
A Rule-Based Approach to
Real Time Systems

Peijuan Xie

M.Sc. in Computer Applications

1991

A Rule-Based Approach to

Real Time Systems

A Dissertation presented in fulfilment

of the requirement for the M.Sc Degree

in Computer Applications

August 1991

Peijuan Xie B.Sc

School of Computer Applications

Dublin City University

Dublin 9.

Supervisor: Mr Michael Ryan.

Declaration.

This dissertation is based on the author’s own work.
It has not previously been submitted for a degree at
any academic institution.

A' i £

Peijuan Xie
August 1991.

ACKNOWLEDGEMENT

I would like to thank my supervisor, Mr. Michael Ryan for his
invaluable advice, patience and encouragement throughout
the research for this thesis. I would also like to thank Mr.
Garvan McFeeley for his help in building up the interrupt
system. Thanks to all the staff in the School of Computer
Applications for their great concern and friendship. Finally I
wish to thank my husband Jinsong for his continuous
encouragement.

ABSTRACT

In this thesis, a progressive refinement approach is
proposed for the use of rule-based systems in real time
applications. In this approach, the knowledge involved Is
constructed in a hierarchy of the levels. Part of this
knowledge determines the time available for a decision.
Progressive refinement allows the system to take corrective
action by forming appropriate solutions within time constraints.

An expert system shell written in Prolog is constructed to
implement the progressive refinement framework. An English
like language is also constructed, which allows the time
constrained rules for the system to be specified in a user
friendly manner.

The framework can be applied to both discrete and
continuous systems. An example is provided of the
application of the framework to a discrete system.
Experiments were also carried out to investigate the
application of the framework to a continuous system, and their
results are presented here.

Table of Contents.

Chapter 1 Introduction. 1

Chapter 2 Review of Rule-Based Real Time Systems.

2.1 PID and Adaptive Controllers. 5

2.2 Rule-Based Controllers. 7

Chapter 3 Choice of Implementation.

3.1 Rule-Based Expert System Languages and Tools. 18

3.2 Prolog. 22

3.2.1 Rule-Based Programming. 23

3.2.2 Built-in Pattern Matching and Backtracking 25

3.2.3 Declarative and procedural Semantics of Prolog. 31

3.2.4 Depth-First Search Strategy. 36

3.2.5 Other Features. 37

3.3 Arity Prolog. 39

3.4 Some Problems with Prolog. 41

Chapter 4 Framework for a Rule-Based Real Time System.

4.1 Functional Description. 44

4.1.1 The Modular Structure of the Framework. 48

4.2 The User Interface and Functions. 51

4.2.1 Specification of the System. 53

4.2.2 Knowledge Representation. 58

4.2.3 Response Time. 61

4.2.4 Data Acquisition. 62

4.3 The Structure of the Knowledge Base. 62

4.3.1 Rule Format and Translation. 64

4.3.2 The Structure of Rule Base. 69

4.4 Inference Engine. 71

4.4.1 Progressive Refinement. 72

4.4.2 Interrupt Mechanism. 73

4.4.3 Backward Chaining. 76

4.5 Summary. 78

Chapter 5 Testing the System.

5.1 Example 1. 80

5.2 Example 2. 81

5.3 Controlling a Machine for the Manufacture of Contact

Lenses. 83

Chapter 6 Progressing Refinement with Continuous Systems.

6.1 Controlling a Cart with a Pendulum. 99

Chapter 7 Conclusions and Further work. 109

Bibliography

Appendix A Program Listings.

Appendix B A List of The Rule Base.

Chapter 1

Introduction

Chapter 1. Introduction

Real-time control systems are being used today in a greater variety of applications

than ever before. Both small and large controllers are being used to perform increasingly

complex tasks. The complexity is increasing not only in the number of functions to be

controlled, but also in the kinds of factors that must be considered before a correct

decision can be made. This increasing complexity of the tasks to be controlled has

caused considerable interest in employing rule-based techniques for controller

applications. Proper application of these techniques can result in more sophisticated

control strategies for advanced applications.[R8]

The key feature of a real-time system is its ability to guarantee a response after a

fixed time has elapsed. Traditionally, real-time control is implemented by mathematical

control algorithms, such as proportional, integral and derivative (PID) control. The majority

of the control loops in controllers are PID loops. They can make decisions quickly and

accurately in simple situations. Control of process variables, such as temperature,

pressure and so on, can be implemented in a single control loop. The parameters of the

PID (or other type) of controller are selected initially to achieve both accuracy and a good

transient behaviour. In practice, however, due to a variety of reasons, the performance

1

of the controller may deteriorate and hence tuning of the parameters becomes necessary.

A few adaptive and auto-tuning controllers have entered the market also. By the tuning

of the controller parameters, the deterioration of the system can be reduced in these

controllers.

The rule-based approach offers an attractive alternative to dealing with complex

control problems, at least at first sight. The rule-based approach can be described as an

attempt to supply a controller with control knowledge expressed as rules and with an

efficient inference engine able to apply these rules in a real time environment. The rule-

based system can be used on the supervisory level, acting in the same way as an

experienced control engineer. Recently, in some real-time control systems, a rule-based

controller has been used in the control loop instead of the traditional control algorithm.

However, the critical response time constraints of real-time system applications distinguish

the rule-based real-time systems from more traditional rule-based systems (expert

systems). Special hardware and software techniques have been used in modern rule-

based real-time controllers to meet real-time constraints.

2

Examples of existing real time rule-based systems include G2 , PICON , and others.

PICON was developed by Moore and others at LISP Machines Incorporated. It features

a dual processor architecture where the symbolic manipulation resides on a LAMBDA

LISP machine while the numerical processing needed for real-time analysis is performed

by a Motorola 68010 processor. G2 was developed by Gensym and is available for a

variety of computers ranging from powerful symbolic computing work-stations to general

purpose microcomputers such as the IBM-PC. The symbolic manipulation is performed

in a dialect of Common Lisp. The slowing down caused by garbage collection, which is

a major problem in using Lisp, has been overcome according to Gensym, and as a result

G2 is regarded as being more powerful than PICON.

Both PICON and G2 attempt to deal with the strict response time requirements of the

control environment by partitioning the task between a symbolic processor to deal with

non time-critical aspects and special hardware for the time critical component.

The approach in this thesis does not involve a partitioning of the task between

different hardware systems. Instead, the rules which deal with the behaviour of the

system are partitioned in a way which guarantees an appropriate response even in time-

critical situations. This partitioning allows the system to progressively refine its response

3

to a given situation until the time appropriate for that situation has expired whereupon

the response is output. The accuracy of the system’s response depends on the time

available to calculate it. In this respect the system can be thought of as mimicking an

aspect of the problem solving behaviour of humans. A similar idea is implemented in the

HEXSCON SYSTEM (Stanford Research Institute 1986). This system is used in military

applications, in particular, dealing with multiple incoming missiles.

In this paper, we present a rule-based architecture for the control problem.

Knowledge is constructed into several levels. At each level, an appropriate response can

be obtained. Each successive level gives a more precise response, and also needs more

time. Our goal is to develop a problem solver that, when it cannot find the optimal

solution due to lack of time, will progressively generate acceptable solutions that meet the

deadlines and the user’s needs.

4

Chapter 2

Review of Rule-Based

Real Time Systems

Chapter 2. Review of Rule-Based Real Time Systems

Implementation of a control system conventionally uses special purpose hardware or

fast processors and a real-time control algorithm. But as these systems become more

and more complicated, the difficulty of dealing with them using such traditional methods

increases rapidly. Meanwhile, the field of Artificial Intelligence has produced tools and

techniques applicable to the design and implementation of complex control systems.

These tools include expert systems. In recent years, expert systems are gradually being

used in real-time process control. This chapter reviews a number of approaches to the

control problem.

2.1 PID and Adaptive Controllers.

In the early design of real-time process control systems, the control algorithm was

often implemented directly in analogue hardware, which was used to implement a

feedback loop with proportional, integral, and derivative control. Initial microprocessor

based control systems typically implemented PID control using an algorithm. Tasks in

the control algorithm usually include:

5

- sampling the variable being controlled using an analog to digital converter.

- comparing the measured variable y(k) with the desired or set value r(k) to

calculate the error e(k) where k is the discrete time.

- using current and previous values of the error e(k) to calculate the output

signal to actuator u(k).

- sending the signal to the actuator either in digital form or using a digital to

analog converter.

A popular control algorithm is the PID (proportional, integral, and derivative)

algorithm which involves calculation of the integral and the derivative of the error signal

as well as a few multiplications and additions in order to compute the actuator input u(k),

u(k)=Kp*e(k) + Ki*l(k) + Kd*d(k)

where l(k) is the numerical integral of e(k) and d(k) is its numerical derivative. Kp,Ki and

Kd are parameters which determine the performance of the PID controller. Poor

estimation of these parameters will make the PID control system unstable and oscillatory.

In pressure and temperature control, PID control is usually sufficient. The control

output may need to be updated only once every few seconds to once every minute. The

6

computation time required to implement a simple controller such as the PID is usually

very small compared to the sampling interval time and hence does not pose any problem.

The parameters of the PID (or other type) controller are calculated initially, but due

to a variety of reasons, the behavior of the controller may deteriorate and hence tuning

of the parameters becomes necessary. A solution to this is the adaptive controller,

where the parameters of a model for the process are estimated on-line. A self-tuning

controller contains an identification algorithm that periodically updates model parameters.

Implementation of self-tuning control using a microcomputer is possible for a process that

is not too fast. But there also many problems associated with the implementation of

adaptive control. Firstly, it is quite possible for the adaptive control system to become

unstable due to poor parameters estimation. Secondly, it is also possible for a sudden

change in the process to cause the performance of the adaptive controller to deteriorate.

2.2 Rule-based controller.

During the last few years the development of rule-based techniques has been one

of the basic topics in Al research particularly in the context of expert systems. Figure 1

illustrates the basic concept of a rule-based system. The user supplies facts or

7

information to the system and receives advice and decisions in response. The rule-based

system consists of two main components, the knowledge-base containing the knowledge

in the form of rules and the inference engine which draws conclusions.

Reasoning
sinference

User
Advice Interface
decision -----------

Knowledge
domain

Figure 1. Basic concept of a rule-based system function

Knowledge
Base

Inference
Engine

8

There are a lot of papers discussing the advantages ([3],[16],[36]) and the use of the

rule-based approach. These include:

1) Knowledge is represented as collections of rules, which gives both a declarative

programming style and a modular system where new rules can be added relatively

independently.

2) Rules tend to provide an efficient way to categorize a process which is driven by

complex and rapidly changing environmental situations.

3) It is possible for a set of rules to specify the reaction of a program without

requiring explicit data in the knowledge base about the flow of control.

4) The use of rules also tends to simplify the determination of how a specific

conclusion was reached.

These advantages have led to the application of the rule-based approach to a

number of domains. Some attempts have been made to apply this approach in the real

time domain. The expert system contains knowledge in the form of rules enabling it to

diagnose the system periodically and to take appropriate action if deterioration in

performance is discovered. But how long will it take to reach a conclusion ?

9

One definition of "real-time" is: "a strictly limited time period is available in which the

system must produce a response to environmental stimuli, no matter what kind of

algorithms it employs." An important issue facing the introduction of rule-based

technology into real-time applications is the ability of rule-based real-time systems to meet

deadlines. Typical approaches to real-time computing assume that a task’s priorities, time

and other resource needs are completely known in advance and are unrelated to those

of other tasks, so that a control component can schedule tasks based on their individual

characteristics. If there are more tasks than the system can process within the time limit,

the decision about which tasks to ignore is simple and local. It can be based on task

priority and the time needed. However, tasks in rule-based applications are

interdependent because they search different parts of the solution space to solve related

subproblems. Problems arise in this area because the length of the chain of inferences

involved in arriving at a conclusion, and the amount of backtracking, can not be

determined in advance. There is no way of knowing how long the system will take to

arrive at a result. Both hardware and software methods have been used to meet the real­

time system time constraints, such as special real-time languages, e.g. "PEARL",

separation of symbolic and numeric calculations, development of new strategies of

knowledge processing, and so on.

10

A short overview will be given of current rule-based real-time systems.

PICON

PICON (Process Intelligent Control) was developed by Moore and others at Lisp

Machines Incorporated. This package is designed to operate on a Lisp machine

interfaced with a conventional distributed control system, where as many as 20,000

measurement points may be accessed. PICON is a development tool for real-time

monitoring and diagnosis of process control systems. The general functional capabilities

of the system are:

- intelligent alarming, particularly on complex combinations of conditions which

require expertise for proper interpretation.

- detection of possibly-significant-events by inference applied to heuristic rules about

dynamic process conditions.

- focus inference, in which procedure rules of all priorities and all inference rules

are enabled (scanned) for a particular process. In the typical case, a

11

possibly-significant-event (high priority procedure rule) would trigger a focus on

the particular process, thus gathering information required for complete inference

around that process.

- diagnosis, a backward chaining inference, triggered by a possibly-significant-

event or by operator request. An explanation is then given of the resulting

inference path.

PICON uses the LAMBDA machine with two processors running in parallel. A Lisp

processor is used for the expert system, while real-time data access and certain low-

level inference tasks are performed by a 68010 processor. The 68010 uses an integral

multibus to communicate with the distributed process control system.

To increase computational efficiency, PICON employs two processors running in

parallel. They proposed an inference strategy, which is supposed to imitate a human

experts problem-solving approach. An expert process operator, during normal plant

operation, will scan key process information. This is for purposes of monitoring control

performance and detecting problems which may not cause explicit alarms. In PICON, the

12

same approach is modelled by applying heuristic rules about dynamic process conditions

to detect possibly-significant-events (high priority procedure rule), which then trigger a

focus on the process unit.

G2

The G2 system developed by Gensym is considerably more powerful than PICON.

It serves as an environment for development and implementation of real-time expert

control systems as well as for simulation of complex, distributed, process control or

communication networks. One of the main features of G2 is that it is available for a

variety of computers ranging from powerful symbolic computing workstations to general

purpose microcomputers such as the IBM PC. The symbolic manipulation is performed

in a dialect of common Lisp. The slowing down caused by garbage collection, which was

a major problem in using Lisp, has been overcome according to Gensym. Speeds of

response at the order of a few milliseconds are possible with G2 on appropriate hardware

according to the developers. Another major feature is the ability to distribute knowledge

and to have several real-time expert systems work together. At the heart of G2 is a real­

time scheduler that allows reasoning about time-dependent events and variables. While

1 3

the system in itself does not include any expertise fortuning of controllers or diagnosing

sources of problems, it offers the user the best available environment to represent such

expertise in the form of a real-time expert system. G2, like PICON, communicates with

various available distributed process control systems and hence the host computer does

not perform the control function but acts as an active supervisor which can interfere to

change the control strategy([R10]).

HEXSCON

HEXSCON (Hybrid EXpert System CONtroller) is a hybrid expert system for real-time

control applications. It is developed by SRI(Stanford Research Institute) International,

and mainly intended to deal with control problems encountered in military and advanced

industrial applications. HEXSCON is claimed to include 1) a capacity of 5000 rules in a

microcomputer system with 512k memory, 2) a response time of 10 ms to 100ms, 3) the

ability to handle many objects (about 1000), and 4) the ability to continue functioning

despite a lot of uncertainty.

In HEXSCON, there are three main features involved in improving the real-time

performance of the system. Firstly, conventional logic controllers and knowledge-based

14

techniques are combined in the system. Thus many real-time operational decisions,

particularly the simpler ones, can be made by conventional logic controllers quite

adequately and rapidly. Secondly, a sort of inference strategy, called progressive

reasoning, is adopted in the system. By using this strategy, the reasoning processes are

divided into several levels. More sophisticated solution can be obtained at a higher level

than at a lower level, but it needs more time. The system always tries to go to the level

which is as high as that allowed by the time available, and therefore, the solution will be

the best within that time period. Thirdly, knowledge used in the HEXSCON is

represented in the form of rules, and all rules are compiled into a more compact form for

use with the inference engine. Therefore, the execution time of the rules may be

speeded up.

HEXSCON is implemented in PASCAL. The knowledge-base management software

and the English-like knowledge base can be in a large machine, while the "compiled"

knowledge, inference engine and conventional logic can be in a microcomputer.

15

SUMMARY

From above examples, we can see that different hardware and software approaches

are used to provide a real-time capability in rule-based systems. These approaches

include:

1) The adaptation of existing techniques to improve the real-time performance

of the systems, such as the use of conventional algorithms and controllers in the

HEXSCON system.

2) The use of specialized hardware and optimized software. For instance, in

the PICON system, a specialized Lisp processor is used for the expert system and a

68010 processor used for low level processing. In G2 system, response time can be

a few milliseconds by using appropriate hardware. In HEXSCON all the rules are

compiled, so that they can be executed faster by the processor.

3) Some low level processing systems are separated from the expert system, and

they are capable of concurrent execution. For example, two processors are used in the

PICON. Only one of the machines or processors is for the expert system, and the other

is used for intelligent communication or low level processing operations.

1 6

4) Some parallel techniques are adopted, G2 can distribute knowledge and let

several real-time expert systems work together. HEXSCON can reason about multiple

objects.

These approaches are often supported by an attempt to classify or priorities the rules

used by the system. For example, in PICON, rules are assigned priorities when they are

entered into the knowledge base. In HEXSCON, the knowledge was divided into two

categories: conceptual knowledge and operational knowledge.

In this thesis, we propose a method which divides rules into several levels. An

appropriate decision can be obtained at each level within a certain time. Each higher level

will give a more precise response than a lower level, and also need more time. This

approach allows the system to obtain the best possible decision within the time available.

Unlike other systems which take a broadly similar approach, such as HEXSCON ([8],[11]),

the time available to deal with changing situations is determined by rules in the system

itself.

17

Chapter 3

Choice of Implementation

Chapter 3. Choice of implementation

3.1 Rule-Based Expert System Languages and Tools.

Expert systems are computer systems where the knowledge which specifies what the

system should do is kept in a separate knowledge base rather than being buried in a

mixture of data structures and procedures. A more correct general term is 'knowledge

based systems’ - the expression 'expert system’ implies that the knowledge relates to that

of an expert, and that the system deals with the problem in a way analogous to that which

an expert would use, but it has become common practice to ignore this distinction. In

most systems, the knowledge is specified as a set of rules, which is stored explicitly in

the system in the 'knowledge base’. Such systems are also called ’rule-based systems’.

A rule-based system is divided into four main components, as illustrated in figure 3.1:

1) a knowledge base

2) an inference engine

3) a user interface

4) current state

18

*

Knowledge Inference Current
base *

*
engine *

* state
* T *
* Shell *
* I *
* *
*
* User *
* interface *
* *
* * * * * * * * * * * * * * * * *

Figure 3.1 Structure of rule-based system.

The knowledge-base comprises the knowledge that is specific to the domain of

application, including such things as simple facts about the domain, rules that describe

relations or phenomena in the domain, and heuristics and ideas for solving problems in

this domain. The language of if-then rules is the most popular formalism for representing

this knowledge. An inference engine knows how to actively use the knowledge in the

knowledge base and the current state of the world. The inference engine usually uses

one of two strategies to do its work, either working forward from the facts about the

current state of the world, known as ’forward chaining’, or working backwards from a

question, known as 'backward chaining’. A mixed strategy is also possible. Most

inference engines can cooperate with the user interface to provide an explanation of how

a result was obtained, usually by giving the sequence of rules used. The user interface

caters for smooth communication between the user and the system, and also provides

the user with an insight into the problem-solving process carried out by the inference

engine.

The inference engine and the user interface can be viewed as one module, usually

called an expert system shell, or simply a shell for brevity. The knowledge base clearly

depends on the application, but the shell is, in principle at least, domain independent.

Thus a rational way of developing expert systems for several applications consists of

developing a shell that can be used universally, and then plugging in a new knowledge

base for each application. Of course, all the knowledge bases will have to conform to the

same formalism that is ’understood’ by the shell. So one approach to developing a rule-

based expert system is to use an existing shell. In practice, however, it is fairly usual for

the shell to be tailored to the needs of the application. Rather then using a shell, it is also

possible to develop a system using a high level language. This will involve writing the

inference engine and user interface but gives complete control over the behavior of the

system. For a rule-based system which deals with real time situations such control over

the behavior of the system is necessary, and is not adequately catered for in the available

2 0

shells. This thesis therefore considers developing such a system using a high level

language.

The high level languages that can be used to build expert systems include the

principal languages of artificial intelligence such as Lisp or Prolog, and conventional

language like C, Ada, Pascal, Basic etc. It is a lot easier to develop rule-based systems

in symbolic manipulation languages such as Lisp or Prolog. Conventional languages are

oriented toward numerical processing while symbolic languages are oriented toward

symbol manipulation. In addition, logic based languages such as Prolog include built in

deductive capabilities.

Implementations of expert systems have been done using a variety of different

languages. In the real time domain, PICON uses Lisp, running on a Lambda Lisp

machine, to implement the rule-based system. G2 is also Implemented in Lisp. The

major problem in using Lisp is the need for garbage collection which results in the slowing

down of the system. In HEXSCON, Pascal was chosen to implement the system,

because it simplified construction of large programs, produced compact, fast code in the

target environment, could be easily converted to Ada later for military applications and

was well known by the developers.

