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Abstract

Genome-wide association studies and follow-up meta-analyses in Crohn’s disease (CD) and ulcerative colitis (UC) have
recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel
diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic
architecture of these diseases and have directed functional studies that have revealed some of the biological
functions that are important to IBD (e.g. autophagy). Nonetheless, these loci can only explain a small proportion of
disease variance (,14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the
known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used
a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to
study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous
variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed
significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from
sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39),
the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R).
RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two
transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our
results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute
significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the
corresponding disease loci.
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Introduction

Inflammatory bowel diseases (IBDs) are classified as chronic

relapsing inflammatory diseases of the gastrointestinal tract. The

two major forms of IBDs are Crohn’s disease (CD, OMIM

266600) and ulcerative colitis (UC, OMIM 191390). Both genetic

and environment factors play a central role in the pathogenesis of

the inflammatory response of IBDs [1].

Recent genome-wide association (GWA) studies and meta-

analyses in IBD have shown great success, with the identification

of 163 independent IBD risk loci. While some loci were shown to

be specific to either CD or UC risk, most have been shown to

impact on both diseases, supporting earlier claims that these

diseases share genetic risk factors [2]. These recent studies have

identified important disease pathways but the common SNPs

identified, with generally modest effects, explain only 14% and

7.5% of disease variance for CD and UC, respectively [3].

Due to linkage disequilibrium in the genome and limitations of

GWAS chip designs to date, genome-wide scans typically identify

common variants that tag regions of variable sizes containing

multiple candidate genes for disease susceptibility. Although there

have been a few notable exceptions, most of the common

associated SNPs do not clearly identify causal variants, and

further studies are needed to highlight the causal gene in many

associated regions [4–6]. Sequencing of exons within associated

regions in order to identify rare variants with strong effect on

disease has been proposed as a means to help identify the causal

genes and to help explain a further portion of disease variance. We

have recently performed a pooled next-generation sequencing

study in Crohn’s disease, and identified association to novel low-

frequency and rare protein altering variants in NOD2, IL23R, and

CARD9, as well as IL18RAP, CUL2, C1orf106, PTPN22 and

MUC19 [7]. We opted to use a similar targeted pooled next-

generation sequencing approach to study UC-associated regions

from our recent meta-analysis of 3 independent genome-wide

scans for UC [8]. Using this approach we identified putative causal

variants significantly associated to UC in three of the 22 loci

examined and identified variants of interest for an additional six

loci.

Results

Sequence analyses
We selected 200 ulcerative colitis cases and 150 healthy controls

of French Canadian ancestry from among samples collected by the

NIDDK IBD Genetics Consortium. Samples were pooled in

batches of 50 cases or 50 controls and normalized in order for the

DNA pool to reflect sample allele frequencies. We targeted 55

genes from 14 UC-associated regions, as well as 7 regions

identified in CD showing nominal replication in our UC GWAS

study and an additional candidate gene (ECM1) reported in recent

literature [6,8–10]. PCR amplification primers were successfully

designed to capture a total of 508 amplicons for a total of 305 Kb

or 70% of our original target sequences. Of these 508 PCR

reactions, 472 (93%) successfully amplified in each of the 7 sample

pools and we used these to construct libraries for high-throughput

sequencing on an Illumina Genome Analyzer II. This sequencing

yielded large amounts of high-quality data for each pool, that

captured 99% of our amplified target regions (283 Kb total;

117 Kb exonic sequences) and achieved 15756median coverage

per pool (corresponding to 31.56 per sample).

We used the previously described variant calling method

Syzygy, designed to accommodate pooled study designs, to

identify rare and low-frequency single nucleotide variants in our

pooled samples [7]. Syzygy detected 1590 high confidence variants

in our target regions, including 309 coding region variants (189

missense, 114 synonymous, 2 nonsense and 4 essential splice

Author Summary

Genetic studies of common diseases have seen tremen-
dous progress in the last half-decade primarily due to
recent technologies that enable a systematic examination
of genetic markers across the entire genome in large
numbers of patients and healthy controls. The studies,
while identifying genomic regions that influence a
person’s risk for developing disease, often do not pinpoint
the actual gene or gene variants that account for this risk
(called a causal gene/variant). A prime example of this can
be seen with the 163 genetic risk factors that have recently
been associated with the chronic inflammatory bowel
diseases known as Crohn’s disease and ulcerative colitis.
For less than a handful of these 163 is the causative
change in the genetic code known. The current study used
an approach to directly look at the genetic code for a
subset of these and identified a causative change in the
genetic code for eight risk factors for ulcerative colitis. This
finding is particularly important because it directs biolog-
ical studies to understand the mechanisms that lead to this
chronic life-long inflammatory disease.
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junction variants) with 56% of these already reported in dbSNP

version 132, a non-synonymous/synonymous ratio of 1.7 and a

transition/transversion ratio of 2.38 (Table S1). These results are

similar to those obtained from our recent re-sequencing study in

CD, as well as those reported by the 1000 Genomes Project, and

are indicative of a relatively high true-positive rate for our dataset.

This was confirmed by genotyping the 350 discovery DNA

samples for a random subset of 237 variants from the total of 1590

high quality variants (Table S2).

