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Introduction

The development of three diagnostic techniques, and their application to the
guantitative analysis of a laser produced lithium plasma is described. Two of the
diagnostic techniques, the fast-frame photography technique and the shadowgraph
technique, are new to the Centre for Laser Plasma Research laboratory, while a
novel approach to the analysis of the results of the established Dual Laser Plasma
(DLP) photoabsorption technique is also presented. The organisation of the thesis
is as follows: Chapter 1 introduces the theory of the creation and expansion of a
laser produced plasma both in vacuum and in a gaseous environment. The
emission or absorption of radiation by a plasma is also outlined, leading to a
solution to the equation of radiative transfer. Finally, theoretical aspects of the
experimental procedures used during the course of this work are described.
Chapter 2 outlines the three experimental set-ups used during this study. Fast-
frame images, shadowgraphs and extreme ultraviolet (EUV) photoabsorption
spectra of an expanding lithium plasma are presented. Chapter 3 is concerned with
the guantitative analysis and discussion of the results presented in chapter 2 using
the plasma models developed in chapter 1. Finally, suggestions for future work are
presented. S| units are used throughout this thesis, unless explicitly stated

otherwise.
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Abstract

The study of the expansion of a laser produced lithium plasma using spatially and
temporally resolved imaging and spectroscopic diagnostic techniques is described.
The diagnostic system consists of three separate components: a 2.2m grazing
incidence spectrometer (coupled to an Extreme Ultra-Violet (EUV) sensitive photodiode
array), a recently developed fast-frame photography apparatus comprising a CCD
camera coupled to a gated image intensifier, and a newly developed shadowgraphy
apparatus consisting of a combination of a Nd:YAG pumped dye laser and a CCD
camera. The development and capabilities of the diagnostic techniques used to
characterise the plasma expansion are outlined. Furthermore, the characterisation of
new or additional instrumental parameters pertinent to the quantitative interpretation of

the experimental data is explored.

Using the 2.2m grazing incidence spectrometer, temperature and density profile
estimates for a laser produced lithium plasma are inferred. Photoabsorption spectra
using this instrument and a newly developed model, for the 1s2-> 1snp (n = 4,5,6 and
7) in Li+, are synthesised for the first time. Employing the fast-frame photography
technique, species velocities and corresponding temperature estimates are obtained.
Additionally, excited state density distributions are extracted by application of the Abel
transform. Finally, the shadowgraph technique is used to furnish electron density
distribution information. In all cases plasma parameters, determined using the
diagnostic techniques proposed, are correlated with novel computer codes developed,

based on established plasma expansion models.

The thesis concludes with a description of future work with an emphasis on prospective

extensions to the diagnostic techniques developed.



Chapter 1

This chapter first introduces the theory of the creation
and expansion of a laser produced-piasma (LPP) by a
nanosecond pulsed laser on a planar metallic surface,
both in vacuum and in gaseous environments. Second,
the formation and broadening of spectral lines is
discussed and a solution to the equation of radiative
transfer is developed. Finally, theoretical aspects of the
experimental methods used during the course of this

work are outlined.

1.1 The Interaction of High Powered Radiation with Metals -
The Creation ofa Laser Produced Plasma (LPP)

When the output of an intense beam of Q-switched laser radiation (typically 1 J, 10 ns)
is focussed onto a solid metal target, a hot dense plasma is formed. The sequence of
interactions ultimately leading to plasma formation are complex and manifold. Initially,
a certain fraction of the incident laser light is reflected from the target surface. In the
case of a lithium target irradiated at normal incidence with a Nd:YAG (1.064 ~m) laser,
~95% of the incident light is reflected [1]. The remainder is usually absorbed by
electrons in the conduction band, which are consequently raised to higher energy
states. Momentum balance is maintained by collisions with other electrons and with
phonons. Through electron-phonon interaction, the absorbed energy is transferred, in
part, to the motion of the atoms or ions making up the metallic lattice. In this manner
the solid tends to reach equilibrium at a higher temperature. Typical transfer times

between hot electrons and the lattice are of the order of 10'12to 10'13s for most solids



[2][3], The initial interaction between the laser radiation and the solid takes place over

a very thin surface layer referred to as the skin depth, 5, given by [4]

8 = (7tvn0a') 2 [1.1]

In the case of lithium having a conductivity, o' = 1.076 x 107 mhos rrfl [5] irradiated
with a Nd:YAG laser of frequency, v = 2.818 x 104 Hz, the corresponding skin depth 5
* 9 nm. It is within this thin layer that the initial heat production takes place. Thermal
conduction will carry the heat deeper into the metal to a penetration depth, 5, typically

of the order of

[1.2]

[3], where kd is the thermal diffusivity, and tpis the duration (FWHM) of the laser pulse.
The penetration depth for a Nd:YAG laser (tp= 15 ns) incident on a lithium target (kd =
4.5 x 10-5m2 s'1[5]) is « 1 pm.

In general three laser irradiance regimes can loosely be defined [3]. These constitute
the low (I < 1010W m'2), the medium (1010W m'2< 1< 1016 W m'2 and the high (I > 101S
W m'2 irradiance regimes. The limiting irradiances in each case are dependent upon,
for example, the wavelength of the laser and the target material chosen [6]. In the low
irradiance regime (I < 1010W m'2 thermal processes can give rise to a heating of the
solid by conduction leading to a possible change of phase of the metal. This regime
generally finds application in a diverse number of fields ranging from optical data
storage to laser treatment, cutting and welding. Due to the short relaxation times
involved reasonably accurate calculations can be performed using a single (averaged)
value for the thermal conductivity and other material parameters [2]. As the laser spot
size is generally orders of magnitude greater than the penetration depth, the
temperature rise at the surface of the material can be estimated from a classical one-

dimensional thermodynamic formalism, i.e.

[L3]



[3], where pOis the target material density, C is the specific heat, T and TOare the final
and initial temperatures at the surface respectively, R is the reflectance, and I is the
incident intensity of the laser. Using typical parameters for lithium [5], coupled with a
reflectance of 95%, one estimates that an irradiance of ~101L W m'2is required to heat
the metal surface to its boiling point (1615 K [5]) from room temperature. This
simplified calculation assumes that losses through re-radiation and convection are
negligible. It also neglects the dependence of material parameters, and in particular

reflectance, on temperature.

The second regime to be considered is that of high irradiance (I > 106W m'2. Here,
ionisation takes place within the first few cycles of the incident electromagnetic
radiation. The incident energy is quickly redistributed into thermal conduction and re-
radiation. In this regime many models ignore the initial stages of plasma formation,
since the energy required for melting and subsequent vaporisation is negligible
compared to that required for ionisation and heating. The plasma is assumed to be
uniformly ‘cold’ with initial electron and ion densities equal to the solid atom density [2],
In extreme cases (I > 102 W m-2 hole boring, due to the radiation pressure of the light
beam, is a key feature of the interaction [7]. Generally however the irradiance is low
enough so that the ablation pressure exceeds the radiation pressure by a factor of 104
or more [2], The thin plasma vapour thus formed is sufficiently dense and ionised such
that the laser light is significantly absorbed by the plasma, subsequently decoupling the
laser radiation from the target surface. The main absorption mechanism is via Inverse
Bremsstrahlung (IB) whereby electrons accelerated by the electric field of the focused
laser light undergo momentum transfer collisions with ions via their Coulomb
interaction. As the energy absorbed increases, so too does Te, the electron
temperature, and Tj, the ion temperature. Consequently this produces further
ionisation through collisions, thus increasing the electron density still further until it
eventually reaches a critical value N«; at some distance from the target surface where
Necis defined by [6]

men so0 " 10"

e2 ~ X [14]



Here n is the refractive index of the surrounding medium, and w is the laser frequency

(radians). The surface or narrow slab at which Ne « Necis termed the deflagration

zone. Fora Nd:YAG laser Nec~ 9.9x1026 m'3. Radiation will propagate into the plasma
until at some depth it reaches the layer of critical density, whereupon the absorption
coefficient for Inverse Bremsstrahlung tends towards infinity, i.e. kv qo [8J[9], after
which the wave becomes evanescent and is eventually reflected. Although laser
radiation no longer reaches the target surface, plasma growth continues due to the
heating of the layers in front of the critical density surface. The plasma is driven out
from the target as a consequence of pressure gradients, causing a decrease in the
electron density. As a result of momentum conservation, the deflagration front
simultaneously moves rapidly into the target, driving before it a shock wave of even
greater velocity [10]. Radiation can thus penetrate the plasma to reach the target

surface again. These processes are schematically illustrated in fig. 1.1.

The final regime to be considered is that of medium irradiance (1010W m'2< | < 1016 W
m'2. Here, plasma effects become significant. One is concerned with the heating,
melting and subsequent vaporisation and ionisation of the target material. The primary

considerations are thus the dependence of the material properties on temperature and



pressure. Unlike plasma formation in the high irradiance regime, the free electron
density in the plasma vapour is lower than the critical density and thus laser-target
interaction is sustained throughout the duration of the pulse. The classical electron-ion
Inverse Bremsstrahlung process may no longer be the sole mechanism by which laser
radiation is absorbed by the plasma [11]. Other processes such as electron-atom
Inverse Bremsstrahlung, direct photoionisation and neutral atom resonance absorption
must be accounted for [11][12][13], This irradiance regime is of general importance to
materials processing applications, e.g. pulsed laser deposition (PLD) of thin

superconducting films [14],

In the following sections plasma formation and expansion in the medium irradiance
regime (1010W rrf2< 1< 1016W m'2 will be considered. This is based on the range of

irradiances used to generate a lithium plume during the course of these experiments.

1.2 The Expansion ofa Laser Produced Plasma

When a Q-switched laser is focused onto a solid metal target, the surface is heated to
its melting temperature or higher on a time scale of 10'10s or less. The result is a
plasma plume that expands as a consequence of thermally induced pressure
gradients, mainly along a direction normal to the target surface [15]. Expansion
continues long after the laser pulse duration, lasting typically of the order of
microseconds [16], As the plasma expands the density and temperature rapidly
decrease, with an adiabatic transfer of thermal energy into kinetic energy of expansion
[17].

Two expansion regimes are considered in the following paragraphs. The first involves
the free expansion of the plume in vacuum, while the second pertains to the expansion

of the plasma in a gaseous environment.

1.2.1 The Expansion ofa Laser Produced Plasma in Vacuum

The temperature decrease for a plasma generated on a planar target in vacuo as a

result of plasma expansion can be described by the adiabatic relation [17][18]



T(r)ocr(7) [1.5]

where T(r) represents the plasma temperature as a function of the radial co-ordinate r,
and vy is the ratio of specific heats. The spatial density distributions of the species
comprising the plasma are also modified as a result of plume expansion. Assuming
radial symmetry about the expansion axis (0%, a conical annular structure, as depicted
in fig. 1.2 for the case of a singly ionised lithium plasma, can be envisaged viz. ions of
increasing charge are located closer to the front of the expanding plasma and closer to
the expansion axis [19], This structure was observed experimentally by Irons et al. [20]

for a laser produced carbon plasma. The results are reproduced in fig. 1.3.

Fig. 1.2: An idealised picture of the spatial distribution of an expanding singly
ionised laser produced lithium plasma in vacuum according to [20].
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Fig. 1.3: A sequence in time showing the development of the spatial distribution
of C I- VI (indicated by | - VI respectively) at 1.6 mm. The peak laser intensity
occurs at 20 ns (after [20]).



The radial velocity, v(r), of a spherical plasma expanding into vacuum can be described
by the so-called self-similar expansion model, whereby v(r) is found to be a linear

function of the plasma radius [21], i.e.

v(r) = Kr [1.6]

where K is a constant which may vary with time and the spatial co-ordinate x (along
0%. Typical values for K lie in the range 10s s'lto 109 s'l, depending on the
experimental conditions. The complete radially symmetric hydrodynamic calculation
leading to [1.6], for example by Fader [21], with any initial radial velocity profile and ion
density profile, resulted after some time, t, in a solution where the density distribution
evolved into a Gaussian profile, while the velocity distribution became linear. The
linear velocity relation of [1.6] remains valid when a drift velocity component parallel to
the axis of expansion is superimposed uniformly on all ions. The term ‘self-similar’ is
used to describe the plasma expansion in this model, as the density and velocity
profiles retain their respective forms after a time t [21], The constant density profile is,
however, only maintained as an average value. Dawson [22] and Singh and Narayan
[17] extended this model to the general case of a non-symmetric expanding plume.
The plasma is assumed to behave as a high-temperature high-pressure gas initially
expanding isothermally for the duration of the time interval of the laser pulse, and
subsequently expanding adiabatically after termination of the laser pulse. Solving the

appropriate equations one obtains [17]

rtdx d»'
X(t) + =Y KEBT,, [1.7]
t dt  dt2 M tdt dt2 M tdt dt2
describing the isothermal expansion during the time interval of the laser pulse and
> kKBTOf Xovazo Y °
X(t1 = Y(t)f d2yl _ fd2zl — [1.8]
Vdt2) [dt2J [dt2y M LX()Y(t)z(t)J

which describes the subsequent adiabatic expansion after the laser pulse terminates.

X0, YOand ZOare the initial orthogonal edges of the plasma after the termination of the

8



laser pulse, T, is the isothermal plasma temperature, M is the atomic weight of the
plasma species and y is the ratio of the specific heats. Generally the self-similarity
model is restricted to the 1014 -> 1016 W m'2 irradiance regime, below the threshold
where non-linear processes become significant [23], This model has been applied to
describe the expansion of laser produced plasmas, both in spherical and other
geometries, by Dawson [8][20] and Bobin et al. [24] among others ([21] and references

therein) and more recently by Chen et al. [25] and Al-Wazzan et al. [26].

The linear velocity relation proposed by the self-similarity model has been observed

experimentally by Irons et al. [20] and Al-Wazzan et al. [26] to mention but a few.

1.2.2 The Expansion of a Laser Produced Plasma in a Gaseous Environment

Laser ablation in a suitable background gas promotes gas-phase reactions between
target atoms and the background gas as well as between the target atoms themselves.
These interactions can be tailored to produce novel species and materials for basic
study, for chemical analysis, and for applications in advanced devices [27], Thus, gas
dynamic effects play an important role in determining the spatial and velocity

distributions of the various species in the expanding plume [28],

As a laser produced plasma expands in a gaseous environment, energy is expended in
heating and moving the ambient gas with the result that the plasma-gas contact front
decelerates. The expansion shows a distance (from the target surface) related
pressure threshold, above which the dynamics differ from that of the free expansion
regime observed in vacuum [29], For a sufficiently dense gas a blast wave is produced
by the piston like action of the quickly expanding ablated material pushing outward on
the background gas at the contact front, compressing the gas into a relatively thin shell
at the shock front [27][30]. Under these circumstances, the mass of the ablated
material is small in comparison with the mass of the buffer gas. The Taylor-Sedov
ideal blast wave model can be used to predict the expansion of the ablated plume in

spherical geometry using the relationship [29][31]



_reb*75(y- iXy+ly f (i_t )% 1.9
16*(3y-lh  J V tJ 19

where EBis the laser energy that contributes to the blast wave, pDis the gas density, ts
is a boundary condition which takes account of the fact that the shock wave model can
strictly be applied only a time after the mass of the gas surrounding the shock wave is
higher than the mass of the ablated material, i.e. a time ts after the laser pulse. As
pointed out by Dyer et al. [33], the blast wave model has two limiting characteristic
distances outside which [1.9] is no longer valid. These limiting conditions depend not
only on the pressure of the gas, but also on the nature of the gas, i.e. at a given
pressure, shorter distances are obtained for gases of larger atomic mass [34],
Generally the blast wave model can be applied for high background pressures and
later times of expansion. For limited improvement at earlier times of expansion, fits of

the form
r=CQp [1.10]
have been suggested [28], where the exponent, p >

The classical drag force model, in which the ejected species are subjected to a viscous
resistive force, which is proportional to the velocity of the plume species, has been
used to describe the expansion at lower pressures and earlier times of expansion. In

this model one can solve the equation of motion to obtain [28]

r=xf[l-exp(-pt)] [1.11]

where p is a slowing coefficient, xf = v is the stopping distance of the plume and vQ

is the velocity of the plume at time t = 0. This model has been applied extensively to
the expansion of a laser ablated plasma in various gas environments [28][29][34][35].
Furthering the argument on the basis that the drag force is produced by both viscous

and form resistances, the Reynolds number described by

10



Povd~* [1-12]

can be used to estimate whether the drag is mainly the result of viscous or form
resistance, where p0is the fluid (gas) density, u is the viscosity, v is the relative velocity
of the flow and d" is the cross-sectional diameter of the object at right angles to the
flow. Assuming a plasma diameter of 1 cm propagating at a velocity of 3 x 106 cm s'1
in an argon environment for which u = 3.685 x 10'4g s'1cm"1[1] and p = 0.001784 ¢

cm'3 [5], the corresponding Reynolds number is of the order of 107. As the viscous

drag predominates when the Reynolds number is very small (Rn<l1),it may be

postulated that the form resistance which is ocv2 predominates.This is the case for

high-speed motion. Solving the equation of motion (a = -p’vd one obtains

r=jun(l +p'vlx) [1.13]

Using the non-viscous drag force model relationship of [1.13], improved agreement
between experiment and theory is obtained for lower pressures and later times of
expansion, than those predicted by the viscous drag force model of [1.12]. This can be
seen from fig. 1.4. This topic is re-addressed in §83.1.2 where agreement between the
viscous drag force model is attained at early stages of expansion, while at later times

the trend is more towards the ideal blast wave model.

11



Time, t (Nis)

Fig. 1.4: (a) z-t plot of the expansion front boundary of the luminous plume along
the normal to the YBCO pellet measured from gated ICCD images in 100 mTorr
of oxygen (after [28]). (b) z-t plot of the expansion front of the YBCO plume in
100 mTorr of oxygen. Indicated in red is the fit obtained using the non-viscous
relationship of [1.13],

12



1.3 Plasma Equilibrium and Radiation Models

Heretofore, plasma equilibrium considerations have been neglected. In many physical
situations however, despite its dynamic nature, a plasma can be considered to be in
thermodynamic equilibrium. In such circumstances a plasma can be characterised by
its temperature. Radiative processes are governed by Planck’s distribution law, the
velocities of the plasma particles follow a Maxwellian distribution, the plasma particles
are distributed in their accessible internal energy levels according to a Boltzmann
distribution, while the ionisation states of the plasma follow a Saha-Boltzmann
distribution, all of which are characterised at a temperature T. Such a system obeys
the principle of detailed balance, i.e. every atomic process is as frequent as its inverse
process. In real situations thermodynamic equilibrium is seldom, if ever, achieved as
this would require the plasma to be optically thick at all frequencies. Thus,
approximate models are required to solve the differential rate equations describing the
population and depopulation of levels. A multitude of atomic processes must be
considered including three-body recombination, collisional ionisation, radiative
recombination, photoionisation, collisional excitation and de-excitation, spontaneous
and stimulated emission, photoexcitation, dielectronic recombination etc. The rate
coefficient for each of these processes is defined as the product of the process

dependent cross-section times the velocity, averaged over the velocity distribution, i.e.

(av). These rate coefficients are essential for the prediction of ionisation balance etc.

Introducing a time dependence complicates the solution still further. Often it is
assumed that certain processes dominate thus allowing simplification of the rate

equations and hence of the model descriptions.

In the brief plasma radiation model descriptions which follow, the electron velocity
distribution is assumed to be Maxwellian at a temperature Te. This is satisfied provided
the electron-electron relaxation time is smaller than the electron heating time. It is also
assumed that radiation escapes without interacting with the plasma. This is the

optically thin approximation.

13



1.3.1 Local Thermodynamic Equilibrium (LTE)

At sufficiently high densities, collisional processes, especially those involving electrons,
play a more important role than radiative processes in determining the excited state
populations. Each process is accompanied by its inverse and these occur at equal
rates by the principle of detailed balance. Thus, the distribution of population densities
is the same as it would be in complete thermodynamic equilibrium at any instant and
point in the plasma, determined entirely by local values of temperature, density and
chemical composition. LTE requires that not only are the free electrons distributed

according to a Maxwellian velocity distribution given by [4]

m % " mev2h
dnv=N64w ' exp v v [1.14]
2kKgd o 2kgTe

where dnvis the number of electrons of mass mewith velocities between v and v + dv,
but also that the bound electrons occupy discrete levels according to a Boltzmann

distribution given by [36]

I”(j Qi)exp X(i.k) [1.15]

N() glk) v st j

where i and k denote the lower and upper levels respectively, N is the population
density, g is the statistical weight and is the energy difference between the two

levels. The free particle densities are required to follow the Saha relation given by [36]

NEZINe _ o 1o0amamxp (2D [1.16]
N(Z-1)
where Z = 1 for a singly ionised atom, is the ionisation energy of the Z-1 times

ionised atom in eV, and T is in eV. The fractional state charge densities for an electron
density, Ne = 9 x 102 nrf3, as a function of temperature, calculated using [1.16], are

plotted in fig. 1.5 for lithium.

14



Fig. 1.5: Fractional state charge densities as a function of temperature for
lithium assuming LTE (Ne = 9 x 1023 m'j. This electron density relates to the
analysis of §3.3.1.

A necessary but not sufficient criterion for LTE to hold is that the electron density be
sufficiently high that collisional de-excitation be, say, ten times more probable than

radiative decay for all transitions. This is equivalent to the requirement that [36]

Ne>1.4x1020TeV (i, k) [1.17]

where Teis in eV and x(i,k) *s the largest energy gap, in eV, between adjacent levels of
the atoms and ions in the plasma. This lower limit of applicability is plotted for various

species in fig. 1.6.
In an optically thick plasma the LTE model is valid at lower densities [36], LTE

generally applies to Nd.YAG laser produced plasmas generated from low atomic

number elements (Z < 9) [37],

15



Fg. 1.6; LTE model lower limit of applicability using [1.17].

1.3.2 Coronal Equilibrium (CE)

At plasma densities, such as those found in the solar corona, equilibrium is maintained
between excitation and ionisation by electronic collisions from the ground state and de-
excitation and recombination by radiative processes from the upper levels to all lower
levels. Since the rates of collisional ionisation and radiative recombination are
proportional to the electron density, the populations of the various ion species in the
plasma are independent of electron density. The Saha equation ([1.16]) no longer

holds. Itis replaced by the corona equation

Nl o- S< N > ] p.«]
Nz ar(Z2+1,TJ

where S(Z,Te is the collisional ionisation coefficient and ar(Z+1,Tg is the radiative

recombination coefficient [4][37]. Unlike the LTE model, quantitative interpretation of
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the CE model depends critically on atomic cross-sectional data [4]. Indeed, for
improved accuracy generalised formulae for S(Z,Te and ar(Z+1,Te) [37] should not be
heavily relied upon, but rather reference should be made to the literature for species
specific rate coefficients [4], e.g. [38], Generally the CE model can be applied to
Nd:YAG laser produced plasmas forZ > 29 [37],

1.3.3 Collisional Radiative Equilibrium (CR)

In the intermediate density range neither the LTE nor the CE model is valid. The
collisional radiative (CR) model of Bates etal. (1962) was developed to breach this gap
by modifying the coronal model to take into account collisional transitions from the
higher bound levels as well as three-body and radiative recombination. Colombant and
Tonon [37] extended this model and derived useful formulae to calculate both the
electron temperature in the case of fully ionised plasmas, as well as equilibrium

populations of various ion species in a laser produced plasma, i.e.

S(Z,Te)

[1.19]
ar(Z+1,Te)+ Nea 3(Z + 1,Te)

where a3 is the coefficient for three-body recombination. This model is particularly
appropriate in the 10155to 1017 W m'2 irradiance regime for medium to high atomic
number elements. For low density plasmas Nea3b « 1 and the CR model reduces to
the CE model. In the limit of very high density, the CR model approaches the LTE

model.

1.4 The Emission and Absorption of Radiation in a Plasma

The profile of a spectral line has a characteristic width and shape determined by the
conditions existing in the source. In the absence of instrumental effects, the profile of
such a line can be used to ascertain local conditions of, for example, temperature and
density etc. in the source. In the following sections, the atomic processes governing

the emission or absorption of radiation in a plasma are outlined. The emission and
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absorption coefficients are introduced, along with the solution to the equation of
radiative transfer.  Finally, using the expansion geometry of 81.2 and 8§1.4.3,

asymmetric emission or absorption profiles are discussed.

1.4.1 The Einstein Coefficients and the Atomic Frequency Response (AFR)

The emission or absorption intensities for a given transition are determined by the
population of the upper and lower quantum levels of the line, respectively, by the
Einstein transition probabilities and, in the case of absorption, by the intensity of the
radiation field. Assuming thermal equilibrium the Einstein coefficients are deduced by

application of the principle of detailed balance (dynamic equilibrium) [39], so that

[1.20]

Sk~ki = g-,Bik [1.21]

where At is the Einstein A coefficient for spontaneous emission, Bik the Einstein B
coefficient for absorption, B4 the Einstein B coefficient for stimulated emission, g(and
gk are the statistical weights of the lower and upper levels respectively. As these
coefficients are properties of the atom relationships [1.20] and [1.21] hold regardless of
the actual situation of the atom, despite the initial assumption of thermal equilibrium. A

direct result is that

[1.22]

or equivalently (upon rearrangement)

f AN2

[1.23]
k 6.670x105
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where Xis in A. fikis the atomic absorption oscillator strength, tables for which can be
obtained, for example, from the Opacity Project Database (TOPBASE)1 [40]. In
Einstein’s classical treatment of the interaction of a two-level atom with a radiation field
that is a slowly varying function of frequency, the transition probabilities are effectively
averaged over the frequency response of the atom, i.e. over the line profile. In many
applications and particularly in the case of lasers, the transition rates induced by a
monochromatic wave of frequency v are required. These are obtained by multiplying
the frequency-averaged A or B coefficients by the appropriate normalised line shape
function, ¢v. This intrinsic line shape is denoted the Atomic Frequency Response

(AFR) where

f. <Mv=1 [1-24]
Jline

is the normalised AFR. From [1.24] the physical meaning of the AFR becomes clear. It
represents the probability per unit interval frequency to observe a photon emitted in the

interval v and v + dv (in the vicinity of vo).

