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Music expresses that which cannot be put into words

and that which cannot remain silent.

— Victor Hugo

Dedicated to Laurie
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ABSTRACT

Tonality is the organization of pitches, both simultaneously and across
time, so that certain pitches and chords are heard as attracted, in varying
degrees, to other pitches and chords. Most art music from the seven-
teenth to the nineteenth centuries, and popular music to the present
day, is heavily steeped in a musical language that makes use of tonality
to define a ‘central’ most attractive pitch or chord called the fonic. It is
widely thought that the feelings of expectancy and resolution induced
by movements towards and away from the tonic allow composers to
imbue tonal music with meaning and emotion.

In this dissertation, I identify and model some of the innate pro-
cesses by which feelings of tension, resolution, stability, and so forth,
are induced by successions of pitches and chords, irrespective of their
harmonic consonance. By innate, I mean processes that do not require
the learning of a musical corpus—such processes are important because
they provide explanations for why tonal music, and our cognition of
it, take the specific forms they do.

To do this, I introduce a novel family of mathematical methods—
metrics applied to expectation tensors—for calculating the similarity
of pitch collections. Importantly, such tensors can represent not just
the notated pitches of tones, but also their spectral pitches (their har-
monics). I then demonstrate how these techniques can be used to model
participants’ ratings of the fits of tones in microtonal melodies, and
the fits of all twelve chromatic pitches to an established key centre
(Krumbhansl’s probe tone data). The techniques can also be generalized
to predict the tonics of any arbitrarily chosen scale—even scales with
unfamiliar tunings.

In summary, I demonstrate that psychoacoustic processes, which are

innate and universal, play an important role in our cognition of tonal-

ity.
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INTRODUCTION

Imagine listening (or actually listen) to J. S. Bach’s first Prelude in C
major (BWV 846). I choose this piece because it is well known, and it
clearly exemplifies many of the important characteristics of tonal music
that I discuss in this dissertation (including present day tonal music).
The first four bars produce a gentle wave of tension and release, most
noticeable with the resolution of the chord in the third bar to the chord
in the fourth bar (each bar, in this piece, consists of a single arpeggiated
chord). In the fifth bar, the music seems to start afresh and take a new
journey for the next few bars until, in bar 11, there is a feeling of a
somewhat temporary resolution—not a final destination, but a brief
resting place. In bar 12, the tension increases considerably, and this is
released—to some extent—in the subsequent bar. This two-bar pattern
of tension (even-numbered bar) then partial release (odd-numbered bar)
repeats up to bar 23 where the tension is increased further. This tension
is sustained at a high overall level, occasionally peaking, until the final
resolution to Cmaj in the 36th bar, which provides a strong feeling of
release, resolution, and closure. This is a crude analysis and the details
may differ for different listeners, but I use it to show how feelings such
as tension, release, motion, rest, stability, and closure, and so forth, are
typical responses to tonal music.

The primary research question addressed by this dissertation is: Can
we identify, and model, the causal processes by which feelings of ten-
sion, resolution, stability, and so forth, are induced by successions of
pitches and chords?

This research question is relevant to Western tonal music because, in
such music, pitches are organized across time (as melodies and chord
progressions), and the feelings of tension and resolution this induces

are amongst tonal music’s most important perceptual characteristics.
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Indeed, the feelings of expectancy and fulfillment aroused by tense
chords resolving to stable chords—or the lack of fulfilment when they
do not—is one of the principal means by which music communicates
emotion and gains meaning (Meyer, 1956; Huron, 2006).

For example, the chord progression Fmaj—Gmaj sets up a powerful
expectancy that the following chord will be Cmaj: finishing on this
chord produces a strong sense of resolution and closure. Moving, in-
stead, to Amin has a somewhat surprising but pleasing effect: there is
some sense of resolution but it is not as strong. Moving to Ffmaj, how-
ever, gives a quite different effect: it sounds genuinely surprising, even
somewhat clumsy.

Inevitably, there are many possibles causes of such responses to mu-
sic. I restrict my focus in two ways. Firstly, I concentrate on those
causes that are not learned; that is, ‘hard-wired’ or innate responses to
physical stimuli. This is in contrast to Meyer and Huron and many con-
temporary researchers (e.g., Krumhansl (1990), Lerdahl (2001), Pearce
and Wiggins (2006)) who argue that tonal expectancy is down to no
more than familiarity—the learning of common patterns. Instead, I
propose that innate perceptual and cognitive mechanisms play an im-
portant additional role, and one that is actually more fundamental be-
cause they may underlie music perception across cultural boundaries
and are able to make predictions about which musical forms are more
likely to arise. This is discussed, in depth, in Section 2.3.

Secondly, I consider only those processes that are not a function of
changing levels of consonance and dissonance. For example, consider
moving from the harmonically dissonant chord G7 to the consonant
chord Cmaj—such a progression induces a powerful feeling of clo-
sure, and it is plausible that this is due to the transition from disso-
nance to consonance. However, there is clearly more to it than just
this; for instance, consider the progression G7—Fmaj, which similarly
transitions from dissonance to consonance, but induces little feeling of

closure. Or, consider the above-mentioned progression Fmaj—Gmaj—
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Cmaj where all the chords are equally consonant, but which does in-
duce a strong feeling of closure.

By constraining my research area in these two ways, I can state my
aim precisely: I am seeking to identify and model the innate processes
by which feelings of tension, resolution, stability, and so forth, are in-
duced by successions of pitches and chords, irrespective of their har-
monic consonance.

In Chapter 2, I consider the overall background to this research, and I
use existing literature to explain the development of my theory, and to
help shape the definitions I use throughout this dissertation. Firstly, I
consider various common meanings of the word fonality, and introduce
the definition I use for this dissertation: tonality is the organization of
pitches, both simultaneously and across time, so that certain pitches or
chords are heard as attracted, in varying degrees, to other pitches and
chords. I also describe how tonality induces feelings described by terms
like affinity, tension, activity, expectancy, resolution, stability, and so forth. In
Section 2.1, I discuss the importance of tonality—notably the manipu-
lation of expectancy and resolution—in communicating meaning and
emotion in music. In Section 2.2, I outline a broad strategy by which
modelling the cognition of tonality may be approached. I hypothe-
size tonality is due, in part, to three mechanisms: familiarity, conso-
nance, and affinity (affinity is the melodic analogue of consonance; the
extent to which sequential pitches or chords are perceived to fit). Given
an overall context of pitches (such as a previously established scale),
we expect pitches or chords that are unfamiliar, dissonant, and have
low affinity to move to pitches or chords that are familiar, consonant,
and have high affinity. My focus is on modelling innate causes of affin-
ity, and using these to model tonal cognition. I also discuss the broad
methodological framework of this research: my aim is to produce par-
simonious mathematical (computational) models of perception tested
against experimentally obtained data. I also seek models with explana-

tory as well as predictive power—as explained in Section 2.3.
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Section 2.3 is a more substantial section in which I categorize—in a
novel way—the different processes by which physical stimuli can in-
duce subjective mental states (sensations, feelings, and concepts), and
discuss the complex interlinked causal roles played by each of these
processes. It is in this section that I discriminate between the predictive
and explanatory powers of models, identify the circular causal pro-
cesses that operate between the perceptions of listeners and composers
and the musical repertoire they create, and argue that only bottom-up
models of innate processes are capable of providing effective explana-
tions for tonal cognition. In Section 2.4, I briefly review existing the-
ories and models of tonal cognition (I provide more focused reviews in
later chapters). In Section 2.5, I give an overview of the models I have
developed to meet the above research aim, and how they are empiri-
cally tested.

In Chapter 3, I introduce the general mathematical techniques that
underlie all of the more specific models used in subsequent chapters.
These constitute a novel family of mathematical methods for calcu-
lating the similarity of pitch collections (Secs. 3.2—3.5). The similarity
values are derived by standard metrics applied to pairs of expectation ten-
sors (a tensor is also known as a multi-way array), which embed either
pitches or pitch classes.” Furthermore, these pitches (or pitch classes)
can be either absolute or relative: in the latter case, embeddings of
pitch collections that differ only by transposition are identical and so
have zero distance; a useful feature that relates similarity to structure.
Moreover, tensors of any order (e.g., order-1 vectors, order-2 matrices,
order-3 three-dimensional arrays, etc.) can be formed, allowing the em-
beddings to reflect the (absolute or relative) monad, dyad, triad, and so
forth, content of the pitch—or pitch class—collection. These embed-
dings also incorporate, in a principled way, the basic psychoacoustic

property of pitch uncertainty by ‘smearing’ each pitch over a range of

A pitch is the auditory attribute associated with a speciﬁc frequency. Musical pitches
can be notated with letter names and numbers like A4 (which corresponds to 440 Hz),
As (which corresponds to 880 Hz), and so forth. A pitch class is an equivalence class
for all pitches an octave apart. For example, the pitches C1, C2, C3, C4, Cs, and so
on, all belong to the pitch class C.
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possible values, and the width of the smearing can be related to exper-
imentally determined frequency difference limens, or fitted to experi-
mental data.

The different expectation tensors provide a unified framework for
representing perceptually relevant features of pitch collections, and are
a generalization of a number of conventional embeddings used in mu-
sic theory, including pitch vectors, interval vectors, and subset-class
vectors. In Section 3.6, I demonstrate a number of applications of the
expectation tensors, including some of the higher-order tensors. How-
ever, for the remainder of the dissertation, I focus my attention on
the order-1 tensors—vectors—which can be used to embed spectral
pitches (these are denoted spectral pitch vectors). Spectral pitches correspond
to the partials (frequency components) of a tone—when an instrument
plays a single notated pitch, it actually produces a large number of par-
tials typically at harmonics above the notated fundamental pitch. The
similarity of any two such vectors (their spectral pitch similarity) is used
to model the affinity of the notated pitches or chords they embed.

In Chapter 4, I tackle the issue of nature versus nurture head-on. I
describe a spectral pitch similarity model and an experiment designed
specifically to test whether innate processes have a meaningful im-
pact on our perception of the fit or affinity of successively played (i.e.,
melodic) pitches. In order to do this, I conduct a music perception ex-
periment using unfamiliar microtonal stimuli to minimize the impact
of learned responses.> The use of microtonal stimuli to probe into the
innate processes that may underlie music perception is, as far as I know,
entirely novel. The experimental data (obtained from 44 participants)
indicates that innate processes, as modelled by spectral pitch similarity,
do indeed play a meaningful role in our perception of melodic affin-
ity. Furthermore, this work validates the use of microtonal stimuli as
a useful and novel experimental tool for music psychologists.

Having established that spectral pitch similarity can effectively

model innate perception, in Chapter s, I introduce a related bottom-

Microtonal music contains intervals that do not occur in the familiar 12-tone equal
temperament—some of its pitches ‘fall in the cracks’ between a piano’s keys.
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up model for an important and well-known set of experimentally ob-
tained data—the probe tone data—collected by Krumhansl and Kessler
(1982). These data measure the perceived level of fit of each chromatic
degree with respect to a previously established tonal centre. My model
provides an extremely good fit to the data and provides a plausible
bottom-up mechanism for it. I then extend the same model to predict
the tonic triad (the best fitting major or minor chord) of any given scale.
The model’s predictions accord with conventional music theory. I fin-
ish this chapter by showing how the model can be extended to predict
the tonics of a variety of unfamiliar microtonal scales. I do not, at this
stage, offer any empirical validation for these predictions, but suggest
that doing so will provide an important test for my model.

In the final chapter—Chapter 6—1I provide a critical analysis of the
work, summarize the conclusions that can be made, and delineate fu-

ture work that may extend what has already been achieved.
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As outlined by Dahlhaus (1980) and Hyer (2001, 2002), the term fonal-
ity has a variety of related meanings, some broad and generic, others
more specific. For instance, it can be used in a broad sense to describe
‘the systematic organization of pitch phenomena in both Western and
non-Western music’, and ‘a rational and self-contained arrangement of
musical phenomena’ (Hyer, 2002, p. 727). Or, it can take a slightly nar-
rower definition that specifies a particular such arrangement and de-
notes ‘a system of relationships between pitches having a “tonic” or
central pitch as its most important element’ (Dahlhaus, 1980, p. 52). In
this latter definition, tonality refers to a specific systematic organiza-
tion of pitches that was developed in the early seventeenth century,
and may be contrasted with modality, which came before, and atonality,
which came after.” It can also take an even narrower definition, where
it is used as a synonym for key; as in, ‘this piece is in the tonality of
Ab major’. As suggested by both Dahlhaus and Hyer, there is also some
ambiguity about whether fonality refers to the organization of pitches,
to the music that results from this organization, or to the feelings these
organized pitches induce.

The term tonality was popularized by Fétis in the early nineteenth
century, and he provided a useful, and suitably broad definition. He
conceived of it as the sum total of the forces of attraction between suc-
cessive or simultaneous notes of a scale (Hyer, 2002). For this disserta-
tion, I use a related definition. I define fonality as the organization of
pitches, both simultaneously and across time, so that certain pitches or

chords are heard as attracted, in varying degrees, to other pitches and

Modality is the musical system existing prior to the seventeenth century whose orga-
nization is based more upon melodic principles than chordal (Dahlhaus, 1990), and
which does not have a strongly defined tonic. Atonality refers to those systems of mu-
sic developed in the twentieth century (notably serialism), which deliberately avoid
structures that generate a tonic.
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chords. Tonality may also induce feelings that certain chords or pitches
feel tense, unstable, yearning, expectant, while others sound relaxed,
stable, resolved, and fulfilled, and so forth. A simple example of this is
how the seventh degree of the major scale (the so-called ‘leading tone’)
is typically heard as being attracted to the first degree (e.g., in the C
major scale, the pitch B strives towards the pitch C).

In line with common usage, I use tonality to refer to the organization
of pitches, the resulting music, and the feelings it induces. For example,
a piece of music in which the identity of the tonic is vague, may be
described as having an ambiguous tonality (tonic is fully defined in the
next paragraph). Here, the tonality that is being referred to is the effect
that this music induces in the mind, not the musical structure itself.

If the sum total of attractions induced by a tonality points towards
a single pitch or chord, this is called the tonic. From the start of the
seventeenth to the end of the nineteenth centuries, Western music has
favoured structures that induce a single tonic over long periods of time
(and such music is still commonplace today). This type of music is
called major-minor tonality, harmonic tonality, common-practice tonality, or
tonal-harmonic music;? it makes use of major and minor scales and triads,
and cadences such as V'—I, IV-V-I, and II-V—I, to induce a strong
and unambiguous tonic pitch and triad on scale degree 1.3 In major-
minor tonality, harmonic cadences—such as the above—are a vital
structural component because they strongly define the tonic. Indeed,
Lowinsky (1961) argued the use of such cadences was what transmuted
medieval modal music into fully tonal music with a consolidated tonic,
and coined the memorable phrase: ‘the cadence is the cradle of tonality’
(p- 4)-

However, other types of tonality are possible. For example, Indian

classical music establishes a strong tonic not with cadential chord pro-

These terms are broadly synonymous, but have slightly different connotations. For
example, major-minor tonality emphasizes the use of the major and minor scales rather
than the medieval modes to induce a tonic, harmonic tonality and tonal-harmonic em-
phasize the use of chords, while common-practice tonality emphasizes a speciﬁc historical
period.

Ordinal scale degrees are denoted with Arabic numerals with a caret above—the first
scale degree usually corresponds to the tonic of the scale. Roman numerals indicate
triads, the value referring to the scale degree of the chord’s root.
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gressions but by using a constant drone above which the melody plays
(Jairazbhoy, 1995; Widdess, 1981); and atonal music can hint at rapid
successions of different and antagonistic tonics, none of which it re-
solves to. Indeed, Schoenberg (1978)—the originator of the serial tech-

nique of atonal composition—objected to the term atonal:

Everything implied by a series of tones constitutes tonality,
whether it be brought together by means of reference to
a single fundamental or by more complicated connections.
That from this single correct definition no reasonable op-
posite corresponding to the word ‘atonality’ can be formed,

must be evident. (p. 432)

Furthermore, it is possible that microtonal scales—those built from in-
tervals not found in twelve-tone equal temperament—may produce
musical structures quite different to those found in common-practice
tonality, but which still support a tonic; I explore this theoretical pos-
sibility in Section .

My broad definition of tonality allows the term to encompass all these
different types of music, while I use major-minor tonality, and so forth, to
refer to the more specific form of Western music that originated around

the start of the seventeenth century.

2.1 WHY IS TONALITY IMPORTANT?

Tonality matters because it is one of the principal means by which mu-
sic can communicate emotions. There are many emotional-sounding
adjectives that are used to describe the effects of tonality. For exam-
ple, to describe the feelings induced by tonality, Fétis (1844) utilizes
the words tendance (‘tendency’), appeler (‘summon’), résolution (‘resolu-
tion’), anxiété (‘anxiety’), repos (‘repose’), agitations, crises nerveuses (‘net-
vous crises’), plaisir (‘pleasure’), and so forth. And words like yearning,
desire, seeking, expectant, fulfilled, away, home, foreign, domestic, tense, re-
laxed, sour, sweet, stability, instability, activity, motion, rest, suspense, antic-

ipation, resolution, closure, completion, surprise, deceptive, incomplete, inter-
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rupted, and so on, are commonly used descriptors (e.g., Huron (2006,
Tables 9.1, 14.1, & 14.2) compiles an extensive list of adjectives, given
by listeners, to describe the feelings induced by different scale degrees
and chromatic chords).

It seems the effects produced by tonality are redolent with broad
emotional and conceptual associations. Considered in this way, tonal-
ity comprises an evocative set of signs that gives music considerable
communicative potential.# This tallies with the way music seems to
function as a language that is able to communicate broad emotional
states, with great depth, but with limited precision. Citing a number
of studies, Juslin and Laukka (2004, p. 219) write: ‘there is usually high
agreement among listeners about the broad emotional category ex-
pressed by the music, but less agreement concerning the nuances within
this category’.

Furthermore, as suggested by Hyer (2002), the hierarchical structure
of major-minor tonality—in which there is an unambiguous central
tonic, which ‘controls’ all other pitches and chords—mirrors the hier-
archical societies within which this musical system gained ascendancy.
Indeed, it could be argued that the rejection of major-minor tonality in
Western art music of the twentieth century betokens the revolutionary

impulses of that period.

At the very heart of tonality is attraction or, put differently, ex-
pectancy—the perceived expectation that a pitch or chord will resolve
to another pitch or chord. Meyer (1956) famously argued that it is the
manipulation of expectancy that gives music meaning and emotion—a
composer might fulfill our expectations, or surprise us, or introduce a
tension-inducing delay before fulfilling them. By ‘orchestrating’ these
musical devices, a composer can evoke a broad range of emotions.

Recently, Huron (2006) has provided a comprehensive theory
to explain precisely how expectancies—and their violations and

fulfillments—can account for the emotions they induce, and why such

I use sign, in the semiotic sense, to mean something that refers to something other
than itself (Chandler, 2002).
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emotions might serve an evolutionary purpose.’ The theory is summa-
rized by the acronym rrera, which stands for five ‘functionally distinct
physiological systems’ (p. 7): imagination, tension, prediction, reaction, and
appraisal.

Huron claims that positively and negatively valenced emotions, re-
spectively, encourage adaptive behaviours and discourage maladaptive
behaviours (hence they serve an evolutionary function). And that emo-
tions related to expectancy function similarly to encourage accurate
predictions and appropriate preparation. In this way, the manipulation
of musical expectancy can tap into primordial emotions ‘including sur-
prise, awe, “chills,” comfort, and even laughter’ (Huron, 2006, p. 4).

The imagination response relates to the emotional content of imagined
situations. For example, in imagining a specific future scenario we not
only think through its consequences, we also—to some extent—feel
them. It is through this mechanism that we are able to anticipate the
emotional implications of future states.

The tension response is the increase in arousal and attention produced
by the anticipation of an outcome. Its associated emotions are some-
what negatively valenced because increased arousal and attention re-
quire more energy.

The prediction response occurs directly after an event. Given an out-
come, it rewards or punishes according to the accuracy of the previ-
ously made prediction of the outcome. So long as an outcome is ac-
curately predicted, this can result in positively valenced feelings even
when that outcome is inherently bad.

The reaction response is the immediate, and unconscious, assessment
of the event itself. The resulting emotions are typically produced by a
violation of a well-learned schemay; that is, surprise. The reaction re-
sponse is negative in valence and, in music, serves an important role

by creating a contrastive valence (discussed below) that exaggerates the

Both Meyer and Huron use the term expectation more often than expectancy. In this
dissertation, I use expectation for the expected value of a random variable—or some
function, thereof—and where possible I use expectancy for the subjective feeling of
expecting something.

I1
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effects of the more neutral or positive conscious appraisal that occurs
later.

The appraisal response is the more slowly developing conscious assess-
ment of the outcome. It may draw upon ‘complex social and contextual
factors’ (Huron, 2006, p. 15)

Because the five systems are functionally distinct they may produce
consistent or inconsistent responses. This allows for an important type
of interaction between the different response systems—contrastive va-
lence—which is that the valence of an outcome, as determined by ap-
praisal, is amplified by the degree to which it was previously oppo-
sitely valenced. Typically, the appraisal of a musical outcome is neu-
tral or positive (because it produces little real threat), so any positivity
is enhanced when this outcome is preceded by events that increase ten-
sion, incorrect identification, and surprise. In other words, we are more
pleased by an unexpected positive outcome than an expected positive
outcome. For example, the pleasure induced by a consonant chord is
enhanced when it follows a long sequence of dissonant chords.

With respect to explaining how tonality can evoke emotions, the
most relevant responses are those of tension, prediction, reaction, and
appraisal. The tension response, and its associated emotions, are tonally
triggered by creating a strong expectancy—for example, a V7 chord
creates a strong expectancy of a proceeding I (or i, depending on the
context). And tension can be increased when the expected resolution
is delayed, for example by staying on the V7 for longer than expected.

The prediction response, which produces positively valenced feel-
ings, such as pleasure, and negatively valenced feelings, such as weird-
ness, is triggered by organizing pitches—vertically and horizontally—
in a way that, respectively, conforms with expectation, or does not.