Follow-up genotyping and association analyses
After removal of variants that did not validate, variants

observed only once in our sequencing dataset (singletons) and

variants from the MHC region, 84 non-synonymous coding

variants (missense, non-sense and splicing variants), were used for

subsequent analyses. Following removal of common variants

(frequency .5%) and variants that did not design in our

genotyping assays, we carried out follow-up genotyping for 42 of

these variants. Genotyping was performed in 6 independent case-

control cohorts totaling 7,292 UC cases and 8,018 HC (Table S3),

and additional data was obtained for 7,143 UC cases and 12,186

HC from the International IBD Genetics Consortium (IIBDGC)

Immunochip project for 14 of these variants [3].

Since our study focuses on infrequent and rare variants, we

expect few non-reference alleles for these variants in each

subcohort studied, which precludes the use of asymptotic statistics

utilized in typical association studies of common variants. Also,

given the low frequencies of the variants tested, population

structure is likely to be a more substantial problem and thus

requires a stratified analysis with strict population case-control

matching. We used a previously described mega-analysis of rare

variants (MARV) approach that provides a permutation-based

estimate of significance, within each sub-cohort, and accommo-

dates variable numbers of case-control samples in each indepen-

dent population for single-marker analysis [7].

With a target set of 42 variants we can define a traditional

corrected significance level of P = 0.0012 for our study. Three

variants, located in the CARD9, IL23R and RNF186 genes, reach

this significance threshold suggesting that these could possibly be

the causal genes/variants within these two loci (Table 1).

Specifically, our results show that the c.IVS11+1G.C CARD9

splice variant confers significant protection to UC

(P = 1.47610211; OR = 0.39 [0.30–0.53]). We previously identi-

fied this splice variant in a sequencing project of CD loci and

demonstrated that it leads to an alternatively spliced transcript that

is missing exon 11 [7]. Our results also identify significant

association to the valine to isoleucine substitution at position 362

(Val362Ile) in IL23R (P = 1.18610203; OR = 0.79 [0.68–0.91])

previously reported by a recent re-sequencing of positional

candidates in Crohn’s disease [7,11]. The significantly associated

rare variant that we identified in RNF186 (P = 8.6961024;

OR = 1.49 [1.17–1.90]) encodes an alanine to threonine substitu-

tion at position 64 (Ala64Thr). RNF186 encodes a protein with a

RING domain and two transmembrane domains. Importantly, the

disease-coding variant is located in the RING domain, a domain

with a predicted E3 ubiquitin-protein ligase activity (Fig. 1).

Independence of effect between rare variants in IL23R and

CARD9 and the reported common association signals in these

genes has previously been shown [7,11]. For RNF186, the

Ala64Thr variant is mostly found on the protective haplotype

background from the previously identified common variant,

indicating that the reported association is not likely due to partial

LD with the common variant. In addition, reciprocal conditional

logistic regression analysis, using a subset of samples where both

variants were genotyped (3548 UC cases and 3607 healthy

controls) shows that these are independent association signals (data

not shown).

Given the challenge inherent in achieving corrected significance

thresholds for rare variants, even with large cohorts, we expect

that some of the other variants that we identified and found to

have nominal significance (0.0012,P,0.05) are truly associated

with UC. In fact with a target set of 42 variants included in follow-

up genotyping, and supposing these are independent and under

the null, we would expect ,1 SNP to exceed P,0.01 (with a

probability of less than 1% to observe 3 or more associations at this

level) and ,2 SNPs to exceed P,0.05 by chance alone (with a

probability less than 0.0001 to observe 9 or more association at

this level), whereas we observe 3 SNPs with P,0.01 and 9 SNPs

with P,0.05, suggesting that there are additional true positives

that have not met the more stringent threshold. Indeed, within the

group of SNPs that we found to have nominal significance are two

non-synonymous coding variants (Gly149Arg and Val362Ile) in

IL23R that we and others have shown to be associated with

protection from IBD (Table 1) [7,11]. In addition to these

previously-validated variants in IL23R, we have found variants

that are nominally associated with UC in the genes encoding

CEP72, LAMB1, CCR6, JAK2, and STAC2 (Table 1). Specifically,

we identified two nominally associated rare variants in CEP72

(Lys314Arg and Asp316Asn) in perfect LD with each other that

appear to protect from UC (Table 1). As we also sequenced the

only other gene in this locus (TPPP), but did not find any

associated variants in it, this suggests that CEP72 is potentially

causal. Similarly, we sequenced both genes in the LAMB1-DLD

locus on chromosome 7, with the nominally associated rare variant

in LAMB1 (Ile154Thr) suggesting a role for this gene in risk to UC,

especially as the associated allele is located in its DUF287 domain

and is predicted to have a damaging effect [12]. All genes within

the CCR6-FGFR1OP-RNASET2 locus were sequenced, with a

single nominally-associated variant (Ala369Val) in CCR6, consis-

tent with this gene’s probable role in the migration and

recruitment of dendritic and T cells during inflammatory and

immunological responses [13]. Within the JAK2-INSL6-LHX3

locus, we only sequenced JAK2 given its key role in signaling from

the IL12R/IL23R, a biological pathway proven to be associated

with IBD, and identified a nominally associated variant (Ar-

g1063His) within its catalytic domain. STAC2 is within a locus with

16 other genes including ORMDL3, which has been suggested to

be the most likely causal gene based previous genetic and

functional studies in IBD and asthma [8,14]. Although we find a

nominally associated variant in STAC2 (Lys302Arg) and none in

ORMDL3, we have only sequenced 10 of the 17 genes within this

locus (Table S4). Studies of each of these variants to determine

their functional impact will be essential to prove causality.