In the following treatment, the assumption that the atomic frequency response is
identical in both emission and absorption shall be made without justification. This
assumption often proves to be a very good one in astrophysics problems [41]. Three

atomic frequency response profiles are considered.

@ The Lorentzian AFR

The normalised Lorentzian profile AFR is described by

* = L. 1
v Lorei*nan —ﬂ——onﬁa—

V-V

1+

1 Other sources include Martin et at. [42] and Reader et at. [43]. The oscillator strengths of hydrogenic

systems are independent of nuclear charge i.e. fz=fH-
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where AL is the half width at half maximum (HWHM = FWHM / 2) and vQis the
resonance frequency between the two levels involved in the transition. Lorentzian
profiles are normally associated with the natural width and the Stark width of a spectral
line (see 81.5.1 and 81.5.3).

(b) The Gaussian AFR

The normalised Gaussian profile AFR is characterised by

A Cy/ ye\2
an2 exp -Ln2 vovr [1.26]

m v J

Here AGis the HWHM (See Appendix A). Such a profile can readily be obtained by
considering the Doppler shifts associated with a Maxwellian (thermal) distribution of
molecular speeds in a gas. Ac is therefore related to the kinetic temperature of the

emitting particles.

(c) The Voigt AFR

Originally developed by W. Voigt (1912) from the basic theories of line broadening, this
profile takes account of both a Lorentzian and a Gaussian contribution to the AFR, thus

providing a versatile form. Several defining expression exist including

f O

® @ (v- v)dv' [127]

v Lorentzian '\ Gaussian ) =C, ?Lorentzian Gaussian

V-CO

where ® denotes convolution, and Cnis a normalisation constant. A form to satisfy

[1.24] is given by
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evzl 1T, e [1.28]

Tew! u Ag TtAL ° -

Unfortunately, the Voigt function cannot be expressed analytically. A much simpler
form however, avoiding the convolution process (and thus reducing computational
expense), for the Voigt profile has been developed by [44] whereby the core of the line
profile is approximated by a rectangle, and the wings by a v<2 relationship. A further
improved analytical approximation using four generalised Lorentzians in two variables,
accompanied by numerical implementation is given in [45]. It should be noted that

values returned by the ‘C’ programming language function vs (...), presented in

[45], (and in Appendix B for reference), should be multiplied by the normalisation factor

in order to satisfy [1.24],

1.4.2 The Equation of Radiative Transfer

@ The Emission Coefficient

The radiation power emitted per unit solid angle from unit volume of a source is termed

the emission coefficient. The resulting expression in cgs units is [39]

ev-N~ ml’a: fgi(—W ) P-2»]

where NKr) is the spatially dependent density distribution of the upper quantum level,
IMr) as before is the normalised AFR, which may also be a function of the spatial

coordinate as a result of the Doppler effect due to streaming (see 81.4.3).

(b) The Absorption Coefficient

It is a general principle that if a medium emits radiation, then it will absorb radiation at

that same frequency. The absorption coefficient is related to the Einstein coefficient
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for absorption Bikas well as the Einstein coefficient for stimulated emission (which is
normally treated as negative absorption, if it has the same frequency and direction as
the incident radiation). In general stimulated emission will only be important if a
population inversion is created between the two levels, resulting in a negative

absorption coefficient. kv is defined in cgs units as [39]

7 . i
- N 1 KO [1.30]
me gkNi(0

where Ni(r) and NKr) are the spatially dependent population densities of the lower and
upper levels respectively, and 9r) may also be a function of the spatial coordinate in
the general case, through the Doppler effect due to streaming (see 81.4.3). By

definition

9|NK(r)
9kNi(r)y

kv=o0wir) 1 [1-31]

where avis the absorption cross-section (cgs units).

For the case of continuum states, a differential form for the oscillator strength is used,

f=/&dv [1.32]

where fcis the oscillator strength for the whole continuum associated with absorption
for a level m, and SLrepresents the series limit. By definition the corresponding cross-

section writes (cgs)

mv [1-33]
me oV
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(c) A Solution to the Equation of Radiative Transfer

Radiative Transfer, or Radiative Trapping as it is known in the case of confined
laboratory plasmas details the emission of radiation by a hot (excited) gas which is
opaque to its own radiation. The transfer equation is obtained by considering the
change in radiant energy contained within a frequency interval dv as the beam passes
through a cylindrical volume element of cross-section dS and length dx during a time dt

in a solid angle dQ as shown in fig. 1.7.

Fg. 1.7 The geometric volume element considered in the derivation of the
equation of radiative transfer (after [39]).

The absorbed energy in the frequency interval dv, solid angle dQ, surface element dS
and time interval dt is the energy carried by one photon multiplied by the number of

upward transitions in dt i.e.

Eds = hvNidxdSdvdtB” ~ 1 v(x) [1.34]
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where IMX) is the intensity of light of frequency v at x (see fig. 1.7). The term

takes account of the fact that the beam is confined to the solid angle dQ. Note that the
frequency averaged Bik has been multiplied by the AFR as discussed in 81.4.1. The
atoms in the upper level (k) give energy to the beam by spontaneous transitions in the
time interval dt so that

Eenit = hvdxdtd SdvA~ ~ [1.35]

4n

where stimulated emission has been neglected. The variation in intensity in dx is

therefore

N =W I(x +dx)-1(x)]1 =" (A kNk-B IkN,I,>|,, [1.36]
which can be rewritten as
Ad =ev-Kvlv [1-37]

This is a first order differential equation known as the equation of radiative transfer.
Once the emission (&) and absorption (kV) coefficients have been expressed as
functions of frequency, the equation of radiative transfer may readily be solved. The

usual procedure for solving this equation is by a change of variable, i.e. dxv=-Kwx

called the optical depth. However in order to retain solutions which are explicit

functions of Nj(r) and NKkr), one may multiply [1.37] by exp(jicv(x)dx) [46] to get

A /L\JAe X p ([K v(x)dx)+Kv(x)Iv(x)exp([Kv(x)dx)=E£v(x)exp (jKv(x)dx) [1.38]

Noting that the left hand side of [1.38] is equal to
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" IvX)exp([Kv(x)dx)]

AN v(x)exp([Kv(x)dx)]=ev(x)exp ([Kv(x)dx) [1.39]

Integrating [1.39] one obtains the solution

Iv(x) = exp(-1 Kv(x)dx]|jev(x)exp(+ JKv(x)dx)dx + Cirt] [1.40]

where ev and kv can be expressed in terms of Nkand Nj respectively (see 81.4.2(a) and
81.4.2(b)). Choice of Gnt= 0 in [1.40] corresponds to IM0) = 0, i.e. no external radiation

is incident on the plasma. The optically thin case corresponds to small optical depths,

ie.xv(L) = | Kv(x)dx « 1, so that exp(xTv(L))* 1 in which case [1.40] becomes the

familiar

Iv(x) = Jev(x)dx [141]

One can also generate an absorption spectrum from the above treatment. This is a
different physical situation, corresponding to the case of radiation incident externally on
a non-emitting (ev = 0) medium. In this circumstance [1.40] reduces to the familiar

Beer-Lambert law, i.e.

Iv(x) =Iv exp  Jicv(x)dx [1.42]

where Cirt in [1.40] now equals lv , the intensity of the back-lighting radiation.
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1.4.3 The Case of an Expanding Laser Produced Plasma

The following discussion is largely based on the work of [47]. Using the emission or
absorption coefficient definitions of 81.4.2 it is shown that in the case of an expanding
laser produced plasma, it is possible to observe asymmetric line profiles both in
emission or absorption depending on the choice of K (see [1.6]), the atomic frequency
response, as well as the upper and lower level density distributions. In the case of an

emission spectrum, self-absorption may also be observed.

The geometries of expansion and observation of a laser-produced plasma created on a

planar target are illustrated in figs. 1.8 and 1.9.

Fg. 1.8: The proposed expansion and observation geometries of a laser
produced plasma created on a planar target.
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Fig. 1.9: The geometries of expansion and observation of a laser produced
plasma in the y-z plane.

Two important assumptions are made in relation to the proposed model; (a) the
expansion is axisymmetric about Ox, and (b) there is radial symmetry in planes normal
to Ox, as previously outlined in 81.2. A fixed observer in the laboratory frame looking at
the emitting plasma side-on will see Doppler shifted light proportionally to the sign and
magnitude of the radial component of the instantaneous velocity v(r) (if the line-of-sight
is along the diameter of the plume), or the corresponding v(z) projection (if the line-of-
sight is along a chord as in fig. 1.9). Itis assumed that the velocity of an absorbing (or
emitting) ion (or atom) at any point in the plasma can be represented by the sum of a

thermal component which contributes a Gaussian component to the total linewidth and

a streaming component which contributes a frequency shift Av =v'- v0, where

[1.43]
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in the non-relativistic limit, v represents either v(r), the radial component, or v(z) the z

component with

v(z) = v(r) x z/r [1.44]

by simple geometry. The minus sign corresponds to a velocity component away from
the observer (in emission) (red shift), while the plus sign corresponds to a velocity
component towards the observer (blue shift). Therefore, one can deduce that atoms or
ions moving away from the observer contribute to the short frequency side of the line
profile, whereas atoms or ions moving towards the observer contribute to the long
frequency side of the line profile. Knowledge of the variations of v(r) and v(z) as a
function of r and z respectively are therefore required to accurately predict the line
profile. It has been shown ([21]) that v(r) = Kr (and thus v(z) = K z) is an acceptable
self-similar solution (see §1.2.1) in the case of an expanding laser plasma from a plane
target in vacuum. Using this linear velocity distribution, three test cases were chosen
to illustrate the possible conditions for observing asymmetric self-reversed line profiles.
Each was examined in the context of the low, medium and high velocity regimes
corresponding to different K values in [1.6], as defined by [47], Following the analysis
of [47], the upper level density distribution was retained for each of the test cases, and
was chosen such that it had a central minimum. Different ground level density
distributions were then selected for each of the three test cases. This was done to
illustrate the range of profiles which may emerge from an expanding laser produced
plasma. The computed emission spectra for the low, medium and high velocity
regimes along with their corresponding upper and ground level density distributions are
plotted in figs. 1.10 through 1.12. The emission spectra shown were computed for the
1s2s <- 1s22p transition in Li° (670.78 nm) using a Gaussian AFR 4w of half width Ac =
0.363 nm.
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Fig. 1.10: Test case 1. (a) The upper (NKz)) and ground (Ni(z)) state density
distributions used in the calculation. Also shown are the resultant emission
spectra in the (b) low velocity (c) medium velocity and (d) high velocity regimes.

Fig. 1.11: Test case 2. (a) The upper (NKz)) and ground (N|(z)) state density
distributions used in the calculation. Also shown are the resultant emission
spectra in the (b) low velocity (c) medium velocity and (d) high velocity regimes.
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Fig. 1.12: Test case 3. (a) The upper (NKz)) and ground (Ni(z)) state density
distributions used in the calculation. Also shown are the resultant emission
spectra in the (b) low velocity (c) medium velocity and (d) high velocity regimes.

As already mentioned, one of the features of the self-similar expansion model is that
due to the Doppler effect different parts of the emission profile will correspond to
different parts of the emitting medium. Photons of different frequencies can therefore
travel different absorbing path lengths possibly leading to a characteristic asymmetric
profile as shown in figs. 1.11(c) and 1.12(c). A necessary condition for the asymmetry
in this model is that the spatial emission coefficient be displaced relative to the spatial
absorption coefficient [47] as shown in fig. 1.13, providing a suppression of either the
red peak or the blue peak. This is most clearly shown in figs. 1.11(c) and 1.12(c) for

cases 2 and 3 in the medium velocity regime, where the blue peak is suppressed.
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Fig. 1.13: (a) and (b) show the normalisedspatial emission and absorption
coefficients calculated at two different frequencies (V=VQtAG) for case 3 in the
medium velocity regime. A spatial displacement of the spatial emission and
absorption coefficients relative to one another can be seen, thus explaining the
origin of the spectral line asymmetry shown in fig. 1.12(c). The observer is
positioned at z = +0.5 cm.

Thus, the solution to the equation of radiative transfer and hence the profile of a
spectral line is strongly dependent on the density distributions of the upper and lower
levels, the velocity distribution chosen, as well as the value of K (s'). As K decreases,
a value is reached where the spatial emission and absorption curves approach one
another so closely at all frequencies, that the resultant spectral profile is symmetric.
This is also the case when the normalised density distributions of the upper and lower
levels are equal as seen in fig. 1.10. Self-absorption or radiative trapping is also a
feature of the model, as can be seen from the figures, whereby the plasma becomes
opaque to its own radiation at certain frequencies. From [47], it appears that an
enhancement of the red peak is most commonly reported on in the literature, although
Irons comments on a study performed by Fraenkel et al. (1968) whereby satellites to
the blue in resonance lines of Be Ill and IV from a vacuum spark were reported. In
contrast Malvezzi etal. [48] have reported self-absorption, with enhancement of the red
peak, in a laser produced carbon plasma where resonance lines of C V and VI were
shifted to the short wavelength side. Tondello et al. observed similar results with
beryllium [49]. Jones et al. [50] observed a very small asymmetry of the Ar | (696.543
nm) line profile produced by a wall stabilised arc, and attributed it to collisions between

atoms and ions.
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In the self-similar expansion model, the mechanism for the formation of an asymmetric
self-reversal in line radiation originating from within an emitting plasma does not apply
to light incident externally on a non-emitting plasma [47], as seen in the Dual Laser
Plasma (DLP) photoabsorption technique [51][52], Once the absorption coefficient kv
is calculated one can generate an absorption spectrum using [1.42]. Even if the
ground state density distribution, Ni(r), is asymmetric, the resultant absorption spectrum
line profile, in the self-similar expansion model, will be frequency-shifted but symmetric
for large values of K. Symmetry is maintained if the excited level density distribution
chosen is such that NKr) * 0, and approaches Nj(r), in which case stimulated emission
becomes significant. This may not be the case if the velocity distribution is described
by a relationship other than v(r) = K r, i.e. if the AFR is asymmetric. This is especially
evident in the case of an asymmetric AFR combined with a symmetric ground level

density distribution as seen in fig. 1.14.

Fig. 1.14: The photoabsorption spectrum of the 1s2s-»1s22p transition in Li°
= 670.78 nm) (a) The ground level density distribution, Nj(z) (b) the atomic
frequency response Gaussian (C) the resultant asymmetric absorption spectrum.

NOTE: The excited level density distribution Nk(z) = O.
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The velocity distribution chosen in fig. 1.14 was such that v(z) = Azz4;z <0, Az= 1x
10Bcm'3 s’L; v(z) = Kz ;z >0 K =1x 10® s’L This is conceivably a physically

unrealistic velocity distribution. However, it is suitable for illustration purposes.

The velocity distribution for the ideal blast wave model (81.2.2) can be obtained by

differentiation of [1.9]. Using a velocity distribution of this form, i.e.

v(r) = amr” [1-45]

one obtains a symmetric atomic frequency response and hence a symmetric
absorption spectrum, as shown in fig. 1.15. This is also the case using the self-similar

expansion velocity distribution.

E (eV)

Fig. 1.15: The photoabsorption spectrum of the 1s2s->1s22p transition in Li° (X0
= 670.78 nm) (a) The ground level density distribution, N,(z) (b) the Gaussian
atomic frequency response 4$v (Cc) the resultant symmetric absorption spectrum.
The velocity distribution chosen is such that v(r) = arr32 ; ar=5 x 106 cm'l2s'L
This is the velocity distribution proposed by the ideal blast wave model.
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1.5 Line Broadening Mechanisms

When an atom or ion makes a transition from one bound state to another of lower
energy, the energy of the emitted photon is well defined (within the limits of
Heisenberg’s uncertainty principle). In the absence of perturbations, this transition
gives rise to a spectral line whose profile is related to the spontaneous lifetime of the
upper state, and on the distribution of velocities of the emitting species, resulting in a
distribution of Doppler shifts. Collisions, electric and magnetic fields may all perturb the
initial and final states of the transition, affecting the shape of the spectral line profile,
though unaffecting the energy contained within it. Other mechanisms including
Zeeman splitting, Van der Waals and resonance broadening will not be considered
[39]. The observed profile thus contains valuable information about the conditions
existing in the plasma. In the ensuing paragraphs three broadening mechanisms
pertinent to the plasma model developed thus far, and to the plasma parameters

obtained through the diagnostic techniques of the succeeding sections are described.

1.5.1 Natural Broadening

Natural line broadening arises from the fact that the quantum states of an atom do not
have a single energy, but rather a small spread in energy. The effective spread is

given by Heisenberg’s uncertainty principle

AE*- [1.46]

where the lifetime t is given by [39]

S =2 A (s)) [1-47]

Typical values for x in the optical region of the electromagnetic spectrum are of the
order of 10'8 s, e.g. X = 2.71x10"® s for the 1s2s->1s2p transition in lithium [40],
Natural broadening yields a dispersion profile that is Lorentzian in shape. It is usually

negligible in the visible region of the spectrum but can become important in the case of
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autoionising transitions, or for the case of extreme ultraviolet (EUV) lines of highly

ionised impurities, due to the dependence of Aj on v3, (see [1.20]) [19].

1.5.2 Doppler Broadening

Doppler broadening is interpreted in terms of atom or ion thermal motions as discussed
in 81.4.1. If the velocities of the atoms or ions are distributed according to a
Maxwellian velocity distribution with temperature T, this gives rise to a Gaussian line

profile of FWHM

[1.48]

[1.49]

where M in [1.48] is the particle mass (kg), in [1.49] is the atomic mass

= M/mu(amu), where mu= 1.66x1 027 kg, AO is the centre wavelength (A) and T the

plasma temperature (Kelvin). This is plotted as a function of temperature for the lithium
Lpline (113.9049 A) (i.e. 1s -> 3p in Li2H in fig. 1.16. Thermal Doppler broadening is
most pronounced at high temperatures in light elements [4]. In the ultraviolet and
visible region of the spectrum random thermal motion is the main contributor to the
shape and width of the observed line profiles [39], Additional Doppler broadening can
occur in non-thermal plasmas stemming from the fact that the charged particles may
not be distributed according to a Maxwellian velocity distribution. There may also be a
large turbulent velocity component superimposed on the thermal components thus
broadening the line further. Finally, there may be mass motion of the plasma or large

clumps of it [53],
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Fig. 1.16: The effect of temperature on AA,D)i for the lithium Lpline (i.e. 1s - 3p
in Li2y at 113.9 A

1.5.3 Stark Broadening

The theory of Stark or pressure broadening was initiated in 1905 by H.A. Lorentz. It
arises from the influence of nearby particles and in particular their electric fields upon
the emitting particle. These fields are due to electrons and ions that are within a
Debye?2 length of the radiating species. Close to the target surface where the plasma
density is highest, Stark broadening dominates. It decreases with increasing distance
from the target, unlike Doppler broadening which remains fairly constant [20], Stark
broadening is a powerful diagnostic in the determination of electron density especially
for the case of optical transitions. For the case of quasi-static Stark broadening of

hydrogenic lines originally developed by Holtzmark (1919), in which the atom is
2'I‘neDebye legth Btte distaee oervhich te dedtric i ofan rdvidal daerge edas kefare £B
effetindly shiellcd by qqoositely darged artidies nisaunraudirgs. The Debye legth Bcefined as
Xp
/ N.ey
Beyord \o clletheeffedts dinate [,
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assumed to radiate in an environment that is effectively static during the period of

emission the full half width AXV2is given by [53]

z
AAN =8.16x10 19(1- 0.7ND~ ~ 02(nk2- n2 (A) [1.50]

/\_é

ND=1.72 X 109 [1.51]

where it has been assumed that the plasma is electrically neutral, i.e. Np=

is the density of perturbers (ion density in this case), X0 (A) in [1.50] is the centre
wavelength, Ne (cm'3) is the electron density, nkand ni are respectively the upper and
lower principal quantum numbers of the transition, Zp is the ionic charge, Ze is the
nuclear charge and T (eV) is the temperature. NDin [1.50] is the number of particles in
a Debye sphere. It may be observed from [1.50] that the Stark width increases with
increasing principal quantum number of the upper level. The quasistatic Stark width of
the lithium Lpline (113.9049 A) is plotted in fig. 1.17 as a function of temperature and
density. As can be seen from the overlap of the curves in fig. 1.17, the half-width is
particularly insensitive to temperature changes. A refinement to Holtzmark’s theory
involved the introduction of ion-ion correlation and shielding effects due to the
presence of the surrounding ions and electrons, as well as the introduction of a time
dependence of the ion microfields. The ionic contribution to the widths of Stark
broadened lines is usually less than ~20% [54], and introduces some asymmetry to the

line profile [4][50].
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Fig. 1.17: A as a function of temperature and density for the lithium Lp line

(X0= 113.9 A).

Heretofore, the contribution to the half-width due to the plasma electrons, whereby a
wave train of light emitted by an atom is perturbed by fast impacts (due to the high
velocity of the electrons), well separated in time, has been neglected. This theory,
referred to as the impact theory, was primarily developed by Lorentz, Lenz, Weisskopf
and Lindholm, and was further refined by Baranger, Kolb and Griem [4]. However,
despite the fact that the detailed features of the line profile are very dependent on the
electron contribution, the half-widths are often insensitive. This is notably so for the Lp,
L5 etc. hydrogenic lines. On the other hand, the U. etc. are strongly affected by
electron collisional broadening (and sometimes dominated). Electron impact
broadening also dominates isolated spectral lines of neutral atoms and singly ionised
nonhydrogenic ions [50][55], This leads to a shifted but symmetrical line profile of
Lorentzian shape. Therefore, one can calculate the FWHM of these lines using the
impact approximation, and then correct for the relatively unimportant quasistatic neutral

or ion broadening contribution [53], The width (FWHM) and lineshift are given to a

good approximation (-20 —30%) for neutral atoms by [53][56]



N,, 74

N
AX =\2\N «+ 3.5A 1--NnB W 2 A) [1.52
A v 10 16y 1016 " 10% W1 ]
e 2A K 1.53
Ashift~ D |15 10B A [1.53]

where the first term (in chained brackets) in both equations represents the electron
contribution, while the second term represents the correction for neutral atoms. The
electron density Ne is given in cm'3. The coefficients W, A and D are independent of
density and slowly varying functions of temperature, comprehensive tables for which

can be found in [55] (see table 1.1). The minus sign in [1.53] applies to the high

temperature range of the few lines that have a negative value at low
temperatures. In order to make [1.52] and [1.53] applicable to singly ionised species

one need only replace the coefficient ~ by 1.2 [53], These formulae are valid only in

the parameter range ND>2 and 0.05 < AANg/IO16™ <0.5 [53]. Typical values for

the coefficients W, A and D are given in table 1.1 for various transitions in lithium.

Transition X Vvec (A) T (K W (A) A D A)

1s2>1s2p 199.279 5000 0.279e-3 -0.165e-3
10000 0.207e-3 -0.120e-3
20000 0.156e-3 -0.861e-4
40000 0.123e-3 -0.599e-4

1s2-»1s3p 178.014 5000 0.236e-2 0.161e-2
10000 0.178e-2 0.110e-2
20000 0.137e-2 0.729e-3
40000 0.108e-2 0.481e-3

Table 1.1: W, A, D Stark broadening coefficients for selected transitions in
lithium (at Ne= 1017 cm'3 (after [65]). NOTE: For typical ion lines A values (a
measure of the relative importance of ion broadening) are « 1 [55],

Dimitrijevic and Sahal-Bréchot have published extensive Stark broadening parameters
of spectral lines of multicharged ions (see references in [57]) including Li Il [57] for

perturber densities from 1015 1018 cm'3 and temperatures T = 2500 -» 50000 K for
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perturber density Ne= 1017 cm'3.

which the electron impact approximation is valid. These are given in table 1.2 for a

Transition Avec (A) T (K) Width (A) Shift (A)
1s2->1s2p 199.3 5000 0.557e-03 0.391 e-04
10000 0.395e-03 0.401 e-04
20000 0.286e-03 0.274e-04
40000 0.211e-03 0.175e-04
1s2»1s3p 178.0 5000 0.282e-02 -0.308e-03
10000 0.228e-02 -0.246e-03
20000 0.189e-02 -0.236e-03
40000 0.161e-02 -0.197e-03
1s2->1s4p 171.6 5000 0.801e-02 -0.129e-02
10000 0.704e-02 -0.118e-02
20000 0.625e-02 -0.995e-03
40000 0.555e-02 -0.806e-03
1s2->1s5p 168.7 5000 0.161e-01 -0.303e-02
10000 0.155e-01 -0.289e-02
20000 0.146e-01 -0.238e-02
40000 0.134e-01 -0.194e-02

Table 1.2: Electron-impact full halfwidths and shifts for the 1s2 -» 1snp (n =
2,3,4,5) transitions in Li+ (after Dimitrijevic and Sahal-Bréchot [57]).

In order to derive densities with an accuracy of -30 to 40% one must apply a
convolution of the electron (impact) profile, requiring a temperature estimate, and the
ion profile. Otherwise, it is advisable to pursue transitions dominated by quasi-static

ion broadening [53], the criterion for the validity of which is given by [50][55].

Generally, at high densities the broadening by ions can be calculated with the quasi-
static approximation, but at lower densities a transition into the impact domain may

occur before the Doppler broadening becomes significant [58],

One should note that the impact approximation is not exclusive to the electron
contribution, nor is the quasistatic approximation unique to the ion contribution, to Stark
broadening. Broadening by protons and heavy (i.e. slow) ions can be described by the
impact approximation for early members of hydrogen and hydrogenic line series

[55][57].
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1.6 Theoretical Aspects of the Experimental Techniques
Employed

Fast frame photography, shadowgraphy and the dual Ilaser plasma (DLP)
photoabsorption technique were employed as diagnostic tools during the course of this
work to facilitate the study of the expansion of a laser generated lithium plasma. The
following sections outline the principles of these three techniques, indicating the
plasma parameters that may be quantitatively ascertained either directly or indirectly

through the introduction of various plasma radiation model assumptions.

