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SCREENING INTERACTIONS BETWEEN PROTEINS AND DISORDERED 
PEPTIDES BY A NOVEL COMPUTATIONAL METHOD 

 
Weiyi Zhang, PhD 

University of Pittsburgh, 2013 

 

Concerted interactions between proteins in cells form the basis of most biological processes. 

Biophysicists study protein–protein association by measuring thermodynamic and kinetic 

properties. Naively, strong binding affinity should be preferred in protein–protein binding to 

conduct certain biological functions. However, evidence shows that regulatory interactions, such 

as those between adapter proteins and intrinsically disordered proteins, communicate via low 

affinity but high complementarity interactions. PDZ domains are one class of adapters that bind 

linear disordered peptides, which play key roles in signaling pathways. The misregulation of 

these signals has been implicated in the progression of human cancers. To understand the 

underlying mechanism of protein-peptide binding interactions and to predict new interactions, in 

this thesis I have developed: (a) a unique biophysical-derived model to estimate their binding 

free energy; (b) a novel semi-flexible structure-based method to dock disordered peptides to PDZ 

domains; (c) predictions of the peptide binding landscape; and, (d) an automated algorithm and 

web-interface to predict the likelihood that a given linear sequence of amino acids binds to a 

specific PDZ domain. The docking method, PepDock, takes a peptide sequence and a PDZ 

protein structure as input, and outputs docked conformations and their corresponding binding 

affinity estimation, including their optimal free energy pathway. We have applied PepDock to 

screen several PDZ protein domains. The results not only validated the capabilities of PepDock 

to accurately discriminate interactions, but also explored the underlying binding mechanism. 

Specifically, I showed that interactions followed downhill free energy pathways, reconciling a 
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relatively fast association mechanism of intrinsically disordered peptides. The pathways are such 

that initially the peptide’s C-terminal motif binds non-specifically, forming a weak intermediate, 

whereas specific binding is achieved only by a subsequent network of contacts (7–9 residues in 

total). This mechanism allows peptides to quickly probe PDZ domains, rapidly releasing those 

that do not attain sufficient affinity during binding. Further kinetic analysis indicates that 

disorder enhanced the specificity of promiscuous interactions between proteins and peptides, 

while achieving association rates comparable to interactions between ordered proteins. 
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I. INTRODUCTION 

Protein–protein interactions, which occur when two or more proteins bind together to conduct 

certain biological functions, are at the core of the inner working of a living cell. Many of the 

most important molecular processes in the cell, such as DNA replication and signal transduction, 

are carried out by large molecular complexes that are organized by protein–protein interactions. 

This subject has been studied for decades from different perspectives: biochemistry, biophysics, 

structural biology, bioinformatics, etc. In this chapter, the basic biophysical concepts are 

discussed, the topic of this thesis is presented, and key questions are proposed.  

A. PHYSICS AND BIOLOGY 

Biology is a natural science concerned with the study of life and living organisms. With desires 

to understand the origin of life, humans started biological research as early as ancient 

civilizations. For instance, Taoist tradition of Chinese Alchemy, which can be considered part of 

life science due to its emphasis on health with the ultimate goal being the elixir of life, is dated 

back to 4th  century BC [1]. Today, subdisciplines of biology are usually recognized on the basis 

of the scale at which organisms are studied: biochemistry examines the rudimentary chemistry of 

life; molecular biology studies complex interactions of systems of biological molecules; cellular 

biology examines the basic building blocks of all life, the cell; physiology examines the physical 



 2 

and chemical functions of tissues, organs, and the organ system of an organism; and ecology 

examines how various organisms interact and associate with their environment.  

Physics and its techniques have played a significant role in the evolution of biology. For 

instance, biology began to develop and grow quickly with the dramatic improvement of 

microscopes in the 17th century and X-ray crystallography and nuclear magnetic resonance are 

essential tools for structural biologists nowadays. During the 20st century, physicists and 

biologists work in two different ways. Physics is theory-driven and uses mathematics to 

represent the laws of nature, whereas biology is experimentally based and relies on words and 

diagrams to describe the functions. The essence of physics is to simplify phenomenon and 

explain it in a quantitative way, whereas molecular biology strives to tease out the smallest 

details [2].  

Fortunately, new challenges stopped physics and biology from drifting apart and brought 

researchers together. Over the last decade, biologists started facing massive DNA sequences, 

profiles of gene expression and protein structures generated by high-throughput experimental 

techniques. For example, structural molecular biology concerned with how structures of 

molecules determine their functions and how alterations in structures affect their functions. In the 

last 30 years, the number of protein structures in Protein Data Base [3] has increased from 12 in 

1972, to 30,000 in 2005, and to 80,000 in 2012. These new changes challenge traditional 

biological research methodologies while offering opportunities for physicists to contribute to the 

development of new theories in biology.  

My interest in structural biophysics led my research to focus on understanding the 

mechanism of protein–protein interactions by analyzing their three-dimensional structures. One 

challenge in this area relates to Intrinsically Disordered Proteins (IDPs). IDPs, often referred to 



 3 

as disordered proteins, are proteins characterized by lack of stable tertiary structures when the 

protein exists as an isolated polypeptide chain (or a subunit) under physiological conditions in 

vitro [4,5]. In the last 15 years, the discovery of disordered proteins challenged the traditional 

protein structure paradigm, which states that a specific well-defined structure is required for the 

correct function of a protein and the structure defines the function of the protein [5,6,7]. The 

disordered proteins remain functional despite the lack of a well-defined structure, but can adopt a 

fixed 3D structure after binding to other molecules. These fuzzy proteins are not scarce in 

biology. On the contrary, they play fundamental roles, and are highly prevalent and extensively 

involved in human diseases. For example, research showed neurodegenerative diseases such as 

Parkinson’s disease were associated with disordered proteins [8]. In signal transduction, 

disordered proteins, together with scaffold proteins, are recruited to associate the correct 

repertory kinase and its targets into the biochemical pathway quickly and precisely.  

Scaffold proteins are crucial regulators to tether multiple proteins of one pathway into 

complexes and localize protein components to specific areas of the cell such as plasma 

membrane. One example of how scaffold proteins work together with disordered proteins is that 

PDZ protein domains [9] associate with their target proteins by binding the linear disordered C-

terminal region of the target proteins into their binding pockets. A common PDZ-containing 

protein, such as PSD95, has multiple PDZ domains and could bind several subunits of a 

particular channel. These interactions promote clustering of receptors at specific subcellular sites 

and help spatially organize signal channels [10,11]. Additional examples of scaffold proteins are 

the src homology 2 (SH2) domain [12], src homology 3 (SH3) domain [13] and pTyr-binding 

(PTB) domain [14].   
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B. OPEN QUESTIONS AND RESEARCH GOAL 

Interactions involving disordered proteins are more complicated and intriguing than those 

between well-structured proteins because of the brisk flexibility introduced by disorder. 

Disordered proteins adopt fixed 3D structures in the binding grooves when binding their 

partners. Compared to interactions between well-structured proteins, extra free energy is required 

to compensate for the entropy loss caused by peptides during the transition from the state of 

disorder to the state of order. Is this extra free energy penalty always a useless cost? The answer 

is no. Nature uses disorder as a tool to adapt to different environments. Dr. Liu and Dr. Camacho 

[15] showed that when an individual protein binds to multiple disordered partners, which is 

common in signal transduction, disorder can help the protein to maximize the discrimination 

between different partners. This high specificity of promiscuous interactions by disorder usually 

accompanies relative low affinities. By contrast, it is more difficult for well-structured proteins 

to achieve this phenomenon than disordered proteins. In addition, compared to structured 

proteins, disordered proteins can associate with different partners by using their multiple 

underlying conformations. A list of comparisons between structured proteins and disordered 

proteins is presented in Table I-1. 

Although several models [4,16,17,18,19] have been proposed to explain the coupling 

mechanism of folding and binding, there remains some uncertainty in the underlying mechanism. 

Here is a list of questions that the author attempts to answer:  

• Do disordered peptides that bind to one class of proteins conform to certain physical 

characteristics, e.g. charge and hydrophobicity?  

• How do disordered peptides bind to structured proteins, and what is the physical 

mechanism of the coupling between folding and binding? 
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• What are the advantages or disadvantages of protein–peptide interactions compared to 

protein–protein interactions, and why are they prevalent in signal transduction?  

• In evolution, why does nature prefer disorder in specific biological functions?   

To answer these questions, a computational framework is prerequisite to modeling and 

predicting the complexes formed by disordered peptides and structured proteins. Different 

computational methods [20,21,22,23,24,25] have been developed and are currently available for 

protein–peptide screening. But we found each of them had its functional or methodological 

limitation due to its initial design purpose, and none of them could satisfy our needs. Some of 

them [21,22,23] compute relative binding affinity changes of candidate peptide sequences 

compared to reference peptide sequences, instead of estimating the binding affinity directly due 

to the limitation of their models. Others [20,24,25] are based on sequence analysis by a statistical 

or machine learning method. More important, these data–driven methods, which start with 

experimental data and optimize their model terms or parameters with curve–fitting, are contrary 

to our research objectives. Instead of fitting model by data, we want to start building our physical 

model based on our understanding of protein–peptide interactions, then validate and improve our 

model with experimental data. So, a structure–based computational method that can quickly and 

accurately estimate absolute binding affinities, as well as predict the complex structures, is still 

missing. This motivated us to develop our own protein–peptide docking method, PepDock.   

Two key questions are considered in our methodology:  

• How can we estimate the absolute binding affinity? Binding affinity estimation or 

binding free energy estimation is one of the most difficult questions in protein–

peptide docking. Binding free energy function includes different components, e.g. 

electrostatic, desolvation, internal energy, entropy change, etc. Until publishing, to 
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my understanding, no method has incorporated a good estimation of the entropy 

change introduced by disorder of peptides. However, entropy change by disorder 

plays a very important role in binding interactions, which will be shown in later 

chapters, and its contribution cannot be negligible. On the contrary, some other 

components contribute much less and could be neglected without compromising the 

accuracy. So in our method, we considered balancing the computational complexity 

(or feasibility) and model accuracy, i.e. simplifying the binding free energy function 

by making some reasonable assumptions while still capturing the main contribution to 

the binding interaction with acceptable accuracy. 

• How to sample peptide conformations? Compared to protein–protein docking, the 

computational complexity of protein–peptide docking is dramatically increased due to 

the need of sampling the peptide flexibility. However from experiments, it is known 

that scaffold proteins have a unique binding groove and peptides binding to them 

have consensus sequences. Furthermore, these consensus sequences of peptides will 

adopt conserved structures in the binding pockets. By employing these structural 

evidences, we can restrain the peptides in the known binding site and reduce the 

number of peptide conformations. In our method, we simplified the sampling 

complexity and achieve a fast docking methodology.   

 Bearing these questions in mind, we developed and implemented a novel structure-based 

computational method, PepDock, to predict interactions between disordered peptides and 

scaffold proteins. PepDock accepts as input the 3D structures of one scaffold protein (wild type 

or homology model) and the amino acid sequences of peptides. As the output, it predicts 



 7 

complex structure and estimates absolute binding free energy together with the free energy 

landscape (Figure I-1). 

 As a case study, we have applied PepDock to PDZ domains. We successfully 

discriminated strong peptide binders from no-binders with 90% specificity and 70% sensitivity, 

respectively. In addition, PepDock mimicked the X-ray crystal structures of PDZ complexes that 

successfully capture the characteristics of contact interfaces. By analyzing the results, we 

determined that, sequentially, peptides start binding by anchoring their C-terminal residue into a 

PDZ pocket, forming the conserved binding motif by the adjacent 3 residues, and zipping the 

remaining 3–5 residues into the extended contact network. This observation demonstrates that 

the known recognition consensus sequence, usually the first 4 residues including C-terminal 

residue, binds to PDZ domain non-specifically and the contact by the next 3–5 residues 

determines the specificity. The complete procedure follows a downhill free energy pathway. Our 

findings highlight the induced folding/binding mechanism of disordered peptides as maximizing 

both the thermodynamic and kinetic specificity of promiscuous interactions, a mechanism that is 

likely adopted by other scaffold proteins.  

C. OUTLINE OF THESIS 

The content is organized in the following order. We start with the review of some basic 

thermodynamic and kinetic concepts in Chapter II. These are the basic building blocks of our 

methodology framework. In Chapter III, we present the basic procedure of protein–protein 

docking, and the application of our free energy scoring functions.  Next, in Chapter IV, we focus 

on the methodology of PepDock and its application to PDZ–peptide interactions. Based on the 
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PepDock, we implemented an online PDZ–peptide interaction query and prediction web portal, 

which is shown in Chapter V. Finally, Chapter VI discusses the conclusion and future outlook.  

 

Table I-1: Difference between structured proteins and intrinsic disordered proteins 

 Structured protein Intrinsic disordered protein 

Native structure 
Proteins exist with well-defined 3-

D structures.   

Proteins or protein regions lack 

specific 3-D structures and exist 

instead as ensembles of flexible 

unorganized molecules.  

Structure change during 

binding interaction 

Well-structured before and after 

binding interaction.  

Disordered before interaction and 

structured or partially structured 

after binding interaction.  

Binding affinity High, e.g., 10−8 M 

Immediate, e.g., 10−6 M.  

Free energy contribution is required 

to accomplish the disorder to order 

transition.  

Function and specificity 

Usually only interact with specific 

interaction partner; high binding 

affinity, but low specificity. 

Function in all biological fields.  

Can interact with multiple partners 

(20 or more). Low binding affinity, 

but high specificity. Mostly found 

in signaling, regulation, and control 

functions.  

Model 
Lock and key model; 

Induced-Fit model.  

Fly-Casting model; 

Induced-folding model.  

Example 
Hemoglobin; 

Leucine Zipper. 

Nuclear receptor co-activator 

binding domain (NCBD), zinc 

fingers (linkage region), eukaryotic 

translation initiation factor (eIF4E).   
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Figure I-1: PepDock. PepDock is a structure-based computational method to predict interactions between 

disordered peptides and scaffold protein domains. PepDock has been applied to screen interactions of PDZ protein 

domains. It takes as input a peptide sequence and PDZ domain structure, and outputs the complex structure 

prediction and binding affinity estimation including the optimal free energy pathway.  
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II. THERMODYNAMICS AND KINETICS OF PROTEIN ASSOCIATION 

In this chapter, we review the basic concepts of biological thermodynamics and kinetics that will 

be used in the subsequent chapters. Firstly, we start the discussion with the derivation of the 

Gibbs free energy change, which determines the direction and strength of association. Secondly, 

we discuss molecular interactions and entropy, which contribute to free energy change. Thirdly, 

we introduce biological kinetics and explain the relationship between kinetics and free energy. 

Last, models of protein–protein association and properties of disordered peptides are presented.  

A. THERMODYNAMICS 

1. Gibbs free energy 

The Second Law of Thermodynamics states that entropy is the essential quantity to measure the 

direction of the transition of an isolated macroscopic system, where the isolated system will tend 

towards a state of maximum entropy. However, in biophysics, free energy is the common 

variable to measure the direction of biological interactions. This is because, for the biological 

interactions in laboratory or in cell system, it is the temperature and pressure that we control at 

the boundaries, rather than the work or heat flow. This change in condition requires a new 
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thermodynamic quantity: free energy. Systems held at constant temperature and pressure tend 

toward their states of minimum free energy, rather than of maximum entropy [26].  

Consider a process inside a test tube, which has constant pressure p and no interchange of 

particles with the surroundings. The tube is held by a heat bath with constant temperature T. The 

process inside the test tube may or may not involve chemical or phase changes. The combined 

system of test tube and the heat bath is isolated from its surroundings. Based on the Second Law 

of Thermodynamics:  

 𝑑𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑑𝑆𝑠𝑦𝑡𝑒𝑚 + 𝑑𝑆𝑏𝑎𝑡ℎ  ≥ 0, Equation II-1 

where S is entropy and the subscript system indicates the test tube. Since the combined system is 

isolated, the internal energy U follows 

 𝑑𝑈𝑠𝑦𝑡𝑒𝑚 + 𝑑𝑈𝑏𝑎𝑡ℎ = 0. Equation II-2 

Use the fundamental equation,  

 𝑑𝑆 =
1
𝑇
𝑑𝑈 +

𝑝
𝑇
𝑑𝑉 −

𝜇
𝑇
𝑑𝑁 Equation II-3 

where µ is chemical potential and N is number of particles. Considering the constant temperature 

T, constant pressure p, and no particle exchange, the entropy change is  

 𝑑𝑆𝑏𝑎𝑡ℎ ==
1
𝑇
𝑑𝑈𝑏𝑎𝑡ℎ +

𝑝
𝑇
𝑑𝑉𝑏𝑎𝑡ℎ. Equation II-4 

Then, combine Equation II-1, Equation II-2, and Equation II-4 

 𝑑𝑈𝑠𝑦𝑠𝑡𝑒𝑚 − 𝑇𝑑𝑆𝑠𝑦𝑡𝑒𝑚 − 𝑝𝑑𝑉𝑠𝑦𝑡𝑒𝑚 ≤ 0. Equation II-5 

For enthalpy H = U + PV, 

 𝑑𝐻𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑑𝑈𝑠𝑦𝑠𝑡𝑒𝑚 + 𝑝𝑑𝑉𝑠𝑦𝑠𝑡𝑒𝑚 + 𝑉𝑠𝑦𝑠𝑡𝑒𝑚𝑑𝑝. Equation II-6 

Plug Equation II-6 into Equation II-5 and consider constant p, then we get 

 𝑑𝐻𝑠𝑦𝑠𝑡𝑒𝑚 − 𝑇𝑑𝑆𝑠𝑦𝑡𝑒𝑚 ≤ 0. Equation II-7 
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If we define Gibbs free energy as G(T, p, N)= H − TS, N as the number of particles, we see that 

when a system is at constant temperature T and pressure p, the Gibbs free energy is at its 

minimum (Equation II-58). 