Discussion

Genome-wide association studies in IBD have been very

successful in identifying genomic regions associated with CD,

UC or both. Only infrequently have these GWA studies also

directly identified the causal genes/variants, with NOD2, IL23R

and ATG16L1 being the few known examples. A recent targeted

(exons and exon-intron boundaries) sequencing approach of

known CD loci resulted in the identification of potentially causal

variants in eight of the 36 loci examined [7]. The primary

objective of the current study therefore was to use the same

approach to identify likely causal variants within genes that were

located in genomic regions associated with UC. While there are

over 100 UC loci that have been identified and validated to date,

Deep Resequencing of GWAS Loci in UC
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we examined 22 UC loci that were known at the time of the

initiation of this project. Of these 22 loci, the current study

identified potentially causal variation in three of the loci: two

protective alleles in CARD9 and IL23R, and an allele increasing

risk in RNF186.

The identification of a rare variant (Ala64Thr) in RNF186 that

shows significant association to UC strongly suggests that this is the

causal gene within this locus. Importantly, the disease-coding

variant is located in the RING domain, a domain with a predicted

E3 ubiquitin-protein ligase activity. Ubiquitin ligases have been

shown to regulate key adaptors of proinflammatory pathways [15–

17]. We previously reported that RNF186 expression was higher in

human intestinal tissues than in immune tissues [8]. We showed by

immunostaining that the RNF186 protein was expressed at the

basal pole of epithelial cells and lamina propria within colonic

tissues. Using GEO public microarray datasets, we pursued a

systematic follow-up analysis of expression profiles of epithelial

cells in response to bacterial products, PAMPs/pathogens. We

found that RNF186 gene expression was significantly up-regulated

in small intestine epithelium and induced by Shigella infection in

mice (P = 4.2161028) (Figure 1, Panel A) [18,19]. Both invasive

(INV+) and non-invasive (INV2) strains of Shigella induced

significant overexpression of RNF186 in intestinal tissues of 4-day-

and 7-day-old mice infected for 2 or 4 hours. To further identify

putative transcriptional regulators of RNF186 expression, we

employed a text-mining and network-generating analysis of

human protein-protein, protein-DNA, protein-RNA and protein-

compound interactions. Specifically, from our analyses we

Figure 1. Functional characterization of RNF186. (A) RNF186 encodes a protein with RING domain and two transmembrane domains. E3
ubiquitin-protein ligase activity is intrinsic to the RING domain. This domain contains the disease-coding variant (A64T). (B) RNF186 expression
response to S. flexneri in young mice (see also Figure S11). (C) Network building steps. Network is generated by mining multiple sources of interaction
databases in Metacore that span human protein-protein, protein-DNA, Protein-RNA and protein-compounds interactions. (D) Transcriptional
regulation model for RNF186. IL1-beta and TGF-beta 1 decrease HNF4A mRNA expression [39–41]. Knockdown of retinoid X receptor, alpha (RXRA)
down-regulates HNF4A gene expression; RXRA interacts with HNF4A gene [24]. HNF4A is a direct target gene of caudal type homeobox 2 (CDX2);
CDX2 increases HNF4A mRNA expression in intestinal epithelial cells [42,43]. HNF4A binds promoter region of HNF1A and up-regulates its expression.
HNF1A interacts with RNF186 and regulates its transcription.
doi:10.1371/journal.pgen.1003723.g001
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hypothesize that RNF186 is transcriptionally regulated in a two-

step process by the transcription factor Hepatocyte Nuclear

Factor 4, alpha (HNF4A) (Figure 1, Panels B,C). Several studies

have shown that HNF4A binds to the promoter region and up-

regulates the expression of yet another transcription factor

HNF1A [20–22]. Knockdown of HNF4A has been shown to

down-regulate HNF1A gene expression [23,24]. HNF1A, in

turn, regulates RNF186 and this interaction has been confirmed

by chromatin immunoprecipitation and chip-on-chip assay [25–

27]. Our own analysis of transcriptional profiles of HNF4A-Null

colons recovered from HNF4AloxP/loxPFoxa3Cre and HNF4A-
loxP/2Foxa3Cre mice uncovered a significant up-regulation of

RNF186 transcript [28]. Expression profiling of human tissues

also supports this hypothesis, as HNF4A and RNF186 are clearly

co-expressed in the small intestine and the colon (Figure S1).

This putative interaction is particularly relevant given that

HNF4A has previously been shown to be associated, with

genome-wide significance, with risk to developing UC [9]. Our

analysis now indicates a direct genetic interaction between two

IBD susceptibility genes namely, HNF4A and RNF186. While a

singular loss-of-function mutation in HNF4A has already been

shown to be associated with susceptibility to abnormal intestinal

permeability, inflammation and oxidative stress, we speculate

that a dual loss-of-function with additional mutation in RNF186

would further exacerbate one’s susceptibility to develop chronic

inflammation in the gut [29,30].