1.6.1 The Fast Frame Photography Technique

Fast frame photography has long been used as a diagnostic aid in the study of laser
produced plasmas, either through the usage of frame converter cameras [24][30], or
digitally, by employing gated intensified charge coupled devices (ICCDs) [26][28], thus
greatly enhancing sensitivity. The attraction of the technique lies in its relative ease of
implementation. A sequence of short exposure (typically a few ns) frames of the self-
emitting plume is obtained at various time delays during the course of the plasma’s
evolution, thus providing both spatial and temporal resolution. As in fig. 1.8, the
observation is generally ‘side on’, at right angles to the axis of expansion. Introducing
various narrow band interference filters in front of the camera, to limit the spectral
range of the imaged light to that of known emission lines, introduces the possibility of
tracking the spatio-temporal evolution of the corresponding excited states. The
measured intensities in this case are integrated over the line profile. Spectrally
resolved images can also be obtained if an imaging spectrometer is used [59], In
addition to the possibility of tracking the evolution of excited states, one may also
estimate species velocities directly from the images, either using the leading luminous
plume edge as a marker, thus providing an estimate of the maximum expansion
velocity [28][33], or through the approach proposed by Boland et al. [60], whereby at
fixed distances, d, from the target surface along the axis of expansion, the time, t, at
which the maximum in intensity occurred was recorded. By plotting a graph of d
against t, the most probable velocity was imparted. The fast frame photography
technique has successfully been applied to the study of expanding plumes both in

vacuum [16][61] and in a background gas [28][33][35],
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The light intensity recorded at a single pixel (x,y) is given by (see figs. 1.8 and 1.9 for

the expansion and observations geometries)

2
Ixy)= f JB/(r>Jzdv [1.54]

-Lc line

in which sur) is the emission coefficient (see §1.4.2(a)) at the photon frequency v, and
Lc is the total length of the emitting plasma chord. The radial distribution of emitters

N(r) can be obtained by Abel inversion of [1.54] assuming that:

(a) The observed light rays are virtually paraxial.
(b) The plasma is optically thin, in which case ev(r) is linearly proportional to N(r).

(c) There is radial symmetry in the (y,z) plane.

Taking account the effect of a narrow band interference filter, [1.54]becomes

[1.55]

where i(r)= Jsv(r)dv. Finally, introducing a change of variable (with reference to fig.

line

1.9) so that

=> 2rdr = 2zdz

dz=—dr
z

But z =yjr2- y2

[1.56]
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one obtains the integral equation

[1.57]

which is the Abel integral equation. i(r) is recovered by inversion of [1.57], This yields

[1.58]

where I'(x,y) is the first derivative of the radiance function with respect to the lateral

coordinate y (x is fixed).

The first application of Abel’s integral to ‘side on’ measurements appears to have been
carried out by Hormann in 1935 [62], Since then several methods have been devised
to solve [1.58] without the need for differentiation. Differentiation tends to amplify
enormously any inherently noisy data during the inversion process. Thus, least
squares polynomial fit methods [63], piecewise cubic spline functions fitted by least
square methods [64], iterative methods [65] and various transform methods [66][67]
have been suggested as derivative free approaches to solving [1.58]. Several factors
may influence the solution to [1.58]. Initially, the plasma may not be optically thin as
assumed, and self-absorption, (which may be a function of intensity), may be
significant. When taken into account, these effects yield a nonlinear integral equation
[62], This topic has been treated by [68] using the so-called two-path method. Also
refraction effects may be non-negligible [69][70][71], and the initial assumption of radial

symmetry may be invalid thus requiring a generalisation of the Abel method [72].

Furthermore, the Abel transform inversion procedure provides only the distribution of
the corresponding excited state atomic densities in the plume. An appropriate radiation
model for the plasma is then required in order to obtain ground state population
densities and possibly electronic densities. This was accomplished by [73] by digitally

imaging a hydrogen arcjet plume assuming LTE, while Elder et al. determined the
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absorption and emission coefficients of a non-optically thin cylindrically symmetric

source assuming LTE [74],

1.6.2 The Shadowgraph Technique

Shadowgraphy3 records the modifications to the free space propagation of
electromagnetic radiation, due to the abrupt variations in the electrical properties of the

medium.

Detection Plane

Fig. 1.18: The basic principle of the shadowgraph technique.

In its simplest form, a collimated beam of light passes through the test section under
consideration and falls directly onto a recording device, such as a photographic plate or
CCD camera, as in fig. 1.18. Assuming a non-absorbing medium, the variations in
intensity occurring at the detection plane result from the different paths taken by rays
traversing the medium. In the case of a laser produced plasma, self-emission from the
refracting plasma is eliminated by using a relatively intense back-lighting radiation
source. Provided the intensity of the probe beam is not too great, the technique is
effectively non-perturbing. Temporal resolution is generally achieved by using short
pulses of background radiation. Pulsed tunable laser light sources prove particularly

useful in this regard, further introducing strong interference effects at the detector

3 The irepticnand develgmantt of shedongraphy (Shedow frotograrhy) are s el attrib e o Dvork,
who 1890 used itto protogreph airdisturtences [4).
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plane. One can show that the intensity modulations in the shadowgraph are sensitive
to the second derivative of the index of refraction [75], The technique thus proves
suitable to the diagnosis of laser produced plasmas where steep spatial density
gradients, and thus refractive index gradients exist. In general it is difficult to obtain
high accuracy quantitative data from shadowgraphs without the supplementary

information provided by, for example, Schlieren or interferometric techniques [76].

The strength of the interaction of electromagnetic radiation with “macroscopic” matter is
embodied in the value of the index of refraction. The value of the refractive index of a
plasma is due to the contributions from the plasma electrons, neutrals and ions. It is
well known that the index of refraction of a plasma at optical frequencies is largely due
to the free electron contribution [77][78][79]. However, in the vicinity of an atomic
resonance significant additions must be made [78][80][81][82][83], In addition,
anomalous dispersion must be taken into account. Applying the dispersion theory of
light (originally developed by H.A. Lorentz (1878)), which describes the dependence of
the index of refraction on frequency, to the case of a laser produced plasma in the

region of an atomic resonance, one obtains [80]

i(o.-1=Ff 1 aunr a 2 -1-— +n.M 2-1 [1.59]
iM71E0) me 00 -CO +IGD

where N(r) is the spatially variant nhumber density of atoms or ions in the plume,
n=n- ik Iisthe complex refractive index, Cis the resonance line-width (FWHM), and
Wb is the centre frequency. Here, it has been assumed that in the region near ad, the

free electrons are the only other possible contributors to the refractive index. This

contribution, as a function of frequency, is equal to

n,M =,1— ¢ - [1-60]

where apis the plasma frequency for an electron density Ne such that
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The particle densities and hence the magnitude of the refractive index largely
determine the intensity distribution of light recorded at the detector plane, thereby
explaining the principle of the diagnostic. From [1.59] and [1.60], one can see that the
electron gas contribution to the phase index of refraction is negative and slightly less
than unity. On the other hand, the atomic and ionic contributions are positive. The
two’ effective contributions to the plasma refractivity are thus opposite in sign [77].
This has been used as the basis of a resonance interferometry technique to study
magnetically insulated pulsed ion sources [84]. The complex term in [1.60] gives rise

to the effect of anomalous dispersion as illustrated in fig. 1.19.

X(nm)

Fig. 1.19: The real (n) and imaginary (k) parts of the plasma refractive index as
a function of wavelength (nm) centred about the 1s2s -> 1s2p transition in
lithium. (C~ 0.4 nm, N(r) = 1 x 1024 m"3, Ne(r) = 1 x 105 cm'3, fiKk= 0.75, X0 =
670.78 nm). Also shown is the electronic contribution, ne, to the plasma
refractive index.

The shadowgraph technique has been applied on numerous occasions during the 60’s
and 70’s to the study of laser produced plasmas. References to such early works can

be found in [2]. Michaelis and Willi [85] (and [86] for improved analysis) showed that



when probing a laser produced plasma of steep refractive index gradient with a pencil
of laser light, the rays traversing the denser regions suffer greater refraction and may
interfere with other rays, thus producing a pattern of bright and dark fringes - the so
called refractive fringes. Using an optical path analysis, the authors showed that the
generally ‘unwanted’ refractive fringes in shadowgraphy could be used to diagnose
electron density distributions. Grid Image Refractometry (GIR) [87] whereby the probe
beam is broken up into ‘rays’ by being passed through a grid before traversing the
plasma, has been applied to the study of plasma formation on a CH target. By
measuring the refraction angles, and introducing the assumption of cylindrical
symmetry the resultant data was Abel inverted to yield population density distributions.
Population densities have also been estimated using two- [77] and five- probe
wavelength [78] measurements. The method assumes that far away from resonance,
the contribution to the refractive index from the non-electronic species is constant with
wavelength. Thus, by measuring the plasma refractivity at a number of wavelengths,
the electron density can be ascertained. Using the strong variation of the plasma
refractivity in the spectral vicinity of an atomic transition, an extension to the resonance
interferometry technique called tomographic resonance interferometry has been
applied [81] to measure chromium ground state densities, as well as Doppler and
Lorentz widths in a helium pulsed plasma. Using a complex experimental set-up, the
technique used involved scanning the probe wavelength of a dye laser over the
investigated transition, and measuring both the spectral and spatial variations of the
refractive index using a single shot tomographic method that provides simultaneous
recording of all projections necessary for one tomogram. Dye laser resonance
absorption photography (DLRAP) has also been used to probe the plasma created
using aluminium [88][89], polyimide and polyethyleneterephthalate [89] targets. The
basis of the technique involved back-lighting the plasma using the output of a probe
laser tuned to a resonance transition. In this manner the spatial distribution of ablated

products could be monitored.

It should be pointed out that shadowgraphs obtained using the basic principle

illustrated in fig. 1.19 may be regarded as single beam holograms. Single beam
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holograms of laser produced plasmas were first recorded4 in the 60’s [2], The
technique is reminiscent of the phase contrast imaging technique of nonabsorbing
objects originally developed by Zemike [90]. Variations in the optical thickness of an
object, as a result of refractive index variations or thickness variations or both, alter the
phase of portions of the incoming wavefront, before interfering at the detector plane.
Raven et al. [91] have applied this technique with great success to record phase
contrast images of a 100 |iim boron fibre using 60 keV coherent synchrotron x-ray
radiation, while simultaneously computing the diffraction intensity distribution across

the fibre in the detection plane, by means of the Kirchoff integral [92].

Following the analysis first proposed by Michaelis and Willi [85], and later refined by
Cunningham et al. [86], the observed fringes in the detector plane (at a probe
wavelength where the contribution to the refractive index from neutral and ionised
species is negligible) can be employed to extract the refractive index profile of the
plasma, and hence the electron density gradient. The path of a probe ray traversing a
radially symmetric plasma, possessing a maximum electron density at the axis of
symmetry and which decreases monotonically as a function of the radial co-ordinate is
always in a direction of increasing refractive index [86][93]. Under these conditions,
the plasma acts as a diverging lens. The equation governing the trajectory of a ray in a

radially symmetric field is given by Bouguer's formula [79], i.e.

rn(r)sin(ir)= pr [1.62]

The impact parameter pris constant along a ray, and its value thus serves as a label

for each ray [79]. The geometry of an arbitrary probe ray traversing a radially

symmetric plasma is illustrated in fig. 1.20.

4 The tadmiqe of irHire holagrgphy was agrdlly devellgoed by Gabor in 1947, His work remained
samewhat utoticed utal the 60%, when teqeeriaced a resurgace of inaestwith tre ropian of tre
b=

48






Six main assumptions are used in the analysis of Cunningham et al. [86], These are

as follows:

(D) As previously mentioned, contributions from neutral and ionised species to the
refractive index must be negligible. This assumes that the probe wavelength is not in

the vicinity of an atomic resonance transition.

(2) Geometric optics must be applicable. This places an upper limit on the

maximum permissible refractive index gradient to be probed [94][95], i.e.

M on [1.63]

8x

where x is the co-ordinate in the direction of the density gradient perpendicular to the

probe ray. For an electron gas [1.63] becomes [95]

an. 0 Nec - Ne
« 2 — -
dx

[1.64]

Using condition [1.64] corresponding to the maximum value of Neto be diagnosed, it is
possible to determine the maximum permissible electron density gradient. This is
plotted in fig. 1.21 for a probe wavelength of 669.7 nm. With reference to fig. 1.21 and
[1.64] it is apparent that a gradient of « ~6 x 1024 cm'4 can be tolerated if 669.7 nm
radiation is used to probe an electron density not exceeding ~8 x 1020 cm'3 (0.8 times

the critical density for an Nd:YAG laser).
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Ne/N g
. - 2(N_-N ) . .
Fig. 1.21: The variation of ec——--- — as a function of electron density
\ec

expressed as a fraction of Necfor a probe wavelength (Xved of 669.7 nm.

3) The ray trajectories must follow a parabolic path through the plasma. This is

almost certainly the case provided the exit angle of the ray anpr (see fig. 1.20) is small

(«1). Deviations from a parabolic path can be expected in strongly refracting
plasmas.
(4) Arguably the most severe assumption; the rays must be refracted solely in a

plane parallel to the direction of propagation of the ray. This may only be the case for
cylindrically symmetric plasmas, where refractive index changes along the axis of

symmetry, perpendicular to the direction of ray propagation are negligible.

(5) The existence of an ‘optically effective plasma radius’ (OEPR) is assumed. This
is the radius of the dark region (ROin fig. 1.20) interior to the last ‘non-deviated’ ray, i.e.
the last ray experiencing negligible refraction, for the particular probe wavelength under
consideration. It should be emphasised that the OEPR is a function of the probe beam

wavelength utilised.
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(6) Finally the refracted wavefronts are assumed planar upon reaching the
detector. This may be achieved by positioning the detector at large distances relative
to the plasma.

Assuming the geometry of fig. 1.20, this final assumption combined with the path

difference of X between adjacent fringes in the detector plane, furnishes the

geometrical relationship

ar = sin [1.65]

where aris a function of pr, the impact parameter of a ray. The equation of a ray

exterior to the plasma exiting at point P3is given by

y = tan(anx + b [1-66]

However atx = L, y = Rfand therefore

y(L)=Rf=tan(ar)L+b
=>p = Rf-tan(ar)L

and thus

y =tan(arXx-L)+R f [1-67]

The intersection of the plasma surface atthe OEPR with the plane under consideration

obeys the relation

X2+ y2=R 02 [1.68]

Therefore the point of intersection of the two curves, at the exit point P3, is determined

by simultaneously solving [1.67] and [1.68], i.e.
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[(x-L>+Rj=Ro2-x2 [1.69]
where t = tan(ar). Therefore
x2(l + t2+x(2Rft-2Lt2) - 2LRft+ (Lt)2+ (Rf2- R02= 0 [1.70]

The relevant root of [1.70] is

Kt+ L -~t)2-(Lt)2+2LRft-(R (2-R,,2)(I + t2V2

[1.71]
Xp* = frr?2r
and thus
[1.72]
Also from fig. 1.20 it is apparent that
pr=tan 1 -a, [1.73]

Returning to the assumption of a parabolic path (assumption 3) through the plasma the
co-ordinate ‘b’ in fig. 1.22 may be determined from the following. The equation of a

parabola is

y = ax’ [174]
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y=mx»-b

Fig. 1.22: The geometry of the parabolic path assumption used to describe a
ray’s trajectory through the plasma.

Differentiating [1.74] one obtains the slope of the line tangent to the an arbitrary point

dv
on the parabola, i.e. — = 2ax. The equation of the tangent may be described by the
dx

relation y=mx+b. Therefore, at x = x ', one obtains

y =2a(x)2+b [1.75]

and therefore b=y-2a(x')2. However noting that y'= a(x")2 by definition (using

[1.74]), one obtains an expression for b, namely

b=-y’' [1.76]
for all x'. Thus, with reference to fig. 1.22 it may be observed that the distance from

the y-intercept (point b) of any tangent to the parabola at a point (x'y') to the line

segment [P1Ps] is 2y’ for all x'.
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Resuming the geometrical analysis of the RFD technique, it is apparent with reference

to fig. 1.20 and using [1.76] that

[1.77]

Finally, employing Bouguer’s formula ([1.62]), and [1.77] and recognising that at n, the

[178]

where prcan be found from the geometrical relationship

Pr = ROsin((5r) [1.79]

Thus, by employing equations [1.65],[1.71],[1.72],[1.73],[1.77] and [1.78] to obtain ar,

Xp3, yPa, pr, n and n(ri) respectively, and determining RO from the shadowgraphs it is

possible to extract the refractive index profile of a radially symmetric plasma (through

different values of r, for different refracted rays).

One may also use Fermat’s principle to describe the path of a ray which traverses the

the plasma. This is based on an extremum principle expressed as

[1.80]

where the points P\ and P3 are shown in fig. 1.20, and ds is a differential arc length
along the ray path. Equivalently Fermat’s principle can be expressed in cylindrical co-

ordinates as [82][86]



de= +nr(RO)pr [1.81]

drrK«2rd-n, (RjPrf

The + sign is used to the left of the turning point P2 while the - sign is used to the right

of P2. The exit angle of any ray can then readily be computed using the relation [82]

arjb)=(-2p,)+2pm,(R,)IT T --—>* [1-82]
crh(r)Vv-n, (Rjprf

The ordinary differential relation of [1.81] may be solved using a Runge-Kutta

integration technique, without the restrictive assumption of a parabolic path.

1.6.3 The Dual Laser Plasma (DLP) Photoabsorption Technique

The technique of probing the electronic structure and ion decay dynamics of a laser
produced plasma using the radiation emitted by another plasma is known as the Dual
Laser Plasma (DLP) photoabsorption technique [96], DLP photoabsorption involves
probing the absorbing plasma under different experimental conditions. Spectra of
multiply or singly charged ions or neutrals are obtained when probing the plasma in
different spatio-temporal regimes, thus introducing selectivity of absorbing species.
The technique basically involves recording two spectra. The first, denoted Vo, is that
of a backlighting plasma generated from (usually) a high Z material such as tungsten.
The second, denoted lv, involves generating a second plasma (the sample plasma)
from a different target material using a separate laser. The radiation from the
backlighting plasma passes through, and is absorbed by the sample plasma before

falling on the detector. By application of Beer’s law, i.e.

Iv=Noexp(-cjNL) [1.83]

where a is the absorption cross-section, N is the density of absorbing atoms or ions

and L is the absorbing column length, it is possible to generate an absorption
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spectrum. Most DLP experiments have hitherto been concerned with the study of the
fundamental aspects of the photoionisation process [97]. In the following sections, the
extension of the technique to the interpretation of the Extreme UV (EUV)
photoabsorption spectrum of a laser produced lithium plasma is outlined. In particular,
using the models developed to describe the basic physical mechanisms of plume
formation and expansion, as well as spectral line formation and broadening, coupled
with values of the relevant atomic parameters characterising the transitions under
consideration, it is shown that the quantitative interpretation of such spectra is
practicable. Indeed, under certain conditions the interpretation of the EUV absorption
spectra of laser plasmas is comparatively simpler than optical spectra. The broadening
or distortion effects resulting from local plume conditions affect electronic inner-shells
less severely than valence levels and may even be purely instrumental. In addition
refractive effects are minimised for probe frequencies much larger than the plasma
frequency. Thus, the technique proves suitable to the quantitative analysis of EUV

spectra.
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Chapter 2

This chapter describes the essential features of the
experimental set-ups used during the course of this
work. In all, three separate arrangements were used. A
description of the operating characteristics and
capabilities of each will be given including, where
characterised, instrumental considerations. Finally,
results pertaining to each diagnostic technique are
presented. Specifications relating to the lasers, delay

generator etc. used can be found in the Appendices.

2.1 The Fast-Frame Photography Technique

2.1.1 Experimental Set-up

Using a gated intensifier coupled to a charge coupled device (ICCD), a sequence of
frames of the luminous plume of a laser produced lithium plasma was recorded
expanding both in vacuum and in a low pressure argon atmosphere, at pressures of ~1
X 1CT5 mbar and ~200 mTorr (~0.27 mbar) respectively. The experimental set-up is

shown in figs. 2.1 and 2.2.
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Fig. 2.1: The experimental set-up used to record a sequence of frames of the
luminous plume of a laser produced lithium plasma: (ICCD) Intensified charge
coupled device, (DG(AT)) Stanford digital delay generator, (F/O) BPX 65 Fast
photodiode connected to ~14.2 m of fibre optic cable.

Fig. 2.2: A detailed view of the target chamber area and detection system: (FL)
Plano-convex focussing lens (f = 190 mm), (ND + I/F) Neutral density + tuned
interference filters, (ZL) Zoom lens /2.8, (I/) Gated image intensifier, (RL) Relay
lens, (CCD) Charge coupled device.
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The lithium plasma was generated by focussing the output from a Nd:YAG (0.8 J, 15
ns) laser, using an uncorrected plano-convex lens (FL) of 190 mm focal length, onto a
planar lithium target. The target spot size was ~5 mm in diameter resulting in an
irradiance of ~3 x 108 W cm'2 (~4 J cm'2. Synchronisation between the laser trigger
pulse and the gate pulse to the ICCD was achieved using a Stanford digital delay
generator (DG(AT)), the timing diagram for which is illustrated in fig. 2.3. The resultant

system jitter was less than 3 ns.

M/P
CCD
F/7L
D/A 3 Sis
I/1
Arb.
A V
177 ms t
177.07 iis
177.09 ~s
180 us

25 ms

Fig. 2.3: A diagram of the triggering sequence used to capture frames of the
luminous plume: (M/P) Master pulse (TTL), (CCD) CCD Shutter trigger, (F/L)
Nd:YAG Flashlamp trigger (15 V), (D/A) Nd:YAG Direct Access trigger (-15 V),
(I Gated Image Intensifier trigger (TTL). In relation to the image intensifier, an
electronic gate width of 20ns corresponds to an optical gate width of ~9 ns (see
Appendix D).
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Successive frames of the lithium plasma averaged over five shots were obtained by
varying the triggering delay between the laser (Nd:YAG 0.8 J, 15 ns) used to create the
plasma and the gating pulse (9 ns optical FWHM) to the image intensifier. The delay of
177.07 ~ indicated in fig. 2.3 corresponds to a zero time delay. The target was
rotated every five shots in order to present a fresh surface. The complete data
acquisition procedure, including target rotation, was maintained under computer
control. Frames were recorded using the CCIR standard in 8-bit gray-scale format;
each frame measuring 544 x 290 pixels in size. The automatic gain control (AGC)
feature of the CCD was disabled during the course of the experimentsl Gamma

correction, where

G= [2.1]

was set to unity. Here G is the quantised gray level while IT is the true intensity.
Generally, to accommodate the human eye yc is set to 0.4. Setting yc = 1 however
ensures that the CCD response is a linear function of incident intensity (see §2.1.2(d)).
The interference filter combined with neutral density filters (ND+IF) served to reduce
the intensity of the detected radiation, as well as to narrow the spectral range of the
imaged light to that of a known emission line. The opportunity to track the evolution of
the corresponding excited species was thus provided. Due to the finite bandpass of
the interference filters, the measured intensities are necessarily integrated over the line
profile. The distance from the target centre to the 21 mm diameter circular aperture
was -190 mm. The separation between the target and the zoom lens (ZL) was -220

mm.

1Automatic Gain Control (AGC) is a feature whereby the CCD automatically adjusts to ambient
light levels. This was switched off during the course of this work. With the OS-25 CCD camera,
unless the electronic shutter enable feature is selected (S5 UP), the camera automatically
adjusts the exposure time to adapt to the incident light level. The result is similar to enabling

automatic gain control.
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2.1.2 System Characterisation

This section outlines the characterisation of the CCD parameters pertinent to the
quantitative interpretation of the data recorded using the fast-frame photography
diagnostic technique. A summary of the image intensifier test data supplied by Andor

Technology can be found in Appendix D.

(@) Spatial Resolution Measurement

The spatial resolution of an imaging system is defined as the minimum separation
between two objects in the image plane before they become unresolved. This is often
equated to the Rayleigh, or Sparrow criterion [98]. The spatial resolution of the
combined image intensifier and CCD was measured using a Kodak TL-5003 imaging

test chart. The resulting image is shown in fig. 2.4.

Fig. 2.4: Image of the Kodak TL-5003 imaging test chart. The numerals indicate
the number of line pairs per mm.

From fig. 2.4, one can ascertain, using for example the Rayleigh criterion [98], the
minimum separation between two consecutive dark lines before they become
indiscernible from one another. With reference to figs. 2.5 and 2.6, one can see that
this criterion is satisfied for a resolution of -3.6 line pairs per mm (Ip / mm) in the

horizontal direction and slightly less than 3.6 Ip/ mm in the vertical direction.
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Fig. 2.5: Typical scan across the resolution test chart image in the horizontal
direction (at 3.6 Ip/ mm) indicating the saddle point pixel value required to satisfy
Rayleigh’s criterion.

Pixel Number (Arb. Units)

Fig. 2.6: Typical scan across the resolution test chart image in the vertical
direction (at 3.6 Ip/ mm) indicating the saddle point pixel value required to satisfy
Rayleigh’s criterion.
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The minimum spatial resolution of the gated intensifier as a standalone device is
supplied as < 80 (¢m [99], corresponding to a spatial resolution of > 6.25 Ip/ mm, while

the CCD resolution is < 12 “m [100] corresponding to a resolution of > 40 Ip /mm.

(b) Photon Statistics

The total number of photons emitted by a steady source over any time interval exhibits

random fluctuations that vary according to a Poisson distribution given by

fX)="expB O [2-2]

where N is equal to the square of the standard deviation defined as

[2.3]

Here N is the number of X’ observations; xav is the average value. The charge
collected by a CCD exhibits this same distribution so that the fluctuation, usually
referred to as shot noise, is equal to the square root of the mean number of photons
detected [101]. Shot noise or photon noise is independent of frequency and is always

present in imaging systems. It simply represents the uncertainty in the data.

Employing the set-up depicted in fig. 2.7, a constant illumination source positioned -40
cm from the front of the CCD was used to make 3000 observations; each observation
having an exposure lasting 25 ms. The effect of the diffuser was to scatter the incident
light to produce a uniform irradiance on the detector. By recording the pixel value of a
single pixel located in the centre of the CCD matrix at pixel position (272,145), the
random nature of the photoelectric process was examined. The results are plotted in

fig. 2.8.
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Tungsten Halogen Lamp

Diffuser

Fig. 2.7: The experimental set-up used in various calibration measurements to
characterise the OS-25 CCD.