Huron argues that musical surprise (which represents a failure of
prediction), produces negatively valenced prediction and reaction re-
sponses, but a positive (or neutral) appraisal response, and that this can
induce three emotions: frisson, laughter, and awe. He considers these

to be related, in respective order, to the three common responses to sur-
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prise: fight, flight, and freeze. The fight response is characterized by an
aggressive posture and this, in turn, is related to the piloerection (hairs
standing up) that is a characteristic of frisson (‘the hairs on the back
of my neck are standing up’). The flight response is characterized by
rapid respiration, which is related to the modified panting that charac-
terizes laughter. The freeze response is characterized by the holding of
breath, which is related to the gasp associated with awe. These feelings
are amplified by the contrastive valence between the negative feelings
associated with surprise (due to the prediction and reaction responses)
and the appraisal response that ‘realizes’ there is no real danger. The
initial fear produced by the reaction response is short-lived and is not
conscious, but the resulting emotion—frisson, laughter, or awe—is.
In this way, Huron argues that there are deeply embedded psycho-
logical processes that can account for how the manipulation of pitch-
based expectation or attraction—that is, tonality—can induce a variety
of emotional states. For Huron, expectancy is solely down to learning:
We expect pitch z to sound at the same time as pitches y and z because
we have heard that chord many times before; we expect chord x to be
followed by chord y then chord z, because we have heard that progres-
sion many times (both in general music and in the piece itself ).°
However, I argue in the remaining sections of this chapter that there
are plausible, and experimentally demonstrable, innate processes that
can account for certain important aspects of tonal expectancy (attrac-

tion).

2.2 A STRATEGY FOR MODELLING TONALITY

It is a plausible hypothesis that tonal attraction is due, in part, to a lis-
tener wanting a transition from an ‘unpleasurable’ state to a ‘pleasur-

able’ state. For instance, we might class the dominant seventh chord V7

Huron’s disavowal of psychoacoustic explanations in Huron (2006) is somewhat sur-
prising considering much of his seminal earlier work where he provides psychoa-
coustic and other bottom-up explanations for a number of related phenomena such
as the choice of intervals favoured in two-part polyphony, common scales in world
music, and the rules of Western voice-leading (Huron, 1991, 1994, 2001).

13



14

MODELLING THE COGNITION OF TONALITY

as unpleasurable, and the tonic chord I as pleasurable; hence we hear
the former as attracted to the latter. As mentioned above, it is also plau—
sible that attraction is due, in part, to a listener becoming accustomed
to certain melodic or harmonic moves. For example, we may have be-
come familiar with music that uses the progression V'—I, so we expect
to hear the former chord move to the latter.

This gives clues as to how to model tonal attraction. What possi-
ble mental processes might we use that could be associated with plea-
sure/displeasure, and so forth? Perhaps the most obvious candidates are
familiarity/unfamiliarity, sensory consonance/dissonance, and sensory
affinity/disafhinity.

Familiarity/unfamiliarity is here defined as the extent to which a lis-
tener is accustomed to a given musical event in a given context. Itis a
function of that event and all previous musical events (and their con-
texts) heard by the listener. The familiarity of an event may or may not
be directly perceived. For example, major triads are commonly used in
Western music so, to a Westerner, they will be familiar. Similarly, the
chord progression iii—1 is rare in Western music so it will be unfamiliar
to a Western listener. Familiar musical stimuli are typically regarded as
more pleasurable (e.g., North and Hargreaves (1995) found a correla-
tion of 7(58) = .91 between ‘liking’ and ‘familiarity’ ratings of sixty
musical excerpts averaged over 2§ participants).7 Under Huron’s ITPRA
theory, this is because the perception of familiar events is rewarded by
the prediction response.

Consonance/dissonance is here defined as a perceptual/cognitive at-
tribute that quantifies the degree of pleasure, fit, or compatibility of
simultaneous tones as a function of their pitch (fundamental frequency)
and timbre (spectral content), but irrespective of their context within a
progression of chords or pitches. In this sense, consonance/dissonance
is defined as a purely vertical phenomenon (vertical in the sense of musi-
cal notation) and is the same as Tenney’s second consonance-dissonance

concept (CDC-2) (Tenney, 1988). Sensory consonance is that part of con-

In this dissertation, I follow APA (American Psychological Association) guidelines
for statistical reporting and enclose the degrees of freedom inside parentheses.
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sonance/dissonance that is down to psychoacoustic phenomena, such
as partials that are close enough in frequency to create roughness (un-
pleasant beating), or partials that fall into a harmonic series creating a
pleasant sensation of toneness or fusion.® The non-sensory part of conso-
nance/dissonance is down to learning—that is, as we become familiar
with any given chord it becomes more consonant (pleasurable)—and is,
therefore, included in the above familiarity/unfamiliarity category. All
these aspects of consonance/dissonance are examined in greater depth
in the introduction of Chapter 4, and suitable models are discussed in
Section 4.1.2.

Affinity/disaffinity is here defined as a perceptual/cognitive attribute
that quantifies the degree of pleasure, fit, or compatibility of non-
simultaneous tones as a function of their pitch (fundamental frequency)
and timbre (spectral content). It can also be thought of as the melodic
analogue of consonance/dissonance, and is equivalent to Tenney’s first
consonance-dissonance concept (CDC-1) (Tenney, 1988). In this sense,
affinity/disaffinity is defined as a purely horizontal phenomenon (hor-
izontal in the sense of musical notation). Sensory affinity is that part of
afﬁnity/ disafﬁnity that is down to psychoacoustic phenomena such as
spectral pitch similarity, which is a measure of the similarity, in pitch, of
the partials of two tones or chords (I give a fuller definition in Sec. 2.5).
The non-sensory part of aflinity/disaffinity is down to learning—that
is, as we become familiar with any succession of pitches or chords
we perceive them to have greater aflinity (the succession is more
pleasurable)—and is, therefore, included in the above familiarity/un-
familiarity category. Models of affinity are examined in more depth in
Section 4.1.1.

In this way, we can argue that a chord or pitch that is unfamiliar,
dissonant and poor-fitting, will be attracted to resolve to a chord or

pitch that is familiar, consonant, and good-fitting. Familiarity is, by

Partials—also known as overfones—are the frequency components (sine waves) that
make up a complex tone. Complex tones comprise a number of partials at a variety of
frequencies and phases. Harmonic complex tones contain partials whose frequencies are
all at (or close to) integer multiples of a single fundamental frequency. Most pitched
Western musical instruments produce harmonic complex tones containing numerous
partials.

IS
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definition, a top-down or learned process. Consonance and affinity are,
in part, bottom-up (because the consonance and affinity of different
intervals, chords, and chord progressions, can be plausibly modelled
without any statistical analysis of their prevalence in a relevant musical
corpus).

In this dissertation, I focus on sensory affinity rather than sensory
consonance/dissonance—that is, on the horizontal rather than vertical
aspects of tonality. The reason for this is because the latter has already
been widely studied, but also because it is not able to provide an ex-
planation for basic tonal effects. For instance, the chord progression
Fmaj—Gmaj—Cmaj induces a powerful feeling of attraction from the
second chord to the third chord. Yet, in this example, the three chords
are equally consonant (they are all major triads). Clearly, it is the over-
all context, which is established across time by the three chords, that
determines each chord’s tonal effect; it is not their individual levels of
consonance/dissonance.

I also focus on bottom-up models—models of innate perceptual/cogni-
tive processes that do not rely on statistical analyses of a musical cor-
pus. The reason for this—as I argue in Section 2.3—is because only
bottom-up models can provide explanations for why music takes on

certain specific forms rather than others.

2.2.1 Methodology

Before proceeding to this, however, I feel it will be helpful briefly
to outline the methodological framework of this research. I take an
empirical approach in which computational models of perception and
cognition are tested against experimentally obtained data. In an exper-
iment, we know the values of a set of independent variables (or just vari-
ables) and we measure the values of a set of dependent variables that occur
over different values of the independent variables. The resulting values
constitute the experimental data. For instance, we may ask participants

to rate how well pitches at different intervals ‘fit’ together—here, the
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independent variable is the interval used, and the dependent variable is
rating of ‘fit’.

A numerical, mathematical, or computational model is a mathematical
function whose inputs are the values of the independent variables used
in the experiment and a set of parameters. The parameters’ values are
held constant over all values of the independent variables, and the
model’s output values are compared with the experimental data to ob-
tain a discrepancy value, which measures how well the model fits the
data. The discrepancy is minimized by optimizing the values of the
parameters. In this way, different parameter values can be thought of
as indexing through different models until the best-fitting model is
found.

I seek to obtain a good fit with the experimental data using the most
parsimonious model possible. A parsimonious model is one that is inflex-
ible: across the whole space of parameter values, the resulting model
produces values that are close to only a relatively small range of possi-
ble data (Pitt et al., 2002; Honing, 2006).

An advantage of a good-fitting parsimonious model over a good-
ﬁtting non-parsimonious model is that only the former generalizes be-
yond the specific sample of data to which they are fitted. This is be-
cause it models the underlying deterministic process (whose effect is
constant across different data samples) rather than the stochastic noise
in the data (whose effect is not constant across different data samples).
For instance, when a non-parsimonious model is optimized to a noisy
data set, it may fit better than a parsimonious model; but, when com-
pared with different data samples, it will fit worse than the parsimo-
nious model. Over a number of data samples, the parsimonious model
will, on average, fit better (Zucchini, 2000).

In Chapters 4 and s, I use k-fold cross-validation to ensure the models
I test are able to generalize sufficiently (i.e., they are parsimonious) and

are fairly compared.® And, as mentioned above—and fully explored in

I use cross-validation rather than methods such as BIC (Bayesian Information Crite-
rion) and AIC (Akaike Information Criterion) because these are sensitive to only one
aspect of model flexibility—their number of parameters—and insensitive to their
functional form (Pitt et al., 2002). This can be an important factor when comparing

17
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the next section—TI also favour models that are able to provide effective
explanations as well as effective predictions.

With respect to input variables, my models use symbolic representa-
tions of music rather than live audio input. For example, when mod-
elling a perceptual or cognitive response to a chord, I may represent
it with the frequencies and amplitudes of the partials that one would
typically find when that chord is played by a familiar Western instru-
ment (e.g., wind, string, or voice) rather than precisely measuring the
spectral content of the stimulus. The principal reason for this is because
my interest is not in precisely modelling responses to specific musical
events; rather, it is in modelling responses to general musical events
that are applicable across a wide range of musical instruments, environ-
ments, and musical contexts.'® For example, I would not model the
precise differences between the chord progression Fmaj—Emaj—Dmaj
played by a string quartet in a recital hall and the same progression
played by an acoustic guitar in someone’s front room. Instead, I would
model the differences between this chord progression and a different
chord progression such as Fmaj—Gmaj—Emaj (regardless of the precise

instrument used, and its location).

2.3 MODELS OF MENTAL STATES: NATURE AND NURTURE

In this section, I argue that bottom-up models of innate processes (na-
ture) have greater explanatory power than top-down models of learn-
ing processes (nurture). I also discuss the difficulty faced by researchers

who wish to establish the extents to which an experimentally observed

nonlinear models, such as my own, with linear models. Also, for my models, MDL
(Minimum Description Length) cannot be derived analytically, and numerical cal-
culations would be prohibitively time-consuming. Because k-fold cross-validation
can be calculated within a feasible time-period, it is the most useful method. For lin-
ear models, k-fold cross-validations with appropriate values of k are asymptotically
equivalent to AIC or BIC (Stone, 1977; Shao, 1997), so these are related techniques.
Other reasons are that the resulting models are simpler to build; the human auditory
system is able to perform important tasks—such as polyphonic pitch detection—
that we cannot yet match with computational models, but which are trivial with
symbolic data; spectral representations of the stimuli can be easily transformed by
psychoacoustic parameters whose values are unknown a priori.
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effect is due to top-down and/or bottom-up processes, and propose a
solution: one that I utilize in Chapter 4.

In order to do this, in Section 2.3.1, I discuss the purpose of mod-
elling and define explanation and prediction. In Section 2.3.2, I provide a
novel categorization of the processes that can convert a physical stim-
ulus into a mental response, thereby providing a precise definition of
nature and nurture processes, and bottom-up and top-down models
thereof. In Section 2.3.3, L highlight how composers create a causal loop
between processes of music perception and the musical repertoire, and
the implications of this loop for the explanatory power of top-down
and bottom-up models. In Section 2.3.4, I demonstrate the importance
of exploring causal assumptions before selecting between models—I
highlight two examples where ignorance of the above-described causal
loop has resulted in bottom-up models being unjustifiably rejected
solely on the grounds of their lower predictive power—and indicate
some of the types of experimental intervention that can test specific ca-
sual claims. The experimental procedure utilized in Chapter 4 is an ex-
ample of such an intervention: one that is designed to test the strength
of a hypothesized bottom-up casual link from spectral pitch similarity

to perceived affinity.

2.3.1  Explanation and Prediction

In the science of music perception and cognition, we aim to model
subjective mental responses (sensations, feelings, and thoughts) with
variables derived from musical events or associated non-musical events.
That is, given the cultural and environmental experiences of a listener,
we seek to predict their likely mental responses to a tone, or pair of tones,
or chord progression, or rthythm, or spectrum, and so forth, or some
combination thereof. Furthermore, we also seek to explain why this
stimulus has this effect.

For scientific models, this latter explanatory role is arguably of

greater import than the predictive role (as argued by, e.g., Deutsch
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(1997), and Lewandowski and Farrell (2011)). This is because a
predictive-only model (a ‘black-box’ model) may provide accurate pre-
dictions of the results of an experiment, but it gives little insight into
the processes that lead to those results. An explanatory model (a ‘white-
box’, or ‘clear-box’, model), on the other hand, provides a series of
tightly defined and interrelated causal effects, each of which is plausible
and somewhat inflexible.’* The advantage of an explanatory model is
that it gives us greater insight into how reality works: this enables us
to use its underlying principles (laws) in areas that were not part of the
original experiment or observation. In other words, the identified prin-
ciples are generalizable, and hence serve as powerful tools with which
to manipulate and understand nature. A predictive-only model is un-
likely to provide such generality and utility.

To illustrate, Deutsch (1997, p. 4—5) asks us to

Imagine that an extraterrestrial scientist has visited the
Earth and given us an ultra-high-technology ‘oracle’ which
can predict the outcome of any possible experiment, but
provides no explanations .... How would the oracle be used
in practice? In some sense it would contain the knowledge
necessary to build, say, an interstellar spaceship. But how
exactly would that help us to build one, or to build another
oracle of the same kind—or even a better mousetrap? The
oracle only predicts the outcomes of experiments. There-
fore, in order to use it at all we must first know what exper-
iments to ask it about. If we gave it the design of a space-
ship, and the details of a proposed test flight, it could tell
us how the spaceship would perform on such a flight. But
it could not design the spaceship for us in the first place.
And even if it predicted that the spaceship we had designed
would explode on take-off, it could not tell us how to pre-
vent such an explosion. That would still be for us to work

out. And before we could work it out, before we could even

11 Another feature, sometimes claimed, of explanatory models is that they are under-

standable to humans (e.g., Trout (2007)); this is not a feature I focus on here.
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begin to improve the design in any way, we should have
to understand, among other things, how the spaceship was
supposed to work. Only then would we have any chance
of discovering what might cause an explosion on take-off.
Prediction—even perfect, universal prediction—is simply

no substitute for explanation.

Busemeyer and Diederich (2010, p. 4) provide a similarly instructive,
but more down-to-earth, comparison between two models of the mean
response time taken to perform a complex task as a function of the
number of training trials. One model is a predictive-only power-law
model, the second is an explanatory memory-trace model. Only the
latter model can make predictions outside the narrow scope of the
experiment—for example, predicting the accuracy of responses as a
function of the number of training trials (which does not follow a
power law, and so cannot be predicted by the former model).

In summary, I suggest a straightforward definition: an explanation
identifies the earliest relevant causes of the effect under consideration.
The further back in the causal chain the model goes, the greater its
explanatory potential; having said that, it is obviously convenient to
draw a reasonable boundary beyond which stepping further back in
the causal chain becomes less relevant. For example, music perception
clearly relies upon acoustical events, but the precise physical mecha-
nisms by which sound is carried through the medium of air can be

glossed over and treated as an established fact.

2.3.2  Mental Processes: Nature and Nurture

In this section, I propose a novel categorization of mental processes that
convert a physical stimulus into a mental (private, subjective) response.
The processes are categorized according to the type of input variable

they require. I subsequently show how this enables us to tightly de-
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fine nature (bottom-up) processes and nurture (top-down) processes, and to
explore the causal interactions between them."?

I make a fundamental distinction between nature processes (which do
not require learning) and nurture processes (which do require learning),
and a subsidiary distinction between intrinsic processes (which do not
require a non-domain stimulus) and extrinsic processes (which do re-
quire a non-domain stimulus).’3 The terms nature, nurture, intrinsic,
and extrinsic all refer to a specific domain which, in this discussion, is
music (but any alternative domain could be substituted). These pro-
cesses likely operate simultaneously and are causally interlinked. To-
gether, they produce a set of sensations, feelings and concepts that can
be ‘observed’ by introspection, and then reported as empirical data.
However, I assume that, for the most part, the observer has limited in-
sight into which process caused which feeling, or the extent to which
it contributed to any specific feeling. The four types of process are il-

lustrated as causal diagrams in Figure 2.1.

Prior to detailing each of these four processes, let me first introduce
some variable names that will be used in Sections 2.3.2.1—2.3.2.4.

Let a musical event m at time ¢ be denoted m;, and let a non-musical
event n at time ¢ be denoted n;. The time ¢ = 0 represents the present
moment so the current musical event is denoted mg. Examples of m
might be a categorical variable with values like ‘major chord’ and ‘mi-

nor chord’; a scalar representing the pitch of a tone; a probability dis-

Terms such as ‘nature’ and ‘nurture’, ‘innate’ and ‘learned’, ‘bottom-up’ and ‘top-
down’ are typically vaguely defined in cognitive literature, and often take on contra-
dictory meanings. For example, for Sun (2001) ‘bottom-up’ refers to a process that is
driven by implicit rather than explicit long-term memory, whereas in much music
perception research it typically refers to sensory processes driven by psychoacousti-
cal mechanisms (e.g., Ferguson et al. (2011)). There are a variety of other terms with
meanings similar to bottom-up such as ‘context-independent’ (Woolhouse, 2009),
‘data-driven’ (Dennett, 1994), ‘stimulus-driven’, and ‘sensory’ (Bigand et al., 2003);
and terms with meanings similar to ‘top-down’ such as ‘statistical’ (Pearce and Wig-
gins, 2006) and ‘expectation-driven’ (Dennett, 1994), and ‘cognitive’ (Bigand et al.,
2003).

My categorization of processes is similar to Sloboda and Juslin’s ‘sources of emotion’,
but there is an important difference: their principal categorization is determined by
the absence, or presence, of non-musical events (intrinsic versus extrinsic); ours by the
absence, or presence, of previous (learned) musical events (nature versus nurture) (Slo-
boda and Juslin, 2001).
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Figure 2.1: Four categories of mental processes by which physical stimuli are
transduced into subjective mental states.

tribution of a feature like pitch, timbre, or loudness; a vector or array
representing a set of features.

Let the mental state induced by a musical event at time ¢ be denoted
h(m¢), and the mental state induced by a non-musical event at time ¢
be denoted hy,(n¢). These might be a scalar or vector of values (e.g.,
a scalar representing the degree of tension felt, or a vector whose ele-
ments are the co-ordinates of an emotion space, or a categorical proba—
bility mass function over basic emotions). The function h,, may simply
be empirical observations of the expected mental states induced by dif-
ferent non-musical events, rather than an explanatory model.

Let s(z, y) be a measure of the similarity of = and y, which returns a
value of zero when they are maximally dissimilar, and which typically
takes a value of unity when they are maximally similar. For example,

a very simple such measure might assign a 1 when « = y, and o when

2.3.2.1  Extrinsic nurture processes

Extrinsic nurture processes, in the top left corner, have three types of in-

put variables: the current musical event (that which is held in short-term
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memory); previous musical events (as stored in implicit or explicit long-
term memory); previous non-musical events.™

In extrinsic nurture processes, a musical event becomes associated
with a non-musical event by familiarity: listening to a piece of music,
we may find that its chord progression, melodic shape, rhythmic pat-
tern, or some other characteristic, is one that we have learned is often
used in the ‘sad’ part of a film. In this way, we learn an association be-
tween that musical characteristic and feeling sad. It is plausible that,
within a culture, some such associations may be almost universal (mi-
nor chords are sad) while others may be quite specific (‘honey, they’re
playing our song’). This is also the principal process by which we learn
the meanings of words: by repeated association with an object or con-
cept.’S In the case of language, the learned meanings of words can be
quite precise: in music, such meanings are typically of a more vague or
emotional character. In semiotics this process is termed symbolic signi-
fication, Sloboda and Juslin (2001) denote it associative sources of emotion,
while this category includes Juslin and Vistfjall’s (2008) mechanisms of
evaluative conditioning (which applies to implicit long-term memory) and
episodic memory (which applies to explicit long-term memory).

Extrinsic nurture processes are, by definition, due to learned asso-
ciations and can, therefore, be mathematically modelled by a statisti-
cal analysis of associations between (co-occurrences of ) specific mu-
sical events and non-musical events as experienced by an individual.
Clearly, we cannot have access to an individual’s experiences at every
moment of his or her life, so a sample is required—a corpus or training
set—of musical and non-musical variables that are likely to co-occur in

his or her culture.

Short-term memory has limited capacity but can be accessed quickly. It is typically
thought to decay within twenty seconds (Peterson and Peterson, 1959). Long-term
memory has unlimited capacity, and lifetime duration. It can be explicit (episodic) al-
lowing specific events to be consciously remembered, or it can be implicit (schematic)
allowing general rules and patterns to be unconsciously assimilated.

Elements of language, particularly phonemes and graphemes, may also carry broad
iconic significations (Wescott, 1971; Lansberg, 1980; Gell, 1995; Ramachandran and
Hubbard, 2001), but knowing the precise meaning of most words still requires learn-
ing.
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One simple way of mathematically formalizing this is the following

model:

h(mo) = f Zhn(nt) s(mo,my) |, (2.1)
teTmNTn
where the musical corpus contains values of m; over ¢t € Ty, and the
non-musical corpus contains values of n; (or hy, (1)) over t € Th,.

The variables entering this equation are mg, m¢, and n; (as illustrated
by the causal paths in Fig. 2.1). If we are modelling the mental state
of a single participant or a group of participants with a similar cultural
background, m; and n; can reasonably enter as constants (or parameters
to be optimized). If we are modelling mental states as a function of the
current musical event and the cultural background of each participant,
both m; and n; can enter as variables.’ The function h, may also be
modelled as being culturally determined; that is, we might expect that
members of different cultures will, on average, respond to the same
non-musical events in different ways.

