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[1] The chemistry of vent fluids that emanate to the seafloor undergoes dramatic changes after volcanic
eruptions. Data on these changes are still limited, but the best studied example is the East Pacific Rise
(EPR) at 9°50'N, where the temporal evolution of the vent fluid chemistry after the 1991/1992 eruption
was documented. The area underwent another eruption sequence during late 2005/early 2006, and here
we show that a similar evolution is recurring in the iron and sulfide contents of the high-temperature fluids
sampled in June 2006, January 2007, and June 2008. The vents have had increasing dissolved iron and
decreasing acid-volatile sulfide (free sulfide plus FeS) concentrations with 1 order of magnitude variation.
In addition, chromium reducible sulfide (mainly pyrite) also had fivefold decreasing concentrations over the
3 years. Our results confirm a pattern that was noted only once before for 9°50'N EPR and emphasize the
dramatic yearly variability in the concentrations of iron-sulfur species emanating from vents.
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1. Introduction

[2] The East Pacific Rise (EPR) at 9°50'N is a fast-
spreading mid-ocean ridge with a spreading rate of
11 cm/yr [Carbotte and Macdonald, 1992] that
separates the Pacific Plate from the Nazca Plate and
the Cocos Plate. It is basalt hosted and therefore
considered a less reducing system compared with
the serpentinite-hosted systems of the Mid-Atlantic
Ridge [McCollom and Seewald, 2007]. The EPR is
also a dynamic hydrothermal system with pro-
nounced temporal variability in fluid chemistry,
mainly because of the repeated volcanic eruptions
and/or dike intrusions in 1991/1992 and 2005/2006
in this region [Fornari et al., 2012; Von Damm,
2004]. These events not only changed the composi-
tion of the fluids entering the ocean but also affected
the temporal succession of the productive biological
communities surrounding the high-temperature vents
[Luther et al., 2012; Shank et al., 1998]. This is
mainly due to the fact that the availability and speci-
ation of sulfide, where iron plays an important role,
are the primary driver of the establishment of these
communities [Gartman et al., 2011; Luther et al.,
2001]. Therefore, since the first recorded eruption
at 9°50'N EPR in 1991/1992, research efforts have
concentrated on documenting the temporal evolution
of the high-temperature vent fluid chemistry [Von
Damm et al., 1995; Von Damm, 2000, 2004] and
the chemistry of the low-temperature diffuse fluids
surrounding the vents [Le Bris et al., 2006; Luther
et al., 2012; Moore et al., 2009; Nees et al., 2008,
2009; Shank et al., 1998].

[3] In the weeks after the 1991/1992 eruption at
9°50'N EPR, the vent fluids were highly enriched
in volatile chemical species and depleted in metals
due to phase separation below the seafloor and the
subsequent enrichment of the vapor phase in the vent
fluids. With time, metal content increased in the
fluids, whereas volatile content (e.g., H,S) decreased
[Von Damm et al., 1995; Von Damm, 2004], How-
ever, Von Damm [2004] noted annual fluctuations
in Fe concentrations, including the decrease in Fe
content of the Bio9 vent from 2000 to 2002. This
observation underscores the need to better constrain
the causes for and measured responses of temporal
changes in the chemistry of hydrothermal vent fluids
of 9°50'N EPR, which is particularly interesting
because of its accessibility and high rate of activity
[Von Damm, 2004].

[4] A second eruption sequence occurred at 9°50'N
EPR in late 2005/early 2006 [Cowen et al., 2007,
Fornari et al., 2012; Tolstoy et al., 2006], affecting
almost all the vents that were studied previously

(see Figure 1). This event created a new “time zero”
and presented an opportunity to study the temporal
evolution of the vent chemistry of this dynamic
hydrothermal system as the chloride concentration
decreased then increased as in the 1991 eruption
[Fornari et al., 2012]. In this paper, we evaluate
temporal trends from the perspective of the iron
and sulfur chemistry of the high-temperature fluids
in the 3 years following the 2005/2006 eruption at
9°50’N EPR. Our results for these chemical tracers
allow us to compare the new eruptive cycle with the
previous one and eventually confirm a trend that
was noted only once before.