Probability

Signal - Mean

Fig. 2.8: Random fluctuations in the observed detector output as a result of the
discrete nature of the photoelectric process fitted to a Poisson probability

distribution.
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From the graph one can see that the distribution is symmetric about the mean value.
Therefore the probability of detecting a photon depends solely on the absolute value of

the deviation of any value from the mean.

(c) Quantum Efficiency

Quantum efficiency measures the sensor’s efficiency is generating electronic charge
from incident photons. Within the visible spectrum (400 -> 700 nm), the photon to
electron conversion efficiency (QE) of silicon is less than unity, and varies with the
wavelength of the incident photons. The creation of charge from incident radiation of
fixed wavelength is intrinsically linear (see (d)) [102]. The quantum efficiency for a

typical 0S-25 CCD camera is displayed in fig. 2.9.

X (nm)

Fig. 2.9: A typical quantum efficiency curve of an OS-25 CCD camera [100],

In the analysis of §3.1, the CCD quantum efficiency is not a determining factor, as the
image intensifier phosphor (P43) emits over a narrow band of radiation over which the

QE of the CCD camera does not vary substantially. This is plotted in fig. 2.10.

66



X (nm)

Fig. 2.10: The relative intensity as a function of wavelength of a P43 phosphor
[103],

The quantum efficiency of the image intensifier photocathode (S 25) is plotted in fig.

2.11.

X (nm)

Fig. 2.11: The quantum efficiency of a typical modified S 25 photocathode [99].
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This is important only if relative comparisons are to be made between detected
intensity levels of the various transitions considered. The peak quantum efficiency of
the gated intensifier used during the course of these experiments was -16.6% [99].

The efficiency of the gated intensifier is not a determining factor in the analysis of 83.1.

(d) Linearity

As previously mentioned (see (c)), at any given wavelength a linear relationship
between the light level incident on each pixel and the digitally quantised gray level
representing that signal should ideally exist. Scientific grade CCDs exhibit this linear
relationship over several orders of magnitude to within a few hundredths of a percent.
Non-linearity in an imaging system can introduce serious errors into image processing
results and can thus lead to the erroneous interpretation of data. The linearity of the
0S-25 CCD was experimentally measured using the set-up depicted in fig. 2.7. Using
a tungsten halogen illumination source positioned -40 cm from the CCD, and
maintained at a constant current of 5 A (19.7 V), the transmittance of various sets of
neutral density filters were measured, and averaged over five consecutive 25 ms
exposures. Placing different tuned interference filters in front of the CCD effected the
measurements at a number of ‘discrete’ wavelengths. The results are plotted in fig.
2.12. In each case the data has been corrected for the relative transmission of the
appropriate narrowband interference filter. From the graph, one can ascertain that the
response of the CCD is linear at the specified wavelengths. The difference in slopes
between the various response curves may be attributed to a combination of the
difference in the CCD quantum efficiency, and also the relative intensities of the
spectrum of tungsten at these wavelengths, the temperature of which was estimated to
be 2050 K using a CYCLOPS 152 pyrometer (see Appendix C), assuming an emissivity
of 0.4 [1],
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Fig. 2.12: The measured linearity of the OS-25 CCD at different wavelengths.

69



2.1.3 Experimental Results

The temporal and spatial evolution of a lithium plume expanding into vacuum (~1 x 10'5
mbar) as well as into a low-pressure gas (-200 mTorr of argon) is shown in figs. 2.14
through 2.23, for a number of different time delays. In figs. 2.14 and 2.15, the camera
was tuned to the 1s2s <- 1s2p (670.7 nm) Li° transition using an interference filter
centred at 671.5 nm. Similar figures for the 1s2p <- 1s23d transition (610.3 nm) in LI°
are shown in figs. 2.16 and 2.17, and for the 1s2s <- 1s2p transition (548.4 nm) in Li+
in figs. 2.18 and 2.19. Temporally and spatially resolved spectrally broadband images
and also broadband filtered images using a high (wavelength) pass filter for both the
expansion into vacuum and argon cases are shown in figs. 2.20 and 2.21 and figs.
2.22 and 2.23 respectively. In each case a false coloured palette has been used to
distinguish the recorded light intensities. The spectral transmission curves, recorded
using a Shimadzu UV-1201 spectrophotometer, for the broadband filter as well as the

tuned interference filters are illustrated in fig. 2.13.

X (nm)

X (nm)

Fig. 2.13: The spectrophotometer transmission curves of (a) I/F 67IFS10-25

("oentre = 671.5 nm) (b) I/F 59405#1 Centre = 608.8 nm (c) I/F A43125 Centre =
546.5 nm (d) R-62 broadband high wavelength pass filter.
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Fig. 2.14: The temporal and spatial evolution of Li° (670.7 nm) in vacuum.
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Fig. 2.15: The temporal and spatial evolution of LiO (670.7 nm) in 200 mTorr of
argon.
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Fig. 2.16: The temporal and spatial evolution of Li° (610.3 nm) in vacuum.
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Fig. 2.17: The temporal and spatial evolution of Li° (610.3 nm) in 200 mTorr of
argon.
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Fig. 2.18: The temporal and spatial evolution of Li+(548.4 nm) in vacuum.
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Fig. 2.19: The temporal and spatial evolution of Lj+ (548.4 nm) in 200 mTorr of
argon.
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Fig. 2.20: The temporal and spatial evolution of a laser produced lithium plasma
(broadband) in vacuum.
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Fig. 2.21: The temporal and spatial evolution of a laser produced lithium plasma
(broadband) in 200 mTorr of argon.

78



1255

AT =20 ns
AT = 100 ns

mm
AT = 200 ns

mm
AT = 300 ns

mm

Fig. 2.22: The temporal and spatial evolution of a laser produced lithium plasma
using a high wavelength pass filter (R-62) in vacuum.
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Fig. 2.23: The temporal and spatial evolution of a laser produced lithium plasma
using a high wavelength pass filter (R-62) in 200 mTorr of argon.
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2.2 The Shadowgraph Technique

2.2.1 Experimental Set-up

Temporally resolved shadowgraphs of an expanding laser produced lithium plasma in
vacuum (~1 x 10'5 mbar) were obtained using the set-up depicted in figs. 2.24 and
2.25. A lithium plasma was formed by focussing the output from a Nd:YAG (0.8 J, 15
ns) using an uncorrected plano-convex lens (f = 110 mm) onto a planar lithium target.
The spot size was estimated from the target crater to be ~500 pm in diameter;
approximately 25 times the diffraction limited spot size diameter. The irradiance range
over which the experiments were performed varied between ~1 x 104W m'2and ~3 x
1014 W rrf2. Synchronisation was achieved, as before, using the Stanford digital delay

generator. The timing diagram is shown in fig. 2.26.

JEBK WSBEET
\4
CCD w [DG(AT)
DYE Laser 8 ns um
r o
¥
\
Nd:YAG 2 (532 nm, 8 ns)
n
Fe a

Fig. 2.24: The experimental set-up used to record a sequence of shadowgraph
frames of a laser produced lithium plasma: (CCD) Charge coupled device,
(DG(AT)) Stanford digital delay generator, (F/O) BPX 65 Fast photodiode
connected to ~14.2 m of fibre optic cable.
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ND + I/IF

BE

Fig. 2.25: A detailed view of the target chamber area and detection system: (FL)
Plano-convex focussing lens (f = 110 mm), (BE) Beam expander, (ND + I/F)
Neutral density + tuned interference filters, (CCD) Charge coupled device.

M/P It

CCD

FL1

D/A 1 177 us

F/L 2

DIA 2 rb. 177 + x 1is

—»<

180 |xs

25 ms

Fig. 2.26: A timing diagram of the triggering sequence used to record
shadowgraphs of the lithium plume: (M/P) Master pulse (TTL), (CCD) CCD
Shutter Trigger, (F/L 1) Nd:YAG 1 Flashlamp trigger (15 V), (D/A 1) Nd:YAG 1
Direct Access trigger (-15 V), (F/L 2) Nd:YAG 2 Flashlamp trigger (15 V), (D/A 2)
Nd:YAG 2 Direct Access trigger (-15V).
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The output from a dye laser, pumped by a frequency doubled Nd:YAG (532 nm) laser
was used to probe to lithium plume. The output energy of the dye beam was typically a
few mJ [104]. The beam was initially expanded using a beam expander (BE), before
falling directly onto the CCD. The beam expander comprised a plano-convex lens of
18 mm focal length and 15 mm diameter, and a second plano-convex lens of 100 mm
focal length and 30 mm diameter, separated by 118 mm. Single-shot images of the
plasma plume using the dye beam as a back-lighter were captured using the CCIR
standard in 8-bit gray-scale format. Each image was 544 x 290 pixels in size
corresponding physically to ~4 mm x ~4 mm. Self-emission from the plasma as well as
background illumination noise were eliminated by placing a tuned interference filter and
a combination of neutral density filters (ND+I/F) in front of the CCD. The tuned
interference filter also served as a rough check on the calibration of the dye laser
tuning mirror. Temporal resolution of 8 ns (FWHM) was introduced via the temporal
characteristics of the Q-switched Nd:YAG used to pump the dye laser. The separation
between the target centre and the CCD was -150 mm. Three dyes in all were used to
cover the spectral range of the three transitions of interest. The name(s) and
concentration of each dye is given in table 2.1, along with the relevant transition

investigated. The dye fluorescence curves can be found in Appendix E.

Dye Name(s) Molec. Oscillator Amplifier Solvent Transition
Weight Cone. Cone. Investigated
LDS698 378 3.5 x 104 2x10"* Methanol 1s2s->1s2p
Pyradin |
Rhodamine 640 591 3.6x1 04 19x104 Methanol 1s2p->1s23d
Rhodamine 101
Fluorescin 548 401 1.6 x 103+ 8.7 x 10" + Methanol 1s2s-»1s2p
Fluorescin 27 NaOH (200 NaOH (200
mg/L) mg/L)

Table 2.1: The dye concentrations and solvents used during this study.

Separate dye reservoirs fed the oscillator and amplifier stages. Each held a capacity of
~1 L, and had separate control circuitry to allow adjustment of the flow rate. The dye
flow rate, however, was not a crucial parameter as the diagnostic involved taking single
shots over relatively long time intervals. The dye laser tuning mirror was connected to

an incremental shaft encoder. Each encoder pulse was equivalent to 0.001 nm [104],
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The linewidth of the dye beam is typically 0.1 cm"1l unless the prism beam expander is
removed, in which case the linewidth increases to ~1 cm'las a direct result of grating
under-fill [105], The actual linewidth is dependent on the condition of the laser, its
alignment etc. The prism beam expander was removed during the course of these

experiments.

2.2.2 Experimental Results

Temporally resolved shadowgraphs at different stages in the evolution of the lithium
plasma plume are shown in figs. 2.27 through 2.31. The same three transitions
investigated in emission were again probed. Shadowgraphs for the 1s2s-»1s2p
(670.7 nm) in Li° are shown in figs. 2.27 and 2.28. Similar images for the 1s2p-»1s23d
(610.3 nm) in Li° are shown in fig. 2.29 and for the 1s2s-»1s2p transition (548.4 nm) in
Li+in figs. 2.30 and 2.31. The laser irradiance used to generate the lithium plasma is

indicated in each of the figures.

Target Shadow Vobe = 668 nm

Ap0e= 670.7 nm Xorde=672.5 nm

Fig. 2.27: Shadowgraphs of the lithium plume at AT = 80 ns. The laser
irradiance was ~1.4 x 1014W nrf2.
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Aprdbé= 668 nm

Aprdé= 670.7 nm Ard®= 672.5 nm

Fig. 2.28: Shadowgraphs of the lithium plume at AT = 480 ns. The laser
irradiance was ~1.4 x 104W m'2.

ﬁﬂd]é: 608 nm A]’dlé: 610 nm

Aprd¥=612 nm

Fig. 2.29: Shadowgraphs of the lithium plume at AT = 100 ns. The laser
irradiance was ~2.1 x 104W m'2.
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Fig. 2.30: Shadowgraphs of the lithium plume at AT = 10 ns. The laser
irradiance was ~2.5 x 1014W m'2.

=547.5 nm

Aprde = 548.5 nm ApCe= 549.5 nm

Fig. 2.31: Shadowgraphs of the lithium plume at AT = 100 ns. The laser
irradiance was ~2.5 x 1014W m'2.
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2.3 The Dual Laser Plasma Photoabsorption Technique

2.3.1 Experimental Set-up

The experimental set-up of the DLP photoabsorption technique is depicted in fig. 2.32.

(b) O

ES

GS

©

Fig. 2.32: (a) Diagram of the DLP apparatus in the horizontal plane: (CS)
Continuum Source, (AP) Absorbing Plasma, (TM) Toroidal Mirror, (ES) Entrance
Slit, (GS) Grating Spectrometer, (MCP / PDA) MicroChannel Plate / Photodiode
Array, (RC) Rowland Circle, (OMA) Optical Multichannel Analyser, (PC) Personal
Computer, (DG(AT)) Stanford Digital Delay Generator, (b) Diagram of apparatus
in the vertical plane, (c) Detailed view of the target chamber: (Ax) Distance
above the plane of the sample target, (FL1) Plano-convex focusing lens, (FL2)
Cylindrical focusing lens (after [106]).
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The apparatus comprises three parts: (1) the lasers and the laser plasma sources, (2)
the coupling toroidal optics and (3) the spectrometer and data acquisition system. The
source of continuum EUYV radiation (CS) was created by a Nd-YAG laser (0.8 J, 15 ns)
tightly focussed onto a tungsten rod using a 100 mm uncorrected plano-convex lens
(FL1). The duration of the pulse of EUV radiation was typically about the duration of
the laser pulse [107], The absorbing plasma (AP) (fig. 2.32 (c)) was created by a Nd-
YAG laser (0.3 J, 15 ns) using a tightly focussed cylindrical lens (FL2) of 100 mm focal
length. The irradiance on target could be varied between 10122 and 1015W m'2. The
firing sequence between the two lasers (AT) was controlled by a digital delay generator
(DG(AT)), the system jitter being less than 3 ns. The timing diagram is illustrated in fig.

2.33.

M/P

OMA

FL1

D/A 1
177 ms

F/L 2

DIA 2 <Arb. i 177 +x us

180 us

25 ms

Fig. 2.33: The timing diagram for the DLP photoabsorption technique: (M/P)
Master pulse (TTL), (OMA) OMA Trigger (TTL), (F/L 1) Nd:YAG (0.3 J; 15 ns)
Flashlamp trigger (15 V), (D/A 1) Nd:YAG (0.3 J; 15 ns) Direct Access trigger (-
15 V), (F/L 2) Nd:YAG (0.8 J; 15 ns) Flashlamp trigger (15 V), (D/A 2) Nd:YAG
(0.8 J; 15 ns) Direct Access trigger (-15 V).
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The optical layout conforms to the configuration prescribed by Rense and Violett [108]
to increase the efficiency of a grating spectrometer by removal of astigmatism with the
help of a toroidal mirror (TM). The radii of curvature of the toroidal mirror were chosen
to produce spectral lines of uniform length on the Rowland circle (RC). The system is
capable of imaging in the available 60 460 A (27 -> 207 eV) range provided by a
1,200 lines / mm grating (GS) operated at 84° angle of incidence. Details on stigmatic
imaging of laser produced plasmas in the EUV can be found in [109], The spectral
resolving power is of the order of 1,500 at 150 eV photon energy before removal of
instrumental broadening. The detector (MCP | PDA) was a channel electron multiplier
array (CEMA) coupled using a fibre optic reducer (1.6:1) to a linear photodiode array.

This has been described elsewhere [110].

2.3.2 System Characterisation

This section details the characterisation of various system parameters of the 2.2 m
grazing incidence spectrometer pertinent to the quantitative interpretation of the

experimentally measured spectra.

(@) The Spatial Gain Variation across the CEMA

The spatial gain variation across the CEMA, due to changes in penetration depth of the
incident radiation into the microchannels as a function of incidence angle [107], as well
as possible defective pixels was estimated using the aluminium 2s*2p6 <- 2s2p53s
(160.074 A) emission line. The spatial gain variation was estimated by integrating the
area under the line, averaged over ten consecutive shots, for seven different
overlapping CEMA settings. A fresh target surface was presented every ten shots.

The resultant gain profile is shown in fig. 2.34.
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Fig. 2.34: The spatial gain variation across the CEMA.

Despite the magnitude of the error bars, a definite trend can be discerned from fig.
2.34. The gain profile shows a rapid fall-off on the left-hand (low pixel number) side of
the detector i.e. for lower energies. This trend was reflected in the measurement of the
emission spectrum of tungsten shown in fig. 2.35, which was obtained for three
different CEMA settings with large overlaps. The fall-off in efficiency can be observed
from the mismatch in the overlap of the spectra. Even more prominent, however, is the
rapid fall-off in efficiency on the high pixel end of the detector i.e. for higher energies.
This manifests itself at pixel locations greater than ~850. Finally, from the complete
tungsten spectrum over the sensitive range of the detector (not shown here), it was
possible to distinguish a small number of ‘hot’ pixels. The gain variation can be

neglected in DLP photoabsorption measurements as it is common to both I\band Iv,

and thus cancels. However it is important in the case of emission spectra.
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Fig. 2.35: The emission spectrum of tungsten between 62 eV and 89 eV
obtained using three different CEMA settings with large overlaps between each
setting. The fall-off in efficiency on both sides of the detector is easily seen, in
particular for the higher energy side.

(b) The Variation in FWHM across the CEMA

The variation in full width at half maximum (FWHM) of a spectral line across the CEMA
is a consequence of positioning a flat detector on the Rowland circle as shown in fig.
2.36. The spectral lines are thus effectively ‘smeared’ for all pixel positions of the
detector that are not tangent to the Rowland circle. In a manner similar to (a), the
FWHM of the aluminium 2522p6 <- 2522p585 (160.074 A) spectral emission line,
averaged over ten consecutive shots, for seven different overlapping CEMA settings
was determined. A fresh target surface was presented every ten shots. The resultant
variation in FWHM across the face of the CEMA is shown in fig. 2.37. It should be
noted that this variation also includes the small variation (typically 0.0324 Acentred at

160.618 A) in the plate factor across the CEMA.
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Fig. 2.36: The flat detector on the Rowland circle (to scale).
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Fig. 2.37: The variation in FWHM across the face of the CEMA.
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From fig. 2.37 it may be surmised that the detector is tangent to the Rowland circle,
between pixel positions 500 and 600. There appears to be a marked difference
between the FWHM of a spectral line positioned at this tangency point, and one that is

at either extreme of the detector.

(c) Estimation of the Instrument Function

Electron repulsion in the MCP and imperfections in the fibre reducer [107] combined
with other system aberrations and diffraction effects, e.g. from the slits, the diffraction
grating etc., all contribute to the broadening of spectral lines. This broadening is apart
from the intrinsic broadening mechanisms discussed in §1.5. Mack et al. (1932) have
shown that a slitwidth W s gives rise to an image width on the focal curve of a concave

grating in a Rowland mount, corresponding to a wavelength interval [110]

where dg is the inter-groove spacing and Rg is the radius of curvature of the grating.
The slit width, Ws, used throughout the course of these experiments was 10 (xm. The
corresponding wavelength interval is 0.0376 A This is equivalent to ~1.3 pixels
centred at ~113 A As a first order approximation to the instrument function, the Li2+
Lyman p photoabsorption line was measured. Using a rough estimate for the electron
density in the plasma of ~1 x 1024 m'3, as well as the plasma temperature of ~10 eV
(using the LTE model discussed in §1.3.1), one can obtain to a first order
approximation the atomic frequency response. This was accomplished by convolving
the computed Lorentzian (from the density estimate using the quasistatic stark
broadening formula of [1.50]) and Gaussian (from the temperature estimate using
[1.49]) line profiles. Deconvolving the resultant line profile from the experimentally
measured Lyman p line results in an estimate for the instrument function, as shown in

fig. 2.38.
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Fig. 2.38: The computed instrument function: (AFR) Atomic frequency response
estimated from a convolution of the Lorentzian and Gaussian components, (Li2+
Lyman p) Li2+ Lyman p experimentally measured photoabsorption line, (Jannson)
Resultant deconvolution using Jannson’s algorithm, (Varosi) Resultant
deconvolution using Varosi’s IDL® code. The integrated area of each curve is
normalised to unity for comparison.

Two procedures were used to compute the deconvolved profiles shown in fig. 2.38.

The first used 20 iterations of Jannson’s algorithm [111], with

a, (L, ,()=a,, (L,_,(t)- L, , ()" [2.5]

where amex = 0.5. The second used 20 iterations of Varosi’'s maximum likelihood
deconvolution technique with Poisson noise statistics. The Fast Fourier Transform
(FFT) convolution procedure convolve (... (see Appendix F) was arbitrarily
selected over the conventional IDL® procedure convoi (...). Defining the mean

standard deviation as [64]
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where V(i) represents the ith data point using Varosi’s maximum likelihood technique,
J(i) corresponds to the ith data point using Jannson’s algorithm and N is the number of
data points, one can estimate the degree of correlation between the two techniques. In
this case ONEAN= 0.04. The FWHM of the instrument function is ~0.11 A (centred at
113.9049 A) corresponding to a Lorentzian profile of approximately 3.7 pixels. This
compares with typical Doppler and Stark broadened line widths of EUV lines in laser
plasmas. In a similar experimental set-up [107] the instrument function was reported to
be 3 pixels. Unfortunately, the shape of the profile was not disclosed. One should
note that as a direct result of the variation in the FWHM of spectral lines across the
face of the CEMA (see (b)), that the instrument function estimated here, centred about
pixel location 390, will also vary across the detector. Finally, it should be mentioned

that the instrument function may also vary with photon energy.

(d)  Higher Order Contributions

If a light source emits a continuum of wavelengths, then at the physical location of, e.g.
800 Ain first order, wavelengths of 400 A 266.66 A and 200 A in second, third and
fourth orders will also be present and available to the same detector [112], This can be
eliminated through the use of bandpass filters. Higher order contributions have been
estimated using boron, lithium and aluminium targets. Typically, they contribute <1% to

the detected signal [113],

(e)  Scattered Light Contributions

Scattered light may be produced by either of the following [112]:

(i) Randomly scattered light dueto surface imperfectionson any optical surface.
(ii) Focused stray light due to non-periodic errors inthe ruling of the grating
grooves.
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From experimental results using tungsten as a back-lighter (see §2.3.3 and §3.3.2),
scattered light contributions appear to become substantial at energies greater than
~100 eV. In order to ascertain the region of the electromagnetic spectrum of tungsten
which predominately contributes to scattered light in this region the following

considerations must be observed:

(a) The spectrum of tungsten over the sensitive range of the detector.
(b) The quantum efficiency of the Csl coated MCP / PDA detector.

(c) The diffraction grating / toroidal mirror efficiencies.

The contribution from higher orders will not be considered further. From (a) (see fig.
2.39), one would expect that scattered light originating in the source in the 60 -> 110 A
(113 — 207 eV) range is negligible. This is an important consideration if the scattered

light contribution above ~100 eV is to be quantified using the thin film filters below.

X(nm)

Fig. 2.39: The spectrum of tungsten over the sensitive range of the detector
(after [14]) recorded using an 800 mJ Nd:YAG (1.064 |im) laser with a FWHM of
15-20 ns. The inset illustrates this on an eV scale.

This would also be substantiated by (b) where the detection efficiency of the MCP over

the range of the instrument decreases with increasing energy (see fig. 2.40), and also
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by (c) where the calculated efficiency of the toroidal mirror / diffraction grating

combination falls off rapidly above ~130 eV as shown in fig. 2.41.
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Fig. 2.40: The photon detection efficiency of a Csl coated MCP [115].

Photon Energy (eV)

Fig. 2.41: The relative efficiency (in first order) of the gold coated toroidal mirror
/ gold coated diffraction grating combination used in the 2.2 m grazing incidence
spectrometer. The toroidal mirror reflectance was calculated using Henke’s
tables for an 84° angle of incidence. The efficiency of the diffraction grating was

computed by [116].
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By positioning a 0.9 nm thin film mylar filter, between the emitting tungsten plasma and
the toroidal mirror, this assumption could be confirmed. The theoretical and
experimentally measured transmission curves of a 0.9 fxm thin film of mylar are shown
in fig. 2.42. The experimental curve was obtained by averaging twenty consecutive

shots for seven different CEMA settings, with large overlaps between each setting.

Photon Energy (eV)

Fig. 2.42: The theoretical and experimentally measured transmission spectra of
a 0.9 nm thin film of mylar (ClQ—I8b4; p=14g9g cm'd [117]. The error bars
indicate the thickness tolerances specified by Goodfellow Metals (x10%).

The differences between the two transmission curves can be interpreted in a number of
ways. An initial consideration involves coating of the thin film filter by blow-off material
from the tungsten plasma. One would expect this to be of the order of a few A.
S fcondly, errors in the measurement of the thickness of the thin film, estimated to be
+10% [5] could contribute to the discrepancy. Despite these factors, it will be
ar ;umed, taking into account the relative intensity of the spectrum of tungsten, that
scattered light contributions from the 60 -> 110 A (~113 -> 207 eV) are negligible. This
is based on the large discrepancy shown in fig. 2.42, which, assuming negligible

scattered light contributions on the measured Iv signal, i.e. (from the > ~100 eV region
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of the tungsten spectrum), means the discrepancy can be attributed to the scattered

light contributions detected on the | signal. The resultant transmission is thus much

lower than expected. This argument is supported in the following paragraphs.

From the spectrum of tungsten, it is conceivable that the majority of scattered light
originates from the 110 -» 460 A (-27 -» 113 eV) range. This was verified by
measuring the transmission spectrum of a 0.25 pm thin film aluminium filter (see fig.
2.43). The experimental curve was obtained by averaging twenty consecutive shots for
fourteen different CEMA setting with large overlaps between each setting. The
noticeable difference in fig. 2.43(a) between the theoretical and the experimental
transmission curves at energies < 90 eV is not a result of inaccurate atomic scattering
factors. As a result of experimental measurements on aluminium, these are expected
to be accurate down to at least 25 eV [120], Rather, the difference can be explained
as follows. Powell et al. predict a nominal aluminium oxide (Al20 3) coating of 18 Afor
aluminium filters at or near the time of manufacture [119], Additionally, plasma blow-off
from the tungsten target may coat the filter. Typically, one would expect this to be of
the order of a few A Applying these corrections to a 0.3 (im (0.25 ~m + 20%) Al filter
with an A120 3 coating of 80 Aand a tungsten coating of 10 A the difference between
the transmission curve predicted by Henke, and the experimentally measured one at

energies < 90 eV is reconciled. This is shown in fig. 2.44.
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Photon Energy (eV)

Photon Energy (eV)

Fig. 2.43: (a) The theoretical and experimentally measured transmission spectra
of a 0.25 nm aluminium filter. The error bars indicate the thickness tolerances
specified by Goodfellow Metals (£+20% ). (b) The experimentally measured
transmission curves of similar thickness aluminium thin films by other workers

[118][119].
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Fig. 2.44: The corrected transmission spectrum of aluminium proposing the
origins of the discrepancy between the theoretical curve of Henke and the current
work.

