 (1 of 2)	DCTN1	ensembl biomart, HSA, GO:0002376
DCTN1 (2 of 2)	DCTN1	ensembl biomart HSA GO:0002376
DCTN6 (1 of 2)	DCTN6	ensembl biomart, HSA, GO:0002376
DCTN6 (2 of 2)	DCTN6	ensembl biomart, HSA, GO:0002376
DDOST	DDOST	ensembl biomart, HSA, GO:0002376
DICER1	DICER1	ensembl biomart, HSA, GO:0002376
DNAJA3 (1 of 2)	DNAJA3	ensembl biomart, HSA, GO:0002376
DNAJA3 (2 of 2)	DNAJA3	ensembl biomart, HSA, GO:0002376
DNASE2	DNASE2	ensembl biomart HSA GO:0002376
DNM2 (1 of 2)	DNM2	ensembl biomart HSA GO:0002376
DNM2 (2 of 2)	DNM2	ensembl biomart HSA GO:0002376
DOCK2	DOCK2	ensembl biomart HSA GO:0002376
DOK2	DOK2	ensembl biomart HSA GO:0002376
DUSP3	DUSP3	ensembl biomart, HSA, GO:0002376
DUSP4	DUSP4	ensembl biomart, HSA, GO:0002376
DUSP6	DUSP6	ensembl biomart, HSA, GO:0002376
DUSP7 (1 of 2)	DUSP7	ensembl biomart, HSA, GO:0002376
DYNC1H1	DYNC1H1	ensembl biomart, HSA, GO:0002376
DYNC1I1	DYNC111	ensembl biomart, HSA, GO:0002376
DYNC1I2 (1 of 2)	DYNC112	ensembl biomart, HSA, GO:0002376
DYNC1 2 (2 of 2)	DYNC112	ensembl biomart, HSA, GO:0002376
DYNC1LI2	DYNC1112	ensembl biomart, HSA, GO:0002376
DYNC2H1	DYNC2H1	ensembl biomart HSA GO:0002376
DYNC2LI1	DYNC2L1	ensembl biomart HSA GO:0002376
DYNLL2	DYNLL2	ensembl biomart HSA GO:0002376
EBI3	EBI3	ensembl biomart HSA GO:0002376
EDA	EDA	ensembl biomart HSA GO:0002376
		5

stickleback_gene_name	human_gene_name	source
EDN2	EDN2	ensembl biomart, HSA, GO:0002376
EDNRB (1 of 2)	EDNRB	ensembl biomart, HSA, GO:0002376
EDNRB (2 of 2)	EDNRB	ensembl biomart, HSA, GO:0002376
EFNA2	EFNA2	ensembl biomart, HSA, GO:0002376
FGB1	EGR1	ensembl biomart, HSA, GO:0002376
FIE2AK2 (1 of 2)	EIF2AK2	ensembl biomart, HSA, GO:0002376
FIF2AK2 (2 of 2)	FIF2AK2	ensembl biomart, HSA, GO:0002376
	FLK1	ensembl biomart, HSA, GO:0002376
FLMOD2	ELMOD2	ensembl biomart, HSA, GO:0002376
EMB2	EMB2	ensembl biomart HSA GO:0002376
ENDOLI	ENDOLI	ensembl biomart, HSA, GO:0002376
ENPP1	ENPP1	ensembl biomart, HSA, GO:0002376
ENIPP2 (1 of 2)	ENPP2	ensembl biomart, HSA, GO:0002376
ENIDD2 $(2 \text{ of } 2)$	ENIPP2	ensembl biomart, HSA, GO:0002376
EOMES (1 of 2)	EOMES	ensembl biomart, HSA, GO:0002376
	EOMES	ensembl biomart, HSA, GO:0002376
EONES(2012)	ED300	ensemblibiomart, HSA, GO:0002376
EP300(1012)	EP300	ensemblibiomart, HSA, GO.0002376
	EF300	ensemblibiomart, HSA, GO.0002376
	EPAST	ensemblibiomart, HSA, GO.0002376
	EPHA2	ensemblibioman, HSA, GO:0002376
	EPHA2	ensembl biomart, HSA, GO:0002376
EPHB3 (1 of 2)	EPHB3	ensembl blomart, HSA, GO:0002376
EPHB3 (2 of 2)	EPHB3	ensembl blomart, HSA, GO:0002376
EPO	EPO	ensembl biomart, HSA, GO:0002376
ERAP1	ERAPI	ensembl biomart, HSA, GO:0002376
ERAP2	ERAP2	ensembl blomart, HSA, GO:0002376
ERCC1	ERCC1	ensembl biomart, HSA, GO:0002376
ERCC2	ERCC2	ensembl biomart, HSA, GO:0002376
ESAM	ESAM	ensembl biomart, HSA, GO:0002376
ETS1	ETS1	ensembl biomart, HSA, GO:0002376
EXO1	EXO1	ensembl biomart, HSA, GO:0002376
EXOC6	EXOC6	ensembl biomart, HSA, GO:0002376
EXOSC3	EXOSC3	ensembl biomart, HSA, GO:0002376
EXOSC4	EXOSC4	ensembl biomart, HSA, GO:0002376
EXOSC5	EXOSC5	ensembl biomart, HSA, GO:0002376
EXOSC6	EXOSC6	ensembl biomart, HSA, GO:0002376
EXOSC9	EXOSC9	ensembl biomart, HSA, GO:0002376
F11R	F11R	ensembl biomart, HSA, GO:0002376
FAM20C	FAM20C	ensembl biomart, HSA, GO:0002376
FAM65C	FAM65C	ensembl biomart, HSA, GO:0002376
FANCC	FANCC	ensembl biomart, HSA, GO:0002376
FECH	FECH	ensembl biomart, HSA, GO:0002376
FGF10 (1 of 2)	FGF10	ensembl biomart, HSA, GO:0002376
FGF10 (2 of 2)	FGF10	ensembl biomart, HSA, GO:0002376
FGF3	FGF3	ensembl biomart, HSA, GO:0002376
FGFR2	FGFR2	ensembl biomart, HSA, GO:0002376
FKBP1B	FKBP1B	ensembl biomart, HSA, GO:0002376
FLVCR1	FLVCR1	ensembl biomart, HSA, GO:0002376
FN1 (1 of 2)	FN1	ensembl biomart, HSA, GO:0002376
FN1 (2 of 2)	FN1	ensembl biomart, HSA, GO:0002376
FOS (1 of 2)	FOS	ensembl biomart, HSA, GO:0002376
FOS (2 of 2)	FOS	ensembl biomart, HSA, GO:0002376
FOXJ1	FOXJ1	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
FOXN1	FOXN1	ensembl biomart, HSA, GO:0002376
FOXP1	FOXP1	ensembl biomart, HSA, GO:0002376
FST	FST	ensembl biomart, HSA, GO:0002376
FYB	FYB	ensembl biomart, HSA, GO:0002376
FYN	FYN	ensembl biomart, HSA, GO:0002376
FZD5	FZD5	ensembl biomart, HSA, GO:0002376
FZD7	FZD7	ensembl biomart, HSA, GO:0002376
FZD8	FZD8	ensembl biomart, HSA, GO:0002376
FZD9	FZD9	ensembl biomart, HSA, GO:0002376
G6PD (1 of 2)	G6PD	ensembl biomart, HSA, GO:0002376
G6PD (2 of 2)	G6PD	ensembl biomart, HSA, GO:0002376
GAB2	GAB2	ensembl biomart, HSA, GO:0002376
GAB3	GAB3	ensembl biomart, HSA, GO:0002376
GALNT2	GALNT2	ensembl biomart, HSA, GO:0002376
GAS6	GAS6	ensembl biomart, HSA, GO:0002376
GATA2 (1 of 2)	GATA2	ensembl biomart, HSA, GO:0002376
GATA2 (2 of 2)	GATA2	ensembl biomart, HSA, GO:0002376
GCH1	GCH1	ensembl biomart, HSA, GO:0002376
GCNT3 (1 of 2)	GCNT3	ensembl biomart, HSA, GO:0002376
GCNT3 (2 of 2)	GCNT3	ensembl biomart, HSA, GO:0002376
GEM	GEM	ensembl biomart, HSA, GO:0002376
GLI3	GLI3	ensembl biomart, HSA, GO:0002376
GLRX5	GLRX5	ensembl biomart, HSA, GO:0002376
GNL1	GNL1	ensembl biomart, HSA, GO:0002376
GPAM	GPAM	ensembl biomart, HSA, GO:0002376
GPC3	GPC3	ensembl biomart, HSA, GO:0002376
GPR183	GPR183	ensembl biomart, HSA, GO:0002376
GPR65	GPR65	ensembl biomart, HSA, GO:0002376
GRAP2	GRAP2	ensembl biomart, HSA, GO:0002376
GRB14	GRB14	ensembl biomart, HSA, GO:0002376
GRB2	GRB2	ensembl biomart, HSA, GO:0002376
GRB7	GRB7	ensembl biomart, HSA, GO:0002376
GTPBP1	GTPBP1	ensembl biomart, HSA, GO:0002376
HAND2	HAND2	ensembl biomart, HSA, GO:0002376
HCK	HCK	ensembl biomart, HSA, GO:0002376
HCLS1	HCLS1	ensembl biomart, HSA, GO:0002376
HDAC4 (1 of 2)	HDAC4	ensembl biomart, HSA, GO:0002376
HDAC4 (2 of 2)	HDAC4	ensembl biomart, HSA, GO:0002376
HDAC5	HDAC5	ensembl biomart, HSA, GO:0002376
HDAC9	HDAC9	ensembl biomart, HSA, GO:0002376
HELLS	HELLS	ensembl biomart, HSA, GO:0002376
HHEX	HHEX	ensembl biomart, HSA, GO:0002376
HIF1A	HIF1A	ensembl biomart, HSA, GO:0002376
HIPK1 (1 of 2)	HIPK1	ensembl biomart, HSA, GO:0002376
HIPK1 (2 of 2)	HIPK1	ensembl biomart, HSA, GO:0002376
HIPK2	HIPK2	ensembl biomart, HSA, GO:0002376
HMGB1 (1 of 2)	HMGB1	ensembl biomart, HSA, GO:0002376
HMGB1 (2 of 2)	HMGB1	ensembl biomart, HSA, GO:0002376
HMGB2	HMGB2	ensembl biomart, HSA, GO:0002376
HOXA9	HOXA9	ensembl biomart, HSA, GO:0002376
HOXB4	HOXB4	ensembl biomart, HSA, GO:0002376
HPRT1	HPRT1	ensembl biomart, HSA, GO:0002376
HRAS	HRAS	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
HRH2 (1 of 2)	HRH2	ensembl biomart, HSA, GO:0002376
HRH2 (2 of 2)	HRH2	ensembl biomart, HSA, GO:0002376
HYAL2 (1 of 2)	HYAL2	ensembl biomart, HSA, GO:0002376
HYAL2 (2 of 2)	HYAL2	ensembl biomart, HSA, GO:0002376
ID2	ID2	ensembl biomart, HSA, GO:0002376
IFI35	IFI35	ensembl biomart, HSA, GO:0002376
IFIH1	IFIH1	ensembl biomart, HSA, GO:0002376
IGF1R (1 of 2)	IGF1R	ensembl biomart, HSA, GO:0002376
IGF1R (2 of 2)	IGF1R	ensembl biomart, HSA, GO:0002376
IK	IK	ensembl biomart, HSA, GO:0002376
IKBKAP	IKBKAP	ensembl biomart, HSA, GO:0002376
IKBKB	IKBKB	ensembl biomart, HSA, GO:0002376
IKBKE	IKBKE	ensembl biomart, HSA, GO:0002376
IKBKG	IKBKG	ensembl biomart, HSA, GO:0002376
IL10RB	IL10RB	ensembl biomart, HSA, GO:0002376
IL12B (3 of 3)	IL12B	ensembl biomart, HSA, GO:0002376
IL16	IL16	ensembl biomart, HSA, GO:0002376
IL1RAP	IL1RAP	ensembl biomart, HSA, GO:0002376
IL1RAPL1 (1 of 2)	IL1RAPL1	ensembl biomart, HSA, GO:0002376
IL1RAPL1 (2 of 2)	IL1RAPL1	ensembl biomart, HSA, GO:0002376
IL1RAPL2	IL1RAPL2	ensembl biomart, HSA, GO:0002376
IL1RL2	IL1RL2	ensembl biomart, HSA, GO:0002376
IL20RB	IL20RB	ensembl biomart, HSA, GO:0002376
IL2RG	IL2RG	ensembl biomart, HSA, GO:0002376
IL7R	IL7R	ensembl biomart, HSA, GO:0002376
ILF2	ILF2	ensembl biomart, HSA, GO:0002376
IMPDH1 (1 of 2)	IMPDH1	ensembl biomart, HSA, GO:0002376
INHA	INHA	ensembl biomart, HSA, GO:0002376
INHBA (1 of 2)	INHBA	ensembl biomart, HSA, GO:0002376
INHBA (2 of 2)	INHBA	ensembl biomart, HSA, GO:0002376
INPP5D	INPP5D	ensembl biomart, HSA, GO:0002376
INS	INS	ensembl biomart, HSA, GO:0002376
IP6K2 (1 of 2)	IP6K2	ensembl biomart, HSA, GO:0002376
IP6K2 (2 of 2)	IP6K2	ensembl biomart, HSA, GO:0002376
IRAK1	IRAK1	ensembl biomart, HSA, GO:0002376
IRAK3	IRAK3	ensembl biomart, HSA, GO:0002376
IRAK4	IRAK4	ensembl biomart, HSA, GO:0002376
IREB2	IREB2	ensembl biomart, HSA, GO:0002376
IRF2	IRF2	ensembl biomart, HSA, GO:0002376
IRF3	IRF3	ensembl biomart, HSA, GO:0002376
IRF4 (1 of 2)	IRF4	ensembl biomart, HSA, GO:0002376
IRF4 (2 of 2)	IRF4	ensembl biomart, HSA, GO:0002376
IRF5	IRF5	ensembl biomart, HSA, GO:0002376
IRF6	IRF6	ensembl biomart, HSA, GO:0002376
IRF7	IRF7	ensembl biomart, HSA, GO:0002376
IRF8	IRF8	ensembl biomart, HSA, GO:0002376
ITCH (1 of 2)	ITCH	ensembl biomart, HSA, GO:0002376
ITCH (2 of 2)	ITCH	ensembl biomart, HSA, GO:0002376
ITGA1	ITGA1	ensembl biomart, HSA, GO:0002376
ITGA5 (1 of 2)	ITGA5	ensembl biomart, HSA, GO:0002376
ITGA5 (2 of 2)	ITGA5	ensembl biomart, HSA, GO:0002376
ITGA6 (1 of 2)	ITGA6	ensembl biomart, HSA, GO:0002376
ITGA6 (2 of 2)	IIGA6	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
ITGA9	ITGA9	ensembl biomart, HSA, GO:0002376
ITGAV	ITGAV	ensembl biomart, HSA, GO:0002376
ITGB1 (1 of 2)	ITGB1	ensembl biomart, HSA, GO:0002376
ITGB1 (2 of 2)	ITGB1	ensembl biomart, HSA, GO:0002376
ITGB5	ITGB5	ensembl biomart, HSA, GO:0002376
ITK	ITK	ensembl biomart, HSA, GO:0002376
ITPKB	ITPKB	ensembl biomart, HSA, GO:0002376
JAG1 (1 of 2)	JAG1	ensembl biomart, HSA, GO:0002376
JAG1 (2 of 2)	JAG1	ensembl biomart, HSA, GO:0002376
JAG2	JAG2	ensembl biomart, HSA, GO:0002376
JAK1	JAK1	ensembl biomart, HSA, GO:0002376
JAK2 (1 of 2)	JAK2	ensembl biomart, HSA, GO:0002376
JAK2 (2 of 2)	JAK2	ensembl biomart, HSA, GO:0002376
JAM2 (1 of 2)	JAM2	ensembl biomart, HSA, GO:0002376
JAM2 (2 of 2)	JAM2	ensembl biomart, HSA, GO:0002376
JAM3 (1 of 2)	JAM3	ensembl biomart, HSA, GO:0002376
JAM3 (2 of 2)	JAM3	ensembl biomart, HSA, GO:0002376
JARID2	JARID2	ensembl biomart, HSA, GO:0002376
JMJD6	JMJD6	ensembl biomart, HSA, GO:0002376
JUN (1 of 2)	JUN	ensembl biomart, HSA, GO:0002376
JUN (2 of 2)	JUN	ensembl biomart, HSA, GO:0002376
JUNB (1 of 2)	JUNB	ensembl biomart, HSA, GO:0002376
JUNB (2 of 2)	JUNB	ensembl biomart, HSA, GO:0002376
KCNJ8	KCNJ8	ensembl biomart, HSA, GO:0002376
KIF11	KIF11	ensembl biomart, HSA, GO:0002376
KIF15	KIF15	ensembl biomart, HSA, GO:0002376
KIF18A	KIF18A	ensembl biomart, HSA, GO:0002376
KIF22	KIF22	ensembl biomart, HSA, GO:0002376
KIF23 (1 of 2)	KIF23	ensembl biomart, HSA, GO:0002376
KIF23 (2 of 2)	KIF23	ensembl biomart, HSA, GO:0002376
KIF26A (1 of 2)	KIF26A	ensembl biomart, HSA, GO:0002376
KIF26A (2 of 2)	KIF26A	ensembl biomart, HSA, GO:0002376
KIF2C	KIF2C	ensembl biomart, HSA, GO:0002376
KIF3A	KIF3A	ensembl biomart, HSA, GO:0002376
KIF3B	KIF3B	ensembl biomart, HSA, GO:0002376
KIF3C (1 of 2)	KIF3C	ensembl biomart, HSA, GO:0002376
KIF3C (2 of 2)	KIF3C	ensembl biomart, HSA, GO:0002376
KIF4A	KIF4A	ensembl biomart, HSA, GO:0002376
KIF5A (1 of 2)	KIF5A	ensembl biomart, HSA, GO:0002376
KIF5A (2 of 2)	KIF5A	ensembl biomart, HSA, GO:0002376
KIFAP3 (1 of 2)	KIFAP3	ensembl biomart, HSA, GO:0002376
KIFAP3 (2 of 2)	KIFAP3	ensembl biomart, HSA, GO:0002376
KII	KII	ensembl biomart, HSA, GO:0002376
KLC1	KLC1	ensembl biomart, HSA, GO:0002376
KLC2	KLC2	ensembl biomart, HSA, GO:0002376
KLF2 (1 of 2)	KLF2	ensembl biomart, HSA, GO:0002376
KLF2 (2 of 2)	KLF2	ensembl biomart, HSA, GO:0002376
KLF6 (1 of 2)	KLF6	ensembl biomart, HSA, GO:0002376
KLF6 (2 01 2)	KLF6	ensembl biomart, HSA, GO:0002376
KHAS	KHAS	ensembl biomart, HSA, GO:0002376
KYNU	KYNU	ensembl biomart, HSA, GO:0002376
	L1CAM	ensembl biomart, HSA, GO:0002376
LCK	LCK	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
LEF1	LEF1	ensembl biomart, HSA, GO:0002376
LGALS1 (1 of 3)	LGALS1	ensembl biomart, HSA, GO:0002376
LGALS1 (2 of 3)	LGALS1	ensembl biomart, HSA, GO:0002376
LGALS1 (3 of 3)	LGALS1	ensembl biomart, HSA, GO:0002376
LGALS3	LGALS3	ensembl biomart, HSA, GO:0002376
LGALS8 (1 of 2)	LGALS8	ensembl biomart, HSA, GO:0002376
LGALS8 (2 of 2)	LGALS8	ensembl biomart, HSA, GO:0002376
LGMN	LGMN	ensembl biomart, HSA, GO:0002376
LIG4	LIG4	ensembl biomart, HSA, GO:0002376
LMO4	LMO4	ensembl biomart, HSA, GO:0002376
LNPEP	LNPEP	ensembl biomart, HSA, GO:0002376
LRRC17	LRRC17	ensembl biomart, HSA, GO:0002376
LRRC8A (1 of 2)	LRRC8A	ensembl biomart, HSA, GO:0002376
LRRC8A (2 of 2)	LRRC8A	ensembl biomart, HSA, GO:0002376
LYL1	LYL1	ensembl biomart, HSA, GO:0002376
LYN	LYN	ensembl biomart, HSA, GO:0002376
LYST	LYST	ensembl biomart, HSA, GO:0002376
MAEA	MAEA	ensembl biomart, HSA, GO:0002376
MAG	MAG	ensembl biomart, HSA, GO:0002376
MALT1	MALT1	ensembl biomart, HSA, GO:0002376
MAP2K1	MAP2K1	ensembl biomart, HSA, GO:0002376
MAP2K2 (1 of 2)	MAP2K2	ensembl biomart, HSA, GO:0002376
MAP2K2 (2 of 2)	MAP2K2	ensembl biomart, HSA, GO:0002376
MAP2K4	MAP2K4	ensembl biomart, HSA, GO:0002376
MAP2K6	MAP2K6	ensembl biomart, HSA, GO:0002376
MAP2K7	MAP2K7	ensembl biomart, HSA, GO:0002376
MAP3K7	MAP3K7	ensembl biomart, HSA, GO:0002376
MAP3K8	MAP3K8	ensembl biomart, HSA, GO:0002376
MAP4K2	MAP4K2	ensembl biomart, HSA, GO:0002376
MAPK1	MAPK1	ensembl biomart, HSA, GO:0002376
MAPK10	MAPK10	ensembl biomart, HSA, GO:0002376
MAPK11	MAPK11	ensembl biomart, HSA, GO:0002376
MAPK14 (1 of 2)	MAPK14	ensembl biomart, HSA, GO:0002376
MAPK14 (2 of 2)	MAPK14	ensembl biomart, HSA, GO:0002376
MAPK7	MAPK7	ensembl biomart, HSA, GO:0002376
MAPK8 (1 of 2)	MAPK8	ensembl biomart, HSA, GO:0002376
MAPK8 (2 of 2)	MAPK8	ensembl biomart, HSA, GO:0002376
MAPK9	MAPK9	ensembl biomart, HSA, GO:0002376
MAPKAP1	MAPKAP1	ensembl biomart, HSA, GO:0002376
MAPKAPK2	MAPKAPK2	ensembl biomart, HSA, GO:0002376
MARCO	MARCO	ensembl biomart, HSA, GO:0002376
MASP1 (1 of 2)	MASP1	ensembl biomart, HSA, GO:0002376
MASP1 (2 of 2)	MASP1	ensembl biomart, HSA, GO:0002376
MAVS	MAVS	ensembl biomart, HSA, GO:0002376
MBP	MBP	ensembl biomart, HSA, GO:0002376
MECOM	MECOM	ensembl biomart, HSA, GO:0002376
MED1	MED1	ensembl biomart, HSA, GO:0002376
MEF2A	MEF2A	ensembl biomart, HSA, GO:0002376
MEF2C (1 of 2)	MEF2C	ensembl biomart, HSA, GO:0002376
MEF2C (2 of 2)	MEF2C	ensembl biomart, HSA, GO:0002376
MELK	MELK	ensembl biomart, HSA, GO:0002376
MEN1	MEN1	ensembl biomart, HSA, GO:0002376
MERTK	MERTK	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
MFAP2	MFAP2	ensembl biomart, HSA, GO:0002376
MINK1	MINK1	ensembl biomart, HSA, GO:0002376
MITF (1 of 2)	MITF	ensembl biomart, HSA, GO:0002376
MITF (2 of 2)	MITF	ensembl biomart, HSA, GO:0002376
MIXL1	MIXL1	ensembl biomart, HSA, GO:0002376
MKNK2	MKNK2	ensembl biomart, HSA, GO:0002376
MLF1	MLF1	ensembl biomart, HSA, GO:0002376
MLH1	MLH1	ensembl biomart, HSA, GO:0002376
MLL	MLL	ensembl biomart, HSA, GO:0002376
MLL5	MLL5	ensembl biomart, HSA, GO:0002376
MPZL2 (1 of 2)	MPZL2	ensembl biomart, HSA, GO:0002376
MPZL2 (2 of 2)	MPZL2	ensembl biomart, HSA, GO:0002376
MSH2	MSH2	ensembl biomart, HSA, GO:0002376
MSN (1 of 2)	MSN	ensembl biomart, HSA, GO:0002376
MSN (2 of 2)	MSN	ensembl biomart, HSA, GO:0002376
MST1R (1 of 2)	MST1R	ensembl biomart, HSA, GO:0002376
MST1R (2 of 2)	MST1R	ensembl biomart, HSA, GO:0002376
МҮВ	MYB	ensembl biomart, HSA, GO:0002376
MYD88	MYD88	ensembl biomart, HSA, GO:0002376
MYH9 (1 of 2)	MYH9	ensembl biomart, HSA, GO:0002376
MYH9 (2 of 2)	MYH9	ensembl biomart, HSA, GO:0002376
MYLPF (1 of 2)	MYLPF	ensembl biomart, HSA, GO:0002376
MYLPF (2 of 2)	MYLPF	ensembl biomart, HSA, GO:0002376
MYO1E	MYO1E	ensembl biomart, HSA, GO:0002376
MYO1F	MYO1F	ensembl biomart, HSA, GO:0002376
MYO9B (1 of 2)	MYO9B	ensembl biomart, HSA, GO:0002376
MYO9B (2 of 2)	MYO9B	ensembl biomart, HSA, GO:0002376
NBEAL2	NBEAL2	ensembl biomart, HSA, GO:0002376
NBN	NBN	ensembl biomart, HSA, GO:0002376
NCAM1 (1 of 2)	NCAM1	ensembl biomart, HSA, GO:0002376
NCAM1 (2 of 2)	NCAM1	ensembl biomart, HSA, GO:0002376
NCF1	NCF1	ensembl biomart, HSA, GO:0002376
NCF2	NCF2	ensembl biomart, HSA, GO:0002376
NCK1	NCK1	ensembl biomart, HSA, GO:0002376
NCK2	NCK2	ensembl biomart, HSA, GO:0002376
NCKAP1L	NCKAP1L	ensembl biomart, HSA, GO:0002376
NCOA6	NCOA6	ensembl biomart, HSA, GO:0002376
NCSTN	NCSTN	ensembl biomart, HSA, GO:0002376
NDRG1 (1 of 2)	NDRG1	ensembl biomart, HSA, GO:0002376
NDRG1 (2 of 2)	NDRG1	ensembl biomart, HSA, GO:0002376
NEDD4	NEDD4	ensembl biomart, HSA, GO:0002376
NFATC2	NFATC2	ensembl biomart, HSA, GO:0002376
NFKB1	NFKB1	ensembl biomart, HSA, GO:0002376
NFKB2	NFKB2	ensembl biomart, HSA, GO:0002376
NFKBIA (1 of 2)	NFKBIA	ensembl biomart, HSA, GO:0002376
NFKBIA (2 of 2)	NFKBIA	ensembl biomart, HSA, GO:0002376
NHEJ1	NHEJ1	ensembl biomart, HSA, GO:0002376
NKAP	NKAP	ensembl biomart, HSA, GO:0002376
NKX2-3	NKX2-3	ensembl biomart, HSA, GO:0002376
NKX2-5	NKX2-5	ensembl biomart, HSA, GO:0002376
NKX3-2	NKX3-2	ensembl biomart, HSA, GO:0002376
NLRC5	NLRC5	ensembl biomart, HSA, GO:0002376
NLRX1	NLRX1	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
NOD1	NOD1	ensembl biomart, HSA, GO:0002376
NOD2	NOD2	ensembl biomart, HSA, GO:0002376
NOTCH1 (1 of 2)	NOTCH1	ensembl biomart, HSA, GO:0002376
NOTCH1 (2 of 2)	NOTCH1	ensembl biomart, HSA, GO:0002376
NPEPPS	NPEPPS	ensembl biomart, HSA, GO:0002376
NTRK1	NTRK1	ensembl biomart, HSA, GO:0002376
NUB1	NUB1	ensembl biomart, HSA, GO:0002376
NUP85	NUP85	ensembl biomart, HSA, GO:0002376
ONECUT1	ONECUT1	ensembl biomart, HSA, GO:0002376
OPRD1 (1 of 2)	OPRD1	ensembl biomart, HSA, GO:0002376
OPRD1 (2 of 2)	OPRD1	ensembl biomart, HSA, GO:0002376
OPRK1 (1 of 2)	OPRK1	ensembl biomart, HSA, GO:0002376
OPRK1 (2 of 2)	OPRK1	ensembl biomart, HSA, GO:0002376
OSBPL1A (1 of 2)	OSBPL1A	ensembl biomart, HSA, GO:0002376
OSBPL1A (2 of 2)	OSBPL1A	ensembl biomart, HSA, GO:0002376
OSTM1	OSTM1	ensembl biomart, HSA, GO:0002376
OTUD5	OTUD5	ensembl biomart, HSA, GO:0002376
PAFAH1B1 (1 of 2)	PAFAH1B1	ensembl biomart, HSA, GO:0002376
PAFAH1B1 (2 of 2)	PAFAH1B1	ensembl biomart, HSA, GO:0002376
PAG1	PAG1	ensembl biomart, HSA, GO:0002376
PAK1 (1 of 2)	PAK1	ensembl biomart, HSA, GO:0002376
PAK1 (2 of 2)	PAK1	ensembl biomart, HSA, GO:0002376
PAK2 (1 of 2)	PAK2	ensembl biomart, HSA, GO:0002376
PAK2 (2 of 2)	PAK2	ensembl biomart, HSA, GO:0002376
PANX1 (1 of 2)	PANX1	ensembl biomart, HSA, GO:0002376
PANX1 (2 of 2)	PANX1	ensembl biomart, HSA, GO:0002376
PAX1	PAX1	ensembl biomart, HSA, GO:0002376
PAX5	PAX5	ensembl biomart, HSA, GO:0002376
PBX1 (1 of 2)	PBX1	ensembl biomart, HSA, GO:0002376
PBX1 (2 of 2)	PBX1	ensembl biomart, HSA, GO:0002376
	PCID2	ensembl biomart, HSA, GO:0002376
	PCID2	ensembl biomart, HSA, GO:0002376
PDEIB	PDEIB	ensembl biomart, HSA, GO:0002376
	PDE2A	ensembl biomart, HSA, GO:0002376
PDE4B (2 01 2)	PDE4B	ensembl biomart, HSA, GO:0002376
	PDE4D	ensembl biomart, HSA, GO:0002376
	PDGFB	ensembl biomart, HSA, GO:0002376
PDGFB (2 01 2)	PDGFB	ensembl biomart, HSA, GO:0002376
PDIA3	PDIA3	ensembl biomart, HSA, GO:0002376
		ensembl biomart, HSA, GO:0002376
		ensemblibiomart, HSA, GO:0002376
PGLTRP2 (1 01 2)	PGLIRP2	ensemblibiomart, HSA, GO:0002376
PGLTRP2 (2012)	PGLIRP2	ensemblibiomart, HSA, GO:0002376
PGINS		ensemblibiomart, HSA, GO:0002376
P14RZA	PI4KZA	ensemblibiomart, HSA, GO:0002376
P AST(10 2)	PIAST	ensemblibiomart, HSA, GO:0002376
		ensemblibiomati, HSA, GU:0002376
	PIK3U3	ensembl biomart, HSA, GO:0002376
		ensembl biomart, HSA, GU:0002376
		ensembl biomart, HSA, GO:0002376
		ensembl biomart, HSA, GO:0002376
PIK3P1 (2 01 2)		ensembli biomart, HSA, GO:0002376
PINJH2 (1012)	PIN3H2	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
PIK3R2 (2 of 2)	PIK3R2	ensembl biomart, HSA, GO:0002376
PIK3R3	PIK3R3	ensembl biomart, HSA, GO:0002376
PIK3R4	PIK3R4	ensembl biomart, HSA, GO:0002376
PIN1	PIN1	ensembl biomart, HSA, GO:0002376
PIP4K2A	PIP4K2A	ensembl biomart, HSA, GO:0002376
PIP5K1C (1 of 2)	PIP5K1C	ensembl biomart, HSA, GO:0002376
PIP5K1C (2 of 2)	PIP5K1C	ensembl biomart, HSA, GO:0002376
PITX2	PITX2	ensembl biomart, HSA, GO:0002376
PKHD1L1	PKHD1L1	ensembl biomart, HSA, GO:0002376
PKNOX1	PKNOX1	ensembl biomart, HSA, GO:0002376
PLEK	PLEK	ensembl biomart, HSA, GO:0002376
PLEKHA1 (1 of 2)	PLEKHA1	ensembl biomart, HSA, GO:0002376
PLEKHA1 (2 of 2)	PLEKHA1	ensembl biomart, HSA, GO:0002376
PLG	PLG	ensembl biomart, HSA, GO:0002376
PMS2	PMS2	ensembl biomart, HSA, GO:0002376
PODXL	PODXL	ensembl biomart, HSA, GO:0002376
PODXL2	PODXL2	ensembl biomart, HSA, GO:0002376
POU1F1	POU1F1	ensembl biomart, HSA, GO:0002376
POU2F2 (1 of 2)	POU2F2	ensembl biomart, HSA, GO:0002376
POU2F2 (2 of 2)	POU2F2	ensembl biomart, HSA, GO:0002376
PPARG	PPARG	ensembl biomart, HSA, GO:0002376
PRDX1	PRDX1	ensembl biomart, HSA, GO:0002376
PRDX3	PRDX3	ensembl biomart, HSA, GO:0002376
PRELID1	PRELID1	ensembl biomart, HSA, GO:0002376
PREX1	PREX1	ensembl biomart, HSA, GO:0002376
PRF1 (1 of 5)	PRF1	ensembl biomart, HSA, GO:0002376
PRF1 (2 of 5)	PRF1	ensembl biomart, HSA, GO:0002376
PRF1 (3 of 5)	PRF1	ensembl biomart, HSA, GO:0002376
PRF1 (4 of 5)	PRF1	ensembl biomart, HSA, GO:0002376
PRF1 (5 of 5)	PRF1	ensembl biomart, HSA, GO:0002376
PRG4	PRG4	ensembl biomart, HSA, GO:0002376
PRKCA (1 of 2)	PRKCA	ensembl biomart, HSA, GO:0002376
PRKCA (2 of 2)	PRKCA	ensembl biomart, HSA, GO:0002376
PRKCB (1 of 2)	PRKCB	ensembl biomart, HSA, GO:0002376
PRKCB (2 of 2)	PRKCB	ensembl biomart, HSA, GO:0002376
PRKCD (1 of 2)	PRKCD	ensembl biomart, HSA, GO:0002376
PRKCD (2 of 2)	PRKCD	ensembl biomart, HSA, GO:0002376
	PRKCE	ensembl biomart, HSA, GO:0002376
PRICE (2 of 2)	PRKCE	ensembl biomart, HSA, GO:0002376
PRKCQ	PRKCQ	ensembl biomart, HSA, GO:0002376
PRACSH	PRKUSH	ensembl biomart, HSA, GO:0002376
	PRKUZ	ensembl bioman, HSA, GO:0002376
		ensembl biomart, HSA, GO:0002376
		ensembl biomart, HSA, GO:0002376
PRIR (1 of 2)		ensembl biomart, HSA, GO:0002376
PRIR (2 of 2)		ensembl biomart, HSA, GO:0002376
DSENI		ensembl biomart, HSA, GO:0002376
PSMA4 (1 of 2)	PSMAA	ensembl biomart HSA GO:0002376
PSMA4 (2 of 2)	PSMA4	ensembl biomart HSA GO:0002376
PSMA6 (1 of 2)	PSMA6	ensembl biomart HSA GO:0002376
PSMA6 (2 of 2)	PSMA6	ensembl biomart HSA GO:0002376
PSMB8 (1 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
PSMB8 (10 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376
PSMB8 (2 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376
PSMB8 (3 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376
PSMB8 (4 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376
PSMB8 (5 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376
PSMB8 (6 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376
PSMB8 (7 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376
PSMB8 (8 of 10)	PSMB8	ensembl biomart, HSA, GO:0002376
PSMB8 (9 of 10)	PSMB8	ensembl biomart. HSA. GO:0002376
PSMB9 (1 of 5)	PSMB9	ensembl biomart. HSA. GO:0002376
PSMB9 (2 of 5)	PSMB9	ensembl biomart. HSA. GO:0002376
PSMB9 (3 of 5)	PSMB9	ensembl biomart. HSA. GO:0002376
PSMB9 (4 of 5)	PSMB9	ensembl biomart, HSA, GO:0002376
PSMB9 (5 of 5)	PSMB9	ensembl biomart, HSA, GO:0002376
PSMD11 (1 of 2)	PSMD11	ensembl biomart, HSA, GO:0002376
PSMD11 (2 of 2)	PSMD11	ensembl biomart HSA, GO:0002376
PSMD4 (2 of 2)	PSMD4	ensembl biomart HSA, GO:0002376
PSME4 (1 of 2)	PSME4	ensembl biomart HSA, GO:0002376
PSME4 (2 of 2)	PSME4	ensembl biomart HSA, GO:0002376
PSTPIP1 (1 of 2)	PSTPIP1	ensembl biomart HSA GO:0002376
PSTPIP1 (2 of 2)	PSTPIP1	ensembl biomart HSA GO:0002376
PTAFR	PTAFR	ensembl biomart HSA GO:0002376
PTBP3	PTBP3	ensembl biomart HSA GO:0002376
PTEN (1 of 2)	PTEN	ensembl biomart HSA GO:0002376
PTEN(2 of 2)	PTEN	ensembl biomart HSA GO:0002376
PTGDB2 (1 of 3)	PTGDB2	ensembl biomart HSA GO:0002376
PTGDB2 (2 of 3)	PTGDB2	ensembl biomart HSA GO:0002376
PTGDB2 (3 of 3)	PTGDB2	ensembl biomart HSA GO:0002376
PTGER4 (1 of 2)	PTGEB4	ensembl biomart HSA GO:0002376
PTGER4 (2 of 2)	PTGER4	ensembl biomart HSA GO:0002376
PTK2B(1 of 2)	PTK2B	ensembl biomart HSA GO:0002376
PTK2B(2 of 2)	PTK2B	ensembl biomart HSA GO:0002376
PTPN1	PTPN1	ensembl biomart HSA GO:0002376
PTPN11	PTPN11	ensembl biomart HSA GO:0002376
PTPN2 (1 of 2)	PTPN2	ensembl biomart HSA GO:0002376
PTPN2 (2 of 2)	PTPN2	ensembl biomart HSA GO:0002376
PTPN22	PTPN22	ensembl biomart HSA GO:0002376
PTPN6	PTPN6	ensembl biomart, HSA, GO:0002376
PTPBC	PTPBC	ensembl biomart HSA GO:0002376
PTPBO	PTPBO	ensembl biomart HSA GO:0002376
PTX3	PTX3	ensembl biomart HSA GO:0002376
PVBL 1 (1 of 2)	PVBL1	ensembl biomart HSA GO:0002376
PVBL 1 (2 of 2)	PVBL1	ensembl biomart HSA GO:0002376
RAB27A	RAB27A	ensembl biomart, HSA, GO:0002376
BAB7A (1 of 2)	RAB7A	ensembl biomart HSA GO:0002376
BAB7A (2 of 2)	RAB7A	ensembl biomart HSA GO:0002376
BAC1 (1 of 2)	BAC1	ensembl biomart HSA GO:0002376
BAC1 (2 of 2)	BAC1	ensembl biomart, HSA, GO:0002376
BACGAP1	BACGAP1	ensembl biomart, HSA, GO:0002376
BAG1	RAG1	ensembl biomart, HSA, GO:0002376
BAG2	RAG2	ensembl biomart HSA_GO:0002376
BASGRP4	RASGREA	ensembl biomart, HSA_GO:0002376
BB1	RB1	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
RBCK1	RBCK1	ensembl biomart, HSA, GO:0002376
RBM15 (1 of 2)	RBM15	ensembl biomart, HSA, GO:0002376
RBM15 (2 of 2)	RBM15	ensembl biomart, HSA, GO:0002376
RELA	RELA	ensembl biomart, HSA, GO:0002376
RELB	RELB	ensembl biomart, HSA, GO:0002376
RET	RET	ensembl biomart, HSA, GO:0002376
RFX1 (1 of 2)	RFX1	ensembl biomart, HSA, GO:0002376
RFX1 (2 of 2)	RFX1	ensembl biomart, HSA, GO:0002376
RGCC	RGCC	ensembl biomart, HSA, GO:0002376
RGS1	RGS1	ensembl biomart, HSA, GO:0002376
RHOH	RHOH	ensembl biomart, HSA, GO:0002376
RICTOR	RICTOR	ensembl biomart, HSA, GO:0002376
RILP	RILP	ensembl biomart, HSA, GO:0002376
RIPK2	RIPK2	ensembl biomart, HSA, GO:0002376
RIPK3	RIPK3	ensembl biomart, HSA, GO:0002376
RNF168	RNF168	ensembl biomart, HSA, GO:0002376
RNF8	RNF8	ensembl biomart, HSA, GO:0002376
ROCK1	ROCK1	ensembl biomart, HSA, GO:0002376
RORC	RORC	ensembl biomart, HSA, GO:0002376
RPA1 (1 of 2)	RPA1	ensembl biomart, HSA, GO:0002376
RPA1 (2 of 2)	RPA1	ensembl biomart, HSA, GO:0002376
RPL22 (1 of 2)	RPL22	ensembl biomart, HSA, GO:0002376
RPL22 (2 of 2)	RPL22	ensembl biomart, HSA, GO:0002376
RPS14	RPS14	ensembl biomart, HSA, GO:0002376
RPS19	RPS19	ensembl biomart, HSA, GO:0002376
RPS27A	RPS27A	ensembl biomart, HSA, GO:0002376
RPS6KA1	RPS6KA1	ensembl biomart, HSA, GO:0002376
RPS6KA2	RPS6KA2	ensembl biomart, HSA, GO:0002376
RPS6KA3	RPS6KA3	ensembl biomart, HSA, GO:0002376
RPS6KA5	RPS6KA5	ensembl biomart, HSA, GO:0002376
RSAD2	RSAD2	ensembl biomart, HSA, GO:0002376
RTKN2	RTKN2	ensembl biomart, HSA, GO:0002376
RUNX1	RUNX1	ensembl biomart, HSA, GO:0002376
RUNX2	RUNX2	ensembl biomart, HSA, GO:0002376
S100B	S100B	ensembl biomart, HSA, GO:0002376
S1PR4	S1PR4	ensembl biomart, HSA, GO:0002376
SATB1	SATB1	ensembl biomart, HSA, GO:0002376
SBDS	SBDS	ensembl biomart, HSA, GO:0002376
SCG2 (1 of 2)	SCG2	ensembl biomart, HSA, GO:0002376
SCG2 (2 of 2)	SCG2	ensembl biomart, HSA, GO:0002376
SEC61A1 (1 of 2)	SEC61A1	ensembl biomart, HSA, GO:0002376
SEC61A1 (2 of 2)	SEC61A1	ensembl biomart, HSA, GO:0002376
SEC61B	SEC61B	ensembl biomart, HSA, GO:0002376
SEMA7A (1 of 2)	SEMA7A	ensembl biomart, HSA, GO:0002376
SEMA7A (2 of 2)	SEMA7A	ensembl biomart, HSA, GO:0002376
SERPING1	SERPING1	ensembl biomart, HSA, GO:0002376
SFRP1	SFRP1	ensembl biomart, HSA, GO:0002376
SFRP2	SFRP2	ensembl biomart, HSA, GO:0002376
SFXN1	SFXN1	ensembl biomart, HSA, GO:0002376
SGPL1	SGPL1	ensembl biomart, HSA, GO:0002376
SH2B2	SH2B2	ensembl biomart, HSA, GO:0002376
SH2B3	SH2B3	ensembl biomart, HSA, GO:0002376
SH2D1A	SH2D1A	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
SH2D1B	SH2D1B	ensembl biomart, HSA, GO:0002376
SH3GL2 (1 of 2)	SH3GL2	ensembl biomart, HSA, GO:0002376
SH3GI_2 (2 of 2)	SH3GL2	ensembl biomart, HSA, GO:0002376
SHH	SHH	ensembl biomart, HSA, GO:0002376
SIGIRR	SIGIRR	ensembl biomart, HSA, GO:0002376
SIKE1	SIKE1	ensembl biomart, HSA, GO:0002376
SIX1	SIX1	ensembl biomart, HSA, GO:0002376
SIX4	SIX4	ensembl biomart, HSA, GO:0002376
SKAP1	SKAP1	ensembl biomart, HSA, GO:0002376
SKAP2	SKAP2	ensembl biomart, HSA, GO:0002376
SKIL	SKIL	ensembl biomart, HSA, GO:0002376
SLC11A2 (1 of 2)	SLC11A2	ensembl biomart, HSA, GO:0002376
SLC11A2 (2 of 2)	SLC11A2	ensembl biomart HSA GO:0002376
SLC16A1 (1 of 2)	SLC16A1	ensembl biomart, HSA, GO:0002376
SLC16A1 (2 of 2)	SLC16A1	ensembl biomart, HSA, GO:0002376
SLC16A3 (1 of 2)	SLC16A3	ensembl biomart HSA GO:0002376
SLC16A3 (2 of 2)	SLC16A3	ensembl biomart HSA GO:0002376
SLC25A38 (1 of 2)	SLC25A38	ensembl biomart, HSA, GO:0002376
SLC25A38 (2 of 2)	SI C25A38	ensembl biomart, HSA, GO:0002376
SLC3A2 (1 of 2)	SI C3A2	ensembl biomart HSA GO:0002376
SLC3A2 (2 of 2)	SI C3A2	ensembl biomart, HSA, GO:0002376
SLC7A10 (1 of 2)	SI C7A10	ensembl biomart, HSA, GO:0002376
SI C7A10 (2 of 2)	SI C7A10	ensembl biomart, HSA, GO:0002376
SI C7A9 (1 of 2)	SI C7A9	ensembl biomart, HSA, GO:0002376
SI C7A9 (2 of 2)	SI C7A9	ensembl biomart, HSA, GO:0002376
SMAD3	SMAD3	ensembl biomart, HSA, GO:0002376
SMAD6	SMAD6	ensembl biomart, HSA, GO:0002376
SMABCA4	SMABCA4	ensembl biomart, HSA, GO:0002376
SNBK	SNBK	ensembl biomart, HSA, GO:0002376
SOCS1 (1 of 2)	SOCS1	ensembl biomart, HSA, GO:0002376
SOCS1 (2 of 2)	SOCS1	ensembl biomart, HSA, GO:0002376
SOCS3 (1 of 2)	SOCS3	ensembl biomart HSA GO:0002376
SOCS3 (2 of 2)	SOCS3	ensembl biomart HSA GO:0002376
SOD1	SOD1	ensembl biomart, HSA, GO:0002376
SOD2	SOD2	ensembl biomart, HSA, GO:0002376
SOX4 (1 of 2)	SOX4	ensembl biomart, HSA, GO:0002376
SOX4 (2 of 2)	SOX4	ensembl biomart, HSA, GO:0002376
SP1	SP1	ensembl biomart, HSA, GO:0002376
SP2	SP2	ensembl biomart, HSA, GO:0002376
SP3 (1 of 2)	SP3	ensembl biomart, HSA, GO:0002376
SP3 (2 of 2)	SP3	ensembl biomart, HSA, GO:0002376
SP7	ST 3	ensembl biomart, HSA, GO:0002376
SPI1 (1 of 2)		ensembl biomart, HSA, GO:0002376
SPI1 (2 of 2)		ensembl biomart, HSA, GO:0002376
	SPONO	ensembl biomart, HSA, GO:0002376
SPTR	SPONZ	ensembl biomart, HSA, GO:0002376
SPTRN2		ensembl biomart, HSA, GO:0002376
SPC (1 of 2)	SFI BNZ	ensembl biomart, HSA, GO:0002376
	SRC	ensembl biomart, HSA, GO.0002376
SRE (1 of 2)	SHC SDE	ensembli biomatt, HSA, GU:0002376
SRE(2 of 2)	onr onr	ensemblibiomet USA CO:0002376
		ensembl biomart, HSA, GU:0002376
	SHPKI	ensembl biomart, HSA, GU:0002376
SNAN (2012)	SHENI	ensemblibioman, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
SRPK2	SRPK2	ensembl biomart, HSA, GO:0002376
ST6GAL1	ST6GAL1	ensembl biomart, HSA, GO:0002376
STAR (1 of 2)	STAR	ensembl biomart, HSA, GO:0002376
STAR (2 of 2)	STAR	ensembl biomart, HSA, GO:0002376
STAT1	STAT1	ensembl biomart, HSA, GO:0002376
STK3	STK3	ensembl biomart, HSA, GO:0002376
STK4	STK4	ensembl biomart, HSA, GO:0002376
STXBP2	STXBP2	ensembl biomart, HSA, GO:0002376
STXBP3	STXBP3	ensembl biomart, HSA, GO:0002376
SUMO1	SUMO1	ensembl biomart, HSA, GO:0002376
SUSD2	SUSD2	ensembl biomart, HSA, GO:0002376
SWAP70 (1 of 2)	SWAP70	ensembl biomart, HSA, GO:0002376
SWAP70 (2 of 2)	SWAP70	ensembl biomart, HSA, GO:0002376
SYK	SYK	ensembl biomart, HSA, GO:0002376
TAB2	TAB2	ensembl biomart, HSA, GO:0002376
TAB3	TAB3	ensembl biomart, HSA, GO:0002376
TACC3	TACC3	ensembl biomart, HSA, GO:0002376
TAL1	TAL1	ensembl biomart, HSA, GO:0002376
TANK	TANK	ensembl biomart, HSA, GO:0002376
TAP1	TAP1	ensembl biomart, HSA, GO:0002376
TAPBP (1 of 7)	TAPBP	ensembl biomart, HSA, GO:0002376
TAPBP (2 of 7)	TAPBP	ensembl biomart, HSA, GO:0002376
TAPBP (3 of 7)	TAPBP	ensembl biomart, HSA, GO:0002376
TAPBP (4 of 7)	TAPBP	ensembl biomart, HSA, GO:0002376
TAPBP (5 of 7)	TAPBP	ensembl biomart, HSA, GO:0002376
TAPBPL	TAPBPL	ensembl biomart, HSA, GO:0002376
TAX1BP1 (1 of 2)	TAX1BP1	ensembl biomart, HSA, GO:0002376
TAX1BP1 (2 of 2)	TAX1BP1	ensembl biomart, HSA, GO:0002376
TAZ	TAZ	ensembl biomart, HSA, GO:0002376
TBK1	TBK1	ensembl biomart, HSA, GO:0002376
TBKBP1 (1 of 2)	TBKBP1	ensembl biomart, HSA, GO:0002376
TBKBP1 (2 of 2)	TBKBP1	ensembl biomart, HSA, GO:0002376
TBX1	TBX1	ensembl biomart, HSA, GO:0002376
TCF12	TCF12	ensembl biomart, HSA, GO:0002376
TCF21	TCF21	ensembl biomart, HSA, GO:0002376
TCF3 (1 of 2)	TCF3	ensembl biomart, HSA, GO:0002376
TCF3 (2 of 2)	TCF3	ensembl biomart, HSA, GO:0002376
TEC	TEC	ensembl biomart, HSA, GO:0002376
TESC (1 of 2)	TESC	ensembl biomart, HSA, GO:0002376
TESC (2 of 2)	TESC	ensembl biomart, HSA, GO:0002376
TET2	TET2	ensembl biomart, HSA, GO:0002376
TFEB	TFEB	ensembl biomart, HSA, GO:0002376
TFRC (1 of 2)	TFRC	ensembl biomart, HSA, GO:0002376
TFRC (2 of 2)	TFRC	ensembl biomart, HSA, GO:0002376
TGFB1	TGFB1	ensembl biomart, HSA, GO:0002376
TGFB2	TGFB2	ensembl biomart, HSA, GO:0002376
TGFBR1	TGFBR1	ensembl biomart, HSA, GO:0002376
TGFBR2 (1 of 2)	TGFBR2	ensembl biomart, HSA, GO:0002376
TGFBR2 (2 of 2)	TGFBR2	ensembl biomart, HSA, GO:0002376
TGFBR3	TGFBR3	ensembl biomart, HSA, GO:0002376
THBD	THBD	ensembl biomart, HSA, GO:0002376
THBS1 (1 of 2)	THBS1	ensembl biomart, HSA, GO:0002376
THBS1 (2 of 2)	THBS1	ensembl biomart, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
THOC5	THOC5	ensembl biomart, HSA, GO:0002376
THRA (1 of 2)	THRA	ensembl biomart, HSA, GO:0002376
THRA (2 of 2)	THRA	ensembl biomart, HSA, GO:0002376
TINAGL1	TINAGL1	ensembl biomart, HSA, GO:0002376
TLR2	TLR2	ensembl biomart, HSA, GO:0002376
TLR5 (1 of 3)	TLR5	ensembl biomart, HSA, GO:0002376
TLR5 (2 of 3)	TLR5	ensembl biomart, HSA, GO:0002376
TLR5 (3 of 3)	TLR5	ensembl biomart, HSA, GO:0002376
TLR7	TLR7	ensembl biomart, HSA, GO:0002376
TLR9	TLR9	ensembl biomart, HSA, GO:0002376
TLX1	TLX1	ensembl biomart, HSA, GO:0002376
TMEM173	TMEM173	ensembl biomart, HSA, GO:0002376
TMX1	TMX1	ensembl biomart, HSA, GO:0002376
TNFAIP1	TNFAIP1	ensembl biomart, HSA, GO:0002376
TNFAIP3	TNFAIP3	ensembl biomart, HSA, GO:0002376
TNFAIP8L2	TNFAIP8L2	ensembl biomart, HSA, GO:0002376
TNFRSF14	TNFRSF14	ensembl biomart, HSA, GO:0002376
TNFRSF1B	TNFRSF1B	ensembl biomart, HSA, GO:0002376
TNIP1	TNIP1	ensembl biomart, HSA, GO:0002376
TNIP2	TNIP2	ensembl biomart, HSA, GO:0002376
TNRC6C (1 of 2)	TNRC6C	ensembl biomart, HSA, GO:0002376
TNRC6C (2 of 2)	TNRC6C	ensembl biomart, HSA, GO:0002376
TP53	TP53	ensembl biomart, HSA, GO:0002376
TPD52	TPD52	ensembl biomart, HSA, GO:0002376
TPO	TPO	ensembl biomart, HSA, GO:0002376
TPP2	TPP2	ensembl biomart, HSA, GO:0002376
TRAF2 (1 of 2)	TRAF2	ensembl biomart, HSA, GO:0002376
TRAF2 (2 of 2)	TRAF2	ensembl biomart, HSA, GO:0002376
TRAF3IP2	TRAF3IP2	ensembl biomart, HSA, GO:0002376
TRAF6	TRAF6	ensembl biomart, HSA, GO:0002376
TRIM25 (1 of 2)	TRIM25	ensembl biomart, HSA, GO:0002376
TRIM25 (2 of 2)	TRIM25	ensembl biomart, HSA, GO:0002376
TRIM32	TRIM32	ensembl biomart, HSA, GO:0002376
TRPM4 (1 of 2)	TRPM4	ensembl biomart, HSA, GO:0002376
TRPM4 (2 of 2)	TRPM4	ensembl biomart, HSA, GO:0002376
TSHR (1 of 2)	TSHR	ensembl biomart, HSA, GO:0002376
TSHR (2 of 2)	TSHR	ensembl biomart, HSA, GO:0002376
TTC7A	TTC7A	ensembl biomart, HSA, GO:0002376
TUBB	TUBB	ensembl biomart, HSA, GO:0002376
TUSC2 (1 of 2)	TUSC2	ensembl biomart, HSA, GO:0002376
TUSC2 (2 of 2)	TUSC2	ensembl biomart, HSA, GO:0002376
TXK	ТХК	ensembl biomart, HSA, GO:0002376
TXNIP	TXNIP	ensembl biomart, HSA, GO:0002376
IXNRD2	TXNRD2	ensembl biomart, HSA, GO:0002376
TYK2	TYK2	ensembl biomart, HSA, GO:0002376
TYR (1 of 2)	IYR	ensembl biomart, HSA, GO:0002376
TYR (2 of 2)	TYR	ensembl biomart, HSA, GO:0002376
TYRO3	TYRO3	ensembl biomart, HSA, GO:0002376
UBA52	UBA52	ensembli biomart, HSA, GU:0002376
	UBA/	ensemblibiomart, HSA, GO:0002376
UBEZA	UBEZA	ensemblibiomart, HSA, GO:0002376
		ensemblibiomart, HSA, GU:0002376
05218	05218	ensemblibioman, HSA, GO:0002376