The summation in (2.1) is a weighted sum of the mental states in-
duced by non-musical events. Each weight is the similarity of the cur-
rent musical event and the musical event that occurred simultaneously
with the non-musical event. The resulting sum can be transformed into
a weighted mean by dividing by |7, N 7,|. For example, we may wish
to model the happiness or sadness of a chord by how relatively often
similar chords have been played simultaneously with happy and sad

non-musical events.

2.3.2.2  Intrinsic nurture processes

Intrinsic nurture processes, in the top—right corner of Figure 2.1, have two
types of input variable: the current musical event, and previous musi-
cal events. Here, we are concerned with learned musical patterns that

extend in time or frequency or both. For example, due to its prevalence

In modelling terms, all values of m; and n; over ¢, will be adjusted en masse by switch-
ing between corpuses. Clearly, the corpuses should appropriately reflect the partici-
pant’s cultural background.
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in music, we may be familiar with the short melodic phrase (sequence
of scale degrees) 3—2—1 (Schenker’s Urlinie). Upon hearing the scale de-
grees 3—2 we may, therefore, expect to hear 1 and be surprised if the
following note is the comparatively rare ﬁZ. Intrinsic nurture processes,
therefore, provide ways in which feelings of surprise, expectancy, res-
olution, familiarity, alienness, and so forth can be expressed (however,
I do not intend to suggest that learning is the only source of such feel-
ings, far from it). This mechanism is termed musical expectancy by Juslin
and Vistfjill (2008).

Intrinsic nurture processes are, by definition, due to learned pat-
terns of musical features (across pitch, time, and timbre) and can, there-
fore, be mathematically modelled by a statistical analysis of the musical
events experienced by an individual. As before, we cannot access an in-
dividual’s experiences at every moment of his or her life, so we use a
corpus of musical events that are likely to occur in his or her culture.

One simple way to mathematically formalize this is the following

model:

h(mo) = f{ Y s(mo,me) |, (2.2)
t€Tm
where the musical corpus contains values of m; over ¢ € Tp,.

The variables entering this equation are mg and m (as illustrated by
the causal paths in Fig. 2.1). If we are modelling the mental state of
a single participant or a group of participants with a similar cultural
background, m can reasonably enter as constants (or parameters to be
optimized). If we are modelling mental states as a function of the cur-
rent musical event and the cultural background of each participant, m;
can enter as a variable.’?

The summation in (2.2) is a weighted count of the previous musical
events in a corpus. They are weighted by their similarity to the current

musical event. The resulting sum can be normalized into a weighted

In modelling terms, all values of m; over ¢, will be adjusted en masse by switching
between corpuses. Clearly, the corpuses should appropriately reflect the participant’s
cultural background.
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prevalence by dividing by |Tm|. So, if there are lots of events in the
corpus similar to the current event, the resulting value will be high.
The function f converts this weighted prevalence into the resulting
mental state. This function may be very straightforward—we might
use a linear function of the prevalence to model the perceived conso-
nance of chords so that common chords are modelled as consonant and
uncommon chords as dissonant (using a corpus appropriate to the par-
ticipant). Or we may wish to model the expectancy of a chord, given
the two previous chords, by the prevalence of three-chord progressions

in an appropriate corpus.

2.3.2.3  Extrinsic nature processes

Extrinsic nature processes, in the bottom-left corner of Figure 2.1, are a
function of non-musical events (past and present) and the current mu-
sical event. In these processes, a response is associated with a stimu-
lus by similarity (not familiarity): a piece of music with a fast tempo
and ‘bouncy’ melody can communicate excitement or arousal by anal-
ogy with bodily movement or non-verbal speech patterns, or a crack
in a vocal performance may suggest the emotional fragility of the per-
former. It would seem that such processes can communicate a wide
range of broad feelings—Juslin and Laukka (2004) provide numerous
examples of musical features that carry meanings that can be associ-
ated, by similarity, with speech prosody and body movement. In semi-
otics these processes are termed iconic or indexical signification (Sloboda
and Juslin use the related term iconic sources of emotion), and it includes
Juslin and Vistfjall’s (2008) mechanisms of emotional contagion and visual
imagery.

Extrinsic nature processes are, by definition, due to perceived sim-
ilarities between musical and non-musical events. This can be mathe-
matically modelled by the mental states induced by non-musical events

that are, in some sense, similar to the current musical event.

27



28

MODELLING THE COGNITION OF TONALITY

One simple mathematical formalization of this process is the follow-

ing model:

h(mg) = f Zhn(n) s(mo,n) | . (2.3)
neN

This model has a single variable mg, with the differing values of n enter-
ing the model as constants parameterized by the range of values consid-
ered, which is denoted by the set V. The function h, may be modelled
as being culturally determined; that is, members of different cultures
can be modelled as, on average, responding to the same non-musical
events in different ways.

The summation is a weighted sum of the mental states induced by
different non-musical events. They are weighted by the similarity of
each non-musical event and the current musical event. This can be
transformed into a weighted mean by dividing by |V|. So, if there
are some non-musical events similar to the current musical event, and
others that are dissimilar, the resulting mental state is modelled as the
weighted mean of the mental states induced by the former non-musical
events. For example, we may wish to model the arousal produced by
a piece of music, and model certain characteristics of music (e.g., high
loudness, high pitch, bright timbre, fast tempo) as being similar to the
physical manifestations of arousal (e.g., fast and energetic body move-
ments and vocalizations). If the current musical event has these proper-
ties, it will have a high similarity with these non-musical events, hence

the resulting mental state is modelled as high in arousal.

2.3.2.4 Intrinsic nature processes

Intrinsic nature processes, in the bottom-right corner of Figure 2.1, have
just one type of input variable: the current musical event. In such pro-
cesses, a specific type of musical event is effectively ‘hard-wired’ to a
mental response. At a basic level, any given stimulus is associated with
a ‘raw feel’ or sensation—for example, the private subjective experi-

ence of pitch, timbre, or loudness. Also at a basic level, a stimulus may
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induce a basic emotional response—analogously to how the smell of
bread baking in an oven may induce a feeling of hunger, or the flash
of a big cat’s teeth may induce fear, a sudden loud sound may stimu-
late shock, surprise, or even pain. However, the feelings involved may
not always be quite so basic. For instance, there is a well-established
link between stimulus complexity and pleasure (Berlyne, 1970), and it
has been demonstrated how music that is too simple for a participant
is found tedious, and music that is too complex is found unpleasant,
with a pleasure-maximizing ‘Goldilocks’ complexity somewhere in-
between (Vitz, 1966; Heyduk, 1975; North and Hargreaves, 1995). It is
plausible that there is an evolutionary advantage to such behaviour: it
is useful for us to invest time solving (solvable) problems, but also use-
ful that we should avoid situations where we cannot properly resolve,
or make out, our percepts (such as venturing into the dark woods at
night). This process includes Juslin and Vistfjill’s (2008) mechanism of
brain stem reflex.

A possible concrete example of this is the displeasure associated with
‘dissonant’ chords that are rough (due to the rapid beating of partials
that are close in frequency) and have no clear root (the spectral con-
tent has no clear fundamental). In both cases, the resulting percept is
more complex than that produced by a chord with low roughness and
a strong root: in the first case, because of the distracting beating and
the difficulty of resolving the individual frequency components; in the
second case, because of the difficulty in finding a single representative
root pitch. A causal link from complexity to pleasure makes it possi-
ble for an artist to play aesthetic games; for example, in music, a greater
symmetry may be exposed only gradually such that each segment (e.g.,
interval, chord, phrase, section) is somewhat complex (asymmetrical)
but, when all segments have been played, a more general symmetry or
pattern is apparent. There may be other ways in which complexity can
be used to communicate higher-level feelings, and there may be other

intrinsic nature responses that can be similarly manipulated.
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Intrinsic nature processes are due only to some function of the cur-
rent musical variable. This can be mathematically formalized by the

following simple model:

h(mo) = f(mo), (2.4)

which has a single variable my.

A very simple example is using log-frequency as a model of pitch
height; in other models, such as the affinity model that will be described
in Section 4.1.1, the variable may be multidimensional and the function
more complex. Purely psychoacoustic models fall into this category,
but this category also includes models that use core knowledge (Spelke
and Kinzler, 2007) and perceptual principles, like Gestalt, or mathe-
matical procedures, such as similarity measures and pattern detection,

which are not psychoacoustic in nature.

2.3.2.5  Causal interactions

There are also interactions between these four processes (not shown in
Figure 2.1, to avoid a spaghetti effect). For example, a stimulus that is
initially perceived as complex will become less so with familiarity (as
demonstrated by North and Hargreaves (1995)). In this way, a previ-
ously unpleasantly-dissonant tone cluster may become pleasant with
sufficient familiarity. This is because familiarity tends to reduce per-
ceived complexity—hence intrinsic nurture processes influence intrin-
sic nature processes. This can be visualized as a causal path extending
from the intrinsic nurture mental process to the intrinsic nature pro-
cess; or, mathematically, by treating the function f in (2.4) as being
parameterized by (2.2). If the intrinsic nature function f is relatively
inflexible under the influence of (2.2), it is reasonable to think of the
nature process as the more fundamental, or underlying, process.

This relationship also works in reverse, in that a stimulus that evokes
a strong innate response is likely more salient and, therefore, probably
easier to learn. For example, the pitch associated with the fundamen-

tal of a harmonic complex tone is a very salient—probably innate—
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perceptual response to such tones; whereas the loudness of the seventh
harmonic is not a particularly salient perceptual response. For this rea-
son, we find it easier to learn patterns of pitch than patterns of the sev-
enth harmonic’s loudness. This can be visualized as a causal path ex-
tending from the intrinsic nature mental process to the intrinsic nur-
ture process; or, mathematically, by weighting the similarity function
by the salience implied by (2.4).

Furthermore, salient pitch patterns are more likely to be mentally as-
sociated with non-musical events than are non-salient patterns of sev-
enth harmonic loudness, which shows that an intrinsic nature process
can also affect an extrinsic nurture process.

In similar ways, each type of process can affect each other type of
process, and this illustrates just how difficult it is to cleanly separate
out nature from nurture in an experimental investigation. For exam-
ple, in Chapter s, I model the affinity of chords and scales by the simi-
larities of the pitches of their partials. However, this presupposes some
understanding of what a chord and a scale is, and what ‘affinity’ means
in a musical context. If an individual were raised in a culture that did
not use pitch-based music, his or her responses would probably be very
different to my participants’ and, in an experimental setting, questions
such as ‘how strongly does this chord produce a feeling of closure or
completion?” would probably be completely alien. However, this does
not preclude the possibility that, if a pitch-based music were to develop
in this culture, it may be more likely to develop in certain directions
than others—in directions that are both constrained by, and make use
of, underlying innate processes of perception and cognition.

Although causal interactions between the different types of process
can occur, as described above, it is important to point out that cer-
tain causal paths are unavailable under the definitions given above. For
instance, it may seem that previous musical events causally affect the
current musical event. For example, it might seem that if a certain mu-
sical event is very common in the corpus (i.e., >, s(mo, my) is high),

this implies the probability of my is increased and that this would have
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a direct impact on a nature process. But the value of mg, which enters
into equations (2.1—2.4) is not its probability of occurring. Rather m,
in all these models, is taken as a given, which implies its probabﬂity of
occurring is ‘conditioned out’. For this reason, using the definitions I
have given above, there can be no causal link between previous musical
events and the current musical event.

Although there is no way to completely disentangle the different
processes that occur in perception and cognition, the above four-fold
categorization is a useful theoretical framework. It is useful because it
clarifies the way that different mental processes operate, and the mod-
els that are appropriate for them. Notably, it enables us to conceptually
differentiate between those aspects of perception and cognition that are
in essence innate and universal in that they are, to a meaningful extent,
unaffected by typical cultural experiences. It also clarifies how the dif-
ferent processes causally influence each other, and shows how they can
operate not just simultaneously but also in concert, with certain stim-
uli taking on a strong emotional or conceptual charge that is mutually
reinforced by all four processes.

In Section 2.3.3, I explore another important causal pathway that oc-
curs over time; this is from the mental processes of composers and per-
formers to the repertoire that will become the previous musical events
of a future generation of listeners. In Section 2.3.4, I briefly describe
some ways in which the effects of nurture processes can be minimized

in an experimental setting.

2.3.2.6  The mental state

The result of the four processes, and their interactions, is a mental state,
shown at the centre of Figure 2.1. This mental state can be directly
observed only by introspection, which is subject to many possible er-
rors and distortions due to the act of observation itself (which disrupts
the experience) and preconceptions of what the experience ‘should’
be (such distortions are discussed at length by Petitmengin and Bitbol

(2009)). Furthermore, because it is difficult to communicate to a partic-
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ipant a specific categorization of a subjective state, and any such state is
frequently a mixture of any number of other states, each of which may
have fuzzy boundaries, it is possible the participant will rate untargeted
mental states that have not been asked for. For example, in the experi-
ment described in Chapter 4, participants were asked to rate how well
melodic tones fitted together (their affinity); the data indicates, how-
ever, that they were also rating the inherent consonance of the timbres
used.

Furthermore, introspection is blind to the processes that lead to this
final mental state (see Petitmengin and Bitbol (2009) for a discussion of
process blindness): ‘people may have little ability to report accurately
about their cognitive processes’ and even have a ‘literal lack of aware-
ness that a process of any kind is occurring until the moment that the
result appears’ (Nisbett and Wilson, 1977, p. 241). This blindness makes
modelling difficult but, then again, we are also blind to processes (natu-
ral laws) that underlie the physical world too (if we weren’t, modelling

would be a trivial exercise!).

Underlying all of these nature and nurture processes are psychoa-
coustical and cognitive universalities—the peripheral auditory system
is sensitive to a limited frequency range, and it exhibits specific acous-
tical properties that are innate and universal. The central auditory sys-
tem relies on neural and perceptual processes that are, to a large ex-
tent, innate and universal, and there are higher-level cognitive pro-
cesses that can also be thought of as innate and universal (such as Gestalt
principles of perceptual grouping). For example, in any model of mu-
sical perception—even nurture processes—it makes sense to model
these peripheral mechanisms (e.g., not including ultrasonic frequen-
cies) in the first stages, and take account of general cognitive processes
throughout the model. It is, in this sense, that conventional symbolic
music notation, such as note names (which characterize a complex
tone’s fundamental), can provide useful simple variables that already
encapsulate psychoacoustic processes. Ultimately, the value of any mu-

sic variable in the framework models discussed above, is a function of
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non-music current music previous music
event event events

g

listening composition
processes processes

mental state

Figure 2.2: Aggregated over people and time, composers create a feedback
loop.

an acoustical input variable that can be fully characterized, in the time
domain, by its pressure.™®

Clearly, intertwined with these psychophysical and cognitive uni-
versalities, are important learned processes that are non-universal (they
are culture- or person-specific) and which strongly affect our percep-
tion at fundamental levels. For example, categorical perception deter-

mines our experience of the world and is, in part, due to the learning

of common patterns found in specific cultural environments.

2.3.3  Circularity and Explanation

As illustrated in Figure 2.2, music composition can create a feedback loop
between mental processes and the musical repertoire.’® This feedback
loop occurs over time and between different individuals and is, there-
fore, best considered as occurring between mental states and previous
musical events that are aggregated over time and numerous individ-
uals. When creating a piece of music, a composer typically imagines
or plays a candidate musical event and assesses—Dby introspection—its

impact on his or her mental state. Guided by this, he or she may choose

An acoustical signal can be fully characterized in an infinite number of ways, e.g.,
in the frequency domain, or in the domain of any fractional Fourier transform. The
above characterization is, therefore, non-unique.

The term composition ishereusedina general way:itis undertaken not just by composers,
but also by consumers because they choose (by number or influence) which music enters
the corpus. The process by which consumers can influence musical development—
in a manner akin to natural selection—is nicely demonstrated by the DarwinTunes
project (MacCallum et al., 2012).
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that event to form part of the composition, or modify it and test it
again, or discard it. In this way, the composer draws upon his or her
mental processes to produce a final piece of work that is released into
the world. Such music is filtered by consumers who ‘support’ some
pieces, but not others, also on the basis of their perceptions. Music that
is produced by a composer (by reference to his or her own music per-
ception), and which is supported by consumers (by reference to their
music perceptions) is likely to enter the repertoire, or corpus, of music
that is commonly heard, and this corpus becomes, in time, the previ-
ous musical events that feed into the nurture mental processes of future
listeners—some of whom will also be composers. In this way, there is a
causal loop (aggregated over time and individuals) from music to men-
tal states (via mental processes of listening) and from mental states back
to music (via mental processes of composition), and so on.

To take a plausible concrete example, composers who are sensitive
to the innate dissonance produced by psychoacoustical roughness will
likely privilege chords with low roughness (i.e., they will use them
more often and place them on more salient strong beats and phrase end-
ings). When listeners are familiar with such composers’ music they will
become especially familiar with low-roughness chords (due to their
privileged status), and this will likely increase their perceived conso-
nance. It is worth remembering that thirds and sixths (and, hence, ma-
jor and minor triads) were considered dissonant prior to the thirteenth
century—for typical musical instruments, such intervals are rougher
than perfect unisons, octaves, fifths and fourths, but less rough than all
other intervals, and their gradual transition to being considered conso-
nant is likely due, in part, to their greater familiarity.>°

In the above example, the feedback loop is a positive one: innately
consonant chords are privileged by composers and hence become per-
ceived as even more consonant due to their familiarity. Such a feedback
loop can ‘amplify’ any underlying process. This process of amplifica-

tion can be mathematically demonstrated with the simple linear model

A different argument, made by Dahlhaus (1990), is that thirds and sixths became per-
ceived as consonant when the underlying tuning system changed from Pythagorean
to meantone.

35



36

MODELLING THE COGNITION OF TONALITY

Figure 2.3: A path diagram demonstrating a loop-enhanced effect.

illustrated in the path diagram in Figure 2.3 : let the variable X represent
the ‘smoothness’ (lack of roughness) of a chord, Y; represent pleasure,
and Y5 the prevalence of X = x in a corpus of music C' = ¢, that is,
pxjc( | ¢). Let our model be: Y1 = aX + bY3 (i-e., pleasure is a linear
function of smoothness and prevalence), and Y2 = ¢Y] (i.e., prevalence
of X = x in the corpus is a linear function of the pleasure created by
X = z). Error terms have been omitted to simplify the example. All
variables are standardized, so their variances equal one and their means
zero, hence the parameters q, b, and c are assumed to lie in the interval
[—1,1]. In this example, we expect all the parameters to be positive be-
cause we expect pleasure to increase with smoothness and prevalence,
and prevalence to increase with pleasure. The above two equations per-

mit the following unique solutions for Y7 and Y5:

aX

Y| = oo and (2.5)
acX

Yo = 1—bc’ (2-6)

In both cases, whenever both b and ¢ are positive, we have a loop-
enhanced effect (an amplification of the unlooped effect by 1/ (1 — bc))
of the innate variable smoothness upon both pleasure and the musical
corpus.

In reality, the relationship is probably somewhat more complex, be-
cause over-familiarity causes boredom. Nevertheless, for any broadly
monotonically increasing function between variables in a causal loop,
loop-enhanced effects will occur; importantly, this suggests that even
a relatively weak nature process may become important to our per-

ception and cognition of music. Similar processes are likely for other
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physical and mental variables that are related either by an initial nature
process, or by a purely random learned association.

One result of positive feedback loops is that patterns of music come
to reflect patterns of our mental processing. This has an important con-
sequence, which is that statistical analyses of a musical corpus can serve
as predictively effective models of music perception (e.g., Krumhansl
(1990) and Pearce and Wiggins (2006)—see Section 2.3.4 for more de-
tails). However, such models are less effective as explanatory tools. No-
tably, they are unable to provide a reason for why music has taken the
specific form it has, or why specific musical events are related to spe-
cific mental states in the way they are. This is because such questions are
outside the scope of purely learning-based models: for them, it makes
no difference if musical structure is founded upon an initial set of as-
sociations that was randomly chosen, or whether there are underlying
innate processes that make certain musical forms, and certain relation-
ships between musical events and mental states, more viable than oth-
ers. Indeed, the explanations provided by top-down-only models are
circular: music perception is the way it is because music is the way it is,
and music is the way it is because music perception is the way it is. As

Woolhouse (2009, p.359) puts it:

In order to elucidate these hypothesized cognitive processes
it is not sufficient merely to catalogue their effects (i.e. to
describe how tonal music is constituted), or build models
that incorporate descriptions of these effects—more impor-

tant is to uncover the root causes of the effects.

To break into this loop, it is necessary to find some perceptual or
cognitive impetus that favours the creation of certain patterns and/or
distavours the creation of others and, possibly, leads to natural associ-
ations between specific acoustical events and specific mental phenom-
ena. For this reason, it is important to test bottom-up models of nature
processes as part of a search for the underlying processes of human per-
ception, cognition, and emotion. It is only by doing this that we can

understand why music is the way it is and, furthermore, build a set of
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knowledge that may inform other fields of human enquiry. It is for
this reason that my research, in this dissertation, is focused firmly on
bottom-up models of innate processes.

In the next section, I explore different types of bottom-up and top-
down models, how they may be experimentally tested, and the dangers

of relying solely on predictive efficacy when selecting between models.

2.3.4  Bottom-Up and Top-Down Models and Causal Claims

Numerous experiments have demonstrated a strong correlation be-
tween music perception (mental states) and a statistical analysis of a
relevant musical corpus. For example, participants’ ratings of how well
each of the twelve chromatic pitch classes (probe tones) ‘fit with’ a pre-
viously established key is strongly correlated with their prevalence in
a corpus of classical music (r(10) = .89 in major and r(10) = .86 in
minor) (Krumhansl, 1990, Ch. 2—3).2* (In Ch. s, I provide a detailed
description of the probe tone experiment, and I model its data from
the bottom-up.) Similarly, participants’ ratings of how well differing
tones ‘continue’ a melody are highly correlated with a statistical anal-
ysis of a corpus (r = .85 with two-tone contexts, and r = .91 with a
few bars’ context) (Pearce and Wiggins, 2006).>2

Figure 2.4 shows three causal models that can account for correla-
tions such as these (for the sake of clarity, I have omitted non-musical
input variables, which determine whether the processes are intrinsic
or extrinsic). As in Section 2.3.3, the variables in these models (e.g.,
‘mental state’ and ‘previous music events’ should be understood as hav-
ing been aggregated over time and across numerous individuals). In
each of these models, there is a direct or indirect causal connection be-
tween ‘previous music events’ and the ‘mental state’. The causal con-
nection may be in either direction or both but, to account for the cor-

relation, there must be at least one. In the ‘top-down/bottom-up’ and

The corpus comprised Schubert songs, Mendelssohn arias, Schumann songs, Mozart
arias and songs, Hasse cantatas, and Strauss lieder.
The corpus comprised Canadian folk songs and ballads, chorale melodies harmonized

by J. S. Bach, and German folk songs.
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current music previous
event music events

mental state

(a) Top-down/bottom-up model.

current music previous
event music events

v

mental state mental state

(b) Bottom-up-only model. (c) Top-down-only model.

current music previous
event music events

Figure 2.4: Three causal models that can account for correlation between a
musical corpus (previous musical events) and mental states (both
aggregated over time and across individuals). Physical stimuli are
in the top row, mental processes—categorized into ‘nature’ and
‘nurture’—are in the second row, the resulting subjective mental
state is in the bottom row. By definition, top-down (nurture) pro-
cesses are those that receive an arrow from ‘previous music events’;
bottom-up (nature) processes do not. Note that, as explained in
Section 2.3.2.5, a causal path from ‘previous music events’ to the
‘current music event’ is not meaningful.