21

In this thesis, Prolog was chosen. Prolog has many advantages as an application

language for rule-based system. W e will give a brief discussion of advantages of Prolog

in the rest of this chapter.

3.2 Prolog.

Prolog was developed around 1970 by Alain Colm erauer and his associates at the

University of Marseilles. Prolog (PROgram m ing in L O G ic) implements a simplified version

of predicate calculus based on Horn clauses. So Prolog is a logic programming

language. Th e basis of Prolog is true logic programming using controlled, logical

inferences. Th is makes Prolog well suited for m any applications that require simulation

of intelligence, including expert systems development, deductive data bases, language

processing, robotics control, planning systems, and design applications. Prolog does

aw ay with familiar programming concepts such as "goto", and "do-for" and instead

incorporates features required by intelligent programs such as advanced pattern

matching, generalized record structures, list manipulation, assertional data bases, and

depth-first search based on back-chaining.

22

Prolog has many advantages as an application language for expert systems, primarily

due to three major features of the language: rule-based programming, built-in pattern

matching, and backtracking execution.

3.2.1 Rule-Based Programming.

Th e Prolog language allows rules and facts to be expressed easily, and so provides

a language in which the domain knowledge and the facts about the current state of the

world can be readily represented. The symbolic nature of Prolog together with the

declarative reading of Prolog clauses ensures that a flexible quasi-natural language

interface can be easily supported.

In Prolog, a fact such as "mary is a child of patric H can be represented as

"child(mary, patric)", where child is called the predicate or functor and the mary or patric

are called the arguments. Th e arguments can be atoms, integers, variables or indeed

other facts. See[1].

A rule consists of a head and a body. Th e body is made up of sub-goals which have

to be proved true in order for the rule to be proved true. For example, the logical

statement:

23

Y is a child of X if

X is a parent of Y.

can be translated easily into the formalism of Prolog.

chlld(Y,X) :-parent(X,Y).

T h e body of the rule is also called the condition part or the right - hand side of the rule.

T h e head of the rule is also called the conclusion part or the left - hand side of the rule.

If the condition parent(X,Y) is true then a logical consequence of this is child(Y,X). A

clause is the name given collectively to both facts and rules. A predicate can also be

defined by a group of clauses.

Prolog specifies known facts and relationships about a particular problem domain

using the languages’s symbolic representations of objects and the relationships between

objects, thus creating clauses. Clauses are implications , and they make up the program

with conclusions being stated first. Prolog expresses facts, rules, and relations in a fairly

natural form which, in turn, produces clear, concise programs.

For all X and Y,

24

3.2.2 Built-in Pattern M atching and Backtracking.

Prolog has an Inference mechanism, based on the resolution (Robinson 1965) rule

of inference, which is built into the language and this inference mechanism can easily be

used on the rules constructed by the developer. Prolog uses a special strategy for

resolution theorem proving called S LD , which incorporates matching (roughly equivalent

to unification), instantiation and backtracking. A variable is said to be instantiated when

the object for which that variable stands is known. A variable is not instantiated when

what the variable stands for is not yet known. Th e object in this case is usually an atom,

string, integer or a structure. In practical programming terms instantiation means that the

object is assigned perhaps temporarily to this variable. It is temporarily assigned because

it can become uninstantiated during backtracking.

With matching, the general rules to decide whether two terms, S and T , match are

as follows:

1) If S and T are constants then S and T match only if they are the same

object.

25

2) If S is an uninstantiated variable and T is anything, then they match, and S is

instantiated to T . Conversely, if T is an uninstantiated variable and S is not, then

T is instantiated to S.

3) If S and T are structures then they match only if

a) S and T have the same principal functor, and

b) all their corresponding components match.

Th e resulting instantiation is determined by the matching of the

components.

So given two terms, we say that they match if:

1) they are identical, or

2) the variable in both terms can be instantiated to objects in such a w ay that

after the substitution of variables by these objects the terms become

dentical.

26

T h e following example from [R1] is an illustration. Th e terms date(D, M, 1983) and

date(D1, may, Y1) match. O n e instantiation that makes both terms identical is:

1) D is instantiated to D1

2) M is instantiated to may

3) Y1 is instantiated to 1983

Th is instantiation is more compactly written in the familiar form in which Prolog outputs

results:

D = D1

M = m a y

Y1 = 1 9 8 3

O n the other hand, the terms date(D, M, 1983) and date(D1, M 1,1444) do not match,

nor do the terms date(X, Y, Z) and point(X, Y, Z).

27

T h e inference mechanism in prolog is perhaps best explained using an

example. Assum e the following database where ’% ’ represents comments.

% 1 john is a thief

thief(john).

% 2 mary likes food

likes(mary, food).

% 3 mary likes wine

likes(mary, wine).

% 4 john like X if X likes wine

likesQ'ohn, X) likes(X,wine).

% 5 X m ay steal Y if X is a thief and X likes Y and Y is valuable.

m ay_steal(X, Y) thief(X), likes(X,Y), valuable(Y).

28

In response to the question "what may john steal" i.e. may_steal(john, X)? Prolog

proceeds as follows:

1. First it searches through the database (top down) until it finds a fact or a rule to match

the query. It finds it in the form of clause 5 which is a rule, marks this place in the

database and X in the rule becomes instantiated to john. It then attempts to solve the

subgoals on the right hand side of the rule in order left to right starting with thiefQohn) as

X has been instantiated to john from the original query.

2. It initiates the search for the goal thief(john) from the top of the database and finds the

fact thief(john). Prolog marks this place in the database also. It then attempts to satisfy

the second goal in clause 5 which is effectively likes(john, Y).

3. Th e goal likes(john, Y) matches with the head of a rule (clause 4), the Y in the goal

shares with the X in the head of clause 4, and both remain uninstantiated. T o satisfy this

rule, Prolog attempts to find a solution to the likes(X, wine) in clause 4.

4. Th e goal succeeds because it matches with likes(mary, wine) (clause 3) with X being

instantiated to mary in clause 4 and Y being instantiated to mary in the second goal of

clause 5 because X and Y share.

29

5. Having solved the first two goals in clause 5 it now attempts to solve the third and last

goal which is effectively valuable(m ary). But there is no fact to match this in the database

and no rule to try and establish it so Prolog backtracks to try and find alternative

solutions. During backtracking all variables which were previously instantiated become

uninstantiated.

6. Prolog has kept track of all the places in the database were it has found solutions. It

starts by trying to find an alternative solution to second goal likes(X, Y) in clause 5 which

causes clause 4 to backtrack. But this too fails as likes(mary, wine) is the only fact that

matches the right hand side of clause 4.

7. It then backtracks further to try and resatisfy thief(X) but this also fails causing the

whole of clause 5 to fail. Since Prolog can find no other fact or rule to match the original

query, the query fails and Prolog returns with the answer "no".

30

Th e meaning of a Prolog program can be regarded from the point of view of a) Its

declarative semantics, b) Its procedural semantics.

Declarative Semantics

Th e declarative semantics is concerned with the relations defined by the program without

considering how these relations are brought about. Prolog is not a purely declarative

language since to use it properly, it is necessary to take account of the way in which it

operates, and it also contains purely procedural constructs such as ’cut’.

Procedural Semantics

Th e procedural semantics determines how the output is obtained; that is, how the

relations are actually evaluated by the Prolog system. Because Prolog uses a specific

deterministic approach (S L D resolution), the result can be affected by non-declarative

aspects of the programm such as the order of statements. Prolog also contains

statements which help to control the inference engine. Perhaps the most important of

these is ’cut’, which is used to prevent backtracking.

3.2.3 Declarative and Procedural Sem antics of Prolog.

31

Difference

Consider a clause

m other(X ,Y):- parent(X.Y), fem ale(X).

Th e declarative reading of this clause is:

X is Y ’s mother if X is Y ’s parent and X is female.

Th e procedural reading of this clause is:

To solve problem "X is Y ’s mother", first solve the subproblem "X is Y 's parent" and

then the subproblem "X is female".

Th u s the difference between the declarative readings and the procedural ones is that

the latter do not only define the logical relations between the head of the clause and the

goals in the body, but also the order in which the goals are processed.

The difference between these two meanings can be seen by example.

32

Advantage and Problems

Th e advantage of Prolog’s declarative semantics is Prolog expresses facts,rules and

relations in a more natural form which, in turn, produces clear, concise programs. Also.it

encourages the programmer to consider to a certain extent, the declarative meaning of

programs relatively independent of their procedural meaning. Th e executional details is

left to the greatest possible extent to the Prolog system itself. This ability of Prolog is

considered to be one of its specific advantages distinguishing it from conventional

languages.

This declarative approach indeed often makes programming in Prolog easier than

in typical procedurally oriented programming languages. Unfortunately, however, the

declarative approach is not always sufficient. In practice, the programmer should know

how Prolog systems execute a program. Because the procedural meaning of Prolog is

a procedure for executing a list of goals with respect to a given program, different order

of clause and goals will cause program result variations, although they have the same

declarative meaning.

33

Consider an example(from [R1]);

predecessor(X ,Z):- parent(X,Z).

p re d e c e s s o r(X ,Z)p a re n t(X ,Y),

predecessor(Y,Z).

by swapping goals and clauses of the above example, we obtain:

P redecessor(X ,Z):- predecessor(X,Y),

parent(X,Z).

predecessor(X.Z):- parent(X,Z).

T h e two versions of the program have the same declarative meaning, but not the same

procedural meaning.

Suppose there are facts :

Parent(Tom , Bob)

Parent(Bob, Pat)

34

If we ask question whether To m is a Predecessor of Pat using the two variations of the

Predecessor relation above, we get different result. Th e first version answers ’Y e s ’

while the Second causes a system crash. Figure 3.2.1 shows the corresponding traces

for second program.

Pred(Tom, Pat)

Predecessor(X, Z)
Predecessor(X, Y) ,
Parent(Y,Z).

Predecessor(X, Z
Parent(X,Z)

Pred ("]
Parent

fom, Y)
;(Y, Pat)

Pred(Tom, Y")
Parent (Y", Y')
Parent(Y', Pat)

Pred(Tom, Y " ')
Parent(Y"', Y"
Parent(Y", Y')
Parent(Y', Pat

t

35

This example shows Prolog trying to solve a problem in such a way that a solution

is never reached, although a solution exists. Due to the changes of ordering of clauses

and goals, the system enter into an infinite sequence of recursive calls which eventually

leads to a stack overflow. From the above example, we can see, although Prolog system

has built-in procedure to execute program, the programmer should not ignore the

procedural semantics when he or she concentrates on the declarative semantics of

program. Nevertheless, the declarative style of thinking is characteristic of logic

programming, with the procedural aspects ignored to the extent that is permitted by

practical constraints.

3.2.4 Depth-First Search Strategy.

As the above examples illustrate, Prolog uses a depth first search strategy in looking

for the chain of logical inferences which links the conclusion to the starting assumptions.

Th is mechanism is not the same as the basically non-deterministic approach of the purely

logical formalism, and can lead to different results, usually because of non-termination of

the search. In effect, the search continues forever down one path of the search tree, and

never encounters the solution, which may be readily accessible but on a different path.

36

C are must be taken in writing the program to avoid this possibility, and thus the

programmer must have a clear understanding of the procedural semantics of the system.

In real time applications, it is obviously essential to avoid non termination of the

computation, and in addition there is a requirement to be able to anticipate the

computation time required in making conclusions. Th is time requirement is perhaps the

major problem in the application of Prolog in a real time environment, where the time for

a given response is usually constrained.

3.2.5 Other Features

Prolog supports recursion e.g:

append([], L, L).

append([X|L1], L2, [X1|L3]) append(L1, L2, L3).

It is very adept at handling lists. Lists are a very useful data type which are com mon to

both Lisp and Prolog. Th e y can contain various different data types including other lists.

In Prolog, the list is either empty or consists of a head and a tail [H|TJ. It is basically a

linked collection of nodes, with each node containing two pointers, one pointing to the

value of that node, the other pointing to the rest of the list that is to the next node. A

37

special pointer ’N IL ’ indicates that the rest of the list is empty. In matching [H|T] with a

non empty list, H is matched with the first, or head, element in the list. T is matched with

the remainder of the list.

Using recursion it becomes easy to implement relationships such as ’member’,

’append’ and the other typical list operations. For example, the ’m em ber’ relationship "X

is a member of the list L" can be writing:

m em ber(X,[X|T]). % X is a member of any list whose head is X.

m em ber(X,[_|T]:-

m em ber(X ,T). % X is a member of any list if it is a m em ber of that

list’s tail.

Th is relationship then works as follows:

e.g. (1) m em ber(a,[])

fails because [] can not match with [X|T] or [_|T]

(2) m em ber(a,[a,b,c])

succeeds on matching with X,[X|T]

(3) m em ber(a,[b,a,c])

succeeds after matching of a,[b,a,c] with X,[_|T] followed by match of a,[a,c]

with X,[X|T]

Many operations on lists, such as list membership, concatenation, adding an item,

deleting an item, sublist ect, are built into some versions of Prolog.

38

Another useful feature in Prolog is its ability to alter the structure of it’s own programs

during execution. Th is is done using the evaluable predicates (evaluable predicates are

predicates which are built into the language) retract and assert (and variations on these

predicates). Th e retract predicate allows you to remove a named predicate from the

database, while assert allows you to add a new or changed predicate to a database. This

ability to make run time changes to the program makes Prolog more flexible than static

languages such as C or Pascal.

All these features of Prolog has made Prolog very popular as an Al programming tool.

3.3 Arity Prolog.

Prolog is readily available on both large IBM systems and a wide variety of personal

computers. Before choosing a Prolog version, these factors should be considered:

1) Th e graphical capabilities for the user interface.

2) Th e database capabilities both from a programming point of view and for the

manipulation of the flexible vocabulary.

3) Th e development environment.

39

W e choose Arity Prolog as our language because It provides a standard Prolog language

base together with some useful enhancement features.

Special features

Arity Prolog provides a number of control operators which help define the structure

of a program. These include standard Prolog control operators, such as repeat-fail loops,

recursion, and cut, and expanded Arity-Prolog control operators, like if-then-else

constructs, snip and the case control operator.

Dialog boxes and windows

Prolog provides the programmable features of dialog boxes, windows and pop-down

menus which can be used to form a powerful graphical user interface.

Language interface

Em bedded C in Arity-Prolog provides us with added flexibility in our programming

tasks. In this thesis, a data acquisition signal processing system is used to interface

digital and analog signals to the computer. Th e required driver software is written in ’C ’.

It is very efficient and effective.

40

Others

Arity Prolog provides excellent database features both at the programming level and

at a low level. Th e low level features allow the flexible vocabulary to be manipulated

quickly using specialized database manipulation and search facilities. It provides a good

development environment in the form of an interpreter which incorporates a sophisticated

debugger and good editing facilities. It also provides a good compiler to produce an

executable version of a program developed in the interpreter. Th e com piler also detects

and optimises tail recursion.

3.4 Some Problems with Prolog.

Prolog also has a number of disadvantages which have to be overcome in

constructing the system.

As we said before, in a depth first search each particular branch in a tree is followed

downward from left to right until the original goal is proved to be true or all the possible

solutions are investigated. This method has the advantage that it is economical in the

use of working m emory and can be easily programmed using a stack, but has the

disadvantage that for a large program database the search can be very time consuming

if the solution lies to the right hand side of the tree, even though it is quite near the root.

41

As processing can take a long time, it is important to be able to interrupt to deal with

a real time event. There is no interrupt service in prolog, but it is possible to provide one

using the ’C ' interface and B IO S (B a sic Input/Output System) interrupt functions.

A bug was discovered in the Arity Prolog compliler, which does not handle the ’restart’

predicate correctly. As a result, the system was developed using the interpreter.

Overall Prolog was seen to be the most suitable language with which to implement

the framework here as it matched most closely the main features required for a rule-

based real time system.

42

Chapter 4

Framework for a

Rule-Based Real Time System

CHAPTER 4 Framework For A Rule-Based Real Time System.

In the control strategy typically used with rule-based systems the time required to

arrive at an output is indeterminate. It is therefore necessary to include in the control

strategy for a real time system, an element which guarantees a response within a given

time. In the framework put forward here, this is done on the basis of progressive

refinement. Th is is based on analogy with human response patterns. In a situation

where very little time is available a fast, approximate output is given, effectively a reflex

response. If more time is available, a more accurate response is provided.

Th e framework involves structuring the knowledge concerning the system in a

hierarchy of levels. At one level, relatively simple rules guarantee an approximate

response almost immediately. Successive levels require further time, and provide a

progressively improved response. Special control rules determine the time available in

a given situation, and are used to cut off the reasoning process. At this stage the result

from the last completed level of the hierarchy is output.

Th e expert system shell constructed is designed to facilitate partitioning the control

problem into multiple levels, and can be applied to both; discrete systems of the type

usually dealt with by logic controllers and also to continuous systems.

43

4.1 Functional Description.

Th e framework put forward here iŝ an experimental rule-based real time control

system, which intends to deal with the control problem in a general purpose way. This

system can be used for various cases by the addition of appropriate knowledge.

Th e elements of a rule-based system are shown in Figure 3.1. By separating the

knowledge base from the inference engine and user interface, the system provides a

special purpose tool designed for certain types of applications in which the user need only

supply the knowledge base. Th e framework developed here can be used as a tool to

create a rule-based real time control system. It is implemented in the P C environment,

and constructed in a modular fashion.

Th e framework has two main components,

(1) A rule input system, which supports the definition of the inputs and outputs

to the system, and the entry of rules in an English like language. This is

written in Prolog.

(2) A monitoring and control system, which applies these rules to the system.

This is written in Prolog and ’C '.

44

Th e framework includes a load_rules module, which translates English like If-Then

structure rules into a Prolog form. Some examples are shown in Figure 4.1 and Figure

4.2. In figure 4.1, 6 if/then format rules are extracted from the example of controlling the

manufacture of the contact lens developed later, which can be entered into the

framework. Th e rules of prolog format translated from the format in figure 4.1 are shown

in figure 4.2. With the load_rules module, a user without Prolog experience can use the

framework to create his own rule-based real time system easily by adding the rules in a

quasi-natural language format. Th e module "loadjxiles" includes two modules called

u s e rjn p u t and user_output which enable a user to build up a description of the input

variables needed and of the output variables desired for an application.

45

1 : if
angle >= 5, % if stage is in
angle =< 6, mould input,and
moudles = 1, mould is available
armi = 1, mould input arm is

then ready
arminl is 1; then do input mould

2: arminl is 0; otherwise do nothing%
3: if

angle >= 3, % if the input mould
angle =< 4, action is finished,
armfl = 1, then retract arm,

then otherwise do nothing %
armoutl is 1;

4 : armoutl is 0;
5: if

angle >= 9, % if stage is mould
angle =< 10, remove,and arm is
mouldins = 1, ready,
arm3 =1, then remove mould,

then otherwise do nothing%
armin3 is 1;

6: armin3 is 0;

The English-like format of the rules. Figure 4.1

Note:
A rule like: if

angle >= 5,
angle =< 6,
moulds = 1,
arml = 1,

then
arminl is 1;

else
arminl is 0;

is broken into two rules like (1),(2), shown in figure 4.1,
before it is entered into system.

46

arminl(moulds,angle,arml,1):-
angle >= 5,
angle =< 6,
moulds = 1,
arml = 1.

arminl(moulds,angle,arml,0).
a r m o u t l (a r m f1,a n g l e , 1)

a n g l e >= 3,
a n g l e =< 4 ,
arm f 1 = 1 .

armoutl(armf1, angle, 0) .
armin3(mouldins,angle,arm3,1)

angle >= 9,
angle =< 10,
mouldins =1,
arm3 =1.

armin3(mouldins,angle,arm3,0).

The t r a n s l a t e d P r o lo g form at r u l e s F ig u r e 4 .2

47

T o implement progressive refinement inference, rules are categorized into several

levels. There are more rules contained in the higher levels, which allow the inference

engine draw a more precise conclusion. Also It needs more time to reach its result. Th e

inference engine uses Prolog’s built-in backward chaining to search the problem space.

T o cut off the searching process when time runs out, an interrupt is employed. This

interrupt is generated by an independent process running on the system under B IO S

functions, and interfaced to the Arity Prolog system via ’C ’.

Th e framework is constructed in a modular fashion in order to allow easy construction

and maintenance of the shell.

4.1.1 The Modular Structure of the Framework.

Modularity and structured design are modern concepts of computer systems design

to which considerable attention has been drawn over the last decade or so (notably by

Jackson and Davis[R16],[R17]). A good programming language should support these

concepts. One of the advantages of using Arity Prolog to develop the framework is that

the system could be constructed and tested in modules. T h e main modules which make

up the framework program can be seen in Figure 4.3. Modularity in program

48

Figure 4.3 The modular structure of
the framework

development is important as it reduces the problems of maintainability and debugging.

Modularity also increases the readability of programs and leads to more structured

programs. Prolog is a highly modularised programming language in that predicates are

completely independent pieces of code. As there are no global variable in Prolog it also

possesses the added advantage of having good data hiding features [R16] as predicates

normally communicate through calls to each other and parameter passing.