stickleback_gene_name	human_gene_name	source
VAMP7	VAMP7	ensembl biomart, HSA, GO:0002376
VASP	VASP	ensembl biomart, HSA, GO:0002376
VAV1	VAV1	ensembl biomart, HSA, GO:0002376
VAV3 (1 of 2)	VAV3	ensembl biomart, HSA, GO:0002376
VAV3 (2 of 2)	VAV3	ensembl biomart, HSA, GO:0002376
VCAM1	VCAM1	ensembl biomart, HSA, GO:0002376
VEGFA (1 of 2)	VEGFA	ensembl biomart, HSA, GO:0002376
VEGFA (2 of 2)	VEGFA	ensembl biomart, HSA, GO:0002376
VIPR1 (1 of 2)	VIPR1	ensembl biomart, HSA, GO:0002376
VIPR1 (2 of 2)	VIPR1	ensembl biomart, HSA, GO:0002376
VPS33A	VPS33A	ensembl biomart, HSA, GO:0002376
VTN (1 of 2)	VTN	ensembl biomart, HSA, GO:0002376
VTN (2 of 2)	VTN	ensembl biomart, HSA, GO:0002376
WAS	WAS	ensembl biomart, HSA, GO:0002376
WNT1	WNT1	ensembl biomart, HSA, GO:0002376
WNT10B	WNT10B	ensembl biomart, HSA, GO:0002376
WNT2B (1 of 2)	WNT2B	ensembl biomart, HSA, GO:0002376
WNT2B (2 of 2)	WNT2B	ensembl biomart, HSA, GO:0002376
WNT3	WNT3	ensembl biomart, HSA, GO:0002376
WNTA	WNT4	ensembl biomart, HSA, GO:0002376
	WNT54	ensembl biomart HSA GO:0002376
VRD1	XBP1	ensembl biomart, HSA, GO:0002376
XDCC5	XBCC5	ensembl biomart HSA GO:0002376
XRCC6	XBCC6	ensembl biomart HSA GO:0002376
	VES1	ensembl biomart, HSA, GO:0002376
VES1 (2 of 2)	VESI	ensembl biomart, HSA, GO:0002376
	VTHDE2	ensembl biomart HSA GO:0002376
	ZBTB16	ensembl biomart HSA GO:0002376
70240	7C3H8	ensembl biomart HSA GO:0002376
	ZC3HAV/1	ensembl biomart HSA GO:0002376
	7EB1	ensembl biomart, HSA, GO:0002376
ZEDT(1012)	ZEDT ZEB1	ensembl biomart, HSA, GO:0002376
		ensembl biomart, HSA, GO:0002376
	7ED36L1	ensembl biomart, HSA, GO:0002376
		ensembl biomart, HSA, GO:0002376
$2 \Gamma \Gamma V \Gamma$		Star et al 2011: Haase et al 2013
C1QTNF4 (1012)		Star et al. 2011; Haase et al. 2013
	CIQINF4	Star et al. 2011; Haase et al. 2013
CIQINF5		Star et al. 2011; Haase et al. 2013
C4A		Star et al. 2011; Haase et al. 2013
	CD00C	Star at al 2011; Hassa at al 2013
CD226	00226	Star et al. 2011, maase et al. 2013
CD3E	CD3E	Star et al. 2011; Haase et al. 2013
CD74 (2 of 2)	CD/4	Star et al. 2011; Haase et al. 2013
CD79A	CD/9A	Star et al. 2011; Haase et al. 2013
CD79B	CD79B	Star et al. 2011; Haase et al. 2013
CXCR3	CXCR3	Star et al. 2011; Haase et al. 2013
ENSGACG0000000336	MHC II beta	Star et al. 2011; Haase et al. 2013
ENSGACG0000000478	TNF	Star et al. 2011; Haase et al. 2013
ENSGACG0000000569	IgM	Star et al. 2011; Haase et al. 2013
ENSGACG0000001729	IL8	Star et al. 2011; Haase et al. 2013
ENSGACG0000001745	TLR18	Star et al. 2011; Haase et al. 2013

stickleback_gene_name	human_gene_name	source
ENSGACG0000001805	TRGC	Star et al. 2011; Haase et al. 2013
ENSGACG0000001919	MHC I	Star et al. 2011; Haase et al. 2013
ENSGACG0000003030	C1QTNF3	Star et al. 2011; Haase et al. 2013
ENSGACG0000005289	TRBC	Star et al. 2011; Haase et al. 2013
ENSGACG0000005449	TLR22	Star et al. 2011; Haase et al. 2013
ENSGACG0000008369	AIRE	Star et al. 2011; Haase et al. 2013
ENSGACG0000008375	AIRE	Star et al. 2011; Haase et al. 2013
ENSGACG0000008397	TLR13	Star et al. 2011; Haase et al. 2013
ENSGACG0000008945	CD8A	Star et al. 2011; Haase et al. 2013
ENSGACG0000008960	CD8B	Star et al. 2011; Haase et al. 2013
ENSGACG0000009282	Fas	Star et al. 2011; Haase et al. 2013
ENSGACG0000009364	TLR21	Star et al. 2011; Haase et al. 2013
ENSGACG0000009832	CD4	Star et al. 2011; Haase et al. 2013
ENSGACG00000012763	lgM	Star et al. 2011; Haase et al. 2013
ENSGACG00000012766	lgM	Star et al. 2011; Haase et al. 2013
ENSGACG00000012767	lgD	Star et al. 2011; Haase et al. 2013
ENSGACG00000012769	lgM	Star et al. 2011; Haase et al. 2013
ENSGACG00000012781	lgD	Star et al. 2011; Haase et al. 2013
ENSGACG00000012783	lgM	Star et al. 2011; Haase et al. 2013
ENSGACG00000012792	IgM	Star et al. 2011; Haase et al. 2013
ENSGACG00000012797	lgD	Star et al. 2011; Haase et al. 2013
ENSGACG00000012799	IgM	Star et al. 2011; Haase et al. 2013
ENSGACG00000012804	lgM	Star et al. 2011; Haase et al. 2013
ENSGACG00000012809	lgM	Star et al. 2011; Haase et al. 2013
ENSGACG0000013031	GZMB	Star et al. 2011; Haase et al. 2013
ENSGACG00000013372	TNF	Star et al. 2011; Haase et al. 2013
ENSGACG00000014811	C5	Star et al. 2011; Haase et al. 2013
ENSGACG00000014852	C1QTNF3	Star et al. 2011; Haase et al. 2013
ENSGACG00000015763	TRGC	Star et al. 2011; Haase et al. 2013
ENSGACG00000016298	IL4RA	Star et al. 2011; Haase et al. 2013
ENSGACG00000017257	FasL	Star et al. 2011; Haase et al. 2013
ENSGACG00000017271	IL15	Star et al. 2011; Haase et al. 2013
ENSGACG00000019078	IL8	Star et al. 2011; Haase et al. 2013
ENSGACG00000019282	B2M	Star et al. 2011; Haase et al. 2013
ENSGACG00000019287	B2M	Star et al. 2011; Haase et al. 2013
FOXP3	FOXP3	Star et al. 2011; Haase et al. 2013
HLA-DMA (5 of 5)	MHC II alpha	Star et al. 2011; Haase et al. 2013
IGBP1	IGBP1	Star et al. 2011; Haase et al. 2013
IL12B (1 of 3)	IL12B	Star et al. 2011; Haase et al. 2013
IL12B (2 of 3)	IL12B	Star et al. 2011; Haase et al. 2013
IL12RB2	IL12RB2	Star et al. 2011; Haase et al. 2013
IL17D (1 of 2)	IL17D	Star et al. 2011; Haase et al. 2013
IL17D (2 of 2)	IL17D	Star et al. 2011; Haase et al. 2013
IL1/RA (1 of 2)	IL1/RA	Star et al. 2011; Haase et al. 2013
IL17RA (2 of 2)	IL1/RA	Star et al. 2011; Haase et al. 2013
IL17RD	IL17RD	Star et al. 2011; Haase et al. 2013
IL1B	IL1B	Star et al. 2011; Haase et al. 2013
IL2RB	IL2RB	Star et al. 2011; Haase et al. 2013
		Star et al. 2011, Haase et al. 2013
		Star et al. 2011, Haase et al. 2013
		Star et al 2011, Haase et al 2013
PSMB3	PSMB3	Star et al 2011. Haase et al 2013
		oral or al. 2011, 110000 61 al. 2010

stickleback_gene_name	human_gene_name	source
PSMB4	PSMB4	Star et al. 2011; Haase et al. 2013
PSMB5	PSMB5	Star et al. 2011; Haase et al. 2013
PSMB6	PSMB6	Star et al. 2011; Haase et al. 2013
PSMB7	PSMB7	Star et al. 2011; Haase et al. 2013
PSME1	PSME1	Star et al. 2011; Haase et al. 2013
PSME2	PSME2	Star et al. 2011; Haase et al. 2013
PSME3	PSME3	Star et al. 2011; Haase et al. 2013
RFX7 (1 of 2)	RFX7	Star et al. 2011; Haase et al. 2013
RFX7 (2 of 2)	RFX7	Star et al. 2011; Haase et al. 2013
RFXANK	RFXANK	Star et al. 2011; Haase et al. 2013
RFXAP	RFXAP	Star et al. 2011; Haase et al. 2013
TAPBP (6 of 7)	TAPBP	Star et al. 2011; Haase et al. 2013
TAPBP (7 of 7)	TAPBP	Star et al. 2011; Haase et al. 2013
TLR6	TLR1	Star et al. 2011; Haase et al. 2013
TLR8	TLR8	Star et al. 2011; Haase et al. 2013
UNC93B1	UNC93B	Star et al. 2011; Haase et al. 2013

Supplementary table S.2.5 Enriched GO terms. Shown are GO-terms (GO-ID, GO-term) of the group "Biological Process" found to be overrepresented in a given test-set tested against the whole set of identified *G. aculeatus* genes. Given are number of genes per GO-term in test- (#Test) and reference-set (#Ref) with p-values and FDR corrections.

test-set	GO-ID	GO-term	FDR	p-value	#Test	#Ref
total up-regulated in head						
kidney	GO:0032502	developmental process	2,46E-02	6,04E-04	101	4465
total up-regulated in head		multicellular organismal				
kidney	GO:0007275	development	2,69E-02	7,96E-04	96	4216
total up-regulated in nead	0.00000501	multicellular organismal	0.005.00	0.055.04		1005
kidney total up regulated in boad	GU.0032501	process collular dovelopmental	2,69E-02	8,05E-04	96	4225
kidnev	GO:0048869	nrocess	3 08E-02	1 545.02	61	2455
total up-regulated in head	40.0040000	process	5,90L-02	1,04L-03	01	2455
kidnev	GO:0030154	cell differentiation	3.98E-02	1.54E-03	61	2455
total up-regulated in head		anatomical structure	-,	.,		2.00
kidney	GO:0009653	morphogenesis	3,98E-02	1,62E-03	58	2315
total up-regulated in head		anatomical structure				
kidney	GO:0048856	development	3,98E-02	1,63E-03	58	2317
total down-regulated in						
head kidney	GO:0008152	metabolic process	4,53E-10	3,69E-12	182	7196
total down-regulated in	GO:000056	catabolic process	1 265 09	4 74E 10	70	1075
total down-regulated in	00.0009050	calabolic process	4,30L-00	4,740-10	70	1075
head kidney	GO:0006629	lipid metabolic process	5.97E-05	1.14E-06	37	893
total down-regulated in		response to external	-,	.,		000
head kidney	GO:0009605	stimulus	7,57E-05	1,65E-06	46	1264
total down-regulated in		carbohydrate metabolic				
head kidney	GO:0005975	process	3,82E-03	1,24E-04	25	627
total down-regulated in		secondary metabolic				
head kidney	GO:0019748	process	9,22E-03	3,38E-04	8	94
total down-regulated in	CO:0006050	reasonas to stress	0.005.00	2 51 E 04	59	2144
total up regulated in gill	GO.0006950	developmental process	9,220-03	6 10E 01	240	4006
iolai up-regulateu in gili	GO.0032502	multicellular organismal	1,132-10	0,122-21	540	4220
total up-regulated in gill	GO:0032501	process	4.70E-18	3.83E-20	324	3997
		multicellular organismal	,	,		
total up-regulated in gill	GO:0007275	development	5,03E-18	5,46E-20	323	3989
		regulation of biological				
total up-regulated in gill	GO:0050789	process	4,76E-13	1,16E-14	455	6800
total up-regulated in gill	GO:0065007	biological regulation	1,20E-12	3,26E-14	459	6916
		anatomical structure	0.005 40	0 105 10	104	0100
total up-regulated in gill	GO:0009653	morphogenesis	2,36E-10	9,12E-12	184	2189
total up regulated in gill	CO:0049956	dovelopment	2 36E-10	9 82F-12	184	2191
lolar up-regulated in gill	GU:0048856	cytoskeleton	2,000-10	0,022 12	104	2101
total up-regulated in gill	GO:0007010	organization	2.36E-10	1,03E-11	79	652
total up-regulated in gill	GO:0050896	response to stimulus	3,56E-10	1,64E-11	352	5120
total up rogulatod in gill	40.000000	cellular developmental	,			
total up-regulated in gill	GO:0048869	process	4,10E-10	2,12E-11	191	2325
total up-regulated in gill	GO:0030154	cell differentiation	4,10E-10	2,12E-11	191	2325
		cellular component				
total up-regulated in gill	GO:0016043	organization	4,87E-09	3,05E-10	265	3664

test-set	GO-ID	GO-term	FDR	p-value	#Test	#Ref
		cellular component				
Antal	00.0071040	organization or				
total up-regulated in gill	GO:00/1840	biogenesis	4,87E-09	3,05E-10	265	3664
total up-regulated in gill	GO:0007165	signal transduction	3,72E-08	2,59E-09	257	3604
total up-regulated in gill	GO:0009790	cellular response to	3,72E-08	2,66E-09	107	1142
total up-regulated in gill	GO:0051716	stimulus regulation of cellular	3,72E-08	2,66E-09	257	3605
total up-regulated in gill	GO:0050794	process	3,72E-08	2,73E-09	257	3606
total up-regulated in gill	GO:0009605	stimulus	221E-07	1 80E-08	108	1202
total up-regulated in gill	GO:0023052	signaling	4.52E-06	4 79E-07	267	1202
	40.0020002	response to	4,022 00	4,702 07	207	+000
total up-regulated in gill	GO:0009719	endogenous stimulus cellular protein	1,78E-05	1,94E-06	67	704
total up-regulated in gill	GO:0006464	modification process macromolecule	1,95E-05	2,22E-06	144	1923
total up-regulated in gill	GO:0043412	modification	1,95E-05	2,22E-06	144	1923
total up-regulated in gill	GO:0006996	organelle organization cellular component	3,56E-05	4,16E-06	133	1763
		biogenesis at cellular				
total up-regulated in gill	GO:0071841	level	3,89E-05	4,76E-06	133	1768
		cellular component organization at cellular		1		
total up-regulated in gill	GO:0071842	level	3,89E-05	4,76E-06	133	1768
total up-regulated in gill	GO:0009987	cellular process	1,26E-04	1,58E-05	504	8771
total up-regulated in gill	GO:0008283	cell proliferation	5,11E-04	7,08E-05	88	1127
total up-regulated in gill	GO:0008219	cell death	6,20E-04	8,76E-05	101	1347
total up-regulated in gill	GO:0016265	death cellular protein	6,58E-04	9,47E-05	101	1350
total up-regulated in gill	GO:0044267	metabolic process	7.81E-03	1.23E-03	150	2319
total up-regulated in gill	GO:0006950	response to stress	1,75E-02	2,99E-03	133	2069
total up-regulated in gill	GO:0010528	protein metabolic	0.015.00		105	0045
total down-regulated in	GO.0019556	deneration of precursor	2,012-02	4,000-03	185	3045
gill	GO:0006091	metabolites and energy	9.69E-03	6.83E-05	16	386
the first of the second of		interesting)	0,002 00	0,002 00	10	000

Supplementary table S.2.6 Differentially expressed immune-related genes in head kidney tissue of *G. aculeatus.* Shown are differentially expressed genes and their corresponding treatment, including FPKM values for control (control_val) and treatment (treatment_val). The log2-fold change shows if there is up- or down-regulation of a given gene due to the parasite treatment. Only significant differences shown.

gene	treatment	control_val	treatment_val	log2(fold_change)
APOB (5 of 5)	clone I	397,857	2,52703	-7,29866
PGLYRP2 (2 of 2)	clone l	302,534	2,23121	-7,08313
APOB (1 of 5)	clone I	142,41	1,13425	-6,97217
C8G	clone I	564,245	4,5427	-6,95663
C3 (1 of 8)	clone I	253,781	2,14946	-6,88346
C8B	clone I	189,341	1,62499	-6,86441
C3 (4 of 8)	clone I	862,33	8,5632	-6,65395
VTN (2 of 2)	clone I	52,3546	0,527891	-6,63193
C3 (5 of 8)	clone I	131,06	1,43388	-6,51416
C3 (3 of 8)	clone I	159,784	1,87542	-6,41276
PLG	clone I	216,823	2,54515	-6,41262
CFP	clone I	95,5085	1,17732	-6,34205
C8A	clone I	107,029	1,39908	-6,25739
SUSD2	clone I	9,21498	0,148896	-5.9516
C9	clone I	141.829	2.39006	-5.89096
ENSGACG0000003030	clone l	50.9171	0.928614	-5,77693
G6PD (2 of 2)	clone I	13,1035	0.242406	-5,75639
ENSGACG0000014811	clone l	107 827	2 36189	-5.51263
C3 (2 of 8)	clone I	100 881	2,00100	-5 45179
ENSGACG0000014852	clone l	56 6342	2,00402	-4 45739
PVPL 1 (2 of 2)	clone l	11 0000	0.51/717	-4,40709
	cione i	76 4034	2 72160	-4 35573
	clone l	265 0/3	13 33/1	-4 31702
		203,943	6 25622	-4,01792
	cione i	30,9339	2,55055	-3,90029
	cione i	0,0403	0.7620/1	-3,52075
		9,0200	1 95/22	-3,00003
	cione I	20,5733	1,00400	-3,47101
	cione I	22,0200	2,40000	-3,14037
	cione I	24,4008	2,94303	-3,03110
	cione i	141,621	20,0123	-2,02307
	clone I	25,5542	3,80702	-2,72404
ADAMIS13	clone I	6,34378	1,61993	-1,96941
HYAL2 (1 of 2)	clone I	14,5824	32,8338	1,17095
IRF4 (2 of 2)	clone I	24,12	64,276	1,41405
JUNB (1 of 2)	clone I	14,9186	76,5929	2,3601
ENSGACG0000016298	clone I	21,2148	136,593	2,68674
PRF1 (2 of 5)	clone I	2,84543	19,7145	2,79254
THBS1 (2 of 2)	clone I	5,34663	41,8024	2,96688
SOCS3 (2 of 2)	clone I	6,09284	69,9715	3,52158
JUNB (2 of 2)	clone I	4,48677	68,0492	3,92283
SOCS3 (1 of 2)	clone I	8,54547	277,545	5,02142
VTN (1 of 2)	clone mix	290,729	0,291691	-9,96102
C8B	clone mix	189,341	0,246136	-9,58731
PGLYRP2 (2 of 2)	clone mix	302,534	0,491203	-9,26656
PLG	clone mix	216,823	0,38897	-9,12264

gene	treatment	control_val	treatment_val	log2(fold_change)
APOB (5 of 5)	cl one mix	397,857	0,736573	-9.07721
C8G	cl one mix	564,245	1,19664	-8.88119
ENSGACG00000014811	cl one mix	107,827	0,302411	-8.47799
APOB (1 of 5)	cl one mix	142,41	0.401887	-8,46904
C8A	clonemix	107,029	0.371097	-8.172
C3 (4 of 8)	cl one mix	862.33	3.43326	-7.97252
C3 (3 of 8)	clone mix	159,784	0.846626	-7 56018
CFP	cl one mix	95.5085	0.510596	-7 5473
C3 (5 of 8)	cl one mix	131.06	0.811535	-7 33536
C3 (1 of 8)	cl one mix	253,781	1.58069	-7 32688
C9	cl one mix	141.829	1,58198	-6 48627
SUSD2	clone mix	9.21498	0.107208	-6 4255
C3 (2 of 8)	clone mix	100.881	1.47385	-6 09692
ENSGACG0000003030	clone mix	50.9171	1.36813	-5 21788
CFB	cl one mix	76,4034	2,06039	-5 21265
G6PD (2 of 2)	cl one mix	13,1035	0.459733	-4 83302
ENSGACG00000014852	cl one mix	56.6342	2.01001	-4 8164
VTN (2 of 2)	cl one mix	52,3546	2,73782	-4 25722
SERPING1	cl one mix	265.943	17.0305	-3.96492
C6	clonemix	98,9399	6.54284	-3.91856
ENPP2 (2 of 2)	cl one mix	39.8483	3,13234	-3,66921
C3 (8 of 8)	cl one mix	24,4008	3.10237	-2.97549
IRF4 (2 of 2)	clonemix	24.12	83.3801	1 78947
ITGA5 (1 of 2)	cl one mix	3.89684	19.3759	2,31389
THBS1 (2 of 2)	cl one mix	5.34663	28,5636	2,41748
ENSGACG0000016298	cl one mix	21,2148	124.818	2.55669
SOCS3 (2 of 2)	clone mix	6,09284	47,1337	2.95157
SIX1	cl one mix	2,98137	31,7399	3.41225
JUNB (2 of 2)	cl one mix	4,48677	47,7688	3.41232
PIP5K1C (2 of 2)	cl one mix	0,832627	10,2316	3,61921
ATP1B3	cl one mix	3,11375	55,4923	4.15556
CRIP2 (2 of 2)	cl one mix	2,78183	50,6523	4,18652
ADSSL1	cl one mix	22,0206	439,238	4,31808
MEF2C (2 of 2)	cl one mix	1,28259	30,988	4,59457
SOCS3 (1 of 2)	cl one mix	8,54547	230,874	4,7558
MLF1	cl one mix	0,781018	21,7563	4,79993
MYLPF (1 of 2)	cl one mix	1,35951	2943,02	11,08
PVRL1 (2 of 2)	clone XII	11,0099	0,538633	-4,35336
MYLPF (2 of 2)	clone XII	141,621	16,6078	-3,0921
COL1A1 (2 of 2)	clone XII	57,8938	25,687	-1,17237
ZC3HAV1	clone XII	35,2857	21,6113	-0,707299
ADAMTS13	clone XII	6,34378	11,0225	0,797039
IRF4 (2 of 2)	clone XII	24,12	115,193	2,25575
RGCC	clone XII	28,2047	157,304	2,47955
ENSGACG00000016298	clone XII	21,2148	135,673	2,67699
CYP27B1	cl one XII	7,50464	51,4143	2,77632
THBS1 (2 of 2)	cl one XII	5,34663	37,0327	2,7921
JUNB (1 of 2)	cl one XII	14,9186	106,155	2,83099
CCR9 (1 of 2)	cl one XII	2,60228	31,9553	3,61821
CRIP2 (2 of 2)	cloneXII	2,78183	39,5776	3,83058
PIP5K1C (2 of 2)	cl one XII	0,832627	12,8216	3,94477
JUNB (2 of 2)	cl one XII	4,48677	102,8	4,51802
SOCS3 (2 of 2)	cloneXII	6,09284	140,181	4,52403

gene	treatment	control_val	treatment_val	log2(fold_change)
ENSGACG0000014852	clone XII	56,6342	2208,16	5,28503
ENSGACG0000003030	clone XII	50,9171	2822,85	5,79286
SOCS3 (1 of 2)	clone XII	8,54547	632,269	6,20923

Supplementary table S.2.7 Differentially expressed immune-related genes in gill tissue of *G. aculeatus.* Shown are differentially expressed genes and their corresponding treatment, including FPKM values for control (control_val) and treatment (treatment_val). The log2-fold change shows if there is up- or down-regulation of a given gene due to the parasite treatment. Only significant differences shown.