‘top-down-only” models, the causal path leading from ‘mental state’
to ‘previous music events’ is dashed; this is to indicate that this con-
nection is not necessary for the correlation to occur (there are other
causal connections to account for the correlation)—in other words,
the ‘strength’ of the causal effect shown by the dashed arrow can vary
from zero to perfect correlation. In the ‘bottom-up-only’ model, the
causal effect of ‘mental state’ upon ‘previous music events’ is necessary
to ensure correlation (there are no other causal connections to account
for the correlation)—the effect size must be non-zero, so this arrow
is not dashed. The only way to determine which of these models cap-
tures true causal relationships is to perform an experimental interven-
tion: correlation is not sufficient (neither is it necessary). However, it is

not uncommon for researchers to be seduced by high correlations into
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making unsupported claims about the strengths (or even existence) of
causal effects.

For example, due to the greater fit provided by their top-down mod-
els, in comparison to a specific bottom-up model, Pearce and Wiggins
(2006, p. 378) claim the latter is only ‘a formalized approximate de-
scription of the mature behaviour of a cognitive system of inductive

learning’. A related claim is made by Krumhansl (1990, p. 76):

Although the acoustic properties associated with conso-
nance may determine to some extent both the way tones are
used in music and the quantified tonal hierarchies, the latter
two variables are more strongly interdependent. These re-
sults point to learning as the dominant mechanism through

which the tonal hierarchies are formed.

However, these conclusions are demonstrably unjustifiable on the ev-
idence of correlation alone: in both cases, the experimental evidence
is consistent with all of the above models—including the ‘bottom-up-
only model’ depicted in Figure 2.4b.

To demonstrate this, imagine that Figure 2.4’s bottom-up-only
model of mental states is a true description of reality, but that an
experimentally-tested bottom-up model provides an incomplete ac-
count of all the relevant bottom-up processes that are actually occur-
ring. For example, suppose the nature process in Figure 2.4b comprises
three independent nature processes, but that the experimenters’ model
captures only one of them. In this situation, the predictive power (e.g.,
correlation) of the tested bottom-up model may be fairly low because it
provides only a partial account of the true processes occurring. How-
ever, ‘previous music events’ naturally captures all three nature pro-
cesses due to the causal connections leading from ‘nature’ to ‘mental
state’ to ‘previous music events’. This means that, even in the absence
of a true top-down nurture process, the statistical analysis of ‘previ-
ous music events’ can have greater predictive power than the experi-
menters’ bottom-up model (because the former is capturing all three,

rather than just one, of the nature processes). In this context, therefore,



2.4 EXISTING MODELS OF TONALITY

the greater predictive power of the statistical model is not due to a true
top-down process (a causal relationship from ‘previous music events’
to ‘mental states’); rather, it is due to the oppositely-directed process
of musical composition (the causal relationship from ‘mental states’ to
‘previous music events’).

Clearly, this example shows that a good correlation between a statis-
tical analysis of a corpus and mental states (or a better correlation than
a given bottom-up model) cannot be used as evidence for a top-down
process occurring in reality. This argument is the other side of the coin
to that of Pearce and Wiggins’, quoted above; from the evidence of
correlation alone, both sides of this coin are equally valid (or invalid).

The principal method to demonstrate causal effects is through exper-
imental intervention—observing the effect of changing some variables
while leaving all others fixed (or nullified by randomization). Observ-
ing correlation between a model’s output and empirical data is simply
insufficient. In the context of separating out the nature and nurture
processes of music perception, this presents difficulties—to test for na-
ture processes, we need stimuli that have the same degree of familiarity
but differ in the nature model’s relevant variable.

There are two obvious solutions: to test Western music on partic-
ipants with no experience of Western music; or to test listeners (who
probably do have experience with Western music) with musical stimuli
with which they are unfamiliar. In Chapter 4, I use a variation on the
latter experimental approach and use a forced choice design with mi-

crotonal melodies and a range of unfamiliar spectral tunings (timbres).

2.4 EXISTING MODELS OF TONALITY

There are many verbally defined theories of tonality, but few mathe-
matical or computational models that are able to make precise predic-
tions. In research prior to this dissertation, I identified the main types
of theory that have been suggested—from the eighteenth century to

the present day (Milne, 2009a). These include generative-tonic theories,
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which conjecture that the roots of chords seek resolution to pitches of
which they are a harmonic, as utilized by Rameau (1726) (as cited in
Caplin (1983)), Schenker (1954), and Mathieu (1997); voice-leading theo-
ries, which propose that tonic pitches are those that are approached by
a pitch a semitone away, as suggested by Schenker (1987) and Lerdahl
(2001); and a variety of appeals to metaphysics, such as Riemann’s the-
ory of tonic functions (as developed by Harrison (1994), Agmon (1995),
Quinn (2005), Kelley (2004)).

In this section, I do not wish to retread this ground but I will discuss
the two main classes of theory that form part of modern discourse and
are also able to make precise predictions that can be empirically tested
(i-e., they are mathematical models). Both types of theory are based on
the same underlying notion: given a scalic context, the pitch or conso-
nant chord that fits the best (has the highest affinity) is likely to be heard
as the most stable and tonic-like. Their difference lies in whether this
affinity is modelled as a learned or an innate characteristic. We might,
therefore, denote the first class of theories top-down affinity models, and
the latter class as bottom-up affinity models.

The connection between affinity and tonic-ness (the extent to which
a pitch or chord sounds like a tonic) was first made explicit by
Krumbhansl. She pointed out the correlation between the fits measured
in the probe tone experiment (discussed in Sec. 2.3.4 and Ch. s) and the
‘stability’ of the tonic and ‘instability’ of the chromatic pitch classes—
the pitches in the tonic triad are judged to fit the best, the remaining di-
atonic scale degrees fit the next best, the chromatic degrees fit the worst
(Krumhansl, 1990). But a relationship between afhinity and tonality is
also implicit in tonal theories that place pitches, chords, and keys into
regular spatial arrays (lattices) such as the circle-of-fifths or the Tonnetz.

The circle-of-fifths is a commonly used representation of the inter-
related structure of pitch classes—an example is shown in Figure 2.5. It
is interesting to note that if the circle is truncated so as to include only
the diatonic pitches, the major or minor triads closest to its centre are

the Ionian and Aeolian tonics. That is, in the diatonic scale arranged
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Figure 2.5: The circle-of-fifths.

in fifths F-C—~G—D—A—E-B, the most central triads are Cmaj (C—-G—E)
and Amin (C—A—E).?3 Those are the tonics of the major diatonic scale
and the natural (diatonic) minor scale, respectively. Perfect fifths and
perfect fourths (which are equivalent intervals when using pitch classes)
are typically considered to have the highest consonance and affinity of
all intervals (Tenney, 1988). Of the six major or minor triads in the di-
atonic scale, only the two most central in the chain-of-fifths have no
pitch classes at the boundary of the chain, hence only these two have
a perfect fifth above and below every one of its pitches. This suggests
Cmaj and Amin have the highest affinity with the white-note diatonic
scale.

Another commonly used lattice is the Tonnetz (German for ‘tone-
network’)—a regular two-dimensional array of pitch classes arranged
so as to suggest that all intervals are generated by stacking perfect fifths
and major thirds (or perfect fifths and minor thirds)—as illustrated in
Figure 2.6.>4 Truncating a Tonnetz to contain just the diatonic pitch
classes has a similar result to truncating the circle-of-fifths—the most

central major or minor triads are the Ionian and Aeolian tonics.*$ In-

I use the term central to refer to any reasonable measure of the central tendency of a
set of points. For example, the geometric median minimizes the mean distance between
itself and all points; the centroid minimizes the mean of squared distances. In Fig. 2.5,
the most appropriate measure of distance between any two pitches is the angle be-
tween them. The central pitch of the white note diatonic scale is D, but the most
central major or minor triads are Cmaj and Amin because their respective centres are
closest to D.

Such Tonnetze have been proposed by numerous theorists, including Euler (1739),
von Oettingen (1866), Hostinsky (1879), Riemann (1915), Longuet-Higgins (1962),
and Balzano (1980).

Because this lattice is tiled, its centre is a line rather than a point—as shown by dashed
line passing through the Ds. The major or minor triads whose centres are closest to
this line are Cmaj and Amin.
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Figure 2.6: A Tonnetz.

deed, Balzano (1980) suggests these two chords’ centrality accounts for
their tonic status. Once again, this suggests that maximizing the num-
ber of high afhnity perfect fifths and fourths between a triad’s pitches
and the diatonic scale from which they are taken may be what makes
these two chords function as tonics.

Geometrical structures based on the Tonnetz have also proved use-
ful for representing higher-order tonal structures. Krumbhansl (1990)
showed that a multi-dimensional scaling of the perceived fits between
keys results in a toroidal structure with an arrangement that closely
mirrors a Tonnetz that has been wrapped into a cylinder and then into
a torus.? And Chew (2000) has developed a Spiral Array, which com-
prises three concentrically arranged cylindrical lattices. The outer lat-
tice is identical to a wrapped Tonnetz and contains pitch classes, the
middle cylinder is a lattice of chords, and the central cylinder is a lat-
tice of keys. These elements are arranged so each chord is at the centre
of effect of the pitches it contains, and each key is at the centre of effect
of its primary triads (I, IV, and V).27 The Spiral Array has successfully
modelled the distances between pitches, chords and keys, and calcu-
lated pitch spellings and the keys of pieces of music played in real time

(Chew, 2005, 2006).

Wrapping the extended Tonnetz into a cylinder ensures that notes separated by the
syntonic comma—the octave-reduced difference between four perfect fifths and a major
third—are mapped to the same spatial location. This makes sense because in common-
practice tonal music, intervals separated by this interval are—without exception—
treated as identical (in terms of theory, music notation, the note-choices available
on instruments, and in performance). Wrapping this cylinder into a torus further
removes the spatial distinction between notes that are enharmonic equivalents like
Ab and Gf. Theorists may differ on whether this latter distinction should be kept or
removed.

The centre of effect is the centre of mass where each pitch, or chord, is independently
weighted and all weights sum to unity.
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In addition to Krumhansl’s linking of ‘fit’ to tonic-ness, the preva-
lence of Tonnetz-based theories—in which the high affinity perfect fifth
plays an important role—indicates a widely perceived relationship be-
tween affinity and higher-level structures of tonality such as harmonic
relationships and the perception of key. As mentioned at the start of
this section, I categorize between those models where affinity is as-
sumed to be down to familiarity, and those where it is assumed to be
down to an underlying psychoacoustic process.

A notable researcher in the former category is Krumhansl (others
are considered in Ch. 5). As discussed earlier, she showed that the fits
of all chromatic pitches to a previously established key correlates well
with their prevalences in a corpus of classical music (Krumbhansl, 1990),
and argued this is indicative of a causal relationship from familiarity to
perceived fit, and hence to the stability and instability of pitch classes
and chords.

A notable researcher in the latter category is Parncutt (others are dis-
cussed in Ch. 5). He models affinity by virtual pitch commonality; that
is, the number and weights of virtual components in one tone or chord
that are the same as those in another tone or chord. Virtual pitches are
a perceptual phenomenon whereby candidate fundamental pitches are
heard in response to a spectrum containing at least some harmonic par-
tials (e.g., Terhardt et al. 1982; Parncutt 1988; Roederer 2008).2® For
example, when the fundamental is removed from a tone with harmonic
partials, a virtual pitch corresponding to that fundamental is still heard
despite its physical absence. In Parncutt’s model of pitch perception, a
tone with harmonic partials generates virtual pitch classes at the fun-
damental and also at subharmonics of the fundamental. Each of these
pitch classes is ‘quantized’ to fall at a single twelve-tone chromatic pitch
class. For example, he suggests the notated pitch class C produces vir-
tual pitch classes at F, Ab, D and Bb, because these approximate the
the pitch classes of the first nine subharmonics (Parncutt, 1988). This

model provides an even better prediction of the probe tone data than

Harmonic partials are sine waves with frequencies that are integer multiples of a fun-
damental frequency. Most Western instruments—and the human voice—produce
tones with harmonic, or close-to-harmonic, partials.
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Krumhansl’s familiarity model. And it does so with a plausible psy-
choacoustic hypothesis.

However, as discussed in greater detail in Chapter s, there is more to
tonality than the data captured in the probe tone experiment. Firstly,
the order in which chords are presented is important: for example,
compare the progressions Fmaj—Gmaj—Cmaj and Gmaj—Fmaj—Cmaj.
In both cases, a listener would typically say the Cmaj is the tonic chord,
but that the sense of resolution and closure is stronger in the former
progression. And, more generally, the V-I cadence is felt to be the
‘strongest’ or ‘most powerful’ progression in tonal music (Piston and
Devoto 1987, p. 21; Pratt 1996, p. 9). Temporal asymmetries in tonal
perception—such as the above—have been demonstrated in numerous
experiments (Brown, 1988; Cuddy and Thompson, 1992; Toiviainen
and Krumbhansl, 2003), but it is well-acknowledged that models based
on an affinity metric (such as Tonnetz-based models) cannot account for
these temporal asymmetries (Krumhansl, 1990; Woolhouse, 2007). This
is because metrics are, by definition, symmetrical, which means the fit
of chord x to chord y is the same as the fit of chord y to chord x—the
mathematics has no ‘arrow’ that can represent the flow of time.

Secondly, not just the scale degree but also the chord degree (root,
third, or fifth) of pitches seems to change their tonal effect. For exam-
ple, compare the chord progressions Dmin—Gmaj—Cmaj and Dmin—
Emin—Cmaj. A listener would typically report the first progression as
providing a more decisive cadence to Cmaj, and that the leading tone
B loses much of its desire to resolve to C in the second progression.
This is interesting because both chord progressions have the same pitch
class content (C, D, E, F, G, A, B), but the tonal effect of B (the sev-
enth degree of that implied scale, referenced from C) seems influenced
by whether it is a third (as in the Gmaj in the first progression) or a fifth

(as in the Emin of the second progression).

The major key progression iii—I is rare (Piston and Devoto, 1987; Huron, 2006), and
iii is often used to harmonize a melody where the seventh scale degree descends to
the sixth rather than taking its more familiar upwards path to the tonic (Macpherson,
1920).
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As I stated in Chapter 1, my research aim is to identify and model the
innate processes by which feelings of tension, resolution, stability, and
so forth, are induced by successions of pitches and chords, irrespective
of their harmonic consonance. In order to fulfill this aim, I develop a
novel spectral pitch similarity model of the affinity of any two tones or
chords.

Spectral pitch similarity differs from Parncutt’s model in two im-
portant ways. Firstly, I consider spectral pitches, which correspond di-
rectly to frequencies that are in the sounds, rather than virtual pitches,
which are generated by the auditory system. This has the advantage of
being simpler, because it does not require an additional model for gen-
erating the virtual pitches. Secondly, the method of representing these
pitches, and measuring their similarities, is quite different.

Spectral pitch similarity is the cosine similarity of two spectral pitch vec-
tors, each of which embeds the spectral pitches of a tone or chord. Spec-
tral pitch vectors are mathematically defined in Chapter 3 (specifically
Sec. 3.4.1). But, in brief, the index of the vector represents a specific
pitch, while the value of each element represents the expected number
of partials heard at that pitch. Every frequency that is embedded into
a spectral pitch vector is ‘smeared’ to model the inaccuracies of pitch
perception. The width of this smearing is related to the just noticeable
frequency difference, which is the smallest frequency difference that
can be reliably identified by participants (see App. A, for a more exten-
sive discussion of this parameter). For example, a frequency that cor-
responds to the MIDI pitch 60, may be represented in a spectral pitch
vector by a relatively high value at the index corresponding to the pitch
60, a lower value at the elements corresponding to the pitches 50.99 and
60.01, even lower values at the elements corresponding to 50.98 and
60.02, and so forth. Each spectral pitch vector contains thousands of

elements in order to ensure a finely-grained representation of pitch—
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in the models discussed in Chapters 4 and s, I use a granularity of 1 cent
(one hundredth of a semitone).

The use of spectral pitch similarity has a number of advantages over
Parncutt’s approach: (a) it makes no a priori assumption that each fre-
quency component is perceived categorically as a single chromatic
pitch (the ‘quantization’ in my model is to the nearest cent rather than
the nearest semitone); (b) it follows a principled (and psychoacousti-
cally justifiable) approach towards modelling the perceived similarity
of pitches that are close but non-identical in frequency; (c) it is fully
generalizable to musical systems that use tunings different than 12-tone
equal temperament—this includes the Pythagorean and meantone tun-
ings that were prevalent in Western music prior to the sixteenth cen-
tury, contemporary traditions in non-Western music, and experimen-
tal contemporary microtonal music.

Furthermore—and as fully explained in Chapter s—I suggest some
additional mechanisms, which build upon spectral pitch similarity, to
break the temporal symmetries that are implicit in theories that rely
solely upon an affinity metric, and explain why the seventh degree of
the major scale loses its perceived need to resolve when it is the fifth
of the iii chord. This is achieved by hypothesizing that a resolution,
or cadence, is enhanced when a low aflinity pitch moves to the root
of the best-fitting chord, and that the fit of a pitch class needs to be
determined with respect to its local harmonic context as well as to its
broader scalic context. In Section 5.2, I show how these latter hypothe-
ses make predictions that accord well with conventional music theory.
However, at this stage of the research, there simply isn’t any experi-
mental data available to fully test these latter two hypotheses. In the
concluding Chapter 6, I discuss the types of data that could provide
appropriate tests for these features.

In Section 5.1, T use my basic spectral pitch class similarity model (i.e.,
without these two additional hypotheses) to model Krumhansl’s probe
tone data. In comparison with all other existing models, my model pro-

duces the most effective predictions (as measured under k-fold cross-
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validation) and, being bottom-up, provides an effective explanation for
why the probe tone data take the specific form they do.

Chapter s, in sum, indicates that the spectral pitch similarity model
of affinity works well for predicting the tonics and cadences in a variety
of scales, and the fits of pitches to a given tonal centre; furthermore, the
psychoacoustic basis of the model seems plausible. However, it is still
possible that the link between the psychoacoustic mechanism I have
proposed and the resulting data is simply coincidental—that I have
alighted upon a psychoacoustic explanation that just happens conve-
niently to fit the data, and that there is, in truth, no real psychoacoustic
process occurring.

The purpose of the preceding Chapter 4 is to establish a firm foun-
dation for spectral pitch similarity—to demonstrate that it does actu-
ally capture a true psychoacoustic process that accounts for the per-
ceived affinity between tones. To do this I use the method suggested
in Section 2.3.4—1I use microtonal stimuli that are inherently unfamil-
iar, and use spectral pitch similarity to model participants’ responses
to these stimuli. The results indicate that, even in these unfamiliar set-
tings, spectral pitch similarity has a medium-sized (and highly signifi-
cant) effect on listeners’ judgements of affinity. This supports the hy-
pothesis that spectral pitch similarity reflects a real bottom-up process
that affects our perception of tonal stimuli. (I additionally show that
there is another, unrelated, aspect of the spectral content of tones that
affects perceptions of affinity, but the experimental method does not
allow for this to be qualified as an innate or learned process).

In order to construct the spectral pitch similarity models utilized in
Chapters 4 and s, it was necessary for me to develop a computationally
efficient and principled method for modelling the similarity of pitch
collections (such as collections of spectral pitches). This led to the novel
family of mathematical methods that are the subject matter of Chap-
ter 3—expectation tensors (multi-way arrays) of differing orders (di-

mensions), and metrics between them.3°

I developed a spectral pitch ‘distance’ measure in earlier work (Milne, 2009a), but it
was complex to calculate and was not a true metric—it did not fulfill the property
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The family of expectation tensors introduced in this chapter are of
sufficient generality to extend beyond the uses made of them in Chap-
ters 4 and s (both chapters utilize just one type of expectation tensor—
absolute monad expectation vectors—which are defined in Sec. 3.4.1).
The other types of expectation tensor are also useful and, in Section 3.6,
I demonstrate some applications to scale tuning theory and pitch set
class theory (these examples are purely illustrative and I do not subject
them to experimental testing). I also hint at how expectation tensors
might be applied to other (non-pitch) domains, such as rhythm percep-

tion and other psychophysical domains.

of the identity of indiscernibles, and I had no proof that it fulfilled the triangle in-
equality. The desire to develop a simple-to-calculate metric was part of the reason
for developing the expectation tensors described in Chapter 3.



MODELLING THE SIMILARITY OF PITCH
COLLECTIONS

In this chapter, I define a novel family of mathematical methods for
determining the similarity of pitch collections. In Sections 3.2—3.5, I
present the methods in a general manner; in Section 3.6, I demonstrate
some specific high-level applications for the resulting metrics. In Chap-
ters 4 and s, I develop these methods to provide specific models of more
focused empirical data for the perceived fit of microtonal melodies, and
the fit and stability of pitches and chords to a variety of musical con-

texts.

A pitch collection may comprise the pitches of tones in a chord, a scale,
a tuning, or the virtual and spectral pitches heard in response to com-
plex tones or chords.' Modelling the perceived distance (the similarity
or dissimilarity) between pairs of pitch collections has a number of im-
portant applications in music analysis and composition, in modelling of
musical cognition, and in the design of musical tunings. For example,
voice-leading distances model the overall distance between two chords
as a function of the pitch distance moved by each voice (see Tymoczko
(2006) for a survey); musical set theory considers the similarities be-
tween the interval (or triad, tetrad, etc.) contents of pitch collections
(see Castrén (1994) for a survey); psychoacoustic models of chordal dis-
tance (Parncutt, 1989; Milne, 2009a, 2010) treat tones or chords as col-
lections of virtual and spectral pitches (Terhardt et al., 1982; Zwicker

and Fastl, 1999) to determine their affinity; tuning theory requires mea-

Most sounds—including those produced by musical instruments—comprise numer-
ous frequency components (partials) with differing amplitudes and phases. Each of
these may produce a corresponding spectral pitch. Virtual pitches are not physically
present in the stimulus but are generated by the auditory system. The most obvi-
ous example of a virtual pitch is the missing fundamental—when the fundamental
frequency is removed from a stimulus with a high-pass filter, a virtual pitch corre-
sponding to this missing fundamental is typically still heard.