Th e load_rules,user_input and user_output are the first created,tested and debugged

modules in the framework. These were subsequently amended to reflect new ideas

which arose from testing the system by a small example. The changes to the system are

carried out with ease because of the modularity of the system. Th e other modules which

represent additional tools for rule-based system development are added to the system

at a later stage. Th ese modules are created independently, and they also can use some

predicates developed in the construction of the earlier three modules.

Although Prolog supports program modularity very well, Prolog programs can be

difficult to debug because of the backtracking mechanism which is incorporated in the

language. From a debugging point of view, modularity is especially important, as it allows

one to localize the errors which occur and set the debugger to be activated in that

module. This is especially important when a program is a large piece of software.

50

Th e modules of the userjnput.the user_output and the load_rules are used to define

the inputs and outputs of a particular application. Th e solve module controls the running

of the system and gives an appropriate response by progressive refinement. Other

modules aid the user to create a rule-based system meeting the user’s needs. All these

modules are described in detail in later sections.

4.2 The User Interface and Functions.

Th e user interface of any computer system is used to present information to the user

of the system and to gather information from the user. "It has been estimated that half

of any decent expert system should be devoted to communicating with the user..."[R18].

T h e problem which exists is that the users of the framework might have limited

experience in the use of computers or Prolog language. So the functions of the tools

provided by the shell must be inherently obvious. David Tong says [R 1 9]" the success

of an expert system often depends on the acceptance of the end users..." and th a t" too

often the end user interface is neglected at the prototype stage. While end user details

m ay not be of paramount importance at that time, establishing the basic end user

requirements will help avoid a later switch in shells".

51

Arity Prolog has proved to be an excellent choice for developing this interface as it

provides facilities to construct customized dialogue boxes which present information to

the user of the system in a clear and easily assimilated form. Th e user interface in the

case of the framework is a flexible interactive quasi-natural language interface. It can be

easily used by inexperienced computer users to set up the rules appropriate for the

application without help. David Tong also has views on this last point. He maintains that

"...Knowledge base maintenance is best conducted by the expert himself who is likely to

be inexperienced in knowledge engineering. Th e ease of use of the shell goes far in

making this possible and without extensive training of the expert".[R19]

The user interface in the framework presents users with a conversational

environment and demonstrates to users how the format for entering the information

needed by system functions should be used.

52

4.2.1 Specification of the System .

Th e expert system shell containing the inference engine and user interface is

designed for certain application areas. Th e framework is planned to deal primarily with

systems where a significant time constraint exists, such as in control of discrete or

continuous system. Usually, the rule-based system is required to make decisions

depending on sampled data. So the first step for the framework is to set up the

specification of the inputs and the outputs of the system being controlled. These are

done by the modules ’u s e rjn p u t’ and ’user_output’. Th e two functions can be found

within ’shel.ari’ and ’shell .ari’.

Th e user interface provides a user interactive environment to create the input names,

output names list and the parameters list.

53

Input List.

Before adding rule base to framework, the user should describe how many input

variables the system needs and allocate names to each of these inputs. Also, the inputs

can be analog and digital inputs. Th e y are entered at different prompt. Th e input

variable names list can be set up interactively by the user at the prompt displayed by user

interface, which is shown in Figure 4.3 below.

* Enter input variable name at prompt, end by 'stop'*
* All variable name enter in lower case *
* *

Do you have analog input, (y/n)?
y

input name or 'stop'

enter area
Do you have digital input, (y/n)?

y
input name or 'stop'

enter area

Figure 4.3

54

All names are entered in lower case, and finished by carriage return. Th e input

names list set up will be displayed to user at the end. Th e interface gives a user the

chance to change it. (See Figure 4.4).

The analog(or digital) input_name list is :
e.g [speed,angle,switch]

Do you want to change? (Y/N) >
answer area

Figure 4 . 4

Output and lntermediate_output List.

After creating input variable names list, the user will be asked to enter output variable

names of the particular problem. Th e user interface can be seen in Figure 4.5. The

output of the system depends on certain input data, these data consist of the parameters

of the output. W hen a output variable name is entered, the parameters of the output will

be asked for interactively. Th e parameters list of the output is then set up See Figure

55

**
* *
* Enter output variable name at prompt, *
* end by 'stop'. *
* k

**

Output name or 'stop' >force (e.g)

The input is 'force',
If it is correct, press 'return'

otherwise press 'n' >

Figure 4.5.

k k k k ' k ' k k ' k ' k k k k k k k k ' k ' k ' k k - k k ' k k k k k ' k k k i e ' k ' k ' k ' k k ' k k ' k k ' k ' k k ' k
* *
* Enter the parameter of 'force' at prompt *
* stop by 'end' *
:k k
A *

Parameter or 'end' >

The parameters list of 'force' is [Vspeed,Vswitch]
Do you wanted to change? (Y/N) >

Figure 4.6

56

T o simplify the description of the relationship between inputs and outputs, a third type

of variable can be used. These ’intermediate’ variables are treated syntactically like

output variables. How ever the data of a intermediate variable won’t be output from the

system, but it may be referred to by output or other intermediate variables. Th e

intermediate variable names list is created at the prompt shown in Figure 4.7. Th e

parameters list is set up in the same user interface shown in Figure 4.6.

* **** ** * ** * ** * ** * ** * ** ** * ** * ** * ** * ** * ** * ** * ** **
* *

* Enter intermediate variable name at prompt, *
* end by ' stop' *
* *

Intermediate name or 'stop' >
The input is ...
if it is correct, press 'return'

otherwise press 'n' >

Figure 4.7

All these lists can be seen and changed at the user prompt. Th e parameter variable

name will be translated into internal representation so as to facilitate the rules

57

construction. For example, speed is the parameter given by the user, it is translated into

the Prolog variable name format ’Vspeed’. See Figure 4.6.

These lists set up are saved into database and used in building up the rules in the

system.

4.2.2. Knowledge Representation.

Th e central part of any expert system is the knowledge base. Design of the

knowledge base hinges on the knowledge representation. A good format allows efficient

information acquisition and translation of internal representation. It facilitates search and

inference. There are many different types of knowledge base representation mechanisms

including frames, object oriented mechanisms and ’lf_Then’ rule structure.

In rule-based expert systems, the knowledge base contains the domain knowledge

needed to solve problems is coded in the form of rules. A s we discussed in Chapter 2,

the rule-based approach has the advantages of being easy to read and to follow while

som e of the more complicated paradigms such as object-oriented expert systems are not

so easy to comprehend. Also, it has a modular nature and some similarity to the human

cognitive process. As a result rules are the most popular form of knowledge

representation, especially for P C-based expert system. In the area of control system, the

58

problems needed to deal with is that the system makes a response to the changed

situation of the system being controlled. The rule-based approach is especially useful for

encoding information about cause and effect relationships. So the rule-based approach

is a natural selection in this framework.

Th e representation chosen for the user interface also uses if/then rules. Th e syntax

of the rule description is chosen to be as like English as possible, hence the interface is

easy to use. Each rule contains conditions and action separated by key word ’if’ and

’then’. Th e conditions are either made up of clauses joined together by conjunctions, or

empty. Th e empty condition happens when there is a rule like:

if X > 0 ,

then Y is 1,

else Y is 2;

This rule is broken into two rules before it is entered into system. Th e y are

(1) if X > 0,

then Y is 1;

(2) if

then Y is 2;

Th e rule (2) condition is empty. Th is facilitates translation into Prolog rules.

59

Each clause is made up of three "lexical items", that is variable name, operator and value.

Th e general format for a clause is

name op val[ec]

where ec stands for an end of clause. It is a com m a and a carriage return. Th e com m a

also means conjunction with the next clause.(See Figure 4.8).

conditioil structure

clausel claui

name op val,

se2 clauseN

name op val,

Figure 4.8

Th e action to be carried out is also described by a clause, which has the same

structure as shown in Figure 4.8. Th e operator in an action clause is ’is’ and assigns a

value to a variable, while the operator in a condition clause is the comparison symbol,

such as (>,>=,<,=<),etc. Th e rule structure can be seen in Figure 4.9.

60

I---------------' I
if(conditions) or empty then(action)

I 1 1 1----- 1
clausel ... clauseN clause

name op val name is val

Figure 4.9

Rule Structure

Many language constructs have "an inherently recursive structure that can be defined

by context-free gram mars". [R20] Th e if/then structure described above is recursive in it’s

definition and is defined by a context-free gram mar. It is therefore possible to construct

an efficient parser that determines if a statement is syntactically well formed. Th e parser

which is constructed as a result of the above syntax will be discussed in section 4.3.

4.2.3 Response Time.

Unlike other knowledge-based systems, the time during which the system described

here must give a response is decided by rules in the system. Users can define their own

61

rules for available time depending on their application requirements and add them to the

system. Th e rules determining available time are represented in the same format as the

other rules in the system. Th e value of the action of a time rule could be a constant or

a simple arithmetical equation.

4.2.4. Data Acquisition.

Th e input and output signals are routed via a data acquisition system which provides

16 channels of digital input, 16 channels of digital output, 32 channels of analogue input,

and 2 channels of analogue output. Th e procedures which deal with this system are

written in ’C ’. Th e input data is represented as attribute-value pair in the system. For

example, the input data of speed is 20, it is translated into the form av(speed,20). Then

this input data form is stored in the working storage in this format. T h e interface of the

Prolog program with these procedures can be seen in process.c in Appendix A.

4.3 The Structure of the Knowledge Base.

Th e knowledge base of an expert system is usually expressed in terms of rules.

Hum ans find it easy to think in terms of if/then rules and thus it is a suitable paradigm on

which to base the framework. As the framework is implemented in Prolog, the choice of

an ’if/then’ structure is also convenient for implementation.

62

In order to support the inference engine, their knowledge is constructed into the

hierarchy of levels. In the rule format, there is a identifier to specify which level the rule

is in.

It has been attempted in the course of the framework’s construction to present the

rule base to the user in an English like format, while translating these rules into Prolog

to exploit its powerful inference mechanism of resolution. Th e Prolog format of the rules

is completely hidden from the user who, with the aid of the rule editor, enters the rules

using an English like language format. Translating these rules Into Prolog rules exploits

the symbolic nature of Prolog, allowing the words entered by the user to have meaning

by themselves. A rule structure is inherent In the Prolog language and this also allows

easy translation of English-like rules. The built-in idea of ’is’ and comparison predicates

also greatly alleviates the problem of translating these English rules into Prolog rules.

63

4.3.1 Rule Form at and Translation.

T o use the framework to create user’s own rule-based system to control continuous

or discrete system , a user only need to add his rule base. It is easy for the user to

construct rules in the if/then structure.

if

conditionl,

condition2, (head)

conditionN,

then

action; (body)

Th e framework provides the user with an interactive environment to enter the rules.

Th e head and the body of the rule are indicated by the key words ’if and ’then’. Both the

head and the body of the rules consist of clauses which have the format of the English-

like natural language described earlier.

64

- ’leaf rules which directly affect the output of the systems.

- ’node’ rules which set up intermediate results,

ru le l: if

angle > 25,

velocity is high, (parameter is velocity)

then

force is 8;

rule2: if

velocity > 0,

velocity < 2.5,

then

velocity is high;

W here rulel is a leaf rule, rule2 is a ’node’ rule which is referred by rule l. These two

type of rules are distinguished by the input and output specification list of the system set

There are two type of rule:

65

up earlier. Th e variable names of the clauses in the head of the rule must be either in

the input-names list or intermediate-names list set up earlier. Th e variable names of the

clause in the body of the rule must be in the output-names list or intermediate-names list

set up before. Otherwise, the user will be told that the clause is incorrect. Th e user

interface can be seen in Figure 4.10 below.

I1*

** * *
* *
* Enter rule at prompt, end by 'eof'. *
*
* Each rule is entered in the format below ★

*
*
* Prompt > ★

*
* rule or eof >if *
* condition >speed > 2, %no space after'>', k

* condition >condition2, and before','% k

*
* %input in low_case. ★

*
★ condition >conditionN, %only one space •k

* condition >then between two items% k

3k action >force is 4; %rule ended by ' ;' % ★
k

ic
rule or eof >eof

1

*
*

k k k k k k k k k k k k k ' k ' k k k k k k k k ' k k k k ' k i c k k k ' k k k k ' k ' k k k k k k k k ' k k k k k k k k k k k *

F ig u r e 4 . 1 0 .

66

Th e rules are entered by the user in the format shown in Figure 4.10. In order to

distinguish between full stop and decimal point, the rule is ended by semicolon Th e

rule format shown in above should be strictly followed. For example, there is only one

space between two items. Otherwise the rule will not be recognized properly by the

load_rules predicate.

Before the rules can be activated in the expert system they must be translated into

their equivalent Prolog form. The load_rules predicate translates these English-like rules

into Prolog form rules while it reads these English-like rules. Before entering the rules,

the user should notify the system which level the rules are in. This is done as shown

below:

which level the rules are in

level >

Figure 4.11

67

After entering all n level rules, the ’stop’ is used to end this level rules. Th e n the user is

started at this Prompt again and enter the next level rules. Each rule starts with key word

’if. After that, the load_rules processes the condition’s clauses iteratively. First, it

checks if the variable name in a clause is legal name which exists in the input or

intermediate name list. Then if the name is a input name, the prolog variable name of this

input name is ’V + input-name’. For example, a clause is speed > 20, it will be translated

into the Prolog form like that:

Vspeed > 20,

If the name is a intermediate name, the parameter list of the intermediate variable

is retrieved. Th e clause is translated into the head of the node rule by adding variable

parameter to parameter lis t. For example, there is a clause: temperature > 20.

’temperature’ is in the intermediate names list, the parameter list of the name is [Vswitch].

it is translated into the Prolog form is:

temperature(Vswitch,Vtemperature),

Vtemperature > 20,

W hen the system reads in ’then’, it starts to process the body of the rule. Th e body

68

of the rule only contains one clause. It could be a leaf rule directly affecting the output

of the system or a node rule. Th e process is the same. By adding the value and level

number into the parameter list retrieved, the Prolog form constructs the head of the rule.

For example, the action is force is 1; It is translated into the Prolog form is:

force(0,Vspeed,1):-. Th e example of the English like rules can been seen in Figure 4.11.

Their Prolog form is shown in Figure 4.12.

4.3.2. The Structure of Rule Base.

In order to support the progressive refinement inference engine, knowledge is

constructed into several levels. In the each higher level, it contains more rules than lower

level. It will search out a more precise result and also take longer to reach it. Because

there is no way of knowing how long it will take to reach a response in the rule-based

system, it is important for the system to guarantee a consistent response before the time

has expired. This is implemented by constructing knowledge a hierarchy of levels. Th e

first level(O-level) which is also called panic level, will give a fast, approximate output,

effectively a reflex response. Each successive level will need more time to give a output.

Th e number of levels is decided by the user. Th e rules at each level are identified by the

first parameter of the rules.

t ■>

69

Because the knowledge base is separated from inference engine, there is need of

a high level predicate which starts the knowledge base. Since it is not known what is

being controlled, the framework will seek to solve a generic predicate called top_jgoal.

Th e top_goal is generated depending on output list by the module get_goal. It retrieves

the output variable’s parameter list and constructs the body of the top_goal.

For example,

the output list is [force],

the parameter of force is [Vspeed.Vswitch],

the top_goal is : top_goal(N):-

av(speed.Vspeed),

av(switch.Vswitch),

force (N,Vspeed.Vswitch).

In the top_goal, first it gets input value which is stored in the working storage, then calls

a leaf-rule force (N,Vspeed.Vswitch). Because the goal is the same in each level, the

parameter of the top_goal 'N ' is used to indicate calling different level rules. So the first

rule in the knowledge base now is top_goal(N), the structure can be seen in Figure 4.13.

70

4.4 Inference Engine.

Th e important issue facing the introduction of rule-based approach to real time

application is the ability of the rule-based system to meet deadlines. Many efforts have

been made in hardware and software discussed before. Th e real time ability of the

framework is mainly improved by progressive refinement.

71

4.4.1 Progressive Refinement.

Th e reasoning model implemented is progressive refinement. In order to implement

this inference strategy, knowledge is divided into several levels. Th e structure is shown

in Figure 4.13. Assuming that a new piece of information comes into the system, the

system will analyze its data and compare with previous data, then determine how m uch

time is available before an action must be taken. After that, the system starts inferring

from the default level, in which it sets up the default ’panic’ response ready for output.

At the end of each of level, the system updates the result in the output buffer. W hen time

has run out, an interrupt signal is generated, and the system will stop progressive

refinement processing, and outputs the result in the output buffer. This progressive

reasoning method means that the problem solver, to meet its deadlines, could make a

rough pass at solving the problem at default level, then use any remaining time to

incremental refine this solution at still higher levels. Th e output will range from a rough

approximation to a precise response depending on the time, but will be self-consistent

and represent an appropriate response given the time constraints.

72

In order to cut off the progressive refinement process when time runs out, an

interrupt mechanism is required. Th e interrupt function is implemented by using the B IO S

interrupt functions, in particular ’Ctrl-Break’.

Th e first software level in the computer is the B IO S (Basic Input/Output System).

Th is software forms the lowest-level machine with which user normally will deal. It

insulates higher levels of software from possible hardware changes in the computer and

provides a defined set of services as a base for higher software levels. Since Arity Prolog

doesn’t have interface with B IO S, the interrupt handling program is written in Microsoft

C .

Th e control flow of the framework is as follow:

1) sample the information from the system being controlled.

2) call the rule deciding the available time, and set real time clock.

3) start progressive refinement processing. Th e output buffer will be changed at the end

of each level.

4.4.2 Interrupt.

73

4) when time is up or no rules are left, the result up to date is output.

5) go back to the step 1).

Depending on this control character, the functions required of the interrupt mechanism

1) stop the progressive refinement program and output the result in the buffer.

2) go back to step 1) above.

T o achieve these functions, the Dos interrupt mechanism for allowing the user to break

into a running program is used by a C language program which generates an artificial

Ctrl-Break interrupt when time runs out. This C program also uses the timer interrupt in

the computer to determine how much time has elapsed. In Arity Prolog the restart point

for a Ctrl-Break interrupt can be specified using the ’restart’ predicate, and so cause the

main program to restart from a chosen point. Th e interrupt is generated when time runs

out, and the program then continues from restart, causing the above functions to happen.

As a result, the interrupt mechanism works in this way:

74

75

4.4.3 Backward Chaining.

Th e inference and control mechanisms are designed to manipulate the knowledge

built in the knowledge base. Most rule-based systems use either backward chaining,

forward chaining, or a mixture of both. Generally, backward chaining systems are most

com monly used in consultation systems and for diagnostic and monitoring problems.

Th e y are good for solving structured selection types of problems.

Th e purpose of using backward chaining is that Prolog has a built-in backward

chaining inference engine, like automatic backtracking, which can be used to partially

implement the framework. Th e disadvantage of backward chaining is that backward

chaining facilitates a depth-first search, while forward chaining is good for a breadth-first

search. With the depth-first search, the length of the chain of inferences involved in

arriving at a conclusion and the amount of backtracking can not be determined in

advance. There is no way of knowing how long the system will take to arrive at a result.

With this problem, the progressive inference will guarantee a response before time

allowed runs out.

76

The inference mechanism of the framework works as follows:

1. After sampling input data, the system calls the time rule to determine how much time

is available before an action must be taken. Call the function "set alarm" to set up the

real time clock.

2. Th e inference using backward chaining (goal-direct-search) attempts to infer a output

value for a specified parameter by testing rules.

3. It starts searching the rule base for the top_goal(0) at panic level. It will set the

results to the output buffer. Th is level will guarantee a quickest response even when the

available time is a very little.

4. Then it goes down to the second level top_goal(1). If the time runs out, the output

buffer will give out, the system goes back to first step. Otherwise, at the end of the level,

the result got from this level will replace the former result in the output buffer.

5. If there is still time left, the system goes to next level, until no rules are left or time is

out. Th e output buffer will give out, then the system goes back to first step.

77

4.5 Sum m ary.

The framework is a rule_based system development tool for real time systems. It

provides the means to support a flexible English-like natural language interface. Th e

users can enter their specification of the system and knowledge base in interactive

environment. Th e if/then English-like rules entered by the users are translated into Prolog

rules. Th e ability of real time of the system is mainly improved by progressive refinement

which dividing knowledge into several levels. It can be used to create a rule-based real

time system which will guarantee an appropriate response to meet time constraints.

78

Chapter 5

Testing the System

Chapter 5 Testing the System.

Th e purpose of this chapter is to show how the real time rule-based framework

described in the previous chapter can be tested for discrete applications. For this

purpose three sample sets of rules have been set up. A test rig has also been

constructed which provides switches and lights as inputs and outputs for connection to

the data acquisition system. A number of variable voltage sources are also available.

In setting up the rules, all input and output names are defined at the start of the

system specification. Th e order in which they are defined determines the physical input

output channel to which each one is assigned. Any intermediate variables used in

calculations are also defined at the start of the program. Th e variables on which both

intermediate and output variables depend are also identified to help avoid errors.

For testing purposes it is necessary to check that the tim e-based progressive

reasoning works correctly. Th is is difficult to do with a small set of rules, as such systems

of rules execute so quickly that the final output is available before time runs out. To test

this aspect of the system, a special predicate was included in the Prolog file generated

by the translator, as described below.

T o give a more comprehensive test of the system, a large set of rules describing

a spincast machine for manufacturing contact lenses was also set up.