 𝑑𝐺𝑠𝑦𝑠𝑡𝑒𝑚 ≤ 0. Equation II-8 

Now, consider a protein–protein interaction: receptor protein R binding ligand protein L 

to form a complex protein C. The process is described as  

 𝑅 + 𝐿 ↔ 𝐶. Equation II-9 

The molar free energy of solutions with certain concentrations of receptor R, ligand L, and 

complex protein C are then  

 𝐺𝑅 = 𝐺𝑅0 + 𝑅𝑇 ln[𝑅], Equation II-10 

 𝐺𝐿 = 𝐺𝐿0 + 𝑅𝑇 ln[𝐿], Equation II-11 

 𝐺𝐶 = 𝐺𝐶0 + 𝑅𝑇𝑙𝑛[𝐶], Equation II-12 

where 𝐺𝑅0, 𝐺𝐿0, and 𝐺𝐶0 are the molar free energies of the standard state (by convention, one molar 

solution), R is the ideal gas constant, T is temperature, and “[ ]” represents concentration. The 

free energy change for the interaction is then 

 
∆𝐺 = 𝐺𝐶 − 𝐺𝑅 − 𝐺𝐿 

      = 𝐺𝐶0 − 𝐺𝑅0 − 𝐺𝐿0 + 𝑅𝑇 ln [𝐶]
[𝑅][𝐿]

. 
Equation II-13 

At the equilibrium ∆𝐺 = 0. Taking the equilibrium concentrations as[𝐶]𝑒𝑞,[𝑅]𝑒𝑞 , and [𝐿]𝑒𝑞,  

 ∆𝐺0 = −𝑅𝑇 ln [𝐶]𝑒𝑞
[𝑅]𝑒𝑞[𝐿]𝑒𝑞

= 𝑅𝑇 ln𝐾𝑒𝑞, Equation II-14 

where ∆𝐺0 = 𝐺𝐶0 − 𝐺𝑅0 − 𝐺𝐿0 and 𝐾𝑒𝑞 is the equilibrium association constant for the association 

between R, L, and C. Another quantity, the equilibrium dissociation constant 𝐾𝑑
𝑒𝑞, which is used 

to measure the propensity of dissociation, is defined as 
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 𝐾𝑑
𝑒𝑞 = [𝑅]𝑒𝑞[𝐿]𝑒𝑞

[𝐶]𝑒𝑞
=

1
𝐾𝑒𝑞.  Equation II-15 

Taking the exponential of this equation gives 

 𝐾𝑑
𝑒𝑞 = 𝑒∆𝐺0/𝑅𝑇. Equation II-16 

Equation II-16 shows the relationship between the equilibrium dissociation constant and 

the interaction Gibbs free energy. For folded protein–folded protein association, the typical 

𝐾𝑑
𝑒𝑞 for strong binding interaction is 10−8 M or 10−2 µM, while a typical number for folded 

protein–disordered peptide association is 10 µM. In the following, we will drop the subscripts 

“eq” and superscripts “0” since we consider all the concentrations are equilibrium values.  

2. Entropy change 

In the definition of Gibbs free energy, besides enthalpy, there is another very important term, 

entropy S, which is a macroscopic quantity in terms of the multiplicity of the microscopic 

degrees of freedom of a system. Entropy is described in the fundamental equation of statistical 

mechanics:  

 𝑆 = 𝑘 ln 𝑊, Equation II-17 

where W is multiplicity and k is Boltzmann’s constant.  

Entropy change plays an important role in biological interactions and is the key for us to 

understand free energy change.  For example, in protein folding, proteins have a greater degree 

of disorder (or flexibility), in other words, greater entropy while in de-folded state but have zero 

entropy in the folded state, under the assumption that protein folded into one unique well-defined 

structure (W = 1). During molecule association, the entropy of the system, including receptor and 

ligand, will decrease because complex proteins have less degree of freedom than separated 
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receptors and ligands before the binding process. The change of enthalpy, together with the 

change of entropy, determines the direction of the biological interactions. At times, entropy 

change can tune the interaction to achieve its maximum performance in some specific biological 

cases. In section III.B.5 and IV.C.2, we will discuss entropy change in more detail.  

B. KINETICS OF PROTEIN ASSOCIATION 

Thermodynamics, or the analysis of free energy change, provides a way to answer the question, 

“Why do protein R and protein L interact to form complex protein C.” But it cannot respond to 

the question, “How fast will the interaction occur?” To address this point, we must turn to 

reaction kinetics.  

Consider our protein–protein association model again. Protein R and protein L interact 

and form complex C (Equation II-9). Based on the transition state theory, along the reaction 

pathway from reactant state A (R and L) to the product state B (complex C), there is an 

intermediate state that must have the highest free energy (Figure II-1).  This leads to the diagram 

of energy barriers of height 𝐸+ from the states A to B, and of height 𝐸− from the states B to A. 

This transition state is the position along the reaction pathway with the highest energy [27]. This 

is one of the most basic ideas in relating the rate constants to the energetics of a molecule as it 

undergoes a reaction. According to the Arrhenius equation, the rate of transitioning over this 

barrier is then related to the probability of a molecule having that high energy. This can be 

estimated from the Boltzmann distribution, 

 𝑘 = 𝐶𝑒−𝐸+/𝑅𝑇, Equation II-18 
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where is 𝐸+called activation energy. The equation shows that the rate will be slower if the 

energy of the barrier is higher. 

 

 

Figure II-1: An example of a reaction coordinate diagram.  The reaction coordinate is a measure of the extent to 

which a reaction has occurred. The starting reactants are on the left, the products are on the right. The free energy is 

shown in a solid line. The state with the highest free energy is the transition state for the reaction. According to 

transition state theory, the higher is the free energy barrier, the slower the reaction.  

 

For reactants to form a complex, molecules crossing from left to right need to overcome the 

energy barrier 𝐸+, while the dissociation reaction, from right to left, needs to go over the energy 

barrier, 𝐸−. By law of Arrhenius, who proposed a strong temperature dependence of reaction 

rates in 1889, the on-rate 𝑘+and off-rate 𝑘−are defined as 

 𝑘+ = 𝐶+𝑒−𝐸+/𝑅𝑇, Equation II-19 

 𝑘− = 𝐶−𝑒−𝐸−/𝑅𝑇. Equation II-20 

where 𝐶+and 𝐶− are constants. At equilibrium, conversion from state A to B is balanced exactly 

by the reverse conversion from B to A. With time derivatives,  
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 𝑑[𝐴]
𝑑𝑡

= −𝑘+[𝑅][𝐿]  + 𝑘−[𝐶], Equation II-21 

 𝑑[𝐵]
𝑑𝑡

= 𝑘+[𝑅][𝐿] −  𝑘−[𝐶], Equation II-22 

yield the following expression: 

 𝑘+[𝑅][𝐿] =  𝑘−[𝐶], Equation II-23 

 
[𝐶]

[𝑅][𝐿] =  
𝑘+

𝑘−
= 𝐾𝑑 , Equation II-24 

 
[𝐶]

[𝑅][𝐿] =  
𝐶+

𝐶−
𝑒−(𝐸+−𝐸−)/𝑅𝑇 = 𝐶𝑒−∆𝐺/𝑅𝑇 . Equation II-25 

where 𝐶 is a constant. Equation II-25 expresses the equilibrium dissociation constant in terms of 

the free energy difference between the two states, ∆𝐺 = 𝐸+ − 𝐸−. This demonstrates a basic 

relation between kinetics and energetics, as shown in Figure II-1 Although pathway 1 and 

pathway 2 have the same dissociation constant 𝐾𝑑 and the free energy difference, ∆𝐺, pathway 1 

has low on and off rate with a higher energy barrier, while pathway 2 has relatively high on and 

off rate with a lower energy barrier.  

C. MODELS OF PROTEIN–PROTEIN RECOGNITION 

Lock and key theory was first postulated by Emil Fischer in 1894 [28] to explain the specific 

binding interaction of an enzyme with a single substrate. The enzyme active site has a unique 

geometric shape that is complementary to the geometric shape of a substrate molecule. Only the 

correctly sized key (substrate) fits into the keyhole (active site) of the lock (enzyme). 

Induced fit model was suggested by Daniel Koshland in 1958 [29] to explain protein–

protein recognition, since scientists found that not all experimental evidence can be adequately 
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explained by the lock and key model. The induced fit model shows that receptor proteins are 

rather flexible structures in which the binding site continually reshapes by its interaction with the 

ligand substrate until the ligand is completely bound to it. This is also the point at which the final 

form and shape of the complex is determined.  

Anchor model, which was proposed by Camacho’s group in 2004 [30], states that in 

some protein–protein interactions, one of the interacting proteins, usually the smaller of the two, 

anchors a specific side chain in a structurally constrained binding groove of the other protein, 

providing a steric constraint that helps to stabilize a native-like bound intermediate. It has been 

verified that, even in the absence of their interacting partners, the anchor side chains are found in 

conformations similar to those observed in the bound complex. These ready-made recognition 

motifs correspond to surface side chains that bury the largest solvent-accessible surface area after 

forming the complex (>100 Å2). The existence of such anchors implies that binding pathways 

can avoid kinetically costly structural rearrangements at the core of the binding interface, 

allowing for a relatively smooth recognition process. Once anchors are docked, an induced fit 

process further contributes to forming the final high-affinity complex. This later stage involves 

flexible (solvent-exposed) side chains that latch to the encounter complex in the periphery of the 

binding pocket. The results suggest that the evolutionary conservation of anchor side chains 

applies to the actual structure. 
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Figure II-2: Protein–protein association models. From top to bottom, the lock and key model states that interfaces 

of receptor and ligand proteins exactly match each other during binding interactions. The induced fitting model 

indicates that interfaces of receptor and ligand proteins will fit each other to achieve high affinity during binding 

interactions. The anchor model shows that anchor residue of ligand protein will intrude to the binding site of 

receptor protein first and the interface around anchor residue will induced-fit to the binding site. 

 

 

 

 



 19 

D. THERMODYNAMICS OF DISORDERED PEPTIDES 

Protein folding can be described as a transition from unfolded state U to folded state F, while the 

protein stability depends on the free energy difference ∆𝐺 = 𝐺𝑈 − 𝐺𝐹. The process is expressed 

by the following equation: 

 𝑈 ↔ 𝐹 Equation II-26 

 −𝑅𝑇 ln 𝐾𝑑 = ∆𝐺 = ∆𝐻 − 𝑇∆𝑆, Equation II-27 

where R represents the gas constant; T, the temperature; K, the equilibrium constant; ΔG, the free 

energy change between folded and unfolded; ΔH, the enthalpy change; and ΔS, the entropy 

change from folded to unfolded states. The enthalpy change  ∆𝐻  represents the binding 

interaction, which includes electrostatic interactions, solvation effects, hydrogen bonds, and van 

der Waals potentials. Entropy change  ∆𝑆 , corresponding to the flexibility of the protein, is 

positive when proteins change from folded state to unfolded state. The proteins become more 

stable when the free energy difference ∆𝐺 = 𝐺𝑈 − 𝐺𝐹 is increasing, i.e., the free energy of the 

unfolded state, 𝐺𝑈 , is relatively higher than the folded state 𝐺𝐹.  

For native ordered proteins that have ∆𝐺 > 0 kcal/mol (Figure II-3 A), enthalpy change 

is sufficient to compensate for the entropy loss, i.e., the intra-molecular interaction is strong 

enough to form the protein into a folded structure. For native disordered proteins with ∆𝐺 < 0 

kcal/mol (Figure II-3 B), intra-molecular interaction is not enough to compensate for the entropy 

change. Note that protein stability is relative. Native ordered proteins can transform to disordered 

state by increasing the temperature and native disordered proteins can fall into a structure when 

decreasing the temperature.  
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Figure II-3: Transition from order to disorder for native well-structured proteins (A) and disordered proteins 

(B).  Because native folded proteins (ordered proteins) have folded state with lower free energy than unfolded state, 

they spontaneously fold into a defined 3-D structure. Transition from order to disorder requires free energy 

compensation. Disordered proteins, which have unfolded states with lower free energy, natively exist instead with a 

lack of specific 3-D structures. For disordered proteins, transition from unfolded state to folded state needs free 

energy contribution to compensate for the entropy loss. 
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III. PROTEIN–PROTEIN DOCKING AND BINDING FREE ENERGY ESTIMATION 

In chapter III, we discuss how thermodynamics is applied to our protein–protein docking study. 

Our docking program, SmoothDock, which includes rigid body docking, free energy scoring 

function and refinement, was implemented by Dr. Camacho and his colleagues in 2004 [31,32]. 

It aims to predict the complex structure of structured protein–protein association. In section A, 

we introduce each component of our docking program. In section B, we focus on the most 

important and interesting part: free energy scoring function decomposition and implementation. 

We describe the manner by which the model and algorithm estimate the absolute binding affinity 

of protein–protein association and protein–disordered peptide association. In section C, the 

author has applied the SmoothDock scoring function to the experiment of Capri T45 to 

discriminate natural and designed protein complexes and obtained very good performance.  

A. FOLDED PROTEIN–PROTEIN DOCKING 

Current protein docking methods generally consist of a rigid body search that generates a large 

number of docked conformations with favorable surface complementarity, followed by the re-

ranking of the conformations using a potential approximating free energy function 

[33,34,35,36,37]. 
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1. Rigid body docking 

The most widely used rigid body search is based on the Fast Fourier transform (FFT) correlation 

approach, introduced by Katchalski-Katzir and associates [38] in 1992. This approach provides 

an efficient way to predict the structure of a possible complex between molecules of known 

structures by systematically exploring the space of docked conformations and enables one to 

perform large-scale docking studies [39]. 

 The FFT correlation approach relies on the well-established correlation and Fourier 

transformation techniques used in the field of pattern recognition. The algorithm requires only 

that the 3D structure of the molecules under consideration be known. It begins with a geometric 

description of the protein and the ligand molecules, derived from their known atomic coordinates. 

The two molecules denoted by a and b, are projected onto a three dimensional grid of N x N x N 

points, where they are represented by the discrete functions 

 𝑎𝑙,𝑚,𝑛 = �
1,                        on the surface of the molecule
𝜌,                                           inside the molecule
0,                                        outside the molecule

� Equation III-1 

 𝑏𝑙,𝑚,𝑛 = �
1,                        on the surface of the molecule
𝛿,                                           inside the molecule
0,                                        outside the molecule

� Equation III-2 

The surface is defined here as a boundary layer of finite width between the inside and the outside 

of the molecule. The parameters ρ and δ describe the value of the points inside the molecules, 

and all points outside are set to zero. Matching of surfaces is accomplished by calculating 

correlation functions. The correlation between the discrete functions a and b is defined as  

 𝑐∝,𝛽,𝛾 = � � �𝑎𝑙,𝑚,𝑛 ∙  𝑏𝑙+𝛼,𝑚+𝛽,𝑛+𝛾

𝑁

𝑛=1

𝑁

𝑚=1

𝑁

𝑖=1

. Equation III-3 
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where α, β, and γ are the number of grid steps by which molecule b is shifted with respect to the 

molecule a in each dimension. If the shift {α, β, γ} is such that there is no contact between the 

two molecules, the correlation value is zero. If there is a contact between the surfaces, then the 

contribution to the correlation value is positive. By assigning large negative values to ρ in 

molecule a, and small non-negative values to δ in molecule b, we can predict the penetration 

which is physical forbidden.  

A direct calculation of the correlation between the functions a and b is rather lengthy, 

since it involves N3 multiplications and additions for each of the N3 possible relative shifts {α, β, 

γ}, resulting in an order of N6 computing steps. Therefore the Fourier transformation is applied 

here to calculate the correlation function much more rapidly.  The discrete Fourier transform 

(DFT) of a function xl,m,n is defined in Equation III-4. The application of this transformation to 

both sides of Equation III-3 yields Equation III-5.  

 𝑋𝑜,𝑝,𝑞 =  � � � exp �−
2𝜋𝑖(𝑜𝑙 + 𝑝𝑚 + 𝑞𝑛)

𝑁 � ∙ 𝑥𝑙,𝑚,𝑛

𝑁

𝑛=1

𝑁

𝑚=1

𝑁

𝑖=1

 Equation III-4 

 𝐶𝑜,𝑝,𝑞 = 𝐴𝑜,𝑝,𝑞
∗ ∙ 𝐵𝑜,𝑝,𝑞 Equation III-5 

where o, p, q = {1, . . . , N} and 𝑖 =  √−1. C and B are the DFT of the functions c and b, 

respectively, and A* is the complex conjugate of the DFT of function a. The inverse Fourier 

transform (IFT), which is defined as  

 𝑐∝,𝛽,𝛾 =
1
𝑁���� exp �

2𝜋𝑖(𝑜𝛼 + 𝑝𝛽 + 𝑞𝛾)
𝑁 � ∙ 𝐶𝑜,𝑝,𝑞 

𝑁

𝑞=1

𝑁

𝑝=1

𝑁

𝑜=1

, 

 

Equation III-6 

 

is used to obtain the desired correlation. The Fourier transformation can be performed with the 

fast Fourier transform algorithm [40], which requires less than the order of N3 ln(N3) steps. Thus, 
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the overall procedure leading to Equation III-6 is significant faster than the direct calculation of 

function c according to Equation III-3.  

 In practice, we use the FFT correlation approach with a 10° Euler angle increment, and 

default values of 1 Å grid-step and 4 Å surface layer to sample approximately 1010 putative 

conformations, of which the top scoring 20,000 were retained for filtering by free energy scoring 

function [35]. The FFT method can explore vast numbers of docked conformations, evaluating a 

simple function that describes the geometric fit or surface complementarity of each structure, 

possibly allowing for some overlap. The approach is very successful when docking bound (co-

crystallized) protein conformations. However, the situation is very different when docking 

unbound (independently crystallized) conformations of the component proteins. Due to the 

incorrect conformations of some key side chains in the binding site, all near-native structures 

may have relatively poor surface complementarity, and hence, the higher ranked conformations 

are frequently false positives, i.e., structures with good score but high root mean square deviation 

(RMSD) [33]. 

2. Empirical free energy scoring function 

The free energy of association is often dominated by desolvation and/or electrostatic 

contributions. Consequently, the free energy scoring function, including desolvation and 

electrostatic, is used to filter the false positives generated by rigid body docking, and to capture 

the complexes whose binding mechanism is governed by any combination of the two. 

Performance and accuracy are both important concerns when designing the scoring function, as it 

is used to evaluate a large number of docking conformations. Simple and lightweight functions 

are always preferred.  
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We use the following scoring functions to estimate the binding free energy of folded 

protein–protein association (Equation II-7).  

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 − 𝑇∆𝑆𝑡𝑟𝑣, Equation III-7 

where ∆𝐸𝑒𝑙𝑒𝑐is electrostatic potential, ∆𝐺𝐴𝐶𝐸 is atomic contact energy which captures desolvation 

free energy, T is temperature, and ∆𝑆𝑡𝑟𝑣 is association entropy loss. Free energy decomposition 

is discussed in the section III.B. 

3. Refinement 

Based on the observations that the native-binding site is expected to exhibit a free energy 

attractor with the greatest breadth of all the local minima on the free energy landscapes of 

partially solvated receptor–ligand complexes, and that the attractor is most relevant within 

distance separations of around a nanometer, or 10 Å, a hierarchical clustering method is used to 

select and rank the docked complexes that have the largest number of neighbors within a certain 

fixed cluster radius, 9 Å RMSD [31,41,42].  