From the thickness of the Al 3coating applied to the corrected transmission curve, the
aluminium filter was estimated to be less than 1 year old [119]. The differences
between the experimentally measured transmission curves of fig. 2.43(b) at energies <
90 eV of [118] and [119] in comparison with the presentwork can be explained in terms
of experimental differences in the measurement of the linear absorption coefficient ~bs
(crrfl). Indeed, Hagemann [118] concentrated on energies greater than the Lm edge

(72.7 eV) of aluminium.

The differences at energies greater than ~90 eV cannot readily be explained in this
same manner. However, from the spectrum of tungsten (see fig. 2.39) and the
measured transmittance of a 0.9 Mm mylar thin film (see fig. 2.42), one can ascertain
that scattered light, the majority of which originates at energies lower than 100 eV, is

detected on both the I[Voand Iv signals in the 100 -> 200 eV energy range. The
strongly affected. Comparing the theoretical and the

measured transmission spectra of the mylar thin film thus provides an estimation of the
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scattered light contribution on | , the back-lighting continuum in DLP photoabsorption
experiments, as the Iv signal remains unaffected by scattered light contributions from

the <100 eV energy range, i.e. Iv=1Vre m This is shown in fig. 2.45 as the fractional

between ~120 eV and -180 eV, where

[L21]

< Tf -M [2.7]

with

[2 8]

representing the true transmission in the absence of any scattered light contributions

Mf = f- [2.9]

is the measured transmittance, where in this case only Lo contains a scattered
component 10s. In DLP experiments the absorbing plasma, however, acts as a filter, so

that the scattered light contribution on lv, cannot readily be ascertained. This difficulty

can theoretically be overcome if the true transmission spectrum of the plasma is

known, using the following:

[2.10]

is the experimentally measured transmission spectrum where Is is the scattered light

component on Iv. Rearranging [2.10] one obtains
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m ;= 2.11

y=11.474425-0.2106826 x+0.00131458 >,-2.602912E-6 x3

Photon Energy (eV)

Fig. 2.45: The fractional component of scattered light on | calculated using the

theoretical and experimental transmission curves of a 0.9 “m mylar thin film
filter. Also indicated in the figure is a 3rdorder polynomial fit to the data.

[
Knowing — 5— from the previous calculation using a mylar thin film, as well as Tf, the

AORE

true transmission of the plasma facilitates computation of —-— . Tfcan be computed
VORE
using Henke’s tables [117] in the case of a thin film filter, or from the photoionisation

cross-section data of Verner et al. [122], knowing the absorber density and absorbing

plasma column length, in the case of a laser-produced plasma (see §3.3.2).
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® 35 Counts Pixel Offset

A final consideration in the analysis of the DLP results presented in this chapter is the
35 counts pixel offset inherent in the MCP detector, as described by [121]. While this

clearly affects the analysis of the absorption spectra presented in this chapter, it is not

|
felt that the ratio In( experiences a dramatic inaccuracy as a direct consequence
V vy

of this, except perhaps at higher energies where the background continuum is weaker.

This can be explained in the following manner. The true signal can be represented by

(1

In while the measured signal is described by

\v y

[2.12]
JV+A.

where A represents the 35 counts pixel offset. [2.12] can be expressed as

1+
m ¥+A -,
Vv+AYy 14 -
\ .
r\+as
+

=1In n
VI:k/ \1+b|

(V. \
= In +1In(l+a)-In(l +b) [2.13]

V vy

where a =— and b =— . Using the Taylor series expansion [46] of the second and

L'

third terms in [2.13] to third order, this becomes

\
|
In( +

V vy

a2+a3 .+b2 b3 [2.14]

a
2 3 2 3
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Assuming 50% absorption, then IV = 21V, and thus b = 2a, with the result that [2.14]

becomes
a2 a3 ., 4a2 8a3
IN(2) + @ wemeecee ot remeeee 2a
w 2 3 2 3
3a2 7al
In2)- a+- [2.15]
Assuming | = 800 and using A = 35 (and hence a = 0.04375), [2.15] results in a

measured value of 0.652 in the case of 50% absorption compared with the true value

of 0.693. The resulting error is thus -6% of the true value. In the case where | =

400, and again assuming 50% absorption the error increases to ~11%.

2.3.3 Experimental Results

The present results were obtained with a lithium plasma expanding in vacuum at a

pressure of ~3 x 10'6mbar.

@ The Temporal and Spatial Evolution ofif and L i

The temporal and spatial evolution of Li° was mapped (see fig. 2.46) by integrating the
optically thin spectrum of the 1s2s -» 1s2s2p transition (line A) at 210.46 A, for varying
distances, Ax, above the target surface (see fig. 2.32), and time delays, AT, between
the laser pulses. The irradiance used to create the back-lighting plasma was ~4 x 104
W m'2. The absorbing plasma was generated using a Nd:YAG (0.3 J, 15 ns) with a
column length of ~2 mm. The resultant irradiance was ~9 x 1013w m"2 In the case of
Li+, the same procedure under the same experimental conditions was used for the 1s2

-» 1s2p transition (line B) at 199.2792 A The results are plotted in fig. 2.47.
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Fig. 2.46: The temporal and spatial evolution of Li.

Fig. 2.47: The temporal and spatial evolution of Li .
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The two vertical scales are not directly comparable since the two transitions have

different oscillator strengths.

(b) The Photoabsorption Spectrum of Li*

With reference to figs. 2.46 and 2.47, one can immediately observe that the Li+ ions
appear in the earlier stages of the plume expansion and are concentrated close to the
target surface along its normal. Conversely, the population of neutral atoms appears to
peak at a later stage of the expansion and tends to occupy a comparatively larger area.
Thus, in order to ensure that Lit is the dominant ion stage present in the plasma, one
should probe the lithium plasma in conditions corresponding to Ax - 0.4 mm, AT ~ 30
ns. Under these experimental conditions the relative absorption cross section
spectrum of Litas a function of photon energy was measured. This is plotted in fig.
2.48 between 61.8 eV and 74.8 eV. The observed lines correspond to the He-like

resonance series 1s2 np with n =2, 3, 4, 5, 6 and 7.

Photon Energy (eV)

Fig. 2.48: The photoabsorption spectrum of Li+between 61.8 eV and 74.8 eV.
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The irradiance of the laser beam on target was roughly estimated at -2 x 1013w m'2for

a column length of 0.3 mm.

(c) The Photoionisation Spectrum of Li*

Using the same experimental conditions as (b), the photoionisation spectrum of Li+was
measured between threshold (75.64 eV) and 180 eV using eleven CEMA settings
along the Rowland circle, with large overlaps between adjacent settings. The cross
section for Lit varies between -2.5 Mb at threshold and -0.3 Mb at 180 eV [122],
corresponding to a factor of -9 on the value of transmission. Thus, in order to carry
out the measurements in a satisfactory absorbance regime, the column length was
increased with increasing photon energy from 2 mm at 75.64 eV to 7 mm at 180 eV.

The photoionisation spectrum of Li+ 1s2-> 1ssp is plotted in fig. 2.49.

Photon Energy (eV)

Fig. 2.49: The photoionisation spectrum of Li+ between threshold (75.64 eV) and
180 eV.

The doubly excited resonance (132 -> 2s2p) at -150.28 eV is clearly visible in the

figure. The contribution of scattered light can clearly be seen from the shape of the



photoionisation continuum particularly at energies >160 eV. This topic is re-addressed

in §3.3.2.
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Chapter 3

The content of this chapter pertains to the analysis and
discussion of the experimental results presented in
chapter 2. In particular, plasma parameters such as
expansion velocities, temperature and species-specific
population distributions are estimated in relation to the
diagnostic techniques previously outlined. Instrumental
effects on the data are explored where appropriate. In
all cases results are correlated with the plasma models

presented in chapter 1

3.1 The Fast-Frame Photography Technique

3.1.1 The Free-Expansion ofa Lithium Plume in Vacuum

The fast-frame photography results of §2.1.3 provide insight into the spatial and
temporal characteristics of the expansion of the constituent plasma species. In the early
stages of expansion, the plume remains predominately confined close to the axis
constituting the target normal, with a velocity component along this axis (the longitudinal
component) larger than its radial counterpart, i.e. the velocity component parallel to the
target surface. The plasma cloud in the early period of expansion has a minimum size
in the direction normal to the target surface, i.e. along the x-axis (see fig. 2.1) [123]. As
the pressure gradient is largest in this direction [124], the highest velocity is therefore
along this axis giving rise to the characteristic elongated plasma shape [17], This is
consistent with a qualitative study performed by [59] on the effect of the location of the
sample relative to the position of the focus of the target lens, whereby for a relatively
large spot size, the plasma was very flat during the initial stages of expansion (see for

example fig. 2.14). Conversely, as the sample approached the focal position, the
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plasma became more spherical [17][59], Furthermore, it may be observed from the
isointensity contour plots of figs. 2.14, 2.16 and 2.18, that the shape of the intensity level
distribution along the axis of expansion remains reasonably constant with time;
indicative of a zero acceleration gradient. Assuming negligible self-absorption, this is
indicative of a self-similar expansion for the plume as outlined in §1.2.1. A direct
comparison of figs. 2.14 and 2.22, imaged using a narrowband interference filter centred
at 671.5 nm (I/F 670IFS10-25), and a high-wavelength-pass filter (R-62) respectively,
was used as an estimation for the continuum radiation level. Both sets of images
represent the expansion of the 1s2s <- 1322p (670.7 nm) transition in Li°. The image-
set obtained using the R-62 bandpass filter, however also include continuum radiation
above -610 nm. As can be seen from the similarity of the figures, the continuum level is
relatively low. Indeed, from the emission spectrum of a laser produced lithium plasma
measured by Kennedy [125] one would expect the continuum level to be localised to
within a few mm from the target surface. This is also consistent with a spectroscopic
study of aluminium plasmas performed by Knudtson et at. [126]. In order to estimate the
peak longitudinal velocity specific to each of the species present in the plasma, the
position of the leading luminous edge of the expanding plume as a function of time was
measured. This is shown in fig. 3.1. The peak velocity of the Li° transition (15225 <-
1322p, 670.7 nm) is -4 x 10scm s'lwhile the peak velocity for the Li°" transition (1522p
<- 1s&d, 610.3 nm) is -5 x 10s cm s'l. The velocity profiles of the neutral lithium
transitions of fig. 3.1 show a linearity typical of the free expansion of a plasma plume
[21], On the contrary from fig. 3.1, a two velocity component structure is immediately
apparent for the lithium ion (1s2s <- 1s2p, 548.4 nm), whereby the ion expands freely at
a velocity of -4 x 106cm s"lup to -200 ns, whereupon it slows to a velocity of -2x10®
cm s'L. This is possibly a consequence of a density related effect of the 2p level,
whereby collisional ionisation processes, for example, are required to re-populate the 2p
level before the radiative decay process to the 2s level is detected. Furthermore,
contrary to previously reported observations [60][123] the peak velocity of the ionised
species is less than that of the ground and excited states of the neutral. The error
associated with each of the velocity estimates above is - +25%. This is based on the
spatial resolution estimate of §2.1.2(a), as well as the ‘blurring’ effect of a finite gate
width of 9 ns for a typical velocity of 10scm s'L. Other sources of error such as §2.1.2(b)
in the determination of the plasma boundary are not to expected to be of major

significance.
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Time (ns)

Fig. 3.1: The position of the leading luminous edge of the expanding plume along
the axis of expansion as a function of time for the three transitions investigated.

Comparing the peak velocities obtained in this manner with the centre of mass velocities
[127] obtained by fitting the variation in the x-position of the centre of mass of the

complete image, CX as a function of time, where Cxwas computed using [128]

NR NC
y, yirirowcQI-Col
p _rowlal (3.1]

area(F)

yields velocities of ~1 x 10® cm s Lfor Li° and ~1 x 10® cm s‘lfor Li**. Again a similar
trend was reflected in the ion in that a two component velocity of -2 x 10®cm s'l(up to
-200 ns) and -8 x 10s cm s'l (after -200 ns) was observed. F(rowco]) in [3.1] is a
weighting factor representing individual non-zero pixel values in the image, col is the
column number of the pixel in the image, and the area of F is calculated by a running

sum of each non-zero pixel value in the image.

Applying an identical procedure to that above to obtain the peak expansion velocity in a

direction normal to the expansion axis, i.e. along the y-axis (see fig. 2.1), one obtains
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radial velocities of ~8 x 10s cm s'lfor the Li° transition, ~1 x 10s cm s'l for the Li**

transition and -5 x10scm s lfor the Li+ transition. This is illustrated in fig. 3.2.

Time (ns)

Fig. 3.2: The position of the leading luminous edge of the expanding plume in a
direction normal to the direction of expansion as a function of time for the three
transitions investigated.

Assuming the plasma behaves as a high-temperature high-pressure gas [17][124], the
expansion was modelled by numerically solving the equations of motion ([1.7] and [1.8])
using a fifth order Runge-Kutta integration technique with adaptive step-size control,
assuming three-dimensional isothermal expansion during the time interval of the laser
pulse, followed by an adiabatic expansion of the plume upon termination of the laser
pulse. The initial conditions (at t = 0), used in the calculation are shown in table 3.1.
The initial temperature was computed using the maximum temperature of the plasma
reached in the self-similar model [21] for a plasma volume of 4 x 10'10 m'3, an average
charge of unity and an initial ion density of 1027 m'3. The initial velocity in the x-direction
was computed from the boiling point of lithium (1615 K [5]). The initial dimensions along
the y- and z-axes were estimated from the laser energy bum pattern, while the estimate
for the initial dimension along the x-axis was taken from [17]. In any case the critical
initial values for the computation of the plasma dimensions as a function of time are the

initial isothermal temperature and the specific heat ratio V.
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Parameter Value Units

To 5 eV
M 6.941 amu
y 1.2
X (t=0) 2 mm
Y (=0) 2 mm
Z () 100 urn
vx 0 1x 103 ms'l
vy =0 1x103 ms'l
Vz (o) 2x 103 ms'l
At aser (FWHM) 15 ns

Table 3.1: Initial values of the parameters used to solve equations [1.7] and [1.8]

describing the growth of a lithium plume in terms of an initial isothermal expansion
followed by an adiabatic expansion.

The resultant plasma expansion as a function of time is shown in fig. 3.3, while the

plasma acceleration is shown in fig. 3.4.

Time (ns)

Fig. 3.3: The expansion of a lithium plume numerically modelled using the initial
values shown in table 3.1.
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Fig. 3.4: The plasma velocity as a function of time along each of the three
expansion axes resulting from the model.

The agreement between figs. 3.3 and 3.1 (for the case of the 1s2s <- 1522p transition in
Li°)y is quite reasonable, indicating that the model is applicable to the current
experimental conditions. Applying a linear fit to the data shown in fig. 3.3, one obtains a
longitudinal velocity of -2 x10scm s'land a radial velocity of ~5 x 10s cm s'l. These
values are in good agreement with the experimentally measured velocities, especially if
one considers that in the present model the plasma edge is defined as the distance from
the centre where the density is 60.5% of the maximum value. Thus, for an exponentially
decreasing density and linearly increasing velocity profile, higher velocities
corresponding to 2-3 times those above are present [17], The temperature profile
resulting from the model predictions is shown in fig. 3.5. Temperatures below -0.1 eV
are not expected to be accurate as the temperature may decrease more slowly than that
predicted by an adiabatic expansion due to recombination effects [17][129]. The
isothermal region of expansion, advancing to the adiabatic region occurring at 15 ns is

clearly discernible from fig. 3.5.

115



Time (ns)

Fig. 3.5: The temperature profile resulting from the model computation.

It should be noted that the terminal velocities resulting from the model are highly
dependent on the value of ¥ chosen, in this respect a value of 1.2 was chosen to

account for the degrees of freedom associated with ionisation and excitation [17].

In addition to the technique outlined above to extract the peak longitudinal velocity from
the fast-frame images, the longitudinal velocity was estimated using the technique first
proposed by Boland et al. [60], At fixed distances ‘d’ from the target surface along the
axis of expansion, aty = 0 mm (see fig. 2.1), the integrated intensity variations as a
function of time were recorded for the Li° the Li°* and the Li+ transitions, in a manner
analogous to a time-of-flight (TOF) distribution. Correction factors were then applied to
the recorded intensities to account for the ICCD gain variation (see Appendix D) as well
as for the relative transmissions of the various neutral density filter combinations
positioned in front of the gated image intensifier/ CCD combination used to record each
frame. The corrected data values are plotted in figs. 3.6 through 3.8 on a relative scale

for the relevant transitions.
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Fig. 3.6: The recorded intensity as a function of time for various fixed distances d
from the target surface, along the target normal for the 1s2s <- 1s2p (670.7 nm)
transition in Li°.
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Fig. 3.7: The recorded intensity as a function oftime for various fixed distances d
from the target surface, along the target normal forthe 1s2p <- 1s23d (610.3 nm)
transition in Li°.
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Fig. 3.8: The recorded intensity as a function of time for various fixed distances d
from the target surface, along the target normal for the 1s2s <- 1s2p (548.4 nm)
transition in Li+
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A plot of d as a function of the time corresponding to the peak recorded intensity yields

the desired quantity. This is plotted in fig. 3.9 for each of the transitions considered.

Time (ns)

Fig. 3.9: A plot of d as a function of the time corresponding to the peak recorded
intensity for the three transitions investigated.

Values of ~3 x 106cm s'1, ~3 x 106cm s'land a two-component velocity of ~3 x 106cm

s'land ~1 x 10scm s'lwere obtained for the Li°, Li* and Li+ transitions respectively.

3.1.2 The Expansion of a Lithium Plume in an Argon
Environment

The spatial and temporal evolution of a lithium plume expanding in an argon
environment shown in figs. 2.15, 2.17, 2.19, 2.21 and 2.23 display a characteristic
difference from the equivalent vacuum expansion case. The formation of a bright peak
in the emission, indicative of a shock structure is clearly evident [130]. This is also
apparent from the contour plots where the isointensity lines appear to pile up at the front

edge in a manner reminiscent of the spherical wavefronts of a shock wave. From the
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figures it may be observed that the emitted light intensity in argon exceeds the vacuum
case at long distances from the target surface, while the (uncorrected) measured
intensities are remarkably similar at distances closer to the target surface. This is

illustrated in fig. 3.10.

Pi>el Number (Arb. Units)

Fig. 3.10: A cross-section of the broadband emission from an expanding lithium

plume in both vacuum and argon environments along the axis of expansion taken
at 250 ns.

The shorter distance of expansion in the argon case as a result of gas collisions is also

apparent from the figure. This is consistent with previous observations made on an

yttrium plume in an argon environment [130],

The same procedure used in 83.1.1 to determine the peak longitudinal velocity in the
vacuum expansion regime, was again used to ascertain the velocity of the lithium plume
expanding in an argon atmosphere. The resultant graph illustrating the position of the

luminous front as a function of time is shown in fig. 3.11.
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Fig. 3.11: The position of the leading luminous front for each of the three
transitions as a function of time expanding in an argon environment. The
pressure of the argon gas was 200 mTorr.

Immediately observable from fig. 3.11 in comparison to fig. 3.1 is the marked difference
in the expansion dynamics in the presence of a background gas as discussed in chapter
1. Initially, the plasma appears to freely expand as in the vacuum case with a constant
velocity of ~3 x 10s cm s'l. This occurs up to -200 ns, after which a deviation from
linearity occurs. It may also be noted that the expansion dynamics are remarkably
similar for each of the three transitions unlike the vacuum expansion case. Fitting the
viscous ([1.11]) and non-viscous ([1.13]) drag force models to the data one obtains
values of p = 2.8 As'land Xf= 1.73 c¢cm (and therefore vc = 4.8 x 10® cm s'l) for the

viscous drag force model, while for the non-viscous case one obtains values of P' s

1.05 cm'land vQ= 5.5 x 106cm s'L. The chi-squared value was reduced in the case of
the non-viscous drag force model strengthening the validity of its application to the
experimental results presented in chapter 2. In addition, the blast wave model was fitted
to the data. The poor fit to the data indicates that this model is not applicable under the
present experimental conditions. However, a much higher quality fit was achieved by

allowing the exponent ‘p’ (in [1.10]) to vary as suggested by Geohegan [131], A value of

ps 0.66 resulted in the lowest chi-square value.
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3.1.3 The Abel Transform Reconstruction Technique

High speed imaging provides information on the ‘local’ structure and dynamics of the
constituent particles provided that a radiation model linking the observed light intensities
to particle distributions exist. A complication in this recovery process arises from the
fact that the intensities are necessarily integrated along the line of sight. Thus, a
transformation of the data by application of the Abel transform is necessitated. As
previously noted in 81.6.1, three criteria must be satisfied before the Abel inversion
technique can reliably be applied to the experimental data. Criterion (a), the assumption
that the rays are virtually paraxial can be validated in the following manner. The
separation between the axis of expansion of the plasma, and the 21 mm circular
aperture positioned in front of the imaging lens was -190 mm. The resultant maximum

acceptance angle of a cone of light originating from a point source positioned on the axis

“( 21 N . . .
et which is equivalent to 110 mrad. As

\J90J '

of expansion is aacc=tan

sin(aacc)« aacc, the light rays originating from the plasma can be assumed to be

virtually paraxial. In order to affirm criterion (b), the assumption of optical thinness, an
estimate for the absorption coefficient was made using [1.30]. Assuming a Gaussian
AFR with a FWHM = 4 x 101l s'l(-6 A) centred about the 1s2s <- 1522p transition, the
resultant transmission at the line centre, for an average effective path length of 100 [¢m,
an oscillator strength of 0.748 [40] and an average neutral density -10Mcm'3, is -95% .
Assuming a neutral density lower than this value, the plasma can be considered to be
optically thin. Losses due to stimulated emission are not expected to be significant and
the correction term for it has not been included. Finally, from the fast-frame image
sequences of §2.1.3, the assumption of radial symmetry appears to be readily fulfilled,
thus satisfying criterion (c). This is illustrated in figs. 3.12 through 3.14, where cross-
sections of the recorded plasma emission intensity at various distances from the target
surface as a function of time are shown for each of the three transitions considered. In
all cases Gaussian fits to the raw data are overlaid to illustrate the symmetry. The
limitation of the Gaussian profile is related to the fact that the real plasma has a definite
surface and a finite expansion velocity, while the Gaussian profile distributes the plasma
to any distance [21], Thus, the minor discrepancy between the Gaussian curve fits and
the raw data can in some fashion be explained. The restricted sensitivity of the CCD

was perhaps a more severe limitation. Additionally, continuum contributions to the
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detected signal at distances < 2 mm may contribute to the poorer quality fits in this

region.

(@)

(@)

Y

AT = 100 ns AT = 300 ns

Fig. 3.12: Cross-sections of the recorded plasma emission intensity at various
distances from the target surface as a function of time for the 1s2s <- 1s2p
(670.7 nm) transition in Li°. Also indicated in black are Gaussian fits to the raw

data.
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AT = 100 ns AT = 300 ns

Fig. 3.13: Cross-sections of the recorded plasma emission intensity at various

distances from the target surface as a function of time for the 1s2p <- 1s23d
(610.3 nm) transition in Li°. Also indicated in black are Gaussian fits to the raw

data.
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Fig. 3.14: Cross-sections of the recorded plasma emission intensity at various
distances from the target surface as a function of time forthe 1s2s  1s2p (548.4
nm) transition in Li+. Also indicated in black are Gaussian fits to the raw data.

Multiple techniques for inverting experimental data were investigated during this study.
These included the direct inversion method, employing the use of numerical
differentiation (see [1.58]), a modification of the spline-based method proposed by
Deutsch and Beniaminy [64], and finally an iterative technique proposed by Vicharelli
and Lapatovich [65], Incidentally, Kuthy [132] appears to have been the first to propose
a spline based inversion technique. As the accuracy of the inverted data is limited by
the accuracy of the integration method chosen [64], an 800 point Gauss-Legendre
numerical integration technique [133] was used with a scaling error= 1x 10'15 This was
found to provide improved results over the numerical implementation of the extended
midpoint rule through the integration function midpnt ( ... ) [133]. The spline
method chosen [133] was a ‘non-natural’ spline [134], Additionally, it should be noted
that the spline-based technique is not suitable to certain test cases, namely those
containing discontinuities as in [66], This is a direct result of the unsuitability of the
spline (...) [/ splint (...) function combination [133] to such test cases.
The inversion techniques were investigated for both noiseless and noisy data for the
following three widely used test cases [63][64][65], To the best of the author’s
knowledge, the analytical expressions for I(y) presented in table 3.2 have only been

published by Deutsch and Beniaminy [64].
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Table 3.2: Test function pairs used in the numerical inversion of the Abel integral

equation. Note:u:"/I—yZ,v:J-/\-yZ,W: - y2.

Here I(y) denotes the observed line-of-sight experimental data, while i(r) denotes the

physically relevant quantity e.g. the emission coefficient, as in this case. It should be

3 3
noted that — was published in [64] in place of — in the first test case, and 24/ in place

of 24y4 in the third case. Long double (80 bit) precision was used in all cases to invert
the data. The tests are aimed at assessing the behaviour of the various techniques for
different levels of simulated experimental noise. The error free data is represented by
14-digit precision numbers, while rounding the data to two decimal places was used to
simulate experimental error [64], This was equivalent to the inclusion of normally
distributed random noise with a mean standard deviation of S = 0.00275 on I(y). The
tests were also carried out by adding 1% random noise to the 14-digit precision data
corresponding to a mean standard deviation S = 0.00385. In all cases, a prerequisite of

the techniques was that the radius of the plasma was normalised to unity. Graphical
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representations of the three test function pairs analysed are shown in fig. 3.15, while
tabulated results illustrating the standard deviation between the true inverted profile and
those computed by the various numerical methods are shown in table 3.3. The number

of data points, N, in each data set is also indicated in the table.