79

4

5.1 Exam ple 1.

Th is example monitors the input voltage and uses it to determine the time available.

Three levels of rules are used.

At Level I, the output appears on light 1 and corresponds to the setting of switch

1. Lights 2 and 3 are turned off.

At Level II, the output appears on light 2 and corresponds to the setting of switch

2. Lights 1 and 3 are turned off.

At Level III, the output appears on light 3 and corresponds to the setting of switch

3. Lights 1 and 2 are switched off.

T h e time available is based on the input voltage, the higher the voltage, the less

time is available.

Th e original rules, and their translation into Prolog, are given in Appendix B.1.

W hen these rules are translated and run, they work so quickly that they always have time

to complete Level III, outputting the appropriate value on Light 3.

T o test the time behaviour, we modify the Prolog version of these rules to include a delay

at each level, as described in the next example.

80

5.2 Example 2.

T o test the time behaviour of the system, it is necessary to ensure that the Level

2 and Level 3 rules are not fully executed before the available time runs out. Th is would

normally require large and complex rule sets for Levels 1 and 2, so to avoid this, a

special extra predicate is added by hand to the Prolog version of the Level 1 and Level

2 rules, to ensure that each of these levels takes two seconds to complete. Th e rules

used are the same as in Example 1.

Th e extra predicate uses the Arity ’time’ function, which gives the current time in the

system to 0.01 seconds.

It is set up as follows

tlm e(X), % records current real time in X.

 %arbitrary sequence of instructions

waitsecs(X,2), %waits for 2 seconds after time X.

Th e Arity predicate time/1 returns a functor of the form time(H,M,S,Hs) where the

parameters represent the current hours, minutes, seconds and hundredths of seconds on

the system real time clock.

81

waitsecs(time(H1 ,M1 ,S1 ,Hs1),S)

repeat,

time(time(H2,M2,S2,Hs2)),

S1 is (H2 - H1)*3600 + (M2 - M1)*60 + S2 - S1,

S1 >= S.

By inserting this predicate m anually in the Prolog code generated by the translator for a

particular level, the time required to com plete this level can be stretched arbitrarily,

depending on the value of the param eter S.

T h e rules set up for tim e in the exam ple are

Voltage < 4 Volts T im e availab le 6 seconds.

Voltage >=4, < 8 : T im e availab le 3 seconds.

Voltage > = 8 Volts : T im e availab le 0 seconds.

W hen this system is executed the effects of the different levels can be seen by changing

the input voltage, thereby allowing m ore or less time.

The definition of ’waitsecs’ is :

82

5.3 E xam ple 3 : C ontro lling a M ach ine for the M an u factu re of C ontact Lenses.

This exam ple shows the construction of a set of rules to deal with a reasonably

com plex industrial machine. It tests the capability of the translator program, and

dem onstrates the functionality of the system for this type of problem .

This m achine m anufactures contact lenses, creating the inner lens surface curve by

spinning the liquid m onom er while applying ultra violet light to cause it to polymerise. The

outer lens surface is determ ined by the mould into which the m onom er is poured. An

individual disposable mould is used for each lens.

The m achine consists of a rotating table containing a num ber of mould spinners. As

the tab le rotates, each mould spinner is brought past a num ber of stations in turn, where

various operations are carried out. T h ese include:

1) Loading the mould in the spinner.

2) Injecting the appropriate am ount of liquid m onom er into the spinning mould.

3) Curing the m onom er under ultra violet lamps.

4) Rem oving the mould and lens from the m achine.

83

After rem oval from the spincast m achine the mould and lens go through a sequence

of further processes, including rem oval of the lens from the mould, disposal of the mould,

testing of the lens, and packaging and labelling of the lens.

The operation of the spincast m achine must achieve a high level of accuracy. Any

deviations from the correct perform ance, which could effect the accuracy of the lenses

produced or dam age the m achine, must be acted on im m ediately. T he critical m achine

settings include:

1) M ould spinner speed if this is incorrect, the wrong curvature and hence

pow er will be result.

2) Tab le rotation speed this determ ines the tim e spent under the ultra violet

lam ps and hence the degree of curing .

3) M onom er quantity the correct am ount must be injected.

4) G as pressure and flow gas jets are used to ensure an even dispersal of

m onom er within the mould.

84

In addition, a num ber of critical faults can dam age the m achine unless im m ediate

action is taken. These include:

1) Injection of M onom er w hen no mould is present.

2) Attempting to insert mould w hen previous mould has not been ejected.

O th er fault conditions include attem pting to insert mould w hen no mould is available, and

failure of lam ps or other parts on the system .

O perator control of the m achine provides for setting the different rotation rates

depending on the lens type and power.

T h e rule_based control system will function as a process monitoring, and alarm

device, continually monitoring all critical process variables to ensure that they remain

within specified tolerance levels. T h e particular stage of the operation is determ ined by

the angle through which the table has rotated.

T h e system will give a m essage to alert the operator w henever attention is required (eg.

moulds needed, or gas pressure low), thus both improving quality control and easing the

operator load.

85

T h e ru le_based controller will also sequence and control the various process steps,

such as input mould, do m onom er injection and rem ove mould. The signals required for

this purpose are provided through a data acquisition system m anufactured by Keithley

Ltd., w hich provides 16 digital inputs, 16 digital outputs, 32 analogue inputs and 2

analogue outputs. The configuration of the ru le_based control system for spincast

m achine can be seen below.

PC

86

In this im plem entation, the spincast machine is replaced by a system of switches,

voltage sources, and indicators which allow the output to be m onitored and the various

inputs to be set at will. T h e fram ew ork built before is used to create the rule-based

control system . This involves identifying the appropriate rules, inputting these using the

input facilities of the fram ew ork, and then allowing the system to function via the data

acquisition system .

The inputs and the outputs used are described below:

Input variables.

1) Analogue inputs:

angle

The Im p lem en ta tio n o f th e S ystem .

tablerate

spinners

87

In order to identify the current position of the table, an angle

betw een 0 and 360 degrees is available through the data

acquisition system. The current stage of the process is

determ ined by

stage = angle m od(360/N),

w here N is the num ber of spinners in the table, typically 10.

Input as a voltage from 0 to 10V.

Indicates spin rate of the table.

Input as a voltage from 0 to 10V.

Indicates spin rate of the spinners.

Input as a voltage from 0 to 10V.

i

2) Digital inputs:

moulds

a rm i

arm fl

arm 2

arm f2

arm 3

arm f3

monomerl

gasp

Indicates if a mould is available for insertion in a spinner.

1 if yes, 0 if no.

Indicates if mould input arm is ready, that is fully retracted.

1 if yes, 0 if no.

Indicates if mould input arm is fully inserted.

1 if yes, 0 if no.

Indicates if m onom er injector is ready, that is fully retracted,

1 if yes, 0 if no.

Indicates if m onom er injector arm is fully inserted.

1 if yes, 0 if no.

Indicates if mould rem ove arm is ready, that is fully retracted.

1 if yes, 0 if no.

Indicates if mould rem ove arm is fully inserted.

1 if yes, 0 if no.

Indicates if m onom er level is satisfactory.

1 if right, 0 if not.

G as pressure is used to ensure an even dispersal of

m onom er within the mould, incorrect gas pressure will affect

the precision of the contact lens.

1 if correct, 0 if incorrect.

ft *.

88

gasf G as flow is also used to ensure an even dispersal of

m onom er within the mould, incorrect gas flow will also affect

the precision of the contact lens.

1 if correct, 0 if incorrect,

mouldins C hecks if mould is in spinner at rem ove stage.

1 if yes, 0 if no.

ty p e l Used to indicate lens type, in range 0 to 7

type2 Used to indicate lens type

type3 Used to indicate lens type

89

Digital outputs

arm in l

arm outl

arm in2

arm out2

arm in3

arm out3

alarm

Output variable.

1 m eans to do inserting action, 0 m eans to do nothing.

C auses retraction of the mould input arm .

1 m eans to do retracting action, 0 m eans to do nothing.

C auses insertion of m onom er inject arm .

1 m eans to do inserting action, 0 m eans to do nothing.

C auses retraction of the m onom er inject arm .

1 m eans to do retracting action, 0 m eans to do nothing.

C auses insertion of the mould rem oval arm .

1 m eans to do inserting action, 0 m eans to do nothing.

C auses retraction of the mould rem ove arm .

1 m eans to do retracting action, 0 m eans to do nothing.

Indicates a fault is detected.

1 if yes, 0 if no.

Causes insertion of the mould input arm.

90

opm es O perator m essage, tells operator w hat the fault detected Is.

3) Operator outputs

Constructing the Rule Base

R ule-based control of the operation of the machine can be im plem ented in three

levels.

Level 1:

Checks for failure of a part of the m echanism and sets up the fail safe outputs.

Level 2:

Checks for operational state and carries out appropriate action.

Level 3:

Checks for consistently betw een the process param eters such as lens type, power

and the various spin rates.

In order to preserve the smooth operation of the machine, it must provide the

appropriate output rapidly. If the limited tim e available runs out before an exact

91

conclusion is reached, the result from the previous level is used as output. The time

availab le depends on the rotation rate of the table, and is set up by the tim e

determ ining rules. In general, the appropriate action must be taken within 0.5° of travel

of the table. If the frequency of rotation is f rotations per minute, then the tim e available

in seconds is:

T = 6 0 /7 2 0 f = 1 /1 2f

w here f is the table rotation rate in degrees per second.

Level 1 Rules:

Th e ru le_based controller first detects a fault condition, w henever the process

variables are sam pled. W hen this happens, the m achine is halted, alarm is on, and a

m essage is displayed in the screen indicating the source of the problem . These fault

conditions include:

- W hen the state of the spincast m achine is in mould input, there is no mould

available.

- W hen the state of the spincast m achine is in m onom er injection, there is no

m onom er available.

92

- W hen the state of the spincast m achine is in mould rem ove, there is no mould in the

spinner.

If one of these things happens, the system should stop the m achine im m ediately. One

of the E n g lis h jik e rules can be seen below.

eg. if

angle = 1, % stage is= mouldinput.

moulds = 0, % m ould is not available.

then

opm es is no_m ould_available; % operator m essage,

alarm is 1; % alarm is on.

The results of the first level is that alarm is on, operator_m essage is displayed and all

others are off.

Level 2 Rules:

W hen all param eters, like table_rate, spinner_speed, gas pressure, and gas flow so

on, are set up, the spincast m achine is started up as normal. In each cycle tim e, the

m achine’s normal operation are inputting mould, injecting m onom er, passing to U V lamps

93

autom atically, and removing mould. All the operations are controlled by the rule_based

controller. A fter checking fault condition, if the spincast m achine works normally, time

should still be available. The reasoning of the system will go down to second level and

check the state of spincast m achine, then take relevant actions. These include:

- W hen the state of the spincast m achine is in mould input, check if the mould is

available, and input_mould’s m achine is ready. Then the mould is input.
i i

- W hen the state of the spincast m achine is in m onom er injection, check if m onom er

is available, and the machine for injecting is ready, then the m onom er is injected.

- W hen the state of the spincast m achine is in mould rem ove, check if there is a mould

in the spinner, and the m achine for removing the mould is ready. Then mould is

rem oved.

These actions maintain the smooth working of the machine.

Level 3 Rules:

At level 3, the system is supposed to have enough tim e to give an accurate

response. T h e control of the spincast m achine now includes taking into account the

various consistency rules as well as checking the param eters of the m achine, like gas

pressure, gas flow, and lens type, to guarantee the accuracy of the lenses produced.

94

Different lens types allow different spinning speeds and table rotation rates. These

variables should normally remain within an acceptable to lerance range. Param eters

outside an acceptab le tolerance range cause the controller to halt the spincast machine,

sound its alarm , and display a m essage indicating the problem. An exam ple of the

relation betw een the lens type and the spin and rotation rates is given below.

T h e lens type constrains the Power and M onom er types, which in turn constrain the spin

and rotation rates.

Type Power Monomer type spin table
A1 0-20 Clear,Tint,Aqua,Blue,Brown,Yellow 2-10V 4-10V
A2 0-20 Clear 2-10V 4-5V
A3 0- 9 Tint 2-5.6V 5-6V
A4 0-12 Tint >GO•

<X>1CM 5-6V
A5 1-6 Tint 2 .4-6.4"*/ 5-6V
A6 0-5 Tint,Aqua,Blue 2-4V 5-8V

T h e rules used in level 3 also provide for the smooth running of the m achine as in

level 2 . An exam ple of some level 3 rules is given below. All rules in the rule base are

listed in Appendix B.

95

eg.

if

checkss = 1, %if spin rotation rate is not

then correct, a larm is on

alarm is on; tell operator fault m essage.

if

checkss = 1,

then

opm es is spinner_speedJncorrect;

if

lenstype = a 1 ,

splnner_speed > = 2V,

spinner_speed = < 10V,

then

checkss is correct;

After adding the rule base, the specification of the system ’s input and output

variables and the rule for available time within fram ework, a ru le-based control system

for spincast m achine is created. The control system starts by sam pling the information.

It then activates the tim e-rule and gets available time. Depending on the information

96

sam pled, the system starts searching from level 1 using backward chaining. If there is

still tim e left at the end of the level, it will change the result and go down to next level

until tim e runs out and interrupt signal com es out or there is no rule left to do. At that

tim e, the result is output.

T h e rules given in Appendix B.2 w ere constructed to describe the system . They

w ere translated and executed. Various fault and other conditions w ere set up on the test

rig, and the system performed to specification.

Conclusion.

i

The fram ew ork can be successfully applied to control of a process involving discrete

steps. The description of the process using rules is easer and more intuitive to set up

than with conventional systems for this purpose, such as the ladder d iagram s and other

notations used with program m able logic controllers. The multi-level structure of the

system guarantees an appropriate response even when the calculations needed for an

exact response can not be carried out in the tim e available. This m ay arise due to the

inherent com plexity of the rules being used, or alternatively due to the processor being

heavily loaded with other tasks, as might occur in a Unix or similar environm ent.

97

Chapter 6

Progressing Refinement with
Continuous Systems

Chapter 6 Progressing Refinement with Continuous Systems.

An investigation w as carried out of the possibility of applying the progressive

refinem ent approach to the control of a continuous system .

T h e approach envisaged w as based on the idea of using a progressively refined

search to identify the control value that should be output. In such a system , the different

levels would essentially try out the different possible outputs at different levels of

graininess. If little tim e w ere available, only a small selection of outputs spread over the

range would be investigated. W ith more tim e, a larger selection of possible outputs would

be investigated, and so on. This approach w as seen as analogous to hum an response

characteristics, which can vary from extrem ely rapid but crude in reflex response

situations to extrem ely precise when time permits.

i ■

To determ ine the relative merits of the different forces investigated at any level, it

is basically necessary to determ ine their effect upon the system in term s of the resulting

distance of the system from its stable state. To do this involves simulating the system

being controlled. This corresponds to using the differential equations describing the

system directly, and is sim pler than integrating them , which can often require specialists

in control theory.

98

As an accurate com puter sim ulation of a particular dynam ic system w as already

availab le, it w as decided to carry out experim ents to investigate the feasibility of the

progressive refinem ent approach before attempting to construct the appropriate system

of rules. Despite using a num ber of different approaches for m easuring distance from

stability, it w as not found possible to identify a search strategy which would maintain the

system in its region of stability. No basis w as therefore available for the construction of

a set of rules to deal with this problem . This w as a d isap p o in tin g result, which indicates

that a m ore formal analysis based on m athem atical control theory is desirable in dealing

with the progressive refinem ent approach to continuous systems. Such a m athem atical

analysis is outside the scope of this thesis.

6.1 Controlling A Cart with A Rigid Pendulum.

T h e continuous system chosen for investigation was ’Cart with Inverted Pendulum ’,

in which the objective is to m ove the cart so as to maintain a rigid rod fixed to it by a

hinge a t its lower end in an upright position. The reason for the choice of this system

rather than a sim pler one w as the availability of an accurate simulation program m e, which

could be used for investigating the feasibility of the approach with this type of system.

Such system s are of course far from the dom ain usually dealt with using a rule based

approach.

99

The system is made up as follows (Figure 1):

T h e system consists of (1) a cart moving along a line on a monorail of limited length,

(2) a pendulum hinged to the cart so as to rotate through 360° in the plane containing the

line, and (3) a m eans of driving the cart involving a d.c. motor, a pulley-belt transmission

system and a d.c. pow er amplifier.

U n d er the assum ptions that the pendulum is a rigid body and that the driving force

is proportional to the input voltage to the am plifier and is directly applied to the cart

without any delay, a four-dim ensional vector x w hose com ponents are the position of the

cart r, the angle of the pendulum a , and their respective velocities r’ and a ’, i.e.

x=(r,a ,r, ,a ’) (1)

can be considered as the state of this system, and the input voltage u to the d.c. pow er

am plifier can be considered as the system input. The origin of the cart position r is the

centre of the range w here it can move and the origin of the pendulum angle a is the

upright position. :>.

Assum ing that the friction of the cart is proportional only to the velocity f and the

friction generating the pivot axis is proportional to the angular velocity a ’ of the pendulum,

the following non-linear differential equations are obtained:

100

(M 0+ M Jr" + M ^ c o s A A" = -Fr* + M¡LA* sinA + Gu (2)

M ^ c o s A r” + (J + M ^ A ” = -C A ’ + M ^ g s in A

which describe the dynam ics of the system. The definitions and the values of the

param eters Mo.F.G.M^Z-.J.C and g in eqns. (2) are listed in Tab le 1 with other

param eters of the system . Equations (2) are rewritten as the ordinary differential

equation

x ’ = f(x.u) (3)

describing the system dynam ics, w here

f i = x3 f2 = x4

f3 = (x2)(a32sinx2cosx2 + a^Xg + a ^ c o s x ^ + a35Sinx2x4 + b3u)

f4 = (x2)(a42sinx2 + a ^ c o s x ^ + a ^ x * + a ^ s in x ^ o s x ^ + b4cosx2u) (3 ’)

(x2) = (1 + sin2x2)'1

In eqn. (3 ’), f/ denotes the Ah com ponent of f(x,u) and the param eters â j, b| and are listed

in T ab le 1.

T h e system considered is subjected to the restrictions

r < r0 , u = < u0 (4)

w h ere r =r0 corresponds to both ends of the m onorail and u0 denotes the maximum

possible input value to the am plifier without any saturation, those limit values also being

listed in T ab le 1.[R27]

101

Cart Mass
Friction constant
Gain constant
Region of cart movement
Maximum input voltage

M0F
G

±ro
±u0

0.48
3.83
8.41

+ 0.5
+ 0.7

K3Kg/s
N/V
m
V

Pendulum Mass Mi 0.16 KgLength between the axis
and center of gravity L 0 .25 m

Moment of inertia about
the center of gravity J 0.0043 Kg-m

Friction constant C 0.00218 K -m /s
Acceleration of gravity g 9.8 m/s

Table 1. Parameters of cart-■pendulum system.

T h e control problem with the cart-pendulum system is to drive the pendulum from the

pendent position to the upright position and to keep the pendulum in that position. The

problem of synthesizing such a control system can be divided into the following problems.

T h e first problem is how to keep the pendulum in its upright position and the cart in its

central position, that is, how to regulate the system at its origin x = 0 so that a stable

zone m ay be created around the origin which is inherently unstable. In short, the

problem is to design a stabilizer which may stabilize the inherently unstable origin of the

system . T he second problem is to drive the system state from the natural stable state

to the stable zone which is generated in the neighborhood of the origin by the above

stabilizer.

C lassical control theory has been successful in dealing with both these problem s.

T h e stabilizer in the paper [R27] using feed-back control design is very successful in

102

controlling the system. The authors designed a linear feedback controller com bined with

a state observer. Since the possible input value is limited as (4), the actual input applied

to the system is as

u = -Kx, if Kx =< u0
= -sign(Kx)u0, if Kx > u0 (5)

O n e of the most satisfactory selection of param eters is :

Feedback law: K =(-7 .05 V/m , -13 .8 V /rad, -5 .0 5 V /(m /s), -2 .5 6 V /(rad /s)). (6)

T h e m athem atical analysis on which the solution given in [R27] is based is of a fairly

advanced nature, and not easy to derive for anyone lacking expertise in control theory.

H ow might the inherent intuitive simplicity of the progressive refinem ent approach be

applied without using this m athem atical analysis?

A plausible approach is to construct a m o d e l, or simulation of the system, a task

which is typically much simpler than carrying out th e m athem atical analysis of the

system s behaviour, and can be com pared to writing down the differential equations

describing the system rather than solving them . This m odel can then be used on a trial

103

and error basis to find a control input which im proves the state of the system, basically

by selecting a limited set of trial inputs, identifying those which give the best im provem ent,

and then trying again with a refinement of the input set. Th is process is repeated until

the time available for a decision has run out, w hereupon the best response discovered

to date is output. T h e tim e available for a decision is itself a variable, depending chiefly

on the velocities in the system. This approach would ap p e a r to mimic quite well the

human response, which typically involves a reflex, rough response if tim e is very pressing,

while a very precise response is made if plenty of tim e is available.