In addition to the variants in IL23R, CARD9, and RNF186, we

also identified variants of interest in an additional five loci

(specifically within the CEP72, LAMB1, CCR6, JAK2, and STAC2

genes). While these latter six still require confirmation, we estimate

that many will validate given that we observed an excess of

nominally-associated variants. Examining the data from the

current study along with the data derived from prior association

and sequencing studies suggests that at a minimum, there

currently is strong evidence of association to causal variation in

IBD (i.e. missense, nonsense or splice junction variants) in the

NOD2, ATG16L1, IL23R, MST1, CARD9, IL18RAP and RNF186

genes, and at least suggestive evidence for causal variation in the

CUL2, C1orf106, PTPN22, MUC19, CEP72, LAMB1, CCR6, JAK2,

and STAC2 genes (Current study and references [4,5,7,11,31]).

While only a small fraction of the recently identified 163 IBD loci

have been sequenced (36 CD, 22 UC for total of 42 independent

Table 1. Identification of rare variants associated with ulcerative colitis.

Follow-up genotyping IIBDGC Immunochip data Combined

Gene, mutation alleles tested, alleles tested, alleles tested

chromosome: positiona allele frequencyc allele frequencyc

UC HC P UC HC P UC HC OR (95% CI) P

RNF186, p.Ala64Thr 14580 16034 8.69E-04 NA NA NA 14580 16034 1.49 8.69E-04

1: 20013992 1.21% 0.69% (1.17–1.90)

IL23R, p.Gly149Argb 14472 15936 0.097 14262 24346 0.197 28734 40282 0.74 0.032

1: 67421184 0.25% 0.35% 0.34% 0.44% (0.56–0.97)

IL23R, p.Val362Ileb 14566 16026 0.025 11182 21102 0.024 25748 37128 0.79 1.18E-03

1: 67478488 1.27% 1.52% 1.17% 1.48% (0.68–0.91)

CEP72, p.Lys314Arg 10278 10534 0.012 NA NA NA 10278 10534 0.17 0.012

5: 690668 0% 0.095% (0.036–0.79)

CEP72, p.Asp316Asn 14558 16034 0.043 NA NA NA 14558 16034 0.34 0.043

5: 690673 0.021% 0.075% (0.12–1.00)

CCR6, p.Ala369Val 13378 14454 4.52E-04 11180 21098 0.71 24560 35552 1.26 0.013

6: 167470814 0.99% 0.66% 0.84% 0.82% (1.05–1.51)

LAMB1, p.Ile1547Thr 13374 14450 0.018 11170 21090 0.159 27432 35540 1.16 0.017

7: 107357198 2.03% 1.61% 2.39% 2.10% (1.03–1.30)

JAK2, p.Arg1063His 14528 15976 0.015 NA NA NA 14528 15976 0.65 0.015

9: 5116343 0.34% 0.58% (0.45–0.92)

CARD9, c.IVS11+1G.Cb 7002 7146 1.21E-06 14286 24362 1.81E-06 21290 31508 0.39 1.47E-11

9: 138379413 0.31% 0.99% 0.28% 0.71% (0.30–0.53)

STAC2, p.Lys302Arg 14580 16036 0.038 NA NA NA 14580 16036 1.39 0.038

17: 34624048 0.62% 0.47% (1.02–1.90)

aPositions from Human genome build 36.
bPreviously reported variant independently identified in the current study.
cMinor allele frequencies estimates from combined case:control cohorts; actual allele frequencies can vary between cohorts.
UC, Ulcerative Colitis; HC, Healthy Controls; NA, data not available.
doi:10.1371/journal.pgen.1003723.t001
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loci) in IBD patients and controls, this would suggest that from

,10% (15 of 163 total loci) to ,35% (15 of 42 loci sequenced) of

IBD loci have causal variation affecting the protein-coding or

splice junctions. There are an additional 5 loci (ITLN1, GSDMB,

YDGL, SLC22A4, and FCGR2A) for which there are non-

synonymous coding or splice variants present in public databases

(dbSNP, 1KG) that are correlated with the index SNP identified in

the GWA studies that have yet been tested directly, thus

potentially increasing the estimated number of IBD loci with

causal variation within the coding and splice regions [3,32].

Furthermore, it should be noted that with the exception of a

small number of variants with significant effect (e.g. R702W,

G908R, fs107insC in NOD2; R381Q in IL23R; IVS11+1G.C

in CARD9; V527L in IL18RAP – all of which had 0.5.OR.2)

most of the rare variants identified by targeted sequencing of

loci from GWAS regions have relatively modest effect sizes that

are comparable to those observed for the common variants

identified by GWA studies. Consequently, very large sample

sizes are required to detect statistically significant association. In

the current study, for the majority (93%) of variants with an

observed minor allele frequency greater than 0.3%, we had

more than 80% power to detect significant association if the OR

is 2 or greater with the number of samples typed (up to ,14,000

cases and ,20,000 controls) (see Table S5). Moreover, should

this observation not be limited to risk loci identified by GWA

studies, this has implications with respect to future efforts for

discovering risk loci. Specifically, if the occurrence of rare

variants with large effects sizes is relatively infrequent, then this

may favor the current paradigm of locus discovery by GWA

followed by targeted sequencing rather than whole-exome or

whole-genome sequencing for locus discovery as this would

require even larger sample sizes. Alternatively, given the ever-

growing size of public databases of common and rare variants,

targeted genotyping of known variants within risk loci identified

by GWA may prove to be an efficient approach. For example,

all but two of the 22 candidate causal variants identified in the

current study or that of Rivas and colleagues are now found in

the Exome Sequencing Project database.