ST
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sures that can determine the distance between scale tunings and, no-
tably, the extent to which different scale tunings can approximate priv-
ileged tunings of intervals or chords (e.g., just intonation intervals with
frequency ratios such as 3/2 and $/4, or chords with frequency ratios
such as 4:5:6:7).

This chapter presents a novel family of embeddings called expectation
tensors (a tensor is also known as a multi-way array), and associated met-
rics, that can be applied to the above areas. As discussed in Sections 3.3
and 3.4, expectation tensors model the uncertainties of pitch percep-
tion by ‘smearing’ each pitch over a range of possible values, and the
width of the smearing can be related to experimentally determined fre-
quency difference limens (Roederer, 2008). The tensors can embed ei-
ther absolute or relative pitches (denoted absolute and relative expectation
tensors, respectively): in the latter case, embeddings of pitch collections
that differ only by transposition have zero distance; a useful feature
that relates similarity to structure. Furthermore, tensors of any order
(dimensionality) can be formed, allowing the embeddings to reflect the
(absolute or relative) monad (pitch), dyad (interval), triad, tetrad, and
so forth, content of the pitch collection.

The distance between expectation tensors of the same order can be
determined with any standard metric or similarity measure (such as L,
or cosine). A discussion of how such metrics can be applied and inter-
preted is found in Section 3.5. In Section 3.6, a number of applications
of the metrics are given, and it is shown how distances between differ-
ent pairs of embeddings (absolute and relative of differing orders) may
be combined to produce more informative models of the similarity of

pitch collections.

Let me first make some definitions explicit. A tone is a sound stimulus
that can be characterized by its frequency (e.g., it is playing middle C,
which is 261.6 Hz). It may be additionally characterized in a categorical
fashion (e.g., it is the third flute from the left, playing middle C). As

defined earlier, a pitch is the auditory attribute associated with a specific
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frequency. For musical purposes, we can say pitch is linearly related
to log—frequency, hence we can characterize it by semitones or cents
(rooths of a semitone) above a given reference pitch like middle C. I
now give a slightly more generalized definition of pitch class. A pitch-
class is an equivalence class of all pitches that are periods apart—a period
being a pitch difference over which pitch equivalence is perceived to
exist (typically the octave).

Given a tone, the probability of perceiving a specific pitch is denoted
the salience of that pitch. The pitch perception may be conscious or un-
conscious; that is, a subject may or may not be aware of it (see Dretske
(2006) for a discussion of perception without awareness). For exam-
ple, the pitch of a partial in a tone may have an impact on the affin-
ity it has with another tone (it communicates information and, hence,
is perceived) even when this specific partial is not consciously heard
or identified. Throughout the text, when I refer to perceived, this does
not imply conscious awareness; rather, it implies that the information
represented by this pitch is accessible for other mental processes (such
as rating affinity). It should also be noted that the values used for the
saliences in many of the models I describe in later chapters (where dif-
ferent partials have different saliences) are not directly obtained from
empirical research; rather, they are modelled saliences, the parameters
of which are optimized to the data being modelled.

Two assumptions are made to simplify the analysis: any given tone
can be perceived as having no more than one pitch (or pitch-class), and
the perceiving (or not) of a tone does not affect the chance of perceiv-
ing another tone.? Thus a single note played by an instrument can still
be treated as a single perceptual entity (i.e., as a single tone) or as a
set of spectral ‘tones’ corresponding to its partials. Pitch collections are
treated as multisets—duplication of the same pitch is meaningful be-

cause two different tones may induce the same pitch while both remain

The latter assumption is reasonable for non-simultaneous tones though, for simulta-
neous tones that are close in frequency, masking effects will occur which may contra-
dict this assumption. In the models I present in this dissertation, simultaneous tones
close in frequency are rare and have a low weighting (they are the higher harmonics
in complex tones).
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discriminable (e.g., we may perceive a viola and a flute—two tones—
both playing the same pitch Cy). I use the term embedding to refer to a
mapping of pitch collections, and their Weights, into the discrete multi-
dimensional space represented by the tensors. However, contrary to
one common usage of this term, I do not mean to imply that these
mappings are one-to-one and invertible; in other words, the original
pitch and weighting vectors typically cannot be recovered from their
embeddings in expectation tensors.

This chapter makes use of tensors and tensor notation. I provide a
brief introduction to these in Appendix B. I also provide element-level

summations to aid comprehension.

3.I AN INTRODUCTION TO METRICS AND SIMILARITY

In this chapter, I make extensive use of distance metrics and similarity
measures. A distance metric is a scalar-valued mathematical function ap-
plied to any two members of a set X'. Hence it is a mapping X x X — R.
For the purposes of this dissertation, we are concerned with distances
between vectors (or tensors that have been reshaped into vectors), so I
write the metrics as scalar-valued functions of vectors. In order to re-
flect intuitive notions of distance, a metric must fulfill the following
properties: non-negativity, identity of indiscernibles, symmetry, and
the triangle inequality.

Non-negativity means distance cannot be negative; thatis, d(x,y) > 0.
Identity of indiscernibles means distance is zero, if and only if x and y are
the same; that is d(x,y) = 0 & x = y. Symmetry means the distance
from x to y is the same as the distance from y to x; that is, d(x,y) =
d(y,x). The triangle inequality means that, given three vectors x, y, and
z, the distance from x to z must be less than or equal to the distance
between x and y plus the distance from y to z (if you imagine x, y, and
z as the coordinates of a triangle’s vertices, you can see Why this is a

sensible property for a metric); that is, d(x,z) < d(x,y) + d(y, z).
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For any two vectors of the same dimension (i.e., they have the same
number of elements), a widely used and straightforward metric is the

Ly:

I 1/p
dp(x,y;p) = Z |z [i] — yld]|”

= x=yll,  forp>1, (3.1)

where | - | is the absolute value and || - || is the p-norm. Different values
of pin the L, metrics correspond to some familiar distances; for exam-
ple, p = 1 is the taxicab distance, p = 2 is the Euclidean distance, and
p = oo is the maximum value distance (also known as the Chebyshev
distance, it can be written max |z [i] — y[i]])-

A similarity measure is a closely related function, except it increases
when distance decreases and vice versa. Typically, a similarity measure
s(x,y) takes a value of zero when x and y are maximally dissimilar,
and a value of unity when x = y. Any distance metric d(x,y) can be
transformed into a similarity measure by taking the function e~4(*¥)
(Chen et al., 2009).3 However, a commonly used similarity measure for

vectors is the cosine of the angle between them, which is given by:

SCOS(X7 ) = L, 2
SN T 2

where x and y are column vectors and ’ is the matrix transpose opera-
tor, which converts a column vector into a row vector, and vice versa.
For vectors, all of whose elements are non-negative, this takes a value
between zero (when they orthogonal) and unity (when they are paral-
lel).

Although cosine similarity can be transformed into a true distance

metric, called angular distance, by

d(x,y) = arccos(scos(X,y)) , (3-3)

This is equivalent to Shepard’s proposed universal law of generalization, which relates
distance in psychological space to perceived similarity (Shepard, 1987).
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the simpler cosine distance

deos = 1 — SCOS(X7y) (3'4)

is a commonly used semi-metric (a semi-metric fulfills the first three con-
ditions for a metric, but not the triangle inequality).
Applications of these measures to the expectation tensors is discussed

in depth in Section 3.5.

3.2 CATEGORY DOMAIN EMBEDDINGS

Pitch vectors and pitch class vectors—both of which are widely used in mu-
sic theory—are examples of category domain embeddings (this is a novel
designation, which I introduced in Milne et al. (2011b)). In such em-
beddings, the values of the elements indicate pitches or pitch classes
(usually in semitones), and their index (position in the vector) repre-
sents a categorical value such as the the type of voice (e.g., bass, tenor,
alto, or soprano). For example, the pitch vector (48, 60, 67, 74) can rep-
resent a bass part playing the mipr pitch number 48, the tenor playing
60, the alto 67, and the soprano 74.4

Asimplied by the equations in the previous section, when using stan-
dard metrics (such as the L, and cosine discussed above) between two
such vectors, the resulting distances are based only on the pitches in
matching positions in the two vectors.S For this reason, such pitch met-
rics are meaningful only when each tone in one pitch collection has a
privileged relationship with a unique tone in another pitch collection;
for example, when each element (index value) represents a different

category such as voice, or scale degree, or even metrical or ordinal po-

MipI pitches are numbered in semitones with a value of 60 corresponding to middle
C. So 48 is twelve semitones (one octave) below middle C, and 61 corresponds to the
notated pitches Cff and Db a semitone higher than middle C.

There are a variety of specialized metrics that do not compare only matching ele-
ments, but they are typically insufficiently sensitive (e.g., the Hausdorff distance—
see the example provided at the end of this section), or too computationally complex
(e.g., cross-bin metrics such as the Earth Mover’s Distance (Rubner et al., 2000) which,
for vectors with n elements, has a complexity of O(n>logn) in comparison to O(n)
for the L, and cosine (Korte and Vygen, 2007)). In many of my applications, I use
vectors containing thousands of elements, so computational simplicity is crucial.
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sition in a melody. Furthermore, this can occur only when there are
the same number of categories in each tone collection (i.e., both pitch
vectors have the same dimension).

Applying metrics to category domain vectors is a well-established
technique in music analysis and theory. For example, Chalmers (1990)
measures the distances between differently tuned tetrachords using a
variety of metrics including L1, Lo, and L (so, in this case, he is treat-
ing the tetrachord scale-degrees as categories)® and Tymoczko (2006)
discusses the use of various metrics to measure voice-leading distance
(so each voice is in a different category).

To be concrete, a pitch vector x,, € R! contains elements z,[i] indexed
byi = 1,2,...,I, where I € N is the number of tones. The index i
indicates the tone category, and the value of the element z[¢] indicates

pitch. A typical example is a logarithmic function of frequency

ool = o, (1), 59

where 0 < b € R is the frequency ratio of the period (typically the
octave, so b = 2), J € IN determines the number of pitch units that make
up the period (typically J = 12 semitones or J = 1200 cents), f[i] € R
is the frequency of tone i, and f,o¢ € R is the frequency given a pitch
value of zero (typically C_;, which is 69 semitones below concert A, so
fref = 440 x 2799712 &~ 8176 Hz). With these constants, a four-voice
major triad in close position with its root on middle Cis (60, 64, 67, 72),
which corresponds to the mipr note numbers for this chord.

A pitch class vector or pc-vector,
Tpeli] = xpli] mod J, (3.6)

is invariant with respect to the period of the pitches since 0 < zp[i] <
J — 1. This makes it useful for concisely describing periodic pitch col-

lections, such as scales or tunings that repeat every octave. The variable

Tetrachords are four-note scale fragments, bounded by a perfect fourth. They were
used in the construction of Ancient Greek scales, and still form part of some contem-
porary non-Western traditions.

57



58

MODELLING THE SIMILARITY OF PITCH COLLECTIONS

Table 3.1: These pc-vectors represent several musical scales with b = 2 (the
frequency ratio of the octave) and J = 1200 cents: all pitches from
12-tone equal temperament (12-TeT); the 12-TET major scale (Maj-
12), all pitches from 10-tone equal temperament (10-TeT), and a just
intonation major scale (Maj-JI).

12-ter (0,100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100)  R!2

Maj-12 (0, 200, 400, 500, 700, 900, 1100) R”
IO-TET (0,120, 240, 360, 480, 600, 720, 840, 960, 1080) R10
Maj-JT (0,204, 386,498, 702, 884, 1088) R”

[ret specifies which pitch class has a value of 0 (in a tonal context, it may
be clearest to make it equal to the pitch of the root, or tonic). For exam-
ple, a major triad may be notated (0,4, 7) or (1,5, 8), or more generally
as (z,4+ z,7+ ) mod J. Table 3.1 shows some musical scales repre-
sented as pc-vectors.

From this point forwards, I will refer to pitch vectors and pc-vectors
interchangeably. General statements made about one also apply to the
other.

The pc-vector may have an associated weighting vector,
RI
Xw € ) (3 -7)

which contains elements 0 < zw[i] < 1. This can be used to repre-
sent amplitude, loudness, salience, and so forth. In this dissertation,
the weighting vector indicates salience (as defined of this chapter). For
example, if four tones sound the pitch classes (0,3,3,7) and have an
associated weighting vector (.9, .6, .6,.9), there is probability of .9 the
pitch of the first tone will be perceived; a probability of .6 the pitch of
the second tone will be perceived; a probability of .6 the pitch of the
third tone will be perceived; a probability of .6 the pitch of the fourth

tone will be perceived.”

Note that this means there are two ways in which the pitch of 3 may be perceived—
from the second tone or the third. As I will explore in greater depth later, this means
the overall salience of this pitchis 1 — (1 —.6)(1 —.6) = .84, and the expected number
of tones perceived to be playing this pitch is .6 + .6 = 1.2.
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However, category domain embeddings, and metrics reliant upon
them, are unsuitable when the pitches cannot be uniquely categorized.
For example, when modelling the distance between the large sets of
spectral pitches perceived in response to complex tones or chords (see
Ex. 3.6.1), there is no unique way to reasonably align each spectral
pitch of one complex tone or chord with each spectral pitch of another
(Sethares et al., 2009) and, even if there were, it is not realistic to expect
humans to track the ‘movements’ of such a multitude of pitches.

A simpler example is provided by the scales in Table 3.1, where the
categories are the indices of the scale elements. From a musical per-
spective, it is clear that some such tunings can be thought of as closer
than others. For instance, a piece written in Maj-JI can be played in a
subset of 12-TET (such as Maj-12) without undue strain, yet may not be
particularly easy to perform when the pitches are translated to a subset
of 1o-TET. Thus it is desirable to have a metric that allows a statement
such as ‘Maj-JI is closer to 12-TeT than to 10-TET.” (JI is an abbreviation
of just intonation, TET is an abbreviation of tone equal temperament).

When two pc-vectors have the same number of elements, any rea-
sonable metric can be used to describe the distance between them; for
example, the distance between Maj-12 and Maj-JI can be easily calcu-
lated because they both contain seven pitch classes. However, when
two pitch collections have different cardinalities, there is no obvi-
ous way to define an effective metric since this would require a di-
rect comparison of elements in R with elements in R™ for n # m.®
One strategy is to identify subsets of the elements of the pitch col-
lections and then try to calculate a distance in this reduced space. For
instance, one might attempt to calculate the distance between Maj-]I
and 12-TET by first identifying the seven nearest elements of the 12-
TET scale, and then calculating the distance in IR. Besides the obvious

problems with identifying corresponding tones in ambiguous situa-

In such a case, the Hausdorff metric could be used. This metric is noteworthy because
it can be used for sets with differing cardinalities. But, because the distance between
any two sets is characterized by the distance between just two points in these sets, it is
inadequately sensitive as a model for perceived distance. For example, the Hausdorff
distances between C-E-G and D-Ff-A and between C-E-G and C-E-A are identical.

59



60

MODELLING THE SIMILARITY OF PITCH COLLECTIONS

tions, the triangle inequality will fail in such schemes. For example,
let pitch collection yp. be 12-TET, pitch collection xpc be any seven-
tone subset drawn from 12-TET (such as the major scale), and pitch col-
lection z be a different seven note subset of 12-TeT. The identification
of pitches is clear since xpc and zp are subsets of yp,.. The distances
d(Xpe; Ype) and d(zpe, ype) are zero under any reasonable metric since
Xpe C ¥pe and Zpe C Ype, Yet d(Xpe, Zpe) is non-zero because the pitch
classes in the two scales are not the same. Hence the triangle inequality
d(Xpes Zpe) < d(Xpe; Ype) + d(Ype, Zpe ) is violated. Analogous counter-

examples can be constructed whenever n # m.

3.3 PITCH DOMAIN EMBEDDINGS

A way to compare pitch collections with differing numbers of elements
is to use a pitch domain embedding where the index represents pitch and
the value represents the probability of a pitch being perceived, or the
expected number of tones perceived at that pitch. Because the cardi-
nality of the pitch domain embedding is independent of the cardinal-
ity of the pc-vector it is derived from, such embeddings (and metrics
reliant upon them) are able to compare pitch collections with different
numbers of tones—such as the spectral and virtual pitches perceived in
response to a complex tone or chord, or scales and their tunings. The
following examples are shown as transformations of pc-vectors (3.6),
but they can also be given in terms of pitch vectors (3.5).

The I elements of a pc-vector x, can be transformed into [ indicator
functions weighted by the salience vector xy,. This means each pitch
class is represented by a row vector, all but one of whose elements is
zero. The non-zero element has a value equivalent to the salience of
that pitch class, and its index corresponds to its pitch value. These I
row vectors are then arranged into a I x J matrix which, as shown

later, allows the saliences of the tones to be individually convolved and
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appropriately summed. Formally, the elements of the pitch class salience

]RIXJ

matrix Xpes € are given by

Tpes[i 4] = wwli] 87 — Lpeli]] (3-8)

where | z] rounds z to the nearest integer and 6[z] is the Kronecker delta
function that is 1 when z = 0 and 0 for all = # 0. Note that the index
i ranges over the values 1 to I; however, when using pitch classes, it
makes sense for the index j to range over the values 0 to J — 1. This
is because pitch class values are taken modulo J, hence j = 0 is a legal

pitch class value, while j = J is not.

Example 3.3.1. Given J = 12, xpc = (0,3,3,7) (i.e., a close position
minor chord with a doubled third), and x,, = (1,.6,.6,1), (3.8) gives

the pitch class salience matrix

chs =

(3.9)

o O O
o O o O
o O O O
S oo ©
o O O O
o O O O
o O O O
= o O O
o O O O
o O O O
o O O O
o O O O

Pitch values in the pc-vector are rounded to the nearest pitch unit
(whose size is determined by J and b) when embedded in the pitch do-
main. Using a low value of J (like 12 in Ex. 3.3.1) makes such pitch do-
main embeddings insensitive to the small changes in tuning that are im-
portant when exploring the distances between differently tuned scales,
or between collections of virtual and spectral pitches. Naively embed-
ding into a more finely grained pitch domain (such as J = 1200) is
problematic. For example, under any standard metric, the distance be-
tween a tone with a pitch of 400 cents and a tone with a pitch of 401
cents is maximally large (i.e., there is no pair of pitches that will pro-
duce a greater distance, see the left side of Fig. 3.1). This is counter
to perception since it is likely that two such tones will be perceived as
having the same pitch.

The solution is to smooth each spike over a range of pitches to ac-

count for perceptual inaccuracies and uncertainties. Indeed, a central
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Figure 3.1: Pitch domain embeddings of two tones—one with a pitch of 400
cents, the other with a pitch of 401 cents. On the left, no smooth-
ing is applied, so their distance under any standard metric is max-
imal; on the right, Gaussian smoothing (standard deviation of 3
cents) is applied, so their distance under any standard metric is
small.

tenet of signal detection theory (Green and Swets, 1966) is that a stimu-
lus produces an internal (perceptual) response that may be characterized
as consisting of both signal plus noise. The noise component is typi-
cally assumed to have a Gaussian distribution, so the internal response
to a specific frequency may be modelled as a Gaussian centred on that
frequency (Goldstein, 1973). It is this noise component that makes the
frequency difference limen greater than zero: when two tones of sim-
ilar, but non-identical, frequency are played successively, the listener
may, incorrectly, perceive them as having the same pitch. The right
side of Figure 3.1, for instance, shows the effect of smoothing with a
Gaussian kernel with a standard deviation of 3 cents. See Appendix A
for a detailed discussion of this parameter and its relationship to the
frequency difference limen.

The smoothing is achieved by convolving each row vector in the
pitch class salience matrix X5 with a probability mass function. The

]RIXJ

pitch class response matrix X € is given by

x[i] = Xpesi] * p, (3.10)

where x[i] is the ith row of X, xp¢s[i] is the ith row of X, p is a dis-
crete probability mass function (i.e., p;, > 0 and " p; = 1 for all k),

and * is convolution (circular over the period J when a pc-vector is
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used). The result of (3.10) is that each Kronecker delta spike in X5 is
smeared by the shape of the probability mass function and scaled so the
sum of all its elements is the salience of the tone (as shown in Fig. 3.1). In
general, the convolution of the probability distributions of two inde-
pendent random variables is equivalent to the probability distribution
of their sum.? This means that when p is a discrete approximation of
a normal distribution, the above convolution gives a discrete approxi-

mation of the pitch signal plus normally-distributed noise.

Example 3.3.2. Let the probability mass function be triangular with a
full width at half maximum of two semitones; this is substantially less
accurate than human pitch perception and a much finer pitch granu-
lation (like cents) would ordinarily be required, but it illustrates the
mathematics. Applying this to the pitch class salience matrix of Exam-

ple 3.3.1 gives the pitch class response matrix

DS 25 0 0 0 0 0 O 0 0 .25
o o 15 3 15 0 0 O 0 0
X = . (3.11)
0o o 15 3 15 0 0 O O O 0 O
0 0 0 0 0 0 25 5 25 0 0 O

3.4 EXPECTATION TENSORS

The values in the pitch class response matrix represent probabilities;
this means it is possible to derive two useful types of embeddings: (a)
expectation tensors indicate the expected number of tones, ordered pairs
of tones, ordered triples of tones, and so forth, that will be perceived as
having any given pitch, dyad of pitches, triad of pitches, and so forth;
and (b) salience tensors indicate the salience of any given pitch, dyad of
pitches, triad of pitches, and so forth.

Example 3.3.2 will help to clarify the distinction between expec-
tation and salience: The expected number of tones perceived at pitch
class 3 is 0.6 (the sum of elements with j = 3); this does not mean

it is possible to perceive a non-integer number of tones, it means that

Let X and Y be independent random variables with probability distributions fx ()
and fy (x). Then, fx 1y = fx * fy.
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over a large number of experimental trials an average of 0.6 tones will
be perceived at pitch class 3 (e.g., given one hundred trials, listeners
might perceive two tones at pitch class 3 in nine trials, one tone at
pitch 3 in forty-two trials, and perceive no tones at pitch 3 in forty-
nine trials). The salience (probability of perceiving) a pitch class of 3 is
1-— ((1 —0)(1-.3)(1—-.3)(1— O)) = .51 so, given one hundred trials,
we expect listeners to perceive pitch class 3 a total of fifty-one times
(regardless of the number of tones perceived at that pitch). For this dis-
sertation, I consider only expectation tensors.