gene	treatment	control_val	treatment_val	log2(fold_change)
GATA2 (1 of 2)	clone I	110,657	64,4838	-0,779088
CASP3 (4 of 4)	clone I	450,008	269,981	-0,73709
F11R	clone I	282,828	187,116	-0,595993
EPHA2 (1 of 2)	clone I	24,5537	18,464	-0,411225
COL1A1 (2 of 2)	clone I	120,383	195,736	0,701278
C4A	clone I	26,6354	44,8943	0,753185
PIK3R1 (1 of 2)	clone I	32,8272	76,9047	1,22818
NFKBIA (1 of 2)	clone I	101,293	256,941	1,3429
CCR9 (1 of 2)	clone I	15,7446	43,8927	1,47913
THBS1 (2 of 2)	clone I	2,65074	14,2046	2,42189
SOCS3 (1 of 2)	clone I	25,2321	151,034	2,58154
PFDN1	clone mix	113,611	33,5984	-1,75764
EXOSC5	clone mix	89,0188	28,0065	-1,66835
ATG12	clone mix	50,5042	16,175	-1,64264
ELMOD2	clone mix	99,0101	47,3581	-1,06397
ENSGACG0000000336	clone mix	646,991	391,739	-0,723854
PRDX3	clone mix	128,492	87,3783	-0,556329
DCTN1 (2 of 2)	clone mix	21,9148	35,4999	0,695912
ZC3HAV1	clone mix	57,9356	102,987	0,829933
CHUK (1 of 2)	clone mix	15,6785	28,4516	0,859719
PKHD1L1	clone mix	3,33013	6,26935	0,912738
PRKDC	clone mix	5,5653	11,5522	1,05364
CXCL12 (2 of 2)	clone mix	180,438	381,163	1,0789
VAV3 (2 of 2)	clone mix	7,66529	16,7189	1,12506
MYO9B (1 of 2)	clone mix	11,7707	25,8328	1,134
KLC1	clone mix	10,2467	22,7065	1,14795
MINK1	clone mix	12,5942	27,9295	1,14903
FGFR2	clone mix	38,7514	87,4171	1,17367
TRPM4 (2 of 2)	clone mix	16,1638	36,749	1,18494
LYST	clone mix	2,52577	5,75517	1,18814
ROCK1	clone mix	19,4466	44,4478	1,1926
JAK1	clone mix	42,4953	97,2966	1,19508
IL6ST	clone mix	19,5226	44,7802	1,19771
CHD7	clone mix	6,55623	15,0938	1,20302
PIK3CB	clone mix	18,7046	43,1989	1,2076
TGFBR3	clone mix	15,8447	36,6134	1,20837
MALT1	clone mix	5,48002	12,6746	1,20969
AP3D1	clone mix	10,9076	25,3267	1,21533
TCF3 (1 of 2)	clone mix	12,5922	29,3723	1,22193
NCOA6	clone mix	6,04059	14,0976	1,22269
NLRC5	clone mix	7,72544	18,1536	1,23256
MAPK14 (1 of 2)	clone mix	36,8271	86,8727	1,23813
RICTOR	clone mix	7,93354	18,8267	1,24674
C3 (6 of 8)	clone mix	2,23888	5,32882	1,25104

gene	treatment	control_val	treatment_val	log2(fold_change)
ACIN1	cl one mix	21,5025	51,4822	1,25957
PRKCA (2 of 2)	cl one mix	7,20845	17,3013	1,26312
PSME4 (1 of 2)	clonemix	11,7679	28,8033	1,29137
C3 (8 of 8)	clonemix	1,66511	4,16296	1,32199
PIK3CG	clonemix	7,73283	19,6629	1,34641
C4A	cl one mix	26,6354	68,1728	1,35585
COL1A1 (2 of 2)	cl one mix	120,383	312,219	1,37493
PDE1B	clonemix	11,871	30,8535	1,37799
MAP4K2	cl one mix	10,3164	27,0149	1,38881
ENSGACG0000001919	cl one mix	118,854	316,304	1,41213
MLL	cl one mix	3,41602	9,25116	1,43732
SLC11A2 (1 of 2)	cl one mix	8,2926	22,76	1,45661
TNRC6C (2 of 2)	cl one mix	2,86844	7,96076	1,47264
EP300 (1 of 2)	clonemix	3,93953	10,9489	1,47468
EGR1	clonemix	17,677	49,5211	1,48617
ITCH (2 of 2)	cl one mix	4,34254	12,3402	1,50676
CYSLTR2	clonemix	8,98739	25,6988	1,51573
JAG2	clonemix	3,96985	11,4035	1,52232
TGFB1	clonemix	19,2995	56,4909	1,54946
SWAP70 (1 of 2)	cl one mix	25,7638	75,9629	1,55995
C7 (2 of 2)	cl one mix	11,3621	34,368	1,59683
SKIL	clone mix	5,59669	17,1667	1,61697
PTPN1	clonemix	12,4365	38,4085	1,62685
PREX1	cl one mix	7,1903	22,6468	1,65518
MECOM	cl one mix	2,79049	8,89955	1,67321
KLF6 (1 of 2)	clonemix	38,6488	127,676	1,72399
THRA (1 of 2)	clonemix	6,17339	20,5508	1,73506
IGF1R (2 of 2)	cl one mix	3,76793	12,7508	1,75874
SLC16A1 (1 of 2)	clonemix	10,4441	35,4457	1,76292
PGLYRP2 (1 of 2)	clone mix	12,1395	43,2742	1,83379
SFRP2	cl one mix	14,8646	53,0794	1,83627
MKNK2	cl one mix	61,4839	221,94	1,85189
COL1A2	clone mix	67,0945	252,776	1,9136
COLEC12 (2 of 2)	clone mix	6,56252	25,2012	1,94117
TINAGL1	cl one mix	18,6589	74,4725	1,99684
FN1 (2 of 2)	clone mix	5,47172	21,9932	2,00699
DAB2	clonemix	5,07582	20,4465	2,01014
CCR9 (1 of 2)	clonemix	15,7446	65,1434	2,04877
HDAC4 (1 of 2)	clonemix	3,84143	15,899	2,04922
EDN2	cl one mix	9,09681	37,761	2,05346
SRF (2 of 2)	cl one mix	2,85015	11,9942	2,07322
PIK3R1 (1 of 2)	cl one mix	32,8272	138,861	2,08068
FN1 (1 of 2)	cl one mix	11,812	50,042	2,08289
JUNB (2 of 2)	clone mix	15,1382	66,1757	2,1281
ITGA1	clonemix	8,11723	35,7251	2,13788
NFKBIA (1 of 2)	clone mix	101,293	453,214	2,16166
ITGA5 (1 of 2)	clonemix	1,8522	8,67928	2,22833
PODXL	clonemix	6,93071	32,6175	2,23457
KIF3C (1 of 2)	clonemix	2,13274	10,4545	2,29334
JUNB (1 of 2)	clonemix	22,0675	136,157	2,62527
DUSP6	cl one mix	8,66461	56,9579	2,71669
SOCS3 (2 of 2)	cl one mix	8,34668	65,733	2,97734
ADAM8 (1 of 2)	cl one mix	1,99632	15,7632	2,98115

gene	treatment	control_val	treatment_val	log2(fold_change)
THBS1 (2 of 2)	clone mix	2,65074	34,9675	3,72154
SOCS3 (1 of 2)	clone mix	25,2321	334,289	3,72776
ITGB1 (1 of 2)	clone XII	35,9397	55,5941	0,629352
C4A	clone XII	26,6354	59,4999	1,15954
DAB2	clone XII	5,07582	14,08	1,47193
C6	clone XII	3,91636	10,9939	1,48911
SLC3A2 (2 of 2)	clone XII	57,6051	203,394	1,82001
JUNB (2 of 2)	clone XII	15,1382	63,0149	2,0575
SOCS3 (2 of 2)	clone XII	8,34668	47,5986	2,51164
ITGA5 (1 of 2)	clone XII	1,8522	12,0105	2,69698
ADAM8 (1 of 2)	clone XII	1,99632	14,0493	2,81508
SOCS3 (1 of 2)	clone XII	25,2321	250,36	3,31067
THBS1 (2 of 2)	clone XII	2,65074	34,5915	3,70595

Appendix Chapter 3

Supplementary table S.3.1 Number of reads per sample, including treatment, fish family, organ type, flowcell lane number, total reads and mapped reads. Seven samples from gills were of reduced quality and had to be removed from further analysis. This led to 2 samples of M-C and XII-M and 3 samples of M-M, I-M and XII-XII in gills as well as 4 samples for all remaining treatments, resulting in 57 individual libraries.

sample	fish family	treatment	organ	lane no	total reads	aligned reads	% aligned
30	10-2x1	M-C	gills	L003	23200292	10673872	46,01
31	10-13x12	M-C	gills	L007	13843090	7269757	52,52
32	10-13x12	M-M	gills	L002	15338700	5590881	36,45
33	10-11x16	M-M	gills	L008	9388988	4603250	49,03
34	10-10x15	M-M	gills	L008	13518952	6765327	50,04
35	10-2x1	I-C	gills	L002	11469604	6214717	54,18
36	10-13x12	I-C	gills	L001	15699134	9302945	59,26
37	10-10x15	I-C	gills	L005	9427674	4985903	52,89
38	10-11x16	I-C	gills	L005	9696188	5067788	52,27
39	10-13x12	I-M	gills	L001	14100266	7211746	51,15
40	10-2x1	I-M	gills	L001	16578380	9333477	56,30
41	10-11x16	I-M	gills	L007	5347532	2592101	48,47
42	10-2x1	1-1	gills	L001	4063104	2291667	56,40
43	10-13x12	1-1	gills	L003	14077882	6987047	49,63
44	10-11x16	1-1	gills	L004	6580812	3040312	46,20
45	10-10x15	1-1	gills	L006	4209734	2198714	52,23
46	10-13x12	XII-C	gills	L001	22333120	12833446	57,46
47	10-2x1	XII-C	gills	L002	10633172	5381299	50,61
48	10-11x16	XII-C	gills	L005	5259256	2753246	52,35
49	10-10x15	XII-C	gills	L003	17222058	10103310	58,66
50	10-2x1	XII-M	gills	L004	11213700	5480842	48,88
51	10-10x15	XII-M	gills	L005	6136364	3248372	52,94
52	10-13x12	XII-XII	gills	L003	15972590	8927896	55,90
53	10-11x16	XII-XII	gills	L006	13032102	7691739	59,02
54	10-10x15	XII-XII	gills	L008	10406320	4868582	46,78
55	10-2x1	M-C	head kidney	L004	19397972	10114604	52,14
56	10-13x12	M-C	head kidney	L002	18125592	10561800	58,27
57	10-11x16	M-C	head kidney	L006	21368720	13513779	63,24
58	10-10x15	M-C	head kidney	L007	27882162	14601208	52,37
59	10-13x12	M-M	head kidney	L005	1/938/40	9686640	54,00
60	10-2x1	M-M	head kidney	L002	14743006	8639596	58,60
61	10-11x16	M-M	head kidney	L001	26166842	15671690	59,89
62	10-10x15	M-M	head kidney	L008	22917476	11210711	48,92
63	10-2X1	1-0	head kidney	L002	15901/86	9654649	60,71
64	10-13x12	I-C	head kidney	L001	21585752	12516032	57,98
65	10-10x15	1-0	head kidney	L007	13507136	7198480	53,29
66	10-11x16	I-C	head kidney	L007	19187590	9882590	51,51
67	10-13x12	I-M	head kidney	L001	29708146	17022959	57,30
68	10-2x1	I-M	head kidney	L005	9385772	5185492	55,25
69	10-11x16	I-M	head kidney	L007	14238190	7842227	55,08
/0	10-10x15	I-IVI	head kidney	L008	17588174	9551118	54,30
/1	10-2X1	1-1	nead kidney	L001	20113408	13216210	65,/1
72	10-13X12	1-1	head kidney	L006	23300234	14/4/637	63,29
/3	10-11116	1-1	head kidney	L003	1/524576	10753016	61,36
/4	10-10x15	1-1	head kidney	L006	15238958	9376244	61,53

sample	fish family	treatment	organ	lane no	total reads	aligned reads	% aligned
75	10-13x12	XII-C	head kidney	L003	20949002	11779921	56,23
76	10-2x1	XII-C	head kidney	L004	14624880	8093626	55,34
77	10-11x16	XII-C	head kidney	L004	16929110	9576694	56,57
78	10-10x15	XII-C	head kidney	L004	23834444	12169141	51,06
79	10-2x1	XII-M	head kidney	L003	27035170	16038620	59,33
80	10-13x12	XII-M	head kidney	L003	25921982	14714739	56,77
81	10-10x15	XII-M	head kidney	L006	35427104	21128950	59,64
82	10-11x16	XII-M	head kidney	L006	18137748	11393160	62,81
83	10-2x1	XII-XII	head kidney	L002	20256484	11087272	54,73
84	10-13x12	XII-XII	head kidney	L002	23309590	12869852	55,21
85	10-11x16	XII-XII	head kidney	L005	38346330	20984672	54,72
86	10-10x15	XII-XII	head kidney	L007	13026678	7185444	55,16

Supplementary table S.3.2 Cufflinks output, list of differentially expressed genes in head kidney tissue of three-spined sticklebacks. Differentially expressed is defined by comparison to pre-exposed controls (I-C, XII-C or M-C). The term "gene" is the name for a specific gene as taken from the *G*. *aculeatus* reference genome, "sample_1" is the preexposure control group, "sample_2" the infection treatment group, log2(fold change) displays the transformed fold change in "sample_2" compared to "sample_1", p value and q value are given for each test (only significant differences shown).

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
A1CF	I-C	-	3,2036	0,0022239	0,029203
ACTN2	I-C	1-1	-9,76437	5,15E-008	3,64E-006
ADPRHL1	I-C	-	-7,39486	2,42E-007	1,38E-005
ALPK3 (1 of 2)	I-C	-	-6,94988	0,0005625	0,00961366
APOB (2 of 5)	I-C	1-1	3,40812	5,57E-006	0,00020195
APOE (2 of 2)	I-C	1-1	3,48032	0,0043787	0,0497963
ASB10	I-C	-	-7,03418	0,0017174	0,0237451
BMP10 (2 of 2)	I-C	-	-1,80E+308	0,0022095	0,029054
CAP2	I-C	-	-4,88706	8,8544E-04	0,0139076
CHRM2 (1 of 2)	I-C	-	-4,05351	0,0032527	0,039484
CKMT2 (1 of 2)	I-C	1-1	-5,44235	1,88E-005	0,00056622
COMTD1 (2 of 2)	I-C	1-1	1,80E+308	0,0007038	0,0115437
CSRP3	I-C	1-1	-8,35771	1,91E-006	8,14E-005
CUZD1	I-C	-	4,13725	0,0004637	0,00821235
DES	I-C	-	-5,54369	0,0015245	0,0215832
ELMOD2	I-C	1-1	0,950604	5,59E-011	9,15E-009
ENSGACG0000000115	I-C	-	-3,54206	7,02E-005	0,0017111
ENSGACG0000000272	I-C	1-1	-5,34753	0,00011243	0,00253701
ENSGACG0000000300	I-C	1-1	-5,57803	0,0003628	0,00671037
ENSGACG0000001073	I-C	-	-5,8439	0,0002577	0,00505692
ENSGACG0000001559	I-C	1-1	1,54286	0,0019455	0,0262497
ENSGACG0000002089	I-C	-	-4,90571	0,0005155	0,00895473
ENSGACG0000003351	I-C	-	-4,36197	0,0012195	0,0180416
ENSGACG0000003435	I-C	1-1	3,40672	0,0010413	0,0158758
ENSGACG0000003787	I-C	1-1	1,6804	0,0001988	0,00407695
ENSGACG0000004463	I-C	-	3,67183	0,0002604	0,00510036
ENSGACG0000005994	I-C	-	-5,28514	7,13E-005	0,00173349
ENSGACG0000006109	I-C	1-1	-5,20298	0,001911	0,0258757
ENSGACG0000006644	I-C	-	2,84275	0,0009159	0,0142995
ENSGACG0000006829	I-C	-	3,91479	4,24E-005	0,00112144
ENSGACG0000006908	I-C	-	2,11471	0,0010229	0,0156465
ENSGACG0000007505	I-C	-	3,42935	0,0014793	0,0210679
ENSGACG0000007661	I-C	1-1	-8,52956	2,85E-005	0,00080373
ENSGACG0000009801	I-C	-	-0,929019	1,81E-005	0,00054907
ENSGACG0000009821	I-C	1-1	-6,51937	5,78E-006	0,00020822
ENSGACG0000009825	I-C	1-1	1,77626	3,99E-008	2,92E-006
ENSGACG00000010126	I-C	-	-9,32576	3,77E-010	4,97E-008
ENSGACG0000010623	I-C	-	-9,96683	4,33E-006	0,00016313
ENSGACG00000011294	I-C	-	-2,81859	0,0005336	0,00921181
ENSGACG00000012657	I-C	1-1	-8,84593	2,37E-006	9,76E-005
ENSGACG00000012663	I-C	-	-6,21131	1,2123E-04	0,00270081
ENSGACG0000013782	I-C	-	-6,71836	2,64E-005	0,0007535
ENSGACG00000014948	I-C	-	-12,0484	0,0001029	0,00235484

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000014960	I-C	1-1	-9,34773	7,05E-009	6,49E-007
ENSGACG0000015168	I-C	-	-4,32944	0,001492	0,0212132
ENSGACG00000015464	I-C	1-1	1,07663	0,000847	0.0134155
ENSGACG00000016813	I-C	-	-4,01863	4,49E-010	5,80E-008
ENSGACG0000017681	I-C	1-1	2.1781	0	0
ENSGACG0000017758	I-C	1-1	4.33209	0.001764	0.0242613
ENSGACG0000019454	I-C	1-1	3.37742	0.0020256	0.0271166
ENSGACG00000019517	I-C	1-1	4 63325	0.000233	0.0046527
ENSGACG0000019604	I-C	1-1	1,75918	0.0018373	0.0250825
ENSGACG0000019744	I-C	1-1	-8.2213	9.57E-010	1.13E-007
ENSGACG0000019784	I-C	1-1	-5.37535	0.0006856	0.011297
ENSGACG0000020653	I-C	1-1	3.75858	7.79E-005	0.00186652
ENSGACG0000020852	I-C	1-1	-0.866915	0.0005954	0.0100692
E9 (2 of 2)	I-C	-	2,11605	0.0010282	0.0157123
FABP1	I-C	1-1	4,24325	0.0001413	0.00306845
FBXQ40 (1 of 3)	I-C	1-1	-6.03503	8.25E-005	0.00195831
FGF8 (2 of 2)	I-C	1-1	-7,17864	4.78E-005	0.00124014
FHI = 2 (1 of 2)	I-C	1-1	-6.36153	6.58E-005	0.00162077
FHOD3 (1 of 2)	I-C	1-1	-4.38783	0.0017679	0.0243055
FLNC(2 of 2)	I-C	1-1	-6.84303	3.02E-005	0.00084467
FOXA3	I-C	1-1	3.44121	0.0021748	0.0286915
G6PC(1 of 2)	I-C	1-1	3.81217	0.0036596	0.0433184
GAPDH (1 of 2)	I-C	-	-5.46821	0.000939	0.0145956
HAO1	I-C	1-1	2,82325	3.47E-009	3.50E-007
HSP90AA1 (2 of 2)	I-C	1-1	-5 81598	0,0004204	0.00757666
HSPB7	I-C	-	-5.74368	0.0002557	0.00502486
IGFBP1 (1 of 2)	I-C	I-I	4.68339	0.0006887	0.0113397
IGFBP2 (2 of 2)	I-C	1-1	3,62982	0.0029777	0.0368385
KBTBD12	I-C	1-1	-4.59262	0.00311129	0.0381166
KCNH2 (2 of 2)	I-C	1-1	-8.86128	2.00E-006	8.46E-005
KCNJ14	I-C	1-1	-4.38144	0.0020864	0.0277639
KCNJ5	I-C	-	-5.17193	0.00014311	0.00310119
KLHL31	I-C	1-1	-5,70514	0.0009157	0.0142964
LDB3	I-C	-	-5,27519	0.0015756	0.0221617
LMOD2 (1 of 2)	I-C	-	-5,89506	2.60E-005	0.00074495
LRG1	I-C	-	3,22671	0.0014649	0.0209036
LRRC10	I-C	-	-3,65971	0.0022374	0.029345
MASP1 (2 of 2)	I-C	-	4,11019	0,0014483	0,0207118
MSRB2	I-C	1-1	2,89639	0,00113461	0,0170253
MYL7	I-C	I-I	-9,23	1,10E-006	5,08E-005
MYLK4 (1 of 2)	I-C	-	-8,58864	4,04E-005	0,00107837
MYLK4 (2 of 2)	I-C	-	-5,90449	0,0003307	0,00621669
MYO18A (2 of 2)	I-C	-	-6,25441	0,0001551	0,00331456
MYOZ2 (1 of 2)	I-C	-	-6,99721	5,16E-007	2,65E-005
NDUFA4 (2 of 2)	I-C	1-1	-4,516	0,0041298	0,0475971
NEBL	I-C	1-1	-4,57686	0,0013342	0,0193943
NEURL2	I-C	-	-5,66264	9,64E-005	0,00223017
NEXN	I-C	1-1	-6,13821	7,83E-005	0,00187541
NRAP	I-C	-	-5,11863	0,0003417	0,0063863
PCK1	I-C	1-1	5,30571	1,04E-006	4,82E-005
PDLIM1	I-C	1-1	-5,57631	0,0001959	0,00402836
PIK3IP1	I-C	1-1	-0,439696	0,0036948	0,0436465
PLA2G12B (1 of 2)	I-C	1-1	4,38859	0,0017699	0,0243288

gene	sample_1	sample_2	log2(fold	_change)	p_value	q_value
PRG4	I-C	-		3,88188	0,0012575	0,0184982
RASAL1	I-C	-		4,96106	0,0030906	0,0379258
RGR	I-C	-		-4,50471	0,0024052	0,031093
RGS5	I-C	-		-1,04667	2,42E-006	9,93E-005
RRAD	I-C	-		-4,13646	0,00291	0,0361699
SCN4A (2 of 2)	I-C	-		-6,31184	0,0005568	0,0095339
SCN4B (1 of 2)	I-C	-		-5,88474	2,72E-005	0,00077369
SLC13A3	I-C	1-1		3,3038	0.0023183	0.030191
SLC22A16	I-C	-		2,95895	0,0030439	0,0374805
SLC25A43	I-C	1-1		-2,21571	0,0027089	0,0341623
SLC41A3 (1 of 2)	I-C	-		-6,68688	8,26E-006	0,00028215
SMPX	I-C	-		-5,4675	3,1745E-04	0,00600772
SORBS2	I-C	-		-5,54165	0,0002906	0,00558465
SPP2	I-C	-		2,95744	0,0025063	0,0321261
STX2 (2 of 2)	I-C	-		1,14427	0,0008787	0,0138221
SYNPO2L (2 of 2)	I-C	1-1		-8,49299	2,23E-008	1,77E-006
TBX5	I-C	1-1		-7,20804	0,0001651	0,0034942
TEKT4	I-C	-		-8,79113	8,45E-008	5,60E-006
TMEM182	I-C	-		-3,86601	0,00011533	0,00259158
TMOD1	I-C	-		-3,64097	1,6207E-04	0,00343936
TNNC1	I-C	1-1		-10,7505	3,22E-007	1,77E-005
TNNT2 (1 of 2)	I-C	1-1		-9,44077	1,54E-006	6,75E-005
TRIM55 (1 of 2)	I-C	-		-6,03454	0,0003517	0,00653795
TTN	I-C	-		-5,6439	0,0015707	0,0221066
TXLNB (1 of 2)	I-C	-		-4,79872	4,3172E-04	0,00774481
TXLNB (2 of 2)	I-C	-		-5,19878	0,0008945	0,0140236
UNC119 (2 of 2)	I-C	-		-6,20599	0,0005308	0,00917109
USP13	I-C	-		-5,1325	0,0003673	0,00677983
USP28	I-C	-		-5,15739	0,0007556	0,0122272
VTN (2 of 2)	I-C	-		1,79699	1,62E-006	7,07E-005
ACTN2	I-C	I-M		-9,64766	7,94E-008	5,30E-006
ADPRHL1	I-C	I-M		1,80E+308	0,0007273	0,011855
ALPK3 (1 of 2)	I-C	I-M		-6,2787	8,50E-005	0,00200787
APOBEC2 (2 of 2)	I-C	I-M		-5,94001	0,0013633	0,0197365
ASB10	I-C	I-M		-7,29938	0,0016941	0,0234895
BMP10 (2 of 2)	I-C	I-M		-8,31862	1,30E-006	5,86E-005
CAP2	I-C	I-M		-5,19012	0,0007241	0,0118134
CAV3	I-C	I-M		-4,84283	0,0040926	0,0472586
CD2	I-C	I-M		1,26396	0,002573	0,0328042
CKMT2 (1 of 2)	I-C	I-M		-6,08517	0,00011364	0,00255961
COX6B1 (1 of 2)	I-C	I-M		-4,49974	0,0015801	0,0222111
CSRP3	I-C	I-M	-	1,80E+308	0,0021666	0,0286077
DES	I-C	I-M		-7,90155	3,33E-005	0,00091747
ENSGACG0000000115	I-C	I-M		-3,9053	7,61E-005	0,00182976
ENSGACG0000000272	I-C	I-M		-6,18776	1,41E-005	0,0004443
ENSGACG0000000300	I-C	I-M		-6,07926	0,004199	0,0482167
ENSGACG0000001073	I-C	I-M		-6,08942	0,0001258	0,00278648
ENSGACG0000002089	I-C	I-M		-5,65334	0,0007307	0,0119005
ENSGACG0000002830	I-C	I-M		-5,82383	0,0016229	0,0226912
ENSGACG0000003351	I-C	I-M		-5,05096	0,0002222	0,00447343
ENSGACG0000004239	I-C	I-M		1,22532	3,50E-007	1,90E-005
ENSGACG0000005760	I-C	I-M		1,47151	0,0023884	0,0309173
ENSGACG0000005994	I-C	I-M		-5,06538	0,0002038	0,00416163

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000006109	I-C	I-M	-4,96385	0,0030368	0,0374111
ENSGACG0000007661	I-C	I-M	-9,58726	7,41E-006	0,00025721
ENSGACG0000009821	I-C	I-M	-5,37486	0,0001338	0,00293145
ENSGACG0000009825	I-C	I-M	1,31201	0,0004598	0.00815422
ENSGACG0000010126	I-C	I-M	-9,11835	4,30E-011	7.25E-009
ENSGACG0000010375	I-C	I-M	0.503829	0.000607	0.0102285
ENSGACG00000010623	I-C	I-M	-8.98926	1.01E-005	0.00033418
ENSGACG00000012654	I-C	I-M	-7.58903	2.36E-005	0.00068562
ENSGACG00000012657	I-C	I-M	-9.69557	6.11E-007	3.07E-005
ENSGACG00000012663	I-C	I-M	-6.2842	0.000182	0.00378736
ENSGACG0000013782	I-C	I-M	-8.31958	1.19E-006	5.43E-005
ENSGACG00000014948	I-C	I-M	-10.83	0.0004092	0.00741153
ENSGACG00000014960	I-C	I-M	-9.94095	2.92E-009	3.01E-007
ENSGACG0000016813	I-C	I-M	-3.55478	0.000106	0.00241466
ENSGACG0000018706	I-C	I-M	-5.64052	0.0024523	0.031576
ENSGACG0000019744	I-C	I-M	-8,70632	1.79E-007	1.07E-005
ENSGACG0000019784	I-C	I-M	-5.91224	0.000489	0.00857414
FBRSL1	I-C	I-M	0.587013	0.0013918	0.0200639
FBXO40 (1 of 3)	I-C	I-M	-4.43413	0.0002857	0.00550594
FGF8 (2 of 2)	I-C	I-M	-1.80E+308	0.0038188	0.0447832
FHL2 (1 of 2)	I-C	I-M	-6.47491	0.0002713	0.00527475
FOSL1	I-C	I-M	6.24922	5.71E-005	0.00144035
GAPDH (1 of 2)	I-C	I-M	-6.36137	0.00016	0.0034015
GPM6B (2 of 2)	I-C	I-M	1.86623	0	0,000 1010
GZMM (2 of 5)	I-C	I-M	-1.24609	1.02E-005	0.0003377
HSP90AA1 (2 of 2)	I-C	I-M	-5.16525	0.0006415	0.0107001
HSPB7	I-C	I-M	-6.06835	0.0001861	0.00385942
IL22RA1	I-C	I-M	6,65357	1.77E-007	1.06E-005
JPH2	I-C	I-M	-4,2612	0.0007527	0.0121896
KCNH2 (2 of 2)	I-C	I-M	-7,2939	0.0005836	0.00990548
KLHL31	I-C	I-M	-6,41344	0.0004331	0.00776472
LDB3	I-C	I-M	-5,29263	0.0007259	0.0118366
LRRC10	I-C	I-M	-5.83602	0.0021321	0.0282501
MMP9	I-C	I-M	2,93848	0.0022669	0.0296505
MYL7	I-C	I-M	-9,58177	7.13E-007	3.50E-005
MYLK4 (2 of 2)	I-C	I-M	-4,29637	0,0018583	0,0253093
MYO18A (2 of 2)	I-C	I-M	-5,63737	4,73E-005	0,00123105
MYOZ2 (1 of 2)	I-C	I-M	-1,80E+308	0,0031884	0,0388637
NAV3	I-C	I-M	-2,88097	0,0003515	0,00653484
NEURL2	I-C	I-M	-5,32465	0,0002759	0,00534957
NEXN	I-C	I-M	-6,95422	2,62E-006	0,00010654
NUDC	I-C	I-M	0,60157	0,001437	0,0205825
OBSL1 (2 of 2)	I-C	I-M	-3,59071	0,0023857	0,0308886
PDLIM1	I-C	I-M	-5,01518	0,0003547	0.00658534
PFKM (2 of 2)	I-C	I-M	-4,32162	0,001694	0,0234893
PGAM2	I-C	I-M	-4,71721	0,0012638	0,0185711
PYGM (2 of 2)	I-C	I-M	-4,82057	0,000834	0,0132458
RALY	I-C	I-M	3,27138	0,004244	0,0486187
SARDH	I-C	I-M	0,845349	0,0007201	0,0117598
SCN4A (2 of 2)	I-C	I-M	-5,61785	1,46E-005	0,00045688
SCN4B (1 of 2)	I-C	I-M	-4,6932	5,33E-005	0,00136033
SLC41A3 (1 of 2)	I-C	I-M	-6,29454	5,99E-005	0,00149977
SLC7A6	I-C	I-M	-4,73045	0,0031039	0,0380482

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
SLC8A1 (2 of 2)	I-C	I-M	-8,19525	1,27E-008	1,08E-006
SMPX	I-C	I-M	-4,7602	0,0029474	0,0365408
SNTB1	I-C	I-M	1,19752	0,0004171	0,00752695
SYNPO2L (2 of 2)	I-C	I-M	-7,84385	8,72E-009	7.82E-007
TBX5	I-C	I-M	-1,80E+308	0.0025359	0.0324265
TEKT4	I-C	I-M	-7,27979	7.71E-008	5.17E-006
TMEM182	I-C	I-M	-4,41403	4.94E-005	0.00127469
TMOD1	I-C	I-M	-4.67481	0.0003427	0.00640146
TNNC1	I-C	I-M	-10.7611	4.16E-007	2 21E-005
TNNT2 (1 of 2)	I-C	I-M	-9.03996	8.01E-007	3.87E-005
TPM2	I-C	I-M	-2.01832	0.0006089	0.0102537
TBIM55 (1 of 2)	I-C	I-M	-5.54131	0.0029788	0.0368492
TTN	I-C	I-M	-6.78561	0.000245	0.00485106
TXLNB (1 of 2)	I-C	I-M	-6,14956	1 22E-005	0.00039175
TXI NB (2 of 2)	I-C	I-M	-6.31793	0.0001073	0.00243889
LIGP2(1 of 2)	I-C	I-M	0 632532	0.0003415	0.00638288
UNC119 (2 of 2)	I-C	I-M	-4 83963	0.0005432	0.0093443
	I-C	I-M	-5 6379	0.0003843	0.00703771
LISP28	I-C	I-M	-6 42494	0.000275	0.00533523
A1CE	M-C	M-M	6 24562	2 80E-005	0.00079265
ABCB11	M-C	M-M	3 99804	0.0014103	0.020277
ABCBA	M-C	M-M	5 64531	0.0003517	0.00653902
	M-C	M-M	4 03032	0.0036797	0.0435067
	M-C	M-M	4,00002	0.001329	0.019336
	M-C		3 28212	0.0022013	0.0289666
	M-C		-3 21/72	4 6361 E-04	0.00821118
	M-C		A 781/Q	0.0007701	0.0124214
AGHZ	M-C		6 01082	2 99E-007	1 66E-005
AGT (1 of 2)	M-C		6 /3777	2,33E-007	0.00013333
AGAT (1012)	M C		5 77562	7.21E-005	0.0017/01
	NI-C		4 22101	0.0031646	0.0386356
	IVI-C		4,22101	1 585-009	1 76E-007
	M C		1 06022	0.00211252	0.028054
ALLO	M-C		4,00900	3 00 - 005	0,020034
	M-C		2,12333	3,99E-003	0.0201816
	NI-C		3,90920	0,0014018	0,0201010
	M-C		4,00142	0,0031803	0,0300437
ANGPIL3 (1 of 2)	M-C		4,71093	7 90 5 005	0,0232799
	M-C		0,32992	7,69E-005	0,00162/2
	M-C		5,20120	0,00E-003	4 455 008
	M-C		0,19340	0,0010767	4,452-000
APOH (2 of 2)	M-C		4,39094	0,0019707	0,0203304
ARGI	M-C		3,29273	0,0012339	0,0102174
ARL14 (2 01 2)	M-C	M-M	0,00200	0,0001719	0,00501105
ASGRI	M-C		4,76904	2,0003742	0.375.005
	M-C		-4,31072	2,200-000	3,57 E-005
ATP2A1 (2 of 2)	M-C	M-M	-5,49328	2,055,005	0,00060817
BCO2 (3 of 3)	M-C	M-M	4,66599	2,05E-005	0,000662299
	M-C	M-M	5,262/4	1 495 005	0.00033366
	M-C	M-M	5,98528	1,400-005	0.00119/91
	M-C	M-M	5,53618	4,320-005	0.00110401
C3 (4 of 8)	M-C	M-M	5,/3688	1 02025 04	0.0032544
	M-C	M-M	5,20093	0.0000050	0,0023344
000058	M-C	M-M	4,60/58	0,0003858	0,00705955
gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
--------------------	----------	----------	-------------------	------------	------------
C8A	M-C	M-M	5,9133	9,50E-006	0,0003173
C8B	M-C	M-M	5,78051	3,13E-005	0,00087079
C8G	M-C	M-M	5,77978	4,83E-005	0,00125181
C9	M-C	M-M	4,90788	0,0001662	0,00351147
CASQ1 (1 of 2)	M-C	M-M	-6,37873	1,44E-007	8,87E-006
CETP	M-C	M-M	5,98376	4,12E-006	0,00015642
CFB	M-C	M-M	3,0643	0,00321159	0,0390877
CFP	M-C	M-M	4,19919	0,0009356	0,0145522
CHIA	M-C	M-M	6.02963	0,0004688	0,00828558
CHBNA3	M-C	M-M	-0.57589	0.0010359	0.015809
CIDEB	M-C	M-M	5.1474	0.0001788	0.00373299
CKM(1 of 2)	M-C	M-M	-5.12307	3.52E-007	1.91E-005
CLIC5 (1 of 2)	M-C	M-M	5.71021	0.0004508	0.00802405
CNDP1	M-C	M-M	5.01556	1.87E-005	0.00056515
CNGB1 (1 of 2)	M-C	M-M	2,45307	0.0021937	0.0288866
	M-C	M-M	6,23321	1.49E-014	5.35E-012
	M-C	M-M	5 44079	0.0003941	0.00718528
CVP2 2 (1 of 6)	M-C	M-M	4 44073	1 13E-005	0.00036846
CVP2 I2 (2 of 6)	M-C	M-M	6 14929	4 17E-006	0.00015805
CVP2 I2 (3 of 6)	M-C	M-M	5 24812	4,17 E 000	3.07E-006
	M-C	M-M	4 82016	0.000318	0.00601638
CVP2N(1 (1 of 5))	M-C	M-M	6 79932	1.47E-006	6.48E-005
	M C		3 33107	1,47 2-000	0,402 009
	M-C		4 7681	0.0001261	0.00279186
	M C		6 831/5	7 30E-006	0,00275100
	M C		1 905 1 909	0.0015605	0,00023404
DRAJOZZ	M C		5 5007	0,0013033	0,0220934
	M C		2 27460	0,0002200	0,00457875
	MC		3,37409	0,0034233	0,0411000
ENSGACG00000000007	NI-C		4,07790	0,0004701	0,00630421
ENSGACG0000001280	M C		3,40337	5,09E-005	0,00143703
ENSGACG00000001432	MC		4,97007	0,00014011	0,00313340
ENSGACG0000001522	NI-C		-4,2207	0,0002878	0,00554095
ENSGACG0000001559	NI-C		4,22704	0,0001733	0,00363691
ENSGACG0000001733	M-C		5,1101	9,112-006	0,00030625
ENSGACG0000001742	M-C		2,0009	0,0007754	0,0124921
ENSGACG00000002738	M-C		-4,01513	0,000636	0,0106266
ENSGACG00000000000	IVI-C		-3,70792	0,0005422	0,00933051
ENSGACG0000003030	M-C		9,02800	5,41E-012	1,14E-009
ENSGACG0000003435	M-C		6,45185	0,0007708	0,0124303
ENSGACG0000003461	M-C		6,14974	1,53E-005	0,00047633
ENSGACG0000003467	M-C		5,611/5	0,0004184	0,00754595
ENSGACG0000003473	M-C		5,46971	7,44E-005	0,001/951/
ENSGACG0000003787	M-C		2,94554	0	0
ENSGACG0000004413	M-C	M-M	5,86328	2,27E-005	0,00066346
ENSGACG0000004463	M-C	M-M	4,60709	0,0015058	0,0213705
ENSGACG0000004949	M-C	M-M	3,96517	2,8213E-04	0,00544833
ENSGACG00000005023	M-C	M-M	-5,4/101	6,59E-006	0,00023302
ENSGACG0000005067	M-C	M-M	4,02377	0,00211347	0,0280536
ENSGACG0000005883	M-C	M-M	4,61765	1,25E-006	5,66E-005
ENSGACG0000006029	M-C	M-M	6,04219	0,0005613	0,00959752
ENSGACG0000006545	M-C	M-M	5,27466	0,0001228	0,00273037
ENSGACG0000006644	M-C	M-M	5,36298	0,0010872	0,0164436
ENSGACG0000006829	M-C	M-M	7,07357	4,20E-009	4,13E-007

gene	sample_1	sample_2	log2(fold_	change)	p_value	a value
ENSGACG0000006833	M-C	M-M		5.84302	3.44E-006	0.00013439
ENSGACG0000007507	M-C	M-M		3,35701	0.0039474	0.0459603
ENSGACG0000007642	M-C	M-M		5,98434	0.0004817	0.00847061
ENSGACG0000007954	M-C	M-M		7.3361	3.85E-006	0.00014749
ENSGACG0000009173	M-C	M-M		5.9581	1.97E-005	0.00058806
ENSGACG0000009188	M-C	M-M		-2.47104	0.0014231	0.0204226
ENSGACG0000009487	M-C	M-M		-3.78187	0 0009491	0.014723
ENSGACG0000009583	M-C	M-M		5.62105	2.6187E-04	0.0051243
ENSGACG0000009592	M-C	M-M		5.95863	1.60E-006	7.01E-005
ENSGACG0000009633	M-C	M-M		2.75675	0.0013846	0.0199791
ENSGACG0000009825	M-C	M-M		1.34487	7.99E-010	9.65E-008
ENSGACG0000009880	M-C	M-M		5,57323	9,95E-005	0.00229026
ENSGACG0000009952	M-C	M-M		5,12916	0,0006316	0.0105678
ENSGACG0000010000	M-C	M-M		-5,94143	3,04E-008	2,30E-006
ENSGACG00000010018	M-C	M-M		-6,62659	1,50E-008	1,25E-006
ENSGACG00000010145	M-C	M-M		4,93497	0,0001854	0,0038471
ENSGACG00000010162	M-C	M-M		-4,31931	2,27E-005	0,00066396
ENSGACG00000010184	M-C	M-M		-3,4648	0,0006446	0,0107417
ENSGACG00000010196	M-C	M-M		4,65302	0,0004149	0,00749462
ENSGACG00000010933	M-C	M-M		5,31005	1,0224E-04	0,00234339
ENSGACG00000011392	M-C	M-M		5,70172	2,81E-005	0,00079489
ENSGACG00000011617	M-C	M-M		6,16466	4,83E-005	0,00125223
ENSGACG00000011846	M-C	M-M		5,60779	0,0002875	0,00553541
ENSGACG00000011851	M-C	M-M		5,86459	4,33E-005	0,00114232
ENSGACG00000011882	M-C	M-M		5,20515	0,0015766	0,0221725
ENSGACG00000012174	M-C	M-M		-3,58147	8,20E-005	0,00194795
ENSGACG0000012414	M-C	M-M		5,15713	0,0001317	0,00289356
ENSGACG00000012954	M-C	M-M		-3,77862	1,10E-005	0,00035836
ENSGACG00000014109	M-C	M-M		5,47222	8,61E-005	0,00202883
ENSGACG00000014348	M-C	M-M		5,09804	2,35E-005	0,00068479
ENSGACG00000014699	M-C	M-M		6,19778	3,44E-005	0,00094125
ENSGACG00000014752	M-C	M-M		-4,82586	2,76E-005	0,0007829
ENSGACG0000014811	M-C	M-M		6,65685	9,60E-007	4,51E-005
ENSGACG0000014852	M-C	M-M		10,8211	1,85E-010	2,65E-008
ENSGACG0000014936	M-C	M-M		-3,/129	0,0002613	0,00511462
ENSGACG0000015265	M-C	M-M		-4,17962	1,2652E-04	0,00279855
ENSGACG0000015411	M-C	M-M		6,40136	2,20E-006	9,16E-005
ENSGACG0000015464	M-C	M-M		5,98062	8,11E-010	9,77 E-006
ENSGACG00000015472	M-C	M-M		5,99218	5,44E-000	0,00019804
	M-C			-3,82298	1 115 005	0,0322939
	IVI-C			1 11211	0.000254	0.00499673
ENSGACG00000015947	IVI-C			5 52611	2 51 E-005	0.00072251
ENSGACG0000016093	MC			1 51074	3 9652F-04	0.00722161
ENSGACG0000016104	NI-C			5 11205	8 86F-005	0.00207823
ENSGACG0000016669	MC			2 73153	0,0007121	0.0116543
ENSGACG0000016696	M C			6 8339	1.00E-007	6.50E-006
ENSGACG0000017681	M-C			5 74959	1.81E-006	7.78E-005
ENSGACG0000017683	M-C	M-M		-5.53279	4,63E-006	0,00017276
ENSGACG0000018499	M-C	M-M		-4,38961	0,00119316	0,0177292
ENSGACG0000019066	M-C	M-M		5.7524	3,55E-006	0,00013774
ENSGACG0000019454	M-C	M-M		6.03869	0,0003832	0,00702085
ENSGACG0000020047	M-C	M-M		6,66654	1,75E-009	1,92E-007