In order to investigate the feasibility of this approach, the pattern of forces used in

controlling the system using the classical linear feedback theory w as logged, and is given

in Table 1. On the basis of this table it seem ed that the approach should work, and that

by searching it would be possible to identify the required pattern. In order to apply the

approach, the existing simulation program w as used. E ach step in the simulation

corresponded to a tim e interval of 0 .05 seconds. B ecause a software simulation is being

used, there w as no real tim e constraint on the calculations that could be done to

determ ine the next input to the simulation. So to check the feasibility of the approach,

approxim ately 1000 different forces were checked on each iteration in a search to find a

force which would im prove the state of the system.

Changes in the state of the system were m easured using th ree different metrics.

104

1) X22 + X 42 X 2 - angle, X 4 - angle rate.

2) X 22

3) X 42 6

4) (X2 + X 4)2

No m atter which metric w as used, it proved to be impossible to identify pattern of forces

which would maintain the system In a stable region.

105

Table 1.

initial angle=1 (degree) u0= 0 .8

tim e force position angle velocity ang. vel.

0 .0 5 0 .0 0 0 0 .000 0 .9 9 7 0 .0 0 0 0 .000

0 .1 0 0 .3 1 2 -0 .0 0 0 1 .037 -0 .0 0 2 0 .0 2 8

0 .1 5 -0 .2 2 3 0 .005 0 .272 0 .2 0 5 -0 .5 3 2

0 .2 0 0 .0 9 8 0 .010 -0 .3 5 4 -0 .0 0 5 0 .0 5 5

0 .2 5 -0 .0 8 9 0 .012 -0 .4 9 6 0 .0 6 3 -0 .1 4 3

0 .3 0 0 .0 2 5 0 .013 -0 .5 9 4 -0 .0 1 5 0.061

0 .3 5 -0 .0 4 0 0 .012 -0 .5 3 4 0 .0 0 7 -0 .0 1 4

0 .4 0 0.001 0 .012 -0 .4 7 2 -0.021 0 .053

0 .4 5 -0.021 0.011 -0 .3 7 0 -0 .0 1 3 0.021

0 .5 0 -0 .0 0 5 0 .010 -0.281 -0 .0 2 2 0 .040

0 .5 5 -0 .0 1 2 0 .009 -0.191 -0 .0 1 9 0 .0 2 4

0 .60 -0 .0 0 6 0 .0 0 8 -0 .1 1 8 -0.021 0 .027

0 .6 5 -0 .0 0 8 0 .0 0 7 -0 .0 5 5 -0 .0 1 9 0 .0 1 8

0 .7 0 -0 .0 0 5 0 .006 -0 .0 0 5 -0 .0 1 8 0 .017

0 .7 5 -0 .0 0 5 0 .006 0 .0 3 4 -0 .0 1 6 0.011

0 .80 -0 .0 0 4 0 .0 0 5 0 .062 -0 .0 1 5 0 .009

0 .8 5 -0 .0 0 4 0 .0 0 4 0 .083 -0 .0 1 3 0 .006

0 .9 0 -0 .0 0 3 0 .003 0 .096 -0 .0 1 2 0 .004

0 .9 5 -0 .0 0 2 0 .0 0 3 0 .103 -0 .0 1 0 0 .0 0 2

106

In every cycle of the system, it was essential that the new position would have a

sm aller error than the previous one, otherwise the system would be regarded as having

failed. A sam ple of the results obtained with different error metrics w as as follows(see

table 2):

error fu n c tio n l:

x2* + x42 x2 - angle, x4 - angle rate.

T ab le 2.

time force position angle velocity ang.vel metrics

0.0 0 .0 0 .0 0 0 0 .0 1 7 0 .000 0 .000 0 .0 0 0 3 0 5 %intial state%

0.05 0 .0 1 4 0 .0 0 0 0 .0 1 7 0 .008 0.001 0 .000 % situation is better%

0.10 0.021 0 .0 0 2 0 .0 1 7 0 .024 -0 .0 0 0 0 .000 %situation is worse%

0.15 0 .030 0 .0 0 8 0 .016 0 .048 -0 .0 0 5 0 .000 %situation is better%

1.40 -0 .3 6 0 -2 .4 0 4 0 .189 -0 .832 0 .9 9 4 1 .025 % situation is w orse%

1.45 -0 .3 6 0 -3 .6 1 6 2 .496 -0 .826 -7 .299 59.501 % situation is worse%

out of control!

107

W hen there is no force to im prove the state among the 1000 forces, the force which

m akes the new position have a sm allest error is chosen. The m essage "situation is

worse" indicates that there is no optim al force in the 1000 forces. Using this alternative

choice, after 1 second the system is still out of control. This experim ent is done in the

very simple initial state. Also, it presum es that the com puter is very efficient, which can

calculate and com pare 1000 tim es within 0 .05. But from the Results, it can be seen that

it was not found possible to guarantee the dynam ic stability of the system using this

approach.

At first sight it seem s paradoxical that the forces determ ined by the classical theory,

which achieve dynam ic stability, w ere not identified by the search. H ow ever, the actual

forces used are to seven digits of precision rather than the three given in the table.

Experim ents using the forces given by the classical theory rounded to th ree digits failed

to achieve control.

It would ap p ear therefore that in order to achieve dynam ic stability forces must be

specified to a level of precision which m akes them impracticable to identify on a trial and

error basis, and that a m athem atical analysis is therefore required. Alternatively, a better

error metric might lead to stability. It w as felt that further investigation of this m atter was

not appropriate here.

108

Chapter 7

Conclusions and FutherWork

Chapter 7 The Conclusions and Further Work

7.1 Conclusion.

In the a rea of know ledge-based real time control system , the m ain problem is

ensuring that the control system m eets the tim e constraints. In this thesis, w e have laid

out an approach for real time problem solving. It is based on the ru le-based approach

having a sophisticated control com ponent that can constrain its problem -solving activities,

so as to ensure a response in the tim e available. The tim e constraints them selves can

be input as part of the system.

The approach put forward here involves applying progressive refinem ent to the rule-

based system . The key aspects of this approach are:

1) The criterion for successful real tim e control behaviour for ru le-based system s should

be to try to develop the best solution to the overall problem which satisfies the time

constraints.

2) A real tim e ru le-based problem solver must be able to reason about its criteria for an

acceptable solution, if the best solution is not obtainable within the available time.

109

In order to support this idea, the rules are constructed into a hierarchy of levels. The

more precise solution will be obtained in the higher level, but also needs m ore time.

W hen tim e is short, a quick and appropriate response can be guaranteed at the panic

level.

The progressive reason strategy of the fram ew ork presented here guarantee an

approxim ate response, even then available tim e is very limited.

A control language is provided in which users can express their rules in an ’if/then’

English like form at, which is then translated from this form at to Prolog. T h e users can

easily add rules and change the specification of the system through the user interface.

T h e knowledge base is translated into Prolog for actual execution. No know ledge of

Prolog is required by the users.

The exam ples have shown that the fram ew ork can be successfully used in discrete

system control. The tim e constraints and user’s needs are met perfectly. T h ey have also

shown that the system controlled on the basis of a m athem atical analysis of their control

characteristics, which is usually im plem ented in feedback control, is quite difficult to

control by ru le-based approach.

110

7 .2 F urther W ork.

T h e system seem s reasonably com plete with regard to dealing with discrete system s.

Application of the system to a broader range of real world problem s is desirable and

would probably give rise to som e refinem ents.

T h e application of this type of system to control the continuous system needs further

investigation. It is suggested that a deta iled analysis of this approach using m athem atical

control theory should be carried out.

111

Bibliography

Bibliography

[1] Prolog Program m ing for Artificial Intelligence by Ivan Bratko.

[2] Building Expert System s in Prolog by Dennis Merritt (Springer-Verlag).

[3] Expert System s Tools & Applications by Paul Harm on, Rex M aus and W illiam
Morrissey.

[4] Advisor an Expert System Shell W ritten in Prolog by Paul Powell.

[5] Autonom ous Vehicles as R eal-T im e Expert System s by John H allam , Dai research
P a p e r No. 332 , Departm ent of A .I.uni. of Edinburgh.

[6] Approxim ate Processing in R eal-T im e Problem Solving by Victor R. Lesser, Edm und
H. Durfee and Jasm ina Pavlin, C O IN S Technical Report 86 -126 , Dec. 1987.

[7] C om puter Architectures for R eal-T im e Know ledge-Based Control by H any K. Eldeib,
D epartm ent of Electrical and C om puter Engineering G eorge M ason University, 1989
Am erican control conf. vol3.

[8] Hexscon: A Hybrid M icrocom puter-Based Expert System for R eal-T im e Control
Applications, M. Lattim er Wright.

[9] A R ea l-T im e Expert System for Process Contrl, by Robert L. M oore, and others,
Proceedings of the IE E E 1st Conf. on Artificial Intelligence Applications, 1984.

[10] An Architecture for R eal-T im e R ule-B ased Control by David A. H anddian and
Robert F. Stengel, Princeton University, Departm etn of m echanical & A erospace
Engineering Princton, N ew Jersey 0 8 5 4 4 .

[11] An Expert System for R eal-T im e Control by M .lattim er wright, Milton W . G reen, and
others. S R I International.

[12] An Expert System Shell for Analysis of R eal T im e Signals by Tong W ei-G uang and
Z h ao L in JJan g IFA C AI in R eal-T im e Control, Shenyang, P R C , 1989.

[13] R ealization of Expert System Based Feedback Control by Darl-Erik Arzen,
D epartm ent of Atom atic Control, Institute of Technology, Sw eden.

1

[14] Expert system and Artifical Intelligent by Nathan G oldenthal.

[15] Issues of R eal-T im e Expert System s by Haihong Dai Terry J. Anderson Fabian C.
M onds Dept, of Inform ation System s Uni. of Ulster at Jordanstown Newtownabbey,
C o. Antrim B t37oQ B N.Ireland.

[16] Expert system s Principles and Programming by Joseph G iarratano, Ph .D Universi
of H ouston-C lear Lake and G ary Riley NASA-Johnson Space C enter P W S _K E N T
Publishing C om pany Boston.

[16] System D evelopm ent by M ichael Jackson. Prentice-Hall international series in
C om puter Science. ISB N 0 -13 -880328 -5 .

[17] System s analysis and Design. A structured approach by W illiam S. Davis. Addison
and W esley. ISB N 0 -2 0 1 -1 0 2 7 2 -4 .

[18] Crystal by Ruth Aallsgrove. Personal com puter owrld N ovem ber 1988 p172-p175.

[19] P C Expert Sytem prototyping and beyond by David W . Tong IEEE 1987 p184-p188.

[20] Com pilers pringciples, Techniques and Tools by Alfred V . Aho, Ravi Sethi and
Jeffrey D. Ullman S B N 0-2*01 -10194 -7 .

[21] T h e Rule-B ased Distillation Decision and Control System by Z. Song, J.C . G ao and
C . H . Zhou, I FA C AI in R eal-T im e Control,Shenyang, P R C , 1989.

[22] Asynchronous M ethods for Expert System s in R eal-T im e Applications by Th. Beck
and R. J. Lauber, Institute of Control Engineering and Industrial Automation of the
Uni. of Stuttgart, R affenw aldring 47, d -7000 Stuttgart 80 , FR G .

[23] A H ardw are A ccelerator for R eal-Tim e System Diagnosis by Razvo Nakajim a, IBM
826 .

[24] D ynam ic System Configuration for Distributed R eal-T im e System s by J. M agee, J.
K ram er Imperial 1018 .

[25] Specifying M eta-Level Architectures for R ule-B ased System s, Kaisers/Autern 916.

[26] A R eal-T im e Language with a Schedulability Analyzer, Toronto 995.

2

[27] Control of Unstable M echanical System, Control of Pendulum by S H O Z O M O R I,
H IR O Y O S H I X IS H IH A R A and K A TSU H ISA F U R U T A .

[28] D os Program m er Reference by Terry R. Dettm ann.

[29] Sysm bolic Com putation, Prolog by example by H e ld er C oelho Jose C.Cotta.

[30] Application of Expert Fuzzy controller in the penicillin ferm entation processes By E-
Hui Xu, G u o-H ua Xu and Shi-Liang Zhang. IFA C Al in R ea l-T im e Control, Shenyang
P R C , 1989.

[31] Im plem entation of very large Prolog-Based Knowledge Bases on D ata Flow
Architectures by Keki B. Irani and Yi-Fong Shin.

' h ;*

[32] Selective Depth-First Search in Prolog by M artha Palm er, Donp, M ckay L.M .Norton,
Lyneiteherschm an, M .W . Freem an.

[33] T h e R ea l-T im e Expter Thom as. J. Laffey.

[34] T h e R ule-B ased Distillation Decision and Control System by Z. Song, J.C . G ao and
C . H . Zhou.

[35] T h e IB M PC B IO S by Brett G lazs April 1989, Byte.

[36] Introduction to expert system s by Peter Jackson.

[37] R u le-b ased object-oriented approach for modelling real-tim e systems by G haly and
N Prabhakaran , School of Com puter Science, Florida International University.

3

Appendix A

Program Listings

framework.ari

% main modular %

public main/0,
public restart/0.

visible recorda/3.
visible w rite /1 .
visible nl/0.
visible recorded/3,
visible instance/2,
visible replace/2,
visible is/2,
visible ’>72.
visible '>='12.
visible ’=<72.
visible ’<72.
visible ’=72.
visible V = 7 2 .
visible ’= \= ’/2.

extm initialise_keithley/0:c(’_initialise_keithley’).
extm getdata/2:c(’_g etd ata ’).
extm getdatd/2:c(’_getdatd ’).
extm getnum /4:c(’_getnum ’).
extrn writebuf/2:c(’_w ritebuf’).
extrn isr_setup/0:c(’_isr_setup').
extrn set_timer/1 :c(’_set_tim er’).
extrn isr_rem ove/0:c(’_isr_rem ove’).
extrn lo ad ju les /O .
extm conc/3.
extrn gettim e/0.

1

framework.ari

main:-
greeting,
isr_setup, % set interrupt handler %
repeat,
w rite(’ Enter load(rule),m onitoring,tim e(rule for ava ilab le)’),nl,
w rite(’ or quit at the prompt’),nl,
w rite(’> ’),
read(X),
do(X),
X = = quit,
isr_rem ove. % rem ove interrupt handler %

restart :-
set_tim er(0),
isr_rem ove,
nl,
w rite(’hello'),nl,
isr_setup,
solve_rules.

greeting:-
Write(’
w rite(’ * * ’),nl,
w rite(’ * W elcom e to the fram ework * ’),nl,
w rite(’ * for rule-based system * ’),nl,
w rite(’ * * ’),nl,
w rite(******************************** ’), n|,
nl,
w rite(’ Superviser— M ichael Ryan'),nl,
w rite(’ Author— Peijuan X ie ’),nl, nl,nl.

do(load):- load_rules,l.

do(m onitoring) :-solve, I.

do(tim e):- gettim e,!.

do(quit).

2

framework.ari

do(X):- w rite(X),
write(' is not a legal com m and’),nl,
fail.

/* start monitoring * /

solve:-
w rite(’P lease enter ru le j i le nam e > ’),
read(F),
w rite(’How m any levels do you have ?’),
read(Lev),
L ev i is Lev - 1,
reconsutt(F),
recorda(result,Q,Ref),
recorded(innam e, Input, _),
initial(lnput),
initialise_keithley,

solve rules.

solve_rules:-
recorded(result,T est, R e f),
ifthen(Test \= = [],

w rite_out(Test)),
repeat,
replace(Ref,[]),
[labolish(ap/2),
c tr_set(1 ,0),
d o jn p u t,
call(break(T)),
set_tim er(T),
refine(R ef,Lev1),
instance (Ref, Out),
w rite_out(O ut)l],
set_tim er(0),
fail.

% test the first tim e %

% initialise counter 1 for input%

% available tim e %
% set real tim e clock %

% progressive refining %

% turn off tim er %

3

framework.ari

refine (Ref, Lev)
ctr_set(0,0),
repeat,
ctr_inc(0,N),
[!call(top_goal(N ,Xn)))
replace(R ef,Xn)l],

N = = Lev.

initial([X|Tail]):-
assertz(av(X ,0)),
assertz(ap (X ,0)),
initial(Tail).

initial([]).

d o jn p u t:-
recorded(screen,S ,_),
do Jn p u ts (S),
recorded(analog,A ,_),
d oJn puta(A),
recorded (digital, D ,_),
ifthen(D \= = [],

(getdatd(Va.Vb),
d o Jn p u td (0 ,V a ,V b ,D))).

d o j nputa([X |Tai I])
ctr_inc(1,N),

getdata(V ,N),
call(av(X ,V 1)),
asserta (ap (X ,V 1)),
retract(av(X ,V1)),
assertz(av(X ,V)),
d o Jn p u ta (T a il).

do_inputa([]).

d o J n p u td (_ ,_ I_)Q).

% anaolg input %
% select channel %

% digital input %

4

framework, ari

doJnputdC P.Va.Vb.tX ITail]):-
P1 is P + 1,
getnum (P1 ,V a ,V b ,V),

nl.writeiVJ.nl,
c a ll(av (X ,V 1)),
asserta (ap (X ,V 1)),
re trac t(av(X ,V 1)),
a sserta (av (X ,V)),
do_inputd(P1 ,V a ,Vb ,Ta il).

do_inputs([]).

do_inputs([X |Tail]):-
w rite(’P lease enter ’),
w rite(X),
w rite(’ :’),
read(V),
ca ll(av (X ,V 1)),
a s s e rta (a p (X ,V 1))f
re trac t(av(X ,V 1)),
a s s erta iav iX .V)),
d o Jn p u ts (T a il).

write_out(L):-
conc([out]>L ,L 1)J
S tru= ..L1 ,
w ritebuf(S tru ,A),
ifth en ireco rd ed im essag e .M ,^ ,

(write (M),
eraseall(m essage))).

5

Ioadrule.ari

% load rule base %

public load_rules/0.
public m em ber/2,
extrn conc/3.
extrn userJnput/O .
extrn user_output/0.
extrn get_goal/2.

load rules:-

w rite(’
w rite j’ * *’),nl,
w rite(’ * % T h e predicate translates if_then rule *’),nl,
w rite(’ * to Prolog_rule % * ’),nl,
w rite(’ * * ’),nl,
write(* Does the file to save prolg_rules exist * ’),nl,
w rite(’ * already or new file ? * ’),nl,
w rite(’ * The old file is the rule_file that you * ’),nl,
w rite (’ * w ant to add more rules to it. * ’),nl,
w rite(’ * * ’),nl,
w rite(’ * .^ 1̂

nl,
w rite(’old/new > ’),
read_line(0,ld),
w rite(’The file nam e > ’),
re a d J in e (0 ,F),
atom _string(F1 ,F),
ifthenelse(Id = = $new $,

create (H ,F1),
o p e n iH .F I.a)) ,! ,

g et_nam es(ld ,A), % get input names and output nam es %
% of the system %

6

loadrule.ari

w rite(’How many levels do you have ? > ’),
read_line(0,L),
string_term (L,Lev1),
Lev is L ev i -1 ,1 ,
lfthen(ld == $new $,

get_goal(H ,Lev)), % get top_goal as start rule in the %
% rule base %

lfthen(A == y,
get_goal(H ,Lev)),

specify,
nl.nl,
load_kb(H).

get_nam es(ld ,A):-
Id == $new $,
A = n,
u s e rjn p u t,
nl,
user_output,
save,

get_nam es(ld ,A):-
Id == old,
recorded(innam e,l,_),
w rite(’The input nam e list is '),
write(l),nl,
recorded(ou tnam e,0 ,_),
w rite(’The output and intermediate nam e list is ’), nl,
w rite (0),n l,
write(’T h e output nam e list is’),nl,
recorded(output,Out,_),
w rite(O ut),
w rite(’Do you want to rewrite input.output nam es?,(y /n)> ’),
read_line(0,A),
ifthen(A = = y,

(w rite(’chang ”input”,”output”,’’interm ediate’’ or”all”> ’),nl,
read_line(0,L),
do_it(L))).

7

loadrule.ari

do_it(L)>
L = = $input$,
eraseall(innam e),
eraseall(analog),
eraseall(d igital),
eraseall(screen),
u s e r jn p u t,
save,
nl.

do_it(L)
L = = $output$,
reco rded(output,O ut,_),
del(O ut),
eraseall(output),
user_output,
save.

do_it(L):-
L = = $ in term ediate$,
recorded(outnam e,O ut,_),
d el(O ut),
e raseall(outnam e),
user_output,
save,
nl.

d o J t(L):-
L = = all ,
eraseall(innam e),
reco rded(outnam e, Out, _),
d el(O ut),
eraseall(outnam e),
recorded(output,O ut1, _),
del(Out1),
eraseall(output),
u s e r jn p u t,
nl,
user_output,
save.

8

loadrule.ari

del([X |T]):-
eraseall(X),
del(T).

del(Q).

specify:-

w rite(’
w rite j’ * * ’),nl,
w rite j’ * enter rule at prom pt.end by ”eof’’ * ’), nl,
w rite j’ * each rule is entered in the format below * ’),nl,
w rite j’ * * ’),nl,
w rite j’ * prompt > * ’),nl,
w rite j’ * * ’),nl,
w rite(’ * ru,e or ©of >if(return) * ’),nl,
w rite j’ * condition >speed > 2, % no space a fter * ’),nl,
w rite j’ * condition >condition2, and before * ’),nl,
w rite j’ * , % input in low_case. * ’),nl,
w rite j’ * condition >conditionN, % only one space * ’),nl,
w rite j’ * condition >then(return) % between two item. * ’),nl,
w rite j’ * action >force is 4; % rule ended by ; . * ’),nl,
w rite j’ * rule or eof >eof(return) *'),nl,
w rite j' * * ’),nl,
w rite j’ ** ** .
nl.