2000 docked conformations filtered by the free energy scoring function are clustered and 

based on the number of structures that a ligand has within a (default) cluster radius of 9 Å 

RMSD. The largest cluster is selected and its cluster center is ranked first. Next, the members of 

this cluster are removed from the matrix, and the next largest cluster is selected and ranked 

second, and so on. After clustering, the ranked complexes are subjected to a straightforward 

(300-step and fixed backbone) van der Waals minimization using CHARMM [43] to remove 

potential side chain clashes. 

The robustness of our docking method was tested on sets of 2000 docked conformations 

generated for 48 pairs of interacting proteins [44]. The results showed that in 31 cases, the top 10 
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predictions include at least one near-native complex, with an average RMSD of 5 Å from the 

native structure. 

B. BINDING FREE ENERGY FUNCTION OF FOLDED PROTEIN-FOLDED 

PROTEIN ASSOCIATION 

The binding interaction free energy of one receptor protein and one ligand protein association to 

a complex is expressed by the form: 

 ∆𝐺 =  𝐺𝐶 − 𝐺𝑅 − 𝐺𝐿 , Equation III-8 

where 𝐺𝐶,𝐺𝑅, and 𝐺𝐿 denote the free energies of the complex, the free receptor, and the free 

ligand, respectively. In a general case, we calculate the binding free energy by the form [33,45]  

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐸𝑣𝑑� + ∆𝐺𝑑𝑒𝑠 + ∆𝐸𝑖𝑛𝑡 − 𝑇 ∆𝑆𝑠𝑐 − 𝑇 ∆𝑆𝑡𝑟𝑣, Equation III-9 

where∆𝐸𝑒𝑙𝑒𝑐 and ∆𝐸𝑣𝑑� denote the changes in the electrostatic and van der Waals energy, 

respectively; ∆𝐺𝑑𝑒𝑠 is the desolvation free energy, ∆𝐸𝑖𝑛𝑡 is the internal energy change due to 

flexible deformations (including bond stretching, angle bending and torsional energy terms), 

and  ∆𝑆𝑠𝑐 is the loss of side-chain entropy upon binding. The last term,  ∆𝑆𝑡𝑟𝑣  accounts for 

translational, rotational, and vibrational entropy change upon binding [46,47]. Since ∆𝑆𝑡𝑟𝑣 is a 

weak function of the size and shape of the interacting proteins [48,49], it will be considered 

constant. The above free energy expression can be substantially simplified when used for 

docking or scoring. Since 𝐺𝑅 and 𝐺𝐿 are constant, i.e., they do not depend of the conformation of 

the complex in an arbitrary reference state, ∆𝐺 = 𝐺𝐶.  

One important factor in the implementation of free energy scoring function is the 

complexity. Since protein docking requires filtering or sampling millions of plausible complex 
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structures, the more sophisticated, and perhaps more accurate, methods in the literature are 

computationally expensive and are not suitable for free energy screening, e.g., free energy 

perturbation [50], Poisson–Boltzman [51], atomic continuum electrostatic [52], and generalized-

Born solvation [53].  

1. Internal energy 

Internal energy 𝐸𝑖𝑛𝑡 includes three different types of intra-molecular forces that describe bond 

stretching, angle bending, and bond torsion (Equation III-10). 𝑘𝑠𝑡𝑟𝑒𝑡𝑐ℎ  is the stretching force 

constant with a typical number 500 kcal/mol for an amino acid. 𝑟 is the actual bond length in the 

molecule and 𝑟0 is the natural bond length. 𝑘𝑏𝑒𝑛𝑑  is the angle bending force constant with a 

typical value 50 kcal/mol for an amino acid. 𝜃 is the actual bond angle in the molecule and  𝜃0 is 

the natural bond angle.  𝑘𝑡𝑜𝑟𝑠𝑖𝑜𝑛 is the barrier to free rotation for the natural bond with a typical 

value 5 kcal/mol for an amino acid, n is the periodicity of the rotation, and 𝜑 is torsion angle. 

Because internal energy change ∆𝐸𝑖𝑛𝑡 is small compared to the other terms in the binding free 

energy expression in protein–protein association [45,48,54], we neglect it to simplify the 

calculation.  

 

 

𝐸𝑖𝑛𝑡 = �
1
2
𝑘𝑖�𝑠𝑡𝑟𝑒𝑡𝑐ℎ�𝑟𝑖� − 𝑟𝑖�0�

2

(i,�)∈�onds

+  �
1
2
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+  � 𝑘𝛽𝑡𝑜𝑟𝑠𝑖𝑜𝑛(1 + cos (𝑛�φ� − φ�
0)
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Equation III-10 
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2. Electrostatic interaction 

The electrostatic interaction 𝐸𝑒𝑙𝑒𝑐 is obtained by a simple Coulombic potential with the distance 

dependent dielectric of 4r: 

 ∆𝐸𝑒𝑙𝑒𝑐 =
1

4𝜋𝜀𝜀0
�

𝑞𝑖𝑞�
𝑟

𝑖<�

 

𝜀 = 4𝑟 

Equation III-11 

where charge pair {q1, q2} have a distance of r and 𝜀0 describes the vacuum permittivity. Implicit 

solvation is described by a simple distance-dependent dielectric model 𝜀. For more detail about 

our implicit solvation model, see section IV.C.1.  

3. Desolvation interaction 

The desolvation free energy change ∆Gdes accounts for hydrophobic interactions. The expression 

∆𝐺𝑑𝑒𝑠 − 𝑇 ∆𝑆𝑠𝑐  is modeled by the atomic contact energy (ACE) term  ∆𝐺𝐴𝐶𝐸 , an empirical 

knowledge-based contact potential [55]. In ACE, the local interactions between two molecules 

are given by 

 ∆𝐺𝐴𝐶𝐸 = ��𝑒𝑖�
�𝑖

 Equation III-12 

where the sum is taken over all atom pairs that are less than 6 Å apart. The term 𝑒𝑖� denotes the 

atomic contact energy of between atoms i and j, and is defined as the effective free energy 

change when a solute–solute bond between i and j is replaced by a solute–solvent bond. 
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Although the atomic contact energies were estimated by a statistical analysis of atom pairing 

frequencies in high-resolution protein structures rather than in complexes, the function has been 

used to calculate the contribution of ∆𝐺𝑑𝑒𝑠 − 𝑇 ∆𝑆𝑠𝑐to the binding free energy in a number of 

applications by our group and other groups [33,35,56,57,58,59,60]. By including ACE and 

electrostatic energy, the binding free energies, calculated for nine protease-inhibitor complexes, 

were typically within 10% of the experimentally measured values [55]. 

With the above simplifications, the free energy function is reduced to the form: 

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 + ∆𝐸𝑣𝑑� − 𝑇 ∆𝑆𝑡𝑟𝑣. Equation III-13 

4. Van der Waals interaction 

The van der Waals interaction includes an attractive portion and a repulsive portion. The 

attractive portion stems from induced dipole-induced dipole interactions, i.e., fluctuations of the 

charge distribution in one atom or molecule induce charge fluctuations in a neighboring atom. 

These charge fluctuations lead to an attractive electrostatic interaction. The repulsive portion 

results from the Pauli exclusion principle, a quantum mechanical effect that results in 

unfavorable energies for interpenetrating electron clouds of two approaching atoms. The van der 

Waals interaction is usually approximated by Lennard–Jones potential energy function, which is 

often referred to as 6–12 potential (Equation III-14). At large distances, the energy approaches 

zero. At the intermediate distances, the energy is negative, which leads to attractive forces. When 

the distance between the atoms is further reduced, the repulsive forces grow rapidly and give 

highly positive energies. 

 𝐸𝑣𝑑� =
𝐴
𝑟12

−
𝐵
𝑟6

 Equation III-14 
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The function is often further simplified by assuming van der Waals cancellation. According to 

this assumption, the solute–solute interfaces and solute–solvent interfaces are equally well 

packed, and hence, the intermolecular van der Waals interactions in the bound state are balanced 

by solute–solvent interactions in the free state [48,49,61,62,63,64], reducing the binding free 

energy to 

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 − 𝑇 ∆𝑆𝑡𝑟𝑣. Equation III-15 

We assume van der Waals cancellation as a first-order approximation when evaluating the 

binding free energy of docked conformations in the rigid-body analysis. This approximation is 

necessary, if no energy minimization is performed, because the docked conformations are not 

completely free of steric conflicts, resulting in wildly varying ∆𝐸𝑣𝑑�values. Since the correlation 

between ∆𝐸𝑣𝑑� and the RMSD is close to zero in the rigid-body analysis, the van der Waals term 

is not much more than some high frequency noise. However, the minor overlaps can be easily 

removed by the minimization, and ∆𝐸𝑣𝑑� becomes an important part of the free energy function 

in the further discrimination algorithm. 

5. Entropy change 

Our free energy function includes the association entropy change (∆𝑆𝑡𝑟𝑣).  

 ∆𝑆𝑡𝑟𝑣 = ∆𝑆𝑡𝑟𝑎𝑛𝑠 + ∆𝑆𝑟𝑜𝑡 + ∆𝑆𝑣𝑖𝑏 Equation III-16 

The molecules in solution have degrees of freedom representing overall movements of 

translation, rotation, and internal vibrations. The entropy and the free energy associated with 

these degrees of freedom can be calculated with high precision for simple molecules, e.g., 

polycyclic aromatic hydrocarbons, in the gas phase. The calculation can be extended under 

certain conditions to larger molecules and to proteins. It yields the price, the association entropy 
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penalty −𝑇 ∆𝑆𝑡𝑟𝑣, that must be paid for degrees of freedom lost when two molecules associate to 

form a stable complex such as an antigen–antibody complex or an enzyme-inhibitor complex, 

where their movements are highly constrained. This price, a reduction of entropy, which depends 

on the residual mobility of the components in the complex, has been empirically estimated to be 

15 kcal/mol [65,66]. This free energy cost must be paid by favorable interactions between the 

molecules and by the increased entropy of the solvent.  

The translational, rotational, and vibrational entropy of a protein changes weakly as a 

function of its size and shape. To illustrate this idea, let’s consider a simplified model of the 

protein-ligand association (Equation II-9). We assume that the ligand molecule is much smaller 

compared to the protein. Under this assumption, the protein term and the complex term will 

cancel each other, and the free energy change due to translational entropy change will be only 

relevant to the ligand with an approximate form of:  

 ∆𝐺𝑡𝑟𝑠 = −𝑅𝑇𝑙𝑛 ��
2𝜋𝑚𝑘𝑇
ℎ2 �

�
2
𝑉�,  Equation III-17 

where R is the ideal gas constant, T is the temperature, m is the molecular weight of the ligand, V 

is the volume and h is Planck’s constant. For a 10-residue long ligand with an average weight of 

1300 u, and at temperature of 300K, the standard state translational free energy is 10 kcal/mol. 

For a ten-fold bigger ligand with 100 residues and weight of 13000 u, the translational free 

energy increases by 2 kcal/mol. We see that translational entropy change is relatively insensitive 

to the mass of ligands. Of course, the approximations involved in this derivation are difficult to 

validate, and experience tell us that size as well as different intrinsic flexibilities of protein 

structures bring about protein specific terms that so far have been impossible to estimate 

quantitatively. Hence, to simplify protein–ligand binding and considering that protein domains 
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are overall structurally conserved, we consider the association entropy change as a constant for 

ligands with similar size. The complete derivation is shown in Chapter 4 of [27] and Chapter 11 

of [26].   

 

6. Binding free energy 

In this thesis, we use Equation III-15 to estimate the binding association between folded proteins. 

Please note, in practice, our folded protein–folded protein docking program using Equation 

III-18 as scoring function by dropping −𝑇 ∆𝑆𝑡𝑟𝑣, which is a constant (15 kcal/mol).  

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 , Equation III-18 

7. FastContact: A free energy scoring web server 

FastContact is a well-established, freely available tool to estimate empirical binding free energy 

of folded protein–protein interactions [32,59], which is developed by Dr. Camacho’s group. 

FastContact takes into account intermolecular Coulombic electrostatic potential (ΔEelec) and an 

empirical desolvation contact free energy (ΔGACE) as we mentioned before. Users submit two 

proteins in PDB format, and the output is emailed back to the user in three files: one output file, 

and the two processed proteins. Besides the electrostatic and desolvation free energy, the server 

reports residue contact free energies that rapidly highlight the hotspots of the interaction and 

evaluates the van der Waals interaction using CHARMM. Response time is ~1 min. The server 

has been successfully tested and validated, scoring refined complex structures and blind sets of 

docking decoys, as well as proven useful predicting protein interactions. FastContact offers 



 33 

unique capabilities from biophysical insights to scoring and identifying important contacts. 

FastContact is available at http://structure.pitt.edu/servers/fastcontact/. 

C. APPLICATION OF FREE ENERGY SCORING FUNCTION 

1. Capri Target 45 

CAPRI is a community-wide experiment to assess the capacity of protein-docking methods to 

predict protein–protein interactions [58,68,69]. The Hendrick Kim group at the European 

Bioinformatics Institute (EBI) hosts the CAPRI experiment. In each round, one or more protein–

protein complex targets is released and the participant groups submit their blind structure 

predictions before the deadline based on the known structure of the component proteins and their 

own docking methods. After the submission deadline, the native complex structure results will 

be published and the performance of each participant will be ranked by several criteria, such as 

fraction of native residue–residue contact, the RMSD values of the ligands after superimposing 

the receptors of the prediction, and the native complex structures. Since first round in 2001, 

CAPRI has already been a powerful driver for the community of computational biologists who 

develop docking algorithms. These targets, 52 targets as of Apr. 2011, can be used as a 

benchmark data set, complementary to Weng's docking benchmark data set [70]. 

Recently Fleishman et al. have developed a computational method for de novo design of 

protein binders [71]. This method has successfully produced two proteins that bind to a sterically 

hindered and, therefore, challenging surface on Spanish Influenza Hemagglutinin (SC1918/H1 

HA; hereafter referred to as HA) and, following in vitro evolution 2–4 mutations in the periphery 
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of each of these interfaces, improved binding to low nano molar dissociation constants. Though 

encouraging, 71 other designed proteins that were predicted to bind did not experimentally 

interact with HA, as determined by yeast cell-surface display screening experiments [72], which 

highlights the limitations in the understanding of protein-binding energetic and their 

repercussions for the ability to design novel protein functions.  

Capri Target 45 is hosted to test the current understanding of interface energetic. 

Structures of 87 designed complexes that have very favorable computed binding energies, but 

most do not appear to be formed in experiments, and 120 naturally occurring complexes, from 

ZDock2.0 and ZDock 3.0 dataset [73,74], are provided. 28 Participants are asked to identify 

energetic contributions and structural features that distinguish between the two sets. 

2. Results and discussion 

All 207 protein complexes were first processed through 20x3 energy minimization using ABNR 

(adopted basis Newton–Raphson) steps and the CHARMM-19 potential with polar hydrogen 

only, distance-dependent dielectrics ε = 4r, and fixed backbone. Then, each protein complex was 

evaluated by two free energy scoring functions, respectively:  

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 , Equation III-19 

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 + ∆𝐸𝑣𝑑�+ ∆𝐸𝑖𝑛𝑡 , Equation III-20 

where Equation III-19 is referred as FastContact and Equation III-20 is referred as SmoothDock. 

∆𝐸𝑒𝑙𝑒𝑐 is electrostatic potential and ∆𝐺𝐴𝐶𝐸  is desolvation contact free energy. ∆𝐸𝑣𝑑� and 

∆𝐸𝑖𝑛𝑡 are the change in van der Waals and internal energy upon binding.  

FastContact uses a biophysical meaningful threshold −21.62 kcal/mol. This threshold 

corresponds to 10−5 M (−6.62 kcal/mol) adding in the −15 kcal/mol entropy loss, successfully 
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screened 69 natural complexes out of 120, with 58% sensitivity and 60 designed complexes out 

of 87, with specificity 69%. SmoothDock discriminated the target with 58% sensitivity (70 out of 

120) and specificity 89% (77 out of 87) by using an empirical threshold −79 kcal/mol. The 

energy scores by FastContact and by SmoothDock are shown in Figure III-1. It is clearly shown 

that SmoothDock has the best performance to discriminate the designed complexes from the 

natural complexes. The performance of SmoothDock is also represented in ROC curve in Figure 

III-2 with 77% AUC (area under curve). The sensitivity, specificity, true positive rate, and false 

positive rate are defined in the following formulas:  

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝐹𝑁

 

= 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 

 

Equation III-21 

 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑁

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑁 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝐹𝑃
 Equation III-22 

 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑇𝑁
 Equation III-23 

where TP, TN, FP, FN are true positives, true negatives, false positives, and false negatives, 

respectively. 

It is known that predictions of empirical scoring functions depend on the underlying 

molecular modeling technique [75]. This is particularly true for predictions based in co-crystal 

structures, which capture the optimal complementarity of intermolecular forces, relative to model 

protein complexes that lack a consistent force field to minimize internal energies. FastContact 

[31,33,58,60], one of the first free energy based scoring functions used to predict protein 

interactions, reflected this dichotomy. Indeed, on the one hand, it showed almost identical 

sensitivity and specificity rates when discriminating complex structures in the PDB regardless of 

whether one accounts for changes in van der Waals (∆Evdw) and/or internal (∆Eint) energies, 
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predicted sensitivity rates for ZDock datasets are 58% (69 true positives out of 120 total) and 

58% (70 true positives out of 120) for FastContact and SmoothDock, respectively. On the other 

hand, the simultaneous discrimination of both co-crystal and designed model structures showed a 

20% increase, from a FastContact prediction of 69% to 89% in specificity when accounting for 

∆Evdw and ∆Eint, reflecting the shortcomings of refining backbone rearrangements. It is important 

to stress that our predictions do not involve any prior knowledge of protein–protein interactions, 

nor have we made any attempt to incorporate features of the Rosetta scoring function in our 

analysis. 

 

Figure III-1: Free energy scores of Capri Target 45 by FastContact (A) and SmoothDock (B). Designed are 

designed protein complexes. ZDock2.0 and ZDock3.0 are native protein complexes. FastContact provided a 

discrimination result with 57.5% specificity and 69% sensitivity with a physical −21.62 kcal/mol (−10−5 M) 

threshold. SmoothDock showed discrimination with 58% specificity and 89% sensitivity with an empirical threshold 

at −79 kcal/mol. 
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Figure III-2: ROC curve of discrimination results of Capri Target 45 by SmoothDock free energy function.  

X-axis is false positive rate and y-axis is true positive rate. Each point showed corresponding sensitivity and 

specificity by different free energy discrimination threshold. The total area below the ROC curve is 77%. 
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IV. PREDICTING THE INTERACTIONS BETWEEN PROTEINS AND DISORDERED 

PEPTIDES 

In this chapter, we explain PepDock, a novel docking method to predict protein-peptide 

interactions. We introduce protein-peptide interactions and the design of PepDock methodology. 