Fig. 3.15: A graphical representation of the three Abel transformed test function
pairs analysed [64],
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Case

S=0 S =2.75e-03

N DIRECT DB VL DIRECT DB VL
10 4.1e-04 2.9e-04 3.6e-03 112e-02 112e-02 9.3e-03
20 3.4e-04 1.7e-04  1.1e-03 1.59e-02 1.59e-02 2.0e-02
30 3.4e-04 1.7e-04 8.9e-04 2.1e-02 2.1e-02  2.0e-02
40 3.5e-04 1.7e-04 8.1e-04 2.3e-02 2.3e-02 2.1e-02
50 3.5e-04 1.7e-04 7.7e-04 18e-02 18e-02 1.6e-02
100 3.5e-04 1.8e-04 6.7e-04 2.9e-02 29e-02 2.7e-02
200 3.5e-04 1.8e-04 6.1e-04

10 5.1e-04 3.9e-04 4.8e-03 9.3e-03 9.4e-03 1.1e-02
20 3.6e-04 1.9e-04 1.2e-03 1.7e-02 1.7e-02 2.0e-02
30 3.6e-04 1.8e-04 8.9e-04 2.1e-02 2.1e-02 2.5e-02
40 3.6e-04  1.8e-04 8.0e-04 23e-02 2.3e-02 2.2e-02
50 3.6e-04 1.8e-04 7.5e-04 2.0e-02 2.0e-02 1.9e-02
100 3.7e-04 1.8e-04 6.6e-04 2.8e-02 2.8e-02 2.5e-02
200 3.7e-04  1.8e-04 6.0e-04

10 2.1e-03  2.0e-03  1.4e-02 1.7e-02 1.7e-02 2.2e-02
20 4.2e-04 2.9e-04 15e-03 1.9e-02 1.9e-02 2.1e-02
30 3.6e-04 1.9e-04 1.0e-03 2.1e-02 2.1e-02 2.8e-02
40 3.5e-04 1.8e-04 4.3e-02 1.9B-02 1.9e-02 2.3e-02
50 3.6e-04 1.8e-04 55e-04 1.9e-02 1.9e-02 22e-02
100 3.6e-04 1.8e-04 4.7e-04 2.0e-02 2.0e-02 2.1le-02
200 3.6e-04 1.8e-04 4.6e-04

Table 3.3: Results indicating the standard deviation between the true inverted
profile and those computed by each of the numerical Abel inversion techniques.
The number of data points in each data set is indicated in the column labelled N.
The standard deviation, S, is also indicated. The case of S=0 corresponds to
noiseless data. DIRECT is used to indicate the direct solution to the Abel
transform, i.e. using numerical differentiation, DB signifies the modified technique
of [64], while VL indicates the iterative method of [65]. The lowest standard
deviation in the case of each data set is indicated in bold.
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Applying this to the 1% random noisy data one obtains

$=3.85e-03
Case N DIRECT DB VL

1 10 2.2e-02 2.2¢-02 2.1e-02
20 3.6e-02 3.6e-02 2.8e-02

30 4.6-02 4.6e-02 3.0e-02

40 5.4e-02 5.4e-02 3.1e-02

50 6.2e-02 6.2e-02 3.2e-02

100 9.1e-02 9.1e-02 3.4e-02

200 1.3e-01 1.3e-01 3.7e-02

2 10 2.2e-02 2.2e-02 2.1e-02
20 2.0e-02 2.0e-02 1.8e-02

30 2.7¢-02 2.7e-02 2.3e-02

40 3.3e-02 3.3e-02 2.7e-02

50 3.8e-02 3.8e-02 3.0e-02

100 5.9e-02 5.9e-02 3.5e-02

200 8.9e-02 8.9€-02 3.8e-02

3 10 2.7e-02 2.7e-02 3.3e-02
20 2.5e-02 2.5e-02 2.4e-02

30 3.4e-02 3.4e-02 3.1e-02

40 4.1e-02 4.1e-02 3.5e-02

50 4.7¢-02 4.7¢-02 3.5e-02

100 7.3e-02 7.3e-02 4.2e-02

200 1.1e-01 1.1e-01 5.0e-02

Table 3.4: Results indicating the standard deviation between the true inverted
profile and those computed by each of the Abel inversion numerical techniques
applied to 1% noisy data. The notation is the same as for table 3.3. The lowest
standard deviation in the case of each data set is indicated in bold.

The poor quality in the inversion of the noiseless data inferred from table 3.3 is directly
attributable to the integration technique employed. This explains the discrepancy in the
standard deviation for the method proposed by [64] and the modified version
implemented here. In this work a numerical based splining procedure was used in place
of a piece-wise cubic spline function fitted to the data. The resulting increased

inaccuracy is clearly evidenced. Despite this however, the performance of the technique
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was deemed adequate for the present purposes. Computationally, one finds that the
iterative technique of Vicharelli and Lapatovich [65] is the most expensive, taking over
100 hours on a 66 MHz DX2 computer to complete this series of tests. From the
tabulated results of tables 3.3 and 3.4, the DB technique was chosen as the preferred
method of inversion due to its reasonable overall performance and acceptable execution
time in comparison with the iterative technique of Vicharelli and Lapatovich [65]. The
raw data as well as the Gaussian fitted profiles shown in figs. 3.12 through 3.14 were
therefore inverted using this technique. The results are shown in figs. 3.16 through
3.18. The relative scales between figs. 3.12 through 3.14 and their corresponding figure

below are intercomparable.

@ (b)

rfvn rirm

AT = 100 ns AT = 300 ns

Fig. 3.16: Abel reconstruction of the Li° (670.7 nm) data using a modified version
of the DB spline based technique.

(@)

AT = 100 ns AT = 300 ns

Fig. 3.17: Abel reconstruction of the Li°* (610.3 nm) data using a modified version
of the DB spline based technique.
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AT = 100 ns AT =300 ns

Fig. 3.18: Abel reconstruction of the Li+ (548.4 nm) data using a modified version
of the DB spline based method.

Initially, from the inverted data, the level of noise amplification introduced during the
inversion process may be witnessed. As previously mentioned, this is most likely due to
the numerics of the splining procedure. Also, it may be observed that the density
profiles of the excited states appear to be Gaussian in shape, in particular at distances >
2 mm from the target surface, where the continuum contribution to the detected signal is
weak, if not negligible. This Gaussian profile is indicative of a self-similar expansion

(see 81.2.1) whereby the density profile retains a Gaussian shape as a function of time.

3.2 The Shadowgraph Technique

With reference to the shadowgraph figures shown in figs. 2.27 through 2.31, it is
immediately apparent that two strongly competitive effects contribute to the refractive
index of the plasma, one gaining dominance over the other dependent on the probe
wavelength used relative to the centre wavelength of the atomic resonance transition
under consideration, as seen in fig. 1.19. Using a probe wavelength lower than the
centre wavelength of the transition, the electron contribution to the refractive index
appears to dominate as in fig. 2.27 (A = 668 nm). The result is an overall plasma
refractive index less than unity. Consequently, the plasma’s behaviour mimics that of a
diverging lens. On the other hand, at probe wavelengths above the centre wavelength
of the transition, the atomic and ionic contributions to the plasma refractive index eclipse

the contribution due to the electrons, as in fig. 2.27 (X= 672.5 nm). Indeed, the true
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extent of the effect is not immediately clear from fig. 2.27 (X=672.5 nm), but can be
seen in fig. 3.19 where a single lens was used to image the shadowgraph onto the CCD.

The demagnification factor was ~4.

Target Location
104 m
= JL
r
w

Fig. 3.19: Reduced shadowgraph taken at 100 ns after plasma initiation
indicating the extent of the influence of the neutral and ionic species on the
refractive index of the plasma. The dye probe beam wavelength was 671.7 nm.
The approximate dimensions of the image are 12 mm x 12 mm.

The approximate location of the target surface is indicated in the figure. The striking tail
of the refracted probe beam around the target is immediately discernible, indicating the

dramatic effect of the neutral and ionic species on the refractive index.

This effect did not manifest itself in the case of the 1s2s -> 1s2p (548.4 nm) transition.
Thus, the electron contribution dominates both above and below the centre wavelengths
of this transition. This is most likely related to a low (in relation to the electron density)
population of the 2s level. A similar reasoning can be used to explain the comparable
results obtained for the 1322p -> 1s23d transition. The strong absorption of the probe
beam at on resonance wavelengths however is clearly evident from fig. 2.27 (X=670.7
nm) and fig. 2.29 (X= 610 nm). This is due to the influence of the imaginary part, «, of
the plasma refractive index as seen in fig. 1.19. This was not observed in the case of
the 1s2s 152p transition however, and would thus tend to indicate the low density of

ground state ions in the plasma.
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Using the RFD analysis of Cunningham et al. [86], shadowgraphs similar to that
illustrated in fig. 2.27 (X=669 nm) may be analysed to extract electron density profiles
in the plasma. This procedure was implemented for the shadowgraph shown in fig. 3.20
obtained using a probe wavelength of 669.7 nm. At this wavelength, the contribution to

the refractive index due to the electrons is expected to dominate.

Fig. 3.20: A shadowgraph of a lithium plume taken at 70 ns. The probe beam
wavelength was 669.7 nm.

The shadowgraph illustrated in fig. 3.20 was chosen due to the large number of high
contrast refractive fringes. This is illustrated in fig. 3.21. As can be seen from fig. 3.20,
the shape of the plasma is approximately hemi-spherical, and is thus suited to
interpretation using the RFD technique. The corresponding RFD parameters calculated
using the theory outlined in chapter 1 are shown in table 3.5. The resultant refractive

index and electron density profiles are illustrated in figs. 3.22 and 3.23 respectively.
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Pi>el Number (Arb. Units)

Fig. 3.21: A cross-section of the shadowgraph shown in fig. 3.20 taken at pixel
row number 141 illustrating the large number of high contrast refractive fringes.

d
(mm)
0.13235
0.10294
0.08824
0.07353
0.05882
0.05147
0.04412
0.05147
0.03676
0.04412
0.03676

ar
(mrad)
5.06
6.51
7.59
9.12
11.39
13.01
15.18
13.01
18.22
15.18
18.22

Rf
(mm)
1.7206
1.8309
1.9301
2.0074
2.0735
2.1287
2.1765
2.2243
2.3125
2.3529
2.3897

P(
(rad)
0.7988
0.6908
0.6309
0.4981
0.2760
0.1321
0.0448
0.2044
0.2821
0.0564
0.2221

]
(mm)
0.9628
0.8567
0.7937
0.6438
0.3693
0.1811
0.0652
0.2767
0.3794
0.0808
0.3015

n(n)

0.9975
0.9961
0.9948
0.9917
0.9803
0.9534
0.8552
0.9696
0.9696
0.8816
0.9613

Ne(n)
(x109cm'3
1.22
1.94
2.56
411
9.69
22.65
66.76
14.89
14.89
55.38
18.89

Table 3.5: RFD parameters calculated from fig. 3.21 and the theory presented in
chapter 1. Ro (the radius of the inner most dark fringe from the target surface)

was estimated to be ~1.34 mm.
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Fig. 3.22: The refractive index profile resulting from the analysis of the
shadowgraph presented in fig. 3.20 using the RFD technique.
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Fig. 3.23: The electron density profile resulting from the analysis of the
shadowgraph presented in fig. 3.20 using the RFD technique.



The general profile of the electron density distribution shown in fig. 3.23, i.e. an
exponentially decreasing density profile, is consistent with electron densities obtained
interferometrically using cylindrically symmetric plasmas [135], It is also typical of

electron density profiles obtained using the RFD technique [86][136],

Using the refractive index profile inferred from the RFD analysis (see fig. 3.22), [1.81]
was integrated using a fifth order Runge-Kutta integration technique with adaptive step-
size control, assuming a hemispherical shaped plasma possessing radial symmetry of
radius RO = 1.34 mm. Initially however, the ray trace procedure was verified by
examining a series of test cases [79][86]. The resultant ray traces are shown in fig.

3.24.

(@)

Distance from plasma (mm)

Fig. 3.24: RFD ray trace simulations using test cases from [79][86]. The left hand
side shows the results given by [79][86], while the right hand side shows the
results computed using [1.81]. Both (a) and (b) are plotted on a reduced scale.
The radius, Ro, of the plasma in (c) was 59 ~m.
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Also indicated in fig. 3.24 (in red) are the entrance (P”, turning (P2 and exit (P3) points
of each ray (see fig. 1.20). P2was calculated by recognising that the function r n(r) is a
monotonically increasing function. Thus, by application of Bouguer’'s formula ([1.62]), it
was possible to compute n (see fig. 1.20) for each ray, by localising the range over
which m(r) < prand m(r) > pr. Further narrowing this range until an accuracy of one part

in 10M4was achieved facilitated accuracy in the computation. Integrating [1.81] using the

Runge-Kutta method by setting the initial value of 0 = k-Pr=TH-sin 1 P_  for each
v~oy

ray and setting the initial value of r = Rc, it was possible to trace individual rays through
the plasma. The turning point in [1.81] was determined as the point at which r = n.
Therefore P2 in cartesian co-ordinates was computed knowing n and 0 at the turning
point for each ray. The exit point of a ray from the plasma, P3, was calculated using the
value of the exit angle ar computed using [1.82], having previously determined n. As
can be seen from fig. 3.24(a) and fig. 3.24(b) a high level of agreement was achieved for
the case of [79], This is not reflected in the case of [86], While the exit angles, ar(pr),
resulting from the ray trace show a high level of correlation with those computed using
[1.82], the resultant ray trace differs remarkably from that of [86]. It is suspected that the
ray trace presented in [86] was not computed in the usual manner, i.e. using [1.81], but
that a similar form, expressed in cartesian co-ordinates, may have been used in its place
[137]. Using this second order differential form of Bouguer's formula (given in [137]), the
results of [86], presented in fig. 3.24(c) (left hand side), were faithfully reproduced using
a fifth order Runge-Kutta integration technique. Consequently, it is believed that an
error in the translation of [1.81] to cartesian co-ordinates may have occurred. Indeed,
the exit angles, ar(pr, resulting from the ray trace using this modified form did not agree

with those of the ray trace using [1.81], nor did they agree with those predicted by [1.82].
Applying the RFD ray trace procedure to the refractive index profile inferred from fig.

3.22, the results presented in fig. 3.25, for two different detection plane distances, were

obtained. Also indicated in the figures are the points P-i, P2and P3(see fig. 1.20).
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Fig. 3.25: Simulated ray traces using the refractive index profile determined from
the RFD analysis of the shadowgraph shown in fig. 3.20. The distance from the
plasma to the detector is 15 mm in the case of (a), and 150 mm in the case of (b).
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One can clearly see from fig. 3.25 that a caustic surface [86][93] extends over several
mm. Furthermore, no evidence for the existence of a ring focus [85] was found. The
sensitivity of the technique is evident from fig. 3.25(b), where the OEPR under
conditions similar to the experimentally recorded shadowgraph shown in fig. 3.20 was
predicted as -3.8 mm, approximately 2.8 times the OEPR measured from fig. 3.20 (i.e.
1.34 mm). A contributing factor may possibly be attributed to the determination of the
last non-deviated ray from the shadowgraph, as well as an underestimation of ar using
[1.65] which assumes planar wavefronts at the detector plane. Campbell estimated arto
be in the region of -80 -> 90% of the true value [137]. Additionally, it may be observed
that the fringe pattern of fig. 3.20 appears to extend to -2.5 mm from the target surface
indicating a maximum deflection angle of -17 mrad. This appears to be overestimated
in the ray trace of fig. 3.25(b). As the deflection angle increases, however, the
corresponding optical path difference increases, and thus the fringe pattern merges to a
featureless continuum, thus masking the true maximum deflected ‘ray’. The assumption
of a parabolic path through the plasma can be analysed with reference to fig. 3.26,
where parabolic fits of the form y=ax2+b were made to the least and most deflected rays
of fig. 3.25. As can be seen from the low % values resulting from the fits, the
assumption of a parabolic path is reasonable. Also, as expected, the actual path of a
ray approaches that of a parabola (lower X2 value) for less deviated rays as in fig.

3.26(a).
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X(mm)

X(mm)

Fig. 3.26: Parabolic fits to the (a) least and the (b) most deviated rays paths
through the plasma.
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Finally, the applicability of the geometric optics approach to the analysis can be
substantiated with reference to fig. 3.19. The maximum deflection experienced by a ray
is -7 mm. This corresponds to a deflection angle of -47 mrad, which for an optical
plume length of -3 mm corresponds to a uniform refractive index gradient of -16 m'l
using the analysis of [83]. The corresponding atomic number density gradient [83] for
the transition under consideration (fik = 0.748 [40]) is -3 x 1026 m'4 (-3 x 1018 cm-4).
Assuming a similar electron density, this gradient is much less than the maximum
tolerable gradient of -6 x 1024 cm+4 (see fig. 1.21) if an electron density not exceeding
0.8 times the critical density is to be probed, thus validating the geometric optics

approach.

3.3 The Dual Laser Plasma Photoabsorption Technique

The spatio-temporal distribution maps of figs. 2.46 and 2.47 provide insight into the
dynamics of the evolution of the lithium plasma. It can be seen that the Lit+ions appear
in the earlier stages of the plume expansion and are concentrated closer to the target
normal. Conversely, the population of Li® atoms appears to peak at a later stage of the
expansion and tend to occupy a comparatively larger area. This observation is
consistent with earlier detailed studies on the ion and velocity structure of a laser

produced plasma [20].

3.3.1 The Photoabsorption Spectrum ofLt

The photoabsorption spectrum of Li+ shown in fig. 2.48 contains information relating to
the source conditions, i.e. of temperature and density etc. The true absorption
coefficient for a discrete line originating from the ground level i to an upper level k is
given by [1.30]. Neglecting stimulated emission and using tabulated values for the
relevant atomic parameters, one may, assuming a ground level spatial density
distribution and normalised atomic frequency response, compute ab initio the absorption
coefficient for such a transition. In our conditions, the atomic frequency response is
comparable if not narrower than the estimated instrument function. The measured
absorption coefficient in the vicinity of a spectral line is thus seriously distorted.

Eliminating instrumental effects therefore enables the measurement of either the
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absolute photoabsorption cross-section (if the density distribution is known), or the
density profile (if the absolute cross-section is known). This technique has previously
been applied to the He-like 1s2 1snp (n > 4) series in Be2+ by [138] using an iterative

procedure involving trial values for <v, the atomic frequency response and

1
2

NI = |Nj(z)dz (in the general case), the spatial density distribution. Using a similar
]

technique, the same data (extracted using a digitiser) near threshold in Be2+ was fitted

as a proving ground for a recently developed fitting procedure. A flow-chart for the

complete fitting procedure is illustrated in fig. 3.27.

Generate Trial 4, + N,(z)

B E L » ,«

Compute kv mm
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Wi pujsiE
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Lr
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Fit Criteria Satisfied ?

i
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'U 1 End

Fig. 3.27: A flow-chart illustrating the fitting procedure used to compute the true
absorption coefficient data. The symbols used are explained in the text.
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The procedure initiates by generating a trial normalised AFR <4v using the Voigt form
described by [1.28], and a trial value for the ground state density distribution Nj(z). In

the absence of further information, the Lorentzian half-width AL (HWHM) is calculated

using the quasistatic approximation [1.50], while the Gaussian full half-width 2AG is
evaluated using [1.49]; the temperature generally deriving from the LTE model outlined
in §1.3.1. The natural line widths for the transitions investigated during the course of

this work are negligible (typically 1095'1) and will not be considered further. The true

absorption coefficient defined by [1.30] accompanied by the resultant transmission

f f 4 Y\
Y

spectrum were then computed by integrating along the
L
VvV 2

absorbing plasma column length using the trial value for the density distribution Ni(z)
and the AFR <4v. In the present experiments, a cylindrical lens was used to focus the
output of a Nd:YAG (0.3 J, 15 ns) laser onto a lithium target (see 82.3.3(b)).
Subsequently, the absorbing plasma column length, L, was known. As the Nd:YAG
output energy distribution was uniform, a top-hat density profile was assumed. The
resultant synthetic transmission spectrum TT was inverted to enable convolution [111]
with a predefined instrument function R| estimated in §2.3.2(c). Evaluating -Ln(1-T*),
where T* represents the resultant convolved spectrum, furnishes the desired absorption
spectrum. This procedure is repeated for each line in the spectrum until satisfactory
convergence between experiment and model is achieved for all lines simultaneously.
The criteria used to determine the degree of convergence entailed comparing the
FWHM and peak absorption of the computed and experimental lines in the spectra. At
each iteration, the same value for temperature and density are used for each transition

in the spectrum.
Following the procedure outlined above, the photoabsorption spectrum 1s2 1snp (n =

4,5,6,7) of Be2+ measured by [138] was fitted using accurate values for the oscillator

strengths. These are tabulated in table 3.6 [40].
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Transition A (A) e 9K Aw(s ) fik

1s2-» 1s4p 84.7580 1 3 153x1010 4.93x102
1s2  1s5p 83.2020 1 3 7.80x109 2.43x102
1s2-> 1s6p 82.3770 1 3 4.49x109 1.37x10%2
1s2 1s7p 81.8910 1 3  2.84x109 8.57x103

Table 3.6: Atomic parameters relating to the Be2+ resonance absorption lines (1s2
-> 1snp, n = 4,5,67) investigated as a test case for the code developed.

The instrument function was approximated by a 0.08 A Lorentzian [138]. From the
measured spectrum (at 2 mm from the target surface) (see fig. 3.28(a)) it may be
observed that the FWHM of the transitions considered are comparable with the FWHM
of the instrument function. As a result, the broadening is predominately instrumental,
and clearly the experimental conditions correspond to the low-velocity regime defined in
8§1.4.3. The Lorentzian component of the AFR was calculated using the quasistatic
approximation formula of [1.50] multiplied by a scaling Stark factor’ (= 0.5). The

experimental and theoretical photoabsorption spectra are plotted in fig. 3.28.

(a)  06T-t d i L t bzomooen g-ommmms L r
7 6 5 n=4
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Fig. 3.28: The photoabsorption spectrum of Be2+ 1s2 -> 1snp (n = 4,5,6,7) [138]
used as a proving ground for the fitting technique developed, (a) Dotted line:
experiment; solid line: absorption spectrum resulting from model, (b) The resultant

theoretical absorption coefficient \C[ .
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A theoretical absorption coefficient spectrum results from the fitting procedure (see fig.
3.28(b)) where the lines have Gaussian profiles Doppler dominated, of FWHM of 2.4 x
10'2A. This is in good agreement with the FWHM computed by [138] of 2.5 x 10'2A. A

+L

2

value for NL= j N~z) of ~6 x 1000 m'2 also results from the fitting procedure. This
L
2

compares well with the value determined by [138] of -5 x 100 m'2. The corresponding

ground state Be2+density for a plasma column length of 6 mm and zero density gradient

is ~1 x 1023 rrf3

Having successfully applied the technique to the test case of Be2+ the same procedure
was applied to the He-like photoabsorption spectrum of Li+ 1s2 -» 1snp (n = 4,5,6,7).
With reference to fig. 2.48 it may be observed that the widths of the 1s2 -> 1snp (n =
4,5,6,7) lines are comparable with the FWHM of the instrument function estimated in
§2.3.2(c). The broadening is therefore mostly instrumental and, as before, it was
determined that the corresponding experimental conditions belong to the low expansion
velocity regime of §1.4.3. Consequently, streaming plays a negligible role. Following
the fitting procedure outlined in fig. 3.27 a theoretical absorption coefficient spectrum
was computed for the Li+ Rydberg series (n = 4,5,6,7), for which accurate values of the
oscillator strengths are tabulated in table 3.7 [40], The Lorentzian component of the
AFR forthe n =4 and 5 transitions was calculated using the electron-impact half widths
(FWHM) computed by [57] shown in table 1.2 for a temperature of 40 000 K. The Stark
FWHM was assumed to vary linearly with density [55], For the n = 6 and 7 transitions
the quasistatic approximation of [1.50] multiplied by a ‘stark factorl(< 1) was used. The
measured and theoretical spectra along with the theoretical absorption coefficient are

plotted in fig. 3.29.

Transition MA) 9i ok Aw(s) fik

1s2-> 1s4p 1715756 1 3 3.32x10s 4.40 x 102
1s?2  1s5p 168.7428 1 3 1.70x10s 2.18 x 1072
1s2  1s6p 1672401 1 3 9.94x109 1.25x102
1s2->1s7p  166.346 1 3 6.22x10s 7.74x10%3

Table 3.7. Atomic parameters relating to the Li+ resonance absorption lines
investigated (1s2  1snp, n=4,5,6,7).

145



(a) 06-]-1

Fig. 3.29: The photoabsorption spectrum of Li+. (a) Dotted line: measured at Ax =
0.4 mm, AT = 30 ns; solid line: absorption spectrum resulting from the model, (b)
The theoretical absorption coefficient resulting from the model.

The instrument function differed slightly for each transition from that computed in
§2.3.2(c) due to the variation in FWHM across the face of the CEMA (see §2.3.2(b)).
However, as the variation was less than 0.1 of a pixel, a Lorentzian instrument function
of 3.6 pixels FWHM was used for all transitions. From the fitting procedure one obtains
an average value for NL= 2.7 x 1000 m'2 in the conditions of fig. 2.48 (Ax = 0.4 mm, AT =
30 ns). This corresponds to a ground state Li+density of ~9 x 108 m‘3for a plasma
column length of 0.3 mm and zero density gradient along the line-of-sight. A
temperature of ~4 eV results from the fitting process. This is in good agreement with the
temperature conditions for an optimal Li+ population density inferred from the LTE
fractional ionisation plot of fig. 1.5 using an electron density of 9 x 1083 m'3. A ‘stark
factorlof 0.8 was used in the fitting procedure for the n = 6 and 7 transitions. The

corresponding Stark widths forthe n=4,5,6 and 7 transitions are shown in table 3.8.
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Transition otre (A) Al (A) (HWHM)

1s2-» 1s4p  171.5756 0.0231
1s2-> 1s5p  168.7428 0.0610
1s2-> 1sbp  167.2401 0.0713
1s2->mls7p  166.346 0.0960

Table 3.8: Stark widths (HWHM) resulting from the fitting procedure for the Li+
1s2  1snp (n = 4,5,6 and 7) photoabsorption spectrum.