9

loadrule.ari

load_kb(H):-
repeat,
w rite(’write("rule”/”eof)"> ,)1
read J in e (0 ,X),
[!ifthen(X = = $rule$,

(w rite(’W hich level are the rules in ?’),nl,nl,
write(’level > ’),
read_line(0,N 1),
atom _string(N ,N1),
get_rule(N ,H)))!],

X = = eof,
close(H).

get_ru le(N ,H):-
repeat,

write(N),
w rite(’_ level rule’),nl,
write(' or ’’stop’V) ,
read_ line (0 ,X)p
[lget_one(H ,N ,X)!],

X = = $stop$.

get_one(H ,N ,X):-
X = = if,
recordz(userIX ,J ,
process(N,Lif,Lthen),
ask_user(Ans), % ask user for confirmation %
write_ru le(Ans, H, Lif, Lthen), I.

g e ^ o n e ^ ^ S s to p S):-1 .

get_one(H ,N ,X):-
write(X),
w rite(’is not a legal input try ag a in .’),nl.

10

loadrule.ari

process(N ,Lif,Lthen):-
recorda(if,Q ,Ref),
recorda(then ,[],R ef1),
repeat,
w rite(’ condition > ’),
re a d J in e (0 ,L),
[!ifthen(L \= = $then$,

p ro c e s s jf (N , Ref, L))!],
L = = $then$,
re co rd z(u ser,L ,J ,
w rite(’ action > ’),
read J in e (0 ,L L),
pro cessJh en (N ,R ef1 ,LL),
instance(Ref,Lif),
instance(Ref1 ,Lthen).

p ro cessJf(_ ,_ ,$ $):-
w rite(’blank line, p lease try again ’),nl,l.

p ro c e s s jf (N , R e f, L)
recorded(innam e, Inlist,_),
string__search($ $,L ,P),
substring(L,0,P ,Attr),
atom _string(Term ,Attr),
m em ber(Term ,In list),
reco rd zfu ser.L .J ,
concat(V,A ttr,A ttr1),
instance(R ef,Tab le),
string_search($,$,L ,S),
S1 is S - P,
substring(L,P,S1 .Rest),
concat(Attr1 ,R est,L1),
c o n c iT a b le .lL IJ .T a b le l),
rep lace(R ef,Tab le1),l.

11

loadrule.ari

process J f(N ,R e f,L):-
recorded(outnam e,O utlist,_),
string_search($ $,L ,P),
substring(L,0,P ,Attr),
concat(V,A ttr,A ttr1),
atom _string(Term 1 ,Attr1),
atom _string(Term ,Attr),
m em ber(Term ,O utlist),
recordz(user,L ,_),
re c o rd e d iT e rm .H e a d .J ,
co n c([N],H ead ,H ead 1),
conc([Term],H ead1 ,H ead 2),
co n c(H ead 2 ,[T erm 1],H ead 3),
H eadn =.. H ead3,
string_term (H _str,H eadn)>
instance(R ef,Tab le),
conc(Table ,[H _str],Table1),
rep lace(R ef,Tab le1),
s trin g_search($,$,L ,P 1),
P 2 is P1 - P ,
substring(L,P ,P2,S tr),
concat(Attr1 ,S tr,S tr1),
instanceiR ef.Tab),
conc(Tab ,[S tr1],Tab1),
rep lace(R ef,Tab1),!.

process_if(N ,R ef,L):-
write(L),
w rite(’is not a legal nam e, ’),nl,
w rite(’p lease try again ’),nl.

process_then(N ,R ef,$$):-
w rite(’blank line.please try again ’), nl,
w rite j’ action > ’),
readJ ine(O .X),
process_then(N ,R ef,X),l.

12

Ioadrule.ari

process_then(N ,R ef,L):-
[!string_search($ $,L ,P),
substringiL.O.P.Attr),
atom _string(Term ,Attr))
recorded(outnam e,O utlist,_) !],
m em ber(T erm IOutlist),
recordz(user,L,_),
recorded(Term ,Tab ,_),
conc([N],Tab ,Tab1),
conc([Term],Tab1 ,Tab2),
string_search(islL,P1),
N1 is P1 + 3,
string_search($;$,L ,P2),
N 2 is P2 - N1,
substring(L,N1 ,N 2,V a l),
string_term (Val,Tval),
ifthenelse((num ber(Tval);(atom (Tval)),

co n c(T ab 2 ,[rva l],T ab 3),

(concat(V,A ttr,Vattr),
atom _string(Tv,Vattr),
co n c(T ab 2 ,[rv],T ab 3),
Pp is P1-1,
Nn is P 2-P p ,
substring(L,Pp,Nn,Nval),
concat(Vattr,N val,Vn),
recorded(if,Ex,Rif),
conc(Ex,[Vn],Ex1),
replace(R if,Ex1))),

S tru=..Tab3,
string_term (Str,Stru),
replace(Ref,[S tr]),!.

13

loadrule.ari

process_then(N ,R ef,L):-
[!string_search($ $,L ,P),
substringiL.O.P.Attr),
atom _string(T,Attr),
recorded(m es,M ,_)l].
m em b er(T ,M),
recordz(user,L ,_),
re co rd ed C T .T ab .j,
co n c([N],T ab ,T ab 1),
c o n c jm .T a b l ,Tab2),
string_search($ is$,L ,P 1),
K is P1 + 3,
s tring_search($;$,L ,P2),
K1 is P 2 - K,
substring(L,K,K1 ,Val),
co nc(T ab2, [Val] ,T a b 3),
S tru= ..Tab 3,
string_term (Str,Stru),
replace(R ef,[S tr]),!.

p rocess_then(N ,R ef,L):-
write(L),
w rite j’is not a legal nam e.please try again ’),nl,
w rite(’ action > ’),
read_line(0 ,X),
process_then(N ,R ef,X).

ask_user(A ns):-
w rite(’last rule is :’),nl,
list_all,
w rite(’ ls the rule c o rre c t, answ er(y/n)> ’),
read_line(0 ,A ns),
eraseall(user).

14

Ioadrule.ari

list_all:-
recorded(user,X,_).
w rite(X), nl,
fail.

list all.

w rite_m le(A ns,H ,[],[X]):-
A ns = = y,
w rite(H ,X),
w r i te (H / .’),
nl(H),
nl(H).

w r ite jii le iA n s .H .L I ,12):-
Ans = = y,
w rite_head(H ,L2),
write_body(H ,L1).

w rite_rule(Ans. , .):-
A ns = = n,
w rite (’last rule is incorrect,enter again’),nl.

w rite_head(H ,[X]):-
w rite (H ,X),
w iite (H ,’
n l(H).

w rite_body(H ,[X |T]):-
tab (H ,3),
w rite (H ,X),
ifthen(T \= = G.

{w rite(H ,’
nl(H))),

w rite_body(H ,T).

15

Ioadrule.ari

write_body (H ,[]):-
w rite íH ,’.’),
nl(H),
nl(H).

m em ber(X ,[X |Tail]).

m em ber(X ,[H ead|Tail]):-
m em ber(X ,Tail).

16

shel.ari

- public userJnput/O .
- public conc/3.
- visible conc/3.

u s e rjn p u t:-

w rite j’* * ’),nl,
write(’* Enter input variable nam e at prompt, end by ’’stop” * ’),nl,
w rite(’* All variable nam e enter in low er_case * ’),nl,
w rite(’* * ’),nl,

nl,
recordaiinnam e.n.R ef),
do_analog(R ef),
do_digital(Ref),
do_screen(R ef).

% specification of the input variable of the system %

do_analog(R ef):-
repeat,
recorda(analog,[],Ref1),
w rite(’Do you have analog input,(y/n)?’),
readJine(O .A),
[lifthenelse(A = = y,

(get_nam e(R ef1),
ask_user(R ef1 ,analog,Ans)),

Ans = n) !],
Ans = = n,
instance(Ref,ln),
instance(Ref1,An),
conc(ln ,An,N in),
replace(R ef,N in).

17

shel.ari

do_digital(Ref):-
repeat,
recorda(digital,[],R ef1),
w rite(’Do you have digital input,(y/n)?'),
readJine(O .A),
[!ifthenelse(A = = y,

(g e t_n am e(R ef1),
ask_u ser(R ef1 ,digital, Ans)),

Ans = $n $) !],
Ans == n,
instance(Ref,ln),
instance(Ref1 ,An),
conc(ln ,An,N in),
replace(Ref.N in).

do_screen(R ef)>
repeat,
recorda(screen,[],R ef1),
w rite(’Do you have screen input,(y/n)?’),
read_line(0,A),
[!ifthenelse(A = = y,

(get_nam e(R ef1),
ask_user(R ef1 .screen,Ans)),

Ans = $n $) I],
Ans = = n,
instance(Ref,ln),
instance(Ref1 ,An),
conc(ln ,An,N in),
replace(R ef,N in).

ask_user(R ef,A ,A ns):-
instance(Ref,l),
write (A),
write(' input nam e list is ')>
write(l),nl,
w rite(’Do you w ant to change? (y/n) > ’),
read_line(0,Ans),
ifthen(Ans = = y,

eraseall(A)).

18

shel.ari

get_nam e(R ef):-
repeat,
nl,
w rite(’input nam e o rs to p ’V) ,
readJine(O .X),
[!ifthen(X \= = $stop$,

(instance(Ref,lnputp),
atom _string(A ,X),
conc([A],lnputp,lnputn),
replace(R ef,lnputn)))l],

X = $stop$.

conc([],L,L).

conc(L,[],L).

Gone([X|L1],L 2 f[X|L3]):-
eonc(L1 ,L2,L3).

19

shell, ari

% specification of the output of the system %

public user_output/0.
extrn conc/3.

user_output:-

w rite(’* * ’).nl,
w rite(’* E nter output variable nam e at prom pt,end by "stop” * ’),nl,
w rite(’* All variable nam e enter in low er_case * ’) ,nl,
w riter * ’),nl,
w rite (,* * *** *** ** ,),n lI
nl,
recorda(output,[],R ef),
recorda(outnam e,[],R ef1),
repeat,
nl,
w rite (’outputnam e or ”stop">’),
read_ line (0 ,X),n l,
w rite (’T h e input is ”’),
w rite (X),
w rite (””),nl,
w rite (’if it is correct,press ’’return’”),nl,
w rite (’ otherwise press ”n”> ’),
read _ lin e (0 ,A n s),nl.nl,
[!ifthen((A ns = = $$,

X \= = $stop$),
get_list(Ref1 ,X))I],

X = = $stop$,
instance(Ref1 ,T),
rep lace(R ef,T),
w rite ('** ‘ * * **** ’),nl,
w rite (’* * ’),nl,
w rite(en ter interm ediate variable nam e at prom pt.end by "stop” * ’),nl,
w rite (’* * ’),nl,

nl.nl,

20

shell.ari

repeat,
w rite(,in term ediate_nam e or "stop”> '),
re a d J in e (0 ,Y),n l,
w rite(’T h e Input is ’”),
w rite(Y),
w rite(””),nl,
w rite j’if it is correct,press ’’return” ’),nl,
w rite(’ otherwise press ”n”> ’),
read_line(0,Ans1),nl,nl,

Ans == $$,
[!ifthen((Ans1 = = $$,

Y \= = $stop$),
get_list(Ref1,Y))!],

Y = = $stop$,
recorda(m es,[],R m),
write(
write
write
write
write

variab le%
write
write
write
write
write

* ’),nl,
’* Is any m essage output from the system ?

If there is, please en ter which nam e it is,
this variable only will give m essage in the

M),nl,

’),nl,
★ »

* 1

),nl,
),nl,

* screen. D on”t enter the nam e again in later * ’),nl,
* O therw ise, enter "no” . * ’),nl,

* ’).nl,

read_line(0 ,M es),
keep (M es,R m).

% get

get_list(_ ,$stop$):-l.

get_lis t(R ef,X):-
instance(R ef,O ld),
atom _string(A ,X),
conc([A],O ld ,N ew),
replace (Ref, N ew),

m essage

21

shell.ari

repeat,
[!ask_param eter(A),
recorded(A ,P ,_),n l,
w rite('The param eter o f"),
write(A),
w rite(”’ is ’”),
write (P),
w rite(’’”),nl,
write(’ Do you w ant to change? (y/n) >'),
read_line(0,Ans),nl,nl,
ifthen(Ans = = y,

eraseall(A))!],
Ans == n.

ask_param eter(A):-
w rite(’** *** *** *** ****************************** ’),nl,
w rite(’enter the param eter o f"),
write(A),
w rite(”’at prompt ’),
nl.
w rite(’stop by "end” ’),nl,

recorda(A ,[],Ref),
repeat,
w rite(’param eter or ”end”> ’),
read_line(0,X),
[!ifthen(X \= = end,

(concat(V,X ,Str),
atom _string(Y,Str),
instance(Ref,O utp),
conc([Y],O utp,O utn),
rep lace(R ef,O utn)))l],

X ==end.

22

shell, ari

keep(no ,_).

k e e p (M ,R)>
atom _string(A ,M),
replace(R ,[A]),
recorded(output,X ,R 1),
d e l(A ,X ,X 1),
rep lace(R 1 ,X 1),
recorded(outnam e,Y , R2),
d e l(A ,Y ,Y 1),
rep lace (R 2 ,Y 1).

de l(X ,[X |Ta il],Ta il).

de l(X ,[Y |Tail],[Y |Tail1]):-
d e l(X ,T a ilpT a il1).

conc(D,L,L).

conc([X | L1], L 2 , [X |L3]) :-
conc(L1,L2 ,L3).

23

getgoal.arì

% get top goal %

public get_goal/2.
extrn conc/3.

get_jgoal(H,Lev):-
recorded(output,Out,_),
recorded(innam e,ln,_),
ctr_set(0,0),
repeat,
ctr_inc(0,N),
S tru=..['top_goal’,N ,,X n ’],
string_term (Str,Stru),
write(H .Str),
w rite (H ,’
nl(H),
tab (H ,10),
Strr=..[recorda,path,□,’R e f],
string_term(Stri,Strr),
write(H ,Stri),
w rite(H ,’ ,’),
nl(H),
[!doJnput(H ,ln)l],
[!construct_goal(H,N,Out)!],
tab (H ,10),
Strup=..[recorded,pathI’X n ,,’J] ,
string_term (Strp,Strup),
w rite(H ,Strp),
recorded(m es,M s,_),
ifthenelse(M s == Q,

w rite(H ,’ .’),
(w rite iH .’.’i.nKH),
do_m es(H ,N ,M s))),

nl(H),
nl(H),

N == Lev.

24

getgoal.ari

construct_goal(H ,N ,[X |Tail]):-
recorded(X ,Par,_),
conc([N],P ar,Par1),
atom _string(X ,Xx)I
concat(V,Xx,X y),
concat($S $,X x ,Zz),
concat($C $,X x,U u),
atom _string(Y ,Xy),
atom _string(Z,Zz),
atom _string(U ,U u)l
conc(Par1 ,[Y],Par2),
conc([X],P ar2,P ar3),
Stru=..Par3,
stri ng_term (Str, Stru),
tab (H ,10),
write (H, Str),
w rite(H ,’ ,’),
nl(H),
tab (H ,10),
S truu=..[instance,'R ef,U],
string_term (Strr,Struu),
w rite(H ,Strr),
w r ite (H ,','),
n l(H),
tab (H ,10),
Struy=..[conc,U ,[Y],Z],
st ri ng_term (Stry, Struy),
w rite(H ,Stry),
w rite (H ,’ .’J.nliH),
tab (H ,10),
S truz= ..[rep lace,’R ef’,Z],
string_term (Strz,Struz),
w rite(H .Strz),
w rite (H ,’ ,’),
nl(H),
construct_goai(H ,N ,Tail).

g e tg o a l.a r i

do_input(H ,[X |Tail]):-
atom _string (X ,Y)21
c o n ca t($V $,Y ,Y 1),
atom _string(X1 ,Y1),
M - a v (X ,X 1),
s tring_term (M 1,M),
ta b (H ,1 0),
w rit0 (H ,M 1),
w rite (H ,’ ,’),
nl(H),
do_input(H ,Tail).

d o jn p u t (_,[])■

do _m es(H ,N ,[M]):-
re c o rd e d (M ,S ,j,
conc([N],S ,S 1),
co n c([M],S 1 ,S 2),
a tom _string(M ,M 1),
co n ca t($V $,M 1 ,M 2),
atom _string(A ,M 2),
conc(S 2,[A],S 3),
S truu= ..S 3 ,
st ri ng_ter m (St ri, St ru u),
ta b (H ,1 0),
w rite(H ,Stri),
w rite iH ,'/) ,
n l(H),
St ru=4(ecorda,m essage,A ,
string_term (Str,Stru),
ta b (H ,1 0),
w rite(H ,S tr),
w rite iH ,’,’),
n l(H),
tab (H ,10),
w rite (H ,$n l.$),
nl(H).

c o n s tru c t_ g o a l(_ ,_ ,[])•

2 6

g e tg o a l.a r i

do_input(H ,[X |Tail]):-
atom _string(X ,Y)2,
co n cat($V $,Y ,Y 1),
atom _string(X1 ,Y1),
M = av (X ,X 1),
string_term (M 1,M),
tab (H ,10),
w rite (H ,M 1),
w rite (H ,’
nl(H),
do Jn p u t(H .T a il).

do_input(_,[]).

do_m es(H ,N ,[M]):-
recorded(M ,S,_J,
conc([N],S ,S1),
conc([M],S 1 ,S 2),
atom _string(M ,M 1),
co n cat($V $,M 1 ,M 2),
atom _string(A ,M 2))
conc(S2,[A],S3),
S truu=..S3,
string_term (Stri,Stnju),
tab (H ,10),
w rite(H ,Stri),
w rite ÍH ,’,’),
nl(H),
Stru=4íecorda1m essage,A ,’_ ’] I
string_term (Str,Stru),
tab (H ,10),
w rite(H ,Str),
writeÍH,’,’),
nl(H),
tab (H ,10),
w rite(H ,$n l.$),
nl(H).

c o n s tru c t_ g o a l(_ ,_ ,[]) .

2 6

in te rru p t.a ri

% lo a d tim e rule %

- public gettim e/0.
- extrn conc/3.
- extrn m em ber/2.

gettim e:-
w rite(’* * *** *********************************** ’),nl,
w rite(’* P lease write the rule of * ’),nl,
write(’* deciding available tim e. * ’),nl,
w rite j’* If the data needed is previous input * ’),nl,
w rite(’* the variable nam e is p+inputnam e *’),n ll
w rite(’* e.g: the function needs speed’’s * ’),nl,
w rite(’* previous data,the variable nam e for * ’),nl,
w rite(’* the data is ’’pspeed”. * ’),nl,
w rite(,** *** *********************************** ’))nl,nl,
w rite(’enter rule at prom pt,end by stop’),nl,
repeat,
w rite(’rule or ’’stop” > ’),
read_line(0,L),
[lifthen(L \= = $stop$,

do_rest(L))l],
L == $stop$.

do_rest(H):-
H \= = if,
w rite(’ilegeal input try again ’).

do_rest(H):-
recorda(se nt, $$, R e f),
repeat,

w rite(’condition > ’),
re ad jin e (0 ,l_),
[lifthen(L \= = $then$,

(string_search($ $,L ,P),

2 7

in terrup t, an

substring(LtO,P,S),
check(S .ld),
concat($V $,S ,S 1),
atom _string(A1,S1),
ifthenelse(ld = = new,

(atom _string(A,S),
conc([A],[A1],B),
conc([av],B,B1)),

(string_length(S,Ls),
Ls1 is Ls -1,
su b s trin g iS .I.L s I.P s),
atom _string(A,Ps),
conc([A],[A1],B).
conc([ap],B ,B1))),

S tru= ..B 1 ,
string_term(Stri,Stru),
instance (Ref, Part),
concat([P art,S tri,$,$],P arti),
string_search($,$lL,P1),
Lp1 is P1 -P +1 ,
substring(L,P,Lp1,ln),
concat(S1,ln ,S i),
concat(Part1 ,S i,Part2),
replace(Ref,Part2)))!],

L = = $then$,
w rite(’action > ’),
read_line(0 ,X),
string_search(is,X ,Pos),
string_search($;$,X ,Pos1),
Len is Pos1 - Pos,
substring(X ,Pos,Len,Y),
concat([$C lock $,Y ,$.$],Last),
instance(R ef,C on),
c o n c a t([$ b re a k (C lo c k)$,Con,Last],R),
string_term (R ,Tr),
assertz(Tr).

2 8

interrupt.ari

check(S .ld):-
recorded(i n nam e, I
atom _string(A ,$),
m em ber(A ,l),
Id = new.

check(S ,ld):-
stringJength(S ,L),
L I is L -1 ,
substring(S(1 ,L 1,S 1),
atom _string(A ,S1),
m em ber(A ,l),
Id ^ old.

eheck(S ,_):-
w rite (’ilegeal input nam e, try again’),nl,
do_rest(S).