PepDock has been applied to screening the interactions involving PDZ domains. The 

discrimination results validate the capabilities of PepDock to estimate binding affinity and 

predict complex structure accurately and robustly. More important, these results help us to 

explore the mechanism behind PDZ–peptide association, which will be shown in results and 

discussion. PepDock development and application to PDZ–peptide screening are completed by 

the author and directed by the dissertation advisor.  

A. OVERVIEW 

1. Interactions between adapter proteins and disordered peptides 

In addition to the biological interactions between two structured proteins, there is another class 

of interactions that involve one structured protein and one intrinsic disordered protein. In fact, 

the occurrence of unstructured regions of significant size (>50 residues) is surprisingly common 

in functional proteins [76,77]. The intrinsically disordered proteins are commonly observed in 
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crucial areas, such as transcriptional regulation, translation, and cellular signal transduction, of 

which their functional roles have been recognized only recently [4].  

In signal transduction, the assembly of proteins into biochemical pathways or networks is 

typically by the association of autophosphorylated receptor tyrosine kinases with cytoplasmic 

proteins containing specialized protein modules that mediate formation of signaling complexes 

[10]. The kinases normally have broad substrates and may be used in many biological 

interactions. One mechanism to organize the correct repertories of enzymes into individual 

pathways quickly and precisely is achieved by recruitment of scaffolding proteins, which can 

localize signaling molecules with certain disordered peptides region to the site of reaction.  

The scaffold proteins, also referred as adapter proteins, are usually well structured with 

conserved binding sites. When disordered peptides from signaling proteins bind to the pocket, 

they fold into an ordered structure. The procedure of folding and binding begins with a non-

specific intermediate that evolves to the fully bound/folded state without dissociation from its 

target [17]. This mechanism resembles the so called “fly-casting” effect [78], which suggests that 

non-specific interactions of unstructured regions can enhance the binding rate by having a 

greater capture radius. Disordered proteins have two features that provide important functional 

advantages for signaling [19,76,79]. First, disordered regions can bind their targets with high 

specificity and low affinity. They tune the binding affinity to maximize the specificity of 

promiscuous interactions [15]. Second, intrinsic disorder promotes binding diversity by enabling 

proteins to interact with numerous partners. 

Typical peptide-binding domains in the signal transduction are SH2, SH3, PDZ, PTB, 

WW, and 14-3-3 domains (Figure IV-1). One important characteristic among these interactions 

is that each domain has a conserved binding motif and binds relatively structureless linear 
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peptides. For example, SH2 domains bind specific phosphotyrosyl residues on activated 

receptors, SH3 domains bind to poly-proline motifs on a separate set of target proteins, and class 

I PDZ domain binds peptide with hydrophobic anchor residue (Table IV-1). Hence, a natural 

question to ask is, “How and why does nature regulate signal transduction through these 

disordered motifs?” 

 

 

Figure IV-1: Protein modules for the assembly of signaling complexes. Several modular domains (in white) have 

been identified that recognize disordered peptide motif (in color) with specific sequences on their target acceptor 

proteins. Different complex structures of same protein module are overlapped by protein modules structure. From 

top left are SH2 domain (PDBID: 1JYR, 1LCJ, 1SPS, 2CI9 and 3MAZ), PTB domain (PDBID: 1IRS, 1UEF, 2G35, 

2YT2 and 3ML4), PDZ domain (PDBID: 1BE9, 1N7F, 2H2B, 3CBX and 3DIW), SH3 domain (PDBID: 1ABO, 

1BBZ, 1N5Z, 1W7O and 2AK5), WW domain (PDBID: 1EG4, 2HO2, 2JO9, 2OEI and 2RLY), and 14-3-3 

(PDBID: 2BR9, 2C1J, 2C74, 2NPM, 2V7D and 2WH0). All protein modules have conserved binding grooves and 

are identified to bind disordered peptides with sequence consensus. 
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Table IV-1: Target peptide sequence consensus of selected protein modules. 

Protein Modules Target Peptide Sequence Consensus 

SH2 -Yp-X-X-hy- 

PTB -hy-X-N-P-X-Yp- 

PDZ -E-S/T-D-V-COOH 

SH3 -P-X-X-P-X- 

WW -P-P-X-Y- 

14-3-3 -R-S-X-Sp-X-P 

X: amino acid.  
Xp: phosphorylated residue.  
Yp: phosphotyrosine. 
hy: hydrophobic residue.  
COOH: carboxyl-terminus. 
    

2. Interactions of PDZ domains 

PDZ domains, an acronym combining the first letters of three proteins – Postsynaptic Density 

protein (PSD95), Drosophila Disc Large Tumor Suppressor (Dlg1) and Zonula Occludens-1 

(ZO-1), are 80–90 residue long molecular scaffolds, which are typically found as tandem arrays 

in signaling proteins [10,80,81]. They have been shown to mediate protein–protein interactions 

at the plasma membrane, participating in processes such as cell polarity, motor transduction, ion 

transport, among others [81]. In general, PDZ domains bind to a short region of the C-terminus 

of other specific proteins. With close to 180 human proteins containing PDZ modules, these 

promiscuous domains have emerged as a critical modulator of cell regulation, yet the specificity 

and extent of their multiple interactions is still poorly understood.   
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Figure IV-2: Structure of PDZ domain. Ribbon diagram of PDZ3 of PSD-95 that is complexed with a C-terminal 

peptide from CRIPT (PDBID: 1BE9). The structure demonstrates the 5 β-strands and 2 α-helices (green) with the 

peptide (cyan) binding as a β-strand between the helix and the strand. 

 
A significant advancement in our understanding of PDZ adapters was revealed by 

crystallographic studies that demonstrated that the recognition motif includes the C-terminal of 

target proteins [9,82,83,84]. A classic example is MacKinnon and collaborators’ structure of the 

third PDZ domain of the postsynaptic density protein 95 (PSD95-3) bound to the C-terminal of a 

cytoskeleton protein (CRIPT) [9]. PSD95 is a member of the membrane-associated guanylate 

kinase family that contains three PDZ domains, whose binding targets include the NR2 subunits 

of the NMDA-type glutamate receptor [85] and Shaker-type K channels [86]. Based on the co-

crystal of CRIPT and PSD95-3, it was shown that a four-residue long CRIPT strand binds to 

PDZ to form an anti-parallel beta sheet. The strand is anchored [30] by the position “0” C-

terminal hydrophobic residue side chain (by convention, residues of PDZ ligands are numbered 

starting with the last C-terminal residue as occupying the position “0”, penultimate residue as 
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occupying the position −1 and so forth, moving along the ligand sequence from C- to N-

terminus) projecting into the PDZ binding groove and is further stabilized by two backbone 

hydrogen bonds to the COOH-terminal group. Viable PDZ binding interactions have been 

further characterized by either a serine/threonine or a hydrophobic (Φ) reside at position “−2”. 

These two C-terminal consensus motifs, S/T-X-Φ0 and Φ-X-Φ0, are referred to as Class I and II, 

respectively [11]. A third class of PDZ domains, referred to nNOS, prefers negatively charged 

amino acids at the “−2” position [87]. The above notwithstanding, it is important to emphasize 

that the consensus motif (0 to −3) is not enough to secure binding and several other residues 

beyond −3 are needed to form a stable complex [88,89]. 

 

 
 

Figure IV-3: Conserved binding site of PDZ3 domain of PSD-95, a class I PDZ domain.  PDZ domain binds 

peptide strongly through backbonebackbone hydrogen bonds. Dashed lines indicate the hydrogen bonds between 

peptide carboxylate group and PDZ backbone, between peptide backbone and PDZ backbone, and peptide side chain 

with PDZ side chain. 
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3. Screen the interactions between PDZ domain and disordered peptides 

Despite the modular nature of the PDZ interactions, detection of their binding partners has 

remained elusive. Traditional in vivo and in vitro assays are hampered by the relatively weak 

binding constants (~μM) [90], which are common in signal transduction, and the intrinsic 

disorder of the C-terminal peptides. To overcome some of these problems, novel proteomics 

techniques of PDZ-peptide interactions have been developed, resulting in a number of validated 

sequence specific targets of PDZ domains. Kurakin et al. [88] used a semi-quantitative ELISA 

assay to screen the relative affinities of both 126 natural and 95 phage selected artificial peptides 

that included the C-terminal consensus motifs against PSD95. This experiment confirmed the 

aforementioned recognition pattern of amino acids in the window “0” to “−3”, and showed that 

other amino acids in the window “−4” to “−7” also play a role in binding. MacBeath's group 

used microarrays and quantitative fluorescence polarization to study the binding selectivity of 

157 mouse PDZ domains against 217 genome-encoded peptides [91]. Madsen et al. used a 

similar technique to assess the affinity of PICK-1 PDZ with its partners [92]. Pei's group 

developed a new methodology to synthesize and screen peptide libraries containing free C-

termini and applied the method to identify consensus recognition motifs of PDZ domains [93].   

Complementary to proteomics efforts, researchers have used computational methods to 

gain biophysical insights into the binding of peptides [22,23,94,95] to specific scaffolds. Based 

on MD simulations, Basdevant and co-workers [94] concluded that PDZ domain interactions are 

characterized by favorable non-polar contributions and negligible electrostatics, a result that is 

not easy to reconcile with at least some PDZ domains for which Lys and Arg salt bridges appear 

to be important for binding [88]. Niv and Weinstein [22] developed a simulated-annealing 

procedure to dock flexible peptides. They tested their methods in 5–8 residue long peptides 
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binding to known structures, obtaining excellent docking to bound PDZ domains. Complexes 

were scored using the CHARMM interaction energy, including the internal energy of the 

peptide, but not its entropy. Wang’s group [23] attempted to further include entropic effects 

using MD simulations. Binding free energies of 15 SH3 binding peptides did not compare well 

with experiments, though the method showed some success correlating experimental and 

predicted changes in free energy from closely related sequences. No structural validation was 

presented for the predictions. Missing is a structure-based approach capable of predicting novel 

PDZ-ligand complexes and their specificities. We note that traditional docking methods can 

predict docked models [22,96]. However, the lack of accurate estimates of changes in entropy, 

van der Waals interaction, and internal energy upon binding has so far limited the successful 

prediction of de novo physical interactions. 

A different computational approach for predicting PDZ binding peptides involves 

machine-learning techniques [20,97]. In particular, MacBeath's group used their experimental 

interaction data to construct a position-specific scoring matrix to predict PDZ–peptide 

interaction, resulting in optimal sensitivity–specificity ratios of 70–80% [20]. These methods, 

however, are limited by the training data set. 

B. PEPDOCK: AN NOVEL COMPUTATIONAL METHOD TO PREDICT 

INTERACTIONS BETWEEN PROTEINS AND DISORDERED PEPTIDES 

Although there are several computational methods to screen PDZ–peptide interactions, there are 

still several concerns: (1) there is no good scoring function that can give a reasonable estimation 

of binding free energy. Most groups use interaction free energy change or specific scoring 
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function and compare their score to the benchmark to screen binding affinities. (2) Screening a 

new peptide may require much time. Missing is a structure-based approach to predict novel 

PDZ-ligand complexes and their specificities. Here, we present a structure-based computational 

method to predict interactions of disordered peptides with applications to PDZ adapter proteins. 

The method, referred to as PepDock, uses a selected known PDZ complex structure as template 

for the C-terminal recognition motif, and a novel semi-flexible docking approach and scoring 

function to minimize the full binding free energy under the assumption that peptides are fully 

disordered in the unbound state. Backbone flexibility is accounted for by developing a 

comprehensive library of peptide backbones extracted from molecular dynamics (MD) 

simulations, and side chain conformations are sampled by using Dumbrack’s rotamer library 

[98]. Strain is maintained below a self-consistent optimal threshold to prevent unrealistic 

conformations, while van der Waals cancelation [30,61] is also enforced by a self-consistent 

threshold [59]. Each docked conformation is scored based on an atomic empirical free energy 

function that includes electrostatics, desolvation, and full entropy loss [60,99,100] upon 

association.  

1. The methodology of PepDock 

The biggest differences between flexible peptide docking, which is docking flexible peptides to 

structured receptor proteins, and regular protein–protein docking are that a conformation 

ensemble of peptide is needed to describe the dynamics of the peptide, and searching the optimal 

complex of the peptide ensemble with receptor protein requires huge computational work 

compared to regular protein–protein docking. In general, the scheme of flexible peptide docking 

can be divided into four stages: preprocessing, rigid-docking, refinement, and scoring [101]. In 
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the preprocessing stage, the flexibility of peptide is sampled by Molecular Dynamic (MD) or 

Monte Carlo (MC) simulation and the generated conformation ensemble will be docked to the 

receptor protein in the next step. When the binding site of receptor protein is unknown, the 

computational complexity and consuming time will increase dramatically with the increasing 

size of conformational ensemble comparing. However, for peptides binding to adapter proteins, 

the task is simpler. With crystal structures of the complexes, it is possible to restrain the docking 

in the known binding sites and reduce the conformation sampling space of flexible peptides.  

The advantages of PepDock are these: (1) It samples the peptide dynamic of one given 

amino acid sequence by sampling its backbone and side chain conformations separately. The 

peptide backbone model is extracted from a shared peptide backbone library and side chain 

conformation is iterated by using Dumbrack’s rotamer library. This design allows us to use one 

predefined peptide backbone library to approximately model the backbone of any peptides 

binding to one group of PDZ domains with consensus sequence. (2) One selective known PDZ–

peptide complex is used as the structural template to predict new PDZ–peptide complexes. The 

PDZ from the template complex and PDZ in the prediction are not necessarily identical, but must 

have certain structural and binding similarity. By structural analysis of PDZ complexes from the 

Protein Database, we have grouped 55 different PDZ domains into several groups and use the 

center PDZ complex of each group to predict the interactions of PDZs from the same group. For 

example, PSD95-3 domain complex structure (1BE9) is used as the template to predict PDZ 

interactions of ZO1-PDZ1 domain, SAP97-PDZ3 domain, GRIP1-PDZ6 domain, etc. These two 

design characteristics dramatically simplify computational complexity and enable PepDock to 

predict one PDZ interaction in 30 minutes. (3) PepDock models entropy changes upon binding 

by adding residual contribution along the peptide with the simplified conditions that peptides are 
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completely disordered before association and bind to PDZ domain following the "Anchor 

Model".  Residual entropy changes are inferred from experimental and computational analysis 

[99,100] (See IV C.2 for detail). By incorporating entropy change into its scoring function, 

PepDock provides an estimation of absolute binding affinities with successful performance 

statistics.  

In design, PepDock includes three components: preparing, docking, and searching 

(Figure IV-5). For one adapter protein domain, preparing will sample the peptide backbone by 

using MD or MC simulation. Docking will dock the peptide backbone models into the binding 

site of the adapter protein domain, iterate side chain conformation of 20 amino acids on each 

peptide residual position, evaluate the individual residual free energy contribution, and save it 

into the scoring function database. For any input target peptide sequence, searching will search 

the lowest free energy combination from the scoring function database and then assemble the 

complex according to the combination. Please note that preparing and docking, which consumes 

most computational time, are required to run only once before predicting any peptide sequence 

binding to one specific PDZ protein domain.   

Preparing I: generate the peptide backbone models. Based on the characteristics of PDZ 

protein domain, choosing 10-residue long typical binding peptide sequence alone (not with the 

PDZ) as the input, we used 10 ns Molecular Dynamic (MD) simulation to generate peptide 

dynamic sampling snapshots, extract the backbone structures from peptide snapshots, cluster and 

select group center structures as the peptide backbone models in the library (Figure IV-4).  

Preparing II: dock the peptide backbone models within the library onto the target PDZ 

based on the template complex structure. Target PDZ domain structure is aligned to PDZ 
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structure in the template complex and peptide backbone models are overlaid to the backbone 

between 0 to −4 of the C-terminal peptide in the template. 

Preparing III: establish van der Waals (vdW) thresholds. Docked backbone complexes 

are energy minimized as described below. The resulting distribution of the vdW is used to set 

self-consistent energy threshold feasible complexes, above which docked complexes are 

eliminated and the backbone model is considered as infeasible. This approach circumvents the 

problem of optimizing backbone conformations by considering only complexes that do not build 

strain or clashes in the complex. 

Docking: sampling amino acid side chain conformations and generating scoring function 

database. For each residual position on the docked peptide backbone, we iterate all 20 amino 

acids in all rotamer conformations [31]. Each rotamer is minimized locally on the docked 

backbone complex and its contribution to binding is estimated by the modified FastContact [34] 

free energy scoring function. The score is saved into a residual scoring database, which has all 

feasible backbones (~300), all amino acids (20) and their rotamers (~10 per amino acid) for 10 

residue positions, i.e., a total of around 600,000 free energies. 

Searching I: search for the rotamer combination of target peptide sequence on one 

feasible backbone model. Complex structure of the target peptide sequence on one feasible 

backbone model is predicted by searching for the rotamer with the lowest binding free energy at 

every position along the peptide. The structure is energy minimized and checked by the vdW 

threshold, side chain clashing, and hydrogen-bond competition. If any check fails, the complex is 

discarded and the next lowest free energy model is built and checked, and so on. 

Searching II: search for complex structure with the lowest free energy. Repeat step 

Searching I for all feasible peptide backbone models. The final predicted complex structure is the 
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one with the lowest binding free energy. Plot free energy landscape based on rotamer 

combinations in the residual scoring matrix. Note that the minimum binding free energy can 

occur for any number of residues up to a maximum of ten. 

 

 

Figure IV-4: Peptide backbone model library.  The peptide backbone models are extracted from 8 ns of total 10ns 

MD simulation of peptide alone with C-terminal motif (“0” to “−4”) backbone restrained. The snapshots are 

grouped into different groups by an iterative clustering algorithm with 1.8 A RMSD threshold. The center snapshots 

of each cluster are selected as the backbone models.  We repeat above steps with by three strong binding peptide 

sequences against interested PDZ domains and generate a backbone library with ~500 models. 
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Figure IV-5: Flow chart of PepDock methodology.  I. Dock peptide backbone models into the protein domain and 

determine the vdW energy threshold. II. Sample amino acid side chain conformations on the docked peptide 

backbones and estimate the binding free energy contributions by scoring function. III. For one target peptide 

sequence, search the optimal combination of side chain conformations with the lowest free energy on each backbone 

models. IV. Search the most optimal result in all docked complex models.  
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Template complex structure: We use the structure of the complex of PSD95-3 domain with 

CRIPT peptide as the template to predict PDZ–peptide interactions (PDB id, 1BE9), not only 

because PDZ95-3 is the most studied PDZ domain, but also it is the best template to represent 

the same class of PDZ domains in the PDB database (see discussion for more detail). Also, if the 

target adapter protein has a crystal structure in complex with some peptide in PDBs, this 

complex structure, referred to as bound template, will be used as the template for the target 

protein. Otherwise, the representative PDZ–peptide complex in each PDZ group from our 

structural alignment study will be chosen as the template, as unbound template. For example, we 

use PDB 2H2B as the bound template for screening the interactions of target ZO1-PDZ1 domain, 

and also use PDB 1BE9 as the unbound template for ZO1-PDZ1 domain.  