2. Methods

[s] We sampled the high-temperature vent fluids
soon after the 2005/2006 eruption during the June
2006 NSF rapid response cruise. We revisited the
region in January 2007 and June 2008. The 10
high-temperature vents studied at 9°50'N EPR are
located between 9°52'N and 9°46'N (Figure 1 and
Table 1). The vents sampled in each year are
detailed in Table 2. Three vents (Bio, P, and L)
were sampled in multiple years, enabling us to track
temporal changes in their fluid chemistries.

[6] Prior to vent fluid sampling, temperature was
measured with a high-temperature probe. Titanium
samplers (also called “major samplers”) were used
to sample high-temperature vent fluids. The nozzle
of the major sampler was placed 10—15 cm inside
the orifice to maximize the sampling of the actual
vent fluid just before it enters the ocean. Upon
retrieval of the sample, subsamples were filtered
(0.2 um) into 15mL acid-washed polypropylene
test tubes. Dissolved H,S in the samples was fixed
by adding 2 mL of unfiltered or filtered subsamples
to test tubes containing 2 mL of 0.5 mL NaOH and
then adding 2mL of 0.1 M zinc acetate. The test
tubes were shaken well with formation of a white
precipitate, and then the fixed sample was frozen
immediately at —20°C. The addition of Zn acetate
causes the precipitation of free sulfide and FeS as
ZnS. These samples were analyzed sequentially
for their acid-volatile sulfide (AVS) and chromium
reducible sulfide (CRS) contents in our shore-based
laboratory. ZnS is acid volatile; therefore, AVS
provides a measure of the free sulfide and FeS-
sulfide contents of the vent fluid. On the other hand,
CRS provides a measure of the concentrations of
certain metal sulfides with disulfide linkages, such
as FeS, (pyrite) and CuFeS, (chalcopyrite). As
demonstrated by Yiicel et al. [2011], the filtered
CRS fraction was mostly composed of nanoparticle
pyrite. As a result, this approach gives the speciation

760



i
b geodﬁemlstry 3
~  Geophysics . e
‘ /| Geobystems G YUCEL AND LUTHER: Fe-S CHEMISTRY AFTER 2006 EPR ERUPTION

10.1002/ggge.20088

104°19'W
9°52'N

104‘:18'W 104‘:17'W

NN

!

104°16'W

9°51'N

9°50'N

9°49'N

9°48'N

9°47'N

9°46'N

2510253025502570 2590 2750
Depth (m)

Figure 1. Locations of the studied hydrothermal vents
at 9°50'N EPR. The vent field excluding the southern
vents [V, L, and Bucket Lid A (BL-A)] has been studied
intensively in the past decades [see Fornari et al., 2012].
Map is adapted from Von Damm [2004].

of the reduced sulfur for the vent fluid, whereas pre-
vious work by Von Damm [2004] was based only on
colorimetric sulfide analysis of vent fluids.

[71 The AVS-CRS sequential leaching procedure is
as follows: Samples were placed in a purge-and-trap
system that contained tightly closed glass reaction

vessels continuously purged with ultra-high-purity
argon. The gas passed through the liquid and was
carried through Teflon tubing, at the end of which
glass test tubes containing 20 mL of 0.1 M NaOH
were placed. NaOH solution was made trace metal
clean by adding excess MgCl,, precipitating any
metals with Mg(OH), [Wu and Boyle, 1998] and
removing the liquid portion. In order to recover
the AVS, about 3mL of 3N trace metal-clean
HCI was injected to each reaction vessel via a
10mL syringe. Evolving H,S was trapped in
20mL of deoxygenated 0.1N NaOH. Ninety
minutes after the addition of HCI, aliquots of sam-
ples from NaOH traps were analyzed by cyclic
voltammetry with a Hg drop electrode. The con-
centration of sulfide in the traps was used to back-
calculate the concentration of AVS in the sample.
After this step, acidified (in 1 M HCI) Cr(Il) was
added to the reaction vessel and pyrite sulfur was
reduced to H,S. Cr(II) was prepared on the day of
analysis using a Jones reduction column, which
consisted of amalgamated zinc particles. When
I M CrCl; (in 1 M HCI) solution, which is green,
is passed through this column, it is reduced to
Cr(I), which is blue. The Cr(II) solution was
immediately withdrawn from the bottom of the
column with a syringe and injected [approxi-
mately 10 mL to have excess Cr(II)] to the reac-
tion vessels. The evolving H,S was trapped
similarly in a new 0.1 N deoxygenated and trace
metal-clean NaOH solution, and aliquots were
analyzed by cyclic voltammetry. For the calibra-
tion of the Hg drop electrode, fresh sulfide
standard was prepared by dissolving a weighed
amount of solid Na,S standard in deoxygenated
deionized water. The overall detection limit
of our leaching procedure for AVS and CRS
was 10 puM.