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000020249	M-C	M-M	5,01505	0,0035233	0,0420346
ENSGACG0000020653	M-C	M-M	6,50554	3,30E-009	3,35E-007
ENSGACG00000020873	M-C	M-M	5,14516	0.0025018	0.0320825
ENSGACG0000020917	M-C	M-M	5,79828	6.89E-005	0.00168523
F10	M-C	M-M	5,58018	2.50E-005	0.00072125
F2	M-C	M-M	5 60026	6.95E-005	0.00169704
F5	M-C	M-M	5 50362	7 89E-005	0.00188668
F9 (2 of 2)	M-C	M-M	6 00649	2 10E-007	1 23E-005
FARP1	M-C	M-M	7 74625	8 43E-007	4 04E-005
	M-C	NA-NA	A A2A13	1 39E-005	0.00043033
ERIN1 (1 of 2)	M-C	NA-NA	-0 917771	0.0024044	0.0310855
	M-C		-0,517771	0,0024044	0,0010000
ECCRP (1 of 2)	MC		5 07091	9 50 E 006	0,0200297
	MC		4 14072	0,001001	0,00029134
	M-C		4,14972	0,001091	0,0104912
	M-C		4,07071	7 165 006	0,0190893
	M-C		0,00000	1,100-000	0,0002499
FGA	M-C		0,////8	1,59E-006	0,90E-005
FGB	IVI-C		0,028/9	5,40E-006	0,00019685
FGG	M-C		5,96574	1,81E-005	0,00054815
G6PC (1 of 2)	M-C		5,85552	3,30E-005	0,00090933
GLS2 (2 of 2)	M-C	M-M	6,36035	0,0004599	0,00815645
GPD1 (1 of 2)	M-C	M-M	-1,4928	0,0019326	0,0261131
GZMM (2 of 5)	M-C	M-M	1,3619	0,0004615	0,00818037
GZMM (3 of 5)	M-C	M-M	1,28727	1,08E-008	9,40E-007
HAAO	M-C	M-M	5,41247	7,88E-005	0,00188452
HABP2 (1 of 2)	M-C	M-M	5,13962	0,00031114	0,00590876
HABP2 (2 of 2)	M-C	M-M	5,91924	2,51E-005	0,0007232
HAL	M-C	M-M	3,72502	0,0026886	0,0339588
HAO1	M-C	M-M	4,60131	0,0010306	0,0157434
HNF4A	M-C	M-M	4,83063	0,0001548	0,00330979
HPD	M-C	M-M	6,04037	1,61E-005	0,00049636
HPX	M-C	M-M	5,67667	3,81E-005	0,00102634
IGFALS	M-C	M-M	4,50715	0,0007642	0,012343
IGFBP1 (2 of 2)	M-C	M-M	5,80698	4,78E-005	0,00124184
IGFBP2 (2 of 2)	M-C	M-M	4,81498	8,18E-005	0,00194368
IGSF5 (2 of 2)	M-C	M-M	6,19839	0,00011658	0,00261475
ILDR1 (1 of 2)	M-C	M-M	4,14478	0,0002195	0,00442888
ITIH2	M-C	M-M	5,80062	9,90E-008	6,42E-006
ITIH4 (2 of 2)	M-C	M-M	3,9729	0,0012956	0,0189457
JPH1 (1 of 2)	M-C	M-M	-3,78824	0,0018578	0,025304
KBTBD10 (1 of 2)	M-C	M-M	-4,59477	0,0019222	0,025998
KL	M-C	M-M	4,49569	0,0010204	0,0156159
KNG1	M-C	M-M	5,48807	7,25E-005	0,00175758
KRT23 (5 of 7)	M-C	M-M	3,58565	2,98E-007	1,65E-005
KRT23 (7 of 7)	M-C	M-M	2,7991	0,001293	0,0189156
LECT2	M-C	M-M	5,31565	0,0001454	0,00314255
LRG1	M-C	M-M	5,19845	0,0003334	0.00625793
LYZ	M-C	M-M	5.93342	1.53E-006	6.73E-005
METTL21C (2 of 2)	M-C	M-M	-4.10782	6.72E-005	0.00165062
MIOX	M-C	M-M	4,97903	0.000179	0.00373511
MLXIPL	M-C	M-M	4,46709	0.0002513	0.00495426
MOGAT2	M-C	M-M	3 56468	0.0024555	0.031607
MSS51	M-C	M-M	-4,30853	0,0005946	0,0100571

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
MST1P9	M-C	M-M	7,05333	5,39E-007	2,76E-005
MYL1	M-C	M-M	-5,70375	1,34E-007	8,33E-006
MYLPF (2 of 2)	M-C	M-M	-4,07478	4,07E-005	0,00108503
MYOZ1 (1 of 2)	M-C	M-M	-4,50465	0,0004539	0,00806938
MYOZ3	M-C	M-M	-4,40583	0,002466	0,0317135
NME4	M-C	M-M	5,34205	0,0004373	0,00782696
NR1H4	M-C	M-M	5,52203	0,0003486	0,00649137
PDP2	M-C	M-M	-0,366836	7,79E-005	0,00186591
PFKM (1 of 2)	M-C	M-M	-4,90846	0,0001236	0,0027454
PGLYRP2 (2 of 2)	M-C	M-M	5,53778	8,16E-007	3,93E-005
PPP2R3A	M-C	M-M	0,927903	0,00115311	0,0172488
PRHOXNB	M-C	M-M	5,94863	4,84E-005	0,00125439
PROC	M-C	M-M	6,43658	3,10E-008	2,35E-006
PRODH2	M-C	M-M	4,6795	0,0019388	0,0261804
PROZ (2 of 2)	M-C	M-M	5,90506	5,47E-009	5,20E-007
PVRL1 (2 of 2)	M-C	M-M	6,35052	0,000345	0,00643759
S100P	M-C	M-M	3,50431	0,0033453	0,0403631
SARDH	M-C	M-M	0,582095	0,0001591	0,00338658
SERPINC1	M-C	M-M	5,98177	2,53E-005	0.0007286
SERPIND1	M-C	M-M	6,07295	9,09E-007	4,31E-005
SERPINF2	M-C	M-M	6.2221	5.35E-005	0.00136383
SERPING1	M-C	M-M	3.52804	0.0031747	0.0387338
SHBG	M-C	M-M	5.96357	2.55E-005	0.00073195
SLC13A5 (2 of 2)	M-C	M-M	5.92329	0.000108	0.00245162
SLC27A2 (1 of 3)	M-C	M-M	5.6876	0.0001529	0.00327576
SLC2A2	M-C	M-M	5,6952	2.52E-005	0.00072683
SLC7A2	M-C	M-M	3.84217	0.0023661	0.0306822
SOAT2	M-C	M-M	5.21256	0.0004722	0.00833495
SPP2	M-C	M-M	4,28619	0.00113018	0.0169712
SUSD2	M-C	M-M	5,13608	0.0025921	0.0329943
TAT	M-C	M-M	5,21289	1,41E-009	1,59E-007
TDO2	M-C	M-M	6,59428	8,43E-006	0.00028677
TEKT4	M-C	M-M	4,75554	0.0028254	0.0353207
TF	M-C	M-M	5,75935	4.35E-005	0.00114636
TFPI2	M-C	M-M	0.598114	0.0007498	0.0121518
TFB2	M-C	M-M	3.74899	0.0026551	0.0336226
TI B3	M-C	M-M	3.37072	0.0009229	0.0143896
TM4SF4	M-C	M-M	4,29681	0.0001445	0.00312712
TNNC2 $(1 \text{ of } 2)$	M-C	M-M	-4.79011	1.32E-005	0.00042025
TNNC2 (2 of 2)	M-C	M-M	-5.38302	0.0010514	0.016002
TNNI2 (1 of 5)	M-C	M-M	-4,77831	5.71E-005	0.00144014
TNNI2 (3 of 5)	M-C	M-M	-5.21657	5.21E-006	0.00019084
TNNT2 (2 of 2)	M-C	M-M	-4,27072	0.0018992	0.0257503
TNNT3 (2 of 2)	M-C	M-M	-4.452	0.0005714	0.00973583
TPM2	M-C	M-M	-1.87407	1.57E-007	9.56E-006
TPM3	M-C	M-M	-4,70612	7.81E-005	0.00187
TYMP	M-C	M-M	3,97764	5.2713E-04	0.00911956
UCP1	M-C	M-M	6.83445	5.89E-008	4.09E-006
A1CE	XII-C	XII-M	-2 87689	0.0003476	0.00647631
ACMSD	XII-C	XII-M	-3 1883	0.0004881	0.00856181
ACSE2 (2 of 2)	XII-C	XII-M	-2 11376	5.7549E-04	0.00979296
ADPRH	XII-C	XII-M	-3.5771	0.0005685	0.00969665
ADSSL1	XII-C	XII-M	-5.36915	2,90E-006	0,00011608
			-,		

gene	sample 1	sample 2 log2(fold	change)	p value	q value
AKB1D1 (2 of 2)	XII-C	XII-M	-3.36545	0.0004056	0,0073574
	XII-C	XII-M	-3.25056	0.0039664	0,0461282
ALDH8A1	XII-C	XII-M	-3.93858	0,0003254	0,0061321
ALDH9A1 (1 of 2)	XII-C	XII-M	-1.81403	0,0002268	0,00454894
ALLC	XII-C	XII-M	-3,79422	7,80E-006	0,00026869
AMDHD1	XII-C	XII-M	-2,9679	0,0036603	0,0433248
AMPD1	XII-C	XII-M	-6,714	3,12E-007	1,72E-005
ANXA6	XII-C	XII-M	-3,4597	0,00119203	0,0177152
APOA1	XII-C	XII-M	-3,65138	2,13E-014	7,46E-012
APOB (2 of 5)	XII-C	XII-M	-2,62482	3,26E-005	0,00089905
APOBEC2 (2 of 2)	XII-C	XII-M	-3,65362	0,00211815	0,0281008
APOD (2 of 6).GGH	XII-C	XII-M	-3,1916	0,0002714	0,00527652
APOE (2 of 2)	XII-C	XII-M	-3,31803	9,15E-005	0,00213584
APOH (2 of 2)	XII-C	XII-M	-3,56939	0,0004924	0,00862323
ARG1	XII-C	XII-M	-3,38239	0,000648	0,0107872
ARHGEF38 (1 of 2)	XII-C	XII-M	-3,24751	0,0025694	0,0327669
ASPA	XII-C	XII-M	-1.15453	4,12E-011	6,98E-009
ASPDH	XII-C	XII-M	-3,87172	0,0029515	0,0365806
ATP1B3	XII-C	XII-M	-3,38417	0,0039333	0,0458332
ATP2A1 (2 of 2)	XII-C	XII-M	-7,35967	1,35E-005	0,00042802
BCO2 (3 of 3)	XII-C	XII-M	-1,66564	0,0021682	0,0286251
C7 (1 of 2)	XII-C	XII-M	-3,16896	7,1826E-04	0,0117355
C8A	XII-C	XII-M	-3,45414	0,0037053	0,0437449
C8G	XII-C	XII-M	-3,34482	0,0017357	0,0239487
CAP2	XII-C	XII-M	-3,02215	0,0018987	0,0257471
CASQ1 (1 of 2)	XII-C	XII-M	-5,46807	5,57E-006	0,000202
CASQ1 (2 of 2)	XII-C	XII-M	-4,38539	0,001719	0,0237624
CAV3	XII-C	XII-M	-4,48323	0,0003448	0,00643374
CETP	XII-C	XII-M	-4,39802	2,86E-006	0,00011461
CFB	XII-C	XII-M	-2,90205	0,0036628	0,0433486
CFP	XII-C	XII-M	-3,41843	0,0023365	0,0303797
CKM (1 of 2)	XII-C	XII-M	-6,36357	1,28E-005	0,00040712
CKM (2 of 2)	XII-C	XII-M	-6,60937	1,11E-006	5,13E-005
CKMT2 (1 of 2)	XII-C	XII-M	-6,95729	0	0
CLIC5 (1 of 2)	XII-C	XII-M	-4,18101	0,0002567	0,00504054
CNDP1	XII-C	XII-M	-1,10377	0,0040346	0,0467396
CPB2	XII-C	XII-M	-3,33232	0,0002213	0,00445846
CREG2	XII-C	XII-M	-0,845928	5,21E-005	0,00133331
CTDSPL (1 of 2)	XII-C	XII-M	-0,967501	0,0030522	0,037561
CYP24A1	XII-C	XII-M	-3,87659	1,15E-007	7,28E-006
CYP2J2 (1 of 6)	XII-C	XII-M	-2,78071	0	0
CYP2J2 (3 of 6)	XII-C	XII-M	-2,67426	0,00119314	0,017729
DES	XII-C	XII-M	-6,28617	3,01E-007	1.67E-005
DGAT2	XII-C	XII-M	-2,86578	0,0017923	0,024577
DHRS7C (1 of 2)	XII-C	XII-M	-5,35042	0.0013992	0.0201522
DHRS7C (2 of 2)	XII-C	XII-M	-3.87493	1.4791E-04	0.00318789
DHRS9	XII-C	XII-M	-1.61946	5.05E-005	0.00129979
DIABLO (1 of 2)	XII-C	XII-M	-2.82574	8.66E-006	0.00029358
DPYS	XII-C	XII-M	-2,30337	0.0001498	0.00322237
ENO3	XII-C	XII-M	-2,36195	0.0016655	0.0231726
ENSGACG0000000114	XII-C	XII-M	-3.21377	4.73E-005	0.00122976
ENSGACG0000000115	XII-C	XII-M	-2,70189	1.6121E-04	0.003424
ENSGACG0000000151	XII-C	XII-M	-0.800817	0.0042786	0.0489215

nene	sample 1	sample 2 log2(fol	(eponed)	n value	a voluo
ENSGACG000000272			6 01247		
			-0,01347	0,00E-000	0,00023336
ENSCACG0000001522			-0,09147	3,00E-005	0,000853
ENSGACG0000001322	XII-C		-4,73009	2,02E-006	8,53E-005
ENSGACG0000001733			-3,16082	2,59E-010	3,56E-008
ENSGACG0000001742	XII-C		-1,89094	1,18E-010	1,78E-008
ENSGACG0000001978	XII-C	XII-M	-2,83034	0,0004302	0,00772234
ENSGACG0000002089	XII-C	XII-M	-4,61267	0,0001339	0,0029334
ENSGACG0000002525	XII-C	XII-M	-2,91193	0,0010545	0,0160397
ENSGACG0000002902	XII-C	XII-M	-7,4906	5,07E-011	8,40E-009
ENSGACG0000003003	XII-C	XII-M	-9,33196	2,53E-009	2,66E-007
ENSGACG0000003030	XII-C	XII-M	-4,28505	1,12E-005	0,00036349
ENSGACG0000003435	XII-C	XII-M	-3,60097	0,0025202	0,0322693
ENSGACG0000004200	XII-C	XII-M	-8,40032	2,17E-008	1,73E-006
ENSGACG0000004413	XII-C	XII-M	-3,08145	0,00113201	0,0169936
ENSGACG0000004971	XII-C	XII-M	-4,90615	0,0001202	0,00268286
ENSGACG0000005023	XII-C	XII-M	-7,00563	7,30E-008	4,93E-006
ENSGACG0000005264	XII-C	XII-M	-4,05955	0,0002502	0,00493606
ENSGACG0000005547	XII-C	XII-M	-2,63618	0,0026928	0,0340023
ENSGACG0000005712	XII-C	XII-M	-3,43393	0,0010564	0,0160627
ENSGACG0000005883	XII-C	XII-M	-2,96456	0,0008809	0,0138494
ENSGACG0000006275	XII-C	XII-M	2,09221	1,46E-005	0,00045765
ENSGACG0000006596	XII-C	XII-M	0,578624	0,0005764	0,00980449
ENSGACG0000006644	XII-C	XII-M	-2,16565	0,004016	0,0465743
ENSGACG0000006829	XII-C	XII-M	-2,17378	0,0017751	0,0243868
ENSGACG0000007038	XII-C	XII-M	-3,23105	0,0025639	0,0327103
ENSGACG0000007337	XII-C	XII-M	-2,81681	0,00291175	0,0361865
ENSGACG0000007642	XII-C	XII-M	-3,22114	0,0021794	0,0287382
ENSGACG0000007954	XII-C	XII-M	-4,1734	8,51E-007	4,08E-005
ENSGACG0000009173	XII-C	XII-M	-3.12941	0.0018042	0,024709
ENSGACG0000009409	XII-C	XII-M	-6.84666	1.84E-008	1.49E-006
ENSGACG0000009487	XII-C	XII-M	-4.58873	1.4353E-04	0.00310904
ENSGACG0000009825	XII-C	XII-M	-0.879274	1.12E-006	5.16E-005
ENSGACG0000009880	XII-C	XII-M	-4.56852	0.000261	0.00511025
ENSGACG0000009883	XII-C	XII-M	-4.7449	0.0001069	0.00243186
ENSGACG0000009952	XII-C	XII-M	-3.78567	0.0001303	0.00286735
ENSGACG0000010000	XII-C	XII-M	-8 69877	2,30E-005	0.00067263
ENSGACG0000010018	XII-C	XII-M	-9 7993	1.33E-007	8.28E-006
ENSCACG0000010145	XII-C	XII-M	-2 87259	0.0021371	0.0283024
ENSGACG0000010143	XII-C	XII-M	-3 65125	0.0005803	0.0098589
ENSGACG0000010184	XILC		-3 479	0.0002634	0.00514872
ENSGACG0000010478	XILC		-1 8/17/	0.0002004	0.048594
ENSGACG0000010817			-1,04174	2 16E-005	0.0006367
ENSGACG00000011392	XII-C		6 60901	6 13E-007	3.08E-005
ENSGACG0000012174	XII-C		-0,00091	2.685.006	0,0001084
ENSGACG00000012381	XII-C		-2,03143	2,000-1924	0,0001004
ENSGACG0000012390	XII-C		-2,33140	0,0001824	0,0007941
ENSGACG00000012473	XII-C		-4,25735	0,0006335	0,0103935
ENSGACG0000012954	XII-C	XII-M	-0,1241	0,00E-000	0,00023325
ENSGACG00000012962	XII-C	XII-M	-7,56529	0,00011897	0,00205936
ENSGACG00000013583	XII-C	XII-M	-4,12164	8,17E-005	0,00194218
ENSGACG0000013650	XII-C	XII-M	-0,743087	0,0033321	0,0402362
ENSGACG00000013769	XII-C	XII-M	-2,87741	0,0025775	0,0328483
ENSGACG00000014699	XII-C	XII-M	-3,37912	0,0015875	0,0222944
ENSGACG00000014752	XII-C	XII-M	-6,52499	1,84E-007	1,10E-005

gene	sample 1	sample 2	log2(fold change)	p_value	q_value
ENSGACG0000014852	XII-C	XII-M	-3,53238	1,26E-005	0,00040256
ENSGACG00000014922	XII-C	XII-M	-4,5155	1,75E-005	0,00053356
ENSGACG00000014936	XII-C	XII-M	3,17084	0,0009946	0,0152948
ENSGACG00000015168	XII-C	XII-M	-4,75285	3,36E-005	0,0009231
ENSGACG00000015265	XII-C	XII-M	-7,05323	0,0007311	0,0119061
ENSGACG00000015411	XII-C	XII-M	-1,77773	0,00193511	0,0261409
ENSGACG00000015778	XII-C	XII-M	-6.31283	5.36E-007	2,74E-005
ENSGACG0000016045	XII-C	XII-M	-7,71005	8.69E-008	5.73E-006
ENSGACG0000016093	XII-C	XII-M	-4,07242	0.0010529	0.0160193
ENSGACG0000016104	XII-C	XII-M	-3,41047	0.0034602	0.0414456
ENSGACG00000016168	XII-C	XII-M	-6,78966	0.00115664	0.0172911
ENSGACG00000016696	XII-C	XII-M	-4,56031	0.0004561	0.00810209
ENSGACG00000017681	XII-C	XII-M	-2.38263	8.88E-016	3.93E-013
ENSGACG0000017683	XII-C	XII-M	-6.52447	3.39E-007	1.85E-005
ENSGACG0000018499	XII-C	XII-M	-6.39319	0.0001064	0.00242083
ENSGACG00000018908	XII-C	XII-M	-4.89097	0.0024535	0.0315875
ENSGACG0000019023	XII-C	XII-M	-7.00841	1.22E-014	4.46E-012
ENSGACG00000019066	XII-C	XII-M	-3.23974	0.0028869	0.0359365
ENSGACG00000019517	XII-C	XII-M	-3.66643	0.0006066	0.0102237
ENSGACG0000019604	XII-C	XII-M	-2.299	3.4363E-04	0.00641571
ENSGACG0000019784	XII-C	XII-M	-6.13487	5.40E-006	0.00019667
ENSGACG0000020047	XII-C	XII-M	-4.01956	5.40E-005	0.00137375
ENSGACG0000020187	XII-C	XII-M	-3.28241	7.76E-005	0.00185966
ENSGACG0000020566	XII-C	XII-M	-3,50073	0.0015819	0.0222317
EPS8L3 (1 of 2)	XII-C	XII-M	-4.0189	0.0009995	0.0153563
EVC2	XII-C	XII-M	-0.98378	0.0004226	0.00761004
FABP1	XII-C	XII-M	-3,90124	6.80E-006	0.00023923
FABP2 (2 of 2)	XII-C	XII-M	-5.2038	4.99E-005	0.00128726
FAH	XII-C	XII-M	-2.89783	8.09E-005	0.00192601
FETUB (1 of 3)	XII-C	XII-M	-3,14504	0.0040449	0.0468342
FLNC (2 of 2)	XII-C	XII-M	-3,75227	0,0004518	0.00803918
FOXA3	XII-C	XII-M	-3,66987	0.0009538	0.0147822
FRZB	XII-C	XII-M	-1,66235	0,0038263	0,0448519
G6PC (1 of 2)	XII-C	XII-M	-4,09482	0,0003772	0.00692938
G6PC (2 of 2)	XII-C	XII-M	-3,27963	0,0019743	0,0265647
GAPDH (1 of 2)	XII-C	XII-M	-5,29299	0	0
GAS6	XII-C	XII-M	-0,639669	0,001506	0,021372
GPD1 (1 of 2)	XII-C	XII-M	-2,70678	2,92E-005	0,00082077
HAAO	XII-C	XII-M	-3,62198	9,45E-005	0,0021927
HABP2 (1 of 2)	XII-C	XII-M	-4,18856	0,0002267	0,00454624
HAO1	XII-C	XII-M	-2,67585	0,0003933	0,00717215
HGD	XII-C	XII-M	-3,25357	0,000484	0,00850298
HHATL (2 of 2)	XII-C	XII-M	-6,04086	2,51E-006	0,00010246
HNMT (2 of 2)	XII-C	XII-M	-3,72634	2,3508E-04	0,00468741
HPX	XII-C	XII-M	-3,8271	0,00174511	0,0240543
HRC	XII-C	XII-M	-7,50299	0,0007529	0,0121917
HSPB1	XII-C	XII-M	-1,90803	0,0031962	0,0389384
ILDR1 (1 of 2)	XII-C	XII-M	-2,51245	0,0010014	0,0153796
IRF6	XII-C	XII-M	-3,96646	0,0019251	0,0260303
ITGA6 (1 of 2)	XII-C	XII-M	0,736352	0,0019063	0,0258261
JPH1 (1 of 2)	XII-C	XII-M	-4,24635	0,0005317	0,00918377
KBTBD10 (1 of 2)	XII-C	XII-M	-5,33849	1,6873E-04	0,00355703
KBTBD12	XII-C	XII-M	-4,43153	0,0007407	0,0120317

gene	sample_1	sample_2	log2(fold_change)	p value	a value
KL	XII-C	XII-M	-3,488	3,17E-005	0.00087919
KLHL31	XII-C	XII-M	-6,88991	2,77E-007	1.56E-005
КМО	XII-C	XII-M	-3,10414	0,0025837	0,0329131
LECT2	XII-C	XII-M	-2,92558	0,0007247	0,0118212
LRG1	XII-C	XII-M	-3,52995	7,92E-005	0,00189251
LYZ	XII-C	XII-M	-3,85804	6,14E-007	3,08E-005
MAT1A (2 of 2)	XII-C	XII-M	-4,7146	8,43E-009	7,59E-007
MFRP	XII-C	XII-M	-3,58496	0,0010824	0,0163828
MMP25	XII-C	XII-M	0,476968	1,60E-010	2,32E-008
MOGAT2	XII-C	XII-M	-3,70157	0,00112391	0,0168945
MSRB2	XII-C	XII-M	-3,85737	0,0026453	0,0335243
MST1P9	XII-C	XII-M	-2,78873	0,0038728	0,0452808
MYBPC1	XII-C	XII-M	-5,16371	0,0002356	0,00469522
MYL1	XII-C	XII-M	-5,93064	1,64E-007	9,89E-006
MYLPF (1 of 2)	XII-C	XII-M	-8,88641	1,89E-006	8,05E-005
MYLPF (2 of 2)	XII-C	XII-M	-3,75924	1,84E-006	7,87E-005
MYOM1 (2 of 2)	XII-C	XII-M	-6,12449	3,95E-005	0,0010576
MYOZ1 (1 of 2)	XII-C	XII-M	-7,87043	9,97E-005	0,00229572
NEXN	XII-C	XII-M	-4,07985	0.0031254	0.038251
NIPSNAP1	XII-C	XII-M	-3,21626	0.0001044	0.00238373
NR1H4	XII-C	XII-M	-2.852	0.0006153	0.0103433
OVGP1 (3 of 5)	XII-C	XII-M	-3.85687	6.68E-005	0.0016413
PABPC4	XII-C	XII-M	-5,84423	5.81E-007	2.94E-005
PCK1	XII-C	XII-M	-4.42309	0.0008987	0.0140776
PCSK6	XII-C	XII-M	-3.46911	0.0013662	0.019769
PDK2 (2 of 2)	XII-C	XII-M	-2,30364	0.0035904	0.0426724
PDLIM1	XII-C	XII-M	-5,38613	1,64E-005	0,00050355
PFKM (1 of 2)	XII-C	XII-M	-7.5262	2.3153E-04	0.00462795
PFKM (2 of 2)	XII-C	XII-M	-4.64196	6.77E-005	0,00166094
PGAM2	XII-C	XII-M	-5,72095	9.51E-007	4,48E-005
PGLYRP2 (1 of 2)	XII-C	XII-M	-3,49429	0,0031968	0,0389444
PGLYRP2 (2 of 2)	XII-C	XII-M	-3,40134	6,22E-012	1,30E-009
PIGB	XII-C	XII-M	0,493949	1,43E-008	1,20E-006
PLP1 (2 of 2)	XII-C	XII-M	-2,166	0,0025678	0,0327492
PPDPF (2 of 2)	XII-C	XII-M	-3,09571	9,10E-005	0,00212569
PPP1R27 (1 of 2)	XII-C	XII-M	-5,06258	0,0029084	0,0361533
PRHOXNB	XII-C	XII-M	-3,2034	0,0009474	0,0147021
PROC	XII-C	XII-M	-4,43566	8,45E-006	0,00028757
PROZ (2 of 2)	XII-C	XII-M	-3,23525	0,0001369	0,0029875
PYGM (2 of 2)	XII-C	XII-M	-5,49794	1,04E-006	4,82E-005
RPL3L	XII-C	XII-M	-6,03545	7,87E-007	3,81E-005
RXRG	XII-C	XII-M	-0,879282	0,0008476	0,0134217
SERPINF2	XII-C	XII-M	-3,39122	6,60E-005	0,00162611
SLC22A14	XII-C	XII-M	-3,07062	0,0041962	0,0481914
SLC25A34	XII-C	XII-M	-3,67291	3,3969E-04	0,00635442
SLC25A43	XII-C	XII-M	-3,45582	2,21E-007	1,28E-005
SRL (1 of 2)	XII-C	XII-M	-3,68227	0,0002717	0,00528142
SUSD2	XII-C	XII-M	-2,74687	0,0007321	0,0119191
TM4SF4	XII-C	XII-M	-3,09077	0,004015	0,0465646
TMEM182	XII-C	XII-M	-5,19931	0,0004543	0,00807509
TMOD4	XII-C	XII-M	-0,746368	3,18E-005	0,00088118
TNNC2 (1 of 2)	XII-C	XII-M	-5,67162	3,24E-007	1,78E-005
TNNI2 (1 of 5)	XII-C	XII-M	-4,61371	2,26E-005	0,00066158