Semiflexible peptide backbone models: Based on the structural similarity of the bound C-

terminal motif of PDZ binding peptides, we assume that the C-terminal recognition motif 

resembles the peptide in the template complex structure. Due to the high similarity of PSD95-3 

to other PDZ domains, we use the bound C-terminal CRIPT peptide [8] between residues “−4” 

and “0” as a template for our docking studies. Based on this assumption, we assembled a 

backbone library of 15 residue long peptides from equilibrium snapshots of MD simulations in 

explicit solvent [44], where the backbones of the 5 residues at the C-terminal end (except C-α) 

were restrained as in CRIPT (forming an anti-parallel beta sheet with PSD95-3). The force 

constant of the harmonic constraint was set to 2.4 kcal/mol/Å2. We ran 10 ns MD on three 

different sequences that have the strongest affinities to PSD95-3 twice, with and without the 

extra hydrogen at the amino terminal, keeping 2000 snapshots from the last 8 ns of each 

simulation (MD protocol is as in [30]). Finally, clustering the backbones of the last 10 residues 

(after superposition of the 5 restrained C-terminal residues) of each MD snapshot using a 1.8 Å 
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radius resulted in 559 representative backbone cluster centers. We also tested extracting the 

backbone library from MDs with peptide residues from “−3”-to-“0” restrained. However, these 

backbones were consistently clashing or moving away from the PDZ, resulting in poor 

complexes. 

Energy minimization: I use CHARMm27b3 [43] to compute energy minimizations after 

performing 60 (3 rounds of 20 steps) adopted basis Newton–Raphson (ABNR) steps of fixed 

backbone energy minimization. The distance threshold of non-covalent interactions is 15 Å, and 

the long-range electrostatic screening is calculated with a distance-dependent dielectric of ε = 4r.  

C. BINDING FREE ENERGY FUNCTION OF FOLDED PROTEIN-DISORDERED 

PEPTIDE ASSOCIATION 

Compared to the association of two folded proteins, which is assumed no conformational change 

occurred upon the formation of a complex, the association of flexible peptide and protein 

involves a disorder/order transition in the peptide fragment. The bound peptide segment has a 

unique conformation, but the unbound peptide fragment has multiple conformations (Figure 

IV-6). If peptide is fully disordered, one needs to account further for  ∆𝑆𝑝𝑒𝑝, the folding entropy 

loss of the flexible peptide: 

 
∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐸𝑣𝑑� + ∆𝐺𝑑𝑒𝑠 + ∆𝐸𝑖𝑛𝑡 − 𝑇 ∆𝑆𝑡𝑟𝑣 

            −𝑇 ∆𝑆𝑝𝑟𝑜 − 𝑇 ∆𝑆𝑝𝑒𝑝, 
Equation IV-1 

 ∆𝑆𝑝𝑟𝑜 =  ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑝𝑟𝑜 , Equation IV-2 

 ∆𝑆𝑝𝑒𝑝 =  ∆𝑆𝑏𝑏
𝑝𝑒𝑝 + ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑

𝑝𝑒𝑝 + ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑝𝑒𝑝 , Equation IV-3 
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where ∆𝑆𝑝𝑟𝑜 represents the protein entropy change, which includes only surface side chain 

entropy change since it is folded. ∆𝑆𝑝𝑒𝑝  is the entropy change of the flexible peptide upon 

binding, which includes backbone (∆𝑆𝑏𝑏
𝑝𝑒𝑝), surface side chain, ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑝𝑒𝑝 , and buried side chain 

∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑
𝑝𝑒𝑝  entropy change. Freire, Amzel, and collaborators carefully estimated these values for 

each residue [99,100]. Hence, a fully consistent binding free energy for docking disordered 

peptides can be written as 

 
∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐸𝑣𝑑� + ∆𝐺𝑑𝑒𝑠 + ∆𝐸𝑖𝑛𝑡 − 𝑇 ∆𝑆𝑡𝑟𝑣 

            −𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑝𝑟𝑜 − 𝑇�∆𝑆𝑏𝑏

𝑝𝑒𝑝 + ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑
𝑝𝑒𝑝 + ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑝𝑒𝑝 �. 
Equation IV-4 

And with the assumption of negligible internal energy and Van der Waals cancelation, which are 

used in the folded protein–protein association, it can be simplified to 

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 − 𝑇∆𝑆𝑡𝑟𝑣 − 𝑇�∆𝑆𝑏𝑏
𝑝𝑒𝑝 + ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑

𝑝𝑒𝑝 �, Equation IV-5 

 ∆𝐺𝐴𝐶𝐸 =  ∆𝐺𝑑𝑒𝑠 − 𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑝𝑟𝑜 − 𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑝𝑒𝑝 , Equation IV-6 

where ∆GACE  is the atomic contact energy term, as we mentioned before. 

In principle, a complete binding free energy function should also contain a term reflecting 

the internal energy change associated with the disorder-to-order transition of the peptide. 

However, for simplicity, we take the unfolded state to be highly extended, and, because the 

bound state is also extended peptides, the internal free energy difference will be small compared 

to other terms in the expression. 
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Figure IV-6: Folded protein–disordered peptide association. Before binding, the peptide is flexible without 

unique 3-D structure; while, after binding, the peptide folds into a specific structure in the binding groove of its 

interaction partner protein. 

1. Implicit solvent model  

Electrostatic interactions are obtained by a simple Coulombic potential with the distance 

dependent dielectric of 4r (Equation III-11). Protein molecules exist in solution surrounded by 

water molecules that promote their shapes and stabilities. These water molecules decrease the 

potential of mean force of a salt bridge bond, a hydrogen bond, as well as modulate solvation 

forces. Recent studies show that introducing a solvation factor to describe the role of water 

molecular in protein–DNA interactions can significantly improve the accuracy of binding free 

energy estimation [102,103]. To incorporate the solvation effect and minimum distance in the 

salt bridge bond interactions, we apply following factor in our free energy calculation:  

 

∆𝐸𝑒𝑙𝑒𝑐� = (1 − 𝜆�) ∗ ∆𝐸𝑒𝑙𝑒𝑐 , with 

𝜆� = �0.4,  when ∆𝐸𝑒𝑙𝑒𝑐 ≤ −4 kcal/mol
0,  when ∆𝐸𝑒𝑙𝑒𝑐 > −4  kcal/mol

� 
Equation IV-7 
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where 𝜆�  is the solvation factor, ∆𝐸𝑒𝑙𝑒𝑐  is the coulumbic potential, and ∆𝐸𝑒𝑙𝑒𝑐�  is the solvated 

electrostatic potential. The threshold of 𝜆�,−4 kcal/mol, is choosen as the energy corresponding 

to the maximum salt bridge bond distance 4 Å on Figure IV-8.  To determine the optimal value 

of  𝜆� , we iteratively tested the statistical performance of our scoring function in the 

discrimination of 126 human peptides binding against PSD95-3 domain (see section IV D.2 for 

more detail) with different 𝜆�  value. Our results show that  𝜆� = 0.4  with criteria ∆𝐸𝑒𝑙𝑒𝑐 ≤

−4 kcal/mol  corresponds to the maximum sum of the sensitivity (Equation III-21) and 

specificity (Equation III-22) of discrimination and makes sure ∆𝐸𝑒𝑙𝑒𝑐�  is a smooth function. In 

addition, 𝜆� = 0.4 is consistent with the factor in DNA-protein interaction [102,103].  

One acid group (GLU, ASP) residue can make only one salt bridge contact with a basic 

group (HIS, LYS, ARG) residue. To eliminate double counting effects when two basic group 

residues, e.g., LYS and ARG, are approaching one acid residue, e.g., GLU, we have applied the 

following rule when iterating all atoms to calculate electrostatic energy (Figure IV-7):  

• Only one basic residue can form a salt bridge bond with one acid residue at one time.  

• If two basic residues approach one acid residue in a certain distance, 4 Å between 

heavy atoms, the basic residue with stronger interaction is kept and the other one is 

neglected.  

After introducing the solvation factor and salt bridge contact rule into our scoring 

function, we observed that our peptide–protein docking methodology has improved its free 

energy estimation accuracy and its discrimination performance with higher specificity and 

sensitivity (91% and 74%) than before (95% and 60%) (Figure IV-10, Figure IV-11).  
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Figure IV-7: Eliminate double counting of salt-bridge bonds.  When two basic group side chains try to approach 

one acid group, the scoring function will compare the strength of these two possible salt bridge interactions and only 

count the one with larger free energy contribution and ignore the other one. This consideration highly improves the 

accuracy of the scoring function. 

 
Sensitivity testing of dielectric parameters is conducted to access the effect of the 

dielectric model parameter on the performance of free energy scoring function. Distance 

dependent dielectric model, 𝜀 = 𝛼𝑟𝛽 ,𝛼 = 4 and 𝛽 = 1, is an empirical function derived from 

experimental data. We performed a sensitivity analysis of α and β. Based upon one factor at a 

time methods of local sensitivity analysis, we varied α (4 ± 0.2) and β (1 ± 0.1) on each a time, 

keeping the other fixed. The average free energy landscapes of top 11 strong binders and bottom 

20 weak binder peptides with different parameter values are shown in Figure III-7. Results show 

that four free energy scoring functions with different parameter perturbations can clearly 

discriminate the strong and weak binders and the maximum binding free energy variance 

comparing to standard function is less than 1.6 kcal/mol. This testing proves that distance 

dependent dielectric model with α = 4.0  and β = 1.0 is robust in free energy estimation. 
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Figure IV-8: Searching optimal solvent factor.  To determine the optimal value of solvent factor, we iteratively 

calculate the specificity and sensitivity of PSD95-3 domain binding to 126 human peptides (see Chapter IV for more 

detail) with different values of λw and threshold. We change λw from 0 to 1 while fixing the threshold equal to −4.0 

kcal/mol, and find the sum of sensitivity and specificity reach its maximum and the electrostatic energy  conforms a 

smooth function around (1 − λw) = 0.6 and threshold = −4.00 kcal/mol. The result 1 − 𝜆� = 0.6 is consistent with 

the value of solvent factor in the study of DNA-protein interactions [102,103]. 
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Figure IV-9: Comparison of electrostatic energy function with/without solvent factor. Examples of electrostatic 

energy calculation between acid group and basic group in the discrimination testing of PSD95-3domain binding to 

126 human peptides (see Chapter IV for more detail) with and without solvent factor are shown in blue and red color 

respectively. The electrostatic energy function with solvent factor, (1 − λw) = 0.6 and threshold = −4.00 kcal/mol, 

conforms a smooth function versus the distance between heavy atoms in the acid and basic amino groups.  
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Figure IV-10: Comparison of free energy estimation before and after improvement.  The average binding free 

energy changes of top 11 peptides binding to PSD95-3 domain calculated before improvement (in green), and after 

improvement (in red) show that applying solvation factor to salt-bridge bond and eliminating salt-bridge double 

counting improve the accuracy of free energy estimation.  
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Figure IV-11: Comparison of free energy estimation before and after improvement. Scatter plots of 

experimental affinity versus calculated binding free energy of human peptides binding to PSD95-3 domain before 

improvement (A) and after improvement (B) show that applying solvation factor to salt-bridge bond and eliminating 

double counting not only improve the discrimination performance with higher specificity and sensitivity, but also 

improve the accuracy of free energy estimation.  
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Figure IV-12: Sensitivity analysis of dielectric parameter on the performance of free energy scoring function. 

Plots show the average free energy landscape of top 11 strong binder (blue color) and bottom 20 weak binders (red 

color) with distance dependent dielectric parameter α and β (4 ± 0.2, 1.0) in top plot and (4.0, 1.0 ± 0.1) in bottom 

plot. Top error bars are α = 4.0 + 0.2 or β = 1.0 + 0.1 while bottom error bars are α = 4.0 − 0.2 or β = 1.0 − 0.1. 

Results show that free energy scoring function with parameter perturbations can clearly discriminate the strong and 

weak binders, and the maximum energy variance is less than 1.6 kcal/mol.   
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2. Entropy change 

In both folded protein–folded protein association and folded protein–disordered peptide 

association, we assume that folded protein is a rigid protein that has only the side chain change 

on the contact surface upon binding. Therefore, we need to consider only ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑥 , which is 

already included and calculated by the atomic contact potential (ACE).  

 ∆𝐺𝐴𝐶𝐸 =  ∆𝐺𝑑𝑒𝑠 − 𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 − 𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑙𝑖�𝑎𝑛𝑑 , Equation IV-8 

 ∆𝐺𝐴𝐶𝐸 =  ∆𝐺𝑑𝑒𝑠 − 𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑝𝑟𝑜 − 𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑝𝑒𝑝 , Equation IV-9 

For association of disordered peptides against folded receptor protein, the peptide will 

experience a transition from totally disordered before binding to folded in a unique conformation 

after binding. Therefore, two additional terms −𝑇 ∆𝑆𝑏𝑏
𝑝𝑒𝑝  and −𝑇 ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑

𝑝𝑒𝑝 , together 

with −𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑝𝑒𝑝 , are needed to account for the degree of freedom lost upon binding. The 

term−𝑇 ∆𝑆𝑏𝑏
𝑝𝑒𝑝  represents backbone flexibility loss, and −𝑇 ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑

𝑝𝑒𝑝 represents the entropy 

change upon peptide side chain changes from buried state to exposed state. Since −𝑇 ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑝𝑒𝑝  

has already been included in the ∆GACE, the other two terms are added to our scoring function: 

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 − 𝑇 ∆𝑆𝑡𝑟𝑣 − 𝑇(∆𝑆𝑏𝑏
𝑝𝑒𝑝 + ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑

𝑝𝑒𝑝 ), Equation IV-10 

The magnitude of the conformational entropy change experienced by the peptide backbone 

( ∆𝑆𝑏𝑏
𝑝𝑒𝑝 ) and side chain ( ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑

𝑝𝑒𝑝 and ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑝𝑒𝑝 ) upon protein folding was investigated 

experimentally and by computational analysis (Table IV-2) [99,100]. In [100], Lee et al., 

calculated the energy profiles of amino acid side chains as a function of the dihedral angles. With 

these energy profiles, they directly estimated the probability distribution of different conformers 

and therefore the conformational entropy of side chains of amino acids. D’Aquino et al. extended 
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this method in measuring backbone entropy of amino acids [99]. They first used experimental 

microcalorimetric analysis to measure the backbone entropy change between ALA and GLY. 

Then they followed the energy profile method to estimate the backbone entropy from the 

calculation of the Boltzmann weighted probability of the different conformers available to the 

amino acids.  Computational estimates had been validated with experimental results.  

Then, how do we model the entropy change of the peptide during association? First, we 

assume that, before binding, the peptide is completely disordered or flexible and has positive 

entropy. After binding, part of peptide is folded into a unique conformation and the other part 

remains disordered. During this process, the entropy decreases and there must be some favorable 

interaction energies (either electrostatic or desolvatioin or both) to compensate for the entropy 

penalty. The penalty is estimated as the sum of conformation entropy change of residues which 

lost flexibility:  

 

∆𝑆𝑝𝑒𝑝 = �∆𝑆𝑖
𝑖

 

=  �(∆𝑆𝑏𝑏𝑖
𝑖

+ ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑𝑖 + ∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑖 ),  
Equation IV-11 

where ∆𝑆𝑖  is the entropy change of peptide residue i and ∆𝑆𝑏𝑏𝑖 ,∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑𝑖 ,∆𝑆𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑖  are 

components of peptide residue i. Then the free energy scoring function is in the form:  

 ∆𝐺 =  ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝐴𝐶𝐸 − 𝑇∆𝑆𝑡𝑟𝑣 − 𝑇�(∆𝑆𝑏𝑏𝑖
𝑖

+ ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑𝑖 ) Equation IV-12 

For example, suppose a 10-residue long peptide binds to a PDZ domain protein (receptor).  

Before binding, the peptide is highly disordered in the solution and after binding, the first four 

residues binds tightly to the protein, while the other six residues remain flexible in the solution, 
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as shown in Figure IV-13. The conformation entropy change of the peptide is the sum of the 

conformation entropy change for the first four residues.  

 

Figure IV-13: Example of entropy calculation of 10-residue disordered peptide binding to PDZ protein 

domain.  Binding interaction starts from peptide residue at position 0, the next three residues (“−1” to “−3”) have 

bound to PDZ domain sequentially to the PDZ and the following six residues (“−4” to “−9”) are still free. The 

entropy loss of during the binding interaction is the sum of translation/rotation/vibration entropy change (−15 

kcal/mol) and residual configurational entropy change (from “0” to “−3”). We assume that trans/rot/vib entropy 

change is applied when peptide residue “0” binds to the PDZ protein domain. 

 
Table IV-2: Conformational entropies change of amino acids [99,100] 

Amino Acid ∆Sbu->ex(cal/K∙mol) ∆Sex->u(cal/K∙mol) ∆Sbb(cal/K∙mol) 

ALA 0.00 0.00 4.10 

ARG 7.11 -0.84 3.40 

ASN 3.29 2.24 3.40 

ASP 2.00 2.16 3.40 

CYS 3.55 0.61 3.40 

GLN 5.02 2.12 3.40 

GLU 3.53 2.27 3.40 

GLY 0.00 0.00 6.50 

HIS 3.44 0.79 3.40 

ILE 1.74 0.67 2.18 



 66 

LEU 1.63 0.25 3.40 

LYS 5.86 1.02 3.40 

MET 4.55 0.58 3.40 

PHE 1.40 2.89 3.40 

PRO 0 0 0 

SER 3.68 0.55 3.40 

THR 3.31 0.48 3.40 

TRP 2.74 1.15 3.40 

TYR 2.28 3.12 3.40 

VAL 0.12 1.29 2.18 

 

3. Binding free energy function 

We use free energy scoring function to estimate the residual binding affinity contribution. A 

fully consistent binding free energy for docking disordered peptides can be written as 

 

∆𝐺 =  �∆𝐺𝑖

𝑁

𝑖=0

− 𝑇 ∆𝑆𝑡𝑟𝑣 

= ��∆𝐸𝑒𝑙𝑒𝑐𝑖 + ∆𝐺𝐴𝐶𝐸𝑖 − 𝑇 ∆𝑆𝑏𝑏𝑖 − 𝑇 ∆𝑆𝑏𝑢𝑟𝑖𝑒𝑑𝑖 �
𝑁

𝑖

− 𝑇 ∆𝑆𝑡𝑟𝑣 

 

 

Equation IV-13 

 

If PDZ structure is fixed, items in Equation IV-13 are addable, and one can easily evaluate the 

binding free energy per residue ∆𝐺𝑖, with the caveat that −𝑇 ∆𝑆𝑡𝑟𝑣 is applied only once upon 

forming the encounter complex. We note that internal and vdW energies are assumed to cancel 



 67 

between unbound and bound state, i.e., complexes do not build strain, and solute–solute and 

solute–solvent vdW compensate.  