Regardless of the study design, these results suggest that a

significant proportion of IBD loci contain causal variants within

exons or exon-intron boundaries. While these rare/infrequent

variants may not account for what has been termed ‘‘the missing

heritability’’ of common traits, discovering these variants

certainly can provide focus for follow-up functional studies.

For example, the current sequencing and follow-up genotyping

of the chromosome 1p36 locus, which was first identified in a

GWA study of UC, identified significant association to the

Ala64Thr variant within RNF186. While further studies will be

required, the initial bioinformatics and experimental studies

described above suggest that this ring finger protein with an

ubiquitin-ligase domain may have an important role in the

response to microbes/microbial products. Going forward,

systematic evaluation of genes within risk loci via expression-

driven functional studies in cellular models (i.e. knock-down or

over expression) with sensitive high throughput/high content

readouts may very well be a complementary approach given

that at least a third of IBD risk loci appear to act via gene

expression [3].

Materials and Methods

DNA preparation and pooling
We selected 200 ulcerative colitis patients and 150 healthy

control of French-Canadian descent from the NIDDK IBD

Genetics Consortium repository samples. The NIDDK IBDGC

samples were collected under rigorous clinical phenotyping and

control matching for the purpose of genetic studies [33]. Genomic

DNA concentrations were measured by Quant-iT PicoGreen

dsDNA reagent (Invitrogen) and detected on the Biotek Synergy 2

plate reader. All DNAs were normalized with at least two round of

dilution and quantification down to a concentration of 10 ng/ml as

described previously [7]. Equimolar amounts of samples were

pooled together in batches of 50 cases and 50 controls for a total of

7 pooled groups.

Target selection and design
Target exonic sequences were selected based on the coding

exons of 55 genes in 14 UC-associated regions and 7 regions

identified in CD with nominal replication in our recent UC GWAS

study, as well ECM1 identified from recent candidate-gene study in

UC [6,8–10,34]. Specifically, amplicons were designed from

genome build Hg18 using a web-base automated pipeline (Optimus

primer: Website (http://op.pgx.ca)) that uses the Primer 3 design

software and user defined parameters [35]. Design parameters

included amplicon sizes between 400 and 600 base pairs, as well as

the inclusion of Not1 tails for subsequent concatenation and

shearing steps in library construction. PCR amplification reactions

contained 40 ng of pooled genomic DNA, 16 HotStar buffer,

0.8 mM dNTPs, 2 mM MgCl2, 0.4 units of HotStar Enzyme

(Qiagen), and 0.25 mM forward and reverse primers in a 10-ml

reaction volume. PCR cycling parameters were as follows: one

cycle of 95uC for 5 min; 30 or 35 cycles of 94uC for 30 s, 60uC for

30 s, and 72uC for 1 min; followed by one cycle of 72uC for 5 min.

Each DNA pools were amplified for 508 PCR reactions;

amplification products were then dosed by Quant-iT PicoGreen

dsDNA reagent (Invitrogen) quantification and amplification

specificity was validated by agarose gel electrophoresis. In total,

472 PCR amplicons (93% amplification success rate, capturing

283 Kb including 117 Kb of target exonic sequences) (Table S6)

for each DNA pool were combined in equimolar amounts to obtain

equal representation of all target in library construction.

Sequencing and variant discovery
The combined PCR products from each pooled DNA group

were concatenated using the NotI adapters and sheared into

fragments as previously described [36]. Libraries were constructed

according to Illumina single-end library protocol, with 150–

200 bp gel size selection and PCR enrichment using 10 cycles of

PCR, and then single-end sequenced with 36 cycles on an Illumina

Genome Analyzer II. Each sample pool was sequenced using a

single lane of Illumina GAII analyzer flowcell; 36-base pair reads

were aligned to the genome using MAQ algorithm [37] and base

qualities were recalibrated using GATK (Genome Analysis

ToolKit) [38]. Finally, variant discovery was performed using

the previously described Syzygy software, designed to analyze

sequencing data from pooled DNA sequencing [7].

Genotyping, validation and follow-up genotyping
We randomly selected 237 high quality variants for validation in

our 350 discovery DNAs samples using Sequenom MassARRAY

iPlex200 chemistry. Genotyping assay designs were obtained from

the Assay Designer v.3.1 software, and genotyping oligonucleo-

tides were synthesized at Integrated DNA Technologies. The

correlation coefficient between observed minor allele frequencies

and frequencies estimated from Syzygy for validated variants was

calculated in order to evaluate the overall quality of our dataset

(Figure S2). Eighty-four high quality non-synonymous coding

variants (missense, nonsense and splicing variants (within 2 bp of a
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splice site)) remained after the exclusion of singletons from our

sequencing results, variants that did not validate and variants

within the MHC region. We then evaluated these variants in an

independent cohort of North-American individual of European

descent from the NIDDK IBD genetics consortium (754 cases and

1008 controls); only variants detected in this independent cohort

were kept for follow-up genotyping. Following assay design, 42

SNPs were genotyped using Sequenom MassARRAY iPlex200

chemistry in 6 independent follow-up case-control cohorts (7292

cases and 8018 controls) (Table S3). Because of design constraints

and assay failures, not all markers were examined in all follow-up

sample sets. For a subset of these variants, further genotyping data

was obtained from the International IBD Genetics Consortium

Immunochip data (7143 UC, 12186 controls)

Cohort descriptions
For all cohorts, UC was diagnosed according to accepted

clinical, endoscopic, radiological and histological findings.