TNNI2 (3 of 5) XII-C XII-M -4,60836 1,68E-005 0,00050239 TNNI2 (4 of 5) XII-C XII-M -4,60836 1,68E-006 2,67E-006 TNNI2 (5 of 5) XII-C XII-M -4,8571 0,0009413 0,0146232 TNNI2 (5 of 2) XII-C XII-M -3,86396 0,001204 0,0146232 TNNI3 (2 of 2) XII-C XII-M -3,06072 0,001208 0,017906 TC36 XII-C XII-M -5,58162 3,17E-006 0,00022015 TXLNB (1 of 2) XII-C XII-M -5,58162 3,17E-006 0,00022015 TLNB (2 of 2) XII-C XII-M -4,63848 7,20E-005 0,00174716 UPP2 XII-C XII-M -4,36840 0,0010164 0,0156647 USP13 XII-C XII-M -5,88417 0,0002666 0,00050323 ABCB11 XII-C XII-M 1,29777 0,002666 0,0050507 ABCC11 XII-C XII-M 1,29777 0,002666	gene	sample 1	sample 2 lo	a2(fold ct	nange)	p value	q value
TINI2 (4 of 5) XII-C XII-M -4,8571 0,0009413 0,0148232 TINI2 (5 of 5) XII-C XII-M -6,23333 3,60E-008 2,67E-006 TINIT2 (2 of 2) XII-C XII-M -3,83573 0,0012204 0,010527 TPM3 XII-C XII-M -3,06072 0,001206 0,017906 TTTG36 XII-C XII-M -6,06355 1,35E-006 6,00012505 TXLNB (1 of 2) XII-C XII-M -5,58446 6,17E-006 0,00022018 UPC2 XII-C XII-M -4,03948 7,22E-006 0,000174716 UNC45B XII-C XII-M -4,03948 7,20E-006 0,0001855 USP13 XII-C XII-M -4,05844 0,0001169 0,0088149 USP28 XII-C XII-M -6,85629 4,50E-006 0,0016855 ZNFX1 XII-C XII-M -6,85629 3,50E-006 0,00016855 ADC611 XII-C XII-M 1,38E-006 6,91E-005	TNNI2 (3 of 5)	XII-C	XII-M	-4	.60935	1,63E-005	0,00050239
TINI2 (5 of 5) XII-C XII-M -6,23533 3,60E-008 2,67E-006 TNNT3 (2 of 2) XII-C XII-M -3,66396 0,004998 0,04473256 TNNT3 (2 of 2) XII-C XII-M -3,65373 0,001204 0,0149057 TPM3 G (2 of 2) XII-C XII-M -6,60355 1,35E-006 6,05E-005 TTG36 XII-C XII-M -5,53162 3,17E-006 0,0002201 TXLNB (2 of 2) XII-C XII-M -5,53162 3,17E-006 0,00022015 TXLNB (2 of 2) XII-C XII-M -4,2684 6,017E-006 0,00022018 UCP2 XII-C XII-M -4,26853 0,001603 0,00375815 USP13 XII-C XII-M -5,38417 0,0001603 0,00375815 ZNFX1 XII-C XII-M -6,63593 3,00E-006 0,001603 AICF XII-C XII-M -7,20E-011 1,15E-006 5,17E-005 ABCB11 XII-C XII-XII -7,20E-061 0,	TNNI2 (4 of 5)	XII-C	XII-M		4.8571	0,0009413	0,0146232
TNNT2 (2 of 2) XII-C XII-M -3,68396 0,004998 0,0473256 TNNT3 (2 of 2) XII-C XII-M -3,63573 0,001204 0,010627 TCRM3 XII-C XII-M -3,06072 0,001208 0,017206 TTC36 XII-C XII-M -5,63162 3,17E-006 0,001208 TXLNB (1 of 2) XII-C XII-M -5,53162 3,17E-006 0,0001205 TXLNB (2 of 2) XII-C XII-M -5,58446 6,17E-006 0,0001208 UCP2 XII-C XII-M -4,2688 0,0016163 0,00583 0,00375815 USP13 XII-C XII-M -4,2684 0,0001163 0,00375815 USP28 XII-C XII-M -7,51722 7,002668 0,005203 AICC XII-XII -7,51722 7,002668 0,0001505 0,001685 AICC XII-XII -7,51722 7,020E-011 1,15E-008 A,017E-005 AICC XII-XII -7,51722 7,0002668 0,000363815 </td <td>TNNI2 (5 of 5)</td> <td>XII-C</td> <td>XII-M</td> <td>-6</td> <td>.23533</td> <td>3,60E-008</td> <td>2,67E-006</td>	TNNI2 (5 of 5)	XII-C	XII-M	-6	.23533	3,60E-008	2,67E-006
TNNT3 (2 of 2) XII-C XII-M -3,83573 0,0012204 0,0180527 TPM3 XII-C XII-M -6,30816 1,07E-006 4,97E-005 TTC36 XII-C XII-M -6,00555 1,35E-006 6,005-005 TXLNB (1 of 2) XII-C XII-M -5,53162 3,17E-006 0,0001205 TXLNB (2 of 2) XII-C XII-M -5,58446 6,17E-006 0,00022018 UCP2 XII-C XII-M -4,03848 7,20E-005 0,00178716 UNC45B XII-C XII-M -4,03848 7,20E-005 0,00078615 USP28 XII-C XII-M -6,36529 4,50E-006 0,00076855 ZNFX1 XII-C XII-M -6,36197 1,13E-006 6,07E-005 ABCB11 XII-C XII-XII -6,6197 1,13E-006 6,0716-005 ABCC11 XII-C XII-XII -2,7202 0,010164 0,0153802 ABCD11 XII-C XII-XII -2,720292 0,00016855 ABC010	TNNT2 (2 of 2)	XII-C	XII-M	-3	.68396	0,0040998	0,0473256
TPM3 XII-C XII-M -6,30816 1,07E-006 4,97E-005 TTC36 XII-C XII-M -3,06072 0,001208 0,017306 TTM XII-C XII-M -6,0355 1,35E-006 6,05E-005 TXLNB (1 of 2) XII-C XII-M -5,53446 6,17E-006 0,0001205 TXLNB (2 of 2) XII-C XII-M -4,03948 7,20E-005 0,00174716 UCP2 XII-C XII-M -4,03948 7,20E-005 0,00174716 UNC45B XII-C XII-M -4,2888 0,001603 0,00375815 USP28 XII-C XII-M -5,38417 0,0001603 0,00375815 USP28 XII-C XII-M 1,15E-006 6,01E-005 ABCB11 XII-C XII-XII -5,41262 1,58E-006 6,91E-005 ABCC11 XII-C XII-XII -6,44922 2,0001014 0,0153802 ABCB15 XII-C XII-XII -7,27029 0,001140 0,0153802 ABCD1	TNNT3 (2 of 2)	XII-C	XII-M	-3	,83573	0,0012204	0,0180527
TTG36 XII-C XII-M -3,06072 0,01208 0,017906 TTN XII-C XII-M -6,60355 1,35E-006 6,00022015 TXLNB (2 of 2) XII-C XII-M -5,53162 3,77E-006 0,00012505 TXLNB (2 of 2) XII-C XII-M -4,63948 7,20E-005 0,00017616 UNC45B XII-C XII-M -4,03948 7,20E-005 0,00017616 UNC45B XII-C XII-M -4,38648 0,0001603 0,00375815 USP28 XII-C XII-M -5,38417 0,0001603 0,00375815 USP28 XII-C XII-M -6,66197 1,13E-006 5,17E-005 ABCB11 XII-C XII-XII -4,85898 3,95E-006 0,00015087 ABCC1 XII-C XII-XII -1,345829 0,0017016 0,0236292 ABCS11 XII-C XII-XII -1,35E-006 0,00015087 ABCC1 XII-C XII-XII -1,345829 0,001046 0,0354963 <t< td=""><td>TPM3</td><td>XII-C</td><td>XII-M</td><td>-6</td><td>,30816</td><td>1,07E-006</td><td>4,97E-005</td></t<>	TPM3	XII-C	XII-M	-6	,30816	1,07E-006	4,97E-005
TTN XII-C XII-M -6,60355 1,35E-006 6,05E-005 TXLNB (1 of 2) XII-C XII-M -5,5142 3,17E-006 0.00012505 UCP2 XII-C XII-M -5,58446 6,17E-006 0.00012505 UCP2 XII-C XII-M -4,03948 7,20E-005 0.00174716 UNC45B XII-C XII-M -4,06544 7,001803 0.00375815 USP13 XII-C XII-M -5,84417 0,0001805 0.0001855 SINFX1 XII-C XII-M -5,84417 0,0001805 0.000376815 SINFX1 XII-C XII-M 1,15E-006 6,91E-005 A00252032 AICF XII-C XII-XII -5,42162 1,58E-006 6,91E-005 ABCB11 XII-C XII-XII -4,8488 3,95E-006 0,00051057 ABCD1 XII-C XII-XII -3,43352 0,0007066 0,2026295 ABT1_ENSGACG0000000296 XII-C XII-XII -4,84402 2,06E-006 8,6E-005	TTC36	XII-C	XII-M	-3	,06072	0,001208	0,017906
TXLNB (1 of 2) XII-C XII-M -5,53162 3,17E-006 0,00012505 TXLNB (2 of 2) XII-C XII-M -5,53162 3,17E-006 0,00022018 UCP2 XII-C XII-M -4,2868 0,001164 0,0155647 UPP2 XII-C XII-M -3,06534 0,0001803 0,00375815 USP13 XII-C XII-M -5,53417 0,0001803 0,00375815 USP28 XII-C XII-M -6,85629 4,50E-006 0,00016855 ZNFX1 XII-C XII-M 1,28777 0,0026648 0,00015087 ABCB11 XII-C XII-XII -7,51722 7,20E-011 1,15E-008 ABCD1 XII-C XII-XII -7,5422 2,00E-006 6,01E-005 ABCD1 XII-C XII-XII 1,122013 3,61E-005 0,0039022 ACMSD XII-C XII-XII 1,122013 3,61E-005 0,0003403 AGT1 XII-C XII-XII 1,345352 0,0017066 0,0004503	TTN	XII-C	XII-M	-6	,60355	1,35E-006	6,05E-005
TXLNB (2 of 2) XII-C XII-M -5,58446 6,17E-006 0,00022018 UCP2 XII-C XII-M -4,03948 7,20E-005 0,00174716 UP22 XII-C XII-M -4,03948 0,0010164 0,0155647 UPP2 XII-C XII-M -5,38417 0,0001808 0,00375815 USP28 XII-C XII-M -6,85629 4,50E-006 0,00016855 ZNFX1 XII-C XII-M 1,29777 0,0002668 0,00520323 A1CF XII-C XII-XII -7,51722 7,20E-011 1,15E-006 ABCB11 XII-C XII-XII -6,61879 1,13E-006 6,91E-005 ABCC11 XII-C XII-XII -2,72092 0,01014 0,0153802 ABT1,ENSGACG0000000296 XII-C XII-XII -6,46402 0,0006802 ACMSD XII-C XII-XII -6,46402 0,0006803 ACST2 (2 of 2) XII-C XII-XII -6,46402 0,0007080 AGT XII-C <	TXLNB (1 of 2)	XII-C	XII-M	-5	,53162	3,17E-006	0,00012505
UCP2 XII-C XII-M -4,03948 7,20E-005 0,00174716 UNC45B XII-C XII-M -4,2868 0,00164 0,015547 UPP2 XII-C XII-M -3,06534 0,0001603 0,00375815 USP13 XII-C XII-M -5,38417 0,0001803 0,00375815 USP28 XII-C XII-M -6,85629 4,505-006 0,0011685 ZNFX1 XII-C XII-M -6,85629 4,505-006 0,00023233 AICF XII-C XII-XII -6,8197 1,135-006 5,17E-005 ABCB1 XII-C XII-XII -6,426197 1,58E-006 0,0015087 ABCC1 XII-C XII-XII -4,45898 3,95E-006 0,00013087 ABCA XII-C XII-XII -4,45898 3,95E-006 0,00019022 ABCMS XII-C XII-XII -4,439324 0,001404 0,013486 ABT1,ENSGACG0000000296 XII-C XII-XII -4,24322 0,0001403 0,0001403 <	TXLNB (2 of 2)	XII-C	XII-M	-5	,58446	6,17E-006	0,00022018
UNC45B XII-C XII-M -4,2868 0,0010164 0,0155647 UPP2 XII-C XII-M -3,06534 0,000515 0,0088149 USP13 XII-C XII-M -5,38417 0,0001685 0,00016855 ZNFX1 XII-C XII-M -6,85629 4,50E-006 0,00016855 ZNFX1 XII-C XII-MI -7,51722 7,20E-011 1,15E-008 ABCB11 XII-C XII-XII -6,6197 1,13E-006 6,01E-005 ABCC11 XII-C XII-XII -2,72092 0,0101014 0,015887 ABCD15 XII-C XII-XII -2,72092 0,0101014 0,015882 ABT1,ENSGACG0000000296 XII-C XII-XII -6,4642 2,06E-005 6,66E-005 ACMSD XII-C XII-XII -6,4642 2,00E-006 6,66E-005 ACMSD XII-C XII-XII -6,6144 1,98E-007 1,16E-005 ACMST2 (2 of 2) XII-C XII-XII -6,6144 1,98E-007 1,06E-008	UCP2	XII-C	XII-M	-4	,03948	7,20E-005	0,00174716
UPP2 XII-C XII-M -3,06534 0,0005105 0,00888149 USP13 XII-C XII-M -5,38417 0,00016035 0,00375615 USP28 XII-C XII-M -6,85629 4,50E-006 0,0016855 ZNFX1 XII-C XII-M 1,29777 0,002668 0,00520323 A1CF XII-C XII-XII -7,51722 7,20E-011 1,15E-008 ABCB11 XII-C XII-XII -6,81879 1,58E-006 6,01E-005 ABCC11 XII-C XII-XII -2,72092 0,001014 0,015807 ABCD1 XII-C XII-XII -3,4352 0,0017066 0,0236295 ABT1,ENSGACG0000000296 XII-C XII-XII -1,646402 2,06E-006 8,66E-005 ACMSD XII-C XII-XII -3,91682 3,38E-006 0,00013148 ADPRH XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -8,6276 1,38E-006 0,00013148 <td>UNC45B</td> <td>XII-C</td> <td>XII-M</td> <td>-</td> <td>4,2868</td> <td>0,0010164</td> <td>0,0155647</td>	UNC45B	XII-C	XII-M	-	4,2868	0,0010164	0,0155647
USP13 XII-C XII-M -5,38417 0,0001803 0,00375815 USP28 XII-C XII-M -6,85629 4,567-006 0,00016855 ZNFX1 XII-C XII-M 1,2977 0,0002668 0,00520323 A1CF XII-C XII-M 1,2777 0,002668 0,00520323 ABCB11 XII-C XII-XII -6,08197 1,13E-006 5,17E-005 ABCD1 XII-C XII-XII -4,85898 3,95E-006 0,0015087 ABCD1 XII-C XII-XII -4,85898 3,95E-006 0,000380295 ABT1, ENSGACG0000000296 XII-C XII-XII 1,12E-006 8,66E-005 ACSF2 (2 of 2) XII-C XII-XII -2,04522 0,0026834 0,003148 ADPRH XII-C XII-XII -2,04522 0,0026834 0,0334663 AGXT (1 of 2) XII-C XII-XII -2,04523 1,45E-006 9,65E-005 AGXT (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 <	UPP2	XII-C	XII-M	-3	,06534	0,0005105	0,00888149
USP28 XII-C XII-M -6,85629 4,50E-006 0,00016855 ZNFX1 XII-C XII-M 1,29777 0,002668 0,00520323 A1CF XII-C XII-XII -7,51722 7,20E-011 1,15E-008 ABCB11 XII-C XII-XII -6,08197 1,13E-006 6,91E-005 ABCC11 XII-C XII-XII -4,85898 3,95E-006 6,0010187 ABCD1 XII-C XII-XII -4,85898 3,95E-006 0,0038022 ABT1,ENSGACG0000000296 XII-C XII-XII -1,43352 0,0017066 0,0039022 ACMSD XII-C XII-XII -3,43352 0,002634 0,0334063 AGT XII-C XII-XII -2,04532 0,002634 0,031463 ADPRH XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -4,6833 1,42E-005 0,00050	USP13	XII-C	XII-M	-5	,38417	0,0001803	0,00375815
ZNFX1 XII-C XII-M 1,29777 0,0002668 0,00520323 A1CF XII-C XII-XII -7,51722 7,20E-011 1,15E-006 ABCB11 XII-C XII-XII -6,08197 1,13E-006 6,91E-005 ABCC11 XII-C XII-XII -5,42162 1,58E-006 6,0015087 ABCD1 XII-C XII-XII -4,85898 3,95E-006 0,0015087 ABCD1 XII-C XII-XII -3,4352 0,0017066 0,0236295 ABT1,ENSGACG00000000296 XII-C XII-XII -3,45820 0,0004002 ACMSD ACMSD XII-C XII-XII -3,46402 2,06E-006 8,66E-005 AGST (1 of 2) XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -8,62796 1,36E-008 1,15E-006 AGXT (1 of 2) XII-C XII-XII -8,6314 1,98E-007 1,16E-005 AGXT 2 (1 of 2) XII-C XII-XII -4,286033 4,23E-005 </td <td>USP28</td> <td>XII-C</td> <td>XII-M</td> <td>-6</td> <td>,85629</td> <td>4,50E-006</td> <td>0,00016855</td>	USP28	XII-C	XII-M	-6	,85629	4,50E-006	0,00016855
A1CF XII-C XII-XII -7,51722 7,20E-011 1,15E-008 ABCB11 XII-C XII-XII -6,08197 1,13E-006 5,17E-005 ABCC11 XII-C XII-XII -4,68898 3,95E-006 0,00015087 ABCD1 XII-C XII-XII -4,85898 3,95E-006 0,00015087 ABCD1 XII-C XII-XII -3,43352 0,0017066 0,0236295 ABT1,ENSGACG000000296 XII-C XII-XII -1,1201 3,61E-005 0,0098022 ACMSD XII-C XII-XII -1,24532 0,0026334 0,0334063 AGT XII-C XII-XII -2,04532 0,0026334 0,0334063 AGT XII-C XII-XII -6,6814 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -9,28692 2,34E-006 9,65E-005 AGXT2 (1 of 2) XII-C XII-XII -9,28692 2,34E-006 9,65E-005 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2 (1 of 2) XII-C XII-XII -4,363	ZNFX1	XII-C	XII-M	1	,29777	0,0002668	0,00520323
ABCB11 XII-C XII-XII -6,08197 1,13E-006 5,17E-005 ABCB4 XII-C XII-XII -5,42162 1,58E-006 6,91E-005 ABCD1 XII-C XII-XII -4,85898 3,95E-006 0,00015087 ABCD1 XII-C XII-XII -2,7292 0,011014 0,0153802 ABHD15 XII-C XII-XII -3,43352 0,0017066 0,0236295 ABT, FNSGACG00000000000000000000000000000000000	A1CF	XII-C	XII-XII	-7	,51722	7,20E-011	1,15E-008
ABCB4 XII-C XII-XII 5,42162 1,58E-006 6,91E-005 ABCC11 XII-C XII-XII -4,85898 3,95E-006 0,00015087 ABCD1 XII-C XII-XII -2,72092 0,0010014 0,0153802 ABHD15 XII-C XII-XII -2,72092 0,0017066 0,0236295 ABT1,ENSGACG00000000296 XII-C XII-XII -6,46402 2,06E-006 8,66E-005 ACSF2 (2 of 2) XII-C XII-XII -3,91682 3,36E-006 0,0013148 ADPRH XII-C XII-XII -2,64532 0,0026334 0,0334063 AGT XII-C XII-XII -2,64532 0,0026334 0,034063 AGXT (1 of 2) XII-C XII-XII -9,28692 2,34E-006 9,65E-005 AGXT (1 of 2) XII-C XII-XII -4,38033 4,23E-005 0,00111874 AHSG XII-C XII-XII -4,36537 1,44E-005 0,004503 AGXT2 (1 of 2) XII-C XII-XII -4,38033 4,23E-	ABCB11	XII-C	XII-XII	-6	,08197	1,13E-006	5,17E-005
ABCC11 XII-C XII-XII -4,85898 3,95E-006 0,00015087 ABCD1 XII-C XII-XII -2,72092 0,0011014 0,0153802 ABHD15 XII-C XII-XII -3,43352 0,0017066 0,0236295 ABT1,ENSGACG0000000296 XII-C XII-XII 1,12021 3,61E-005 0,00098022 ACMSD XII-C XII-XII -3,91682 3,36E-006 0,0013148 ADPRH XII-C XII-XII -3,91682 3,36E-008 0,0034063 AGT XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0014503 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0014874 AHSG XII-C XII-XII -4,65837 1,44E-005 0,00059809 ALDT8A1 XII-C XII-XII -8,658735 0,022920 <td>ABCB4</td> <td>XII-C</td> <td>XII-XII</td> <td>-5</td> <td>,42162</td> <td>1,58E-006</td> <td>6,91E-005</td>	ABCB4	XII-C	XII-XII	-5	,42162	1,58E-006	6,91E-005
ABCD1 XII-C XII-XII -2,72092 0,0010014 0,0153802 ABHD15 XII-C XII-XII -3,43352 0,0017066 0,0236295 ACMSD XII-C XII-XII 1,12021 3,61E-005 0,00098022 ACMSD XII-C XII-XII -3,91682 3,36E-006 0,00013148 ADPRH XII-C XII-XII -2,04532 0,0026334 0,0334063 AGT XII-C XII-XII -2,04532 0,002634 0,0334063 AGT XII-C XII-XII -6,614 1,98E-007 1,16E-006 AGXT (1 of 2) XII-C XII-XII -6,6334 1,98E-007 1,16E-005 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0014503 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AKR1D1 (1 of 2) XII-C XII-XII -4,65637 1,44E-005 0,0005964 ALDH8A1 XII-C XII-XII -4,65505 0,0035064 <	ABCC11	XII-C	XII-XII	-4	,85898	3,95E-006	0,00015087
ABHD15 XII-C XII-XII -9,43352 0,0017066 0,0236295 ABT1,ENSGACG0000000296 XII-C XII-XII 1,12021 3,61E-005 0,00098022 ACMSD XII-C XII-XII -6,46402 2,06E-006 8,66E-005 ACSF2 (2 of 2) XII-C XII-XII -3,91682 3,36E-006 0,00334063 AGT XII-C XII-XII -2,04532 0,0026334 0,0334063 AGT XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -9,26892 2,34E-008 1,15E-006 AGXT (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,004503 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,00111874 AHSG XII-C XII-XII -4,658333 4,23E-005 0,00111874 AHSG XII-C XII-XII -4,458033 4,23E-007 0,0459809 ALCT1 XII-C XII-C XII-XII -4,51650 </td <td>ABCD1</td> <td>XII-C</td> <td>XII-XII</td> <td>-2</td> <td>,72092</td> <td>0,0010014</td> <td>0,0153802</td>	ABCD1	XII-C	XII-XII	-2	,72092	0,0010014	0,0153802
ABT1,ENSGACG0000000296 XII-C XII-XII 1,12021 3,61E-005 0,00098022 ACMSD XII-C XII-XII -6,46402 2,06E-006 8,66E-005 ACSF2 (2 of 2) XII-C XII-XII -3,91682 3,36E-006 0,0013148 ADPRH XII-C XII-XII -2,04532 0,0026334 0,0334063 AGT XII-C XII-XII -2,04532 0,0026334 0,0334063 AGXT (1 of 2) XII-C XII-XII -2,04532 0,0026334 0,0334063 AGXT (1 of 2) XII-C XII-XII -8,6314 1,98E-007 1,16E-005 AGXT2 (1 of 2) XII-C XII-XII -4,68037 1,44E-005 0,0004503 AGXT2 (1 of 2) XII-C XII-XII -4,86035 0,0035064 0,0411874 AKR1D1 (1 of 2) XII-C XII-XII -4,86055 0,0025903 0,0299175 ALDH31 XII-C XII-XII -1,5425 0,0022230 0,0299175 ALDH41 XII-C XII-XII -1,5425	ABHD15	XII-C	XII-XII	-3	.43352	0,0017066	0,0236295
ACMSD XII-C XII-XII -6,46402 2,06E-006 8,66E-005 ACSF2 (2 of 2) XII-C XII-XII -3,91682 3,36E-006 0,00013148 ADPRH XII-C XII-XII -2,04532 0,002634 0,0334063 AGT XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -8,52796 1,36E-008 1,15E-006 AGXT (2 of 2) XII-C XII-XII -9,28692 2,34E-006 9,65E-005 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0014874 AKRDD (1 of 2) XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -4,06505 0,00059809 ALDH31 XII-C XII-XII -4,95421 2,00E-005 0,00299175 ALDH411 XII-C XII-XII -4,95421 2,00E-005	ABT1.ENSGACG0000000296	S XII-C	XII-XII	1	,12021	3,61E-005	0,00098022
ACSF2 (2 of 2) XII-C XII-XII -3,91682 3,36E-006 0,00013148 ADPRH XII-C XII-XII -2,04532 0,0026334 0,0334063 AGT XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -8,62796 1,36E-008 1,15E-006 AGXT (2 of 2) XII-C XII-XII -9,28692 2,34E-006 9,65E-005 AGXT (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2L1 XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2L1 XII-C XII-XII -4,38033 4,23E-005 0,00111874 AHSG XII-C XII-XII -4,36505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDH8A1 XII-C XII-XII -9,5421 2,00E-005 0,0029809 ALDH8A1 XII-C XII-XII -1,5425 0,0022923 0,299175 ALDOB XII-C XII-XII -1,5425<	ACMSD	XII-C	XII-XII	-6	.46402	2.06E-006	8.66E-005
ADPRH XII-C XII-XII -2,04532 0,0026334 0,0334063 AGT XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (2 of 2) XII-C XII-XII -9,86592 2,34E-006 9,65E-005 AGXT2(1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2L1 XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2L1 XII-C XII-XII -4,65635 0,0035064 0,0418746 AKR1D1 (1 of 2) XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDH8A1 XII-C XII-XII -5,9735 1,02E-007 6,61E-006 ALDH9A1 (1 of 2) XII-C XII-XII -1,5425 0,0029230 0,0299175 ALDOB XII-C XII-XII -1,5425 0,	ACSF2 (2 of 2)	XII-C	XII-XII	-3	.91682	3.36E-006	0.00013148
AGT XII-C XII-XII -6,6314 1,98E-007 1,16E-005 AGXT (1 of 2) XII-C XII-XII -8,52796 1,36E-008 1,15E-006 AGXT (2 of 2) XII-C XII-XII -9,28692 2,34E-006 9,65E-005 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2 (1 of 2) XII-C XII-XII -4,38033 4,23E-005 0,00111874 AHSG XII-C XII-XII -4,38033 4,23E-007 7,43E-007 AKR1D1 (1 of 2) XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDH1L1 XII-C XII-XII -1,5425 0,0022923 0,0299175 ALDBA1 XII-C XII-XII -1,5425 0,0028026 0,0350892 ALDBA1 XII-C XII-XII -1,5425 0,0028026 0,00319298 ALDC XII-C XII-XII -9,43266 0,0001482 0,00319298 AMDHD1 XII-C XII-XII	ADPRH	XII-C	XII-XII	-2	,04532	0,0026334	0,0334063
AGXT (1 of 2) XII-C XII-XII -8,52796 1,36E-008 1,15E-006 AGXT (2 of 2) XII-C XII-XII -9,28692 2,34E-006 9,65E-005 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2L1 XII-C XII-XII -4,38033 4,23E-005 0,00111874 AHSG XII-C XII-XII -4,465837 1,44E-005 0,0014503 AKR1D1 (1 of 2) XII-C XII-XII -4,65833 4,23E-009 7,43E-007 AKR1D1 (2 of 2) XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDHAA1 XII-C XII-XII -4,95421 2,00E-005 0,0059809 ALDHAA1 XII-C XII-XII -1,5425 0,0022923 0,299175 ALDOB XII-C XII-XII -1,5425 0,0028026 0,0350892 ALLC XII-C XII-XII -5,17299 1,27E-006 5,72E-005 ALYREF (2 of 2) XII-C XII-XII </td <td>AGT</td> <td>XII-C</td> <td>XII-XII</td> <td></td> <td>6.6314</td> <td>1.98E-007</td> <td>1.16E-005</td>	AGT	XII-C	XII-XII		6.6314	1.98E-007	1.16E-005
AGXT (2 of 2) XII-C XII-XII -9,28692 2,34E-006 9,65E-005 AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2L1 XII-C XII-XII -4,65837 1,44E-005 0,0014503 AGXT2L1 XII-C XII-XII -4,65837 1,44E-005 0,0014503 AGXT2L1 XII-C XII-XII -4,65837 1,44E-005 0,0014503 AKR1D1 (1 of 2) XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -4,06505 0,00059809 ALDHA11 XII-C XII-XII -4,95421 2,00E-005 0,0059809 ALDHA11 XII-C XII-XII -4,95421 2,00E-005 0,00299175 ALD0B XII-C XII-XII -1,5425 0,0022923 0,299175 ALDOB XII-C XII-XII -1,5425 0,0028026 0,0350892 ALLC XII-C XII-XII -5,17299 1,27E-006 5,72E-005 ALYREF (2 of 2) XII-C XII-XII -3,6914 0	AGXT (1 of 2)	XII-C	XII-XII	-8	.52796	1.36E-008	1,15E-006
AGXT2 (1 of 2) XII-C XII-XII -4,65837 1,44E-005 0,0004503 AGXT2L1 XII-C XII-XII -4,38033 4,23E-005 0,00111874 AHSG XII-C XII-XII -4,38033 4,23E-005 0,0011874 AHSG XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDH1L1 XII-C XII-XII -7,24717 1,67E-007 6,61E-006 ALDH3A1 XII-C XII-XII -4,95421 2,00E-005 0,00059809 ALDH411 XII-C XII-XII -4,51104 0,0028026 0,00350892 ALDH3A1 (1 of 2) XII-C XII-XII -1,5425 0,0022809 0,00350892 ALCC XII-C XII-XII -1,5426 0,0028059 0,00350892 ALLC XII-C XII-XII -4,6114 0,002859 0,00350892 ALC XII-C XII-XII -0,943266 0,0001482 0,0031929 AMDD1 XII-C XII-XII -3,6914	AGXT (2 of 2)	XII-C	XII-XII	-9	,28692	2,34E-006	9,65E-005
AGXT2L1 XII-C XII-XII -4,38033 4,23E-005 0,00111874 AHSG XII-C XII-XII -8,31774 8,23E-009 7,43E-007 AKR1D1 (1 of 2) XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDH1L1 XII-C XII-XII -4,95421 2,00E-005 0,00059809 ALDH8A1 XII-C XII-XII -4,95421 2,00E-005 0,00059809 ALDH8A1 XII-C XII-XII -1,54735 1,02E-007 6,61E-006 ALDBS XII-C XII-XII -1,5425 0,0028026 0,0031929 ALCC XII-C XII-XII -1,5425 0,002859 0,00319298 AMDD1 XII-C XII-XII -3,6914 0,0002859 0,00550945 AMPD1 XII-C XII-XII -3,6914 0,002859 0,00550945 APOS1 XII-C XII-XII -4,62513 1,75E-007 1,05E-005 APOS1 XII-C XII-XII -4,62513 1,07	AGXT2 (1 of 2)	XII-C	XII-XII	-4	,65837	1,44E-005	0,0004503
AHSG XII-C XII-XII -8,31774 8,23E-009 7,43E-007 AKR1D1 (1 of 2) XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDH1L1 XII-C XII-XII -4,95421 2,00E-005 0,00059809 ALDH8A1 XII-C XII-XII -4,95421 2,00E-005 0,00299175 ALDOB XII-C XII-XII -1,5425 0,0028026 0,0350892 ALLC XII-C XII-XII -4,51104 0,0028026 0,0350892 ALLC XII-C XII-XII -5,17299 1,27E-006 5,72E-005 ALYREF (2 of 2) XII-C XII-XII 0,943266 0,0001482 0,00319298 AMDHD1 XII-C XII-XII -3,6914 0,0002859 0,00550945 AMPD1 XII-C XII-XII -3,6914 0,0002859 0,0017283 APOA1 XII-C XII-XII -4,62513 1,75E-007	AGXT2L1	XII-C	XII-XII	-4	,38033	4,23E-005	0,00111874
AKR1D1 (1 of 2) XII-C XII-XII -4,06505 0,0035064 0,0418746 AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDH1L1 XII-C XII-XII -4,95421 2,00E-005 0,00059809 ALDH8A1 XII-C XII-XII -4,95421 2,00E-005 0,00299175 ALD0B XII-C XII-XII -1,5425 0,0022923 0,0299175 ALD0B XII-C XII-XII -4,51104 0,0028026 0,0350892 ALLC XII-C XII-XII -4,51104 0,0028026 0,0350892 ALLC XII-C XII-XII -5,17299 1,27E-006 5,72E-005 ALYREF (2 of 2) XII-C XII-XII 0,943266 0,0001482 0,00319298 AMDHD1 XII-C XII-XII -3,6914 0,0002859 0,00550945 AMPD1 XII-C XII-XII -4,62513 1,75E-007 1,05E-005 AP2S1 XII-C XII-XII -4,62513 1,75E-007 1,05E-005 APOB (1 of 5) XII-C XII-XII -6,89567 <td>AHSG</td> <td>XII-C</td> <td>XII-XII</td> <td>-8</td> <td>,31774</td> <td>8,23E-009</td> <td>7,43E-007</td>	AHSG	XII-C	XII-XII	-8	,31774	8,23E-009	7,43E-007
AKR1D1 (2 of 2) XII-C XII-XII -7,24717 1,67E-007 1,00E-005 ALDH1L1 XII-C XII-XII -4,95421 2,00E-005 0,00059809 ALDH8A1 XII-C XII-XII -4,95421 2,00E-005 0,00299175 ALDH9A1 (1 of 2) XII-C XII-XII -1,5425 0,0022923 0,0299175 ALDOB XII-C XII-XII -1,5425 0,0028026 0,0350892 ALLC XII-C XII-XII -4,51104 0,0028026 0,0350892 ALLC XII-C XII-XII -4,51104 0,002859 0,00550945 AMDHD1 XII-C XII-XII -3,6914 0,002859 0,00550945 AMPD1 XII-C XII-XII -4,62513 1,75E-007 1,05E-005 AP2S1 XII-C XII-XII -4,62513 1,75E-007 1,05E-005 AP2S1 XII-C XII-XII -4,62513 1,75E-006 0,00017283 APOA1 XII-C XII-XII -6,89567 4,63E-006 0,0007223 APOB (5 of 5) XII-C XII-XII -7,53838 <t< td=""><td>AKR1D1 (1 of 2)</td><td>XII-C</td><td>XII-XII</td><td>-4</td><td>,06505</td><td>0,0035064</td><td>0,0418746</td></t<>	AKR1D1 (1 of 2)	XII-C	XII-XII	-4	,06505	0,0035064	0,0418746
ALDH1L1 XII-C XII-XII -4,95421 2,00E-005 0,00059809 ALDH8A1 XII-C XII-XII -5,97735 1,02E-007 6,61E-006 ALDH9A1 (1 of 2) XII-C XII-XII -1,5425 0,0022923 0,0299175 ALDOB XII-C XII-XII -1,5425 0,0028026 0,0350892 ALLC XII-C XII-XII -4,51104 0,0028056 0,00319298 ALYREF (2 of 2) XII-C XII-XII 0,943266 0,0001482 0,00319298 AMDHD1 XII-C XII-XII 0,943266 0,0001482 0,00319298 AMPD1 XII-C XII-XII -3,6914 0,0002859 0,00550945 AMPD1 XII-C XII-XII -4,62513 1,75E-007 1,05E-005 AP2S1 XII-C XII-XII -4,62513 0,0034419 0,0412744 APOA1 XII-C XII-XII -6,89667 4,63E-006 0,00017283 APOB (5 of 5) XII-C XII-XII -7,53838 2,22E-016 1,07E-013 APOE (2 of 2) XII-C XII-XII -7,34671 </td <td>AKR1D1 (2 of 2)</td> <td>XII-C</td> <td>XII-XII</td> <td>-7</td> <td>,24717</td> <td>1.67E-007</td> <td>1.00E-005</td>	AKR1D1 (2 of 2)	XII-C	XII-XII	-7	,24717	1.67E-007	1.00E-005
ALDH8A1XII-CXII-XII-5,977351,02E-0076,61E-006ALDH9A1 (1 of 2)XII-CXII-XII-1,54250,00229230,0299175ALDOBXII-CXII-XII-4,511040,00280260,0350892ALLCXII-CXII-XII-4,511040,00280260,0319298ALLCXII-CXII-XII0,9432660,00014820,00319298AMDHD1XII-CXII-XII0,9432660,00014820,00319298AMDHD1XII-CXII-XII-3,69140,0028590,00550945AMPD1XII-CXII-XII-4,625131,75E-0071,05E-005AP2S1XII-CXII-XII0,8128510,00344190,0412744APOA1XII-CXII-XII-6,895674,63E-0060,00017283APOB (1 of 5)XII-CXII-XII-6,895674,63E-0060,00017283APOB (5 of 5)XII-CXII-XII-7,538382,22E-0161,07E-013APOD (2 of 6),GGHXII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-4,128640,00129290,0189141APOH (1 of 2)XII-CXII-XII-4,128640,00129290,0189141APOH (2 of 2)XII-CXII-XII-7,028042,41E-0071,38E-005ARG1XII-CXII-XII-4,80080,00048270,00848497ABHGEF38 (1 of 2)XII-CXII-XII-5,16472 </td <td>ALDH1L1</td> <td>XII-C</td> <td>XII-XII</td> <td>-4</td> <td>,95421</td> <td>2,00E-005</td> <td>0,00059809</td>	ALDH1L1	XII-C	XII-XII	-4	,95421	2,00E-005	0,00059809
ALDH9A1 (1 of 2)XII-CXII-XII-1,54250,00229230,0299175ALDOBXII-CXII-XII-4,511040,00280260,0350892ALLCXII-CXII-CXII-XII-5,172991,27E-0065,72E-005ALYREF (2 of 2)XII-CXII-XII0,9432660,00014820,00319298AMDHD1XII-CXII-XII0,9432660,00028590,00550945AMPD1XII-CXII-XII-3,69140,00028590,00550945AMPD1XII-CXII-XII-4,625131,75E-0071,05E-005AP2S1XII-CXII-XII0,8128510,00344190,0412744APOA1XII-CXII-XII-6,895674,63E-0060,00017283APOB (1 of 5)XII-CXII-XII-6,895674,63E-0060,00017283APOB (5 of 5)XII-CXII-XII-7,538382,22E-0161,07E-013APOD (2 of 6),GGHXII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-4,128640,00129290,0189141APOH (1 of 2)XII-CXII-XII-4,80080,00048270,00848497ARG1XII-CXII-XII-4,80080,00048270,00848497ARG1XII-CXII-XII-4,80080,00048270,00848497	ALDH8A1	XII-C	XII-XII	-5	,97735	1,02E-007	6,61E-006
ALDOBXII-CXII-XII-4,511040,00280260,0350892ALLCXII-CXII-XII-5,172991,27E-0065,72E-005ALYREF (2 of 2)XII-CXII-XII0,9432660,00014820,00319298AMDHD1XII-CXII-XII-3,69140,00028590,00550945AMPD1XII-CXII-XII-4,625131,75E-0071,05E-005AP2S1XII-CXII-XII0,8128510,00344190,0412744APOA1XII-CXII-XII-8,5793700APOB (1 of 5)XII-CXII-XII-6,895674,63E-0060,00017283APOB (5 of 5)XII-CXII-XII-7,538382,22E-0161,07E-013APOD (2 of 6),GGHXII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-4,091640,00308610,0378826APOFXII-CXII-XII-4,128640,00129290,0189141APOH (2 of 2)XII-CXII-XII-4,80080,00048270,00848497ARG1XII-CXII-XII-4,80080,00048270,00848497ABHGEF38 (1 of 2)XII-CXII-XII-4,80080,00048270,00848497	ALDH9A1 (1 of 2)	XII-C	XII-XII		1.5425	0.0022923	0.0299175
ALLCXII-CXII-XII-5,172991,27E-0065,72E-005ALYREF (2 of 2)XII-CXII-XII0,9432660,00014820,00319298AMDHD1XII-CXII-XII-3,69140,00028590,00550945AMPD1XII-CXII-XII-4,625131,75E-0071,05E-005AP2S1XII-CXII-XII0,8128510,00344190,0412744APOA1XII-CXII-XII0,8128510,00344190,0412744APOB (1 of 5)XII-CXII-XII-6,895674,63E-0060,00017283APOB (5 of 5)XII-CXII-XII-7,538382,22E-0161,07E-013APOB (2 of 6),GGHXII-CXII-XII-7,538382,22E-0161,07E-013APOE (2 of 2)XII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-4,091640,00308610,0378826APOH (1 of 2)XII-CXII-XII-4,128640,00129290,0189141APOH (2 of 2)XII-CXII-XII-7,028042,41E-0071,38E-005ARG1XII-CXII-XII-7,028042,41E-0071,38E-005ARG1XII-CXII-XII-5,164724,76E-0050,00123607	ALDOB	XII-C	XII-XII	-4	.51104	0.0028026	0,0350892
ALYREF (2 of 2)XII-CXII-XII0,9432660,00014820,00319298AMDHD1XII-CXII-XII-3,69140,00028590,00550945AMPD1XII-CXII-XII-4,625131,75E-0071,05E-005AP2S1XII-CXII-XII0,8128510,00344190,0412744APOA1XII-CXII-XII-8,5793700APOB (1 of 5)XII-CXII-XII-6,895674,63E-0060,00017283APOB (5 of 5)XII-CXII-XII-7,538382,22E-0161,07E-013APOD (2 of 6),GGHXII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-4,091640,00308610,0378826APOFXII-CXII-XII-4,128640,00129290,0189141APOH (2 of 2)XII-CXII-XII-7,028042,41E-0071,38E-005ARG1XII-CXII-XII-4,80080,00048270,00848497ARHGEF38 (1 of 2)XII-CXII-XII-4,80080,00048270,00848497	ALLC	XII-C	XII-XII	-5	.17299	1.27E-006	5.72E-005
AMDHD1XII-CXII-XII-3,69140,00028590,00550945AMPD1XII-CXII-XII-4,625131,75E-0071,05E-005AP2S1XII-CXII-XII0,8128510,00344190,0412744APOA1XII-CXII-XII0,8128510,00344190,0412744APOB (1 of 5)XII-CXII-XII-6,895674,63E-0060,00017283APOB (5 of 5)XII-CXII-XII-7,538382,22E-0161,07E-013APOD (2 of 6),GGHXII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-CXII-XII-4,091640,00308610,0378826APOH (1 of 2)XII-CXII-XII-4,128640,00129290,0189141APOH (2 of 2)XII-CXII-XII-7,028042,41E-0071,38E-005ARG1XII-CXII-XII-4,80080,00048270,00848497ABHGEF38 (1 of 2)XII-CXII-XII-5,164724,76E-0050,00123607	ALYREF (2 of 2)	XII-C	XII-XII	0.9	943266	0.0001482	0.00319298
AMPD1XII-CXII-XII-4,625131,75E-0071,05E-005AP2S1XII-CXII-XII0,8128510,00344190,0412744APOA1XII-CXII-XII-8,5793700APOB (1 of 5)XII-CXII-XII-6,895674,63E-0060,00017283APOB (5 of 5)XII-CXII-XII-7,538382,22E-0161,07E-013APOD (2 of 6),GGHXII-CXII-XII-4,5523,14E-0050,00087222APOE (2 of 2)XII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-4,091640,00308610,0378826APOH (1 of 2)XII-CXII-XII-4,128640,00129290,0189141APOH (2 of 2)XII-CXII-XII-7,028042,41E-0071,38E-005ARG1XII-CXII-XII-4,80080,00048270,00848497ABHGEF38 (1 of 2)XII-CXII-XII-5,164724,76E-0050,00123607	AMDHD1	XII-C	XII-XII	-	3.6914	0.0002859	0.00550945
AP2S1XII-CXII-XII0,8128510,00344190,0412744APOA1XII-CXII-XII-8,5793700APOB (1 of 5)XII-CXII-XII-6,895674,63E-0060,00017283APOB (5 of 5)XII-CXII-XII-7,538382,22E-0161,07E-013APOD (2 of 6),GGHXII-CXII-XII-4,5523,14E-0050,00087222APOE (2 of 2)XII-CXII-XII-7,346712,59E-0082,01E-006APOFXII-CXII-XII-4,091640,00308610,0378826APOH (1 of 2)XII-CXII-XII-4,128640,00129290,0189141APOH (2 of 2)XII-CXII-XII-7,028042,41E-0071,38E-005ARG1XII-CXII-XII-4,80080,00048270,00848497ABHGEF38 (1 of 2)XII-CXII-XII-5,164724,76E-0050,00123607	AMPD1	XII-C	XII-XII	-4	.62513	1.75E-007	1.05E-005
APOA1 XII-C XII-XII -8,57937 0 0 0 APOB (1 of 5) XII-C XII-XII -6,89567 4,63E-006 0,00017283 APOB (5 of 5) XII-C XII-XII -7,53838 2,22E-016 1,07E-013 APOD (2 of 6),GGH XII-C XII-XII -4,552 3,14E-005 0,00087222 APOE (2 of 2) XII-C XII-XII -7,34671 2,59E-008 2,01E-006 APOF XII-C XII-XII -7,34671 2,59E-008 2,01E-006 APOF XII-C XII-XII -4,09164 0,0030861 0,0378826 APOH (1 of 2) XII-C XII-XII -4,12864 0,0012929 0,0189141 APOH (2 of 2) XII-C XII-XII -7,02804 2,41E-007 1,38E-005 ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ABHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	AP2S1	XII-C	XII-XII	0.6	312851	0.0034419	0.0412744
APOB (1 of 5) XII-C XII-XII -6,89567 4,63E-006 0,00017283 APOB (5 of 5) XII-C XII-XII -7,53838 2,22E-016 1,07E-013 APOD (2 of 6),GGH XII-C XII-XII -4,552 3,14E-005 0,00087222 APOE (2 of 2) XII-C XII-XII -7,34671 2,59E-008 2,01E-006 APOF XII-C XII-XII -7,34671 2,59E-008 2,01E-006 APOF XII-C XII-XII -4,09164 0,0030861 0,0378826 APOH (1 of 2) XII-C XII-XII -4,12864 0,0012929 0,0189141 APOH (2 of 2) XII-C XII-XII -7,02804 2,41E-007 1,38E-005 ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ABHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	APOA1	XII-C	XII-XII	-8	57937	0	0
APOB (5 of 5) XII-C XII-XII -7,53838 2,22E-016 1,07E-013 APOD (2 of 6),GGH XII-C XII-XII -4,552 3,14E-005 0,00087222 APOE (2 of 2) XII-C XII-XII -7,34671 2,59E-008 2,01E-006 APOF XII-C XII-XII -7,34671 2,59E-008 2,01E-006 APOF XII-C XII-XII -4,09164 0,0030861 0,0378826 APOH (1 of 2) XII-C XII-XII -4,12864 0,0012929 0,0189141 APOH (2 of 2) XII-C XII-XII -7,02804 2,41E-007 1,38E-005 ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ABHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	APOB (1 of 5)	XII-C	XII-XII	-6	.89567	4.63E-006	0.00017283
APOD (2 of 6),GGH XII-C XII-XII -4,552 3,14E-005 0,00087222 APOE (2 of 2) XII-C XII-XII -7,34671 2,59E-008 2,01E-006 APOF XII-C XII-XII -4,09164 0,0030861 0,0378826 APOH (1 of 2) XII-C XII-XII -4,12864 0,0012929 0,0189141 APOH (2 of 2) XII-C XII-XII -7,02804 2,41E-007 1,38E-005 ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ABHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	APOB (5 of 5)	XII-C	XII-XII	-7	.53838	2.22E-016	1.07E-013
APOE (2 of 2) XII-C XII-XII -7,34671 2,59E-008 2,01E-006 APOF XII-C XII-XII -4,09164 0,0030861 0,0378826 APOH (1 of 2) XII-C XII-XII -4,12864 0,0012929 0,0189141 APOH (2 of 2) XII-C XII-XII -7,02804 2,41E-007 1,38E-005 ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ABHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	APOD (2 of 6).GGH	XII-C	XII-XII		-4.552	3.14E-005	0.00087222
APOF XII-C XII-XII -4,09164 0,0030861 0,0378826 APOH (1 of 2) XII-C XII-XII -4,12864 0,0012929 0,0189141 APOH (2 of 2) XII-C XII-XII -7,02804 2,41E-007 1,38E-005 ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ABHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	APOF (2 of 2)	XII-C	XII-XII	-7	34671	2.59E-008	2 01E-006
APOH (1 of 2) XII-C XII-XII -4,12864 0,0012929 0,0189141 APOH (2 of 2) XII-C XII-XII -7,02804 2,41E-007 1,38E-005 ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ARHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	APOF	XII-C	XII-XII	-4	09164	0.0030861	0.0378826
APOH (2 of 2) XII-C XII-XII -7,02804 2,41E-007 1,38E-005 ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ABHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	APOH (1 of 2)	XII-C	XII-XII	-4	1,12864	0.0012929	0.0189141
ARG1 XII-C XII-XII -4,8008 0,0004827 0,00848497 ARHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76E-005 0.00123607	APOH (2 of 2)	XII-C	XII-XII		7 02804	2 41 F-007	1.38E-005
ARHGEF38 (1 of 2) XII-C XII-XII -5 16472 4 76F-005 0 00123607	ABG1	XII-C	XII-XII	- /	-4 8008	0.0004827	0.00848497
	ARHGEF38 (1 of 2)	XII-C	XII-XII	_6	5.16472	4.76E-005	0.00123607