Expectation tensors may be absolute or relative: absolute expectation
tensors, denoted X, distinguish pitch collections that differ by transpo-
sition (e.g., the scales C major and D major), while relative expectation
tensors, denoted X, do not.

Expectation tensors also enable different pitch collections to be com-
pared according to their monad (single pitch), dyad, triad, tetrad, and
so forth, content.'® The formal structure of these different types of em-
beddings will be made clear in Sections 3.4.1—3.4.4. However, a simple
example of why they are useful is provided by considering the major
and minor triads (0,4,7) and (0,3,7) with / = 12 and no smooth-
ing. These contain the same set of intervals—a perfect fifth, a major
third, and a minor third—and hence they have zero dyadic distance.
But, because these intervals are arranged in different ways, they have
non-zero triadic distance. Thus the two types of embedding may cap-
ture the way major and minor triads are perceived to be simultane-
ously similar and different. MarLAB routines have been developed to
calculate the tensors discussed below; they can be downloaded from

http://www.dynamictonality.com/expectation_tensors_files/.

10 A monad is a set with a single element.
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3.4 EXPECTATION TENSORS

3.4.1 Monad Expectation Tensors

, 1 : Y
The absolute monad expectation tensor X" € R is a vector that indicates
the expected number of tones that will be perceived as corresponding

to each possible pitch (class) ;.

Example 3.4.1. To take a simple example, let us embed 2, = (0, 3,3,7),
zw = (1,1,1,1), and apply no smoothing—this can be used to repre-
sent a four-voice minor triad with a doubled third. These imply that
one tone is perceived at pitch o (the first tone in the . vector), two
tones are perceived at pitch 3 (the second and third tones in z}), one
tone is perceived at pitch 7 (the fourth tone in z,), and no tones are
perceived at the other pitches. This can be conveniently represented by

the order-1 tensor (vector)
xM = (1,0,0,2,0,0,0,1,0,0,0,0),

where the index (which here ranges from o to 11) indicates pitch, and

its value indicates the number of tones perceived at that pitch.

Absolute monad expectation tensors are useful for comparing the
similarity of pitch collections where absolute pitch is meaningful; for
example, comparing the spectral or virtual pitches produced by two
complex tones or chords in order to model their perceived affinity or
fit (see Ex. 3.6.1).

The elements of X'") are derived from the elements, z[i, j], of the

pitch class response matrix by
I
zelj] = > ali, ] (3.12)

=1

which is the column sum of the pitch class response matrix X, so
1
Xg ) = 17X, (3.13)

where 1; is an I-dimensional column vector of ones, and / is the trans-

pose operator, so 1/ is a row vector of I ones.
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Applied to Example 3.3.2, Equation (3.13) produces Xél) =

(0.5,0.25,0.3,0.6,0.3,0,0.25,0.5,0.25,0,0,0.25). As shown in Example
3.4.1, when there is no probabilistic smoothing, and every tone has
a salience of 1, the monad expectation vector is equivalent to a mul-
tiplicity function of the rounded pitch (class) vector; that is, z.[j] =
5207~ Lapelil)

A particularly useful application of the absolute monad expectation
vector—and one which forms the basis for most of the models in this
dissertation—is to embed collections of spectral pitches or pitch classes.
For simplicity, I denote the resulting vectors spectral pitch vectors or spec-
tral pitch class vectors. Almost all musical instruments produce complex
tones, which comprise numerous partials (sine wave components) at dif-
fering frequencies. Each of these components can be embedded as a
spectral pitch in a spectral pitch vector. This allows for the perceived
similarity of any two complex tones (or chords comprising such tones)
to be modelled with a similarity measure applied to their spectral pitch
vectors. This is the technique I utilize in Chapters 4 and 5 to model
experimentally obtained data. To simplify notation in these later chap-
ters, I write spectral pitch vectors as simple vectors (i.e., x) rather than
as tensors (i.e., X((a,l)).

In Section 3.6, I also demonstrate some models that use the subse-
quently described (in Secs. 3.4.2—3.4.4) higher-order tensors. However,
I do not formally test these higher-order tensors against empirical data,
and they do not form part of the models in Chapters 4—s. This means it
is not essential for the reader to fully assimilate their formal properties
in order to understand the models that form the core of this disser-
tation. Having said that, these higher-order tensors are an important
independent thread of my research in music cognition, and I hope to

test them against new empirical data in future work (see Sec. 6.3).

(0)

. . (0 . .
The relative monad expectation scalar X, * € R is a scalar that gives the

expected overall number of tones that will be perceived (at any pitch).
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Example 3.4.2. Given zp. = (0,3,3,7), zw = (1,1,1,1), and no
smoothing, we perceive a total of four tones. This is naturally repre-

sented by the order-o tensor (scalar)
X\ — 4.

The relative monad expectation scalar can be calculated by summing
1 . )
XY over j or, more straightforwardly, as the sum of the elements of
the Weighting vector

< (0) J—1 I
X, = Z xe[j] = 1/IX1J = wa[i], (3-14)
=0 i=1

where 1 is a J-dimensional column vector of ones. Applied to Exam-

ple 3.3.2, (3.14) gives )?,ﬁo) =3.2.

3.4.2  Dyad Expectation Tensors
The absolute dyad expectation tensor XgQ) € R7*7 is a matrix that indicates
the expected number of tone pairs that will be perceived as correspond-

ing to any given dyad of absolute pitches.

Example 3.4.3. Let us embed the previously used z,. = (0,3,3,7),
zw = (1,1,1,1), and apply no smoothing. These imply there are two
ordered pairs of tones with pitches o and 3 (one pair is the first and
second tones in xpc, the other pair is the first and third tones in xp.),
there is one ordered pair with pitches o and 7 (the first and fourth tones
in pc), there are two ordered pairs of tones with pitches 3 and 3 (one
pair is the second and third tones in xp., the other pair is the third and
second tones in xpc), and there are two ordered pairs of tones with the

pitches 3 and 7 (one pair is the second and fourth tones in z,, the other
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pair is the third and fourth tones in 2},¢), and so forth. This can be con-

veniently represented by the order-2 tensor (matrix)

0 002 0O0O0T1TO0O0O0O0
000 O0O0OOOO0OTO OO OO O0ODO
0000 O0OOOOTOTO OO OO
2 00 2 000 20000
0 000 0OOOOOTOTG O0ODO
XgQ) _ 0 000 0OOO0OO0OOTO OO ODO 7
0 000 0OOOO0OOTO 0T ODO
10 0 2 0 00 O0O0O0O0OO0
000 O0O0OOOO0OTO0OTO OO 0O
000 O0O0OOOO0OTO0OTO OO 0O
000 O0O0OOOO0OTO OO OO 0OO0
000 O0O0OOOO0OTOTO OO O0ODO

where each entry is identified by two indices, which both range from
o to 11. The indices specify a pair of pitches (so the top-left element
indicates the pitches 0 and o, the next element to the right indicates
the pitches o and 1, the element below this indicates the pitches 1 and
1, etc.), while the value of the entry indicates the expected number
of ordered tone pairs perceived at that pair of pitches. Specifically, the
zeroth row shows there are two ordered tone pairs with pitches o and
3 (because z¢[0, 3] = 2), and there is one tone pair with pitches o and 7

(because [0, 7] = 1). And so forth.

Absolute dyad expectation tensors are useful for comparing the ab-
solute dyadic structures of two pitch collections; for example, to com-
pare scales according to the number of dyads they share—the scales C
major and F major contain many common dyads and so have a small
distance (.155), the scales C major and F# major contain just one com-
mon dyad {B, F} and so have a large distance (.782). (These distances
are calculated with cosine distance (3.4) and J = 12.)

I now describe a method for calculating these tensors. With two
tones indexed by ¢ = 1 and 2, there are two ordered pairs (1,2) and
(2,1). The probability of perceiveing tone 1 as having pitch j and tone
2 as having pitch k is given by z[1, j] ]2, k] (these are elements taken
from the pitch class response matrix X, which is defined in (3.10)). Sim-

ilarly, the probability of perceiving tone 2 as having pitch j and tone
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1 as having pitch £ is given by 2[2, j] z[1, k]. Given two tones, the ex-
pected number of ordered tone pairs that will be perceived as having
pitches j and k is, therefore, given by z[1, j] z[2, k] + z[2, j] z[1, k]. Sim-
ilarly, given three tones indexed by i = 1, 2, and 3, there are six ordered
pairs (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), and the expected number
of ordered tone pairs perceived as having pitches j and k is given by the
sum of the six probabilities implied by these pairs.

Generalizing for any number of tones, the absolute dyad expectation

2 .
tensor, Xé ) € R7*/, contains elements

welj, k] = xfi1, j] x[iz, k], (3.15)
(’il,iz)EZZ:
11742
where T = {1,2,..., I}, so Z? is all ordered pairs from Z, and element

indices j and k indicate the pitches j and k (note that i ranges from 1 to 7,
while j and k most conveniently range from 0 to J — 1 when using pitch
classes). The element value indicates the expected number of ordered
pairs of tones perceived as having those pitches. For example, 2.[0, 7] =
1 indicates a single pair of pitches at values o and 7.

Equation (3.15) requires O(I?) operations for each element. Using
the tensor methods described in Appendix C, this can be expressed di-
rectly in terms of X, in a way that requires only O(I) operations per

element:
x? = 1)X) @ (1/X) - (X'X) | (3.16)

where ® denotes the outer product (also known as the tensor product). The
outer product is fully explained in Appendix B but, in brief, it mul-
tiplies together all possible pairings of elements and applies no sum-
mation. For example, the outer product of two vectors x € RM and
y € RY is a matrix Z € RM*Y each of whose elements z[m, n] is the
product z[m] y[n]. For two column vectors, therefore, x @ y = xy’.
As shown in Appendix B, this operation can be generalized to apply to

tensors of any order.
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The tensor product (1)/X) ® (1;X) is equivalent to

> x[i1, j] x[iz2, k], while the matrix product X'X is equivalent
(il,iz)EIZ
to > x[i1,j] [i2, k], hence subtracting the latter from the former—as
1=l
in (3.16)—is equivalent to the expression in (3.15). This is explained in

greater detail in Appendix C

(1)

o € RY is a vector that indicates

The relative dyad expectation tensor X
the expected number of tone pairs that will be perceived as correspond-

ing to any given dyad of relative pitches (i.e., an interval).

Example 3.4.4. Let us embed the previously used z,c = (0,3,3,7),
Zw = (1,1,1,1), and apply no smoothing. These imply that two or-
dered pairs of pitches make an interval of size zero (one pair is the sec-
ond and third tones in ., the other is the third and second tones in
Tpe), there are two ordered pairs of tones making an interval of size 3
(one pair is the first and second tones in z,., the other is the first and
third tones in zp.), there are two ordered pairs of tones making an in-
terval of size 4 (one pair is the second and fourth tones in zp., the other
is the third and fourth tones in z,), there is one ordered pair of tones
making an interval of size 5 (the fourth and first tones in z.) there
is one ordered pair of tones making an interval of size 7 (the first and
fourth tones in z,), there are two ordered pairs of tones making an
interval of size 8 (one pair is the fourth and second tones in z., the
other pair is the fourth and third tones in 2}.), there are two ordered
pairs of tones making an interval of size 9 (one pair is the second and
first tones in 2y, the other pair is the third and first tones in 2,). This

can be conveniently represented by the vector
XM = (2,0,0,2,2,1,0,1,2,2,0,0),

where the index (which here ranges from 0 to 11) indicates the size of
the interval, and its value represents the number of ordered tone pairs
perceived as having that interval.

It is useful to note that pitch collections with the same interval con-

tent (and Weights) have the same relative dyad embedding. For exam-
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ple, the pitch vectors (0,3,3,7) and (0,4,4,7) have identical relative
dyad embeddings.

Relative dyad expectation tensors are useful for comparing the inter-
vallic structures of two or more pitch collections regardless of transpo-
sition. For example, to compare the number of intervals that two pitch
collections have in common or to compare different pitch collections
by the number, and tuning accuracy, of a specific set of privileged in-
tervals they each contain (for specific applications, see Example 3.6.3,
which compares thousands of scale tunings to a set of just intonation
intervals).

The relative dyad expectation vector is given by applying row shifts
to XE,Q) so that k — k + j (circular row shifts so that k£ — k + j mod J,

when using pitch classes), and then summing over j, that is,

Telk] =Y welj, b+, (3-17)
J

where k + j is taken modulo J when pitch class vectors are used. The
index k indicates an interval, of size k, above j; for example, Z.[7] = 1
indicates one interval of size 7. Assuming the independence of tone
saliences, the values are the expected number of ordered tone pairs per-

ceived as having that interval, regardless of transposition.

Equation (3.17) can also be written as autocorrelations:

I

:1'X*1’X—2x[i]*x[i], (3.18)

~(1

X
where * denotes cross-correlation and x[i] is the ith row of the pitch
class response matrix X. This is the autocorrelation of the column sum
of the pitch class response matrix X minus the autocorrelations of each
of its rows."" The advantage of this form is that we can make use of the

autocorrelation theorem to efficiently calculate this vector using fast

In this respect, it bears an interesting relationship to Lewin’s interval function of a
pitch class set with itself (in Lewin’s notation, IFUNC(X, X)), but with an additional
correction—the subtracted second term—that stops each tone from being compared
to itself (Lewin, 1959, 2001).
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Fourier transforms (FFTs).'? Unfortunately, there is no obvious way to
generalize this simplification for the higher-order relative expectation
tensors discussed later.

As shown in Example 3.4.4, when there is no probabilistic smooth-
ing applied, and the salience of every tone is 1, the relative dyad
expectation vector simply gives the multiplicity of ordered pairs of
tones that correspond to any possible interval size. When there are
no tones with the same pitch class (this is always the case, by defini-
tion, when using a pitch class set rather than a multiset), the zeroth
element of the unsmoothed relative dyad expectation vector always
has a value of o. Because the values of all its elements are symmetri-
cal about the zeroth element, no information is lost by choosing the
subset {Ze[k] : 1 < k < |J/2]} and, when J is an even number, divid-
ing the last element by two (otherwise it is double-counted). When
J = 12, this subset is identical to the 6-element interval-class vector of
atonal music theory (Forte, 1973). The relative dyad expectation ten-
sor can, therefore, be thought of as a generalization of a standard in-
terval vector that can deal meaningfully with doubled pitches and the

uncertainties of pitch perception.

3.4.3  Triad Expectation Tensors
The absolute triad expectation tensor ng) e R7*/*7 indicates the expected
number of ordered tone triples that will be perceived as corresponding

to any given triad of absolute pitches.

Example 3.4.5. Let us embed the previously used z,c = (0,3,3,7),
zw = (1,1,1,1), and apply no smoothing. These imply that there are
two ordered triples of tones with pitches 0, 3, and 3 (one triple is the
first, second, and third tones in z,, the other is the first, third, and sec-
ond tones in zp.). There are two ordered triples of tones with pitches

0, 3, and 7 (one triple is the first, second, and fourth tones in z., the

. 2 L
The autocorrelation theorem states that f x f = F ’]—' (f )| ), where * is circular

cross-correlation (so f x f is the autocorrelation of f), and F denotes the Fourier trans-
form.
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other triple is the first, third, and fourth tones in zp). There are two
ordered triples with pitches 3, 3, and 7 (one triple is the second, third,
and fourth tones in zp, the other is the third, second, and fourth tones
in 2pc). There are no ordered triples at any other triad of pitches. This
can be conveniently represented by an order-3 tensor (a three-way ar-
ray, or cube of numbers). In such a tensor, each entry is identified by
three indices each of which ranges from 0 to 11. The indices indicate
a triad of pitches, while the value of that entry indicates the expected
number of ordered tone triples perceived at that triad of pitches. So, for
this example, the tensor is all zeros except for entries with index val-
ues that are a permutation of (0,3, 3), (0,3,7), and (3,3, 7) which have
a value of 2 (i.e., ¢[0,3,3] = ¢[3,0,3] = z[3,3,0] = 2¢[0,3,7] =
7e[0,7,3] = e[3,0,7] = 7e[3,7,0] = zo[7,0,3] = w[7,3,0] =
2e[3,3,7] = 2e[3,7,3] = 2e[7,3,3] = 2).

Absolute triad expectation tensors are useful for comparing the abso-
lute triadic structures of two pitch collections; for example, to compare
two scales according to the number of triads they share—the scales C
major and F major have many triads in common (e.g., {C, E, G}, {C, D,
E}, and {D, F, G} are found in both scales) and so have a small distance
(.170), the scales C major and Ff major have no triads in common—
they share only two notes {B, F}—and so have the maximal distance
of 1. (These distances are calculated with the cosine distance (3.4) with
J=12)

I now describe a method for calculating these tensors. Given
three tones indexed by 1, 2, and 3, there are six ordered triples
(1,2.3), (2,1,3), (2,3,1), (1,3,2), (3,1,2), (3,2,1); the probabilities
of perceiving each triple as having pitches j, k and ¢, respectively,
are x[1,j]z[2, k] x[3,¢], x[2,7]x[1,k]x[3,€], x[2,7]x[3,k]z[1,],
z[l, 7] x[3, k] z[2,¢], x[3,j]x[1,k]z[2,¢], and =x[3,j]x[2, k] x[1,(].
Given three tones, the expected number of ordered tone triples per-
ceived as having pitches j, k, £ is given by the sum of the above proba-

bilities.
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Generalizing for any number of tones, the absolute triad expectation

3 )
tensor, X(g ) € RV*I%J contains elements

welj k] =Y xlir, jlaliz, k] «[iz, (], (3-19)
sy
where T = {1,2,...,1}, and 73 is all ordered triples of elements from
7, and j, k, and ¢ indicate the pitch (classes) j, k, and ¢ (note that ¢
ranges from 1 to I, while j, k, and ¢ most conveniently range from
0 to J — 1 when using pitch classes). Assuming the independence of
tone saliences, element value indicates the expected number of ordered
triples of tones perceived as having those three pitches. For example,
zc[0,4, 7] = 1 indicates a single triad of pitches at values o, 4, and 7.
Equation (3.19) requires O(I®) operations for each element, but can

be simplified to O([) by using the tensor methods of Appendix C:

— (11X @ (15%) @ (LX)
( X%), s
(o)
~(mx
2

x%)
(3,1,2)

+2(X' oX oX') .1y, (3.20)

where © denotes the Khatri-Rao product, and the angle bracketed sub-
scripts denote mode permutations, both of which are explained in full
in Appendix B. This equation is a higher-order generalization of (3.16)
in that the first line calculates the summation in (3.19) but over all terms
(i.e., (i1,i2,i3) € ZI3). The next three lines remove summations over
any terms where (i1 = 42), (i1 = i3), and (i2 = i3). But this removes
the term i; = i3 = i3 too many (three) times, so two of them are put
back by the final line. The process used here is similar to the inclusion-

exclusion principle used in combinatorics to count the numbers of ele-
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ments in intersecting sets. The method is explained in greater detail in

Appendix C.

The relative triad expectation tensor )A(((f) € R7*/ is a matrix that in-
dicates the expected number of ordered tone triples perceived at any
possible relative triad (the latter is characterized by a pair of single-
reference intervals). By single-reference, I mean that both intervals are
measured with respect to the same pitch; for instance, a three-voice mi-
nor triad can be characterized by the interval pair 3 and 7 because it has
intervals of those sizes with respect to pitch o (i.e., 3 — 0 and 7 —0). The
same triad can also be represented by the interval pair 4 and 9 because it
has intervals of those sizes with pitch 4 (i.e., 7— 3 and 0 — 3 mod 12), or
by the interval pair § and 8 because it has intervals of those sizes with

pitch 7 (i.e., 0 — 7 mod 12 and 3 — 7 mod 12).

Example 3.4.6. Let us embed the previously used zp,. = (0,3,3,7),
zw = (1,1,1,1), and apply no smoothing. These imply there are two
ordered tone triples with the single-reference interval pair o and 4 (one
triple is the second, third, and fourth elements of ., the other is the
third, second, and fourth elements of xp.), there are two ordered tone
triples with the interval pair 0 and 9 (one triple is the second, third, and
first elements of zp., the other is the third, second, and first elements
of ), there are two ordered tone triples with the interval pair 3 and
3 (one triple is the first, second, and third elements of ., the other
is the third, third, and second elements of z), there are two ordered
tone triples with the interval pair 3 and 7 (one triple is the first, second,
and fourth elements of z,, the other is the first, third, and fourth ele-
ments of z;,¢), there are two ordered tone triples with the interval pair
4 and 9 (one triple is the second, fourth, and first elements of z}, the
other is the third, fourth, and first elements of z), there are two or-
dered tone triples with the interval pair s and 9 (one triple is the fourth,

first, and second elements of z,, the other is the fourth, first, and third
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elements of zp). This can be conveniently represented by the order-2

tensor (matrix)

O O N O O O O NN O O O O
O O O O O O O o o o o o
O O O O OO OO o o o oo
O O O O N O O O N O O O
O O N O O O O O O O O N
O O O N O OO O o o o o
O O O O OO OO o o o oo
O O O O O O O O NN o O O
O O O N O O NN O O O O O
O O O O O O O NNO O O N
O O O O O OO o o o oo
O O O O O O O o o o o o

where each entry is identified by two indices, which both range from
0 to 11. The indices specify a pair of single-reference intervals (so the
top-left element indicates the intervals 0 and 0, the next element to the
right indicates the intervals 0 and 1, the element below this indicates
the intervals 1 and 1, etc.), while the value of the entry indicates the
expected number of ordered tone triples perceived as having that pair
of intervals. Specifically, the zeroth row shows there are two ordered
tone triples with single-reference intervals of sizes o and 4 (because
Zc[0,4] = 2), and there are two tone triples with single-reference inter-
vals of sizes 0 and 9 (because 7, [0, 9] = 2); the third row shows there are
two ordered tone triples with single-reference intervals of sizes 3 and
3 (because Z¢[3, 3] = 2), and there are two triples with single-reference
intervals of sizes 3 and 7 (because Z,[3, 7] = 2). And so forth.

It is interesting to note that different pitch collections with the same
interval content (and weights) may have different relative triad em-
beddings. For example, the pitch vectors (0, 3,3,7) and (0,4, 4, 7) have

non-identical relative triad embeddings.

Relative triad expectation tensors are useful for comparing the tri-
adic structures of two or more pitch collections, regardless of transpo-
sition. For example, to compare the number of triad types two pitch
collections have in common; or to compare pitch collections by the

number, and tuning accuracy, of a specific set of privileged triads they
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each contain (for a specific application, see Ex. 3.6.3, which compares
thousands of scale tunings against a just intonation triad).