Genotyping of the NIDDK IBDGC cohort, as well as the

Italian and Dutch cohorts was performed at the Laboratory for

Genetics and Genomic Medicine of Inflammation (www.

inflammgen.org) of the Université de Montréal.

NIDDK IBD Genetics Consortium (IBDGC) samples were

recruited by the centers included in the NIDDK IBDGC: Cedars

Sinai, Johns Hopkins University, University of Chicago and Yale,

University of Montreal, University of Pittsburgh and University of

Toronto. Additional samples were obtained from the Queensland

Institute for Medical Research, Emory University and the

University of Utah. Medical history was collected with standard-

ized NIDDK IBDGC phenotype forms. Healthy controls are

defined as those with no personal or family history of IBD.

The Italian samples were collected at the S. Giovanni Rotondo

‘‘CSS’’ (SGRC) Hospital in Italy.

The Dutch cohort is composed of ulcerative colitis cases recruited

through the Inflammatory Bowel Disease unit of the University

Medical Center Groningen (Groningen), the Academic Medical

Center (Amsterdam), the Leiden University Medical Center

(Leiden) and the Radboud University Medical Center (Nijmegen),

and of healthy controls (n = 804) of self-declared European ancestry

from volunteers at the University Medical Center (Utrecht).

Genotyping of the German cohort was performed at the

Institute for Clinical Molecular Biology

Christian-Albrechts-University in Kiel. German patients were

recruited either at the Department of General Internal Medicine

of the Christian-Albrechts-University Kiel, the Charité University

Hospital Berlin, through local outpatient services, or nationwide

with the support of the German Crohn and Colitis Foundation.

German healthy control individuals were obtained from the

popgen biobank.

Genotyping of Swedish UC cases and controls was performed at

Karolinska Institutet’s Mutational Analysis core facility (MAF).

Swedish ulcerative colitis patients and controls were recruited at

the Karolinska University Hospital, Stockholm, and at the Örebro

University Hospital, Örebro, Sweden.

Genotyping of the Belgian cohort was performed at the

Genomics Core Facility at UZ Leuven, using a MassARRAY

iPLEX (Sequenom). Belgian patients were all recruited at the IBD

unit of the University Hospital Leuven, Belgium; control samples

are all unrelated, and without family history of IBD or other

immune related disorders.

Ethics statement
All patients and control subjects provided informed consent.

Recruitment protocols and consent forms were approved by

Institutional Review Boards at each participating institutions. All

DNA samples and data in this study were denominalized.

Association analysis
Association analysis of follow-up genotyping data was per-

formed using the previously described mega-analysis of rare

variants (MARV) approach [7]. Briefly, this method evaluates

significance of association from stratified sample, using within sub-

cohort permutation of individual phenotypes to provide the test

statistic. This approach is robust to population stratification and to

deviation from Hardy-Weinburg equilibrium.

Network analyses
We downloaded and analyzed several Gene Expression

Omnibus (GEO) public microarray datasets including: (a)

Expression data from newborn mice infected with Shigella

flexneri; GSE9785 (b) Transcription profiles of colon biopsies

from UC patients and healthy controls; GSE11223 (c) Steady-

state gene expression data of Tuberculosis infected human

primary dendritic cells; GSE34151 (d) PBMC transcriptional

profiles in healthy subjects, patients with Crohn’s Disease, and

patients with Ulcerative Colitis; GSE3365, (e) Transcription

profiles of colon biopsies from Crohn’s patients and healthy

controls; GSE20881, (f) Transcription profile of mouse small

intestine epithelium vs. mesenchyme; GSE6383, (g) Gene

expression in HNF4 null mouse colons compared to control

colons; GSE3116, and (h) Microarray profiles of mouse

epithelial colon harboring conditional knock out of HFN4A;

GSE11759. Each of these datasets was normalized using

quantile normalization routine in MATLAB. Genes were tested

for significant differences between pairs of control and

stimulated/treated samples within each experiment. After

selecting genes with nominal P,0.05, estimated using an

unpaired T-test, expression of RNF186 was evaluated whether

it passed the significance threshold or not. The results of

processing all these datasets are shown in Table S7 and Figures

S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14. For

transcriptional network analysis, we used Metacore’s suite of

network building algorithms to expand the sub-network around

RNF186. The algorithm searches through a manually curated

knowledgebase of molecular interaction to identify bidirectional

connectivity with genes, proteins and small molecules. The

search was constrained to expand the overall network size up to

50 components. Given that the bioinformatic analyses suggested

that HNF4A controlled the expression of RNF186, we directly

tested for their co-expression in a panel of RNAs from a variety

of human tissues. Specifically, expression levels of RNF186 and

HNF4A were evaluated using a custom expression array from

Agilent, which was designed to include an independent probe

for each exon of the genes tested (Figure S1). Briefly, total RNA

from bone marrow, heart, skeletal muscle, uterus, liver, fetal

liver, spleen, thymus, thyroid, prostate, brain, lung, small

intestine and colon were purchased from Clontech Laboratories.