[s] Dissolved iron and pH were measured on board
ship on filtered samples. Ferrozine reagent was used
for the colorimetric determination of dissolved iron
[Stookey, 1970] with a portable spectrophotometer
(SP 100V, Analytical Instrument Systems, Inc.). A
filtered sample (50-2000 pL; depending on the
concentration of the sample) was added to a test tube
containing 8 mL of deionized H,O acidified with
HCI, 1mL of 2.5M NH,4 acetate, and 1 mL of
0.01 M ferrozine. Fe(Il) stock solution was prepared
by dissolving ferrous ammonium sulfate [Mohr’s
salt, (NHy),>(Fe)(SO4),-6H,0] in 1% trace metal—
clean HCI (Optima). Standard solutions for the
calibration of the spectrophotometer were prepared
in ammonium acetate buffer as above and calibration
was performed daily.
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Table 1. Studied Hydrothermal Vent Locations and
Water Depths

Latitude (North) Longitude (West) Depth (m)
Biovent 9°50'57.75" 104°17'37.00” 2501
Q 9°50'44.73" 104°17'35.63" 2504
Tica 9°50'24.64" 104°17'30.00” 2509
Bio9 9°50'18.75" 104°17"29.03” 2509
P 9°50'16.79” 104°17'28.39” 2509
Io 9°50'6.74" 104°17'26.65" 2502
Marker 28 9°50'6.74" 104°17"26.65" 2502
v 9°47'13.83" 104°16'59.34" 2517
Bucket Lid A 9°46'30.02" 104°16'48.60" 2541
L 9°46'15.37" 104°16'44.93” 2519

3. Results and Discussion

[o] All vents sampled in 2006 (Table 2) except
Bucket Lid A had temperatures higher than 300°C,
with a maximum of 386°C (P vent). The lowest ship-
board pH measured was 3.41 (Q vent), but the
highest pH measured was 5.76 (L vent). Dissolved
iron was highest with 1.43mM in the Q vent. All
samples (filtered) except the Q vent had AVS con-
centrations close to or above 10mM. The lo vent
had the highest AVS with 15.6 mM. Overall, the
measured CRS was 1%—11% of the sum of AVS
and CRS or the total reduced dissolved sulfide.

[10] In 2007, the lowest and highest pH levels mea-
sured were 2.92 in the marker 28-C sample and
5.12 in the L vent. The dissolved iron concentration
was highest in the marker 28-A vent with 5.15 mM
and lowest in marker 28-B with 0.493 mM. The
AVS was highest in the marker 28-C sample
(11.8mM) and lowest in the L vent (0.761 mM),
both measured on filtered samples. The AVS
concentrations in filtered and unfiltered samples
did not differ significantly. In contrast, the CRS
concentration decreased dramatically upon filter-
ing, for example, from 1.64 to 0.152mM for
the Biovent (Table 2). For filtered samples,
CRS made up 2%-10% of the total reduced
dissolved sulfide in the hydrothermal vent sam-
ples from January 2007.

[11] In June 2008, the highest and lowest tempera-
tures measured were 374°C (P vent) and 300°C,
respectively, for the Tica vent (Table 2). The
Biovent had the lowest pH (2.98) and Tica had
the highest (3.87). The highest dissolved iron
concentration was 2.52mM (P vent). The AVS
concentration in filtered samples was highest in
Tica with 2.65mM and lowest in Bio9 with
1.2mM. In the filtered samples, CRS made up
2%—-5% of the total dissolved reduced sulfide,
similar to the results from 2006 and 2007.