29

process.c

! * in te rfa c e o f in p u t/o u tp u t 7

#include <stdio.h>
#include "apctype.h"

#define maskh OxOfff
#define m otherboard 6
#define ready 0x7f

static int buf[20],array[20];

r function pow er 7

int power(i)
int i;
{

int j,v;
v=1;
for (j= l ; j < = i; j++)
{

v*=2;
}
return(v);

}

/* intialise keithley 7

initiaiise_keithley()

{
char *global_gain,*strobe;

global_gain=(char far *) 0xcff9000a;
*giobal_gain=0;
strobe=(char fa r *) 0xcff9000d;

*strobe=64;
return (SU C C ES S);

}

3 0

p ro c e s s .c

getdata(z .c)
reftype z,c ;

{
int word,wait,num ;
int *ad_value;
ch ar *slot,*channel, *ad_converter;
slot=(char far *)0xcff80001;
channel=(char far *)0xcff8000a;

ad_converter=(char far *)0xcff90008;
ad_va lue= (int far *)0xcff80002;
getint_c(c,&num);
channel= num; / select c h a n n e l7
*slot=m otherboard;

w ait = 1000;
while (wait > 0)
{

w ait--;
}
ad_converter=0; / start ad _co n verter7

w ait=100;
while (*ad_converter != ready && wait > 0)

{
w a it - ;
}

w ord=*ad_value & maskh;
putint_c(word,z);
return (S U C C E S S);

}

/* input digital data 7

getdatd(a,b)
reftype a,b;
{

char *porta,*portb;
int i,j;
porta=(char far *)0xcff80006;
portb=(char far *)0xcff80007;
i=*porta;
j=*portb;

I * s a m p lin g 7

31

process.c

putint_c(i,a);
putint_c(j,b);
re turn (SU C C ES S);

}

getnum (pIva,vb,bit)
reftype p ,vafvb,bit;
{

int a.b .i.j.val;
getint_c(p,&i);
getint_c(va,&a);
getint_c(vb,&b);
if(i <= 8)
{
M-1;
j=power(i);
M;
val=a&i;

}
else
{
i=i-9;
j=power(i);
'=j;
val=b&i;
}
putint_c(val,bit);
re turn (S U C C E S S);

}

I* write result to buffer 7

writebuf(stru.arg)
reftype stru.arg;
{

int i . j j .m .k .o u tl;

32

process.c

char *out;
out=(char far *)0xcff80008;
getf u nctor_c(stru .array, &l, & j);
for (¡=1; i < = j; i++)

{
getfuncarg_c(stru,i,&arg);
getint_c(arg,&m);
buf[i]«m;

}
out1=0;
for (i=0; i < = j-1 ; i++)
if (buf[i+1] = 1)

{
out1+=pow er(i);

}
printf("%d\n",out1);
*out=out1;
return (S U C C E S S);

}

33

pei.c

/*
File P E I.c

#include <stdio.h>
#include <bios.h>
#include <dos.h>
#include <stdlib.h>
#include <setjm p.h>
#include "apctype.h"

/*
give prototypes

7
int isr_setup(void);
int isr_rem ove(void);
int set_tim er(int);

r
declare variables

7
void (interrupt fa r *old_int8)(); /* pointer to old interrupt 7

long ticks=0L; /* declare ticks left 7
int tim e =0; /* interm ediate storage 7

void (interrupt fa r *int1b)(); /* pointer to control break handler */

extern getint_c(int,int *);

r
function to set alarm call
param eter: num ber of ticks to wait, 18.2 per second

Contains functions for interrupt setup and handling

34

p e i.c

int set_tim er(reftype parm)
{
printf("setting timer\n");
getint_c(parm ,&tim e);
ticks=(long)tim e;
printf("ticks % ld\n",(long)ticks);

return 1;
}

r
N ew interrupt vector to handle hardware clock interrupt

7
void interrupt far newint8(void)
{

_en ab le(); /* allow other interrupts to happen 7
(*old_int8)(); /* call old int vector 7
if (--ticks == OL) I* tim e left ? 7

_chain_intr((void(interrupt far *)())int1b);I* jum p back up program 7
}

r
function to set up the interrupt service routine

7
int isr_setup(void)

{
_d isab le(); /* disable interrupts 7
old_int8 = _dos_getvect(0x8); /* get old interrupt address 7
in ti b = _dos_getvect(0x1 b); /* get control break address 7
/* now replace it with my own 7
_dos_setvect(0x8,(vo id (interrupt far *) ())newint8);
_ en ab le (); /* all done re enable the interrupts 7
puts("\nInstalled Successfully\n"); /* tell user its A ok 7
return(1);

}

3 5

p e i.c

r
function to rem ove isr if you dont do this then
the m achine is non serviceable I

7
int isr_remove(void)

{
_disable(); /* disable interrupts 7

_dos_setvect(0x8,(void (interrupt far *) ())old_int8); /* reset old vector 7
_enab le(); t* all done re enable the interrupts 7
puts("\nDe-lnstalled Successfully\n"); /* tell user its A ok 7
return (1);

}

3 6

Appendix B

A List of the Rule Base

Appendix B.1 The Rule Base of Exam plel and Exam ple2.

Exam ple 1 A simple exam ple using switchs and lights. The tim e available depends on
the input voltage. Because the rules execute so rapidly, the level 3 rules are alw ays
reached.

Input.

analog:
volt OV to 10V.

digital:
sw itchl 1 or 0.
switch2 1 or 0.
switch3 1 or 0.

Output.

digital:
lightl 1 orO.
Iight2 1 orO.
Iight3 1 or 0.

Tim e rules,
if

volt < 4,
then

tim e is 6(s);
if

volt > = 4,
volt = < 8,

then
tim e is 3(s);

if
volt > = 8,

then
tim e is 0;

1

A ppendix B.1 The R u le B ase of E xam p le l an d E xam ple2.

level 1 :

1)

2)

3)

4)

level 2:

1)

2)

3)

4)

if
switch 1 = 1,

then
lightl is 1 ;

if
sw itchl = 0,

then
lightl is 0;

Iight2 is 0;

Iight3 is 0;

if
switch2 = 1,

then
Iight2 is 1 ;

if
sw itch2 = 0,

then
Iight2 is 0;

lightl is 0;

Iight3 is 0;

2

A pp end ix B.1 The Rule B ase of E x a m p le l an d Exam ple2.

level 3:

1) if
switch3 = 1,

then
Iight3 is 1 ;

2) if
switch3 = 0,

then
Iight3 is 0;

3) lightl is 0;

4) Iight2 is 0;

Exam ple 1 Translated Prolog version rules.

top_goal(0 ,Xn)
recordaipath.Q .Ref) ,
av(volt,Vvolt) ,
av(sw itch 3,V sw itch 3),
av(sw itch 2,V sw itch 2),
av(sw itch 1,V sw itch 1),
light3(0,Vswitch3,Vlight3) ,
in s tan ce(R ef,C lig h t3),
conc(C light3 ,[V light3],S ligh t3),
rep lace (R e f,S lig h t3),
light2(0,Vswitch2,Vlight2) ,
in s tan ce(R ef,C llg h t2),
conc(Clight2,[Vlight2]IS lig h t2) ,
rep lace (R e f,S lig h t2),
lightl (0,Vswitch1,Vlight1) ,
instance(Ref,Clight1) ,
conc(Clight1 ,[Vlight1],Slight1) ,
re place (Ref, Slight 1) ,
reco rd ed (p a th ,X n ,_).

A pp end ix B.1 The Rule B ase of E xam p le l an d Exam ple2.

top__goal(1,Xn)
reco rd a (p a th ,[],R e f),
a v (vo lt.V v o lt),
a v (sw itch 3 ,V sw itch 3),
av(sw itch2,Vsw itch2) ,
av(switch1 ,Vswitch1) ,
Iight3(1 ,Vsw itch3,Vlight3) ,
¡nstance(Ref,C light3) ,
conc(Clight3,[V light3],S light3) ,
re p la c e (R e f,S lig h t3),
Iight2(1 ,Vswitch2,Vlight2) ,
in s tan ce (R e f,C lig h t2),
conc(C light2 ,[V ligh t2],S ligh t2),
re p la c e (R e f,S lig h t2), ;
lightl (1 ,Vswitch1 ,Vlight1) ,
instance(Ref,C light1) ,
conc(Clight1 ,[Vlight1],Slight1) ,
re p la c e (R e f,S lig h t1),
re c o rd e d (p a th ,X n ,_).

top_goal(2 ,Xn)
reco rd a (p a th ,D ,R e f),
a v (vo lt.V v o lt),
av(sw itch3,Vswitch3) ,
av(sw itch 2 ,V sw itch 2),
av (sw itch 1 ,V sw itch 1),
light3(2,Vsw itch3,V light3) ,
in s tan ce (R e f,C lig h t3),
conc(Clight3,[Vlight3],S light3) ,
re p la c e (R e f,S lig h t3),
light2(2,Vsw itch2,V light2) ,
in s tan ce (R e f,C lig h t2),
conc(Clight2,[Vlight2],S light2) ,
re p la c e (R e f,S lig h t2),
lightl (2,Vsw itch1,Vlight1) ,
instance(Ref,Clight1) ,
conc(Clight1 ,[Vlight1],Slight1) ,
replace(Ref,Slight1) ,
re c o rd e d (p a th ,X n ,_).

4

light1(0,Vsw itch1,1)
V sw itch l = 1.

light1(0,Vsw itch1,0)
V sw itch l = 0.

light2(0,Vsw itch2,0) .

lig h t3 (0 ,V s w itc h 3 ,0).

light2(1,Vsw itch2,1)
Vsw itch2 = 1.

Iight2(1 ,Vsw itch2,0)
Vsw itch2 is 0.

lightl (1 Vsw itch l , 0) .

Iight3(1 ,Vsw itch3,0) .

light3(2,Vsw itch3,1)
Vsw itch3 is 1.

light3(2,Vsw itch3,0)
Vsw itch3 is 0.

lightl (2 ,Vsw itch l , 0) .

light2(2,Vsw itch2,0) .

A pp end ix B.1 T h e R ule B ase of E x a m p le l and E x a m p le s

5

A ppendix B.1 The Rule B ase of E x am p le l and Exam ple2.

Exam ple 2. The ’If/Then’ English like rules are the sam e as exam ple 1. To test the tim e
behaviour of the system, a extra predicate is added manully to the Prolog version of the
level 1 and level 2, to delay the runing tim e of the rule base.
T h e level which determ ines the output can be changed by altering the input voltage and
hence the tim e available.

top_goal(0 ,Xn)
tim e(X),
reco rd a (p a th ,[],R e f),
a v (vo lt,V vo lt),
av(sw itch 3,V sw itch 3),
av(sw itch 2,V sw itch 2),
av(switch1 ,Vswitch1) ,
light3(0,Vswitch3,Vlight3) ,
in s tan ce(R ef,C lig h t3),
conc(Clight3,[Vlight3],Slight3) ,
rep lace (R e f,S lig h t3),
light2(0,Vswitch2,Vlight2) ,
in s tan ce(R ef,C lig h t2),
conc(C light2 ,[V light2],S ligh t2),
rep lace (R ef,S lig h t2),
light1(0,Vswitch1,Vlight1) ,
instance(Ref,C light1) ,
conc(Clight1 ,[Vlight1],S light1) ,
rep lace (R ef,S lig h t1),
recorded (path ,X n ,J ,
w aitsecs(X ,2).

top_goal(1 ,Xn)
tim e(X),
reco rd a (p a th ,[],R e f),
a v (vo lt,V vo lt),
av(sw itch 3,V sw itch 3),
av(sw itch 2,V sw itch 2),
av(sw itch 1,V sw itch 1),
Iight3(1 ,Vswitch3,Vlight3) ,
in s tan ce(R ef,C lig h t3),

6

A pp end ix B.1 T h e Rule Base of E xam p le l an d Exam ple2.

conc(C light3 ,[V light3],S light3),
rep lace (R e f,S lig h t3),
Iight2(1 ,Vswitch2,Vlight2) ,
in s tan ce(R ef,C lig h t2),
conc(C light2 ,[V light2],S ligh t2),
re p lace (R e f,S lig h t2),
H ght1(1,Vsw itch1,V light1),
instance(Ref,Clight1) ,
conc(Clight1 ,[V ligh t1],S ligh t1),
replace(Ref,Slight1) ,
reco rd ed (p a th ,X n ,_),
w aitsecs(X ,2).

top_jgoal(2,Xn)
reco rd a (p a th ,[|,R e f),
av (vo lt.V v o lt),
av(sw itch 3,V sw itch 3),
av(sw itch 2,V sw itch 2),
av(sw itch 1,V sw itch 1),
light3(2,Vswitch3,Vlight3) ,
in s tan ce(R ef,C lig h t3),
conc(C light3 ,[V light3],S ligh t3),
re p lace (R e f,S lig h t3),
right2(2,Vswitch2,Vlight2) ,
in s tan ce(R ef,C lig h t2),
conc(C light2 ,[V light2],S light2),
re p lace (R e f,S lig h t2),
lightl (2,Vswitch1 ,Vlight1) ,
in s tan ce(R ef,C lig h t1),
conc(C light1 ,[y iigh t1],S ligh t1),
re p lace (R e f,S lig h t1),
reco rd ed (p a th ,X n ,_).

7

A ppendix B.1 T h e Rule B ase o f E x am p le l an d Exam ple2.

light1(0,Vswitch1,1)
Vsw itchl = 1.

lightl (0,Vsw itch1,0)
Vsw itch l = 0.

lig h t2 (0 ,V sw itch 2 ,0).

light3(0,Vswitch3,0) .

light2(1,Vswitch2,1)
Vswitch2 = 1.

Iight2(1 ,Vswitch2,0)
Vswitch2 is 0.

lightl (1 .Vswitchl , 0) .

Iight3(1 ,V s w itc h 3 ,0).

light3(2,Vswitch3,1)
Vswitch3 is 1.

light3(2,Vswitch3,0)
Vswitch3 is 0.

lightl (2,Vsw itch1,0) .

light2(2,Vswitch2,0) .

waitsecs(tim e(H1 ,M1 ,S1 ,Hs1),S):-
repeat,
tim e (tim e (H 2 ,M 2 ,S 2 ,H s2))I
S1 is (H 2 - H 1)*3 6 0 0 + (M 2 -M 1)*6 0 + S 2 - S1,
S1 >= S.

8

Appendix B.2 : The Rule Base of controlling a m achine for
the m anufacture of contact lenses.

Part 1 is the specification of input,output,interm ediate variable and relative param eters of
the system. All these variables are com piled to an internal form at, and saved in an
internal database. A rule deciding tim e availab le is written in ’if/then’ form at and included
in part 1. The rule will be com piled to the Prolog form at by m odule "gettime", and saved
in an internal database.

Part 2 is the rule base in which the rules are written in ’if/then’ form at, and constructed
in three levels. The ’ifAhen’ format rule base are com piled to the Prolog form at rule base
by module "loadrule", and saved in a rule file. T h e Prolog form at rule base is shown in
part 3.

Part 1 :

Specification.

Input variables:

Analog:
angle
tablerate
spinners

rotation angle of the table,
table rotation rate,
spinner speed.

Digital:
a rm i state of the mould input arm.
arm fl fully in of the mould input arm.
arm 2 state of the m onom er inject arm.
arm f2 fully in of the m onom er inject arm .
arm 3 state of the mould rem ove arm.
arm f3 fully in of the m onom er inject arm .
moulds availability of mould.
monomerl availability of m onom er.
mouldins mould in spinner.
gasp gas pressure.
gasf gas flow.
ty p e l,2 ,3 lens type.

9

A pp end ix B.2

Output varibles:
Digital:

a rm in l

arm outl

arm in2

arm out2

arm in3

arm out3

alarm

Operator:
opm es

Interm ediate varibles:
checkss

checktr

lenstype

insert mould input arm.
param eter: angle, moulds, a rm l.
withdraw mould input arm .
param eter: angle, a r m f l.
insert m onom er inject arm .
param eter: angle, m onom erl, arm 2.
withdraw m onom er inject arm .
param eter: angle, arm f2.
insert mould rem ove arm .
param eter: angle, mouldins, arm 3.
withdraw mould rem ove arm
param eter: angle, arm f3.
warn signal.
param eter: lenstype, spinners, tablerate, gasp, gasf.

warn information.
param eter: gasp, gasf, moulds, m onom erl, mouldins, lenstype,
spinners, tablerate.

check spinner speed,
param eter: lenstype, spinners,
check table rate,
param eter: lenstype, tablerate.
lens type.
param eter: typ e l ,2,3.

Rule for deciding tim e available,

if
tablerate > = 0,
then
time is 1 / 12*tablerate;

if
tablerate < 0,
then
tim e is 1 / 12*(-tab lerate); j

10

A p p en d ix B.2 The ’if/th en ’ fo rm at ru le base

Part 2 T h e rule base written in ’if/then’ format.
There is 5 stages of the table:

level 1 :

1: if
angle > = 5,
angle = < 6,
m oulds = 0,

then
opm es is no_m ould_supply;

2: if
angle >= 7,
angle = < 8,
m onom erl = 0,

then
opm es is no_m onomer;

3: if
angle > = 9,
angle = < 10,
mouldins = 0,

then
opm es is no_m ould_rem ove;

4 opm es is ok;
5 alarm is 1 ;
6 arm in l is 0;
7 arm o u tl is 0;
8 arm in2 is 0;
9 arm out2 is 0;

10: arm in3 is 0;
11 : a rm o u t3 is 0 ;

mould input, angle >= 5V ,
=< 6V .

m onom er inject, angle > = 7V ,
= < 8V .

mould rem ove, angle > = 9V ,
= < 10V .

mould fully in, angle > = 3V ,
= < 4V .

injection done, angle > = 1V,
= < 2V .

u

% stage of mould input

% no mould available

% stage of m onom er inject

% no m onom er available

% stage of mould rem ove

% no mould in spinner

% other output is off

11

(

A ppendix B.2 The ’if/th en ’ fo rm a t rule base

le ve l 2:

1: if
angle >= 5,
angle =< 6,
moulds = 1,
arm i = 1,

then
arm ln l is 1 ;

2: arm in l is 0;

3: if
angle > = 3,
angle =< 4,
arm fl = 1,

then
arm outl is 1 ;

4: arm outl is 0;

5: if
angle >= 7,
angle = < 8,
monomerl = 1,
arm 2 = 1,

then
arm in2 is 1 ;

6: arm ln2 is 0;

angle > = 1,
angle = < 2,
arm f2 = 1,

then
arm out2 is 1 ;

8: arm out2 is 0;

12

% lf stage Is mould input,
% mould is available,
% mould input arm is ready,
% then input mould.
% otherwise do nothing.

% if stage is mould input done,
% arm fully in,
% then retract arm.
% otherwise do nothing.

% if stage is m onom er inject,
% m onom er is available,
% m achine arm is ready,
% then inject monomer.
% otherwise do nothing.

% if stage is injection done,
% m achine arm fullu in,
% then retract arm.
% otherwise do nothing.

A p p en d ix B.2 The ’if/then’ fo rm at ru le base

9: if
angle >= 9,
angle = < 10,
mouldins = 1,
arm 3 = 1,

then
arm in3 is 1 ;

10: arm in3 is 0;

% if stage is mould rem ove,
% mould is in spinner,
% m achine arm is ready, % then rem ove mould.
% otherw ise do nothing.