An alternative procedure to the ab initio fitting procedure outlined in the previous

paragraphs involves deconvolving the experimentally measured transmission spectrum

, using the instrument function determined in §2.3.2(c), to obtain the true

transmission spectrum. The true photoabsorption spectrum in the absence of
instrumental effects is then readily computed. The true photoabsorption spectrum of Li+
(132-> 1snp with n = 4,5,6 and 7) generated using this method is shown in fig. 3.30.
The deconvolved spectrum was computed using 20 iterations of Varosi’'s maximum
likelihood deconvolution algorithm (see Appendix F). Also shown in the figure for
comparison is the computed photoabsorption spectrum resulting from the fitting

procedure above as in fig. 3.29.

Phaoton Energy (V)

Fig. 3.30: The photoabsorption spectrum of Li+ 1s2 ->m 1snp (n = 4,5,6 and 7).
Dotted line: the photoabsorption spectrum resulting from the deconvolution
process. Solid line: the computed photoabsorption spectrum resulting from fitting
procedure (as in fig. 3.29).
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The computed and deconvolved spectra agree well for the n = 6 and 7 transitions. The
difference between the two for the n = 4 and 5 transitions corresponds to a deviation in
population density of approximately +10% for a fixed absorbing column length. This is

certainly within the limits of experimental error of the instrument.

3.3.2 The Photoionisation Spectrum of Li*

The photoionisation cross-section for the 1s2 + hv -> 1s + se process in Li+ can be
accurately computed using the universal formula of Verner et al. [122]. The
corresponding curve is overlayed in fig. 3.31 with the experimental data between
threshold (75.64 eV) and 180 eV in conditions where the Li° population was negligible
(see §2.3.3).

Phaton Energy (€V)

Fig. 3.31: The photoionisation spectrum of Li+ between threshold (75.64 eV) and
180 eV. The triangles, squares and circles indicate the theoretical photoionisation
cross-sections calculated by Vemer et a. [122], Bell and Kingston [139] and
Manson and Reilmann [140] respectively.

In this case a transmission measurement directly provided a value for NL since the
continuum cross-section does not depend on any particular line shape factor ¢v. For
each of the 9 overlapping CEMA settings, NL was extracted from a non-linear least
square fit of Vomer’s universal fitting formula to the measured absorbance data. These

are shown in table 3.9.
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Setting No. N1 (cm'2) L (cm) N (cm'3
1 2.28 x 1017 0.25 9.12 x 1017_

2 3.13x10l7  0.25 1.25x1018
3 3.42x10l7  0.25 137x108
4 2.89x10" 0.3 9.63x10"

5 5.4x101 0.4 1.35 x 101S
6 5.05 x 101/ 0.4 1.26 x 1018
7 5.15x10" 0.55 9.36x1 O17™
8 5.76 x 1017- 0.7 8.23 x 101/
9 5.56x10" 0.7 7.94 x 101

Table 3.9: NLvalues resulting from a non-linear least square fit using Verner’s
universal fitting formula applied to the photoionisation spectrum recorded at each
of 9 different CEMA settings.

The excellent agreement between the curves in fig. 3.31 further confirms the high purity
of Li+ ions in the plasma plume under the experimental conditions used. Furthermore,
the accuracy of the theoretical cross-section is augmented. Assuming a zero density
gradient along the line-of sight in the absorbing plasma, the NL values extracted using
the above procedure - up to an energy of ~120 eV (i.e. the first six NL values in table
3.9), were converted to number densities. The average value was ~1 X 1024 m'3+20%.
This value is in excellent agreement with that predicted from modelling the discrete part
of the spectrum previously described. There exists a marked discrepancy between the
measured and theoretical photoionisation cross-section data at energies greater than
-120 eV. This was also observed during the fitting procedure. Despite the comparable
magnitude in cross-section between Li+ and Li2+at energies greater that the threshold in
Li2+ (-0.8 and -0.7 Mb respectively at 122.5 eV) the density of Li2+ absorbers was
markedly lower. This can be observed from the absence of the 1s 2p resonance
absorption line in Li2+ at 91.84 eV. Thus, it can be concluded that Li2+ does not
contribute to the deviation at energies greater than -120 eV. As the contribution from
higher orders has already been determined to be negligible (see §2.3.2(d)), the

deviation can be attributed to scattered light contributions detected on both the I\ and Iv

signals (see 2.3.2(e)). The resultant transmittance is thus strongly distorted. In order to
correct the spectrum of fig. 3.31 for scattered light, the scattered light contribution

detected on Iv must first be determined. This was carried out in the following manner.

149



Knowing the fractional scattered light contribution on |, between -120 eV

VI \OREy
and 180 eV (see §2.3.2(e)), one may ascertain Iv using
No=KORE*Ls
/ho=Kapa L+ —" [3.2]
vV Ve
L
ORE / \
1+
VvV  \aORE/

Having estimated IV tue, IViree for each CEMA setting may readily be computed using

= exp(-oNIL) [3.3]

Here, the previously determined average value for NL=1.2 x 1024m'3may be used while
L, the absorbing plasma column length, and a (Mb) (from [122]) are already known. To
perform the calculation L must be constant for each CEMA setting. Otherwise the

scattered light contribution on |Iv may vary and thus invalidate any results.

Consequently, the scattered light contribution L on Ivmay be calculated using

w OREy

Iy —IRE* L
ARE [3.4]

The resultant scattered light contributions including the subsequent curve fits to the raw

data are shown in fig. 3.32. It can be noted from fig. 3.32 that the scattered light

contribution on Iv is, as expected, less than that on IVo. The fitted profiles can then

readily be used in future calculations.
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Photon Energy (eV)

Fig. 3.32: The fractional scattered light contributions on I\’D and Iv between 120

eV and 180 eV. The contribution on Ivwas computed using 2 overlapping CEMA
settings for which L, the absorbing plasma column length was fixed.

Photon Energy (eV)

Fig. 3.33: The photoionisation spectrum of Li+ corrected for scattered light
contributions on LVO and Iv. The triangles indicate the theoretical photoionisation

cross-section calculated by Verneretal. [122].
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It should be emphasised that the fractional scattered light component on Iv computed
above applies solely to the current experimental situation. Employing a different
configuration, e.g. using a different absorbing plasma, results in a modified fractional
scattered light componenton Ivas a direct consequence of the plasma acting as a filter.
Using the above computations, the Li+ photoionisation spectrum of fig. 3.31 was
corrected for scattered light contributions. The resultant spectrum between threshold
and 180 eV is shown in fig. 3.33. The photoionisation spectrum shown in fig. 3.33
underlines the importance of correctly treating scattered light contributions if one is to

reliably measure relative cross-sections.
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Conclusions and Suggestions for

Future W ork

The development of two novel diagnostic techniques, and their application to the
quantitative study of an expanding laser produced lithium plasma has been
presented. Firstly, a sequence of temporally resolved frames of the luminous plume
of an expanding lithium plasma were recorded using a gated image intensifier
coupled to a CCD camera with a temporal resolution of ~9 ns. Secondly,
shadowgraphs of the lithium plume were recorded using a CCD and a Nd.YAG
pumped dye laser (FWHM =5 ns) as a back lighter. The sensitivity of the recorded
shadowgraphs to the dye laser probe wavelength in the vicinity of an atomic
resonance transition was shown. Using the analysis of the so-called refractive fringe
diagnostic (RFD) technique, electron density profile data was determined.
Additionally, a new approach to the analysis of the photoabsorption and
photoionisation spectra of U+ recorded using a 2.2 m extreme ultraviolet (EUV)
grazing incidence spectrometer was outlined, with a view to obtaining density
estimates. The importance of correcting for scattered light contributions, in the >
~100 eV range, was also underlined if relative cross-sections are to be reliably
measured. Inall cases, established plasma and radiation models were used in the
analysis and interpretation of the experimental results, to obtain velocity, temperature
and density profile estimates. Furthermore, a suggested improvement to the
interpretation of the expansion of a laser-produced plasma in a gaseous environment
in terms of a non-viscous drag force model was presented. For each of the
experimental set-ups, system parameters pertinent to the interpretation of the results

were characterised.
Some improvements and suggestions for future work include:

In relation to the fast-frame photography set-up, some potential instrumentation
improvements such as the introduction of a 16-bit scientific grade CCD / frame
grabber as well as the direct fibre coupling of the gated intensifier output to the CCD
could be made. Additionally, an estimate of the extent of the continuum radiation
from the target surface could be made through the introduction of an imaging

spectrometer. Finally, a more rigorous argument in relation to the assumption of
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optical thinness could be made by introducing a mirror to reflect the emitted radiation
back through the plasma and onto the detector. By recording two images, one with
the mirror in place, and the second without, the assumption of optical thinness could
be investigated. Further characterisation of system performance would also facilitate

removal of system aberrations through deconvolution techniques.

As a means of corroborating the results from both the shadowgraph and fast-frame
imaging techniques, the experimental conditions under which the plasma is created
could be mirrored in both set-ups. This would facilitate the determination of electron

density and excited state density profiles.

An improvement to the analysis of the shadowgraphs using the RFD technique
would involve the elimination of the assumption of a parabolic path through the
plasma. This however, would complicate the geometry of the analysis. Additionally,
a sensitivity test for the RFD technique, involving the use of Graded Refractive Index
(GRIN) rod lenses of known refractive index profile, in place of the laser produced
plasma, could be used. In this manner, the refractive index profile could be
reconstructed and verified against the known profile. Finally, using Kirchoff’s
diffraction integral, and the refractive index profile determined using the RFD

analysis, it may be possible to computationally reconstruct the shadowgraph images.

The extension of the analysis of the photoabsorption spectra recorded using the DLP
technique to different elements is also a possibility. Indeed, through the introduction
of a gated MCP one could potentially obtain temporally resolved density information.
This would involve further analysis of the absorbing volume effectively ‘seen’ by the

detector.
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Appendix A

A Note on Gaussian Profiles

The standard form for a Gaussian profile is given by

-/ \2"
tv=n=7exP -4

The Full Width at Half Maximum (FWHM) is found by setting v = vo , so that

2 1 . vV —V,,
At ¢v =- =7- (half the maximum value), exp must
AV VHA v VA
equal ~ so that
4 = Ln2
2 " I= (Ln2 K2
2(v- v0) = A(Ln2)K=FWHM [Al1.2]
I 2T . :
Substituting the FWHM for 2 x (HWHM) = 2T we get A= Replacing A in
(Ln2)«
equation [A1.2] yields
2...
2(Ln2)Y 4 Vo
2?7 V rexp <
I(M*J
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|Ln2 1 exp Ln2' v-v."'2 [Al3]
V%Tr

Finally Replacing r with AGresults in equation [1.26].
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Appendix B

Voigt Profile Generation using VS' function

a_L =1.0 (amplitude)

pos =centre energy
gamma_L =2.0 AL(FWHM)
gamma_G =2.0 AG(FWHM)

X =running variable

double vs(double a_L,double pos,double gamma_L ,double
gamma_G,double X)
{

unsigned 1i;

double A[4].B[4]1.C[4]1.D[4].,V=0;
const double sqrtln2=0.832554611;
const double sqrtpi=1.772453851;
double X=(x-pos)*2*sqgrtln2/gammanG;
double Y=gamma_L*sqrtln2/gaimna_G;

A [0]=-1.2150; B [0]= 1.2359;
A[1]1=-1.3509; B[1]= 0.3786;
A [2]=-1.2150; B[2]=-1.2359;
A[3]=-1.3509; B[3]=-0.3786;
C [0]=-0.3085; D[0]= 0.0210;
C[1]= 0.5906; D [1]=-1.1858;
C [2]=-0.3085; D [2]=-0.0210;
C[3]= 0.5906; D[3]= 1.1858;

for(1=0;i<=3;i++)
V+=(CLi1* (Y-ALiD+DLi]* (X-BLi1) )/ (SQR(Y-AL1])+SQR(X-B[1])):

return (gamma_L*a_L*sqrtpi*sqrtln2/gainma_G) *V;
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Appendix C

System Specifications

The Stanford DG535 Delay Generator

Parameter Range / Specification

Resolution 5 ps

Range 1000 S
Slew Rate 1V /ns

Interface GPIB

Accuracy 1500 ps +timebase error x delay
Timebase 25 ppm crystal oscillator
RMS litter Ext. trigger to any output: 60 ps +delay x 10

TOto any output: 50 ps +delay x 10

Trig. Delay Ext. trigger to TO output: 85 ns
Ext. Trigger Rate DCto ~ + pngest<e py)

Threshold £2.56 Vdc
Impedence 1 MQ +40 pF or50 Q
Outputs Load 50 Q or high impedence
Risetime ECL: 2 ns TTL: 3 ns
Slew 1V /ns
Overshoot <100 mV + 10% of pulse amplitude
Optional Outputs On rear
Adjustable to 35 V
Width 1 [is
Edge 2 ->3 ns

Laser Specifications

The second harmonic generation crystal (KD*P Type Il) of the Nd:YAG laser used to
pump the dye laser is kept in a temperature stabilised mount. As the crystal is
hygroscopic, the temperature is generally maintained at 40° C to protect it from
moisture. Temperature stability is essential, as the angle tuning of the crystal is

extremely sensitive to small temperature variations.
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Cyclops 152 Pyrometer

Model: Minolta /LAND Cyclops 152 IR pyrometer
Measurement range: 600 -» 3000 °C

Spectral response: 0,8 -* 1.1 nm

Measurement Area at 1 m; 4.8 mm

(from Minolta /LAND Cyclops portable infrared thermometer catalogue)

The Emisslvity of Tungsten

Temperature (K) A=08]jm A=09urmn A=10urm X=1.1nm

1600 0.431 0.413 0.39 0.366
1800 0.425 0.407 0.385 0.364
2000 0.419 0.401 0.381 0.361
2200 0.415 0.396 0.378 0.359
2400 0.408 0.391 0.372 0.355
2600 0.404 0.386 0.369 0.352
2800 0.400 0.383 0.367 0.352

(data taken from [1]).
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Appendix D

Image Intensifier Specifications

Intensifier Details

Serial No. ICE-170-170

Diameter 18 mm

Photocathode W (180 850 nm) S25
Phosphor P43

Taper Magnification 11

Summary of System Test Data

Peak Quantum Efficiency of Photocathode: 16.6%
Minimum Spatial Resolution (FWHM) <80 (;m
Specified Optical Gate (FWHM . 5ns
Irising at Specified Optical Gate: 0.25 ns
Minimum Optical Gates 2.6 ns
Irising at Minimum Optical Gate 0.25 ns
Response Uniformitya >3.5%
EBIs 0.02 ulux

1 Specified optical gate width (must be > 50% of CW gain).

2 There is a time delay between the centre and the edge of the tube turning ON and OFF - the centre
lags the edge. We define irising as the time delay between achieving 63% of final peak values in the
centre compared to edge regions.

3 Optical gate width for 20% of CW gain.

4 RMS deviation from the average response of the ICCD in fully binned operation illuminated with
uniform white light.

5 Equivalent Background llluminance. Measured with 10°C coolant circulating. The temperature of the
photocathode follows the temperature of the ICCD head / coolant. EBI increases by ~x2 for 5°C

increase in temperature.
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Gain Settings

Setting  Relative Gain

1 0.6

2 2

3 4

4 11

5 16

6 23

7 30

8 94

9 100

Gating Characteristics
Gate I/P (TTL) Optical Gate Intensity- Optical Gate Intensity

(ns) @ centres (ns) (% of CW) @ edges (ns) (% of CW)
10 2.62 31 2.73 3
11 3.28 48 3.35 47
12 3.46 71 3.59 70
13 3.72 92 3.79 90
14 414 100 418 100
15 480 100 487 100
16 5.46 100 5.51 100
17 609 100 617 100
18 684 100 6.88 100
19 770 100 783 100
20 883 100 885 100
21 10.22 100 1025 100
22 1140 100 1140 100
23 12.20 100 1226 100
24 14.44 100 14.60 100
25 14.76 100 14.83 100

Thereafter, subtract ~ 11 ns from TTL gate input pulse to calculate the optical width

6 FWHM of optical gate averaged over central 100 pixels.
7 Expressed as percentage of the signal level recorded with the same source but 100 ns gate width.

8 FWHM of optical gate averaged over edge 100 pixels.
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Appendix E

Dye Fluorescence Curves

T 11 *=% 11 1 »fF 1T 111 1Fmn
550 600 650 700 750

X(nm)
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Appendix F

Varosi’s IDL®Maximum Likelihood Deconvolution

Code

max_likelihood.pro

D+

; NAME:

; MAXJLIKELIHOOD

/

; PURPOSE:

; Maximum likelihood deconvolution of an image or a

; spectrum.

; EXPLANATION:

; Deconvolution of an observed image (or spectrum) given
; the instrument point spread responsefunction(spatially
; invariant psf).

; Performs iteration based on the Maximum Likelihood

; solution for the restoration of ablurred image (or

; spectrum) with additive noise.

; Maximum Likelihood formulation can assume Poisson noise
; statistics or Gaussian additive noise, yielding two types
; of iteration.

r

; CALLING SEQUENCE:
; for i=1,Niter do Max_Likelihood, data, psf, deconv,
FT_PSF=psf_ft

; INPUTS PARAMETERS:
; data = observed image or spectrum, should be mostly
positive, with mean sky (background) near zero.
psf = Point Spread Function of the observing instrument,
(response to a point source, must sum to unity).
INPUT/0OUTPUT PARAMETERS:
deconv = as input: the result of previous call to
Max_Likelihood,
(initial guess on Ffirst call, default= average of data),
as output: result of one more iteration by
Max_Likelihood.

Re_conv = (optional) the current deconv image reconvolved
with PSF for use in next iteration and to check
convergence.

-

OPTIONAL INPUT KEYWORDS:
/GAUSSIAN causes max-likelihood iteration for Gaussian
additive noise
to be used, otherwise the default is Poisson statistics.
FT_PSF = passes (out/in) the Fourier transform of the
PSF, so that it can be reused for the next time
procedure 1is called,
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/NO_FT overrides the use of FFT, using the IDL function
convol Q instead.
POSITIVITY_EPS = value of epsilon passed to function
positivity,
default = -1 which means no action (identity).
UNDERFLOW_ZERO = cutoff to consider as zero, if numbers
less than this.

EXTERNAL CALLS:
function convolve( image, psf ) for convolutions using
FFT or otherwise.
function positivity( image, EPS= ) to make image
positive.

METHOD:
Maximum Likelihood solution is a fixed point of an
iterative eq.
(derived by setting partial derivatives of
Log(Likelihood) to zero).
Poisson noise case was derived by Richardson(1972) &
Lucy (1974).
Gaussian noise case is similar with subtraction iInstead
; of division.
; HISTORY:
; written: Frank Varosi at NASA/GSFC, 1992.
; F.V. 1993, added optional arg. Re_conv (to avoid doing it
; twice).

M I i R R R e R

pro Max_Likelihood, data, psf, deconv, Re_conv, FT_PSF=psf_ft,
NO_FT=noft, $
GAUSSIAN=gaussian, $
POSITIVITY_EPS=epsilon, $
UNDERFLOW_ZERO=under

if N elements( deconv ) NE N_elements( data ) then begin
deconv = data
deconv(*) = total( data )/N_elements( data )
Re_conv = 0O
endif

if N_elements( under )NE 1 then under = l.e-22
if N_elements( epsilon) NE 1 then epsilon = -1

if N_elements( Re_conv ) NE N_elements( deconv Xxhen $
Re_conv = convolve( positivity( deconv, EPS=epsilon

), psf, $
FT_PSF=psf_ft, NO_FT=noft )
if keyword_set( gaussian ) then begin
deconv = deconv + convolve( data - Re_conv, psf,
/CORREL, $
FT PSF=psf_ft, NO FT=noft )
endif else begin

wp = where( Reconv GT under, npos)
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wz = where( Re_conv LE under, nneqg)

if (npos GT 0) then Re_conv(wp) = (
data(wp)/Re_conv(wp) ) > O

if (nneg GT 0) then Re_conv(wz) =1

deconv = deconv * convolve( Re_conv, pst,
FT_PSF=psf_ft, $
/CORREL, NO FT=noft )
endelse

if N_params(Q GE 4 then $
Re_conv = convolve( positivity( deconv, EPS=epsilon
). psf, $

)

end

FT_PSF = psft ft, NO_FT = noft

convolve,pro

function convolve, 1image, psf, FT_PSF=psf_FT, FT_IMAGE=iImFT,
NO_FT=noft, $
CORRELATE=correlate, AUTO_CORRELATION=auto

T+
;> NAME:

CONVOLVE
; PURPOSE:
; Convolution of an 1image with a Point Spread Function
(PSF)
; EXPLANATION:

; The default is to compute the convolution using a product
of

}

; CALLING SEQUENCE:

Fourier transforms (for speed).

—

; imconv = convolve( imagel, psf, FT_PSF = psft_FT )
; Orc-orrel = convolve( imagel, 1image2, /CORREL )

; Or-correl = convolve( image, /ZAUTO )

r INPUTS:

image = 2-D array (matrix) to be convolved with psf
pst = the Point Spread Function, (size < or = to size of
mage) -

- Ml a1 oui w1

OPTIONAL INPUT KEYWORDS:

FT_PSF = passes out/in the Fourier transform of the PSF,
(so that i1t can be re-used the next time function
s called).
FT_IMAGE = passes out/in the Fourier transform of image.

LU e
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; /CORRELATE uses the conjugate of the Fourier transform of
PSF,
; to compute the cross-correlation of image and PSF,

; (equivalent to IDL  function convol(Q with NO

rotation of PSF)

; /AUTO_CORR computes the auto-correlation function of
image using FFT.

t
; /NO FT overrides the use of FFT, wusing |IDL function

convol () iInstead.
; (then PSF is rotated by 180 degrees to give same

result)

; METHOD:

; When using FFT, PSF is centered & expanded to size of
image.

; HISTORY:

; written, Frank Varosi, NASA/GSFC 1992.

sp = size( pst_FT ) & sif = size ( IinFT )
sim = size (image ) & sc = sim/2 & npix = N elements(
image )

if (sim(0) NE 2) OR keyword_set( noft ) then begin
it keyword_set( auto ) then begin
message, ""auto-correlation only for images with

FFT",/INF
return, image
endif else if keyword_set( correlate ) then $
return, convol( image, psf ) $
else return, convol( image, rotate( psf, 2 )
) _
endif

if Gif@© NE 2 OR (sif(sif(0)+1) NE 6) OR $
(sif(l) NE sim(l)) OR (sif(@ NE sim(2) then ImFT =
FFT( image,-1 )

if keyword_jset ( auto ) then $
return, shift( npix*float( FFT( imFT*conj( IimFT ),1 ) ),
sc(1),sc@ )

if sp(@ NE 2) OR (p(sp()+1) NE 6) OR $
(sp(1) NE sim(l)) OR (sp(2) NE sim(2) then begin
sp = size( pst )
if (sp(0) NE 2) then begin
message,"'must supply PSF matrix (2nd
arg.)",/INFO
return, iImage

endif
Loc = (sc - sp/2 ) >0 ;center PSF in new
array,
s = (sp/2 - sc) >0 ;handle all cases: smaller
or bigger

L= (+ sim-1) < (sp-1)
pst_FT = complexarr( sim(l), sim(2) )
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psf_FT( Loc(l), Loc(2) ) = psf( s(l)y:L(I)

psf FT = FFT( psf_FT, -1, /OVERWRITE )
endif

if keyword_set( correlate ) then $
conv = npix * float( FFT(C IimFT * conj( psf_FT ), 1
) ) 8

else conv = npix * float( FFT(C ImFT * psf FT, 1 ) )

sc = sc + (sim MOD 2) /shift correction for odd size
images.

return, shift( conv, sc(l), sc(2) )
end

positivity.pro

function positivity, X, DERIVATIVE=deriv, EPSILON=epsilon
T+

; NAME:
POSITIVITY
PURPOSE:
Map an 1image uniquely and smoothly into all positive
values.
; EXPLANATION:

; Take unconstrained x (usually an 1image), and map it
uniquely and

; smoothly into positive values. Negative values of x get
mapped to

; interval (0, sqrt(epsilon )/2 ], positive values go to

; ( sgrt ( epsilon )/2, oo ) with deriv approaching 1.
Derivative 1is

; always 1/2 at x=0. Derivative 1iIs used by the MRL
deconvolution

; algorithm.