 

D. SCREEN PDZ–PEPTIDE INTERACTIONS BY PEPDOCK 

To test the performance of free energy scoring function and capability of discriminating strong 

binders from non-binders, we computed the binding affinity of 126 human peptides and 95 

artificial peptides against 2 PDZ domains sequences and compared our discrimination results to 

the published experimental assays data [88]. By using a typical PDZ–peptide binding affinity, 

10−5 M (−6.62 kcal/mol) as threshold, we obtained robust prediction rates. In addition, we 

validated PepDock by predicting the  PDZ–peptide interactions and complex structures on five 

peptides bound to four different PDZ domains PSD95-3 [9], GRIP1-6 [83], ZO1-1 [82], and TIP-

1 [84], where our top ranked models accurately predict crystal structures.  

1. Analysis of PDZ domains in the Protein Data Bank (PDB) 

There are close to 180 human PDZ proteins, including unbound structures in the PDB database. 

Can PepDock screen all of them? For PDZ screening, we generated a peptide backbone library 

from MD simulation of peptide alone, constraining the 5-residue C-terminal motif similar to the 

crystal peptide backbone, i.e., in the simulation, the backbone (position “0” to “−4”) of peptide is 

mimicking the CRIPT from PDB 1BE9. When screening a target PDZ, this library will work 

adequately if target PDZ is similar to PSD95-3 and CRIPT. It will not fit for target PDZ, such as 
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DVL-2 (PDB 3CBX), whose PDZ and peptide are much different from PSD95-3 and CRIPT. To 

find out which groups of PDZs can share the peptide backbone library, we did an exhaustive 

analysis of the bound and unbound PDZ domains in the PDB database and the results showed a 

high degree of structural similarity among PDZs and bound peptides (Figure IV-14, Table IV-3). 

Indeed, clustering [38] the full set of the bound peptides with at least 5-residue long (37 X-ray 

and 14 NMR) shows that the largest cluster is the group of CRIPT peptides, which is bound to 

PSD95-3, including GRIP1-6, ZO1-1, and 9 more PDZ domains. This observation suggests 

PSD95-3 complex structure is the best candidate to model peptides bound to structurally similar 

PDZs and the library can be shared to screen the PDZs of same cluster, such as SAP97-3 in 2I0I 

and ZO1-1 in 2H2B.  For PDZs, such as DVL-2 in 3CBX and MAGI-1 in 1V1T, from other 

groups, PepDock needs a new backbone library. In addition, for PDZs that have only unbound 

structure in PDBs, they could be modeled by using another PDZ complex as template. 

 

Table IV-3: Cluster of PDZ domains from Protein Database. 

Cluster centers Bound complex structures Unbound PDZ structures 

1BE9 
1BE9, 1TP5, 1N7F, 1Q3P, 
2H2C, 2I0I, 2H2B, 1TP3, 
2EJY, 2I0L, 2OQS, 2PNT 

2VRF, 1QAV, 1BFE, 1TQ3, 
2FNE, 2I1N, 1PDR, 2AWU, 
2FE5, 2FCF, 2JIL, 2JIK,  
2JIN, 2QG1, 2AWX   

 

1I92 1I92, 1GQ5, 1GQ4, 1KW4  

1V1T 1V1T, 2EGN, 1W9O, 1W9Q  

2I04 2I04, 2OPG, 2EGN  

1YBO 2I04, 2OPG, 2EGN  
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1RZX 2I04, 2OPG, 2EGN  

 
 

 

Figure IV-14: Structural analysis of PDZ domain in PDB. 51 structures of PDZ complex containing at least 5-

residue long peptides are found in the PDB database. The structural similarity between bound peptides from 

complexes and CRIPT-peptide from PSD95-3 complex (PDB 1BE9), and similarity between PDZs to PSD95-3 PDZ 

domain are shown in the figure: (a) RMSDs between CRIPT and bound peptides after overlaid by fitting first 5 C-

terminal residues to the CRIPT (blue symbols), (b) RMSDs between CRIPT and bound peptides after overlaid by 

fitting core motifs of PDZs to PSD95-3 (red symbols), (c) RMSDs between PSD95-3 and PDZs after overlaid by 

fitting their core motifs to PSD95-3 (green symbols). The correlation coefficient between a and b/c are 0.88/0.30. 28 

of 51 PDZ complexes are clustered into six groups by using pairwise RMSD between overlaid peptides with 0.4 Å 

radius. Clusters are shown in round boxes and the center complex is shown as the first one (blue font). 15 unbound 

PDZ structures, which have RMSD to PSD95-3 less than 0.65 Å, are shown in the square box. Our work concludes 

that PDZs with unbound structures are predictable when their RMSD to PSD95-3 are less than 1.27 Å. 
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2. Screening of human peptides interacting with PDZ domains 

We tested the capabilities of the method to discriminate binding from non-binding peptides by 

screening the binding affinities of two independent experimental assays of 126 natural and 95 

artificial peptides interacting with PSD95-3 and SAP97-PDZ3 domains, individually [88].  

Based on the recognition motif of CRIPT bound to PSD95-3, we followed the procedure 

described in Methodology to minimize the binding free energy for the full set of 126 human 

peptides in Ref. [88]. Figure IV-15 shows the cumulative binding free energy as a function of the 

number of bound residues from the C-terminal “0” to residue “−9” for the top 11 and bottom 20 

(experimentally ranked) interacting peptides. Note that, in principle, the binding order of each 

residue could be arbitrary (see next section for detail). However, Figure IV-15 shows that the 

sequential binding of each residue permits a downhill binding pathway. The binding free energy 

landscapes revealed several insights into the binding mechanism of disordered peptides to PDZs: 

a. The contribution to the binding free energy of the C-terminal residue (ΔG0 ~ −9.5 

kcal/mol) was stronger than any other residue. It results 6 kcal/mol under the assumption that 

first binding residue needs to compensate the −15 kcal/mol association entropy change. Below, 

we argue that only by anchoring the C-terminal first, a disordered peptide can partially 

compensate for the estimated 15 kcal/mol entropy loss upon association; 

b. Binding of the recognition motif between “0” and “−3” is non-specific, whereas residues 

between “−4” to “−8” determine peptide specificity. There is no obvious difference between free 

energy pathways of strong binder and weak binder peptides. Beginning from “−4” position, 

strong binders lower the free energy while weak binders remain flat.  
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Figure IV-15: Specific and non-specific binding landscapes of PDZ–peptide interactions.  Cumulative average 

of the lowest predicted binding free energies for the strongest and weakest binding peptides to PSD95-3(A) and 

SAP97-3 among the full set of 126 natural peptides experimentally ranked in [88]. Plots are shown as a function of 

the number of bound residues starting from the C-terminal Val0 that contributes about −10 kcal/mol to the binding 

free energy, compensating for most of the 15 kcal/mol entropy loss upon association. The average binding free 

energies of strongest and weakest complexes are about −8 kcal/mol and 0 kcal/mol respectively. The landscapes 

demonstrate that peptides bind non-specifically between residues “0” to “−3”, while specificity was determined by 

the remaining residues at the amino end of the peptides. The fact that the lowest free energies are achieved following 

a downhill binding pathway strongly suggests an induced folding zipping mechanism. 
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Figure IV-16: Scatter plot of 126 human peptides binding to PSD95-3 (A) and SAP97-PDZ3 (B) domains.  Y 

axis is relative experimental binding affinity with arbitrary unit and X axis is computed binding free energy 

estimation. Both vertical line (−6.62 kcal/mol) and horizontal line (200 a.u.) correspond to 15 µM binding affinity.  
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c. Different peptides minimize the binding free energy using 7, 8, or 9 residues. None of the 

sequences studied here were found to reach a lower minimum using 10 residues. 

d.  A key group that yields the most dramatic difference between binding and non-binding 

peptides is the side chain at position “−4”. For this position, 9 of the top 10 peptides have Lys or 

Arg (one has Thr) forming a salt bridge with Glu331 of PSD95-3, while the bottom 20 peptides 

have mostly Asp or Glu acids. Residues from “−5” to “−8” are highly variable and in average 

contribute about −2 kcal/mol (per residue) to the binding energy.  

e. The landscapes suggest that the PDZ–peptide binding follows a downhill pathway 

mechanism in which peptides with high specificity undergo induced folding by sequentially 

“zipping” each residue into the binding pocket of PDZ domain while minimizing the binding free 

energy after anchoring the C-terminal residue first. 

Figure IV-16 shows the correlation of computed binding free energy to relative 

experimental affinity for all 126 human peptides screened in Ref. [88]. Consistent with PDZ 

affinity data [90] of around 10−6 M or better, we defined a thermodynamic threshold 𝐾𝑑𝑇  of 

10−5M (i.e., ∆𝐺 = −6.8 kcal/mol, equivalent to a relative experimental affinity of 200 in Ref. 

[88]) to distinguish between strong and weak binding peptides, obtaining sensitivityspecificity 

rates of 91–74%. This threshold corresponds to the middle point between strong (~10 nM) and 

weak (~ 10 mM) binding pathways in Figure IV-15. Independently, we noted that 𝐾𝑑𝑇 = 10−� M 

is also the lower specificity threshold for μM concentration of protein (see Fig. 3 in Ref. [18] for 

an exact relation), achieving the largest possible (>10 fold) differential in complex formation 

relative to strong binding peptides. Finally, the same affinity gap was observed between the 

lowest and second lowest predicted complex of strong binding peptides (between 2 and 3 

kcal/mol), suggesting that specific peptides lead to well defined binding modes.  
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Based on 𝐾𝑑𝑇, PepDock correctly predicts 20 experimentally ranked strong binders as true 

positive (TP) sequences; 2 false negatives were detected (FN = 2) (Figure IV-16). It is important 

to emphasize that error bars in the scoring function can be as much as 2 kcal/mol, while the 

assumption that peptides are fully disordered might also further modulate our free energy 

estimates. Nonetheless, the sharp contrast between TPs in Figure IV-23B and true negatives (TN 

= 77) in Figure IV-23C is enough to clearly distinguish between strong and weak binding 

peptides. Strikingly, the profile of several landscapes among the thermodynamic false positives 

(FP = 27) is quite different from TPs (Figure IV-23C). In the next section, we will explore the 

kinetic implications of these landscapes. 

 

Table IV-4: Results of screening strong/weak peptides by PepDock 

 

PDZ Domain 

 

Template 

Complex 

 

Template 

PDZ 

 

PDZ 

Structure 

 

Sensitivity 

 

 

Specificity 

 

Correlation 

 
PSD95-3 

 
1BE9(B) 

 
PSD95-3 

 
1BE9 

 
91% 

(20/22) 

 
74% 

(77/104) 

 
N/A 

 
SAP97-3 

 
2I0I(B) 

 
SAP97-3 

 
2I0I 

 
83% 

(10/12) 

 
75% 

(85/114) 

 
N/A 

 
Syntrophin 

 
2PDZ(B) 

 
Syntrophin 

 
2PDZ 

 
93% 

(13/14) 

 
67% 
(2/3) 

 
0.65 

 

Is the −6.82 kcal/mol free energy threshold arbitrary, or can the free energy scoring 

function of PepDock provide a good estimation of binding affinity?  To answer this question, we 

plotted the sensitivity and specificity change with free energy threshold range from −15 kcal/mol 

to 5 kcal/mol (Figure IV-17).  Sensitivity curve increased smoothly with change of threshold and 

had a value above 80% when it reached −7 kcal/mol. The sum of specificity and sensitivity 

reached its maximum around the free energy −6.82 kcal/mol. This observation confirms that 

PepDock obtained its best performance of discrimination when using a thermodynamically 
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meaningful threshold. Together with the result of free energy landscape pathway, we can say that 

PepDock can provide a reliable estimation of the interaction binding affinity.  

We repeated the discrimination test on the same set of human peptides against SAP97-

PDZ3 domain and observed the similar results as PSD95-3. The free energy landscape shows 

that strong binders followed a downhill pathway, started discriminating from weak binder from 

position “−4” and reach the global minimum, −8 kcal/mol at position “−8”. Weak binders kept 

flat and never fell below −2 kcal/mol. Based on the same thermodynamic threshold −6.82 

kcal/mol, PepDock discriminates 10 strong binders out of 12 and 85 non-binders out of 114, with 

83% sensitivity and 75% specificity, respectively. Comparing PSD95-3 and SAP97-PDZ3, we 

observed SAP97-PDZ3 was more selective than PSD95-3 and only have 12 peptides with 

relative affinity above 200. In addition, by plotting the sensitivity and specificity versus 

thermodynamic free energy threshold, we found that PepDock reached its maximum 

discrimination around −6.8 kcal/mol (10−5 M), which is consistent with experimental evidence 

[90].   
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Figure IV-17: Sensitivity curve of screening strong/non-binding peptides by PepDock.  The experimental data 

array of 128 native human peptides binding against PSD95-3 (A) and SAP97-PDZ3 domain (B) are re-computed 

and screened by PepDock. The sensitivity and specificity curve shows that PepDock has strong ability to 

discriminate strong and non-binders. Please note: the total performance (sum of specificity and sensitivity) reached 

its maximum around −6.70 kcal/mol, which is consistent with our physical threshold −6.62 kcal/mol. This 

observation strongly supports the robustness and accuracy of PepDock free energy scoring function. 
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Figure IV-18: ROC curve of screening strong/non-binding peptides by PepDock.  The experimental data array 

of 128 native human peptides binding against PSD95-3 (A) and SAP97-PDZ3 domain (B) are re-computed and 

screened by PepDock. As shown in the plots, PepDock showed strong discrimination ability with area under the 

curve, 85% for PSD95-3 and 82% for SAP97-PDZ3, respectively. 
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3. Screening of artificial peptides interacting with PDZ 

The robustness of PepDock was further confirmed by screening a whole new database of 95 

artificial peptides that were experimentally validated using Phage ELISA [88]. Contrary to 

natural peptides, this dataset was phage selected to include mostly true positives. Since there is 

no quantitative mapping between the ELISA readings and binding affinities for this assay, we 

assumed a thermodynamic threshold equivalent to a tenth of the experimental scale. This dataset 

again shows that the minimum binding free energies are consistent with downhill zipping 

pathways, strongly suggesting that this is a general mechanism for binding disordered peptides. 

The sensitivity–specificity rates using the same thresholds as for natural peptides are: for the 

thermodynamic threshold,𝐾𝑑𝑇 = 10−�µM, 80–64%; and, for both the thermodynamic and kinetic 

threshold 𝐾𝑑𝑇 = 1M combined, 68–91%. The consistency of the performance obtained for both 

natural and artificial peptides, i.e., average rates of 80–80% or a combined 160%, provides a 

strong support for PepDock as a tool to design artificial peptides to bind specific PDZ domains.  

4. Predicting the complex structures 

We probed the robustness of our method by predicting the complex structure and absolute 

affinities between 7 peptides and 5 different PDZ domains (Figure IV-19 and Table IV-5). 

Among these complexes, the backbone of four of these peptides, bound to PDS95-3, GRIP1-6 

and two for ZO1-1, are within a 0.4 Å RMSD of the overlapped CRIPT peptide; one peptide 

bound to TIP-1 is 0.44 Å RMSD away from CRIPT; and, two peptides bound to DVL-2 are very 

different from the CRIPT template structure (> 1.6 Å RMSD). We docked the backbone library 

onto the target PDZ by using both the complex peptide as bound reference and the CRIPT 
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peptide, after the target PDZ is overlapped into the PSD95-3 co-crystal, as unbound reference 

(see section IV.B.1). It is important to emphasize that even though we used a bound complex 

peptide as reference to pre-dock the backbones, the library was actually generated independently 

and no crystal backbones are included. Figure IV-19A shows that peptides docked to PDZ 

domains similar to CRIPT/PSD95-3 not only formed strong complexes, but also had landscapes 

consistent with that of TP sequences in Figure IV-23. 

The PDB of CRIPT and PSD95-3 shows five C-terminal residues, but the amino end and 

several side chains are not resolved in the crystal structure. Figure IV-19B shows the predicted 

structure of the full CRIPT complex overlapped with the crystal, including the electron density 

map (EDM) within 1 Å of the model. The predicted structure recovers bound motifs, including 

some significant overlap with EDM of missing groups. However, contrary to other peptides, 

contacts made by N-6Y-5 add almost no binding free energy in a region of the landscape where 

the affinity is still above the binding threshold (light blue path in Figure IV-19A). Since these 

residues have no preference to form the on-pathway contacts relative to, say, no contact at all 

(unbound), the rate of folding into the right backbone configuration is necessarily slower than 

downhill contacts. Hence, we speculate that this feature on the CRIPT binding landscape might 

have contributed towards the poor resolution of the remaining residues in the crystal, despite the 

fact that overall CRIPT has been shown to be a good binder [9,88,89]. 

The predicted complexes of GRIP1-6 [9] for both bound and unbound reference peptides 

capture the main features of the complex with the exception of Tyr-3 (Figure IV-19C), which 

finds a hydrophobic pocket that also buries an unmatched hydrogen bond. Energy-wise, the 

difference between the two rotamers is minimal. The problem lay in the subtle balance between 

hydrophobic and polar contacts of the extra OH group. For ZO1-1 [7], we docked two peptides 
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using both bound and unbound PDZ and peptides. As shown in Figure IV-19D/E, all four models 

recovered the hydrogen bonds and strong crystal contacts with a backbone RMSD of 1.53 Å or 

less. Interestingly, the docked structures correctly modeled the aromatic side chains of Trp-1, but 

again, the energetic balance of Tyr-1 is shifted between two rotamers. TIP-1 [10] is probably at 

the boundary of what one should model using CRIPT as template. Nevertheless, despite some 

visible backbone differences between bound and unbound models, the predicted contacts were 

still in good agreement with the crystals (Figure IV-19F). To a large extent, the tolerance to 

backbone misfits was due to the pairwise nature of the scoring function that de-emphasizes the 

precise orientation of side chains and hydrogen bonds. Note that large backbone-RMSDs 

differences observed at the amino end residues A-8T-7 and Q-9L-8A-7 of GRIP1-6 and TIP-1, 

respectively, are due to the fact that these residues do not contact the PDZs, and have minimal 

binding energies (Figure IV-19A). Without energetic constraints, the method cannot pin down a 

structure.  

For completeness, we also attempted to dock two artificial peptides bound to DVL-2 

[104]. In this case, the peptide backbone and core PDZ domains were very different from 

CRIPT/PSD95-3. Not surprisingly, predicted models did not fit the crystal. This negative 

exercise confirms our initial assumption that target PDZs should resemble the template structure. 