Appendix

gene	sample 1	sample 2	log2(fold change)	p value	a value
ASGR1	XII-C	XII-XII	-6.57355	2.04E-006	8.59E-005
BCO2 (3 of 3)	XII-C	XII-XII	-6,03272	0.0004642	0.00821956
C3 (1 of 8)	XII-C	XII-XII	-6,88341	2.17E-009	2.33E-007
C3 (2 of 8)	XII-C	XII-XII	-6,58022	6.09E-007	3.06E-005
C3 (3 of 8)	XII-C	XII-XII	-7,08703	1,75E-006	7.53E-005
C3 (4 of 8)	XII-C	XII-XII	-7,54974	0,0010764	0.0163095
C3 (5 of 8)	XII-C	XII-XII	-6,80613	3.04E-006	0.0001209
C4A	XII-C	XII-XII	-1,30456	3,71E-006	0.00014306
C7orf10	XII-C	XII-XII	0,533861	0,0024214	0,0312575
C8A	XII-C	XII-XII	-7,64739	4,30E-007	2,27E-005
C8G	XII-C	XII-XII	-8,67221	1,71E-010	2,46E-008
C9	XII-C	XII-XII	-7,06315	3,28E-007	1,80E-005
CA6 (1 of 2)	XII-C	XII-XII	3,18591	2,01E-005	0,00059918
CA6 (2 of 2)	XII-C	XII-XII	2,97804	0,0013638	0,0197407
CASQ1 (2 of 2)	XII-C	XII-XII	-4,4447	0,0005719	0,00974304
CDCA7L	XII-C	XII-XII	0,597531	0,0030247	0,0372948
CDK1	XII-C	XII-XII	1,68752	0,00221141	0,0290741
CDO1	XII-C	XII-XII	-3,20155	0,000467	0,00826046
CELA1 (1 of 2)	XII-C	XII-XII	-4,96738	0,0005856	0,00993326
CETP	XII-C	XII-XII	-8,08857	4,10E-011	6,95E-009
CFB	XII-C	XII-XII	-4,61178	1,52E-005	0,00047235
CFP	XII-C	XII-XII	-5,52123	6,14E-006	0,00021927
CIDEB	XII-C	XII-XII	-5,7993	1,22E-006	5,56E-005
CLDN2	XII-C	XII-XII	-3,93385	0,0027759	0,0348271
CLIC5 (1 of 2)	XII-C	XII-XII	-5,08877	0,000769	0,0124069
CNDP1	XII-C	XII-XII	-6,36507	1,11E-007	7,08E-006
CPT1B	XII-C	XII-XII	-2,6732	0,003792	0,0445406
CREB3L3	XII-C	XII-XII	-4,56019	0,0004262	0,00766375
CREG2	XII-C	XII-XII	-0,897494	2,84E-013	7,99E-011
CYP24A1	XII-C	XII-XII	-6,37246	1,12E-010	1,70E-008
CYP2C9	XII-C	XII-XII	-6,28678	0,0005455	0,00937755
CYP2J2 (1 of 6)	XII-C	XII-XII	-5,84391	1,08E-008	9,44E-007
CYP2J2 (2 of 6)	XII-C	XII-XII	-6,76922	5,40E-007	2,76E-005
CYP2J2 (3 of 6)	XII-C	XII-XII	-7,1205	7,55E-009	6,90E-007
CYP2J2 (6 of 6)	XII-C	XII-XII	-2,36835	0,0018905	0,0256592
	XII-C	XII-XII	-6,7401	2,60E-010	3,57E-008
CYP2W1 (4 of 5)	XII-C	XII-XII	-3,72082	0,0026303	0,0333768
CYP8B1	XII-C	XII-XII	-4,52562	8,18E-005	0,00194319
DDX52	XII-C	XII-XII	0,757169	0,0003369	0,00631291
DGAI2	XII-C		-4,92008	3,91E-006	0,00014964
DHR59	XII-C		-1,64067	1,82E-005	0,00055195
DIABLO (1 of 2)	XII-C		-8,60729	9,85E-013	2,46E-010
DMGDH	XII-C		-4,83162	8,56E-005	0,00201899
	XII-C		-6,23866	7,78E-007	3,78E-005
			-3,02412	0,0008259	0,0131409
	XII-C	XII-XII	-3,70527	0,000465	0,00823156
ENSGACG000000000/	XII-C	XII-XII	-7,191	8,54E-008	5,65E-006
ENSGACG0000000231	XII-C		-4,4589	0,0002266	0,00454534
	XII-C	XII-XII	-2,8/947	0,0034504	0,0413537
	XII-C	XII-XII	3,72336	0,0014/67	0,0210383
	XII-C	XII-XII	-7,25094	1,95E-008	1,5/E-006
ENSGACG0000001261	XII-C	XII-XII	-4,32806	0,0001017	0,00233307
ENSGACG0000001432	XII-C	XII-XII	-7,36476	1,91E-007	1,13E-005

gene	sample 1	sample 2	log2(fold change)	p value	a value
ENSGACG0000001522	XII-C	XII-XII	-3 43377	0.0002402	0.00476969
ENSGACG0000001733	XII-C	XII-XII	-5 98875	1 28E-013	3.86E-011
ENSGACG0000001742	XII-C	XII-XII	-2 10345	9.82E-010	1 16E-007
ENSGACG0000001978	XII-C	XII-XII	-2 36981	0.0015264	0.0216056
ENSCACG00000001978	XII-C		1 72588	5.91E-005	0,0210050
			2 10225	0,0002756	0,00148230
ENSGACG0000002525			-3,10223	0,0002756	0,00534469
ENSGACG0000002902	XII-C		-4,75149	7,27E-007	3,50E-005
ENSGACGUUUUUUUUUUUUUU	XII-C		-4,89348	5, TUE-005	0,00131122
ENSGACG0000003030	XII-C		-7,97925	3,73E-006	0,00014361
ENSGACG0000003435	XII-C	XII-XII	-6,86558	0,0028188	0,0352497
ENSGACG0000003461	XII-C	XII-XII	-8,48332	9,58E-008	6,24E-006
ENSGACG0000003467	XII-C	XII-XII	-8,74649	0,00061188	0,0102952
ENSGACG0000003473	XII-C	XII-XII	-8,56034	3,80E-008	2,80E-006
ENSGACG0000003808	XII-C	XII-XII	-2,98768	0,0042829	0,0489589
ENSGACG0000004324	XII-C	XII-XII	1,26285	0,0006256	0,0104852
ENSGACG0000004413	XII-C	XII-XII	-7,71113	1,37E-009	1,56E-007
ENSGACG0000004816	XII-C	XII-XII	-3,72473	0,0020276	0,0271378
ENSGACG0000004822	XII-C	XII-XII	-3,74578	0,0021765	0,0287084
ENSGACG0000004971	XII-C	XII-XII	-3,27661	0,0038137	0,0447359
ENSGACG0000005067	XII-C	XII-XII	-3,29208	0,0008034	0,0128537
ENSGACG0000005264	XII-C	XII-XII	-5,51687	0,0009832	0,0151515
ENSGACG0000005421	XII-C	XII-XII	-2,11599	0,0006903	0,0113616
ENSGACG0000005482	XII-C	XII-XII	-3,12259	0,0001096	0,00248234
ENSGACG0000005547	XII-C	XII-XII	-3,14895	0,0002701	0,00525637
ENSGACG0000005712	XII-C	XII-XII	-2,64471	0.0024751	0.031805
ENSGACG0000005883	XII-C	XII-XII	-5,17259	3.21E-008	2,42E-006
ENSGACG0000005916	XII-C	XII-XII	-4,21456	0.00119459	0.0177469
ENSGACG0000006351	XII-C	XII-XII	-3.68324	0.0028738	0.0358035
ENSGACG0000006545	XII-C	XII-XII	-7.91367	3.99E-006	0.00015216
ENSGACG0000006644	XII-C	XII-XII	-6,99104	0.000184	0.00382292
ENSGACG0000006790	XII-C	XII-XII	-2,65138	0.0035709	0.0424861
ENSGACG0000006829	XII-C	XII-XII	-1 80E+308	0.000647	0.0107749
ENSGACG0000006833	XII-C	XII-XII	-6.0804	0.00113973	0.0170871
ENSGACG00000000000000000000000000000000000	XII-C	XII-XII	-7 04772	2 33E-005	0,0006798
ENSGACG0000007040	XII-C		-5 77756	4 92E-005	0.00127169
ENSGACG0000007040			-3,77730	4,922-003	0.0167248
ENSGACG0000007337			-3,00313	0,0010148	0,0107240
ENSGACG0000007447			1,09073	0,0010140	0,013340
ENSGACG0000007505	XII-C		-4,4772	0,0003901	0,00724332
ENSGACG0000007507	XII-C		-3,00030	0,0030070	0,0452352
ENSGACG0000007640	XII-C		-0,08411	7,82E-006	0,00026935
ENSGACG0000007954	XII-C		-10,1081	4,43E-005	0,00116422
ENSGACG0000008370	XII-C	XII-XII	-4,06104	0,0003052	0,00581541
ENSGACG0000009173	XII-C	XII-XII	-7,89168	4,25E-009	4,18E-007
ENSGACG0000009409	XII-C	XII-XII	-4,09979	2,09E-005	0,00061973
ENSGACG0000009487	XII-C	XII-XII	-3,5846	0,001409	0,0202627
ENSGACG0000009583	XII-C	XII-XII	-5,63332	2 6,21E-006	0,00022136
ENSGACG0000009880	XII-C	XII-XII	-9,32224	1,01E-009	1,19E-007
ENSGACG0000009883	XII-C	XII-XII	-9,27892	2 1,74E-006	7,49E-005
ENSGACG0000009946	XII-C	XII-XII	-2,71579	0,0035297	0,0420991
ENSGACG0000009952	XII-C	XII-XII	-7,3110	0,0043207	0,0492917
ENSGACG0000010050	XII-C	XII-XII	1,50022	2 1,0724E-04	0,00243777
ENSGACG0000010145	XII-C	XII-XII	-5,96844	4 1,75E-007	1,05E-005
ENSGACG00000010196	XII-C	XII-XII	-6,7773	3 5,63E-009	5,34E-007

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000010933	XII-C	XII-XII	-8,13177	8,90E-011	1.38E-008
ENSGACG00000011392	XII-C	XII-XII	-9,0509	8,92E-009	7,97E-007
ENSGACG00000011617	XII-C	XII-XII	-8,02247	2,36E-005	0,00068516
ENSGACG00000011633	XII-C	XII-XII	-2,85175	0,0022073	0,0290311
ENSGACG00000011784,POLR	XII-C	XII-XII	-2,5935	0.0025282	0.0323498
ENSGACG00000011846	XII-C	XII-XII	-7,07136	1,15E-006	5,28E-005
ENSGACG00000012381	XII-C	XII-XII	-7,01659	3.80E-014	1.27E-011
ENSGACG00000012390	XII-C	XII-XII	-3.07	0	0
ENSGACG0000012414	XII-C	XII-XII	-8,10942	3.58E-009	3.60E-007
ENSGACG0000012473	XII-C	XII-XII	-3,72154	0.00117663	0.0175327
ENSGACG0000013354	XII-C	XII-XII	-2,33371	0.003722	0.0438987
ENSGACG0000013449	XII-C	XII-XII	-3,50995	0,0009424	0.0146377
ENSGACG0000013769	XII-C	XII-XII	-1,80E+308	0.0018301	0.0250022
ENSGACG0000013793	XII-C	XII-XII	-5,0342	0,000355	0,00658907
ENSGACG0000014348	XII-C	XII-XII	-6,14615	6.34E-007	3.17E-005
ENSGACG00000014675	XII-C	XII-XII	-2,36636	0.0021484	0.0284203
ENSGACG00000014699	XII-C	XII-XII	-6,0074	8,01E-007	3,87E-005
ENSGACG00000014811	XII-C	XII-XII	-7,76487	3,46E-008	2,58E-006
ENSGACG00000014852	XII-C	XII-XII	-7,7671	1,16E-007	7,37E-006
ENSGACG0000015110	XII-C	XII-XII	2,98331	4,80E-005	0,00124524
ENSGACG0000015411	XII-C	XII-XII	-8,3239	1,88E-008	1,52E-006
ENSGACG0000015472	XII-C	XII-XII	-7,38266	1,27E-007	7,97E-006
ENSGACG0000015857	XII-C	XII-XII	-8,96505	2,70E-008	2,08E-006
ENSGACG0000015947	XII-C	XII-XII	-7,06088	1,21E-008	1,04E-006
ENSGACG0000016093	XII-C	XII-XII	-6,64913	2,70E-006	0,00010933
ENSGACG0000016104	XII-C	XII-XII	-9,61668	5,03E-012	1,07E-009
ENSGACG0000016696	XII-C	XII-XII	-7,19733	1,81E-006	7,76E-005
ENSGACG00000017299	XII-C	XII-XII	-4,08743	0,0024548	0,0316005
ENSGACG0000017681	XII-C	XII-XII	-7,58563	3,87E-010	5,09E-008
ENSGACG0000018177	XII-C	XII-XII	-1,80E+308	0,0002979	0,00570002
ENSGACG0000019066	XII-C	XII-XII	-7,10928	1,16E-008	9,99E-007
ENSGACG0000019517	XII-C	XII-XII	-5,24987	0,000109	0,00247067
ENSGACG0000019573	XII-C	XII-XII	3,40115	9,74E-005	0,00225013
ENSGACG0000019574	XII-C	XII-XII	3,81195	0,0006014	0,0101522
ENSGACG00000019604	XII-C	XII-XII	-7,15937	8,50E-005	0,00200882
ENSGACG0000020047	XII-C	XII-XII	-8,53774	1,77E-011	3,29E-009
ENSGACG0000020090	XII-C	XII-XII	-3,72569	0,0013093	0,0191061
ENSGACG0000020187	XII-C	XII-XII	-7,17322	7,92E-009	7,19E-007
ENSGACG0000020249	XII-C	XII-XII	-5,46179	0,0014566	0,0208052
ENSGACG0000020566	XII-C	XII-XII	-5,86274	1,53E-006	6,72E-005
ENSGACG0000020653	XII-C	XII-XII	-8,09134	3,51E-005	0,00095862
ENSGACG0000020917	XII-C	XII-XII	-6,49915	4,68E-007	2,44E-005
ENTPD4	XII-C	XII-XII	0,504471	0,0027217	0,0342867
EPS8L1 (1 of 2)	XII-C	XII-XII	-3,7175	0,0019135	0,0259035
F10	XII-C	XII-XII	-7,06153	1,78E-007	1,06E-005
F2	XII-C	XII-XII	-6,56292	0,0002169	0,00438502
F3 (1 of 2)	XII-C	XII-XII	1,01909	0,0018092	0,0247661
F5	XII-C	XII-XII	-6,8013	2,77E-007	1,55E-005
F9 (1 of 2)	XII-C	XII-XII	-5,28131	7,01E-005	0,00170843
F9 (2 of 2)	XII-C	XII-XII	-6,12098	7,55E-005	0,0018186
FABP1	XII-C	XII-XII	-8,75221	1,57E-007	9,57E-006
FAH	XII-C	XII-XII	-5,10059	1,10E-007	7,03E-006
FETUB (1 of 3)	XII-C	XII-XII	-5,3291	9,95E-006	0,00033001

gene	sample 1	sample 2	log2(fold change)	p value	a value
FETUB (2 of 3)	XII-C	XII-XII	-5 73088	0.0001934	0.00398442
FETUB (3 of 3)	XII-C	XII-XII	-8,38638	2 58E-007	1.46E-005
FGA	XII-C		9,69700	7.85E 010	0.40E 009
FGR	XII-C		-0,00709	7,03E-010	9,492-006
FGB			-0,03009	0,57E-007	4,10E-005
	XII-C		-8,17159	1,63E-007	9,86E-006
FUSLI	XII-C		3,03083	7,0278E-04	0,0115304
FUXA3	XII-C	XII-XII	-1,80E+308	0,002/2//	0,0343451
FRZB	XII-C	XII-XII	-2,20519	0,0002259	0,00453376
G0S2	XII-C	XII-XII	-3,83279	0,0035308	0,0421091
G6PC (1 of 2)	XII-C	XII-XII	-5,71699	2,24E-005	0,00065546
G6PC (2 of 2)	XII-C	XII-XII	-4,68469	0,0001273	0,00281333
GALNTL1	XII-C	XII-XII	-2,31879	0,0033668	0,0405682
GAPDH (1 of 2)	XII-C	XII-XII	-2,26748	7,07E-006	0,00024734
GAPDH (2 of 2)	XII-C	XII-XII	-7,28283	2,13E-006	8,91E-005
GCGR (1 of 2)	XII-C	XII-XII	-3,67698	0,0010869	0,0164391
GLUL (1 of 2)	XII-C	XII-XII	1,77433	0,0001455	0,00314527
GPD1 (1 of 2)	XII-C	XII-XII	-2,04913	0,0006686	0,0110677
GPX4 (2 of 4)	XII-C	XII-XII	-3,47483	0.000604	0.0101879
GSTZ1	XII-C	XII-XII	-3.73852	0.00047	0.00830396
HAAO	XII-C	XII-XII	-7.74734	3.79E-010	5 00E-008
HABP2 (1 of 2)	XII-C	XII-XII	-9.00813	5.89E-005	0.00147832
HABP2 (2 of 2)	XII-C	XII-XII	-8 16428	1 46E-005	0,00045678
HAL	XII-C	XII-XII	-6 611/1	3 82E-006	0,00043070
HAO1	XII-C		-8.32644	0,0010118	0,00014049
HGD	XII-C		-0,32044	6 65 5 000	6 17E 007
HM13	XII-C		-0,00450	0,03E-009	0,172-007
			0,557757	5,20E-005	0,00133246
			-5,16401	0,0001798	0,00374914
HNIMT (2 of 2)	XII-C		-5,49691	0,0003609	0,006681
	XII-C		-4,47289	1,26E-005	0,00040345
	XII-C		-7,82797	2,90E-008	2,22E-006
HPN	XII-C	XII-XII	-3,91839	0,0021232	0,0281559
HPX	XII-C	XII-XII	-8,00512	7,52E-008	5,06E-006
IGFALS	XII-C	XII-XII	-5,70818	8,72E-006	0,00029509
IGFBP2 (2 of 2)	XII-C	XII-XII	-6,03781	2,36E-005	0,00068488
IGSF5 (2 of 2)	XII-C	XII-XII	-5,58862	7,45E-005	0,00179775
IL22RA1	XII-C	XII-XII	4,31099	0,0001592	0,00338933
ILDR1 (1 of 2)	XII-C	XII-XII	-1,80E+308	0,0003163	0,00598984
IRF6	XII-C	XII-XII	-2,95084	0,0024466	0,0315164
IRG1	XII-C	XII-XII	2,76104	0,0042936	0,0490534
ITIH2	XII-C	XII-XII	-8,00117	2,68E-009	2,79E-007
ITIH4 (2 of 2)	XII-C	XII-XII	-5,24343	0,00021118	0,00428705
IYD	XII-C	XII-XII	-3.55342	0.0004852	0.00851954
KIF23 (2 of 2)	XII-C	XII-XII	1.27243	0.0003008	0.00574566
KL	XII-C	XII-XII	-7 62037	3 35E-009	3 40 E-007
KMO	XII-C	XII-XII	-4 72131	7 44E-006	0.00025809
KNG1	XII-C	XII-XII	-8 61511	2 47E-000	2 60E-007
KYNU	XII-C		4 20219	0.000274	0.00521905
I CAT PL A2G15	XII-C		-4,39210	0,000274	0,00531895
LECT2	XILC		-1,00457	0,0029535	0,030601
I M N A (2 of 2)			-7,91313	7,08E-010	8,00E-008
			-4,2/443	0,0016144	0,0225961
	XII-C	XII-XII	-8,5673	2,98E-007	1,66E-005
	XII-C	XII-XII	1,09215	6,29E-007	3,15E-005
LYZ	XII-C	XII-XII	-8,5563	4,44E-016	2,06E-013

17TR1 XII-C XII-XII 0.237536 0.0010107 c	
	0,0154952
MASP1 (2 of 2) XII-C XII-XII -5,11288 0,0032125	0,039095
MAT1A (2 of 2) XII-C XII-XII -8,85453 5,53E-014	1,79E-011
MFRP XII-C XII-XII -3,37713 0,0023103 0	0,0301058
MINPP1 (1 of 2) XII-C XII-XII -4,24108 0,0003291 0,	,00618973
MIOX XII-C XII-XII -7,31873 1,52E-007 9	9,27E-006
MLXIPL XII-C XII-XII -4,69301 0,0004363 0,	,00781249
MPZL3 XII-C XII-XII -4,52466 0,0043382 0	0,0494444
MSRB2 XII-C XII-XII -1,80E+308 0,000849 0	0,0134406
MST1P9 XII-C XII-XII -6,89453 4,26E-009	4,19E-007
MTTP XII-C XII-XII -3,76032 0,0001632 0,	,00345999
MXD4 XII-C XII-XII 1,12127 0,0002279 0,0	,00456725
MYBPC1 XII-C XII-XII -3,96875 0,0002656 0,	,00518394
MYL1 XII-C XII-XII -2,82616 0,0039828 0	0,0462739
MYLPF (2 of 2) XII-C XII-XII -3,70764 1,89E-006 8	8,05E-005
MYOM1 (2 of 2) XII-C XII-XII -2,62032 1,01E-005 0,0	,00033356
NAALADL1 XII-C XII-XII -3,43984 0,0005435 0,0	,00934889
NFE2 XII-C XII-XII 2,04937 0,0043365 0	0,0494301
NIPSNAP1 XII-C XII-XII -6,25706 1,54E-005 0,0	,00047749
NME4 XII-C XII-XII -6,9648 6,51E-007 3	3,24E-005
NPC1L1 XII-C XII-XII -4,61176 0,0005219 0	0,0090457
NR1H4 XII-C XII-XII -1,80E+308 0,0026053 0	0,0331266
NR5A2 XII-C XII-XII -4,62559 0,0041602 0	0,0478695
OVGP1 (3 of 5) XII-C XII-XII -8,08742 3,03E-009 3	3,12E-007
PACSIN3 XII-C XII-XII -3,74296 0,0017306 0	0.0238935
PCSK6 XII-C XII-XII -5,69553 1,00E-005 0,0	.00033269
PFKM (2 of 2) XII-C XII-XII -3,30888 3,46E-008 2	2,58E-006
PGAM2 XII-C XII-XII -2,88107 0,0014061 0	0,0202302
PGLYRP2 (2 of 2) XII-C XII-XII -7,95708 7,99E-014 2	2,51E-011
PIPOX XII-C XII-XII -4,25245 0,0005806 0,0	,00986331
PLA2G12B (1 of 2) XII-C XII-XII -5,48194 0,0036104 0	0,0428589
PLG XII-C XII-XII -8,21339 5,50E-009 5	5,23E-007
PLP1 (2 of 2) XII-C XII-XII -2,41914 0,0022698 0	0,0296819
PRHOXNB XII-C XII-XII -1,80E+308 0,002062 0	0,0275018
PROC XII-C XII-XII -7,78684 9,08E-007	4,31E-005
PROM1 (1 of 2) XII-C XII-XII -4,54218 0,00087 0	0,0137093
PROZ (2 of 2) XII-C XII-XII -7,82426 1,68E-006 7	7,27E-005
PRPF40A XII-C XII-XII 0,769123 0,001589	0.02231
PYGM (2 of 2) XII-C XII-XII -3,40174 0,0002153 0,0	.00435671
QPCT XII-C XII-XII -3.03856 0.0034602 0	0.0414456
QPRT XII-C XII-XII -4,13468 0,0026738 (0.0338111
RPA1 (1 of 2) XII-C XII-XII 1,31239 0,00116631	0.017409
SAP30L XII-C XII-XII 0.879816 0.0022394 0	0.0293659
SDC2 XII-C XII-XII -2.66123 0.0013388 0	0.0194486
SERPINC1 XII-C XII-XII -8,20089 7,26E-008	4.91E-006
SERPIND1 XII-C XII-XII -7,7105 1,37E-008 1	1,16E-006
SERPINF2 XII-C XII-XII -8.10694 4.25E-013 1	1.15E-010
SERPING1 XII-C XII-XII -4.04635 0.0004561 0.0	.00810117
SHBG XII-C XII-XII -7.38051 2.57E-008 1	1.99E-006
SLC13A3 XII-C XII-XII -4.76312 0.0002362 0.0	.00470487
SLC13A5 (2 of 2) XII-C XII-XII -5.91348 2.51F-006 0	0.0001024
SLC1A5 XII-C XII-XII 2.28973 1.8527E-04 0.0	.00384474
SLC22A13 XII-C XII-XII -1,80E+308 0,0004896 0	0,0085833

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
SLC22A14	XII-C	XII-XII	-4,85527	4,26E-005	0,00112749
SLC22A16	XII-C	XII-XII	-6,69477	9,10E-005	0,00212407
SLC25A34	XII-C	XII-XII	-2,46962	0,00329433	0,0398738
SLC26A5	XII-C	XII-XII	0,615251	0,00325789	0,0395304
SLC27A2 (1 of 3)	XII-C	XII-XII	-7,17104	3,04E-005	0,000848856
SLC27A6	XII-C	XII-XII	-2,9555	0,00189705	0,0257288
SLC2A2	XII-C	XII-XII	-1,80E+308	0,00339695	0,0408539
SLC39A8	XII-C	XII-XII	-3,92423	0,00136215	0,0197224
SLC7A2	XII-C	XII-XII	-3,88851	0,00176167	0,0242373
SNX12	XII-C	XII-XII	0,649493	0,001358	0,0196733
SOAT2	XII-C	XII-XII	-4,45959	0,00048914	0,00857645
SRM	XII-C	XII-XII	1,17942	0,00038921	0,00711141
SRSF9	XII-C	XII-XII	0,670511	4,28E-005	0,00113022
ST3GAL1 (1 of 8)	XII-C	XII-XII	-4,82043	0,00187842	0,0255287
STXBP2	XII-C	XII-XII	0,692237	0,00307866	0,0378117
SUSD2	XII-C	XII-XII	-6,4171	1,30E-005	0,000413161
TDO2	XII-C	XII-XII	-8,37441	3,64E-009	3,65E-007
TF	XII-C	XII-XII	-8,21765	0,00018047	0,00376166
TFR2	XII-C	XII-XII	-4,25283	0,00023493	0,00468486
THNSL2	XII-C	XII-XII	-0,831918	2,38E-005	0,000689916
TIMM50	XII-C	XII-XII	0,709383	5,80E-005	0,00145943
TLR3	XII-C	XII-XII	-3,97338	0,00021677	0,00438191
TM4SF4	XII-C	XII-XII	-6,70081	8,59E-005	0,00202479
TM4SF5	XII-C	XII-XII	-3,39837	0,00192896	0,0260721
TMEM182	XII-C	XII-XII	-2,21797	0,00299143	0,0369786
TMEM79 (1 of 2)	XII-C	XII-XII	-4,53034	0,00367515	0,0434645
TNNC2 (1 of 2)	XII-C	XII-XII	-2,93937	0,00262468	0,0333213
TNNI2 (1 of 5)	XII-C	XII-XII	-3,82846	0,00025989	0,00509279
TNNI2 (3 of 5)	XII-C	XII-XII	-4,54901	5,30E-006	0,000193659
TNNI2 (5 of 5)	XII-C	XII-XII	-5,66183	1,51E-006	6,63E-005
TNNT3 (2 of 2)	XII-C	XII-XII	-3,60576	0,00056963	0,00971136
TSPAN9 (2 of 2)	XII-C	XII-XII	-1,0148	0,00142326	0,0204243
TTC36	XII-C	XII-XII	-5,06853	3,83E-006	0,00014688
TTC38	XII-C	XII-XII	-0,820873	0,00409224	0,047255
TYMP	XII-C	XII-XII	-4,34513	2,48E-005	0,00071659
UCP1	XII-C	XII-XII	-7,30858	2,00E-007	1,18E-005
UPP2	XII-C	XII-XII	-6,6475	1,62E-008	1,34E-006
WDR5	XII-C	XII-XII	0,527287	0,00252738	0,0323415
XRCC3	XII-C	XII-XII	0,918695	2,13E-008	1,69E-006

Supplementary table S.3.3 Cufflinks output, list of differentially expressed genes in gill tissue of three-spined sticklebacks. Differentially expressed is defined by comparison to pre-exposed controls (I-C, XII-C or M-C). The term "gene" is the name for a specific gene as taken from the *G. aculeatus* reference genome, "sample_1" is the preexposure control group, "sample_2" the infection treatment group, log2(fold change) displays the transformed fold change in "sample_2" compared to "sample_1", p value and q value are given for each test (only significant differences shown).

gene	sample_1	sample_2	log2(fold	d_change)	p_value	q_value
ACP1	I-C	1-1		1,06638	0,00188273	0,0255759
ACSL4	I-C	1-1		0,49783	0,00338968	0,0407872
AK1	I-C	-		1,63774	4,38E-006	0,000164731
ALDH18A1 (1 of 2)	I-C	-		0,886864	3,57E-007	1,93E-005
ALDH9A1 (2 of 2)	I-C	-		0,726761	2,95E-005	0,000827829
ALYREF (2 of 2)	I-C	1-1		1,13775	6,40E-010	7,93E-008
ASB5	I-C	-		2,90346	0,00060106	0,0101474
ATP6AP1 (1 of 2)	I-C	1-1		1,2358	4,89E-005	0,00126448
ATP6V0D2	I-C	1-1		3,87103	0,00275609	0,034631
B3GNTL1	I-C	-		1,28126	4,29E-007	2,26E-005
C15orf57	I-C	-		1,03196	0,00340856	0,0409596
C7orf59	I-C	-		1,88722	0,00438419	0,0498426
CASP3 (4 of 4)	I-C	-		0,645245	0,000826204	0,0131441
CCBL1	I-C	-		1,05635	5,49E-009	5,22E-007
CD2	I-C	1-1		1,03392	0,000980042	0,0151135
CHAC1 (2 of 2)	I-C	1-1		0,969798	3,99E-007	2,12E-005
CHCHD3 (2 of 2)	I-C	-		1,08492	0,00272945	0,0343629
CISH	I-C	1-1		2,47561	6,10E-005	0,00152153
COL6A3	I-C	1-1		-1,92174	0,0028733	0,0357981
COQ5	I-C	1-1		0,98473	5,11E-010	6,49E-008
COX7C	I-C	-		2,19668	0,00302125	0,0372623
CPO (2 of 2)	I-C	-		2,80016	0,00429951	0,0491038
CPSF2	I-C	1-1		0,929871	0,00099175	0,0152592
CRISP3	I-C	-		2,97095	0,00327134	0,0396586
CRYBA2	I-C	-		3,13098	0,00269028	0,0339761
CSTF2	I-C	1-1		1,04323	1,61E-005	0,000495787
СТН	I-C	1-1		1,07274	0,00393627	0,0458599
DBI	I-C	-		1,78594	1,43E-005	0,000448044
DDIT4 (1 of 2)	I-C	1-1		2,95025	0,000714356	0,0116846
DDX52	I-C	-		1,0189	0,000424042	0,00763117
DHRS13 (1 of 3)	I-C	-		1,28681	0,00149223	0,0212159
EID3	I-C	1-1		0,675838	0,000607343	0,010233
EIF2B2	I-C	1-1		0,88029	0,00117131	0,0174703
ELMOD2	I-C	1-1		1,30915	0,000500722	0,00874306
ENSGACG0000000114	I-C	1-1		1,56736	1,70E-006	7,35E-005
ENSGACG0000000115	I-C	1-1		1,55557	0,000142435	0,00308912
ENSGACG0000000757	I-C	1-1		3,18189	0,00336644	0,0405647
ENSGACG0000000834	I-C			1,00379	0,000117098	0,00262449
ENSGACG0000001124	I-C	-		1,59435	0,000694043	0,0114126
ENSGACG0000001198	I-C	1-1		3,21099	0,000752633	0,0121886
ENSGACG0000001322	I-C	-		2,20745	0,00334191	0,0403328
ENSGACG0000001635	I-C	-		1,42546	0,00319916	0,0389661
ENSGACG0000001648	I-C	-		3,58982	0,00171703	0,023742

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000001729	I-C	-	2,4157	0.00417295	0.0479837
ENSGACG0000001763	I-C	1-1	2.0235	0.000267686	0.00521725
ENSGACG0000002769	I-C	1-1	1.03171	0.00185684	0.0252939
ENSGACG0000003226	I-C	-	0.874845	0.000209286	0.0042549
ENSGACG0000003971	I-C	1-1	3.37565	2.29E-005	0.000669683
ENSGACG0000005133	I-C	1-1	1.31844	0.00032417	0.00611326
ENSGACG0000005365	I-C	1-1	2,17623	0.000502121	0.00876338
ENSGACG0000005981	I-C	1-1	1,18629	2.02E-005	0.000601023
ENSGACG0000006029	I-C	1-1	2.37547	0.00364034	0.0431371
ENSGACG0000006710	I-C	1-1	1,99109	0.0027825	0.0348908
ENSGACG0000006806	I-C	1-1	2,77749	0,00318877	0.0388671
ENSGACG0000008485	I-C	-	0,982145	0,00287469	0,0358127
ENSGACG0000009076	I-C	1-1	2,76015	0,00135729	0,0196653
ENSGACG0000009358	I-C	1-1	2,99512	0,000733518	0.0119382
ENSGACG0000009801	I-C	1-1	0,896846	0,00230943	0,0300963
ENSGACG00000010497	I-C	1-1	1,73235	1,58E-007	9,62E-006
ENSGACG0000010623	I-C	1-1	2,27464	0,00324131	0,0393744
ENSGACG00000011672	I-C	1-1	3,88202	3,98E-006	0,000151799
ENSGACG00000012562	I-C	1-1	3,20219	0,00296942	0,0367558
ENSGACG0000012566	I-C	1-1	3,45481	0,000480476	0,00845246
ENSGACG0000012607	I-C	1-1	1,01719	9,94E-005	0,00228999
ENSGACG0000012639	I-C	-	2,18533	0,0039085	0,045607
ENSGACG0000013327	I-C	-	2,95465	0,00156358	0,022027
ENSGACG0000013361	I-C	-	3,53802	0,0016694	0,0232164
ENSGACG0000013652	I-C	-	1,76264	0,00152393	0,0215761
ENSGACG0000013891	I-C	-	3,84069	0,000388135	0,00709501
ENSGACG00000014148	I-C	1-1	3,34201	0,00201381	0,0269901
ENSGACG00000014312	I-C	-	2,62637	0,000265642	0,00518421
ENSGACG00000014407	I-C	-	1,03785	0,00341764	0,0410464
ENSGACG0000015818	I-C	-	3,43061	7,07E-005	0,00172233
ENSGACG00000016608	I-C	1-1	2,80008	0,00257915	0,0328654
ENSGACG00000016724	I-C	1-1	0,696547	3,05E-007	1,69E-005
ENSGACG00000017825	I-C	-	0,913188	0,00390363	0,0455611
ENSGACG00000018049	I-C	1-1	3,40445	2,58E-005	0,000739363
ENSGACG00000018764	I-C	-	3,89666	4,20E-006	0,000158898
ENSGACG0000018802	I-C	-	2,9241	0,000937802	0,0145807
ENSGACG0000018840	I-C	-	2,59236	0,000112284	0,00253432
ENSGACG0000018977	I-C	1-1	2,59047	0,00269386	0,034013
ENSGACG00000019770	I-C	-	1,37867	0,00257472	0,0328216
ENSGACG0000020145	I-C	1-1	2,57998	0,0005864	0,00994376
ENSGACG0000020181	I-C	1-1	2,29866	0,0021429	0,0283617
ENSGACG0000020365	I-C	1-1	2,83295	1,39E-005	0,000437539
ENSGACG00000020633 ENSGACG00000020931,	I-C	1-1	3,03704	0,000382222	0,0070059
ENSGACG00000020932,					
ENSGACG0000020934	I-C	1-1	2 38429	0.000799165	0.0127988
ENTPD2	I-C	1-1	1 19221	0.00141111	0.0202856
FADD	I-C	1-1	1 17767	1 00F-011	1.98F-009
FAM102B (2 of 2)	I-C	1-1	1 25105	7.50E-006	0.000259858
FBP2	I-C	1-1	1 3125	0.000161148	0.00342288
FGFR10P2	I-C	1-1	0 970075	0.00295421	0.0366082
FKBP5	I-C	1-1	2 97127	0.000340462	0.00636661
FLOT2 (1 of 2)	I-C	-	0,450472	0,0036068	0,042824

gene	sample_1	sample_2	log2(fold_change)	p_value	g value
FMNL1 (2 of 2)	I-C	-	0.68415	9.71E-009	8.58E-007
FTSJ1	I-C	-	1,15193	0.000398657	0.00725401
FUT4	I-C	1-1	1,34105	0.00213094	0.0282378
GADD45B (1 of 2)	I-C	1-1	2.27733	0.000239548	0 00475894
GAPDH (1 of 2)	I-C	1-1	1.37251	0.00374502	0.0441091
GLRX2	I-C	1-1	1 49421	8 27E-005	0.00196099
GPANK1	I-C	1-1	0.973576	6 21E-005	0.00154427
GPN1	I-C	1-1	1 22154	1 11E-006	5 10E-005
GRAP2	I-C	1-1	1 37326	0.0014083	0.0202553
GTE2E1	I-C	1-1	0.94963	0.00261937	0.0332673
GZMA	I-C	1-1	2 42166	0.00204452	0.0273172
HSD11B1	I-C	1-1	1 13767	0.000115713	0.00259858
	I-C	1-1	2 65315	0.000387873	0.007091
$\parallel DR1 (1 \text{ of } 2)$	I-C	1-1	1 05748	0.00112328	0.0168865
DR1 (2 of 2)	I-C		0 553309	0.000586235	0.00994133
KCNB1	I-C	I-I	-2 58894	0.00365761	0.043301
KI EQ	I-C	1-1	2,80781	0.000703385	0.011539
	I-C	1-1	0 866441	0.00235475	0.0305672
		1-1	1 0269	0.0035357	0.0421552
		L.L.	5 64768	0.000302023	0.0057651
LGALS4	I-C	10	1 24388	0.00403732	0.0467663
		1-1	2 21197	0 000998973	0.0153501
L P P 1 (2 of 2)	I-C	1-1	-1 78102	0.00297638	0.0368252
	I-C	1-1	2 31994	0.000776713	0.0125091
	I-C	1-1	0 783218	1.33E-009	1.51E-007
MAD1LC3A		1-1	0.879106	2 60E-007	1 48E-005
MEAD1	I-C	1-1	0.895563	0.000978245	0.0150917
	I-C	1-1	1 3359	0.00324271	0.0393889
MPDI 12	I-C	1-1	0 886142	0.000182471	0.00379602
MDDI 28	I-C	1-1	0.953263	0.000806661	0.0128961
MDDI 30	I-C	1-1	1 32642	0.000107106	0.00243518
MPDS10	I-C	1-1	1 14308	5 17E-006	0 000189807
MRPS31	I-C	1-1	1 02423	1.07E-007	6.86E-006
MYCL1 (1 of 2)	I-C	-	3 0125	0.00205085	0.027386
NAREI	I-C	1-1	0 829697	0.0022408	0.0293808
	I-C	I-I	0 676057	0.00366856	0.0434021
PARS2	I-C	1-1	0 544981	0.00132514	0.0192914
PDIA5	I-C	1-1	1.38609	0	, 0
PEKER1	I-C	1-1	1.08331	0.00209807	0.0278881
PGLYRP2 (1 of 2)	I-C	-	1,94663	0.00205357	0,0274135
PHKG1	I-C	1-1	1.65527	0.000992454	0.0152683
PPDPE (1 of 2)	I-C	I-I	1.63668	0.00364742	0.0432035
PPM1H (2 of 2)	I-C	1-1	1.02397	0.000106684	0.00242709
PPP2R5E	I-C	1-1	0.51421	3.32E-005	0,00091505
PRMT7	I-C	1-1	1.34676	0.0016437	0.0229308
RAC2	I-C	1-1	1.2381	0.00433946	0,049455
RAG1	I-C	1-1	3.50958	8.07E-005	0,00192261
RAG2	I-C	1-1	4.01033	0.000107311	0,00243911
RARS	I-C	1-1	1.00136	5,75E-005	0,00144848
RASSE5	I-C	1-1	0.797388	0,000227582	0,0045616
RBBP5	I-C	1-1	0.969692	1,36E-011	2,60E-009
RBM19	I-C	1-1	0.716089	0,00102302	0,0156489
RHOT1 (1 of 2)	I-C	-	0.43465	5 0,00324319	0,0393923

gene	sample 1	sample 2	log2(fold change)	p_value	g value
RPS24	I-C	I-I	1.35074	0.000117143	0.00262536
RPS6KA4	I-C	1-1	0 71365	0.00213822	0.0283146
RPUSD4	I-C	1-1	0,91908	4 43E-005	0.00116332
SCN1B (2 of 2)	I-C	1-1	3 882	4 14E-005	0.00109967
SERBP1 (1 of 2)	I-C	1-1	0 766833	0.0023779	0.0308064
SL C3A2 (2 of 2)	I-C		2 12421	0.0022725	0.0297099
SLC7A8	I-C	1-1	1 20664	1.85E-011	3.42E-009
SMC5	1 C	1-1	0 990069	1 11E-015	4.85E-013
SMOY	I-C	1-1	1 63210	7.63E-009	6.96E-013
SMPDA		1-1	1 59214	1 93E-005	0.00057896
		1-1	0.460075	5.76E-006	0.000207861
SNILIPN	I-C	1-1	0,400070	1.34E-008	1 13E-006
SOCS3 (1 of 2)	I-C	1-1	2 27549	0 00148691	0.0211533
SPCS2		1-1	1 18677	3 29E-005	0,0211000
SPG21	I-C	1-1	1,10011	4 38E-005	0.00115339
SPM		I.I.	1,00013	0.00230483	0.0300473
STMN1 (2 of 2)			1,50055	0,00250405	0,0300473
STOMI 2 (1 of 2)	1-C	1-1	1,03407	0,00004070	0,0422052
STOML2 (1 of 2)		1-1	0.962673	0,000003353	0.0205415
	1-C	1-1	1 1/55	0,00140000	0,0200410
SUPE1	1-0	1-1	1,1400	0,00220091	0,0209023
SV/II (2 of 2)	1-0	1-1	1,5000	0,00204040	0,0272724
	1-0	1-1	2 53567	0,00324004	0,0394372
TG	I-C	1-1	-3 21708	0,00145550	0,0205701
TMEN192	1-0	1-1	-3,21790	0,00263176	0,0555054
	I-C	1-1	1,04002	5 27E-005	0,000134623
	1-0	1-1	2 77367	0.00/38272	0,00104020
TOM1 (2 of 2)	1-C	1-1	0.715083	0,00430272	0,0430233
TOMM(2 0 2)	1-0 1-0	l-l	0,715005	1.02E-007	6.58E-006
	I-C	1-1	0,000074	0.000207282	0,00122076
TSC22D3	I-C	1-1	2 / 211	0,000207202	0,00422070
TTCQC	I-C	1-1	0 925316	0,00233253	0,0303303
	I-C	1-1	1 74545	0,0010000	0,0194434
	I-C	1-1	3 53/31	0,00192310	0,0200003
113	I-C	1-1	3,53431	0,00216907	0.0286344
		1-1	0.570105	0,00210907	0,0200344
		1-1	1 02671	0,000305251	0,0141507
		- 1-1	0 680672	6 21 5 006	0,0403073
VIPR1 (2 of 2)	I-C	1-1	2 91637	0,212-000	0,000221017
VTCN1	I-C	1-1	2,01037	0,00109023	0,0103002
	I-C	1-1	2,23040	0,00302807	0,0373202
WDR5	I-C	1-1	0,30304	0,000480249	0,00044920
7NF259	I-C	1-1	1 38251	2 12 007	1 24 E 005
MON2	I-C	I-N/	1,00201	2,12E-007	0.0210887
ARI 2			1,0000	5 23 - 005	0,0210007
ACTR6			1,09200	0.00201511	0.0362214
ADSS			1,52340	0,00291311	0,0302214
ALDH18A1 (1 of 2)	1-C		1,02770	0,00108034	0,0104322
ALPI			1,00021	0,000420020	0,00709105
ALYREE (2 of 2)			1,02133		0,0203707
ANGPTI 1 (2 of 2)			1,22317	0.00000000	0.0152702
ASPN			3,29055	0,000993230	0,0152/82
ATE6			2,103/7	2 165 000	0.00917109
	1-0	1-111	0,072320	2,100-000	3,020-003