11: if
angle > = 3, % if stage is arm fully in,
angle = < 4, % then rem ove arm,
arm f3 = 1, % otherw ise do nothing,

then
arm out3 is 1;

12: a rm o u t3 is 0 ;

13: a larm is 0;
14: opm es is ok;

13

A ppendix B .2 The ’If/th en ’ fo rm at rule base

level 3:

1: if
checkss = 0,

then
alarm is 1;

2: if
checktr = 0,

then
alarm is 1;

3: if
gasp = 0,

then
alarm is 1;

4: if
gasf = 0,

then
alarm is 1;

5: alarm is 0;

6: if
lenstype = a 1 ,
spinners > = 2,
spinners = < 10,

then
checkss is 1;

7: if
lenstype = a2,
spinners > = 2,
spinners = < 10,

then
checkss is 1 ;

% check spinner speed

% check table rotation

% check gas pressure

% check gas flow

1 4

A ppendix B.2 T h e ’if/th en ’ fo rm at ru le base

8: if
lenstype = a3,
spinners >= 2,
spinners =< 5.6,

then
checkss is 1 ;

lenstype = a4,
spinners >= 2,
spinners = < 6.8,

then
checkss is 1;

10: if
lenstype = a5,
spinners > = 2.4,
spinners =< 6.4,

then
checkss is 1;

11: if
lenstype = a6,
spinners >= 2,
spinners =< 4,

then
checkss is 1;

12: checkss is 0;

1 5

A pp end ix B .2 The ’if/th en ’ fo rm a t ru le base

13: if
lenstype = a 1 ,
tab lerate > = 4,
tab lerate = < 10,

then
checktr is 1 ;

14: if
lenstype = a2,
tab lerate > = 4,
tab lerate = < 5,

then
checktr is 1 ;

15: if
lenstype = a3,
tablerate >= 5,
tab lerate = < 6,

then
checktr is 1 ;

16: if
lenstype = a4,
tab lerate > = 5,
tab lerate = < 6,

then
checktr is 1 ;

17: if
lenstype = a5,
tab lerate > = 5,
tablerate = < 6,

then
checktr is 1 ;

16

A pp end ix B .2 The ’if/th en ’ fo rm at ru le base

lenstype = a6,
tablerate > = 5,
table rate = < 8,

then
checktr is 1 ;

19: checktr is 0;

1 8 : if

20: if
checkss = 0,

then
opm es is spinner_speed_incorrect;

21: if
checktr = 0,

then
opm es is tab le_ra teJncorrect;

22: if
gasp = 0,

then
opm es is gas_pressure_incorrect;

23: if
gasf = 0,

then
opm es is gas_flow Jncorrect;

24: opm es is ok;

1 7

A pp end ix B .2 T h e ’if/th en ’ fo rm a t ru le base

25: if
angle > = 5,
angle = < 6,
moulds = 1,
arm i = 1,

then
arm in l is 1;

26: a rm in l is O;

27: if
angle > = 3,
angle = < 4,
arm f 1 = 1,

then
arm outl is 1 ;

28: arm outl is 0;

29: if
angle >= 7,
angle =< 8,
monom erl = 1,
arm 2 = 1,

then
arm in2 is 1 ;

30: arm in2 is 0;

31: if
angle > = 1,
angle =< 2,
arm f2 = 1,

then
arm out2 is 1 ;

32: arm out2 is 0;

18

A pp end ix B .2 The ’if/th en ’ fo rm at ru le base

33: if
angle > = 9,
angle = < 10,
mouldins = 1,
arm 3 = 1,

then
arm in3 is 1 ;

34 : arm in3 is 0;

35: if
angle >= 3 ,
angle = < 4,
arm f3 = 1,

then
arm out3 is 1 ;

36: arm out3 is 0;

37 : if
ty p e l = 0,
type2 = 0,
type3 = 1,

then
lenstype is a1 ;

38 : if
ty p e l « 0,
type2 = 1,
type3 = 0,

then
lenstype is a2;

19

A p p en d ix B .2 The ’if/then’ fo rm at ru le base

39: if
typ e l = 0,
type2 = 1,
type3 = 1,

then
lenstype is a3;

40: if
typ e l = 1,
type2 = 0,
type3 = 0,

then
lenstype is a4;

41: if
typ e l = 1,
type2 = 0,
type3 = 1,

then
lenstype is a5;

42: if
typ e l = 1,
type2 = 1,
type3 = 0,

then
lenstype is a6;

20

A ppendix B.2 The com piled ru le base

top_goal(0 ,X n)
reco rd a(p ath ,[],R ef),
av(spinners,Vspinners) ,
av (tab le ra te .V tab le ra te),
av(angle.Vangle) ,
av(type3,Vtype3) ,
av(type2,Vtype2) ,
a v (ty p e 1 ,V ty p e 1),
av(gasf.Vgasf) ,
av(gasp.Vgasp) ,
avjm ould ins .V m ouldm s),
av(m on om erl,V m on om erl),
av(m ou lds,V m ou lds),
a v (a rm f3 ,V a rm f3),
av(arm 3,V arm 3) ,
av(arm f2,Varm f2) ,
av(arm 2,Varm 2) ,
av(armf1 ,Varmf1) ,
av(arm 1,Varm 1) ,
a larm iO .Vgasf.Vgasp.Vtablerate.Vspinners.V lenstype.Valarm) ,
instance(Ref,Calarm) ,
conc(C alarm ,[Valarm],Salarm) ,
replace(Ref.Salarm) ,
arm out3(0 ,Varm f3,Vangle,Varm out3) ,
in s tan ce(R ef,C arm o u t3),
conc(C arm out3,[Varm out3],Sarm out3) ,
rep lace (R e f,S a rm o u t3),
arm inSiO .Varm S.Vm ould ins.Vangle.Varm inS),
instance(Ref,Carm in3) ,
conc(C arm in 3 ,[V arm in3],S arm in 3),
rep lace (R e f,S a rm in 3),
arm out2(0 ,V arm f2,V angle IV a rm o u t2),
in s tan ce(R ef,C arm o u t2),
conc(C arm out2 ,[V arm out2],S arm ou t2),
rep lace (R e f,S arm o u t2),
arm in2(0 ,Varm 2fVm onom erl)Vangle,Varm in2) ,
instance(Ref,Carm m 2) ,
conc(Carm in2,[Varm in2]1S a rm in 2),
replace (Ref, S a rm in 2),

A pp end ix B.2 The com piled ru le base

arm outl (O .Varm fl ,Vangle,Varm out1) ,
instance(Ref,Carm out1) ,
conc(Carm out1 .[Varm outl],Sarmout1) ,
rep la c e (R e f,S a rm o u t1),
arm in l (O .Varm l .Vm oulds.Vangle.Varm m l) ,
instance(R ef,C a rm in i) ,
co nc(C arm in 1,[V arm in1],S arm in 1),
re p la c e (R e f,S a rm in 1),
recorded(path,Xn,_),

opm es(0,V tab lerate,Vspinners,V lenstype,Vm ouldins(V m onom erl,Vm ouldspVgasf,Vgasp,
Vopm es),

recorda(m essage,Vopm es,_),
nl.

top_goal(1 ,Xn)
reco rdaipath.J], R e f) ,
av(spinners.Vspinners) ,
av (tab le ra te .V tab le ra te),
a v (a n g le .V a n g le),
a v (ty p e 3 ,V ty p e 3),
a v (ty p e 2 ,V ty p e 2),
av jtyp e l ,Vtype1) ,
a v (g a s f.V g a s f),
av(gasp.Vgasp) ,
av(m ou ld ins ,V m ould ins),
av(m on om erl,V m on om erl),
av(m o u ld s ,V m o u ld s),
a v (a rm f3 ,V a rm f3),
a v (a rm 3 ,V a rm 3),
a v (a rm f2 ,V a rm f2),
av(arm 2,V arm 2) ,
av(armf1 ,Varmf1) ,
a v (a rm 1 ,V a rm 1),
alarm(1 .V gasf.V gasp .V tab lerate .V sp inners .V lenstype.V alarm),
in s ta n c e (R e f,C a la rm),
co n c iC a la rm .fV a la rm j.S a la rm),
replace (Ref, ¿ a la r m) ,
arm out3(1 .V arm fS .V angle .V arm outS),

22

A ppendix B .2 The com piled rule base

in s tan ce (R e f,C arm o u t3),
conc(C arm out3 ,[V arm out3],S arm ou t3),
rep la c e (R e f,S a rm o u t3),
armin3(1 .V arm S .V m ould ins.V angle .V arm inS),
in s tan ce (R e f,C arm in 3),
co n c(C arm in 3 ,[V arm in 3],S arm m 3),
re p la c e (R e f,S a rm in 3),
arm out2(1 ,V arm f2 ,V ang le1V a rm o u t2),
in s tan ce (R e f,C arm o u t2),
conc(C arm out2 ,[V arm out2],S arm ou t2),
rep la c e (R e f,S a rm o u t2),
armin2(1 ,V arm 2,Vm onom erlIV a n g le ,V a rm in 2),
¡n s tan ce (R e f,C arm in 2),
conc(C arm in2,[Varm in2]ISarm in2) ,
re p la c e (R e f,S a rm in 2),
arm outl (1 ,Varmf1 ,Vangle,Varm out1) ,
in s tan ce (R e f,C arm o u t1),
conc(Carm out1 .[V arm o u tlj.S arm o u tl) ,
rep la c e (R e f,S a rm o u t1),
arm m l (1 ,Varm1 ,Vm oulds,Vangle,Varm in1) ,
instance(R ef,C a rm in i) ,
conc(Carm in1 ,[Varm m 1],Sarmin1) ,
replace (Ref, S a r m in l) ,
reco rd ed ip a th .X n .J ,

opm esil.V tab lerate .V sp inners^ lenstype.V m ould in s .V m o nom erl.V m o ulds.V gasf.V gasp ,
Vopm es),

recorda(m essage,Vopm es,_),
nl.

23

A ppendix B .2 The co m piled ru le base

top_goal(2 ,Xn)
recorda(path ,Q ,R ef),
av(spinners,Vspm ners) ,
a v (tab le ra te ,V tab le ra te),
a v (a n g le ,V a n g le),
a v (ty p e 3 ,V ty p e 3),
av(type2,Vtype2) ,
av(type1 ,Vtype1) ,
a v (g a s f.V g a s f),
av(gasp.Vgasp) ,
av jm ould ins .V m ould ins),
av jm o n o m erl.V m o n o m erl),
av(m o u ld s ,V m o u ld s),
a v (a rm f3 ,V a rm f3),
av(arm 3,V arm 3) ,
a v (a rm f2 ,V a rm f2),
av(arm 2,V arm 2) ,
av(armf1 ,Varmf1) ,
av(arm 1,V arm 1) ,
a larm (2 ,V gasf,V gasp IV tab lerate ,Vspinners,V lenstype,Valarm) ,
instance(Ref,Calarm) ,
concfCalarm .IValarm J.Salarm) ,
re p la c e (R e f,S a la rm),
arm out3(2 ,V arm f3,V ang le)Varm out3) ,
in s tan ce (R e f,C arm o u t3),
conc(C arm o u t3 ,[V arm o u t3],S arm o u t3),
rep la c e (R e f,S a rm o u t3),
arm in3(2 IV arm 3,V m ould ins,Vangle ,Varm m 3) ,
instance (Ref, Carm i n3) ,
co n c(C arm in 3 ,[V arm in 3],S arm in 3),
replace(R ef,Sarm in3) ,
arm out2(2 ,V arm f2,V ang le,V arm out2) ,
in s tan ce (R e f,C arm o u t2),
conc(C arm out2,[Varm out2]IS a rm o u t2),
rep lace (R e f,S a rm o u t2),
arm in2(2 IV arm 2,V m o nom erl)Vang le,V arm in2) ,
in s tan ce (R e f,C arm in 2),
conc(C arm in2,[Varm in2]1S a rm in 2) ,
re p la c e (R e f,S a rm in 2),

A pp end ix B .2 The com piled ru le base

arm outl (2,Varm f1 , V ang le ,V arm outl) ,
¡nstance(Ref,Carm out1) ,
conc(Carm out1 ,[Varm out1],Sarm out1) ,
re p la c e (R e f,S a rm o u t1),
arrn in l (2,Varm 1 ,Vm oulds,Vangle,Varm in1) ,
¡nstance(R ef,C arm m 1) ,
conc(C arm in1,[Varrnin1],Sarm in1) ,
re p la c e (R e f,S a rm in 1),
reco rd ed ip a th .X n .J ,

o p m es(2 ,V tab le ra te1V spinnersIV lenstype,Vm ouldinsIV m o n o m eii)V m ouldsIV g asfIVgasp,
Vopm es),

recorda(m essage,Vopm es,_),
nl.

opm esiO .Vtablerate.Vspinners.V lenstype.Vm ouldins.Vm onom er^Vm oulds.Vgasf.Vgasp,
no_m ould_supply)

Vang le > = 5 ,
Vang le = < 6 ,
Vm oulds = 0.

opm esiO .Vtablerate.Vspinners.V lenstype.Vm ouldins.Vm onom erl.Vm oulds.Vgasf.Vgasp,
no_m onom er)

Vang le > = 7 ,
V ang le = < 8 ,
Vm onom erl = 0.

opm esiO .Vtablerate.Vspinners.V lenstype.Vm ouldins.Vm onom erl.Vm oulds.Vgasf.Vgasp,
no_m ould_rem ove)

V ang le > = 9 ,
V angle = < 1 0 ,
Vm ouldins = 0. ;

opm es^.Vtablerate.Vspinners.Vlenstype.Vm ouldins.Vm onom erl.Vm oulds.Vgasf.Vgasp.ok)

2 5

A p p en d ix B.2 The com piled rule base

alarm iO .Vgasf.Vgasp.V tab lerate .Vsp inners.V lenstype.l) .

a rm in l (0 ,V a rm l ,Vm oulds,Vangle ,0) .

a rm out1(0 ,V arm f1,V ang le ,0) .

arm in2(0 ,V arm 2,V m ono m erl,V ang le)0) .

arm out2 (0 ,V arm f2)V ang le ,0) .

arm inSiO .Varm S.Vm ouldins, V ang le ,0) .

a rm o u t3 (0 ,V a rm f3 ,V a n g le ,0).

arm in l (1 ,Varm1 ,Vm oulds,Vangle,1)
V angle >= 5 ,
V ang le =< 6 ,
Vm oulds = 1 ,
V a rm l = 1.

a rm in l (1 ,V a rm l .Vm oulds.Vangle.O) .

a rm out1(1 ,V arm f1,V ang le ,1)
V ang le >= 3 ,
V ang le =< 4 ,
V a rm fl = 1.

a rm outl (1 Varmf l .V ang le ,0) .

arm in2(1 ,V arm 2,V m ono m erl,V ang le)1)
Vang le >= 7 ,
Vangle =< 8 ,
Vm onom erl = 1 ,
V arm 2 = 1.

arm in2(1 ,V a rm 2 ,V m o n o m e rl,V a n g le ,0).

2 6

A ppendix B.2 T h e com piled rule base

arm in3(1 , Varm 3,Vm ouldins, V angle, 1)
Vang le > = 9 ,
V angle = < 10 ,
Vm ouldins = 1 ,
V arm 3 = 1.

arm in3(1 ,Varm 3,Vm ouldm s,Vangle ,0) .

arm out3(1 ,V arm f3,V angle, 1)
V ang le > = 3 ,
V ang le = < 4 ,
V arm f3 = 1.

arm out3(1 ,V arm f3,V angle ,0) .

alarm(1 ,Vgasf, Vgasp,V tablerate,Vspinners,V lenstype,0) .

opm esO.Vtablerate.Vsplnners.Vlenstype.Vm ouldlns.Vm onom erl.Vm oulds.Vgasf, Vgasp,ok)

alarm (2,Vgasf,Vgasp,V tab lerate,Vspinners,V lenstype,1)
checkss(2 ,Vsp inners ,V lenstype,Vcheckss),
Vcheckss = 0.

alarm (2,Vgasf,Vgasp,V tab lerate,Vsplnners,V lenstype,1)
checktr(2 ,V tab lera te ,V lenstyp e,V checktr),
Vchecktr = 0.

a larm (2 ,V gasf,V gasp,V tab lerate ,V spinnerspVlenstype,1)
V gasp = 0.

alarm (2,Vgasf,Vgasp,V tab lerate,Vspinners,V lenstype,1)
V gasf = 0.

a larm (2 ,V gasf,V gasp ,V tab lera te ,V sp inners ,V lenstyp e ,0).

27

A ppendix B .2 The com piled rule base

checkss(2,Vspinners,V lenstype,1)
len stype(2 ,V type3IVtype2,Vtype1 .V le n s ty p e),
Vlenstype = a1 ,
Vspinners >= 2 ,
Vspinners = < 10.

checkss(2,Vspinners,V lenstype, 1)
lenstype(2,V type3,V type2,V type1 .Vlenstype) ,
V lenstype = a2 ,
Vspinners >= 2 ,
Vspinners = < 10.

checkss(2,Vspinners,V lenstype, 1)
lenstype(2,V type3,V type2,V type1 .Vlenstype) ,
Vlenstype = a 3 ,
Vspinners >= 2 ,
Vspinners =< 5.6.

checkss(2,Vspinners,V lenstype,1)
lenstype(2,V type3,V type2,V type1 .Vlenstype) ,
Vlenstype = a4 ,
Vspinners > = 2 ,
Vspinners = < 6.8.

checkss(2,Vspinners,V lenstype, 1)
lenstype(2,V type3,V type2,V type1 .Vlenstype) ,
Vlenstype = a5 ,
Vspinners > = 2 .4 ,
V spinners = < 6.4.

checkss(2,Vspinners,V lenstype, 1)
lenstype(2.V type3,V type2,V type1 .Vlenstype) ,
V lenstype = a6 ,
V spinners > = 2 ,
Vspinners =< 4.

checkss(2 ,Vsp inners ,V lenstype.O).

2 8

A p p en d ix B.2 The com plied ru le base

checktr(2,Vtablerate,V lenstype,1)
lenstype(2,Vtype3,Vtype2,Vtype1 .V le n s ty p e),
Vlenstype = a1 ,
V tab lerate > = 4 ,
V tab lerate = < 10.

checktr(2,V tablerate,V lenstype, 1)
lenstype(2,Vtype3,Vtype2,Vtype1 .V le n s ty p e),
Vlenstype = a 2 ,
V tab lerate > = 4 ,
V tab lerate = < 5.

checktr(2,V tablerate,V lenstype, 1)
lenstype(2,Vtype3,Vtype2,Vtype1 .V le n s ty p e),
Vlenstype = a 3 ,
V tablerate > = 5 ,
V tablerate = < 6.

checktr(2,V tablerate,V lenstype, 1)
lenstype(2,Vtype3,Vtype2,Vtype1 .V lenstype) .
Vlenstype = a 4 .
V tab lerate > = 5 ,
V tab lerate = < 6.

checktr(2,V tablerate,V lenstype, 1)
lenstype(2,Vtype3,Vtype2,Vtype1 .Vlenstype) .
Vlenstype = a 5 .
Vtab lerate > = 5 ,
V tab lerate = < 6.

checktr(2,V tablerate,V lenstype, 1)
lenstype(2,V type3,Vtype2,Vtype1 .Vlenstype) ,
Vlenstype = a 6 ,
V tab lerate > = 5 ,
V tab lerate = < 8.

checktr(2 ,V tab lerate,V lenstype,0) .

2 9

A ppendix B.2 T h e com piled rule base

o p m es(2)V tab lerate ,Vspinners,V lenstypetVm ould ins,Vm onom eri1V m o uld s)Vgasf,Vgasp,
spinner_speedJncorrect)

checkss(21V sp in ners ,V len stype,V checkss),
Vcheckss = 0.

op m es(2 lVtab lerate,Vspinners,V lenstype,Vm ouldins,Vm onom erl>V m o uld sIV gasfIVgasp,
table_rate_incorrect)

checktr(2,V tab lerate,V lenstype)V c h e c k tr) ,
Vchecktr = 0.

o p m es(2 lV tab lerate ,VspinnersIV lenstype)Vm ould ins,Vm onom eiipV m oulds,V gasfIVgasp,
gas_pressure_incorrecl)

Vgasp = 0.

o p m es(2 IV tab lerate ,Vspinners,V lenstypelVm ouldins,Vm onom eriIV m oulds1V gasf,V gasp I
gas_flow_incorrect)

V gasf = 0.

opmes(2,Vtablerate,VspinnersIVlenstype,Vm ouldinsIVm onom erl,Vm oulds,Vgasf,Vgasp1ok)

arm in l (2,Varm 1 ,Vm oulds,Vangle,1)
Vangle >= 5 ,
Vangle = < 6 ,
Vm oulds = 1 ,
V a rm l = 1.

arm in l (2,Varm 1 .V m oulds,V ang le .O).

a rm outl (2 ,V arm fl,V an g le , 1)
V angle >= 3 ,
Vangle = < 4 ,
V a rm fl = 1.

a rm outl (2,V a rm fl,Vangle.O) .

30

A pp end ix B .2 The com piled ru le base

arm ln2(2 ,Varm 2,Vm onom erl,Vang le .1)
Vangle >= 7 ,
Vangle = < 8 ,
Vm onom erl = 1 ,
V arm 2 = 1.

arm in2(2 ,Varm 2,Vm onom erl,Vang le ,0) .

arm out2(2 ,V arm f2,V ang le ,1)
Vangle > = 1 ,
V ang le = < 2 ,
Vamnf2 = 1.

arm out2(2 ,V arm f2,V ang le ,0) .

arm ln3(2,Varm 3,Vm ouldm s,Vangle, 1)
Vangle > = 9 ,
V angle =< 10 ,
Vm ouldins = 1 ,
V arm 3 = 1.

arm in3(2 ,Varm 3,Vm ould ins,Vangle ,0) .

arm out3(2 ,V arm f3,V angle,1)
Vangle >= 3 ,
Vang le =< 4 ,
V arm f3 = 1.

arm out3(2 ,V arm f3,V ang le ,0) .

lenstype(2,V type3,V type2,V type1 ,a1)
V ty p e l = 0 ,
V typ e2 = 0 ,
V type3 = 1,1.

lenstype(2 ,V type3,V type2,V typel ,a2)
V typ e l = 0 ,
V typ e2 = 1 ,
V type3 = 0,!.

A pp end ix B ,2 T h e co m piled ru le base

lenstype(2,V type3,V type2,V type1 ,a3)
V typ e l = 0 ,
V type2 = 1 ,
V type3 = 1,!.

len stype(2 ,V type3,V type2,V typel ,a4)
V typ e l = 1 ,
V type2 = 0 ,
V type3 = 0,!.

lenstype(2,V type3,V type2,V type1 ,a5)
V typ e l = 1 ,
V type2 = 0 ,
V type3 = 1,!.

lenstype(2,V type3fVtype2,V type1 ,a6)
V typ e l = 1 ,
V type2 = 1 ,
V type3 = 0.

32