Next, we generated a new library of peptide backbone models from MD simulation of the 

artificial peptide WKWYGWF and used the backbone models as the input to predict the complex 

structure. No doubt, the prediction shows consistent side chain contact between peptide and PDZ 

domain (Figure IV-20). This test supported our conclusion that, for DVL-2 or other PDZs, which 

are away from 1BE9, a new PDZ template and a new peptide backbone library are necessary for 

PepDock to predict and much likely to lead to a reliable prediction.  
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Table IV-5: Top ranked prediction model of complex structures based on bound/unbound PDZ 
and bound/unbound peptide 

 

Crystal 

Structure 

 

PDZ  

 

PDZ Structure 

 

Peptide 

Sequence 

 

Template 

Complex 

 

Template PDZ 

 

∆G 

(kcal/mol) 

 

BB RMSD (Å) 

 

Side Chain 

Contacts 

 

1BE9 

 

PSD95-3 

 

1BE9 
 

KQTSV 

 

1BE9(B) 

 

PSD95-3 

 

–8.89 

 

0.62 

 

3/3 

 

2IOI 

 

SAP95-3 

 

2I0I 
 

RRETQV 

 

2I0I(B) 

 

SAP97-3 

 

–9.66 

 

1.12 

 

2/3 

 

1N7F 

 

GRIP1-6 

 

1N7F 
 

ATVRTYSC 

 

1N7F(B) 

 

GRIP1-6 

 

–9.32 

 

3.34 

 

3/3 

 

2H2B 

 

ZO1-1 

 

2H2B 
 

WRRTTYL 

 

2H2B(B) 

 

ZO1-1 

 

–9.59 

 

0.91 

 

5/5 

 

2H2C 

 

ZO1-1 

 

2H2C 
 

WRRTTWV 

 

2H2C(B) 

 

ZO1-1 

 

–14.96 

 

1.25 

 

5/5 

 

3CBX 

 

DVL2-1 

 

3CBX 
WKWYGWF 

 

3CBX(B) 

 

DVL2-1 

 

–11.91 

 

0.52 

 

5/5 

 

3DIW 

 

TIP1 

 

3DIW 
 

QLAWFDTDL 

 

3DIW(B) 

 

TIP1 

 

–5.64 

 

8.99 

 

4/4 

 

1N7F 

 

GRIP1-6 

 

1N7E 
 

ATVRTYSC 

 

1BE9(UB) 

 

PSD95-3 

 

–5.42 

 

2.45 

 

3/3 

 

2H2B 

 

ZO1-1 

 

2H2C 
 

WRRTTYL 

 

2H2C(UB) 

 

ZO1-1 

 

–11.92 

 

1.28 

 

5/5 

 

2H2C 

 

ZO1-1 

 

2H2B 
 

WRRTTWV 

 

2H2B(UB) 

 

ZO1-1 

 

–14.00 

 

1.11 

 

5/5 

 

2H2B 

 

ZO1-1 

 

2H3M 
 

WRRTTYL 

 

1BE9(UB) 

 

PSD95-3 

 

–7.66 

 

1.81 

 

4/5 

 

2H2C 

 

ZO1-1 

 

2H3M 
 

WRRTTWV 

 

1BE9(UB) 

 

PSD95-3 

 

–11.04 

 

1.90 

 

4/5 

 

3DIW 

 

TIP1 

 

3DJ1 
 

QLAWFDTDL 

 

1BE9(UB) 

 

PSD95-3 

 

–3.32 

 

8.48 

 

3/4 

* Predictions that use unbound CRIPT as peptide template and apo-PDZ structure (if available) are highlighted by 
yellow color.  
† Binding free energy landscapes are shown in Figure IV-19. 
§ RMSDs are with respect to residues resolved in crystal. 
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Figure IV-19: Prediction of PDZ–peptide interactions and their complex structures using PSD95-3 as 

template. (A) Binding landscapes of five known PDZ–peptides docked onto four different domains. All predicted 

models show the downhill landscape that characterizes strong binding peptides (see Figure IV-15). Top ranked 

predictions based on bound and unbound reference peptide are shown in green and red sticks, respectively; crystal 

structures are shown in blue. (B) CRIPT docked to PSD95-3, also shown is the electron density map. (C) 

ATVRTYSC docked to GRIP-6. Both bound and unbound prediction capture the main features of the complex. (D) 

WRRTTWV and (E) WRRTTYL peptides docked to ZO1-1. All four models recover the crystal contacts. (F) 

QLAWFDTDL docked to TIP-1. The bound and unbound structures recover the main contacts of bound motif (“0 to 

−5”) in the crystal. Note that the models and crystals deviate at the amino end residues A-8T-7 and Q-9L-8A-7 of 

GRIP-6 and TIP-1, respectively, which not only do not contact PDZ but also have positive binding energies. 
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Figure IV-20: Prediction of the interaction between WKWYGWF peptide and DVL2-PDZ domain.  We 

generated a new library of peptide backbone models since the structure WKWYGWF peptide and DVL2-PDZ 

domains appear structural different from CRIPT peptide and PSD95-3 PDZ domain. We use new backbone model as 

the input to predict the complex structure and binding affinity. The top three prediction models show downhill free 

energy pathway with the lowest free energy lower than −10 kcal/mol (in top figure).  Predicted complex structure (in 

blue color) recovered the strong side chain contacts between peptide and PDZ domain with the backbone RMSD 

0.52 Å. Structure of peptide from crystallography is shown in green color. This result supported our conclusion that, 

for DVL-2 or other PDZs, which are away from 1BE9, a new peptide backbone library and a new PDZ template are 

necessary for PepDock to predict and lead to a reliable prediction. 
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E. MORE DISCUSSION ABOUT DOCKING AND BINDING MODELS 

1. Novel approach to dock disordered peptides 

Consistent with the notion that binding is mostly determined by non-covalent interactions, our 

main assumption is that bound peptides do not build strain upon binding. Hence, we developed a 

backbone library extracted from equilibrium MD simulations in explicit solvent (see section 

IV.B.1 above). Then, by simply eliminating docked conformations that build strain or clashes 

above some feasible thresholds, an idea reminiscent of the constrained vdW minimization used 

in protein–protein docking [59], we circumvented the challenging problem of optimizing the 

backbone and vdW energies. The binding affinity is estimated based on a free energy scoring 

function that incorporates entropy loss upon association and folding entropy loss per residue 

[99,100]. Collectively, these terms yield a meaningful thermodynamic decomposition of the full 

binding free energy of fully disordered peptides.  

2. Docking disordered peptides into PDZ domains 

Our approach is sufficiently general to screen any peptide sequence, and therefore, to discover 

novel binding patterns. Based solely on the complex structure of one 5-residue long peptide to 

PSD95-3, and a thermodynamic threshold of 𝐾𝑑𝑇 = 10−�, the method successfully discriminates 

strong from poor binders of PSD95-3 with sensitivity and specificity rates of 91% and 74%, 

respectively. This threshold is consistent with experiments showing a 10−6–10−7 M affinity for 

cognate peptides [90]. The robustness of the method is also reflected in the accurate all atom 
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docked conformations predicted for several PDZ targets (Figure IV-19), providing strong support 

for in silico-screening of protein-PDZ interactions.  

3. On the fast association of PDZ-peptide interaction 

Kinetics is also important in signaling. Indeed, a seminal study by Kiel and Serrano [105] 

demonstrated that kon of Ras–Raf interactions play an important role in MAPK signal 

transduction, independently of Kd. Figure IV-21 sketches two binding pathways resulting in two 

different kinetic mechanisms: In (A), peptides fold before forming the high affinity complex, 

and, in (B), they undergo induced folding [17,106]. A third possibility is to consider that peptides 

actually fold, i.e., they are not disordered. The latter, however, would lead to either specific 

interactions that are not consistent with PDZ-peptide promiscuity, or misfolded peptides that 

would slow down binding by requiring extra free energy to first unfold in order to refold upon 

binding.  

The efficiency of PDZ–peptide interactions is reflected in association rates on the order 

of 10 s−1, i.e., comparable to interactions between folded/ordered proteins, and off rates on the 

order of 10 s−1 [90]. These rates ruled out mechanism A, which entails a slow rate of association 

due to the high (entropic/folding) transition state barrier, and corresponding slow dissociation 

rate. Indeed, from the point of view of an efficient signal, a slow on rate is highly inefficient 

since binding would require multiple attempts, while a slow off rate not only would slow down 

the resetting of the signal, but also would hinder it if multiple PDZs were targeting the peptide. 

As shown in Figure IV-15, the largest contribution to the binding free energy of the C-terminal 

strongly suggests that this residue docks first, such that it lowers the transition state the most (as 

in mechanism B). These anchors are minimally hindered by the rest of the peptide, explaining 
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their optimal solvent/receptor accessibility to form the encounter complex. This, of course, is 

fully consistent with the highly conserved structures and sequences of the C-terminal recognition 

motif, and the fact that all the other contacts are rather superficial. Hence, we suggest that the 

fast association rates of disordered peptides to PDZs are triggered by the well-defined anchoring, 

or burying, of the energetically critical hydrophobic C-terminal, a mechanism that has also been 

shown to describe the initial recognition step of stable proteins [30].  

A downhill-induced folding mechanism suggests non-specific screening of PDZ-peptide 

interactions. After anchoring the C-terminal, peptides can bind/fold by following either non-

sequential binding pathways or a sequential “zipping” pathway (Figure IV-22). The fact that all 

PDZ complex structures show an anti-parallel beta sheet next to the C-terminal strongly suggests 

that docking the C-terminal is followed by the zipping of the beta sheet. This is consistent with 

the lowering of the binding free energy by the consensus motif (i.e., S/T-X-Φ0) between “0” and 

“−3”, regardless of whether or not the peptide specifically interacts with PDZ (Figure IV-15). 

Hence, we conclude that PDZs screen peptides non-specifically, but quickly detach from those 

that do not attain sufficient affinity (~10−5 s, for 𝑘𝑜𝑛 ~ 107 M −1s−1). 
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Figure IV-21: Induced folding “zipping” mechanism and kinetic specificity of promiscuous interactions. 

Sketches of the binding transition of a disordered peptide that (A) folds before binding and (B) folds during binding. 

(C) Sketch of high and low specificity folding landscapes mimicking those found for true and false positives in 

Figure IV-23. (D) Kinetic specificity resulting from landscapes in C: kon of C-terminal is assumed to be 107 

M−1s−1; baseline binding rate between residue “i” to “i − 1” is assumed to be 108 s−1, folding rates are further 

scaled by barriers and ΔGi that are drawn to scale in each landscape in C. Induced folding mechanism result in 

kinetic specificity whereby the contacts closer to the C-terminal will bind faster than energetically favorable random 

contacts further removed from “0”. We also note that rates obtained by this model are consistent with experiments 

kon ~ 10−7 M−1s−1 and koff ~ 10 s−1 [90]. 
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Kinetic specificity of downhill pathways: It is also clear that non-sequential pathways would 

trigger higher entropic barriers from constraining multiple residues without an enthalpic 

compensation (Figure IV-22B), while sequential pathways entail smaller barriers, binding by one 

residue at a time, immediately compensating for folding entropy (Figure IV-22A). In what 

follows, we explore the kinetic implications of downhill pathways observed in binding 

landscapes of true positives relative to false positive sequences whose sequential pathways are 

not downhill  (Figure IV-23). 

A simple model mimicking these landscapes (Figure IV-23C) demonstrates that FPs 

reaching the same minimum binding free energy as TP peptides, but with a rugged landscape at 

residue “−4”, bound significantly much slower than TP sequences that have the rugged spot after 

reaching the thermodynamic binding threshold 𝐾𝑑𝑇 (Figure IV-23D). The extra barriers between 

residues “−4” and “−6” solely determine this kinetic specificity, whereas the difference in the 

maximum amount of bound PDZ in Figure IV-23D is due to the thermodynamic contribution 

associated with the three extra low free energy states in the high specificity landscape. The origin 

of the kinetic barriers is that a flat step (ΔGi = 0) at, say, residues i = −5, −6 implies that almost 

every other configuration of these residues is equally or more favorable than the contacts 

required by the pathways leading to thermodynamic stability. A rough estimate of 3 kcal/mol (a 

factor of 0.006), as depicted in Figure IV-23C, leads to the kinetic discrimination between TP 

and FP pathways in Figure IV-23D. 
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Figure IV-22: Comparison between sequential binding and non-sequential binding.  All binding interactions 

start from peptide residue at position “0”. In sequential binding scenario (A), residue at position “−4” binds to PDZ 

domain after residues (“−1” to “−3”). In non-sequential binding (B), residue at position “−4” binds to PDZ while 

peptide residues “−1” to “−3” are still partially flexible. Comparing two scenarios, it is obvious that residue “−4” 

need to compensate more entropy loss, which leads to higher free energy barrier in non-sequential binding than in 

sequential binding. So, we conclude that sequential binding is the most efficient way for disordered peptide binding 

to PDZ domain. 
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Figure IV-23: Thermodynamic specificity of 126 natural peptides binding PSD95-3.  (A) Correlation of relative 

experimental affinity and binding free energy. Binding free energy landscapes for (B) 11 true positives (TP; blue 

symbols in A), (C) 20 bottom true negatives (TN; green symbols), and (D) 16 (out of 52) of the false positives (FP; 

red symbols) sequences corresponding to the weakest experimental and strongest predicted free energies. Dashed 

lines correspond to the thermodynamic binding affinity thresholds Kd
T = 10−5 M, or 200 experimental affinity [88]. 

Sequence numbers followed [88]. All TP and 63 out of 115 TN are correctly predicted by our computational method. 

Differences in TP and FP landscapes suggest the binding profile might have kinetic implications not readily 

captured by Kd
T. 
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Regardless of the details of the model, it is clear that downhill pathways lead to faster 

binding. In particular, landscapes, such as those of FP sequences (Figure IV-23B), i.e., they do 

not lower the binding affinity soon enough after anchoring the consensus motif, lead to a slow 

association rate. The same kinetic discrimination occurs with non-sequential pathways, since any 

advantage of locking a locally favorable residue will vanish when considering the 

thermodynamic and kinetic cost entailed by the entropy loss of randomly constraining the 

residues skipped from along the way. The latter also rationalizes the limited specificity observed 

on PDZ binding peptides, restricted to the 7–9 residues at the C-terminal of target proteins. We 

quantify this effect by re-classifying those FP sequences that do not reach below an empirical 

kinetic threshold 𝐾𝑑𝑘  of 1 M (or ∆𝐺𝑘 = 0 kcal/mol; see Figure IV-15 and Figure IV-23) by 

residue “−4” (after the non-specific region) as “kinetic true negatives.”  

F. SUMMARY 

We present a novel full free energy scoring function for disordered peptides, which, in 

combination with a semi-flexible docking method, is used to screen the binding specificity of 

221 different peptides against the third domain of PSD95. This structure-based approach can be 

applied to PDZs with known structure, providing an efficient alternative method to detect PDZ–

peptide interactions and identify novel binding sequences. The detailed sampling of all possible 

binding modes strongly suggest that peptides bind non-specifically by anchoring the C-terminal 

end in a well-defined cavity with association rates similar to folded proteins, while specificity is 

determined by an extended network of contacts at the amino-end terminal. These high 

complementarity low affinity complexes (𝐾𝑑 < 10−� M) optimize the specificity ofdisordered 
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binding peptides [15], while compensating for the peptide entropy loss upon folding (~1 

kcal/mol per residue [99]). Consistent with Wright and collaborators’ mechanism [17], specific 

interactions proceed by a downhill-induced folding pathway. The ruggedness of the landscapes 

can also lead to kinetic specificity, a mechanism that prioritizes fast association relative to 

dissociation [105]. In fact, the right order of association should matter for genes whose tandem 

PDZ domains are known to bind promiscuously to C-terminals of proteins belonging to the same 

regulatory pathway [89]. The large number of true positive artificial peptides relative to natural 

ones [88] is also consistent with Lim and collaborators’ notion [107]  that adapter signaling has 

evolved by negative selection. Collectively, these findings strongly suggest that the downhill-

induced folding mechanism described here should also apply to other adapter proteins whose 

specificity is associated to disordered peptides with a well-defined anchoring site. 

From our results, we found that the minimum free energy structures of strong binding 

peptides revealed a downhill binding landscape that begins by anchoring the C-terminal 

recognition motif non-specifically, while specificity is determined by further zipping the next 3 

to 5 residues into an extended network of sequence dependent contacts. These pathways are 

kinetically preferred since they lead to the fast recognition of their substrates. Kinetic specificity 

favors favorable contacts closer to the C-terminal, while complexes that form contacts further 

along the polypeptide chain bind much more slowly. Quantifying kinetic specificity as a steep 

downhill pathway, we obtained average sensitivity–specificity rates of 91–74% for natural 

peptides. Our findings highlight the induced folding/binding mechanism of unstructured peptides 

as maximizing both the thermodynamic and kinetic specificity of promiscuous interactions, a 

mechanism that is likely relevant to other adapter molecules as well. 
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V. DISCOVERY OF NEW BIOLOGICAL INTERACTIONS BY USING PEPDOCK 

With the success of the PepDock application to PDZ domains, we developed an online database 

and prediction web portal for users to search our pre-calculated prediction results and submit 

new prediction jobs if the relevant prediction cannot be found in the database. Each pre-

calculated record provides users with comprehensive information about peptide, PDZ domain, 

and prediction confidence, which can facilitate users exploring new interactions or functionalities 

of PDZ domain. This work is designed and implemented by the author and directed by the 

dissertation advisor.  

A. PEPDOCK WEB PORTAL 

PepDockWeb is a web-based tool whose aim is to facilitate the study of the specificity of PDZ 

domain-disordered peptide interactions, and predict new functionality and interaction partners of 

the adapter protein domain. To achieve this goal, PepDockWeb starts with anchor residue in the 

known binding pocket, mimics the conservative motif, and samples the peptide conformation to 

search the possible partner to the adapter protein domain. For a given 10-residue long peptide 

sequence submitted by the user, PepDockWeb calculates the absolute binding free energy and 

analyzes the free energy change upon binding for each peptide residue. A Jmol-based [108] tool 

allows the user to interactively visualize peptide residues in the binding pocket contacting with 
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the surrounding region. PepDockWeb includes a PDZ–peptide interaction database of pre-

calculated result of 126 human protein peptides and 85 artificial peptide sequences against 11 

human PDZ domains, together with confirmed or partial experimental evidences. Users can 

submit a new query of an arbitrary peptide to selected PDZ domain and will receive the result 

within an hour. A dedicated computing cluster provides the computational power of PepDock 

and one run typically takes 30 minutes of CPU time. PepDockWeb provides a resource to rapidly 

and accurately assess of PDZ–peptide interactions for the specificity of PDZ domains and the 

inhibitor modeling.  