	q_value
BIN2 I-C I-M 1,05867 3,56E-007	1,93E-005
C4A I-C I-M 1,84794 3,77E-005 0.	,00101746
C6 I-C I-M 2,16836 1,36E-005 0,0	000429667
C7 (1 of 2) I-C I-M 3,05243 0,00130068	0,0190043
CACNA1S (1 of 2) I-C I-M 1,49291 7,71E-006 0,0	000266149
CAD I-C I-M 1,45629 0,00346048	0,0414473
CAMK1D (2 of 2) I-C I-M 2,29053 0,00328369	0,039774
CASP3 (4 of 4) I-C I-M 2,13822 7,08E-006 0,0	000247391
CASP8 I-C I-M 1,11152 6,77E-005 0.	,00166045
CBX7 (2 of 2) I-C I-M 1,75388 3,77E-005 0	,00101746
CCR9 (1 of 2) I-C I-M 2,29269 2,30E-005 0,0	000671488
CD248 (2 of 2) I-C I-M 3,04138 0,00251313	0,0321969
CD44 I-C I-M 2,62774 1,35E-008	1,14E-006
CDC42 I-C I-M 0,611439 0,00168893	0,0234333
CEBPB I-C I-M 2,54166 0,000953958	0,0147839
CERS2 (2 of 2) I-C I-M 0,955292 7,99E-007	3,86E-005
CISH I-C I-M 2,27586 2,69E-005 0,0	000767433
CKMT1A I-C I-M 1,48923 0,00019705 0.	0,00404708
CMPK2 I-C I-M 1,97821 0,00310836	0,0380897
CNOT1 I-C I-M 0,996233 0,000350483 0	0.00652017
COX15 I-C I-M 0.899073 5.02E-011	8.32E-009
CPA1 I-C I-M 2,18017 0,00282842	0.0353506
CPSF2 I-C I-M 1.04553 1.73E-007	1.04E-005
CPZ (2 of 2) I-C I-M 1.54866 0.00413938	0.0476845
CREBL2 I-C I-M 1.16863 0.00365412	0.043268
CSTF2 I-C I-M 1.36713 1.34E-005 0.0	000424193
CTDSPL (2 of 2) I-C I-M 0.627914 0.0041673	0.0479327
CYP1B1 I-C I-M 2.43897 0.00136674	0.0197759
DAB2 I-C I-M 1.83943 4.30E-005 0	0.00113591
DCLK2 (1 of 2) I-C I-M 3.16682 0.00169243	0.0234719
DCPS I-C I-M 1.35279 3.01E-006 0.0	000119695
DDIT4 (1 of 2) I-C I-M 3.98875 7.15E-005	0.0017384
DENND4A (2 of 2) I-C I-M 3 88648 9 24E-005	0.002153
DHX58 I-C I-M 2 25817 0 00206034	0.0274845
DIO3 I-C I-M 2.90881 0.00328669	0.0398025
DIS3 I-C I-M 0.82111 0.0014665	0.0209225
DOCK1 I-C I-M 0.963102 1.31E-011	2.52E-009
DUOX1 I-C I-M 2.51376 0.00048636 0	0.00853666
DUS3I I-C I-M 0.586906 0.000633645	0.0105948
EIE2D I-C I-M 1.21843 6.30E-006 0.0	000224228
EIF4H I-C I-M 0.95837.0.000327267.0	00616107
EIF5B I-C I-M 1,3542 3,09E-007	1 71E-005
EIL2 I.C I.M 0.915836 2.19E-008	174E-006
ENSGACG000000082.	1,742 000
SUSD3 I-C I-M 1,01735 1,30E-005 0,0	000412817
ENSGACG0000000208 I-C I-M 3,00768 2,17E-005 0,0	000638112
ENSGACG0000000614 I-C I-M 2,76621 0	0
ENSGACG0000001531 I-C I-M 2.98674 2.24E-005 0.0	000655901
ENSGACG0000001749 I-C I-M 2.77919 0.000130531 0	0,00287229
ENSGACG0000002265 I-C I-M 1.37301 1.87F-006	7,98E-005
ENSGACG0000002541 I-C I-M 4 6613 0 000545188 0	0.00937295
ENSGACG0000003446 I-C I-M 2 59278 0 000198101 0	0.00406506
ENSGACG0000003503 I-C I-M 2,92817 7,95E-005 0	0,00189741

gene	sample 1	sample 2	log2(fold change)	p value	a value
ENSGACG0000004324	I-C	I-M	1 26338	0 000547165	0 00940077
ENSGACG0000004759	I-C	I-M	1 27472	0.00214189	0.0283519
ENSGACG0000005049	I-C	I-M	3 50272	7 62E-007	3 71E-005
ENSGACG0000005904	I-C	I-M	3 16034	0.00025651	0.00503772
ENSGACG0000005965	I-C	I-M	0 85924	0.000892028	0.0139927
ENSGACG0000005981	I-C	I-M	1 05193	0.00350671	0.0418781
ENSGACG0000006109		I-M	3 65915	9.57E-005	0,0410701
ENSCACC0000006357		I_M	3 1351	0.000665758	0.0110208
ENSGACG00000005596			1 53666	0.00115816	0,0110290
ENSGACG0000006681			1,0000	0.001/2858	0.020485
ENSCACC0000006710			3 00743	3 13 = 005	0,020403
ENSGACG0000006711			3,03/43	0.00178908	0,000000002
ENSGACG00000007150			0 02807	0,00170300	0,02434
ENSGACG0000007176			1 20223	0,00230222	0,0300424
ENSGACG0000007170			0.00205	0,00340144	0,0400941
ENSGACG0000007442			2,00520	0,00179979	0,0240004
ENSGACG0000007525			2,00529	0,00390317	0,0455571
ENSGACG0000007001			1 20602	2 655 005	0,00200309
ENSGACG00000007958	1-0		1,20092	2,052-005	0,000750155
ENSGACG00000008155	1-0		1,03097	1 225 009	1 125 006
ENSGACG0000009070	1-0		4,70901	7.445.000	1,13E-006
ENSGACG0000009188	1-0		4,04831	7,14E-008	4,64E-006
ENSGACG0000009200	1-0		4,/03	1,30E-013	3,92E-011
ENSGACG0000009358	1-0		2,90208	0,000855537	0,0135238
ENSGACG0000009414	1-0		3,30880	0,00215052	0,0284419
ENSGACG0000009546	1-0		3,40030	0,000467568	0,00826813
ENSGACG0000009763	1-0		3,81412	0,000223497	0,00449411
ENSGACG0000009770	1-0		3,00104	2,20E-007	1,31E-005
ENSGACG0000009801	1-0		0,80729	0,00351478	0,0419562
ENSGACG0000009825	1-0		1,92495	4,50E-005	0,00117901
ENSGACG00000010476	1-0		2,00000	0,00198565	0,0266868
ENSGACG00000010623	1-0		4,03042	0,70E-000	0,00023619
ENSGACG00000010664	1-0		1,14108	0,00309508	0,0379672
ENSGACG0000010749	1-0	I-IVI	1,36807	0,00406738	0,0470304
ENSGACG0000011040	1-0		1,83449	0,00222028	0,0291659
ENSGACG00000011120	1-0		0,694891	0,000109177	0,00247482
ENSGACG00000011407	1-0		0,715788	0,00051256	0,00891181
ENSGACG00000011542	1-0	I-IVI	1,02289	0,000112786	0,00254372
ENSGACG0000012607	1-0		1,20567	0,000112292	0,00253446
ENSGACG0000012655	1-0		1,44394	0,00114954	0,017206
ENSGACG0000012657	1-0		3,53076	0,000162153	0,00344087
ENSGACG0000012663	1-0		2,36157	0,003076	0,037786
ENSGACG0000012695	1-0		2,47566	0,00231449	0,0301489
ENSGACG0000012769	1-0		2,04814	2,82E-008	2,17E-006
ENSGACG0000012/92	1-0		4,30345	0,000861727	0,0136037
ENSGACG0000012829	I-C		1,0905	4,04E-011	6,86E-009
ENSGACG0000013029	1-0	I~IVI	3,06833	0,00142452	0,0204374
ENSGACG0000013109	1-0	I-IVI	1,12987	0,00036995	0,00681951
ENSGACG0000013214	I-C	I-M	3,36096	0,000640668	0,0106892
ENSGACG00000013327	1-0	I-M	2,89018	0,00305625	0,0375972
ENSGACG00000013631	1-0	1-IVI	1,71895	0,000119549	0,00266978
ENSGACG00000014312	1-0	I-M	2,26132	0,00329104	0,0398434
ENSGACG00000014540	I-C	I-M	3,91986	0	0
ENSGACG00000014574	I-C	I-M	0,679278	0,000644243	0,0107375

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG00000014936	I-C	I-M	3,50652	5,16E-005	0,00132397
ENSGACG00000014948	I-C	I-M	6,28768	4,42E-009	4,32E-007
ENSGACG00000015960	I-C	I-M	3,46228	5,24E-006	0,000191765
ENSGACG00000015986	I-C	I-M	0,870942	0,00342369	0.0411013
ENSGACG00000016298	I-C	I-M	1,81407	0,00241281	0.0311713
ENSGACG00000016724	I-C	I-M	1,06166	0	0
ENSGACG0000016848	I-C	I-M	1,67218	0.00026554	0.00518246
ENSGACG00000017050	I-C	I-M	2,53586	0.00350063	0.0418207
ENSGACG00000017123	I-C	I-M	2,61392	0,00295858	0,0366512
ENSGACG00000017259	I-C	I-M	2,00066	0,00172743	0.0238584
ENSGACG00000017758	I-C	I-M	6,46246	1,53E-005	0,000476551
ENSGACG0000018764	I-C	I-M	3,26023	0,000154213	0,00329976
ENSGACG0000018802	I-C	I-M	3,10299	0,000384739	0,00704477
ENSGACG0000018835	I-C	I-M	1,46006	0,000488635	0,008569
ENSGACG0000018840	I-C	I-M	3,66367	9,71E-009	8,58E-007
ENSGACG0000018850	I-C	I-M	3,57985	0,00287508	0,035816
ENSGACG0000019285	I-C	I-M	2,67125	0,00118819	0,0176694
ENSGACG0000019470	I-C	I-M	3,19185	7,44E-005	0,00179677
ENSGACG0000019938	I-C	I-M	0,728692	0,000260917	0,00510905
ENSGACG00000019951	I-C	I-M	2,6078	0,00427866	0,0489218
ENSGACG0000019952	I-C	I-M	2,81172	0,000948147	0,014712
ENSGACG0000020145	I-C	I-M	2,27389	0,000783491	0,0125973
ENSGACG0000020181	I-C	I-M	3,15752	3,00E-005	0,000840122
ENSGACG0000020219	I-C	I-M	0,886338	0,000277586	0,00537635
ENSGACG0000020490	I-C	I-M	3,10006	0,00401087	0,046528
ENSGACG0000020491	I-C	I-M	2,94495	0,000973301	0,0150278
ENSGACG0000020790	I-C	I-M	1,0346	0,00106624	0,0161864
ENTPD4	I-C	I-M	1,23502	9,08E-005	0,00212151
EPSTI1	I-C	I-M	2,70934	0,000323242	0,00609884
ERGIC1	I-C	I-M	1,71616	4,45E-006	0,000166868
ETV6	I-C	I-M	0,950886	1,36E-007	8,43E-006
EWSR1	I-C	I-M	1,03754	0,000728191	0,0118674
F2RL3	I-C	I-M	2,86443	0,00255694	0,0326383
FADD	I-C	I-M	1,22118	0,00291527	0,0362229
FAM102B (2 of 2)	I-C	I-M	1,4647	0,000439794	0,00786403
FAM180A (1 of 2)	I-C	I-M	3,41038	0,000748979	0,012141
FBLN1 (1 of 2)	I-C	I-M	1,30147	0,00305994	0,0376309
FCGBP (1 of 2)	I-C	I-M	1,09567	0,00116094	0,0173446
FGFR10P2	I-C	I-M	1,31959	0,00149917	0,0212945
FKBP5	I-C	I-M	4,86639	4,19E-005	0,00111109
FTSJ1	I-C	I-M	1,20516	6,51E-005	0,00160698
GADD45B (1 of 2)	I-C	I-M	2,65248	4,39E-007	2,31E-005
GALM	I-C	I-M	0,738199	0,00257233	0,0327969
GJA5 (1 of 2)	I-C	I-M	5,22662	0,00409095	0,0472429
GPR137	I-C	I-M	0,966046	0,00357746	0,0425481
GTF2F1	I-C	I-M	1,26571	2,56E-006	0,000104313
GZMM (4 of 5)	I-C	I-M	1,67667	6,31E-011	1,02E-008
HHATL (1 of 2)	I-C	I-M	3,32727	0,00228957	0,0298889
HS6ST1	I-C	I-M	0,608438	0,00046495	0,00823045
HVCN1	I-C	I-M	2,35532	0,000822359	0,0130962
HYAL2 (1 of 2)	I-C	I-M	1,52474	0,00150965	0,0214143
ILDR1 (2 of 2)	I-C	I-M	0,85305	0,000931022	0,0144929
ISG15	I-C	I-M	2,66096	0,000304127	0,00579806

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ITGA11 (1 of 2)	I-C	I-M	2,74568	0,00249837	0,0320474
ITGB1 (1 of 2)	I-C	I-M	0,946666	4,47E-008	3,22E-006
KIFAP3 (2 of 2)	I-C	I-M	1,03014	0,0038685	0,0452418
KLC1	I-C	I-M	1,00953	0,000365214	0,00674725
KLF13	I-C	I-M	4,1442	9,71E-005	0,00224445
KLF9	I-C	I-M	3,72975	3,14E-005	0,000872921
KRI1	I-C	I-M	1,29271	5,13E-008	3.63E-006
KRT80	I-C	I-M	3,41722	1.95E-006	8.27E-005
LCP2	I-C	I-M	1,36991	0,000530739	0,00917084
LRRFIP1 (1 of 2)	I-C	I-M	1,19566	0,000295029	0.00565485
LRRFIP2	I-C	I-M	0,99874	0,00169823	0.0235373
MAP1LC3A	I-C	I-M	0,621759	1,49E-005	0,000465732
MAPRE2	I-C	I-M	1,01253	0,000206462	0.00420673
MCAM (2 of 2)	I-C	I-M	1,16257	0,00328312	0.0397681
MCM3	I-C	I-M	2,24767	0.00169026	0.0234478
MFAP1	I-C	I-M	1,33406	3.66E-005	0.000992268
MGAT4B	I-C	I-M	1,13257	0.000819311	0.0130577
MMP25	I-C	I-M	1,50576	0.000230605	0.00461249
MORC4	I-C	I-M	1.05565	0.000259505	0.00508642
MOV10 (2 of 2)	I-C	I-M	1,99391	0.00381933	0.0447884
MPHOSPH10	I-C	I-M	1,57077	0.000247008	0.00488312
MRPL12	I-C	I-M	1,17684	0.00069362	0.0114065
MRPL15	I-C	I-M	1.02273	0.00152302	0.0215661
MRPL39	I-C	I-M	0,974951	0.00108191	0.0163768
MRPS31	I-C	I-M	1.27377	8.87E-005	0.00208105
MTDH (2 of 2)	I-C	I-M	1,31645	0.00308782	0.0378998
MTRR	I-C	I-M	0.638102	0.00389216	0.0454552
MYL7	I-C	I-M	4,22341	3.48E-005	0.000951378
MYLK4 (1 of 2)	I-C	I-M	3,7669	0,000549077	0.00942798
MYOM1 (1 of 2)	I-C	I-M	1,95576	1.18E-005	0.000380382
MYOM1 (2 of 2)	I-C	I-M	1,27327	3,32E-009	3.37E-007
NARFL	I-C	I-M	0,733371	2,43E-005	0,000703521
NCF1	I-C	I-M	1,89572	0,00276216	0,0346887
NCKIPSD	I-C	I-M	1,3988	0,000865544	0,013652
NFKBIA (1 of 2)	I-C	I-M	2,18021	0,00253209	0,0323896
NOM1	I-C	I-M	0,792943	0,00144785	0,0207067
NR1D2 (2 of 2)	I-C	I-M	3,09906	0,000259578	0,00508752
NUCB2 (2 of 2)	I-C	I-M	2,71066	0,00117244	0,0174835
NUPL1	I-C	I-M	1,128	0,000129899	0,0028607
NVL	I-C	I-M	1,23471	3,21E-005	0,000888554
OPHN1	I-C	I-M	0,635895	0,000202813	0,00414521
OPTN	I-C	I-M	0,759271	8,36E-012	1,68E-009
OSBPL3 (1 of 2)	I-C	I-M	1,04762	0,00096956	0,0149808
PARS2	I-C	I-M	0,529033	1,88E-011	3,47E-009
PCDH20	I-C	I-M	2,62026	0,00418458	0,0480874
PDP2	I-C	I-M	1,14294	0,00420974	0,0483147
PDS5B	I-C	I-M	0,754104	4,60E-005	0,00120119
PIK3R1 (1 of 2)	I-C	I-M	1,74812	0,00411594	0,0474713
PIK3R5 (2 of 2)	I-C	I-M	1,10862	0,00428277	0,0489579
PLCG2	I-C	I-M	0,829402	0,000313967	0,00595382
PLP1 (2 of 2)	I-C	I-M	2,1978	0,00389698	0,0454986
POLD1	I-C	I-M	0,700675	1,12E-006	5,16E-005
POLR2B	I-C	I-M	0,996298	0,0024775	0,0318306

PPM1H (2 of 2) I-C I-M 1,48719 0,00356839 0,04 PPD1P14P I-C I-M 1,48719 0,00356839 0,04	
	24609
FFFIR14D I-C I-M 2,63327 0,00292787 0,03	63458
PPP1R15B I-C I-M 1,99898 0,00424356 0,04	86158
PPP2R5E I-C I-M 0,860695 3,61E-006 0,0001	39669
PRDX6 (2 of 2) I-C I-M 1,02055 3,99E-013 1,09	E-010
PRPF40A I-C I-M 1,36377 0,000471303 0,008	32185
PRPSAP1 (2 of 2) I-C I-M 0,593619 0,00428633 0,04	89911
PTPRS (2 of 3) I-C I-M 0,898658 4,87E-008 3,47	E-006
PTRF (1 of 2) I-C I-M 1,63566 0,000968339 0,014	49666
PWP2 I-C I-M 1,3502 5,38E-005 0,0013	37133
RANBP1 I-C I-M 0,987749 0,00033277 0,006	24786
RARS I-C I-M 1,19501 3,17E-011 5,53	E-009
RASSF5 I-C I-M 1,05653 0,000924479 0,014	44102
RBM19 I-C I-M 0,919554 3,72E-006 0,00014	43539
RBM42 I-C I-M 1,06579 0,000391725 0,007	14915
RG9MTD2 I-C I-M 0,630802 0,00066012 0,010	09528
RGL3 (1 of 2) I-C I-M 1,69844 0,00039726 0,007	23326
RIOK2 I-C I-M 1,36975 0,000447195 0,007	97139
RNF19B I-C I-M 2,07154 2,18E-006 9,08	E-005
RNFT1 I-C I-M 0,70227 0,000501664 0,008	75665
RPS6KA4 I-C I-M 1,04107 2,65E-005 0,0007	57513
RRP1B I-C I-M 1,37957 0,000171989 0,003	51367
RSAD2 I-C I-M 2,49104 0,000578266 0,009	33014
SELE I-C I-M 1,17534 0,000476153 0,008	39148
SEMA4D I-C I-M 1.37756 0.0011326 0.01	70007
SERPINE1 I-C I-M 2,65261 0,00178948 0,024	15447
SHANK2 I-C I-M 2,18331 0,00107597 0,0	16305
SLC1A5 I-C I-M 1,9729 9,09E-005 0,002	12313
SLC25A33 I-C I-M 1,18603 0,00207304 0,02	76177
SLC39A10 I-C I-M 0.957977 7.59E-005 0.001	32642
SLC41A3 (1 of 2) I-C I-M 4.37094 0.000655333 0.010	08877
SLC7A8 I-C I-M 1.61711 6.66E-016 3.01	E-013
SLC8A1 (2 of 2) I-C I-M 5,58777 6,03E-006 0,0002	15867
SMARCE1 (2 of 2) I-C I-M 1.08602 0.00137672 0.01	98921
SMC5 I-C I-M 1.31481 3.28E-012 7.28	E-010
SMOX I-C I-M 2.53788 7.49E-005 0.001	30538
SNX12 I-C I-M 0.920203 0.00436271 0.04	96568
SNX13 I-C I-M 0.75892 0.00146333 0.029	08847
SNX9 I-C I-M 0,965161 7,85E-005 0,001	37972
SOCS3 (1 of 2) I-C I-M 3.74379 1.17E-005 0.0003	78595
SORBS2 I-C I-M 3.48741 0.000146088 0.003	15511
SPPL2A I-C I-M 0.974997 0.000144286 0.003	12263
SRPX I-C I-M 1.35546 0.00344038 0.04	12596
STIM1 I-C I-M 0.921522 6.97E-006 0.0002	44235
STRBP I-C I-M 0.934622 0.00228921 0.02	98858
STX4 I-C I-M 0.940211 0.00142799 0.02	04784
SULE1 I-C I-M 1 13507 0 00408549 0 04	71958
SULT6B1 I-C I-M 0.655797 0.00211935 0.02	31132
SUPT5H I-C I-M 1 02087 2 195-005 0 0006	15199
TEF (1 of 2) LC LM 2 8033 0 00110507 0 0	17763
THBS3 I-C I-M 254505 0.00425576 0.04	37205
TMED1 (1 of 2) I-C I-M 2,04000 0,00420070 TMED1 (1 of 2) I-C I-M 1.25847 0.00347665 0.0	11507
TMEM106C I-C I-M 162367 0.00047000 0,0	34414

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
TMEM199	I-C	I-M	0,864675	3,09E-006	0,000122634
TNFRSF11B	I-C	I-M	1,16415	0,00343001	0,0411626
TNNC1	I-C	I-M	4,47998	2,44E-005	0,000705583
TNNT2 (1 of 2)	I-C	I-M	4,26987	1,51E-005	0,000470594
TPPP3	I-C	I-M	2,33528	0,00300923	0,0371484
TPRG1	I-C	I-M	1,0428	0,000967586	0,0149569
TPST1	I-C	I-M	0,97765	0,000691708	0,0113802
TRAK1 (2 of 2)	I-C	I-M	3,97189	0,00119518	0,0177538
TSC22D3	I-C	I-M	3,58433	2,49E-005	0,000718902
USP18	I-C	I-M	2,66969	0,000116195	0,00260743
USP48	I-C	I-M	0,814339	0,000161789	0,00343435
WAPAL (2 of 2)	I-C	I-M	0,960089	3,14E-006	0,000124147
WAS	I-C	I-M	0,997456	0,00325192	0,0394757
WDR18	I-C	I-M	0,878972	1,09E-006	5,04E-005
XRN2	I-C	I-M	1,15834	0,00175428	0,0241567
ACSL1 (2 of 2)	M-C	M-M	1,65265	0,000406212	0,00736623
ADAL	M-C	M-M	1,49976	0,0015622	0,022011
C3 (4 of 8)	M-C	M-M	2,72071	0,00337134	0,0406105
C7 (1 of 2)	M-C	M-M	3,34781	0,00324309	0,0393916
CCNA2	M-C	M-M	1,8344	0,00263274	0,0333991
CKMT1A	M-C	M-M	-1,43781	1,51E-006	6,64E-005
CPXM1	M-C	M-M	1,00298	0,00184884	0,0252067
DDHD1 (2 of 2)	M-C	M-M	3,62399	0,00204759	0,0273497
DENND4A (2 of 2)	M-C	M-M	3,83644	0,000503117	0,00877755
DHCR24	M-C	M-M	0,874502	0,000729086	0.0118796
DIO3	M-C	M-M	3,12496	0,0020047	0,0268918
EIF2A	M-C	M-M	0,568932	0,000895932	0,0140422
ELOVL1 (1 of 2)	M-C	M-M	0,786506	1,99E-005	0,000593461
ELTD1	M-C	M-M	1,52572	9,66E-005	0,00223425
ENSGACG0000000208	M-C	M-M	2,7523	0,00107398	0,0162817
ENSGACG0000000343	M-C	M-M	4,25363	0,00106093	0,0161194
ENSGACG0000000614	M-C	M-M	0,907927	0,00251866	0,0322545
ENSGACG0000000621	M-C	M-M	8,50865	0	0
ENSGACG0000000869	M-C	M-M	3,73545	1,77E-006	7,63E-005
ENSGACG0000001010	M-C	M-M	5,92861	0,00295368	0,0366026
ENSGACG0000001198	M-C	M-M	3,75758	0,000309282	0,00587914
ENSGACG0000001671	M-C	M-M	-8,20722	7,06E-005	0,00171863
ENSGACG0000001749	M-C	M-M	2,35486	7,60E-006	0,00026292
ENSGACG0000001763	M-C	M-M	2,86805	1,16E-010	1,75E-008
ENSGACG0000006908	M-C	M-M	3,3289	3,25E-011	5,66E-009
ENSGACG0000007987	M-C	M-M	0,994184	0,000320104	0,00605036
ENSGACG0000009358	M-C	M-M	3,97651	0,00059571	0,0100735
ENSGACG0000009417	M-C	M-M	2,9753	0,00385354	0,0451032
ENSGACG0000009825	M-C	M-M	2,34259	6,51E-006	0,000230516
ENSGACG0000010476	M-C	M-M	4,08073	6,77E-005	0,00166036
ENSGACG0000012566	M-C	M-M	3,59543	0,00342276	0,0410931
ENSGACG0000013327	M-C	M-M	2,93033	0,000549438	0,00943285
ENSGACG0000013762	M-C	M-M	2,15453	1,02E-005	0,000338165
ENSGACG0000018001	M-C	M-M	1,42208	0,00384598	0,0450342
ENSGACG0000018840	M-C	M-M	2,48087	0,000764526	0,0123473
ENSGACG0000019470	M-C	M-M	3,16318	0,00128272	0,0187942
ENSGACG0000020145	M-C	M-M	2,41396	0,00176216	0,0242422
ENSGACG00000020181	M-C	M-M	2,56403	0,00410982	0,0474147

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG00000020490	M-C	M-M	3,3051	0,000595099	0,0100648
ENSGACG0000020660	M-C	M-M	3,44192	0,00275552	0,0346252
ERGIC1	M-C	M-M	1,6229	0,00250116	0,0320753
FKBP5	M-C	M-M	4,07403	0,000155896	0,00332943
GALM	M-C	M-M	0,974542	3,88E-005	0,00104086
GPX4 (1 of 4)	M-C	M-M	1,73764	0,000171898	0,00361207
GRM8 (2 of 2)	M-C	M-M	2,56568	0,00282738	0,0353399
HVCN1	M-C	M-M	2,33557	0,00171338	0,0237027
KLF9	M-C	M-M	3,34425	0,000208518	0,00424141
MAD2L2	M-C	M-M	0,487597	0.00393528	0.0458513
MMP25	M-C	M-M	1,36323	0,00020528	0,00418704
PIK3R5 (2 of 2)	M-C	M-M	0,77712	0,00101375	0,0155324
RNF19B	M-C	M-M	1,54668	0,00145359	0,0207728
SELE	M-C	M-M	1,36423	0,000175677	0,00367787
SLC1A5	M-C	M-M	1,57872	0,003847	0,0450437
SLC25A4	M-C	M-M	-0,840952	0,000290043	0,00557635
SMOX	M-C	M-M	2,79924	0,00244695	0,03152
TDO2	M-C	M-M	3,8335	0,00406195	0,0469863
TEF (2 of 2)	M-C	M-M	1,05854	9,74E-006	0,000324307
THBS1 (2 of 2)	M-C	M-M	3,72156	0,000805716	0,0128832
ACP1	XII-C	XII-M	-1,02258	0,00298756	0,0369387
ACTA2	XII-C	XII-M	2,54557	4,44E-005	0,00116734
ACTN2	XII-C	XII-M	1,72356	0,00434163	0,049474
ADAL	XII-C	XII-M	-1,31015	0,000155602	0,00332405
AK1	XII-C	XII-M	-1,70418	0,00107505	0,0162938
AP2S1	XII-C	XII-M	-1,23273	0,00155945	0,0219806
BLVRB	XII-C	XII-M	-1,73601	0,00110515	0,0166649
BMP10 (2 of 2)	XII-C	XII-M	3,14122	0,00377331	0,0443699
C4A	XII-C	XII-M	-1,4211	4,88E-006	0,000180477
CACNA1S (1 of 2)	XII-C	XII-M	-0,980371	0,00310541	0,0380622
CBX7 (2 of 2)	XII-C	XII-M	-1,3165	0,000910071	0,0142242
CKB (2 of 2)	XII-C	XII-M	2,88304	0,00438945	0,0498891
CLDN15 (2 of 2)	XII-C	XII-M	-1,80E+308	0,000574403	0,00977743
COL24A1	XII-C	XII-M	-1,72575	0,0011195	0,0168405
CPT1A	XII-C	XII-M	-0,803261	0,000106372	0,00242109
CREG2	XII-C	XII-M	-0,93678	0,000911894	0,0142478
CXCL12 (2 of 2)	XII-C	XII-M	-1,72844	2,07E-006	8,69E-005
CYB5B	XII-C	XII-M	-1,49855	0,00109538	0,0165438
DTWD2	XII-C	XII-M	-1,27167	0,00439115	0,049903
DYNLT3 (1 of 2)	XII-C	XII-M	-1,69182	0,00116681	0,017415
ENSGACG0000000115	XII-C	XII-M	1,21472	0,00220717	0,0290297
ENSGACG0000000621	XII-C	XII-M	-1,80E+308	0,000377712	0,00693715
ENSGACG0000000834	XII-C	XII-M	-1,07662	0,00263071	0,03338
ENSGACG0000000887	XII-C	XII-M	-3,0523	5,47E-006	0,000198962
ENSGACG0000001016	XII-C	XII-M	-1,80E+308	1,39E-005	0,000438312
ENSGACG0000001322	XII-C	XII-M	-2,80974	0,000307883	0,00585737
ENSGACG0000001973	XII-C	XII-M	-1,17824	1,11E-006	5,12E-005
ENSGACG0000002145	XII-C	XII-M	-2,29666	0,00126318	0,0185645
ENSGACG0000002223	XII-C	XII-M	1,80E+308	1,93E-005	0,000577912
ENSGACG0000002281	XII-C	XII-M	-1,80E+308	0,00423925	0,0485783
ENSGACG0000002955	XII-C	XII-M	-0,996822	8,05E-005	0,00191847
ENSGACG0000003503	XII-C	XII-M	3,19732	8,47E-007	4,06E-005
ENSGACG0000004079	XII-C	XII-M	2,56893	0,000347154	0,00647032

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000005421	XII-C	XII-M	-1,32211	0,00428882	0,0490116
ENSGACG0000007661	XII-C	XII-M	3,1826	0,000188706	0,00390359
ENSGACG0000007857	XII-C	XII-M	-1,09781	1,46E-006	6,47E-005
ENSGACG0000007950	XII-C	XII-M	-4,81711	0,00327485	0,0396934
ENSGACG0000008587	XII-C	XII-M	-2,11846	0,0030949	0,0379651
ENSGACG0000008869	XII-C	XII-M	-3,10093	0,000351288	0,00653212
ENSGACG0000009014	XII-C	XII-M	-2,32146	0,00128166	0,0187809
ENSGACG0000009076	XII-C	XII-M	-2,75242	0,00273241	0,0343938
ENSGACG0000009188	XII-C	XII-M	-3,01286	0,00162336	0,0226964
ENSGACG0000009200	XII-C	XII-M	-3,48024	7,51E-005	0,00181091
ENSGACG0000009821	XII-C	XII-M	2,54524	0,00326088	0,0395593
ENSGACG0000012554	XII-C	XII-M	-1,98145	0,0025289	0,0323569
ENSGACG00000012797	XII-C	XII-M	-2,45115	0,00201953	0,0270521
ENSGACG0000012799	XII-C	XII-M	-2,44042	0,000948531	0,0147168
ENSGACG00000012962	XII-C	XII-M	4,34904	3,91E-005	0,00104714
ENSGACG0000013695	XII-C	XII-M	-2,58075	0,00221029	0,0290625
ENSGACG0000013782	XII-C	XII-M	2,99059	7,02E-006	0,000245818
ENSGACG0000013891	XII-C	XII-M	-4,08485	0,000271714	0,00528182
ENSGACG0000013918	XII-C	XII-M	-2,24376	0,00257104	0,0327841
ENSGACG0000014131	XII-C	XII-M	-2,93419	0,000641185	0,0106958
ENSGACG0000014250	XII-C	XII-M	-4,28056	0,00108046	0,0163593
ENSGACG0000014402	XII-C	XII-M	-2,29219	0,00217272	0,02867
ENSGACG0000014540	XII-C	XII-M	4,44896	0	0
ENSGACG0000014547	XII-C	XII-M	-3,2554	1,24E-005	0,000397603
ENSGACG00000014629	XII-C	XII-M	-1,58755	1,18E-005	0,000381569
ENSGACG00000015524	XII-C	XII-M	-1,24754	0,00205081	0,0273857
ENSGACG00000015818	XII-C	XII-M	3,91081	0,00394012	0,0458949
ENSGACG0000015897	XII-C	XII-M	-0,607423	0,0005398	0,0092968
ENSGACG00000016379	XII-C	XII-M	-1,00928	0,000467089	0,00826108
ENSGACG0000017105	XII-C	XII-M	-1,304	0,00106447	0,0161653
ENSGACG00000017373	XII-C	XII-M	-2,06368	0,00361475	0,0428979
ENSGACG0000018049	XII-C	XII-M	4,52522	0,000754657	0,0122155
ENSGACG0000018138	XII-C	XII-M	-2,78729	0,000222793	0,00448288
ENSGACG0000019173	XII-C	XII-M	-1,12944	0,000535122	0,00923297
ENSGACG0000019933	XII-C	XII-M	-2,337	5,94E-005	0,00148914
ENSGACG0000020034	XII-C	XII-M	-4,27551	8,51E-005	0,00201008
ENSGACG0000020365	XII-C	XII-M	-2,68098	0,00169319	0,0234798
FHL5	XII-C	XII-M	-1,99379	7,33E-013	1,88E-010
GALNT8 (2 of 2)	XII-C	XII-M	-3,94196	2,05E-005	0,000608777
GATA4	XII-C	XII-M	1,80E+308	0,000863143	0,0136213
GRIN1 (1 of 2)	XII-C	XII-M	3,67203	0,00138389	0,0199711
HSD17B10	XII-C	XII-M	-0,56101	0,00266943	0,0337672
IGKC (1 of 24)	XII-C	XII-M	-2,46711	0,000378934	0,00695572
IQGAP2	XII-C	XII-M	-0,99391	0,0013501	0,0195816
IREB2	XII-C	XII-M	-1,3334	2,15E-005	0,000633304
ISG15	XII-C	XII-M	-2,6577	0,000859133	0,0135704
KCNH2 (2 of 2)	XII-C	XII-M	2,74522	0,00333451	0,0402604
KRT80	XII-C	XII-M	3,28477	2,25E-007	1,30E-005
LZIC	XII-C	XII-M	-1,16155	4,97E-005	0,00128157
MAD2L2	XII-C	XII-M	-1,33933	4,01E-010	5,24E-008
MEP1A (2 of 2)	XII-C	XII-M	-2,36676	0,000484938	0,00851623
MLYCD	XII-C	XII-M	-1,25466	0,0033207	0,0401275
MPEG1	XII-C	XII-M	-1,67578	0,00432543	0,0493345

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
MPG	XII-C	XII-M	-2,66881	0,000360158	0,00666957
MRPL28	XII-C	XII-M	-1,21976	5,22E-007	2,68E-005
MRPS10	XII-C	XII-M	-0,902243	0,000562783	0,00961805
MYBPC2 (1 of 2)	XII-C	XII-M	-1,33345	0,00252917	0,0323596
MYLK4 (1 of 2)	XII-C	XII-M	3,13032	0,00222181	0,0291808
MYOM1 (2 of 2)	XII-C	XII-M	-0,641081	7,23E-005	0,00175367
MYOZ1 (1 of 2)	XII-C	XII-M	-2,11366	0,00415329	0,0478094
NCKIPSD	XII-C	XII-M	-1,6209	0,000592411	0,0100274
NEB	XII-C	XII-M	-1,60573	1,18E-005	0,000379978
PFKM (1 of 2)	XII-C	XII-M	-1,36188	0,000294732	0,0056498
RANBP1	XII-C	XII-M	-0,8463	0,000239732	0,00476212
REPS1	XII-C	XII-M	-1,46348	0,00272318	0,0343016
RSRC2	XII-C	XII-M	-0,756344	0,000327078	0,00615803
RYR1 (2 of 2)	XII-C	XII-M	-1,87082	0,00101808	0,0155864
SLC41A3 (1 of 2)	XII-C	XII-M	4,3497	0,000620083	0,0104097
SLC4A4 (1 of 2)	XII-C	XII-M	-0,618281	0,00115703	0,0172956
SLC8A1 (2 of 2)	XII-C	XII-M	3,40203	2,18E-011	3,96E-009
SORBS2	XII-C	XII-M	3,40704	6,26E-005	0,00155514
SPPL2A	XII-C	XII-M	-0,546297	0,00359356	0,0427036
STOML2 (2 of 2)	XII-C	XII-M	-0,705211	3,10E-005	0,000861952
TF	XII-C	XII-M	-2,34864	0,00393212	0,0458231
TMEM54 (1 of 2)	XII-C	XII-M	-0,681608	0,00439144	0,0499056
TMOD4	XII-C	XII-M	-1,59469	1,26E-011	2,44E-009
TRDN	XII-C	XII-M	-1,41674	0,000148808	0,00320355
TTC38	XII-C	XII-M	-1,21994	0,00170875	0,0236531
TYMP	XII-C	XII-M	-3,50109	3,43E-005	0,000940746
TYRP1 (1 of 2)	XII-C	XII-M	-1,89179	0,0033432	0,0403453
UROS	XII-C	XII-M	-1,14915	7,33E-005	0,00177322
WDR19	XII-C	XII-M	-2,43017	0,000298937	0,00571645
ACP1	XII-C	XII-XII	-1,53551	5,88E-006	0,000211444
ADAL	XII-C	XII-XII	-1,01735	0,000309222	0,00587822
ADCK3 (1 of 2)	XII-C	XII-XII	-0,635055	6,80E-007	3,36E-005
ADI1	XII-C	XII-XII	-1,86492	0,0037275	0,0439481
ADPRH	XII-C	XII-XII	-2,09513	5,20E-006	0,000190681
ADPRHL1	XII-C	XII-XII	-5,20503	5,71E-005	0,00144081
AK1	XII-C	XII-XII	-1,747	0,000799162	0,0127988
ALDH16A1	XII-C	XII-XII	-1,46557	1,36E-006	6,08E-005
ATG12	XII-C	XII-XII	-2,29584	0,00230763	0,0300774
ATP6V0D1	XII-C	XII-XII	-0,729465	0,00240924	0,0311353
BACE2	XII-C	XII-XII	-1,79742	0,00250627	0,0321256
BLOC1S3	XII-C	XII-XII	-1,8091	0,000453999	0,00807103
BLVRB	XII-C	XII-XII	-2,09286	5,86E-005	0,00147198
C10orf57	XII-C	XII-XII	-2,12205	0,00362975	0,0430398
C15orf57	XII-C	XII-XII	-1,27658	0,00114076	0,0170991
C17orf61	XII-C	XII-XII	-2,17153	0,00266183	0,0336905
C18orf32	XII-C	XII-XII	-2,60773	0,000767088	0,0123816
C19orf42	XII-C	XII-XII	-2,44489	0,00137583	0,0198818
C1orf31	XII-C	XII-XII	-2,17846	0,0015004	0,0213087
C2orf40	XII-C	XII-XII	-1,89709	0,00144253	0,0206461
C6orf162	XII-C	XII-XII	-2,2193	0,00257725	0,0328463
CBR4	XII-C	XII-XII	-2,18368	0,00327701	0,0397137
CCDC115	XII-C	XII-XII	-2,32883	0,00312532	0,038251
CDKN2B	XII-C	XII-XII	-1,77829	0,00414495	0,0477346