; CALLING SEQUENCE:
; result = POSITIVITY( X, [ /DERIVATIVE, EPSILON = )

INPUTS:
X - i@nput array, unconstrained

r

; OUTPUT:

; result = output array = (X + sgrt(x”*2 + epsilon))/2

; if the /DERIV keyword 1is set then instead the
derivative of

; the above expression with respect to X is returned

-

; OPTIONAL INPUT KEYWORDS:

; DERIV - if this keyword set, then the derivative of the
positivity
; mapping is returned, rather thanthe mapping itself
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; EPSILON - real scalar specifying the interval into which
to map

; negative values. IT EPSILON EQ O then the
mapping reduces to
; positive truncation. If EPSILON LT then the

mapping reduces to
an identity (no change). Default is EPSILON = le-9

REVISION HISTORY:
F.Varosi NASA/GSFC 1992, as suggested by R.Pina UCSD.
if N_elements( epsilon ) NE 1then epsilon= 1.e-9
if keyword_set( deriv ) then begin
if (epsilon GT 0) then return, (1 +x/sqrt ( xA2 +

epsilon ))/2 $

$

else if (epsilon LT 0) then return, (O

else return,(x GT 0 )
endif else begin
if (epsilon GT 0) then return, ( x+ sgrt ( xA2 +
epsilon ) )/2 $

$

else i1t (epsilon LT 0) then return, X
else return,(x > 0 )

endelse
end
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Appendix G

Table OfSymbols

Symbol

o'

(@}

dnv

x0.k)

o

D escription
Conductivity
Skin depth
Constant (depends on p)
Electron density
Constant (> 0.4)
Electron temperature
lon temperature
Slowing coefficient
velocity at time t=o
Stopping Distance
Viscosity
Cross sectional diameter
Reynold’s number

Non-viscous model slowing coefficient

The number of electrons with velocities
between v and v +dv
Energy different between lower and upper
levels
Statistical weight
Denotes lower level
Denotes upper level
lonisation energy
Radiative recombination coefficient
Collisional ionisation coefficient
Coefficient for three-body recombination
Penetration depth
Thermal diffusivity
Einstein A coefficient for spontaneous
emission

Laser pulse duration (FWHM)
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SI Units

mhos m:

w

Introduced

[+ 1]
[+ 1]
[+.10]
8§11
[+ .10]
811
8§11
[1.11]
[21]
[.11]
[1.22]
[1.22]
[1.22]
[1.13]

[1.14]

[1.15]

[1.15]
[1.15]
[1.15]
[1.16]
[1.18]
[1.18]
[1.19]
[+ 2]
[+ 2]
[120]

[12]



Bik
Bld
fik

Al
Ag

Cn

Sv

@]

Cjnt

ar

AE

AXd

AX)i
Nd

ni

Einstein B coefficient for absorption

Einstein B coefficient for stimulated emission

Absorption oscillator strength
Atomic frequency response
Lorentzian HWHM
Gaussian HWHM
Normalisation constant
Energy
Emission coefficient
Density
Specific heat
Reflectance
Temperature
Initial temperature
Oscillator strength for the whole continuum
associated with absorption from a level m
Series limit
Cross section
Frequency dependent intensity
Frequency
Wavelength
Acceleration
Real part of refractive index
Critical electron density
Integration constant

Intensity of back lighting radiation

Constant of proportionality
Transition Lifetime
Energy spread
Doppler width (FWHM)

atomic mass
Ratio of specific heats

Quasistatic FWHM of Stark broadened line

Number of particles in a Debye sphere

Principal quantum number of lower level
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Mms J:1 S

Mz J1S2

kg m's
J K1 kg1

m:
Jsa

radians

M2 S 1

kg

[1.21]
[1.21]
[1.22]
[1.24]
[1.25]
[1.26]
[1.27]
[1.34]
[1.29]
[1.3]
[1.3]
[1-3]
[1.3]
[1.3]
[1.32]

[132]
[1.33]
[1.34]
[1-4]
[1.4]
§1.2.2
[1.4]
[1.4]
[1.40]
[1.42]

[1.45]
[1.46]
[1.46]
[1.48]

[1.49]
[1.5]
[1.50]

[1.50]
[1.50]



AXshift

3
=

_.
=
~

%

T X Q.0

2

Pr
d2Xx
dt.

d2y
dt.

d2z
dt.

dX dy

dt dt
dz

dt
mu
X(t), Y(1),

Z(t)

v

Principal quantum number of upper level
Nuclear charge
lonic charge

Impact FWHM of Stark broadened line

Stark broadening coefficient
Stark broadening coefficient
Stark broadening coefficient
Impact approximation Stark shift
Pixel intensity
Spectrally integrated emission coefficient
Complex refractive index
Spectral width of resonance line
Centre frequency
Constant in self-similar expansion model
Free electron contribution to the refractive
index
Velocity
Plasma frequency
Impact parameter of a ray

X, Y, Z accelerations

X,Y, Z velocities

atomic weight
Atomic mass unit

X, Y, Zco-ordinates as a function of time

Imaginary part of refractive index
Frequency dependent optical depth
Debye length
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m
radians

S1

m S

radians

kg
kg

[1.50]
[1.50]
[1.50]
[1.52]

[1.52]
[1.52]
[1.52]
[1.53]
[1.54]
[1.55]
[1.59]
[1.59]
[1.59]

[+ 6]
[1.59]

[+ 6]
[1.60]

[1.62]
[1.7]

[1.7]

[1.7]
§1.5.2
[1.7]

816.2
§14.2

§1-5.3



Np
31, P2,
Ps
Rf

Ro
il YO, Zo

vV, V'
Kv

dg

Rg

The entrance angle of a ray
The exitangle of a ray
The fringe thickness
The instantaneous angle that the tangent to a
ray makes with the vectorr
The plasma-detector separation
Perturber density

The entrance, turning and exit points of a ray

The distance from the target to the central

maximum of a fringe

%
The distance r for which the angle ir= 2

2
The plasma radius (OEPR)
initial orthogonal edges of the plasma after
termination of the laser pulse
Centre wavelength
Constant
Laser energy that contributes to blast wave
Length of plasma chord
Plasma radius
Time
Boundary condition: Time

Fractional component of scattered lighton Iv

Measured transmission

Gamma correction
Gray level
True Intensity
as2
Standard deviation
Frequency
Absorption coefficient
W avelength interval
Inter-groove spacing
Laser irradiance

Radius of curvature of the grating
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radians
radians

m

radians

ms S'1

3 3 <«

w

Hz
m
m
m
J S1mo

m

8162
816 .2

8162
8152

816.2
§1.5.3
816 .2

8162

816 .2

816.2
[1 6]

§1-4.3
§1.4.3
[1.9]
§1.4.3
§1.4.3
[1.9]
[1.9]
[ 1ol

[2.10]

[ 1]
[2 1]
[ 1]

[ 2]
[2.3]
[11], [1.27]
§1.1, [1.30]
[2.4]
[2.4]
§1.1, [1.3]
[2.4]



an(Lni)

L,,-i
Crean

J(i)

1
VOoTRUE

Mf
Tf

F(roncoi)
Cx

rny,z

Slit  width

Linear absorption coefficient

A relaxation parameter which results in the

Jannson deconvolution algorithm being
inherently non-linear
The n-1-1estimate of L, the true spectrum

Mean standard deviation

ithdata point using Jannson’s deconvolution

algorithm
Number of data points
i* data pointusing Varosi's maximum
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Appendix H

Table of Constants

Data taken from [141]:

Symbol

ke
me

mu

D escription

Planck constant

% «

Permeability of vacuum

Permittivity of free
vacuum
Speed of light in
vacuum

Elementary charge

Boltzmann constant

Electron mass

Atomic mass unit

Value

6.6260755(40)
1.05457266(63)

12.566370614...
=4tix1 Oy
8.854187817...

299792458
1.60217733(49)
1.380658(12)

9.1093897(54)
1.6605402(10)
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Units

1034 J s
1034 ) s

10'7 NAZ

1012 F mn

10'19C

1023 J K1
1031 Kg
1027 Kg

Relative

uncertainty

(ppm)
0.60
0.60

exact
exact
exact
0.30
8.5

0.59
0.59
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Listof Tables

Table

Number

1.1

1.2

2.1
3.1

3.2

3.3

3.4

Caption

W, A, D Stark broadening coefficients for selected transitions in
lithium (at Ne = 10:7 cm'3) (after [55]). NOTE: For typical ion
lines A values (a measure of the relative importance of ion
broadening) are « 1 [55].

Electron-impact full halfwidths and shifts for the 1s: lsnp (n =
2,3,4,5) transitions in Li+ (after Dimitrijevic and Sahal-Brechot
[57]).

The dye concentrations and solvents used during this study.
Initial values of the parameters used to solve equations [1.7]
and [:.s] describing the growth of a lithium plume in terms of an
initial isothermal expansion followed by an adiabatic expansion.
Test function pairs used in the numerical inversion of the Abel
integral equation.

Results indicating the standard deviation between the true
inverted profile and those computed by each of the numerical
Abel inversion techniques. The number of data points in each
data set is indicated in the column labelled N. The standard
deviation, S, is also indicated. The case of S=0 corresponds to
noiseless data. DIRECT is used to indicate the direct solution to
the Abel transform, i.e. using numerical differentiation, DB
signifies the modified technique of [64], while VL indicates the
iterative method of [65], The lowest standard deviation in the
case of each data set is indicated in bold.

Results indicating the standard deviation between the true

inverted profile and those computed by each of the Abel
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39

40

83
114
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3.5

3.6

3.7

3.8

3.9

inversion numerical techniques applied to 1% noisy data. The
notation is the same as for table 3.3. The lowest standard
deviation in the case of each data set is indicated in bold.

RFD parameters calculated from fig. 3.22 and the theory
presented in chapter 1. Rn(the radius of the inner most dark
fringe from the target surface) was estimated to be ~1.34 mm.
Atomic parameters relating to the Be2+ resonance absorption
lines (1s: -> 1snp, n =4,5,67) investigated as a test case for the
code developed.

Atomic parameters relating to the Li+resonance absorption lines
investigated (1s: - » 1snp, n=4,5,6,7).

Stark widths (HWHM) resulting from the fitting procedure for the
Li+1s. -» 1snp (n =4,5,6 and 7) photoabsorption spectrum.

Nu values resulting from a non-linear least square fit using
Vomer’s universal fitting formula applied to the photoionisation

spectrum recorded at each of 9 different CEMA settings.
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Listof Figures

Figure
Number

1.1

1.2

1.3

14

1.5

1.6

1.7

1.8

1.9

1.10
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Caption

A schematic representation of the creation of a laser
produced plasma.

An idealised picture of the spatial distribution of an expanding
singly ionised laser produced lithium plasma in vacuum
according to [2 0],

A sequence in time showing the development of the spatial
distribution of C 1- VI (indicated by I- VI respectively) at 1.6
mm. The peak laser intensity occurs at 20 ns (after [20]).

(a) z-t plot of the expansion front boundary of the luminous
plume along the normal to the YBCO pellet measured from
gated ICCD images in 100 mTorr of oxygen (after [28]). (b) z-
t plot of the expansion front of the YBCO plume in 100 mTorr
of oxygen. Indicated in red is the fit obtained using the non-
viscous relationship of [1.13],

Fractional state charge densities as a function of temperature
for lithium assuming LTE (Ne =9 x 102z m'3. This electron
density relates to the analysis of §3.3.1.

LTE model lower limit of applicability using [1.17].

The geometric volume element considered in the derivation of
the equation of radiative transfer (after [39]).

The proposed expansion and observation geometries of a
laser produced plasma created on a planar target.

The geometries of expansion and observation of a laser
produced plasma in the y-z plane.

Test case 1. (a) The upper (Nkz)) and ground (Ni(z)) state
density distributions used in the calculation. Also shown are
the resultant emission spectra in the (b) low velocity (c)
medium velocity and (d) high velocity regimes.

Test case 2. (a) The upper (Nkz)) and ground (Nj(z)) state

density distributions used in the calculation. Also shown are
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the resultant emission spectra in the (b) low velocity (c)
medium velocity and (d) high velocity regimes.

1.12 Testcase 3. (a) The upper (NKz)) and ground (N](z)) state
density distributions used in the calculation. Also shown are
the resultant emission spectra in the (b) low velocity (c)
medium velocity and (d) high velocity regimes.

1.13 (d) and (b) show the normalised spatial emission and
absorption coefficients calculated at two different frequencies
(v=voxAq) for case 3 in the medium velocity regime. A spatial
displacement of the spatial emission and absorption
coefficients relative to one another can be seen, thus
explaining the origin of the spectral line asymmetry shown in
fig. 1.12(c). The observer is positioned at z = +0.5 cm.

1.14 The photoabsorption spectrum of the 1s:2s-»1s22p transition
in Li° (A = 670.78 nm) (a) The ground level density
distribution, Ni(z) (b) the atomic frequency response <Gisan
(c) the resultant asymmetric absorption spectrum.

1.15 The photoabsorption spectrum of the 1s:2sH>1s.2p transition
in Li° (kO = 670.78 nm) (a) The ground level density
distribution, Nj(z) (b) the Gaussian atomic frequency response
Jv¥ (c) the resultant symmetric absorption spectrum. The
velocity distribution chosen is such that v(r) =arr: ;ar=5 X
106 cm-12 'L This is the velocity distribution proposed by the
ideal blast wave model.

1.16 The effect of temperature on AAD for the lithium Lpline (i.e.

15 3pinU2hat::3.9 A
1.17 AXy2 as a function of temperature and density for the lithium

Lpline (X0= 113.9 A).

1.18 The basic principle of the shadowgraph technique.

1.19 The real (n) and imaginary (k) parts of the plasma refractive
index as a function of wavelength (nm) centred about the

1s225s 1s.2p transition in lithium. (G~ 0.4 nm, N(r) = 1 x
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1.20

1.21

1.22

2.1

2.2

2.3

2.4

2.5

1022 m'3, Ne(r) = 1 x 1025 cm'3, fik = 0.75, 10 =670.78 nm).
Also shown is the electronic contribution, ne, to the plasma
refractive index.

The geometry of a probe ray traversing a radially symmetric

plasma. The symbols used are explained in the text.

o 2(/N - _ :
The variation of 60--=—-= —~as a function of electron density
NeC

expressed as a fraction of Nec for a probe wavelength (Avao) of
669.7 nm.

The geometry of the parabolic path assumption used to
describe a ray’s trajectory through the plasma.

The experimental set-up used to record a sequence of frames
of the luminous plume of a laser produced lithium plasma:
(ICCD) Intensified charge coupled device, (DG(AT)) Stanford
digital delay generator, (F/O) BPX 65 Fast photodiode
connected to -14.2 m of fibre optic cable.

A detailed view of the target chamber area and detection
system: (FL) Plano-convex focussing lens (f = 190 mm), (ND
+ I/F) Neutral density + tuned interference filters, (ZL) Zoom
lens /2.8, (I/) Gated image intensifier, (RL) Relay lens,
(CCD) Charge coupled device.

A diagram of the triggering sequence used to capture frames
of the luminous plume: (M/P) Master pulse (TTL), (CCD) CCD
Shutter trigger, (F/L) Nd:YAG Flashlamp trigger (15 V), (D/A)
Nd:YAG Direct Access trigger (-15 V), (/) Gated Image
Intensifier trigger (TTL). Inrelation to the image intensifier, an
electronic gate width of 20 ns corresponds to an optical gate
width of ~9 ns (see Appendix D).

Image of the Kodak TL-5003 imaging test chart. The
numerals indicate the number of line pairs per mm.

Typical scan across the resolution test chart image in the
horizontal direction (at 3.6 Ip /mm) indicating the saddle point

pixel value required to satisfy Rayleigh’s criterion.
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2.6

2.7

2.8

2.9

2.10

211

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

Typical scan across the resolution test chart image in the
vertical direction (at 3.6 Ip / mm) indicating the saddle point
pixel value required to satisfy Rayleigh’s criterion.

The experimental set-up wused in various calibration
measurements to characterise the OS-25 CCD.

Random fluctuations in the observed detector output as a
result of the discrete nature of the photoelectric process fitted
to a Poisson probability distribution.

A typical quantum efficiency curve of an OS-25 CCD camera
[100]

The relative intensity as a function of wavelength of a P43
phosphor [103],

The quantum efficiency of a typical modified S 25
photocathode [99],

The measured linearity of the OS-25 CCD at different
wavelengths.

The spectrophotometer transmission curves of (a) I/F
671FS10-25 (W e =671.5 nm) (b) I/F 59405#1 Xcentre = 608.8
nm (c) I/F A43125 “centre =546.5 nm (d) R-62 broadband high
wavelength pass filter.

The temporal and spatial evolution of Li°® (670.7 nm) in
vacuum.

The temporal and spatial evolution of Li°® (670.7 nm) in 200
mTorr of argon.

The temporal and spatial evolution of Li° (610.3 nm) in
vacuum.

The temporal and spatial evolution of Li°® (610.3 nm) in 200
mTorr of argon.

The temporal and spatial evolution of  Li+ (548.4 nm) in
vacuum.

The temporal and spatial evolution of Li+ (548.4 nm) in 200
mTorr of argon.

The temporal and spatial evolution of a laser produced lithium
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2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

plasma (broadband) in vacuum.

The temporal and spatial evolution of a laser produced lithium
plasma (broadband) in 200 mTorr of argon.

The temporal and spatial evolution of a laser produced lithium
plasma using a high wavelength pass filter (R-62) in vacuum.

The temporal and spatial evolution of a laser produced lithium
plasma using a high wavelength pass filter (R-62) in 200
mTorr of argon.

The experimental set-up used to record a sequence of
shadowgraph frames of a laser produced lithium plasma:
(CCD) Charge coupled device, (DG(AT)) Stanford digital
delay generator, (F/O) BPX 65 Fast photodiode connected to
-14.2 m of fibre optic cable.

A detailed view of the target chamber area and detection
system: (FL) Plano-convex focussing lens (f =110 mm), (BE)
Beam expander, (ND + I/F) Neutral density + tuned
interference filters, (CCD) Charge coupled device.

A timing diagram of the triggering sequence used to record
shadowgraphs of the lithium plume: (M/P) Master pulse (TTL),
(CCD) CCD Shutter Trigger, (F/L 1) Nd:YAG 1 Flashlamp
trigger (15 V), (D/A 1) Nd:YAG 1 Direct Access trigger (-15 V),
(F/L 2) Nd:YAG 2 Flashlamp trigger (15 V), (D/A 2) Nd:YAG 2
Direct Access trigger (-15V).

Shadowgraphs of the lithium plume at AT =80 ns. The laser
irradiance was -1.4 x 10:« W m'2,

Shadowgraphs of the lithium plume at AT =480 ns. The laser
irradiance was -1.4 x 101« W m-.

Shadowgraphs of the lithium plume at AT = 100 ns. The laser
irradiance was -2.1 x 10:a W m'2,

Shadowgraphs of the lithium plume at AT = 10 ns. The laser
irradiance was -2.5 x 101« W m'2,

Shadowgraphs of the lithium plume at AT = 100 ns. The laser

irradiance was -2.5 x 10:4 W m'2
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2.32

2.33

2.34
2.35

2.36
2.37
2.38

2.39

(a) Diagram of the DLP apparatus in the horizontal plane;:
(CS) Continuum Source, (AP) Absorbing Plasma, (TM)
Toroidal  Mirror, (ES) Entrance Slit, (GS) Grating
Spectrometer, (MCP /PDA) MicroChannel Plate / Photodiode
Array, (RC) Rowland Circle, (OMA) Optical Multichannel
Analyser, (PC) Personal Computer, (DG(AT)) Stanford Digital
Delay Generator, (b) Diagram of apparatus in the vertical
plane, (c) Detailed view of the target chamber: (Ax) Distance
above the plane of the sample target, (FL1) Plano-convex
focusing lens, (FL2) Cylindrical focusing lens (after [106]).
The timing diagram for the DLP photoabsorption technique:
(M/P) Master pulse (TTL), (OMA) OMA Trigger (TTL), (F/L 1
Nd:YAG (0.3 J; 15 ns) Flashlamp trigger (15 V), (D/A 1
Nd:YAG (0.3 J; 15 ns) Direct Access trigger (-15 V), (F/L 2)
Nd:YAG (0.8 J; 15 ns) Flashlamp trigger (15 V), (D/A 2)
Nd:YAG (0.8 J; 15 ns) Direct Access trigger (-15 V).

)
)

The spatial gain variation across the CEMA.

The emission spectrum of tungsten between 62 eV and 89

eV obtained using three different CEMA settings with large
overlaps between each setting. The fall-off in efficiency on
both sides of the detector is easily seen, in particular for the
higher energy side.

The flat detector on the Rowland circle (to scale).

The variation in FWHM across the face of the CEMA.

The computed instrument function: (AFR) Atomic frequency
response estimated from a convolution of the Lorentzian and
Gaussian components, (Liz+ Lyman P) U2 Lyman p
experimentally measured photoabsorption line, (Jannson)
Resultant deconvolution using Jannson’s algorithm, (Varosi)
Resultant deconvolution using Varosi’'s IDL® code. The
integrated area of each curve is normalised to unity for
comparison.

The spectrum of tungsten over the sensitive range of the
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2.40
241

2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

3.1

detector (after [114]) recorded using an 800 mj Nd:YAG
(1.064 |jm) laser with a FWHM of 15-20 ns. The inset
illustrates this on an eV scale.

The photon detection efficiency of a Csl coated MCP [115].
The relative efficiency (in first order) of the gold coated
toroidal mirror / gold coated diffraction grating combination
used in the 2.2 m grazing incidence spectrometer. The
toroidal mirror reflectance was calculated using Henke’'s
tables for an 84° angle of incidence. The efficiency of the
diffraction grating was computed by [116],

The theoretical and experimentally measured transmission
spectra of a 0.9 fim thin film of mylar (CioHs04;p =1.4 g cm'3
[117]. The error bars indicate the thickness tolerances
specified by Goodfellow Metals (£10%).

(a) The theoretical and experimentally measured transmission
spectra of a 0.25 |xmaluminium filter. The error bars indicate
the thickness tolerances specified by Goodfellow Metals
(£20%). (b) The experimentally measured transmission
curves of similar thickness aluminium thin films [118][119].
The corrected transmission spectrum of aluminium proposing
the origins of the discrepancy between the theoretical curve
of Henke and the current work.

The fractional component of scattered light on | calculated

using the theoretical and experimental transmission curves of
a 0.9 urn mylar thin film filter. Also indicated in the figure is a
3rdorder polynomial fit to the data.

The temporal and spatial evolution of Li°.

The temporal and spatial evolution of Li+

The photoabsorption spectrum of Li+between 61.8 eV and
74.8 eV.

The photoionisation spectrum of Li+between threshold (75.64
eV) and 180 eV.

The position of the leading luminous edge of the expanding
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3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

plume along the axis of expansion as a function of time for
the three transitions investigated.

The position of the leading luminous edge of the expanding
plume in a direction normal to the direction of expansion as a
function of time for the three transitions investigated.

The expansion of a lithium plume numerically modelled using
the initial values shown in table 3.1.

The plasma velocity as a function of time along each of the
three expansion axes resulting from the model.

The temperature profile resulting from the model
computation.

The recorded intensity as a function of time for various fixed
distances d from the target surface, along the target normal
for the 1s.2s 1s.2p (670.7 nm) transition in Li°

The recorded intensity as a function of time for various fixed
distances d from the target surface, along the target normal
for the 1s.2p <- 1523d (610.3 nm) transition in Li°

The recorded intensity as a function of time for various fixed
distances d from the target surface, along the target normal
for the 1s2s <- 1s2p (548.4 nm) transition in Li+

A plot of d as a function of the time corresponding to the peak
recorded intensity for the three transitions investigated.

A cross-section of the broadband emission from an
expanding lithium plume in both vacuum and argon
environments along the axis of expansion taken at 250 ns.
The position of the leading luminous front for each of the
three transitions as a function of time expanding in an argon
environment. The pressure of the argon gas was 200 mTorr.
Cross-sections of the recorded plasma emission intensity at
various distances from the target surface as a function of time
for the 1s22s <- 1s22p (670.7 nm) transition in Li°. Also
indicated in black are Gaussian fits to the raw data.

Cross-sections of the recorded plasma emission intensity at
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3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

various distances from the target surface as a function of time
for the 1s.2p <- 1s.3d (610.3 nm) transition in Li°. Also
indicated in black are Gaussian fits to the raw data.
Cross-sections of the recorded plasma emission intensity at
various distances from the target surface as a function of time
for the 1s2s <- 1s2p (548.4 nm) transition in Li+ Also
indicated in black are Gaussian fits to the raw data.

A graphical representation of the three Abel transformed test
function pairs analysed [04].

Abel reconstructionof the Li°(670.7 nm) data using a
modified version of the DB spline based technique.

Abel reconstructionof the Li**(610.3 nm) data using a
modified version of the DB spline based technique.

Abel reconstructionof the Li+#(548.4 nm) data using a
modified version of the DB spline based method.

Reduced shadowgraph taken at 100 ns after plasma initiation
indicating the extent of the influence of the neutral and ionic
species on the refractive index of the plasma. The dye probe
beam wavelength was 671.7 nm. The approximate
dimensions of the image are 12 mm X 12 mm.

A shadowgraph of a lithium plume taken at 70 ns. The probe
beam wavelength was 669.7 nm.

A cross-section of the shadowgraph shown in fig. 3.20 taken
at pixel row number 141 illustrating the large number of high
contrast refractive fringes.

The refractive index profile resulting from the analysis of the
shadowgraph presented in fig. 3.20 using the RFD technique.
The electron density profile resulting from the analysis of the
shadowgraph presented in fig. 3.20 using the RFD technique.
RFD ray trace simulations using test cases from [/9][86]. The
left hand side shows the results given by [79][80], while the
right hand side shows the results computed using [1.81].

Both (a) and (b) are plotted on a reduced scale. The radius,
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3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

RO, of the plasma in (c) was 59 |jm

Simulated ray traces using the refractive index profile
determined from the RFD analysis of the shadowgraph
shown in fig. 3.20. The distance from the plasma to the
detector is 15 mm in the case of (a), and 150 mm in the case
of (b).

Parabolic fits to the (a) least and the (b) most deviated rays
paths through the plasma.

A flow-chart illustrating the fitting procedure used to compute
the true absorption coefficient data. The symbols used are
explained in the text.

The photoabsorption spectrum of Be2+ 1s Isnp (n =
4,5,6,7) [138] used as a proving ground for the fitting
technique developed, (a) Dotted line: experiment; solid line:

absorption spectrum resulting from model, (b) The resultant
theoretical absorption coefficient k[ .

The photoabsorption spectrum of Li+ (a) Dotted line:
measured at Ax =0.4 mm, AT = 30 ns; solid line: absorption
spectrum resulting from the model, (b) The theoretical
absorption coefficient resulting from the model.

The photoabsorption spectrum of Li+1s: -> 1snp (n = 4,5,6
and 7). Dotted line: the photoabsorption spectrum resulting
from the deconvolution process. Solid line: the computed
photoabsorption spectrum resulting from fitting procedure (as
in fig. 3.29).

The photoionisation spectrum of Li+between threshold (75.64
eV) and 180 eV. The triangles, squares and circles indicate
the theoretical photoionisation cross-sections calculated by
Vemer et al. [122], Bell and Kingston [139] and Manson and
Reilmann [140] respectively.

The fractional scattered light contributions on Iv and Iv

between 120 eV and 180 eV. The contribution on Iv was
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3.33

computed using 2 overlapping CEMA settings for which L, the
absorbing plasma column length was fixed.

The photoionisation spectrum of LT corrected for scattered

light contributions on N6 and Iv. The triangles indicate the

theoretical photoionisation cross-section calculated by Vemer

etah [12:],
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