Table 2. Results of the Temperature, pH, Iron, AVS, and CRS Measurements on the Vent Fluids of 9°50'N EPR

Dive Temperature [Fe**] AVS-filtered AVS-unfiltered CRS-filtered CRS-unfiltered
no. Vent ({®) pH (mM) Fraction (mM) Fraction (mM) Fraction (mM) Fraction (mM)
June 2006
4202 Q 318 341 1.43 4.17+0.09 n.m. 0.529+0.112 n.m.
4203 P 386 3.63 0.665 123+1.5 n.m. 0.814+0.09 n.m.
4205 BL-A 270 48 0.075 147+0.1 n.m. 0.136 £0.03 n.m.
4205 L 346 5.76 0.0081 9.56 n.m. 0.303 n.m.
4205 v 319 4.66 0.0084 12.8 n.m. 0.655 n.m.
4207  lo 375 3.56 0.198 15.6 £1.2 n.m. 0.624 £0.06 n.m.
January 2007
4306 Biovent 306 33 0.777 4.13+0.08 4.7+0.5 0.152+0.027 1.64+0.12
4307 L n.m. 5.12 1.31 0.761 +0.045 0.637+0.026 0.08+0.03 0.47+0.14
4314  Mkr n.m. 3.04 5.15 6.82+0.24 8.07+0.28 0.237+0.131 0.429+0.13
28-A
4314  Mkr n.m. 3.84 0.493 3.45+0.06 43405 0.085+0.023 0.612+£0.368
28-B
4314 Mkr nm. 292 1.71 11.84+0.1 11.5+0.3 0.330+0.05 0.414+0.001
28-C
June 2008
4403 P 374 33 252 1.95+0.17 2.09+0.34 0.053 £0.01 0.161 +0.009
4403  Tica 300 3.87 0.164 2.65+0.29 242+0.21 0.064 £0.032 0.110£0.095
4405 Bio9 360 336 1.2 1.10+0.09 1.20+0.19 0.054 +0.002 0.368 +0.181
4407 Biovent 350 2.98 2.15 2.49 £0.43 242+0.23 0.088 £+ 0.004 0.211+0.042

The standard errors associated with AVS and CRS are based on triplicate measurements. The error in iron measurements was less than 1%. BL-A stands for

Bucket Lid A vent; Mkr, marker.
n.m. : not measured.
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[12] Our results indicate that the subseafloor volca-
nic processes that caused the eruption at EPR in
2005/2006 led to the phase separation of the vent
fluids, resulting in the initial enrichment of emitted
volatiles in them. As a result, the most notable
temporal change in the EPR data set from 2006
to 2008 is the decline in dissolved sulfide (AVS
and CRS) concentrations over the 3 years follow-
ing 2005/2006 with increasing Fe(Il) (Figure 2).
In June 2006, about 4-8 months after the eruption,
the average AVS of the six vents was 11.7mM,
with an average dissolved iron concentration of
0.382mM. The average AVS decreased by 50%
to 54mM in 2007 and by another 50% to
2.05mM in 2008. CRS also decreased from an
average of 0.51 mM (2006) to 0.178 mM in 2007
and to 0.065 mM in 2008. The average dissolved
iron increased by 5-fold to 1.89 mM in 2007 and
decreased slightly to 1.51mM in 2008. There
was no significant temporal change in either the
pH or the temperature. Among the vents with
multiyear data, the most dramatic changes are that
sulfide in the P vent decreased by 6-fold over
2 years, whereas that in the L vent decreased by
10-fold over 1 year.

[13] After the 1991 eruption at 9°50'N EPR, Von
Damm et al. [1995] also observed elevated sulfide
concentrations in the newly formed vents. They sam-
pled the vents within 1 month after the eruption and
calculated end-member H,S concentrations as high
as 71 mmolkg ' with measured temperatures as
high as 403°C. They did not report the actual mea-
sured values, so a direct comparison of our data with
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theirs is not possible. Still, their data showed a six-
fold decrease in maximum sulfide concentrations
(71 to 11 mMkg ") from 1991 to 1994. Von Damm
[2004] provided a more complete set of observations
with actual measured values for the 5 years following
the 1991 eruption in the 9°50'N EPR vents. These
observations included data on two vents: P and
Bi09. In the 4 years following the 1991 eruption,
the Bio9 vent sulfide concentration decreased by
fivefold from 21 to 4mM and the P vent sulfide
decreased by eightfold from 25 to 2 mM. The iron
concentrations fluctuated in the period 1991-1994
between 2.19 and 1.06 mM for the Bio9 vent as well
as between 0.064 and 5.78 mM for the P vent, similar
to our 2007 and 2008 data, and the concentrations
kept increasing until 1996, reaching values exceed-
ing 8 mM. These observations after the 1991 erup-
tion are consistent with our study for the 3 years
following the 2005/2006 eruption, indicative of
initial phase separation, where vent fluids were
dominated by a H,S-laden vapor phase. With the
gradual lessening of the volatiles and increasing pres-
ence of the brine phase, the vent fluids are gradually
enriched in metals such as iron.