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
CHAC1 (2 of 2)	XII-C	XII-XII	-1,09943	0,000272905	0,00530108
CISD3	XII-C	XII-XII	-1,77448	3,44E-005	0,000941118
CKMT1A	XII-C	XII-XII	0,730322	7,24E-005	0,00175609
CKMT2 (1 of 2)	XII-C	XII-XII	-1,37151	0,000342504	0,00639858
CLDN15 (2 of 2)	XII-C	XII-XII	-1,80E+308	0,000574403	0,00977743
COX7A2L	XII-C	XII-XII	-2,18444	0,00377384	0,0443743
CREG2	XII-C	XII-XII	-1,37572	1,28E-008	1,09E-006
CRTAM	XII-C	XII-XII	-1,60521	1,44E-005	0,00045053
CSRP3	XII-C	XII-XII	-3,05447	0,00427279	0,0488722
CTU1	XII-C	XII-XII	-1,505	0,00394352	0,045926
CYB5B	XII-C	XII-XII	-1,47152	0,00103136	0,0157527
DBI	XII-C	XII-XII	-1,94279	0,00215932	0,0285333
DDRGK1	XII-C	XII-XII	-0,875264	0,00117426	0,017505
DHRS13 (1 of 3)	XII-C	XII-XII	-1,9928	2,43E-005	0,000703925
DTWD2	XII-C	XII-XII	-1,31896	0,000937553	0,0145776
DYNLT3 (1 of 2)	XII-C	XII-XII	-1,82759	0,000444962	0,00793853
EAPP	XII-C	XII-XII	-1,29824	0,000252703	0,00497633
EIF4H	XII-C	XII-XII	-0,724285	0,000744629	0,0120837
ENSGACG0000000040	XII-C	XII-XII	-1,37349	0,00160349	0,0224743
ENSGACG0000000082,	XII-C	XII-XII	-0,810912	1,73E-005	0,000527485
ENSGACG0000000336	XII-C	XII-XII	-1,29954	0,00167892	0,0233221
ENSGACG0000000424	XII-C	XII-XII	-2,21174	0,002017	0,0270242
ENSGACG0000000621	XII-C	XII-XII	-6,67698	3,01E-008	2,29E-006
ENSGACG0000000869	XII-C	XII-XII	4,40716	1,07E-005	0,000350016
ENSGACG0000000964	XII-C	XII-XII	-1,17258	0,00121498	0,0179888
ENSGACG0000001016	XII-C	XII-XII	-1,80E+308	1,39E-005	0,000438312
ENSGACG0000001033	XII-C	XII-XII	-2,31236	0,00224017	0,029374
ENSGACG0000001322	XII-C	XII-XII	-2,94311	0,000189814	0,00392239
ENSGACG0000001344	XII-C	XII-XII	-2,6432	0,00305019	0,0375428
ENSGACG0000001633	XII-C	XII-XII	-1,95688	0,00210379	0,027949
ENSGACG0000001857	XII-C	XII-XII	-1,74202	2,93E-005	0,000822186
ENSGACG0000001884	XII-C	XII-XII	-0,838885	0,000465426	0,00823714
ENSGACG0000002281	XII-C	XII-XII	-1,80E+308	0,00423925	0,0485783
ENSGACG0000002450	XII-C	XII-XII	-1,39357	0,00371811	0,0438624
ENSGACG0000003132	XII-C	XII-XII	-1,80E+308	0,00240456	0,0310867
ENSGACG0000003456	XII-C	XII-XII	-2,70673	0,000190045	0,00392649
ENSGACG0000003467	XII-C	XII-XII	-2,61765	0,00134743	0,0195514
ENSGACG0000005018	XII-C	XII-XII	-2,1148	0,00191701	0,0259417
ENSGACG0000005421	XII-C	XII-XII	-1,24496	0,00356919	0,0424683
ENSGACG0000005683	XII-C	XII-XII	2,57136	0,00258183	0,0328937
ENSGACG0000005975	XII-C	XII-XII	-1,13613	6,12E-005	0,0015272
ENSGACG0000006019	XII-C	XII-XII	-2,16696	5,58E-005	0,001413
ENSGACG0000006204	XII-C	XII-XII	-2,53576	0,00176632	0,0242881
ENSGACG0000007447	XII-C	XII-XII	-1,58803	2,53E-007	1,44E-005
ENSGACG0000007546	XII-C	XII-XII	-1,84247	4,75E-005	0,00123467
ENSGACG0000007661	XII-C	XII-XII	-2,85701	0,00089657	0,0140504
ENSGACG0000007761	XII-C	XII-XII	-1,56566	0,00398779	0,046319
ENSGACG0000007857	XII-C	XII-XII	-1,54702	5.08E-011	8,41E-009
ENSGACG0000007950	XII-C	XII-XII	-4.47084	4,58E-005	0,00119843
ENSGACG0000008764	XII-C	XII-XII	-1.38475	0.00251422	0.0322091
ENSGACG0000009211	XII-C	XII-XII	-2.27841	0,00298346	0,0368967
ENSGACG0000009229	XII-C	XII-XII	-4 16666	2.18E-006	9,10E-005
ENSGACG0000009409	XII-C	XII-XII	-4,67818	1,62E-006	7.07E-005

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
ENSGACG0000009417	XII-C	XII-XII	1,87456	0,00191831	0,0259552
ENSGACG0000010400	XII-C	XII-XII	-3,60869	3,56E-005	0,000969458
ENSGACG0000010501	XII-C	XII-XII	-1,39245	8,24E-008	5,47E-006
ENSGACG0000010623	XII-C	XII-XII	-8,9327	1,76E-008	1,44E-006
ENSGACG0000010643	XII-C	XII-XII	-1,29378	0,00331233	0,0400478
ENSGACG0000010888	XII-C	XII-XII	-3,68651	0,000967311	0,0149535
ENSGACG0000010896	XII-C	XII-XII	-3,13415	0,00365516	0.0432779
ENSGACG00000010933	XII-C	XII-XII	-3,32155	0,0011112	0.0167396
ENSGACG00000011120	XII-C	XII-XII	-0,989832	0,00027078	0,00526687
ENSGACG00000011294	XII-C	XII-XII	-2,05827	8,86E-006	0,000299254
ENSGACG00000011542	XII-C	XII-XII	-0,67284	0,00227398	0,0297265
ENSGACG00000011617	XII-C	XII-XII	-3,31753	0,000436991	0,00782254
ENSGACG0000012375	XII-C	XII-XII	-2,1792	0,00358087	0,0425809
ENSGACG0000012607	XII-C	XII-XII	-0,681049	0,000511673	0,00889879
ENSGACG0000012639	XII-C	XII-XII	-2,16845	0,00309066	0,0379265
ENSGACG00000012654	XII-C	XII-XII	-8,05799	1,77E-005	0,000538289
ENSGACG0000012657	XII-C	XII-XII	-9,80076	2,33E-009	2,47E-007
ENSGACG00000012781	XII-C	XII-XII	-2,5856	0,000890445	0,013972
ENSGACG0000012783	XII-C	XII-XII	-2,18468	0,00300959	0,0371516
ENSGACG00000012797	XII-C	XII-XII	-2,76255	0,000514936	0,00894615
ENSGACG0000012799	XII-C	XII-XII	-2,69946	0,000236614	0,00471186
ENSGACG0000013652	XII-C	XII-XII	-1,70586	1,57E-005	0,000486918
ENSGACG0000013871	XII-C	XII-XII	-2,68559	0,000423505	0,00762325
ENSGACG0000013891	XII-C	XII-XII	-4,95161	1,63E-005	0,000502762
ENSGACG0000013918	XII-C	XII-XII	-3,0927	0,000223724	0,00449783
ENSGACG0000014099	XII-C	XII-XII	-6,32001	0,000288798	0,00555664
ENSGACG0000014250	XII-C	XII-XII	-4,68041	0,000282455	0,00545371
ENSGACG0000014315	XII-C	XII-XII	-2,82704	0,000207975	0,00423238
ENSGACG0000014547	XII-C	XII-XII	-2,32138	0,000379408	0,00696301
ENSGACG0000014601	XII-C	XII-XII	-2,48256	0,000633424	0,0105919
ENSGACG0000014629	XII-C	XII-XII	-2,02122	3,41E-008	2,55E-006
ENSGACG0000014655	XII-C	XII-XII	-2,2616	0,00350841	0,0418934
ENSGACG0000014948	XII-C	XII-XII	-4,60299	2,04E-005	0,000607357
ENSGACG0000015628	XII-C	XII-XII	-2,36594	0,00118956	0,0176859
ENSGACG0000015818	XII-C	XII-XII	4,83375	0,000285252	0,00549901
ENSGACG0000015897	XII-C	XII-XII	-1,27281	0	0
ENSGACG0000016409	XII-C	XII-XII	-2,85154	0,00185073	0,0252276
ENSGACG0000016422	XII-C	XII-XII	-2,57647	2,32E-006	9,61E-005
ENSGACG00000016618	XII-C	XII-XII	-0,886272	0,0014457	0,020682
ENSGACG0000017022	XII-C	XII-XII	-2,17934	0,00261713	0,0332454
ENSGACG0000017119	XII-C	XII-XII	-1,86369	0,00341765	0,0410464
ENSGACG0000017373	XII-C	XII-XII	-2,7038	0,000155989	0,00333097
ENSGACG0000018049	XII-C	XII-XII	5,48649	4,95E-005	0,00127765
ENSGACG0000019078	XII-C	XII-XII	-2,21467	0,00137303	0,019849
ENSGACG0000019173	XII-C	XII-XII	-0,661639	0,0040881	0,0472168
ENSGACG0000019390	XII-C	XII-XII	-1,71775	0,000863382	0,0136244
ENSGACG0000019581	XII-C	XII-XII	-2,63441	0,000307383	0,00584919
ENSGACG0000019627	XII-C	XII-XII	-2,1919	0,00366178	0,0433396
ENSGACG00000019770	XII-C	XII-XII	-1,5099	0,00254847	0,0325522
ENSGACG0000020034	XII-C	XII-XII	-4,5031	1,76E-005	0,000534335
ENSGACG0000020365	XII-C	XII-XII	-2,54221	0,0019117	0,0258831
ENSGACG0000020403	XII-C	XII-XII	-1,33093	0,00135174	0,0196013
FAM132B	XII-C	XII-XII	-1,88161	0,00297368	0,0367983

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
FAM151B	XII-C	XII-XII	-1,47488	0,00111701	0,016811
FAM167B	XII-C	XII-XII	-1,93204	0,00019205	0,00396176
FAM55C (4 of 8)	XII-C	XII-XII	2,44667	0,00192745	0,0260559
FAM96B	XII-C	XII-XII	-2,12226	0,00272705	0,0343389
FCGBP (1 of 2)	XII-C	XII-XII	1,11778	0,000469877	0,00830164
FHL5	XII-C	XII-XII	-2,42105	0	0
FKBP5	XII-C	XII-XII	2,90362	4,53E-005	0,00118577
GALM	XII-C	XII-XII	-1,96901	0,000440142	0,00786896
GAPDH (1 of 2)	XII-C	XII-XII	-0,916309	2,47E-005	0,000713586
GCDH (1 of 2)	XII-C	XII-XII	-0,884634	0	0
GCNT1	XII-C	XII-XII	2,44138	0,000140063	0,00304611
GEM	XII-C	XII-XII	-3,08182	0,00440146	0,0499958
GLTPD1	XII-C	XII-XII	-1,88935	0,00438718	0,0498698
GNPTG	XII-C	XII-XII	-1,42836	0,00197235	0,0265441
GOSR1 (2 of 2)	XII-C	XII-XII	-2,24254	0,00253675	0,0324348
GP1BB	XII-C	XII-XII	-2,08305	0,0028203	0,0352668
GPANK1	XII-C	XII-XII	-1,26792	0,000683235	0,0112656
GZMA	XII-C	XII-XII	-2,52529	0,000194744	0,00400804
HBM	XII-C	XII-XII	-2,20318	0,00174002	0.023997
HERC4	XII-C	XII-XII	-0.832232	0.00107758	0.0163239
HIST1H1T	XII-C	XII-XII	-2.07656	0.00224885	0.0294662
HLA-DMA (4 of 5)	XII-C	XII-XII	-2.5597	0.00255126	0.0325793
HNMT $(2 \text{ of } 2)$	XII-C	XII-XII	-2 47248	0.00230014	0.0299998
HSD17B10	XII-C	XII-XII	-1 38806	0,00200011	0,0200000
IER3IP1	XII-C	XII-XII	-2 48344	0.000745628	0.0120971
IER5L (2 of 2)	XII-C	XII-XII	-2 1169	0.00305635	0.037598
IFT20	XII-C	XII-XII	-2.51506	0.00133305	0.0193808
IFT80	XII-C	XII-XII	-0.827042	0.00315778	0.0385695
IGKC (1 of 24)	XII-C	XII-XII	-3 8186	4 24F-006	0.000160175
IGKC (12 of 24)	XII-C	XII-XII	-4 80445	0.00435787	0.0496125
IGKC (15 of 24)	XII-C	XII-XII	-4 12615	0 000307482	0.00585091
IGKC (17 of 24)	XII-C	XII-XII	-4 57546	0.00117278	0.0174877
IGKC (4 of 24)	XII-C	XII-XII	-3 77034	0 000942892	0.0146437
II DR1 (1 of 2)	XII-C	XII-XII	-1 00837	0.00417389	0.0479907
IRF4 (2 of 2)	XII-C	XII-XII	-2 57593	0.000129152	0.00284723
	XII-C		-2,07000	0,000123132	0,00204725
LGALS8 (2 of 2)	XII-C		-1,7000	0.000754317	0.0122111
I PAR2 (2 of 2)	XII-C		-1,00205	0,000734517	0,0122111
L RRC10	XII-C		-1,52445	0,00120003	0,0100070
LRRC39	XII-C		-3,59524	0,00500052	0,0433273
LSM6	XII-C		-2,00000	9,502-005	0,00221427
	XILC		-2,0142	0,00436555	0,0490525
			-1,40043	4,72E-008	3,38E-006
METTI 10	XII-C		-1,91093	0 000900070	0.0120221
METTLE			-1,70018	0,000800979	0,0128221
MERD2A (1 of 2)			-2,00067	0,0026621	0,0336933
MINOS1 (1 of 2)	XII-C		-1,05012	0,00348505	0,0416744
	XII-C		-2,33586	0,00222955	0,0292627
	XII-C		-1,16221	0,00242119	0,0312563
			-1,77642	0,00202493	0,02/1103
	XII-C	XII-XII	-0,748151	0,00391883	0,0457017
	XII-C	XII-XII	-0,879514	0,000428675	0,00770038
MRPL19	XII-C	XII-XII	-1,00699	0,00014249	0,00309018
MRPL28	XII-C	XII-XII	-1,38321	1,19E-010	1,80E-008

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
MRPS10	XII-C	XII-XII	-1,94523	1,21E-012	2,95E-010
MRPS24	XII-C	XII-XII	-1,87955	0,00382143	0,0448068
MRPS28	XII-C	XII-XII	-2,28462	0,000870863	0,0137199
MRPS31	XII-C	XII-XII	-0,990626	1,40E-007	8,63E-006
MYBPC3	XII-C	XII-XII	-2,21774	0,00130682	0,0190777
MYL7	XII-C	XII-XII	-9,6997	1,23E-008	1,06E-006
MYOM1 (2 of 2)	XII-C	XII-XII	-0,733483	1,46E-013	4,35E-011
NAPSA	XII-C	XII-XII	-0,724385	0,00265038	0,0335756
NCKIPSD	XII-C	XII-XII	-1,32399	0,0026075	0,03315
NDUFB1	XII-C	XII-XII	-2,28121	0,00404949	0,0468738
NDUFB2	XII-C	XII-XII	-2,21198	0,00427402	0,0488833
NEURL2	XII-C	XII-XII	-2,77606	0,00322076	0,0391733
NT5C	XII-C	XII-XII	-1,27345	0,00277182	0,034785
NXT2	XII-C	XII-XII	-2,6926	0,000939975	0,0146075
PFKM (1 of 2)	XII-C	XII-XII	-1,11129	0,0038835	0,0453793
PIGB	XII-C	XII-XII	-1,27992	0,000173849	0,0036462
PIK3IP1	XII-C	XII-XII	-0,836943	5,47E-006	0,000198887
PLD4	XII-C	XII-XII	-2,22806	0,0030462	0,0375022
PPDPF (1 of 2)	XII-C	XII-XII	-1,82248	9,41E-005	0,00218564
PRADC1	XII-C	XII-XII	-1,4514	0,00128686	0,0188422
PRKAG3 (2 of 2)	XII-C	XII-XII	-2,28641	0,00391174	0,045638
PTCD3	XII-C	XII-XII	-0,64423	0,00284796	0,0355449
PTS	XII-C	XII-XII	-2,94802	0,00288764	0,0359441
PVRL1 (2 of 2)	XII-C	XII-XII	1,80E+308	0,00028023	0,0054186
RDH8 (1 of 2)	XII-C	XII-XII	-1,13695	0,00387236	0,0452771
RGMB	XII-C	XII-XII	-1,82986	0,00202683	0,0271293
RHBDL2	XII-C	XII-XII	-0,923793	0,000481145	0,00846259
RMND5B	XII-C	XII-XII	-0,833435	0,00194115	0,026204
RPA3	XII-C	XII-XII	-2,10338	0,00378758	0,0445029
RPS24	XII-C	XII-XII	-1,7706	3,14E-007	1,73E-005
RPS29	XII-C	XII-XII	-2,35633	0,00111128	0,0167406
RRAD	XII-C	XII-XII	-3,26701	0,0026881	0,0339537
SCTR	XII-C	XII-XII	-2,02566	0,00390582	0,0455821
SEPHS2	XII-C	XII-XII	-1,58403	0,000285042	0,00549584
SERBP1 (1 of 2)	XII-C	XII-XII	-0,743406	0,00407758	0,0471231
SH3BP5	XII-C	XII-XII	-1,41421	0,00372185	0,0438973
SLC25A37	XII-C	XII-XII	-1,52099	7,85E-005	0,00187823
SLC25A43	XII-C		-0,892083	1,35E-006	6,05E-005
SLC35C1	XII-C	XII-XII	-1,03646	0,00372148	0,0438941
SLC46A3	XII-C	XII-XII	-1,88678	0,00218798	0,0288272
SLC4A4 (1 of 2)	XII-C		-0,560978	1,95E-005	0,000583546
SLCO2B1	XII-C		-0,466404	4,39E-011	7,39E-009
SNX14	XII-C		-0,911407	0,00213708	0,0283024
SUCS1 (2 of 2)	XII-C		-2,1492	0,0024328	0,0313745
SPCS2	XII-C		-1,22291	3,56E-005	0,000969074
SPGZI	XII-C		-0,773409	0,000842736	0,013359
SPPLZA	XII-C		-0,991912	4,27E-010	5,54E-008
STUMLZ (2 OF 2)	XII-C		-1,10031	0 00201056	0.0456260
TRCA			-2,27421	0,00391056	0,0400209
TDO2			-1,31508	0,00159684	0,022398/
TE			-2,40//4	0,00214148	0.044442
TEDI2			-2,00400	0,000094077	0,011413
IT FIZ	AII-O		-1,04437	0,000300012	0,00000721

gene	sample_1	sample_2	log2(fold_change)	p_value	q_value
THBS1 (2 of 2)	XII-C	XII-XII	2,47397	0,000908149	0,0142002
TIFA	XII-C	XII-XII	-1,91228	0,00239611	0,0309984
TK2	XII-C	XII-XII	-1,24255	0,0023515	0,0305359
TMEM14E	XII-C	XII-XII	-1,96681	0,00410269	0,0473507
TMEM182	XII-C	XII-XII	-1,31999	0,000423897	0,00762913
TMEM183A	XII-C	XII-XII	-1,05048	0,000211902	0,00429934
TMEM54 (1 of 2)	XII-C	XII-XII	-1,36264	4,40E-009	4,31E-007
TMOD4	XII-C	XII-XII	-1,63869	7,62E-014	2,40E-011
TNNC1	XII-C	XII-XII	-5,82709	6,05E-007	3,04E-005
TNNI2 (5 of 5)	XII-C	XII-XII	-3,38388	0,000743147	0,0120635
TNNT2 (1 of 2)	XII-C	XII-XII	-6,92757	4,04E-008	2,95E-006
TOM1 (2 of 2)	XII-C	XII-XII	-0,907007	0,00286219	0,0356855
TRDN	XII-C	XII-XII	-1,33111	7,11E-005	0,0017288
TTC32	XII-C	XII-XII	-2,2248	0,00130766	0,019088
TTC36	XII-C	XII-XII	-2,33456	0,00136678	0,0197763
TTC38	XII-C	XII-XII	-1,21289	0,000893866	0,0140165
TTC9C	XII-C	XII-XII	-1,39674	7,59E-008	5,10E-006
TXNDC17	XII-C	XII-XII	-2,26596	7,29E-005	0,00176523
UROS	XII-C	XII-XII	-1,4419	7,44E-007	3,63E-005
WDR18	XII-C	XII-XII	-0,844971	0,000729012	0,0118787
WDR5	XII-C	XII-XII	-0,731655	0,0010035	0,0154058
XCR1 (1 of 2)	XII-C	XII-XII	-2,49098	0,00299241	0,0369881

Supplementary table S.3.4 GO terms from the biological process ontology that were significantly over- or underrepresented in different treatment groups ("Tested") when compared to a reference group ("Reference"). Groups consisted of genes that were either unique to a specific treatment groups (e.g. I only) or all genes differentially expressed within a given treatment group (e.g. all XII-XII). For a general representation of GO terms, treatments were also tested against the transcriptome.

tested	reference	organ	GO-ID	term	representation	FDR
I only	M only	head kidnev	GO: 0071840	cellular component organization or biogenesis	under	0,009
I only	M only	head kidney	GO: 0016043	cellular component organization	under	0,009
I only	M only	head kidney	GO: 0007010	cytoskeleton organization	under	0,009
I only	M only	head kidney	GO: 0006996	organelle organization	under	0,009
I only	M only	head kidney	GO: 0071841	cellular component organization or biogenesis at cellular level	under	0,009
I only	M only	head kidney	GO: 0071842	cellular component organization at cellular level	under	0,009
I only	M only	head kidnev	GO: 0048869	cellular developmental process	under	0,009
I only	M only	head kidnev	GO: 0009653	anatomical structure morphogenesis	under	0,009
I only	M only	head kidney	GO: 0030154	cell differentiation	under	0,009
I only	M only	head kidney	GO: 0048856	anatomical structure development	under	0,049
XII only	XII-XII only	gills	GO: 0032502	developmental process	under	0,022
XII only	XII-XII only	gills	GO: 0009987	cellular process	under	0,034
XII only	XII-XII only	gills	GO: 0007275	multicellular organismal development	under	0,049
XII only	XII-XII only	gills	GO: 0032501	multicellular organismal process	under	0,049
I-M only	M-M only	head kidnev	GO: 0048856	anatomical structure development	over	4,80E
I-M only	M-M only	head kidney	GO: 0009653	anatomical structure morphogenesis	over	4,80E
I-M only	M-M only	head kidnev	GO: 0030154	cell differentiation	over	0,006
I-M only	M-M only	head kidnev	GO: 0048869	cellular developmental process	over	0,006
I-M only	M-M only	head kidney	GO: 0007010	cytoskeleton organization	over	0,010
I-M only	M-M only	head kidnev	GO: 0009987	, cellular process	over	0,010
I-M only	M-M only	head kidnev	GO: 0016043	cellular component organization	over	0,010
I-M only	M-M only	head kidney	GO: 0071840	cellular component organization or biogenesis	over	0,010
I-M only	M-M only	head kidnev	GO: 0034641	cellular nitrogen compound metabolic process	over	0,010
I-M only	M-M only	head kidney	GO: 0006139	nucleobase-containing compound metabolic process	over	0,010

tested	reference	organ	GO-ID	term	representation	FDR
I-M only	M-M only	head kidney	GO: 0006807	nitrogen compound metabolic process	over	0,010
I-M only	M-M only	head kidney	GO: 0044237	cellular metabolic process	over	0,017
I-M only	M-M only	head kidney	GO: 0009790	embryo development	over	0,021
I-M only	M-M only	head kidney	GO: 0006996	organelle organization	over	0,026
I-M only	M-M only	head kidney	GO: 0071841	cellular component organization or biogenesis at cellular level	over	0,026
I-M only	M-M only	head kidney	GO: 0071842	cellular component organization at cellular level	over	0,026
I-M only	M-M only	head kidney	GO: 0032501	multicellular organismal process	over	0,037
I-M only	M-M only	head kidney	GO: 0032502	developmental process	over	0,037
I-M only	M-M only	head kidney	GO: 0007275	multicellular organismal development	over	0,037
I only	I-I only	head kidney	GO: 0009653	anatomical structure morphogenesis	under	3,40E
l only	I-I only	head kidney	GO: 0007010	cytoskeleton organization	under	6,79E
I only	I-I only	head kidney	GO: 0048856	anatomical structure development	under	6,79E
l only	I-I only	head kidney	GO: 0048869	cellular developmental process	under	6,79E
l only	I-I only	head kidney	GO: 0030154	cell differentiation	under	6,79E
I only	I-I only	head kidney	GO: 0006996	organelle organization	under	9,64E
l only	I-I only	head kidney	GO: 0071841	cellular component organization or biogenesis at cellular level	under	9,64E
l only	I-I only	head kidney	GO: 0071842	cellular component organization at cellular level	under	9,64E
I only	I-I only	head kidney	GO: 0071840	cellular component organization or biogenesis	under	0,002
l only	I-I only	head kidney	GO: 0016043	cellular component organization	under	0,002
I only	I-I only	head kidney	GO: 0050789	regulation of biological process	under	0,013
I only	I-I only	head kidney	GO: 0009987	cellular process	under	0,016
l only	I-I only	head kidney	GO: 0007275	multicellular organismal development	under	0,016
I only	I-I only	head kidney	GO: 0032501	multicellular organismal process	s under	0,016
I only	I-I only	head kidney	GO: 0032502	developmental process	under	0,016
I only	I-I only	head kidney	GO: 0065007	, biological regulation	under	0,016
I only	I-I only	head kidney	GO: 0009056	catabolic process	under	0,021
I only	I-I only	head kidney	GO: 0009790	embryo development	under	0,021
I only	I-I only	head kidney	GO: / 003464 ⁻	cellular nitrogen compound I metabolic process	under	0,021

tested	reference	organ	GO-ID	term	representation	FDR
Lonki	Llonhu	head	GO:	nucleobase-containing	in the	0.004
I ONIY	I-I ONIY	kidney	0006139	compound metabolic process	under	0,021
		head	GO:	nitrogen compound metabolic		
Ionly	I-I only	kidney	0006807	process	under	0,021
		head	GO:	in a second a la company		
Ionly	I-I only	kidnev	0044237	cellular metabolic process	under	0,026
		head	GO:	the second s		
Ionly	I-I only	kidney	0051179	localization	under	0,050
1	1.1	head	GO:		NUMBER OF STREET	
Ioniy	I-I only	kidney	0051234	establishment of localization	under	0,050
Lonhi	Llonk	head	GO:	transport	PROVING A CONTRACTOR	0.050
ГОПІУ	I-I Offiy	kidney	0006810	transport	under	0,050
Llonk	VII VII only	head	GO:	anatomical structure		0.000
I-I Offiy		kidney	0009653	morphogenesis	over	0,000
I-Lonly	XII-XII only	head	GO:	organelle organization	over	0.010
Thomy	XII-XII Olity	kidney	0006996	organization	over	0,010
I-Lonly	XII-XII only	head	GO:	cytoskeleton organization	over	0.010
1 Torny		kidney	0007010	of tookoloton organization	over	0,010
I-I only	XII-XII only	head	GO:	cellular component organization	over	0.010
	, , , ,	kidney	0071841	or biogenesis at cellular level	0101	0,010
I-I only	XII-XII only	head	GO:	cellular component organization	over	0.010
		kidney	00/1842	at cellular level		0,010
I-I only	XII-XII only	nead	GU:	regulation of biological process	over	0.011
		kidney	0050789			,
I-I only	XII-XII only	head	GU:	anatomical structure	over	0,022
		hood	0046650 CO:	development		
I-I only	XII-XII only	kidnov	0065007	biological regulation	over	0,028
		head	GO.			
I-I only	XII-XII only	kidnev	0016043	cellular component organization	over	0,038
		head	GO:	cellular component organization		
I-I only	XII-XII only	kidnev	0071840	or biogenesis	over	0,038
1.1 million		head	GO:			
I-I only	XII-XII only	kidney	0051234	establishment of localization	over	0,048
Llophy	VII VII only	head	GO:	lessization		0.040
I-I Offiy		kidney	0051179	localization	over	0,048
l-Lonly	XII-XII only	head	GO:	transport	over	0.049
1-1 Offiy		kidney	0006810	transport	over	0,040
I-Lonly	M-M only	head	GO:	anatomical structure	over	0.006
1 i only	Wi Wi Only	kidney	0009653	morphogenesis	over	0,000
I-I only	M-M only	head	GO:	organelle organization	over	0.010
, ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	kidney	0006996	erganene ergannzanen	0,00	0,010
I-I only	M-M only	head	GO:	cytoskeleton organization	over	0.010
,	,	kidney	0007010			-,
I-I only	M-M only	head	GO:	cellular component organization	over	0,010
		kianey	00/1841	or biogenesis at cellular level		
I-I only	M-M only	head	GU:	cellular component organization	over	0,010
		kioney	0071842	at cellular level		
I-I only	M-M only	kidnov	0050790	regulation of biological process	over	0,011
		hoad	GO.	anatomical structure		
I-I only	M-M only	kidney	0048856	development	over	0,022
		head	GO-0000	development		
I-I only	M-M only	kidney	0065007	biological regulation	over	0,028
Llank	NA NA and	head	GO:			0.000
I-I ONLY	IVI-IVI ONIY	kidney	0016043	cellular component organization	over	0,038
tested	reference	organ	GO-ID	term	representation	FDR
-------------	----------------------	----------------	----------------	---	----------------	-------
I-I only	M-M only	head kidney	GO: 0071840	cellular component organization or biogenesis	over	0,038
I-I only	M-M only	head kidney	GO: 0051234	establishment of localization	over	0,048
I-I only	M-M only	head kidney	GO: 0051179	localization	over	0,048
I-I only	M-M only	head kidney	GO: 0006810	transport	over	0,048
I-I and I-M	XII-XII and XII-M	head kidney	GO: 0009653	anatomical structure morphogenesis	over	0,006
I-I and I-M	XII-XII and XII-M	head kidney	GO: 0048869	cellular developmental process	over	0,006
I-I and I-M	XII-XII and XII-M	head kidney	GO: 0030154	cell differentiation	over	0,006
I-I and I-M	XII-XII and XII-M	kidney	0006996	organelle organization	over	0,006
I-I and I-M	XII-M	kidney	0071841	or biogenesis at cellular level	over	0,006
I-I and I-M	XII-XII and XII-M	kidney	GO: 0071842	at cellular level	over	0,006
I-I and I-M	XII-XII and XII-M	kidney	GO: 0007010	cytoskeleton organization	over	0,006
I-I and I-M	XII-XII and XII-M	head kidney	GO: 0071840	or biogenesis	over	0,006
I-I and I-M	XII-XII and XII-M	head kidney	GO: 0016043	cellular component organization	over	0,006
I-I and I-M	XII-XII and XII-M	kidney	GO: 0050789	regulation of biological process	over	0,023
I-I and I-M	XII-XII and XII-M	kidney	0065007	biological regulation	over	0,031
I-I and I-M	XII-XII and XII-M	kidney	GO: 0048856	development	over	0,038
I-I and I-M	XII-XII and XII-M	kidney	0044237	cellular metabolic process	over	0,038
I-I and I-M	XII-XII and XII-M	head kidney	GO: 0051179	localization	over	0,038
I-I and I-M	XII-XII and XII-M	kidney	0051234	establishment of localization	over	0,038
I-I and I-M	XII-XII and XII-M	head kidney	GO: 0006810	transport	over	0,038
I-I and I-M	XII-XII and XII-M	head kidney	0009987	cellular process	over	0,042
I-M only	XII-M only	head kidney	GO: 0050789	regulation of biological process	over	0,037
all I-I	transcriptome	head kidney	GO: 0007010	cytoskeleton organization	over	8,23E
all XII-XII	transcriptome	head kidney	GO: 0050789	regulation of biological process	under	0,001
all XII-XII	transcriptome	head kidney	GO: 0065007	biological regulation	under	0,001
all XII-XII	transcriptome	nead kidney	GU: 0050794	regulation of cellular process	under	0,028
all XII-XII	transcriptome	head kidney	GU: 0051716	cellular response to stimulus	under	0,028
all XII-XII	transcriptome	nead kidney	GU: 0007165	signal transduction	under	0,028

tested	reference	organ	GO-ID	term	representation	FDR
all XII-XII	transcriptome	head kidney	GO: 0009987	cellular process	under	0,035
all consecutive	transcriptome	head kidney	GO: 0050789	regulation of biological process	under	0,006
all consecutive	transcriptome	head kidney	GO: 0008283	cell proliferation	under	0,007
all consecutive	transcriptome	head kidney	GO: 0065007	biological regulation	under	0,007
all consecutive	transcriptome	head kidney	GO: 0050794	regulation of cellular process	under	0,023
all consecutive	transcriptome	head kidney	GO: 0051716	cellular response to stimulus	under	0,023
all consecutive	transcriptome	head kidney	GO: 0007165	signal transduction	under	0,023
all consecutive	transcriptome	head kidney	GO: 0044260	cellular macromolecule metabolic process	under	0,024
all consecutive	transcriptome	head kidney	GO: 0007010	cytoskeleton organization	over	0,035
all consecutive	transcriptome	head kidney	GO: 0023052	signaling	under	0,041

Supplementary table S.3.5 Differentially expressed immune-related genes in head kidney tissue of *G. aculeatus*. Shown are differentially expressed genes and their corresponding pre-exposure control (sample_1) and final treatment (sample_2). The log2-fold change shows if there is up- or down-regulation of a given gene due to the parasite treatment compared to the respective pre-exposure control. Only significant differences shown.

gene	sample_1	sample_2	log2_foldchange
ELMOD2	I-C	-	0,950604
VTN (2 of 2)	I-C	-	1,79699
APOB (2 of 5)	I-C	I-I	3,40812
PRG4	I-C	I-I	3,88188
MASP1 (2 of 2)	I-C	-	4,11019
MYLPF (2 of 2)	M-C	M-M	-4,07478
ADSSL1	M-C	M-M	-3,21472
CFB	M-C	M-M	3,0643
ADAMTS13	M-C	M-M	3,28212
ENPP2 (2 of 2)	M-C	M-M	3,37469
SERPING1	M-C	M-M	3,52804
CFP	M-C	M-M	4,19919
C9	M-C	M-M	4,90788
SUSD2	M-C	M-M	5,13608
C3 (5 of 8)	M-C	M-M	5,20093
APOB (1 of 5)	M-C	M-M	5,26128
C3 (1 of 8)	M-C	M-M	5,26274
C3 (3 of 8)	M-C	M-M	5,53618
PGLYRP2 (2 of 2)	M-C	M-M	5,53778
C3 (4 of 8)	M-C	M-M	5,73688
C8G	M-C	M-M	5,77978
C8B	M-C	M-M	5,78051
C8A	M-C	M-M	5,9133
C3 (2 of 8)	M-C	M-M	5,98528
CHIA	M-C	M-M	6,02963
APOB (5 of 5)	M-C	M-M	6,19346
PVRL1 (2 of 2)	M-C	M-M	6,35052
ENSGACG00000014811	M-C	M-M	6,65685
ENSGACG0000003030	M-C	M-M	9,62865
ENSGACG00000014852	M-C	M-M	10,8211
MYLPF (1 of 2)	XII-C	XII-M	-8,88641
ADSSL1	XII-C	XII-M	-5,36915
ENSGACG0000003030	XII-C	XII-M	-4,28505
IRF6	XII-C	XII-M	-3,96646
MYLPF (2 of 2)	XII-C	XII-M	-3,75924
ENSGACG00000014852	XII-C	XII-M	-3,53238
PGLYRP2 (1 of 2)	XII-C	XII-M	-3,49429
C8A	XII-C	XII-M	-3,45414
CFP	XII-C	XII-M	-3,41843
PGLYRP2 (2 of 2)	XII-C	XII-M	-3,40134
ATP1B3	XII-C	XII-M	-3,38417
C8G	XII-C	XII-M	-3,34482
C7 (1 of 2)	XII-C	XII-M	-3,16896
CFB	XII-C	XII-M	-2,90205
SUSD2	XII-C	XII-M	-2,74687
	250		

gene	sample_1	sample_2	log2_foldchange
APOB (2 of 5)	XII-C	XII-M	-2,62482
GAS6	XII-C	XII-M	-0,639669
ITGA6 (1 of 2)	XII-C	XII-M	0,736352
C8G	XII-C	XII-XII	-8,67221
PLG	XII-C	XII-XII	-8,21339
ENSGACG0000003030	XII-C	XII-XII	-7,97925
PGLYRP2 (2 of 2)	XII-C	XII-XII	-7,95708
ENSGACG00000014852	XII-C	XII-XII	-7,7671
ENSGACG0000014811	XII-C	XII-XII	-7,76487
C8A	XII-C	XII-XII	-7,64739
C3 (4 of 8)	XII-C	XII-XII	-7,54974
APOB (5 of 5)	XII-C	XII-XII	-7,53838
C3 (3 of 8)	XII-C	XII-XII	-7,08703
C9	XII-C	XII-XII	-7,06315
APOB (1 of 5)	XII-C	XII-XII	-6,89567
C3 (1 of 8)	XII-C	XII-XII	-6,88341
C3 (5 of 8)	XII-C	XII-XII	-6,80613
C3 (2 of 8)	XII-C	XII-XII	-6,58022
SUSD2	XII-C	XII-XII	-6,4171
CFP	XII-C	XII-XII	-5,52123
MASP1 (2 of 2)	XII-C	XII-XII	-5,11288
CFB	XII-C	XII-XII	-4,61178
KYNU	XII-C	XII-XII	-4,39218
SERPING1	XII-C	XII-XII	-4,04635
MYLPF (2 of 2)	XII-C	XII-XII	-3,70764
ENPP2 (2 of 2)	XII-C	XII-XII	-3,70527
IRF6	XII-C	XII-XII	-2,95084
C4A	XII-C	XII-XII	-1,30456
STXBP2	XII-C	XII-XII	0,692237
AP2S1	XII-C	XII-XII	0,812851
KIF23 (2 of 2)	XII-C	XII-XII	1,27243
RPA1 (1 of 2)	XII-C	XII-XII	1,31239
CDK1	XII-C	XII-XII	1,68752

Supplementary table S.3.6 Differentially expressed immune-related genes in gill tissue of *G. aculeatus*. Shown are differentially expressed genes and their corresponding pre-exposure control (sample_1) and final treatment (sample_2). The log2-fold change shows if there is up- or down-regulation of a given gene due to the parasite treatment compared to the respective pre-exposure control. Only significant differences shown.

gene	sample_1	sample_2	log2_foldchange
CASP3 (4 of 4)	I-C	1-1	0,645245
LGALS8 (2 of 2)	I-C	1-1	1,24388
ELMOD2	I-C	1-1	1,30915
GRAP2	I-C	1-1	1,37326
PGLYRP2 (1 of 2)	I-C	1-1	1,94663
SLC3A2 (2 of 2)	I-C	1-1	2,12421
SOCS3 (1 of 2)	I-C	1-1	2,27549
ENSGACG0000001729	I-C	1-1	2,4157
VIPR1 (2 of 2)	I-C	1-1	2,81637
CRISP3	I-C	1-1	2,97095
BAG1	I-C	-	3,50958
BAG2	I-C	1-1	4,01033
ITGB1 (1 of 2)	I-C	I-M	0,946666
WAS	I-C	I-M	0,997456
KLC1	I-C	I-M	1.00953
KIFAP3 (2 of 2)	I-C	I-M	1,03014
CASP8	I-C	I-M	1,11152
HYAI 2 (1 of 2)	I-C	I-M	1,52474
ADSS	I-C	I-M	1.52778
PIK3B1 (1 of 2)	I-C	I-M	1.74812
ENSGACG0000016298	I-C	I-M	1,81407
DAB2	I-C	I-M	1.83943
C4A	I-C	I-M	1,84794
NCF1	I-C	I-M	1,89572
ENSGACG0000012769	I-C	I-M	2,04814
CASP3 (4 of 4)	I-C	I-M	2,13822
C6	I-C	I-M	2,16836
NFKBIA (1 of 2)	I-C	I-M	2,18021
CCR9 (1 of 2)	I-C	I-M	2,29269
RSAD2	I-C	I-M	2,49104
USP18	I-C	I-M	2,66969
C7 (1 of 2)	I-C	I-M	3,05243
SOCS3 (1 of 2)	I-C	I-M	3,74379
ENSGACG0000012792	I-C	I-M	4,30345
C3 (4 of 8)	M-C	M-M	2,72071
C7 (1 of 2)	M-C	M-M	3,34781
THBS1 (2 of 2)	M-C	M-M	3,72156
ENSGACG0000012797	XII-C	XII-M	-2,45115
ENSGACG0000012799	XII-C	XII-M	-2,44042
CXCL12 (2 of 2)	XII-C	XII-M	-1,72844
C4A	XII-C	XII-M	-1,4211
IREB2	XII-C	XII-M	-1,3334
AP2S1	XII-C	XII-M	-1,23273
GEM	XII-C	XII-XII	-3,08182
ENSGACG00000012797	XII-C	XII-XII	-2,76255

gene	sample_1	sample_2	log2_foldchange
ENSGACG00000012799	XII-C	XII-XII	-2,69946
ENSGACG00000012781	XII-C	XII-XII	-2,5856
IRF4 (2 of 2)	XII-C	XII-XII	-2,57593
ATG12	XII-C	XII-XII	-2,29584
TAL1	XII-C	XII-XII	-2,27421
ENSGACG0000019078	XII-C	XII-XII	-2,21467
ENSGACG0000012783	XII-C	XII-XII	-2,18468
SOCS1 (2 of 2)	XII-C	XII-XII	-2,1492
LGALS8 (2 of 2)	XII-C	XII-XII	-1,80283
ENSGACG0000000336	XII-C	XII-XII	-1,29954
THBS1 (2 of 2)	XII-C	XII-XII	2,47397
PVRL1 (2 of 2)	XII-C	XII-XII	1,80E+308