A reference RNA sample was also included that consisted of an

equal mix from 10 different human tissues (adrenal gland,

cerebellum, whole brain, heart, liver, prostate, spleen, thymus,

colon, bone marrow). With the exception of the small intestine

(RIN = 7.6), all RNAs had a RNA Integrity Value (RIN) value

$8 (range 8.0–9.3) as measured by Agilent 2100 Bioanalyzer

using the RNA Nano 6000 kit (Agilent Technologies). Labeled

cRNA was then synthesized from 50 ng of each RNA sample

using the Low Input Quick Amp WT labeling kit (Agilent

Technologies) according to the manufacturer’s protocol. Quan-

tity and quality of labeled cRNA samples were assessed by
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NanoDrop UV-VIS Spectrophotometer. Sample hybridization

was performed according to the manufacturer’s standard

protocol and microarrays were scanned using the Sure Scan

Microarray Scanner (Agilent technologies). An expression value

was obtained for each gene in each replicate by calculating the

geometric mean of all probes within the gene, followed by a

median normalization across all genes on the array. A geometric

mean and geometric standard deviation was calculated from at

least 3 independent measurements for each tissue.

Supporting Information

Figure S1 RNF186 and HNF4A are co-expressed in human

intestinal tissues. Expression levels of (A) RNF186 and (B) HNF4A

were evaluated in a panel of human tissues (bone marrow (Bone

M.), heart, skeletal muscle (Sk.Muscle), uterus, liver, fetal liver

(F.Liver), spleen, thymus, thyroid, prostate, brain, lung, small

intestine (Small I.) and colon) and shown to be co-expressed in

small intestine and colon, but show differential expression in liver.

Intensity values for each tissue represent the geometric mean with

geometric standard deviation of 3 independent measurements;

each measurement represents the geometric mean of all probes

(one per exon) for each gene followed by a median normalization

across all genes on the array. The dotted line indicates the

threshold level for detection of basal expression. The reference

sample (Ref.) is composed of a mixture RNAs derived from 10

different human tissues.

(TIFF)

Figure S2 Correlation between minor allele frequencies estimat-

ed from sequence and genotype data. Minor allele frequency

correlation between Syzygy estimates and genotyped data in

discovery samples for 179 non-monomorphic variants from the

237 randomly selected set of high quality variant. (A) Whole range

of minor allele frequencies shown. (B) Infrequent allele frequencies

only (minor allele frequency #0.05). In this experiment, correlation

gets lower as minor allele frequency threshold increase (R2 = 0.88,

0.75, 0.59, 0.57 and 0.19 for MAF$0, 0.05, 0.10, 0.20 and 0.30,

respectively). This reflects the increase in absolute error for variants

with greater MAF (funnel shaped plot), and is consistent with the

higher validation rate for low-frequency variants (Table S2).

(TIFF)

Figure S3 Comparative gene expression profiling in PBMC

from healthy subjects and patients with ulcerative colitis (UC). (A)

Table of gene expression fold change statistics from comparison of

PBMC transcriptional profiles in healthy subjects and patients

with ulcerative colitis (UC) (GSE3365). Only top 10 genes and

RNF186 are shown. The rank column refers to the rank of the

gene for signal to noise ratio in the specific study (1061 significant

genes ranked). (B) Plot of RNF186 gene expression in samples from

normal individuals and patients with UC. The squares and crosses

represent median and mean respectively.

(TIFF)

Figure S4 Comparative gene expression profiling in PBMC

from healthy subjects and Crohn’s disease patients. (A) Table of

gene expression fold change statistics from comparison of PBMC

transcriptional profiles in healthy subjects and Crohn’s disease

patients (GSE3365). Only top 10 genes and RNF186 are shown.

The rank column refers to the rank of the gene for signal to noise

ratio in the specific study (1844 significant genes ranked). (B) Plot

of RNF186 gene expression in samples from normal individuals

and Crohn’s disease patients. The squares and crosses represent

median and mean respectively.

(TIFF)

Figure S5 Comparative gene expression profiling in colon

epithelial biopsies from ulcerative colitis patients and healthy

control donors. (A) Table of gene expression fold change statistics

from transcriptional profiling of colon epithelial biopsies from

ulcerative colitis patients and healthy control donors (GSE11223).

Only top 10 genes and RNF186 are shown. The rank column

refers to the rank of the gene for signal to noise ratio in the specific

study (1214 significant genes ranked). (B) Plot of RNF186 gene

expression in samples from Non-inflamed control colon and

inflamed colon. The squares and crosses represent median and

mean respectively.

(TIFF)

Figure S6 Comparative gene expression profiling of endoscopic

biopsies taken at ileocolonoscopy from ascending colon of Crohn’s

disease patients and healthy control donors. (A) Table of gene

expression fold change statistics from transcriptional profiling of

endoscopic biopsies taken at ileocolonoscopy from ascending colon

of Crohn’s disease patients and healthy control donors

(GSE20881). Only top 10 genes and RNF186 are shown. The

rank column refers to the rank of the gene for signal to noise ratio in

the specific study (2510 significant genes ranked). (B) Plot of

RNF186 gene expression in samples from ascending colon biopsies

of normal subjects and Crohn’s disease patients. The squares and

crosses represent median and mean respectively.

(TIFF)

Figure S7 Comparative gene expression profiling of endoscopic

biopsies taken at ileocolonoscopy from descending colon of

Crohn’s disease patients and healthy control donors. (A) Table

of gene expression fold change statistics from transcriptional

profiling of endoscopic biopsies taken at ileocolonoscopy

from descending colon of Crohn’s disease patients and healthy

control donors (GSE20881). Only top 10 genes and RNF186

are shown. The rank column refers to the rank of the gene for

signal to noise ratio in the specific study (579 significant genes

ranked). (B) Plot of RNF186 gene expression in samples from

descending colon biopsies of normal subjects and Crohn’s disease

patients. The squares and crosses represent median and mean

respectively.