The relative triad expectation matrix is given by applying mode
shifts to X{¥) so that k s k + jand £ — ¢+ j (circular mode shifts
so that k — k + j mod J and ¢ — ¢+ j mod J, when embedding pitch

classes), and then summing over j:

Telk, 0] =D welj, k+ 4,0+ j], (3.21)
j

where k + j and ¢ + j are taken modulo J when used with pitch class
vectors. Element indices k£ and ¢ indicate two intervals, of sizes k and
¢, above j (which together make a triad). Assuming independence of
tone saliences, the element values are the expected number of ordered
tone triples perceived as corresponding to that relative triad. For ex-
ample, Z[4, 7] = 1 indicates one ordered tone triple containing single-
reference intervals of sizes 4 and 7.

In the same way the relative dyad expectation vector can be consid-
ered to be a psychoacoustically informed generalization of the interval
class vector, the relative triad expectation matrix can be thought of as
a generalization of the trichord-class vector (also known as a 3-class vec-
tor), which is used in musical set theory (Lewin, 1987; Castrén, 1994;
Buchler, 2001; Kuusi, 2001)."3 The tensor representation also has the
advantage that the indexing of its elements is directly related to the

pitch structure, rather than just following Forte’s set class designations

(1973).

3.4.4 R-ad Expectation Tensors

The definitions and techniques of the previous sections can be gener-

alized to R-ads of any order (so long as R < I).

It is also equivalent to Lewin’s EMB(CANON, /X/,Y) function, taken over all tri-
chords in the set class /X/, where the canonical group CANON is transposition op-
erations (not inversions) (Lewin, 1987, p. 106).
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((J,R) e R’" indicates the expected

An absolute R-ad expectation tensor, X
number of ordered tone R-tuples that will be perceived as correspond-

ing to any given R-ad of absolute pitches. It contains elements

R
xe[jl7j27"‘7jR] = Z Hm[i’r‘7j7‘]7 (3'2’2’)
(’il,...,iR)GIRZ r=1
inZip
where Z = {1,2,...,I}. Element indices ji, jo, ..., jr indicate the
pitches ji, jo, ..., jr (note that i ranges from 1 to I, while ji, jo, ...jr

most conveniently range from 0 to J — 1 when using pitch classes).
Assuming the independence of tone saliences, element value indicates
the expected number of ordered R-tuples of tones perceived as having
those R pitches. For example, z.[0,4,7,...,11] = 1 indicates a single
ordered R-tuple of tones with pitcheso, 4,7, ..., and 11.

As explained in Appendix C, this can also be expressed directly in

tensor notation:

(R) _ ®R R
XeW = ((ljR ® EJR) °X<R+1,1,R+2,2,...,...,R+R,R>) 1k (3-23)

Equations (3.22) and (3.23) are symbolically concise, but cumbersome
to calculate since each element of X{ requires O(I?) operations.
Fortunately, this can be reduced to O(I) by breaking (3.23) into sub-
spaces which are then added and subtracted in a manner analogous
to that shown in (3.16) and (3.20). This process is fully explained
in Appendix C. As shown in the MATLAB routines at http://www.
dynamictonality.com/expectation_tensors_files/, the computational
complexity can be further reduced by exploiting the sparsity of the ten-
sors to calculate only non-zero values; furthermore, due to their con-
struction, the tensors are invariant with respect to any transposition of
their indices, so only non-duplicated elements need to be calculated. To

minimize memory requirements, the tensors can be stored in a sparse

format.


http://www.dynamictonality.com/expectation_tensors_files/
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3.§ METRICS

A relative R-ad expectation tensor indicates the expected number of or-
dered tone R-tuples perceived at any possible relative R-ad (the latter
characterized by R — 1 single-reference intervals). It is invariant with
respect to transposition of the pitch collection. The absolute R-ad ex-
pectation tensors are transformed into relative R-ad expectation ten-
sors by shifting modes 2,3,..., R of X 5o that Jr — Jr + j1 (cir-
cularly shifting modes so that j, + j, + j1 mod J, when embedding

pitch classes), and then summing over j;. This creates an order-(R — 1)

relative R-ad expectation tensor with elements

Telj2, J3,-- - Jr) = Y Te[j1.jo + i1, jr+j1] € R7 (3-24)
J1

Element indices jz,...,jr indicate a set of R — 1 intervals above
j1 (which together make an R-ad); assuming the independence of
tone saliences, element value indicates the expected number of or-
dered R-tuples of tones that are perceived as corresponding to that
relative R-ad (set of R — 1 single-reference intervals). For example,
Te[j2,J3, - -, jr] = 1 indicates one R-tuple of tones containing single-
reference intervals of sizes jo, jo, ..., jR.

Asbefore, the relative R-ad expectation tensors can be viewed as gen-
eralizations of subset-class vectors of cardinality R (also called n-class
vectors, where n = R). In comparison to these vectors, the tensors have
the advantage of a principled system of indexing, as well as meaning-
fully accounting for duplicated pitches and the uncertainties of pitch

perception.

3. METRICS

The focus of the previous section has been on different ways of em-
bedding a single collection of pitches into a tensor. In this section, I
discuss methods to measure the distance between, or similarity of, any

two such tensors. In particular I discuss the two common distances in-
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troduced in Section 3.1—the L, and the cosine—which are used in the
applications of Section 3.6.

It is reasonable to model the perceived pitch distance between any
two tones with their absolute pitch difference (e.g., the pitch distance
between tones with pitch values of 64 and 60 semitones is 4 semitones).
The L,-metrics are calculated from absolute differences so they provide
a natural choice for calculating the overall distance between pairs of
category domain pitch vectors. When there are I different tones in each
vector, there are [ different pitch differences; the value of p determines
how these are totalled (e.g., p = 1 gives the taxicab measure, which
simply adds the distances moved by the different voices; p = 2 gives the
Euclidean measure; p = oo gives the maximum value distance, which
is largest distance moved by any voice). As discussed in Section 3.2, the
use of such metrics is a well-established procedure.

The metrics may be based on the intervals between pairs of pitch, or

pitch class, vectors in R :

7 1/p
, , 4|P
dw(Xpm}’pc;p) = Zw[l] ’xpc [Z] - ypc[z]‘ ) (3-25)
=1
where the weights w[i] may be sensibly chosen to be the product of
the saliences w[i] = zw|i] yw[i] from (3.7) (Parncutt, 1989). The metrics

may also treat the unordered pitch class intervals:™4

1/p
1
R . ‘ P
de(Xpe, ype;p) = | > wli] gg%’xpc [¢] — ype[i] — k:J‘ . (3.26)
i—
Equation (3.25) provides a measure of pitch height distance while (3.26)

provides a measure of pitch class (or chroma) distance.

To calculate the distance between two pitch domain expectation ten-
R

—_——~
SOTS xéR) and YgR) eRJS xJ XX J the L, and cosine distances can

Unordered pitch class intervals, also known as interval classes or undirected intervals, are com-
monly used in musical set theory. They give the same value to any given interval and
its inversion; for example, both a perfect fifth and a perfect fourth are represented by
the value of 5 semitones.
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be applied in an entrywise fashion. The simplest way to write this is to
reshape the tensors into column vectors x and y € R7", which may be
applied in (3.1) and (3.2).

The cosine similarity of two vectors is equivalent to their uncen-
tred correlation, and the use of such metrics is an established procedure
in music theory and cognition (Krumhansl, 1990; Scott and Isaacson,
1998; Rogers, 1999)."5 For expectation tensors, the meaning of the co-
sine similarity is easier to discern (and is a more obvious choice) than
that of the L,-metrics: It gives a normalized value for the expected
number of ways in which each different R-ad in one pitch collection
can be matched to a corresponding R-ad in another pitch collection.
For example, consider the absolute triad expectation tensors for the
scales C major and D major, where each tone has a salience of 1 and
no probabilistic smoothing is applied. The numerator of the division
counts the number of triad matches: both contain the triad {G, A, B},
which gives a count of 1; both contain the triad {A, C, E}, which in-
creases the count to 2; both contain the triad {A, B, E}, which gives a
cumulative total of 3; and so on, for all possible triads. The denomina-
tor of the division then normalizes the value to the interval [0, 1]. Simi-
larly, for a relative triad expectation tensor, both C major and D major
contain three root-position major triads each, so there are a total of 9
ways they can be matched; both contain one root-position diminished
triad each, so there is 1 way they can be matched, making a cumulative
total of 10; and so on, for all possible relative triads. The denominator
of the division again normalizes.

The final choice of distance or similarity measure can be made a pri-
ori (guided by theory, as above) or post-hoc (as a free parameter chosen

to fit empirical data).

The Pearson correlation of two vectors is equivalent to the cosine similarity of the
two vectors with their means subtracted. Thatis, r(x,y) = scos(x — X,y — ¥), where
X is a vector all of whose values are the mean of x (and the same for y and y).

81



82

MODELLING THE SIMILARITY OF PITCH COLLECTIONS

3.6 APPLICATIONS

In this section, I introduce some ways in which expectation tensors can
be used to model various aspects of music perception. In Section 3.6.1,
I briefly discuss spectral pitch vectors (embeddings, in absolute monad
expectation tensors, of the partials of complex tones) and how spec-
tral pitch distance (the distance between spectral pitch vectors) can
be used to model the affinity of chords, and how this measure dif-
fers from the commonly used voice-leading distance (the distance be-
tween pitch-vectors or pc-vectors). The spectral pitch vectors, intro-
duced here, form the basis of the models I develop and experimentally
test, in Chapters 4 and s.

I also demonstrate some alternative applications for the other types
of expectation tensor—the relative expectation tensors and higher-
order tensors. In Section 3.6.2, I show how they can be used to model
the extent to which different scale tunings are heard to approximate a
set of privileged intervals such as just intonation. This is useful for the
design of microtonal scale systems. In Section 3.6.3, I also show how
they can be used to replicate and generalize aspects of pitch set the-
ory, which is a technique to analyze the perceived distances between
pitch class sets in atonal music theory. Unlike the spectral pitch sim-
ilarity models, these latter two types of model are not developed or
empirically tested in the remainder of the dissertation. For that rea-
son, Sections 3.6.2 and 3.6.3 may be regarded as useful but non-essential
reading.

The maTLAB routines used to calculate these examples can be down-
loaded from http://www.dynamictonality.com/expectation_tensors_

files/.

3.6.1  Tonal Distances

Although I will cover spectral pitch vectors in greater detail in subse-

quent chapters, it is useful at this stage to demonstrate how spectral


http://www.dynamictonality.com/expectation_tensors_files/
http://www.dynamictonality.com/expectation_tensors_files/
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pitch distance differs from the more familiar voice-leading distance,
which is a commonly used measure in music theory.

For modelling the distance between chords, the most common ap-
proach is to measure their voice-leading distance. This is the L, distance
(usually with p = 1 or p = 2) between category domain embeddings
of the chords. For instance, the distance between the chord Cmaj and
the chord Dmin can be modelled as ||(0,4,7) — (2,5,9)]|, (the p-norm
of their difference, as in (3.1)). This is clearly an intuitive and obvious
way to measure perceived distance.

An alternative approach is to consider the distance between two
chords when the partials of each chord are embedded into a spectral
pitch (class) vector—that is, to calculate their spectral pitch distance. Any
complex tone or chord produces a large number of spectral and vir-
tual pitch responses (Terhardt et al., 1982; Zwicker and Fastl, 1999),
which suggests that the distances between collections of spectral or vir-
tual pitches may provide an effective model for the perceived afhnity
of tones or chords (Parncutt, 1989; Milne, 2009a).’ For most musical
stimuli, there are so many spectral or virtual pitches it is unlikely they
can be mentally categorized. The appropriate embedding is, therefore,

in the pitch domain not a categorical domain.

Example 3.6.1. Voice-leading distance and spectral pitch distance.

For a selection of triads, Figure 3.2 illustrates the difference between
voice-leading distance and spectral pitch distance. Each block is a triad
that contains a perfect fifth. The pitch of both tones in this fifth in-
crease, by semitones, from left to right. For example, if the pitches of
the fifth in the central column are C—G, the next column to the right
is Ct—Gt, and the column after that has the fifth D—A. The pitch of the
‘third’ increases, by semitones from bottom to top. For example, if the
pitch of the ‘third’ is E in the central row, the next row above has a
‘third’ of F, and the row above that has a ‘third’” of Ff. This means the

major and minor triads (the only triads deemed consonant in common-

Virtual pitches are generated by the auditory system in response to complex tones. The
most common example is the pitch heard to correspond to a missing fundamental.
Virtual pitches are discussed in greater detail in Chapters 4 and s.
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Figure 3.2: Spectral pitch distances of a Cmaj reference triad and all possible
12-TET triads that contain a perfect fifth. (Spectral pitch distance is
calculated with smoothing of 10.3 cents and roll-off of 0.42) The
greyscale indicates the spectral pitch distance with the reference
triad (the darker the shade, the lower the distance and hence the
greater the modelled affinity). A selection of major and minor tri-
ads are labelled—upper case for major, lower case for minor.

practice tonality) lie on the bottom-left to top-right diagonal. Chords
above and below this are not major or minor, and in some of them
the ‘third” may be higher than both notes in the fifth (which is why I
place ‘third’ in quotation marks to signal its unusual usage). For con-
venience, the central block represents the chord Cmaj. A selection of
triads are labelled on the chart—upper case for major triads, lower case
for minor. The chords are laid out in this way because this ensures their
spatial distances correspond to their Euclidean voice-leading distances.
For example, observe how the spatial distance between Cmaj and Emaj
is twice the spatial distance between Cmaj and Dmaj.

The shade of each block indicates the spectral pitch distance (cosine)
of its chord from the central Cmaj reference chord—darker is closer.
For example, the shading of the Dmin block shows the spectral pitch
distance between Cmaj and Dmin; the shading of the Fmaj block shows
the spectral pitch distance between Cmaj and Fmaj. Spectral pitch dis-
tance is here calculated by embedding the first twelve partials (harmon-
ics) of each triad tone as pitch classes into an absolute monad expec-
tation tensor (a spectral pitch vector). This means each spectral pitch
vector embeds a total of thirty-six pitch classes (i.e., I = 36). Pitch

classes are used rather than pitches because I am interested in modelling
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the perceived distances of chords regardless of whether any given voice
moves up or down. For example, I want the spectral pitch distance be-
tween Cmaj and Fmaj, to reflect the distance between these two chords
regardless of whether the root of the first chord ascends a fourth to the
root of the latter or, instead, descends a fifth. The harmonics of each

= ;7042 \Where 7 is the number of the har-

tone are weighted by xy,[i]
monic, and the width (standard deviation) of the Gaussian smoothing
is set to 10.3 cents. I use these parameter values because they are the op-
timal values for the model of the experimental data described in Chap-
ter 4.

These spectral pitch distances can be used to model the perceived
afinity between each of the triads and the reference Cmaj triad. Ob-
serve how there is a complex patchwork of differing distances across
the voice-leading space. This model suggests that the triad pair {Cmaj,
Dmin} has greater affinity than the neighbouring triad pair {Cmaj,
Dmaj} (the rectangle labelled ‘d’ is darker than the rectangle labelled
‘D’); the triad pair {Cmaj, Gmaj} has greater affinity than the neigh-
bouring triad pair {Cmaj, Gbmaj}; the triad pair {Cmaj, Emin} has
greater affinity than the neighbouring triad pair {Cmaj, Emaj}; and
so forth. Interestingly, it shows how chords with common tones and
root movements by perfect fifth tend to have higher spectral similarity
than chords without; that chords from the same diatonic scale tend to
have higher spectral similarity than chords that are chromatically re-
lated. This corresponds to typical judgements of the affinity between
chords, which suggests spectral pitch similarity can be used as an ef-
fective model of the affinities not just of successive tones, but also of
successive chords. Indeed this hypothesis was experimentally tested in
Milne (2009a): there was a correlation r(24) = .78,p < .001 between
spectral pitch similarity and the ratings, by 32 participants, of the ‘fit’ of
all 26 possible pairs of root-position major and minor triads.’” A similar

chart with a minor reference triad at the centre is given in Chapter 6.

The measure of spectral pitch similarity used in the cited thesis, termed spectral response
distance, is subtly different to the spectral pitch similarity used here. As mentioned at
the end Chapter 2, it was not a true metric.
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I will revisit this chart in Chapter 6, where I show how it may be

useful for explaining certain important aspects of tonal harmony.

3.6.2  Temperaments

Relative expectation tensors are useful to find effective temperaments.
These are lower-dimensional tunings that provide good approxima-
tions of higher-dimensional tunings (Milne et al., 2008). The dimension
of a tuning is the minimum number of unique intervals (expressed in
a log-frequency measure like cents or semitones) that are required to
generate, by linear combination, all of its intervals.

Many useful musical pitch collections are high-dimensional; for ex-
ample, just intonation intervals and chords with frequency ratios 4:5:6
and 4:5:6:7 are three- and four-dimensional, respectively.'® But lower-
dimensional tunings (principally one and two-dimensional) also have
a number of musically useful features; notably, they facilitate mod-
ulation between keys, they can generate scales with simply patterned
structures (equal step scales in the case of 1-D tunings, well-formed
scales in the case of 2-D tunings (Carey, 2007)), and the tuning of all
tones in the scale can be meaningfully controlled, by a musician, with
a single parameter (Milne et al., 2007)."

Given the structural advantages of low-dimensional generated scales,
it is useful to find examples of such scales that also contain a high pro-
portion of tone-tuples whose pitches approximate privileged higher-
dimensional intervals and chords (such as just intonation). A familiar

example is the 12-TET chromatic scale generated by the 100 cent semi-

18 Just intonation intervals and chords have low integer frequency ratios. They are typi-

19

cally thought to sound more consonant than the tunings used in 12-tone equal tem-
perament.

Well-formed scales (Carey and Clampitt, 1989), or MOS scales (Wilson, 1975), are special
cases of 2-D scales, each of whose generic intervals (as measured by number of scale
steps) comes in no more than two specific sizes (as measured by a log-frequency unit
like cents). In order to construct an MOS scale given a specific period and generator,
the generator must be iterated precisely a number of times that yields a scale satisfy—
ing these requirements. The familiar (anhemitonic) pentatonic and diatonic scales are
MOS scales with a period of 1200 cents and a generator of approximately 700 cents—
the generator is iterated four times for the pentatonic scale, and two additional times
for the diatonic scale. Numerous unfamiliar possibilities become available with non-
standard period and generator tunings (Erlich, 2006).
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Figure 3.3: The cosine distance (on relative dyad expectation embeddings
with a Gaussian smoothing kernel of 3 cents standard deviation)
between a just intonation major triad (0, 386.3, 702) and all n-tets
fromn = 2ton = 102.

tone, which contains twelve major and twelve minor triads tuned rea-
sonably close to their just intonation versions. Another familiar exam-
ple is the meantone tuning of the diatonic scale, which is generated by
a period (octave) of approximately 1200 cents and a generator (fifth)
of approximately 697 cents—this scale contains three major and three
minor triads whose tuning is very close to just intonation (closer than
the 12-TET scale). There are, however, numerous alternative—and less
familiar—possibilities.

Given a privileged pitch class collection embedded in an expectation
tensor, it is easy to calculate its distance from a set of n-TeTs (up to any

given value of n).

Example 3.6.2. 1-D approximations to 4:5:6 (JI major triad). The JI (just
intonation) major triad contains all (and only) the common-practice
harmonic consonances (i.e., the perfect fifth and fourth, and the major
and minor thirds and sixths). It is, therefore, interesting to find tunings
that produce simple scales containing lots of good approximations of
these intervals. The just intonation major triad has pitches with fre-
quency ratios of 4:5:6, hence it is three-dimensional (it is factorized by
the three primes 2, 3, and 5). This means there is no equally tempered
scale (which is one-dimensional, by definition) that can precisely match
all of these just intonation intervals. However, certain equally tem-
pered scale may provide reasonable approximations. Figure 3.3 shows
the cosine distance between the relative dyad expectation tensor em-

beddings of the JI major triad and all n-tets from n = 2 to 102.
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Observe that the distances approach a flat line where increasing n is
no longer beneficial, and that the most prominent minima fall at the
familiar 12-TET and at other alternative n-ter’s (e.g., 19-, 22-, 31-, 34-,

41-, 46-, and §3-TET) that are well-known in the microtonal literature.

A two-dimensional tuning has two generating intervals with sizes, in
log (f), denoted aand 3. All intervals in the tuning can be generated by
aand j; thatis, they have sizes ja + k3 where j, k € Z. For example, all
possible notes in the quarter-comma meantone tuning can be generated
by an octave of 1200 cents and a generator of 696.58 cents (i.e., & = 1200
and 3 = 696.58, so all intervals take the form 12005 + 696.58%k).

It is often convenient to create a scale from a 3-chain, which com-
prises all pitches ja + k3 where k is restricted to a limited range of suc-
cessive integers. For example, a 19-tone -chain might consist of the
notes ja — 953, ja — 803, ..., ja + 85, ja + 9f5. Given an arbitrary set of
higher-dimensional privileged intervals with a period of repetition p
(typically 1200 cents), how can a $-chain with similarly sized intervals
be found? In general, it is convenient to fix the tuning of « to p/n, for
n € IN, because this ensures the resulting generated scale repeats at the
period whatever the value of 3. So, once a is chosen, the procedure is
to generate (3-chains of a given cardinality and to iterate the size of 3
over the desired range. At each iteration, the cosine distance to the set
of privileged intervals is measured using the relative dyad expectation

embeddings. This is illustrated in the following example.

Example 3.6.3. 2-D approximations to 4:5:6 (]I major triad)—comparing
smoothing widths. Given a 19-tone (3-chain with o = 1200, we may wish
to find the tunings of 3 that produce a large number of good approx-
imations to the intervals found in a just-intonation major triad. The
justintonation major triad is three-dimensional (as discussed in the pre-
vious example), while the J-chain is, by definition, two-dimensional.
This means the latter can only approximate the former, never precisely
match it. But we can iterate through values of § to find $-chains that
contain large numbers of intervals that are close to the just intonation

intervals.
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Figure 3.4: The cosine distance between relative dyad embeddings of a just in-
tonation major triad {0, 386.3,702} and a 19-tone -chain whose
B-tuning ranges from o to 1,199.9 cents. The smoothing is Gaus-
sian with standard deviations of 6 cents (left side), and 3 cents (right
side). The two zooms show the distance minima occurring at the
meantone (504 and 696 cents) and helmholtz (498 and 702) tunings,
and how their relative levels change as a function of smoothing

width.