PepDockWeb provides the user with three different components: Results, Database and 

Prediction, and it is available at: http://smoothdock.ccbb.pitt.edu/PepDock/. 

1. Results 

The Results presents the validation of PepDock and statistics of pre-computed results, which 

include specificity and sensitivity testing, complex structure predictions, and correlation testing.  

The Specificity and Sensitivity uses the experimental datasets of 126 human proteins/peptides 

against 6 class I type PDZ domains as the reference [88], compares calculated binding affinities 

with relative experimental affinities. A consistent thermodynamic threshold of ∆𝐺 =

−6.62 kcal/mol (𝐾𝑑 < 10−�M) is used to calculate the specificity and sensitivity. The results of 

each test are shown in scattering-plot, ROC curve and specificity/sensitivity. Five out of six 

(PSD95-1, PSD95-2, PSD95-3, SAP97-2 and SAP97-3) tests show strong correlation between 

calculated free energy and relative experimental affinity. One test (SAP97-1) failed to show the 

correlation in the scattering plot. And for two tests (PSD95-2, SAP97-2), the optimal threshold to 

use for predicting is away from the physically relevant threshold, −6.62 kcal/mol. We concluded 
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the reason for these failures is that the similarity of the adapter protein structure to the template 

structure is low and the protein structures are not good quality.  

 The Structure Prediction compares the predicted PDZ–peptide complex structure with 

existing crystallographic structure from Protein Database (PDB). We used PepDock to predict 

eight PDZ–peptide interactions, which have known X-ray structures (PDBID, 1BE9, 2I0L, 2H2B, 

2H2C, 1N7F, 3CBX and 3DIW). Each prediction outputs the top three prediction models with 

complex structure and binding free energy landscape. Five of six predictions have calculated 

affinities passing the thermodynamic threshold, while one (3DIW) failed. One example of 

WRRTTYL peptide binding to ZO1-1 PDZ domain is shown in the Figure V-1.  

 

Figure V-1: Prediction results of "WRRTTYL" peptide binding to ZO1-1 PDZ domain.  The overlapping of 

top 1 predicted complex structure model ranked by computed binding affinity and crystal structure from PDB 

(2H2B) shows the prediction structure captures the main contact interaction characteristics (left) with backbone 

RMSD 1.28 A. The free energy landscape of the top three prediction models shows the binding free energy change 

with the number of peptide residue bound to PDZ domain upon binding. All three models have minimum binding 

affinity lower than −6.62 kcal/mol threshold and confirm a downhill free energy pathway pattern. 
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2. Database 

The Database contains pre-calculated results for human protein peptides and artificial peptide 

sequences against 11 PDZ protein domains, together with direct experimental evidence or 

indirectly reference literature. Peptide sequences are extracted from the published PDZ–peptide 

experimental dataset.  

The Database front page (http://smoothdock.ccbb.pitt.edu/PepDock/DB/) lists the brief 

information of PDZ domains and natural/artificial peptides that are included in the databases 

(Figure V-2). The PDZ information contains the structure information, which is used by 

PepDock, the known binding sequence consensus, and direct link to the Swiss-Prot database. 

Peptides are classified into natural and artificial classes, while each human peptide has sequences, 

protein gene, organism, and brief function shown on the webpage. In addition, around 300 

experimental instances of PDZ–peptide interactions are recorded in the database, with each 

record including peptide information, PDZ information, PepDock prediction results, and a 

PubMed reference link. Users can easily use the search toolkit on the top of the page to locate the 

pre-computed records in the database.  

The Database Query page lists the queried interactions when the user submits a database 

query for the PDZ domain or peptide, or both. For example, a query of interactions of the 

PSD95-3 domain is shown as in the Figure V-3. Interactions are grouped into five categories and 

displayed with different colors: Confirmed, Mismatched, High, Middle, and Low, based on 

consistency between the experimental evidence and computed result. Hovering the mouse 

pointer over each row will illustrate the binding free energy landscape and users can go to the 

detailed prediction result page by clicking each row.  
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Figure V-2: Database page of PepDockWeb portal.  The database page of PepDock web portal can help users 

check all pre-computed PDZ-peptide interaction results and relative experimental or literuature information. The 

database includes human and artificial peptides cross binding against 11 PDZ domains. Users can either query 

interactions by specify the PDZ domain and input the peptide sequence pattern in the top section or can click the 

PDZ domain name to browse all data records with respect to this domain. In additon, users can browse all peptide 

information by clicking the Natural Peptides or the Artificial Peptides link and find desired interaction from there. 

The Experimental Evidence link will list all experimental information relevant to peptide and PDZ domains in the 

database. 
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The Prediction Result page represents the detailed prediction results of one PDZ–peptide 

interaction, which is provided with three top models ranked by binding affinity estimation. The 

top panel (Figure V-4) in the page displays complex structures of predictions by using Jmol 

molecule visualization plug-in [108] and the bottom panel shows the free energy landscapes of 

each models, residual contribution, and known functionalities of the peptide and PDZ domain 

(Figure V-5). With the full capability of Jmol, users can interactively visualize the selected 

residual contacts between PDZ and peptides, as well as the properties of the surrounding region 

in the display panel, and compare the difference between binding models. Both free energy 

change and residual contribution, including conformation entropy change, are both shown in the 

plots for user to compare and identify the key residues. A summary section includes the gene and 

structural information about PDZ domain in the prediction, peptide information, and whether 

available experimental data has confirmed the interaction. In the function prediction section, the 

functionality and cellular component of peptide and PDZ domains are listed, together with 

literature references, if available. All these information are important for users to study the 

functionality of PDZ domains and predict the new interaction in the signal pathway. We believe 

the PepDockWeb portal can facilitate the analysis and help user to find relative targets to PDZ 

domain.  
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Figure V-3: Database query page of PepDockWeb portal.  Database query page display all interaction data 

records which user queried from PepDock database front page. All interaction records are classified into five 

categories and displayed with different colors, i.e. Confirmed, Mismatched, High, Middle and Low. When hovering 

over each row data record, the free energy landscape of top three prediction results will automatically displayed and 

give user a quick view of the interaction. Users can go into the detailed prediction result page by clicking each row. 



 100 

 
Figure V-4: Visualization panel of prediction result page of PepDock web portal.  Jmol molecule visualization 

plug-in module is used to display the complex structures of top three prediction models ranked by computed affinity. 

Users can show/hide molecule models by changing the check box on the right top of the panel. In addition, the 

visualization panel provides full functionality of Jmol and user can display the structure models in different views by 

changing the properties though Jmol operations. 
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Figure V-5: Data panel of prediction result page of PepDockWeb portal.  Data panel shows the detailed results 

of top three prediction models, including Plots, Residual Data, Summary, and Function Prediction. Plots and 

Residual Data sections show the free energy landscape and residual contribution upon binding interaction. Please 

notice that the peptide residue numbered 10 is the C-terminal (anchor) residue, which is usually shown as 0 before. 

Summary section summarizes information of the peptide and PDZ domain, and user can check more detail through 

the link to UniProt database. The Function Prediction section presents the biological function of PDZ domain and 

peptide, as well as direct or indirect literature reference, if available.  All together, interaction predictions and 

information about functionality provide user a good start point to forecast new biological functionality involving 

PDZ domain and disordered peptides. 
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3. Prediction 

The database includes pre-calculated estimations between selected native peptides against 11 

PDZ domains. For those peptides that are not included or synthesized, PepDockWeb provides the 

functionality for users to input the peptide residual sequence and submit prediction jobs online 

(Figure V-6). Known interaction target sequence consensus to each PDZ domain is shown on the 

page for users to refer to. The computational process runs on a 10-node (2 CPU/node) computer 

cluster and normally finishes in 30 minutes, which may vary depending on the load of cluster. 

When it is complete, an email will be sent to the user, including the web link to retrieve the 

results. The prediction result is presented in the same format as we described in the prediction 

result page and will be kept on the server for 30 days.  

B. PREDICT NEW INTERACTIONS BY USING PEPDOCK 

The PepDock web portal provides an interface for users to access PepDock methodology and can 

facilitate the analysis of PDZ–peptide interactions with regard to biological functionality and 

suitability for drug design.  

Wnt signaling pathways play critical roles in embryonic and postembryonic development 

and have been implicated in tumorigenesis [109,110,111,112]. In the Wnt-β-catenin pathway, 

secreted Wnt glycoproteins bind to seven trans-membrane Frizzled (Fz) receptors and activate 

intracellular Dishevelled (Dvl) proteins.  Activated Dvl proteins then inhibit glycogen synthase 

kinase-3β (GSK-3 β); this inhibition causes destabilization of a molecular complex formed by 
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GSK-3β, Adenomatous Polyposis Coli (APC), axin, and β-catenin, and weakens the ability of 

GSK-3β to phosphorylate β-catenin. Unphosphorylated β-catenin proteins escape from 

ubiquination and degradation and accumulate in the cytoplasm. This accumulation leads to the 

translocation of β-catenin into the nucleus, where it stimulates transcription of Wnt target genes. 

Numerous reports address mutations of Wnt-β-catenin signaling pathway components that are 

involved in the development of neoplasia [113,114]. 

Dvl proteins that have a DIX domain, a central PDZ domain, and a DEP domain relay the 

Wnt signals from membrane-bound receptors to downstream components and thereby play an 

essential role in the Wnt signaling pathway. Of these three, the PDZ domains, which make a 

connection between the membrane-bound receptor and downstream components of the pathways, 

play an important role not only in distinguishing the canonical and non-canonical Wnt pathways 

but also in nuclear localization [115]. Experiments [116] showed that Dvl PDZ interacts directly 

with Fz receptors by recognition of an internal motif lacking a free C-terminus. This evidence 

revealed that the PDZ domain of human Dvl2 (Dvl2-PDZ) recognizes C termini that differ 

significantly from typical PDZ ligands [97].  Recently, Zhang and his co-workers have 

conducted a detailed study [104] to solve the crystal structures of four different Dvl2-PDZ 

complexes and shown that a flexible binding cleft of Dvl2-PDZ is capable of accommodating 

both C-terminal and internal ligands. This study also showed that a peptide ligand recognizes 

Dvl2-PDZ domains in cells and inhibits Wnt/β-catenin pathway. Therefore, interference with 

PDZ domains may be a viable therapeutic strategy for inhibiting Wnt signaling in cancers that 

are dependent on Dvl function. Small organic inhibitors of the Dvl2-PDZ domain might be 

useful in dissecting molecular mechanisms and formulating pharmaceutical agents. Because the 



 104 

structure of Dvl2-PDZ domain is known, this has permitted us to use our structure-based 

computational method to screen potential ligands.  

We used PepDock to screen 126 human peptide sequences [88] for potential ligands that 

could fit into the binding groove of Dvl2-PDZ domain. The peptide backbone library is extracted 

from the molecular dynamic simulation of the synthetic peptide “WKWYGWFCOOH,” by using 

the protocol described in section IV.B.1. Then each peptide sequence is docked into the binding 

groove of Dvl2-PDZ domain (bound structure from PDB entry 3CBX) [104]. Docked models of 

each peptide sequences are ranked by binding free energy computed by PepDock and the top 

three models are saved for further analysis.  

We dock the synthetic peptide “WKWYGWFCOOH” into the PDZ domain first. This 

synthetic peptide has been experimentally identified as a Dvl2-PDZ partner and has a crystal 

complex structure. Our top-ranked docked model has a conformation similar to that found in the 

crystal structure with a backbone RMSD 0.52 Å and calculated binding free energy −11.91 

kcal/mol (Figure IV-20). This contrast indicates that PepDock is able to sample and evaluate the 

ligands binding to Dvl2-PDZ domain. Among 126 human peptides, 92 peptides show binding 

abilities to Dvl2-PDZ domain, and 10 peptides have stronger binding scores than the reference, 

WKWYGWFCOOH peptide. A full list of screening result is available online at the PepDock 

website.   

In the above experiment, we screened only a limited set of human peptides with C-

terminal motif that conform canonical consensus due to the limitation of resource and time. Also 

we did not conduct experimental fluorescence spectroscopy or Elisa analysis to further validate 

our prediction. But the results show PepDock is a reliable resource to predict new interaction and 

can help user design pharmaceutical candidates to inhibit PDZ domains.  
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Figure V-6: Prediction of PDZ–peptide interaction by PepDockWeb portal.  Users can submit new interaction 

prediction online by select a PDZ domain and input peptide residue sequence through the PepDockWeb portal. 

Currently, 11 PDZ domains are ready to be predicted. Each prediction job will be finished in 30 minutes. When it is 

completed, an email including the web link to retrieve the results will be sent to the user.  
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VI. CONCLUSION AND OUTLOOK 

A. ACCOMPLISHMENT 

With the continuous increase of computer technology in the last decade, molecule docking plays 

an increasingly important role in the biophysical field. In part, this is due to the results of 

creating advanced algorithms, which are available to the community through web servers, and 

the exploration of more structural information by experiment. For example, protein-ligand 

docking, which has been heavily used for new drug discovery, faces the challenge of fully 

exploiting the rapidly increasing protein and chemical structure libraries. Although more 

advanced algorithms have been applied to docking, there are still exist challenges. First, most 

docking methods use relative free energy or statistical scoring functions. These functions need to 

be trained before use to get good performance. A lightweight, accurate, and general free energy 

scoring function, which can estimate absolute binding affinity, is needed. Second, a docking 

method, which can accommodate the flexibility of the ligand, is needed to study protein 

recognition with disordered regions. Third, with protein–protein interface knowledge and 

docking methods, a methodology to predict protein’s functionality and construct the protein 

interaction network is needed.  

In Chapter III, we demonstrated the implementation of our free energy scoring functions 

for protein–protein interactions and protein–disordered peptide interactions respectively. The 



 107 

function of protein–protein interaction, which is generic and without any training, has been used 

in our rigid body docking program. In addition, we showed that it could estimate absolute 

binding affinity and screen strong binders in Capri Target 45 and successfully discriminate 

native protein complexes from designed models.  

Chapter VI focuses on the study of interactions involving disordered peptides. Based on 

the free energy scoring function model, we designed and implemented a novel structure based 

computational docking program, PepDock, to predict structured protein–disordered peptide 

interactions.  Taking the 3-D structure of receptor protein and amino acid sequences as the input, 

PepDock can estimate the absolute binding affinity and the complex structure. To explore the 

binding mechanism of disordered peptides, we studied the interactions between peptides with the 

PDZ domain, one common scaffold protein in signal transduction, by using PepDock. PepDock 

successfully discriminated strong binders from non-binders with 91% sensitivity and 74% 

specificity, when comparing with experimental array results. In addition, PepDock successfully 

mimicked the X-ray crystallographic complex structures of seven peptides against five PDZ 

domains, capturing the main contact characters. By analysis of the results, we found that peptides 

binding PDZ domain interactions followed a downhill free energy pathway. Before association, 

peptides are flexible and take any conformation. When binding, first, the carboxyl termini of 

peptides anchor into the binding pocket, contributing the most binding influence. Then, the 

backbone of the next three residues forms an anti-parallel beta sheet by paired hydrogen bonds 

with the backbone of PDZ the domain, forming a non-specific complex. Next, the remaining 

residues of peptides will zip onto the surface of PDZ domain, which determines the specificities. 

These downhill pathways, with non-specific intermediate complexes anchored by the C-terminal 

motif, are thermodynamically and kinetically favorable to the scaffold protein. Disordered 
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peptides have an advantage of tuning the maximum binding specificity over structured binding 

partners [15]. 

Based on PepDock, we developed an online database query and interaction prediction 

system for PDZ domains. More than 100 native peptide sequences have been selected from gene 

databases and pre-calculated against 11 PDZ domains by PepDock. Each interaction is provided 

with the top three prediction complex structure models ranked by estimated binding affinity and 

by their corresponding free energy landscapes. Based on the estimations and experimental 

evidences, the interactions are tagged into five classes: confirmed, mismatched, high, middle, 

and low confidence of binding.  The free energy contribution of each residue including residual 

conformation entropy loss is also presented for the user to identify the key residue. For native 

peptides and PDZ domains, common functionalities and cellular components are listed with 

relative experimental reference literature to help users to do the functional prediction. In case 

desired peptides are not included in the database, users can input the peptide sequence and 

submit a new prediction job online, from which results are received in 30 minutes. The 

PepDockWeb portal is a very powerful tool and can be used to study PDZ–peptide interactions. 

We expect that this new technology will contribute significantly to the structural biology and 

biophysical research community.  
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Figure VI-1: Cartoon of disordered peptide binding to PDZ domain.  The interaction starts with a completely 

disordered (flexible) peptide approach the PDZ domain (A).  The peptide C-terminal residue, which acts as an 

anchor residue, projects into the binding groove of PDZ domain (B). This residue usually contributes most of the 

binding free energy and compensates the translational/rotational/vibrational entropy loss upon binding. Then the 

next three to four residues sequentially bind to the PDZ domain and form an anti-beta sheet by backbone–backbone 

interactions, encountering a non-specific temporary intermediate complex (C). The specificity of interaction is 

determined by the next following peptide residues, which search for the most optimal free energy position on the 

PDZ surface and zips themselves into an extended network of sequence dependent contacts (D). 
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B. OUTLOOK 

Despite the novelty and advancement described, there are further improvements and extensive 

studies to be done in the future. We have showed in Chapter IV that, to predict the interactions of 

target PDZ domains, e.g. DVL2-PDZ, which are over 1 Å away from the complex template 

(PDBID: 1BE9, complex of PSD95-3 PDZ domain with CRIPT peptide), a new complex 

template from the same PDZ domain cluster is needed to better describe the character of the 

target PDZ domain. The new complex template will be used to generate the peptide backbone 

library and as a template to dock the target PDZ domain and peptides. In this work, we clustered 

all PDZ–peptide complexes from PDB into different groups based on similarity and selected the 

center complex as the template of each group. Due to the time and computational power limit, 

we have not extended our prediction testing to other PDZ clusters besides PSD95-3 PDZ, but 

these works can be done easily by following the same procedure as described.   

PDZ domain is one of the most common scaffolding proteins in signal transduction. 

Many other scaffolding protein domains follow similar binding patterns as we have explored in 

the PDZ domain study, e.g. SH2, SH3, and PTB domains. These domains have conserved 

binding grooves, and interaction partners follow certain residual sequence consensus. Because of 

the generality and portability of our free energy scoring function and docking methodology, 

PepDock can be easily applied to the study of other scaffold proteins. A very preliminary testing 

on SH3 domains has been conducted by our lab and obtained very good results that are 

consistent with experimental data. We expect more cases will be studied by following PepDock 

methodology in the future.  
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