(TIFF)

Figure S8 Comparative gene expression profiling of endoscopic

biopsies taken at ileocolonoscopy from sigmoid colon of Crohn’s

disease patients and healthy control donors. (A) Table of gene

expression fold change statistics from transcriptional profiling of

endoscopic biopsies taken at ileocolonoscopy from sigmoid colon

of Crohn’s disease patients and healthy control donors

(GSE20881). Only top 10 genes and RNF186 are shown. The

rank column refers to the rank of the gene for signal to noise ratio

in the specific study (613 significant genes ranked). (B) Plot of

RNF186 gene expression in samples from sigmoid colon biopsies of

normal subjects and Crohn’s disease patients. The squares and

crosses represent median and mean respectively.

(TIFF)

Figure S9 Comparative gene expression profiling of endoscopic

biopsies taken at ileocolonoscopy from terminal ileum of Crohn’s

disease patients and healthy control donors. (A) Table of gene

expression fold change statistics from transcriptional profiling of

endoscopic biopsies taken at ileocolonoscopy from terminal ileum

of Crohn’s disease patients and healthy control donors

(GSE20881). Only top 10 genes and RNF186 are shown. The

rank column refers to the rank of the gene for signal to noise ratio

in the specific study (2608 significant genes ranked). (B) Plot of

RNF186 gene expression in samples from terminal ileum biopsies
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of normal subjects and Crohn’s disease patients. The squares and

crosses represent median and mean respectively.

(TIFF)

Figure S10 Comparative gene expression profiling of murine

small intestinal epithelium and mesenchyme. A) Table of gene

expression fold change statistics from transcriptional profiling of

murine small intestinal epithelium and mesenchyme (GSE6383).

Only top 10 genes and RNF186 are shown. The rank column

refers to the rank of the gene for signal to noise ratio in the specific

study (7239 significant genes ranked). (B) Plot of RNF186 gene

expression in samples from murine small intestinal epithelium and

mesenchyme. The squares and crosses represent median and

mean respectively.

(TIFF)

Figure S11 Comparative gene expression profiling of intestinal

tissues of 4-day- or 7-day-old mice infected or not with invasive or

non-invasive shigella. (A) Table of gene expression fold change

statistics from transcriptional profiling of intestinal tissues of 4-day-

or 7-day-old mice infected or not with invasive (INV+) or non-

invasive (INV2) (GSE9785). Only top 10 genes and RNF186 are

shown. The rank column refers to the rank of the gene for signal to

noise ratio in the specific study (2258 significant genes ranked). (B)

Plot of RNF186 gene expression in mice intestinal tissue infected

with shigella and control samples. The squares and crosses

represent median and mean respectively.

(TIFF)

Figure S12 Comparative gene expression profiling in primary

dendritic cells from 65 individuals, before and after infection with

MTB. (A) Table of gene expression fold change statistics from

transcriptional profiles in primary dendritic cells from 65

individuals, before and after infection with MTB (GSE34151).

Only top 10 genes and RNF186 are shown. The rank column

refers to the rank of the gene for signal to noise ratio in the specific

study (4279 significant genes ranked). (B) Plot of RNF186 gene

expression in primary dendritic cells from 65 individuals, before

and after infection with MTB. The squares and crosses represent

median and mean respectively.

(TIFF)

Figure S13 Comparative gene expression profiling in HNF4a

mutant and control murine colons. (A) Table of gene expression

fold change statistics from comparison of transcriptional profiles in

HNF4a mutant and control murine colons (GSE3116). Only top

10 genes and RNF186 are shown. The rank column refers to the

rank of the gene for signal to noise ratio in the specific study (895

significant genes ranked). (B) Plot of RNF186 gene expression in

HNF4a mutant and control murine colons. The squares and

crosses represent median and mean respectively.

(TIFF)

Figure S14 Comparative gene expression profiling in mouse

epithelial colons with or without conditional knock out of HNF4. (A)

Table of gene expression fold change statistics from comparison of

transcriptional profiles in mouse epithelial colons with or without

conditional knock out of HNF4 (GSE11759). Only top 10 genes and

RNF186 are shown. The rank column refers to the rank of the gene

for signal to noise ratio in the specific study (2177 significant genes

ranked). (B) Plot of RNF186 gene expression in HNF4a conditional

knock out and control murine colons. The squares and crosses

represent median and mean respectively.

(TIFF)

Table S1 Summary of Pooled Sequencing Experiment.

(XLSX)

Table S2 Validation of high quality variants identified by

Syzygy.

(XLSX)

Table S3 Cohort descriptions.

(XLSX)

Table S4 Details of sequencing and follow-up genotyping

results, as well as association analyses for each SNP tested in this

study.

(XLSX)

Table S5 Power calculations for each SNP tested with observed

minor allele frequency greater than 0.0001.

(XLSX)

Table S6 Sequencing coverage per gene.

(XLSX)

Table S7 Table of datasets available in public domain that were

processed and analyzed for RNF186 expression.

(XLSX)
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Netherlands, 39 Université Paris Diderot, Paris, France, 40 School of

Medicine and Pharmacology, The University of Western Australia,

Fremantle, Australia, 41 GETAID group, Université Paris Diderot, Paris,
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