[14] The picture that emerged after the documenta-
tion of two eruptive cycles at 9°50'N EPR is
consistent with the available results on other vent
systems, although those data are mostly on diffuse
fluids [Butterfield et al., 1997, 2004]. For example,
after the 1993 eruption in the CoAxial segment of
the Juan de Fuca Ridge, the diffuse flow (<50°C)
fluids displayed initial elevation in sulfide concen-
trations (max. 0.38 mM) in the weeks after the
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Figure 2. Temporal changes in the EPR vents through 2006 to 2008. (a) Averages of all measured AVS, CRS, and
dissolved Fe concentrations are plotted to obtain general trends. (b) Temporal change in the chemistry of the P vent
from 2006 to 2008. (c) Temporal change in the chemistry of the L vent from 2006 to 2007. (d) Temporal change in

the chemistry of the Biovent from 2007 to 2008.
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event, followed by a gradual decline in sulfide and
an increase in iron (max. 0.058 mM) over 2 years
[Butterfield et al., 1997]. One contrasting feature
was the complete disappearance of sulfide after
several years in the vent fluids of the CoAxial site.
Although a disappearance of sulfide was not
observed either in high temperature [Von Damm,
2004; this study] or in low-temperature diffuse
fluids [Luther et al., 2012; Nees et al., 2009] at
9°50’ EPR, similar decreases in sulfide and
increases in iron occurred. These data underline
the specific dynamics of each vent system and
indicate that the chemical compositions of the vent
fluids on the global mid-ocean ridge are usually
evolving. Thus, it is difficult to speak of stable
concentration levels over several years, at least
for iron-sulfide species.

[15] In the context of the importance of vent-derived
iron input for ocean biogeochemistry, our findings
raise the question of what the consequences of
these dramatic yearly changes in the iron concen-
trations to the ocean from vents are. Our iron data
indicate that in the post-eruptive period, the aver-
ages of all vent concentrations can vary by 5-fold,
whereas individual vents can differ by as much as
15-fold in iron concentrations (L vent). Recent
research recognized that not all of the discharged
iron precipitates near the vents. Instead, processes
such as nanoparticle pyrite formation [Yiicel et al.,
2011] and organic complexation [Bennett et al.,
2008] are important agents in transporting vent-
derived iron away from venting areas, which could
in turn support primary production elsewhere. In
this respect, the changing speciation of Fe-S
species with time can have consequences. We
have not measured the nanoparticle pyrite fraction
through nitric acid digestion as done by Yiicel
et al. [2011], but based on a stoichiometric ratio
of 2:1 for CRS to pyrite iron, we can estimate that
up to 50% of dissolved iron could have been CRS
bound in the immediate post-eruptive period
(2006), whereas these fractions were about 10%
in 2007 and 2008. It is possible that seafloor
volcanic activity can induce orders of magnitude
elevated mass fluxes and larger hydrothermal
plumes than usual [Baker, 1995; Baker et al.,
2012]. Under these circumstances, volcanic activ-
ity may result in a higher CRS-bound iron flux
even though the concentration itself may be lower.
As a consequence, in future studies, it may be
worthwhile to explore the consequences of the
short-term (yearly) variability in hydrothermal
iron-sulfur speciation and fluxes on the ocean
biogeochemistry.

4. Conclusions

[16] Hydrothermal vents at 9°50'N EPR have had
increasing dissolved iron and decreasing sulfide
(AVS) concentrations since the eruption that
occurred in late 2005/early 2006. Phase separa-
tion—induced volatile enrichment in the subseafloor
is the primary reason for unusual enrichments of the
vent fluid in sulfide and high sulfide to iron ratios
within 4-8 months after the eruption. Our results
confirm a pattern that was noted only once before
for the 9°50'N EPR and emphasize the dramatic
yearly variability in the concentrations of iron-
sulfur species emanating from vents, a dynamic
phenomenon that may affect iron biogeochemical
cycling in the overlying waters.
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