Figure 3.4 shows the distance between the relative dyad embeddings
of a just intonation major triad and 19-tone [-tunings ranging over
0 < B < 1199.9 cents in increments of 0.1 cents (& = 1200 cents).
When using a single smoothing width, this type of chart is perfectly
symmetrical about the centre line passing through o and 600 cents. This
is because a 5-chain generated by § = B cents is identical to that gener-
ated by 5 = o — B (Milne et al., 2008). This means we can utilize such
a chart to compare two different smoothing widths. In Figure 3.4, the
right-hand side shows the effect of using a Gaussian kernel with a stan-
dard deviation of 3 cents; the left-hand side has a standard deviation of

6 cents.
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Observe the following distance minima at different S-tunings: 503.8
cents corresponds to the familiar meantone temperament; 498.3 cents
to the helmholtz temperament; 442.9 cents to the sensipent temperament;
387.8 cents to the wiirschmidt temperament; 379.9 cents to the magic
temperament; 317.1 to the hanson temperament; 271.6 cents to the or-
son temperament; 176.3 cents to the fetracot temperament (the names
for each of these temperaments has been taken from Erlich (2006)). It is
interesting to note that the classic meantone tunings of approximately
504 (or 696) cents are deemed closer than the helmholtz tunings of ap-
proximately 498 (or 702) cents when the smoothing has 6 cents, and
vice versa when the smoothing has a 3 cent standard deviation. In fu-
ture experiments, the smoothing width could be used as a free param-
eter that is adjusted to best fit participants’ ratings of how well various

temperaments approximate just intonation.

Example 3.6.4. 2-D approximations to 4:5:6 (JI major triad)—comparing
dyad and triad embeddings. Figure 3.5 compares the distance between be-
tween a just intonation major triad and seven-tone -chains (e.g., the
notes jo — 303, ja — 203, ..., ja + 20, jo + 33, with 3 iterated over the
sizes 0 to 1199.9 cents in increments of 0.1 cents) when embedded in
relative dyad and relative triad expectation tensors. The left side shows
triad embeddings, the right side shows dyad embeddings.

Observe that, for low cardinality generated scales (like this seven-
tone scale) and a smoothing width of 3 cents, only a few tunings pro-
vide tone triples that are close to the just intonation major triad: the
meantone generated scale (3 &~ 696 cents) contains three major triads,
the magic scale (8 &~ 820 cents) contains two major triads, the porcu-
pine scale (3 ~ 1,037 cents) contains two major triads (but with less
accurate tuning than the magic), the hanson scale (5 ~ 883 cents) scale
contains only one major triad (tuned extremely close to just intona-
tion). As the cardinality of the S-chain is increased, the distances be-

tween the triadic embeddings approach those of the dyadic.

Example 3.6.5. 2-D approximations to 3:5:7 (7-limit Bohlen-Pierce triad).

The above two examples have used familiar tonal structures (the oc-
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Figure 3.5: The cosine distance between relative dyad embeddings (right) and
relative triad embeddings (left) of a just intonation major triad
{0,386.3,702} and a 7-tone S-chain whose $-tuning ranges from
0 to 1,199.9 cents. The smoothing is Gaussian with a standard de-
viation of 3 cents.

tave of 1200 cents and the major triad), but the methods are equally
applicable to any alternative structure. One such is the Bohlen-Pierce
scale, which is intended for spectra containing only odd numbered har-
monics. It has a period of 3/1 (the ‘tritave’), which is approximated by
1902 cents. The 3:5:7 triad, which is approximated by {0, 884.4, 1466.9}
cents, is treated as a consonance. Figure 3.6 shows the distance of a 3-
chain of 19 notes with 0 < 5 < 1901.9 cents with a Gaussian smooth-
ing of 3 cents standard deviation. The closest tuning is found at 439.5
cents, which is almost equivalent to 3 x 1902/13 and so corresponds to
the 13-equal divisions of the tritave tuning suggested by Bohlen and

Pierce (Bohlen, 1978; Mathews et al., 1984).

3.6.3  Musical Set Theory

In musical set theory, there is a rich heritage of measures used to model
the perceived distances between pitch collections (e.g., Forte (1973);
Castrén (1994); Buchler (2001); Kuusi (2001)). Expectation tensors can

generalize traditional embeddings in a number of ways: (a) they model
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Figure 3.6: The cosine distance (using a Gaussian smoothing kernel with a 3
cents standard deviation) between a just intonation Bohlen-Pierce
‘major’ triad {0,884.4,1466.9}, with a period of 1902 cents, and a
19-tone (-chain whose S-tuning ranges from o to 1901.9 cents.

the inaccuracies of pitch perception; (b) they can embed pitch collec-
tions in any tuning (up to the pitch granularity determined by .J); (c)
they can meaningfully deal with pitch collections that contain dupli-
cated pitches (such as when two voices play the same pitch); (d) they can
be populated with pitches or pitch classes; (e) they can embed absolute
or relative pitches or pitch classes; (f') they can generalize subset-class
vectors, but utilize a principled indexing that does not rely upon Forte
numbers.>°

The relative dyad embedding is of the T),,I type—that is, it is invari-
ant with respect to transposition and inversion of the pitch collection it

is derived from.>! It is also invariant over Z-relations (Z-related collec-

A set class is an equivalence class for pitch class sets that differ only by transposition.
Forte numbers are the numerical labels used by Forte to index set classes of all possible
cardinalities (under the assumption of 12-TeT, this ranges from the empty set up to
the set of cardinality 12, and there are a total of 352 different set classes) (Forte, 1973).
Given a pitch class set, its subset~class vector of cardinality n (also termed an n-class vector)
indicates the number of occurrences of each set class of cardinality n, indexed by their
Forte number (Kuusi, 2001).

In musical set theory, pitch class sets that are invariant with respect to transposition
belong to the same T4, class. For example, {0,4, 7} and {1,5,8} are in the same Ty,
class because the latter can be transposed down one semitone to make it equal to
the former ({1 —1,5— 1,8 — 1} = {0, 4, 7}). Pitch class sets that are invariant with
respect to both transposition and inversion belong to the same T 1 class. For example,
{0,4,7} and {1, 4, 8} are in the same T}, class because the latter can be converted into
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tions, such as {0, 1,4, 6} and {0, 1, 3, 7}, have the same interval content
but are not related by transposition or inversion (Forte, 1973)). Rela-
tive triad (and higher-ad) embeddings are invariant only with respect
to transposition—that is they are of the T), type (e.g., the inversion of a
major triad is a minor triad and, although these two chords contain the
same intervals, they have different embeddings in a relative triad ma-
trix). When used with pitch class vectors, absolute embeddings have
only period (octave) invariance; when used with pitch vectors, they

have no invariances.

Example 3.6.6. Distances between pc-sets related by Z-relation, inversion, and
transposition. Table 3.2 shows the cosine distances between the absolute
and relative dyad and triad embeddings of pitch class vector (0, 1, 4,6),
its Z-relation (0, 1,3,7), its inversion (0,2,5,6), and its transposition
(1,2,5,7).

It is reasonable to think that perceptions of pc-set similarity may
be determined by both their absolute and relative pitch structures. To
model this, pc-set similarity can be modelled as a linear combination of
the distances between absolute and relative embeddings of differing or-
ders. For example, adding relative dyad and absolute monad distances,
gives a non-zero distance between pc-sets with differing interval con-
tent (like (0,1,4,5) and (0,1,4,6)), but also takes into account their
absolute pitches, thus ensuring (0,1, 4,5) is closer to its transposition
(4,5,8,9) than it is to its transposition (2, 3,6,7) (e.g., adding the two
distance functions, with no weighting, gives summed cosine distances

of 0.533, 0.5 and 1, respectively).

3.7 DISCUSSION

In this chapter, I have presented a novel family of embeddings and met-
rics for modelling the perceived distance between pitch collections.
The embeddings can be realized in a manner that conforms with es-

tablished psychoacoustic data on pitch perception (through the use of

the former by inversion (which gives {—1, —4, —8}) and then transposition up eight
semitones ({—1+8, -4+ 8, -8 + 8} = {0,4,7}).
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Table 3.2: Cosine distances between a selection of pc-sets related by Z-
relation, inversion, and transposition. The distances are calculated

with four different types embedding.

Z-relation inversion  transposition
(0,1,4,6) (0,1,3,7) (0,2,5,6)  (1,2,5,7)
Absolute dyad embeddings

(0,1,4,6) 0 .833 .833 I
(0,1,3,7) .833 0 I .833
(0,2,5,6) .833 I ) .833
(1,2,5,7) I .833 .833 )
Relative dyad embeddings

(0,1,4,6) 0 0 ) 0
(0,1,3,7) 0 0 ) 0
(0,2,5,6) 0 0 o 0
(1,2,5,7) ) ) o) )
Absolute triad embeddings

(0,1,4,6) 0 I I I
(0,1,3,7) 1 0 T I
(0,2,5,6) I I ) I
(1,2,5,7) I I I )
Relative triad embeddings

(0,1,4,6) ) I I o
(0,1,3,7) I 0 .5 I
(0,2,5,6) I 5 o T
(1,2,5,7) 0 I I o)

Gaussian smoothing) and may be useful as components in broader mod-
els of the perception and cognition of music. Indeed, to model any spe-
cific aspect of musical perception, a variety of appropriate embeddings
may be linearly combined, with their Weightings, the Weightings of the
tone saliences (if appropriate), and the type of metric, as free parameters
to be determined from empirical data.

The models demonstrated in this chapter differ from those of, for ex-
ample, Krumhansl, Lerdahl, or those taking a neo-Riemannian or Ton-
netz-based approach, because they are built from explicit psychoacous-
tic first principles (using Gaussian smoothing to model the frequency
difference limen). Furthermore, unlike the traditional pitch embed-

dings used in set class theory, they are able to deal in a meaningful
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way with non-standard tunings and when more than one tone plays
the same, or a very similar, pitch.

This chapter has focused on expectation tensors, but the underly-
ing pitch (class) response matrices can also be used to generate salience
(rather than expectation) tensors: these give the probability of perceiv-
ing any given R-ad of pitches (rather than the expected number of
tone-tuples perceived at a given R-ad of pitches). Developing compu-
tational simplifications for higher-order salience tensors is work that
remains to be done.

The embeddings and metrics described in this chapter are also appli-
cable to other domains: a tone, as defined at the start of this chapter,
can be thought of as a member of a class of discrete and linear stimuli.
A stimulus is discrete when it can be combined with other such stimuli,
yet still be individually perceived (e.g., many tones may be sounded to-
gether, but still be individually heard; even the separate spectral pitches
of a2 harmonic complex tone may be consciously perceived); a stimu-
lus is linear when it can be characterized by a scalar that is the variable
in a linear psychophysical function (e.g., a tone can be characterized
by its log-frequency, which is linearly related to its perceived pitch
height). In this generalized context, a period indicates the size—in the
units of the psychophysical function—at which perceptual equivalence
may occur (e.g., pitches that are octaves apart). These generalized def-
initions indicate how the same methods may be applied to the percep-
tion of any other (even non-auditory) discrete stimuli that can be trans-
formed, with a link function, to make the psychophysical function lin-
ear. An obvious example is the perception of timing in rhythms: the
‘physical’ time of a percussive event is linearly related to the perceived
time of the event, and a bar (or some multiple, or division, thereof ) can
be thought of as representing the period. In this context, the smoothing
represents perceptual or cognitive inaccuracies in timing; for example,
it might be possible to embed a rhythmic motif containing four events
in a relative tetrad expectation matrix (in the time domain), and com-

pare this with a selection of other similarly embedded rhythm patterns
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to find one with the closest match (i.e., one that contains the greatest
number of patterns that are similar to the complete motif ).

In the subsequent two chapters, however, I focus my attention on
the embedding of spectral pitches into absolute monad expectation
tensors—spectral pitch vectors. In the next chapter, I use the cosine
similarities of such vectors to model affinity of microtonally pitched
tones with non-harmonic spectra. In the chapter after that, I use these
cosine similarities of spectral pitch vectors to model Krumhansl!’s probe
tone data, and to predict the tonal functions of pitches and chords in a

variety of scales.
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In the previous chapter, I introduced a psychoacoustically derived
method for embedding spectral (or virtual) pitches into a spectral (or
virtual) pitch vector (virtual pitches were defined in Sec. 2.4). I sug-
gested the cosine similarity of any two such vectors could be used to
model the perceived affinity (the melodic analogue of consonance) of
the tones or chords they embed. I also provided specific examples in
Sec. 3.6.1. The principal aims of the experiment and models described
in this chapter are: (a) to test the spectral pitch similarity model against
experimental data; (b) to test whether it is modelling an underlying
psychoacoustic process, rather than a learned response; (c) to determine
the strength of the psychoacoustic effect modelled by spectral (or vir-
tual) pitch similarity.

In addition to these aims, I also utilize cross-correlation between the
spectral pitch vector of a tone and the spectral pitch vector of a har-
monic template (defined in Sec. 4.1.1) to create a harmonicity model of the
former’s toneness (defined in Sec. 4.1.2). This is also tested as a model for
affinity. Furthermore, I also embed virtual pitches, instead of spectral,
to see if virtual pitch similarity can also provide an effective model of
affinity.

As I demonstrate later, the experimental data collected for this chap—
ter confirm that spectral pitch similarity and harmonicity are effective
models of affinity, and combining them produces a model with a large
effect size that is highly significant.” Virtual pitch similarity performs
slightly worse than spectral pitch similarity, but not significantly so.

The data also support the hypothesis that spectral pitch similarity is a

Effect size is any measure (e.g., correlation) of the degree of association between two
variables (e.g., a model’s predictions and the data it is modelling). Its value is impor-
tant because, given enough data, an effect size that is vanishingly small (i.e., unim-
portant) can still be statistically significant.
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model of an innate psychoacoustic process (it is not learned from expo-
sure to a musical corpus), and that the size of this psychoacoustic effect

is medium and also highly significant.

It is widely accepted that the spectra of simultaneously played tones
have an impact on their perceived consonance and dissonance (the spec-
trum of a tone is the set of amplitudes and frequencies of all its par-
tials). For example, the Helmholtz (1877) tradition ascribes dissonance
to partials in the combined sound that are close enough in frequency
to interfere with each other, thereby creating rough-sounding rapid
beating. Meanwhile, the Stumpf (1890)? tradition ascribes consonance to
fusion: when partials have frequencies close to a harmonic series, they
are perceptually fused into a smaller number of virtual pitches, thereby
simplifying the percept (virtual pitches are inferred by the auditory sys-
tem and correspond to the frequencies of candidate fundamentals). As
suggested by many researchers, it is plausible that both processes—in
addition to familiarity—contribute to the final consonance/dissonance
of a chord (e.g., Bregman (1990); Huron (1991); Lerdahl (2001); Mc-
Dermott et al. (2010); Parncutt and Hair (2011)).

However, the suggestion that the spectral content of melodically played
(i-e., successive) tones may have an impact on their affinity (their per-
ceived degree of ‘fit’, ‘in-tuneness’, and ‘similarity’) is less well known
and typically ignored in favour of learning models (e.g., tones separated
by more familiar intervals fit better than those separated by less familiar
intervals) such as those developed by Krumhansl (1990) and Pearce and
Wiggins (2006). However, Terhardt (1984) suggested there are at least
two mechanisms by which spectral content can affect the affinity of two
tones: the commonalities of their spectral pitches, and the commonal-
ities of their virtual pitches—any given notated pitch may produce a
multiplicity of both spectral and virtual pitches. In this dissertation, I
use the terms spectral pitch similarity and virtual pitch similarity; this is be-
cause, in my models, I treat each spectral and virtual pitch as a random

variable and model the similarity of collections of such pitches with

2 As cited in (Green and Butler, 2002).
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a similarity measure such as the cosine. Spectral pitch similarity—the
cosine similarity of two spectral pitch vectors—was introduced in Sec-
tion 2.5. Virtual pitch similarity is the cosine similarity of two virtual
pitch vectors. Virtual pitch vectors are identical to spectral pitch vectors
except they embed all and only the virtual pitches that have been gen-
erated by an additional model of virtual pitches (the spectral and virtual
pitch models used in this chapter are fully described in Sec. 4.1.1 and
App. D). I use the term pitch similarity when I wish to be non-specific
as to whether the mechanism is spectral pitch similarity, virtual pitch
similarity, or both.

Both mechanisms seem plausible because harmonic complex tones
an octave, perfect fifth, or perfect fourth apart have high spectral and
virtual pitch similarities, and these intervals are typically considered
to have a high melodic affinity (as historically evidenced by Tenney
(1988)). Furthermore, these processes were experimentally tested by
Parncutt (1989) whose empirical data showed that melodic unisons, oc-
taves, and perfect fifths and fourths were rated as significantly more
‘similar’ than some of their neighbours a semitone away—the minor
second, major seventh, and tritone.

There is also a teleological argument that naturally associates pitch
similarity with affinity. Successive tones with similar pitch contents
clearly exhibit greater simplicity and continuity, both of which are
important components of Prignanz (good form). In Gestalt perceptual
theory, the law of Prignanz asserts that perceptual elements are grouped
due to them forming part of a larger well-formed pattern. By playing
successive tones that share some of their spectral or virtual pitch con-
tent, a composer or performer is suggesting a patterning and orderli-
ness that may help bind the melodic notes into a greater whole (suchasa
melodic stream where notes are heard to be, in some sense, connected
rather than disjointed). Over the continuum of all possible intervals
sizes, most intervals have low pitch similarity (e.g., see Fig. 4.11); those
with high similarity are rarities. Privileging them, therefore, represents

a clear aesthetic decision.
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The above suggest a causal relationship from the pitch similarity
of two tones to their perceived affinity, but there is a complication
for any experiment designed to test such a relationship: most listen-
ers are familiar with Western music, which privileges—by prevalence
and metrical weight—certain melodic intervals over others (e.g., sec-
onds are preferred to sevenths; perfect fifths and fourths to tritones;
and so forth), and which privileges certain spectral tunings (the har-
monic complex tones produced by most Western instruments and the
human voice).3 This means that, in an experimental setting, partici-
pants’ responses to different intervals are likely to be a function of their
familiarity in addition to any innate psychoacoustical or cognitive pro-
cesses (e.g., in Western music, the perfect fifth is more prevalent than
the tritone, and this contributes to its greater affinity). This would ap-
pear to make it difficult to determine whether perceived melodic afhin-
ity is due to bottom-up (e.g., psychoacoustic) processes, due to learn-
ing, or to some combination of the two (and what the relative strengths
of their contributions are).

To overcome this problem, I conducted an experiment—of the type
suggested at the end of Section 2.3.4—which uses randomly generated
microtonal melodies, each containing 16 eighth-notes (two bars of 4/4).
The timbres used were synthetic and contained non-harmonic spectra.
This means that both the melodic intervals and the timbres were un-
familiar. Each microtonal melody was played with two different tim-
bres, and participants were asked to choose in which timbre the tones
fitted together the best. In all cases, one timbre had partials tuned to
match the melody’s underlying tuning, the other did not (in a matched
timbre, the tunings of the partials are adjusted so they have frequen-
cies that match those used in the underlying scale—this is explained,
in more detail, in Section 4.2.2). When a timbre is matched, the result-
ing melody tones typically have greater pitch similarity—Dboth spectral
and virtual—than when the timbre is unmatched. Asking participants
to choose between two different timbres, each playing precisely the

same melody, effectively removes the confounding influence of inter-

3 A spectral tuning is the set of frequencies of all partials relative to the lowest.
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vallic familiarity. Removing this important top-down effect enables
the specific influence of spectral pitch similarity to be more clearly ob-
served and modelled.

It is, however, not possible to remove all possible top-down influ-
ences. For example, in Western music, high affinity intervals are typi-
cally high in pitch similarity (notably, the unison, octave, perfect fifth
and fourth). It may be that we carry over this learned association to un-
familiar microtonal tunings and timbres. Clearly this top-down process
can work in tandem with the bottom-up process I have proposed—
indeed, it is a nice example of a positive feedback loop like those dis-
cussed in Section 2.3.3. However, in this experiment, I do remove the
most obvious top-down component—that affinity is a direct function
of familiarity.

The experiment allows two principal hypotheses to be tested. The
first hypothesis is that melodic affinity increases when its tones have
greater pitch similarity. The second hypothesis is that melodic afhnity
increases when the tones, themselves, have partials that are approxi-
mately harmonically related (they have higher harmonicity). Due to the
experimental design, we can be sure that any observed association be-
tween pitch similarity and affinity is not due to familiarities with dif-
ferent interval sizes (a top-down process). For any observed association
between harmonicity and aflinity, the experimental design does not
eliminate the possibility that familiarity with harmonic complex tones
(a top-down process) is a cause.*

In subsequent sections, I show that the results of the experiment
bear out both hypotheses: participants chose the (typically higher pitch
similarity) matched timbre significantly more often than the (typically
lower pitch similarity) unmatched timbre (61% of occasions, p < .001
exact binomial test) (Section 4.3.1). Furthermore, values generated by
nonlinear models of the spectral pitch similarities and harmonicities
for every stimulus were used as predictors in a logistic regression on

the data (the probabilities of choosing the matched timbre). The re-

Familiarity with harmonic complex tones is effectively universal because the human
voice has this spectral tuning.
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sulting fit was good, and cross-validation demonstrates the model (and
each predictor) generalizes well and is statistically significant. To pro-
vide easy—to—understand statistics, the same spectral pitch similarity
and harmonicity values were also used as predictors in a linear model
of the log-odds of choosing the matched timbre, and this resulted in
R? = 59, with standardized coefficients of .38 for spectral pitch simi-
larity, and .70 for harmonicity (Section 4.3.2). Of the pitch similarity
models, spectral pitch similarity performed slightly (nonsignificantly)
better than virtual pitch similarity, which is the reason I focus on the
results of the former model.

This has some important implications (which are explored in Sec-
tion 4.4). Firstly, it demonstrates that spectral pitch similarity can be
used as a tool to widen the scope of psychoacoustic modelling from
simultaneously played tones to melodically played (successive) tones.
In particular, it should be possible to model the afhinity of tones and
chords in familiar Western scales by their spectral pitch similarity—
such models may provide explanations for why certain scales are more
common than others. Secondly, although it is well established that
matching partials to an underlying scale—tuning can minimize sensory
dissonance (Sethares, 2005), the results show this procedure has the po-
tential to make microtonal melodies sound more in-tune (have greater
affinity), even in the absence of chords.

In Section 4.1, I explain my model and how the experiment is de-
signed to minimize the causal impacts of nurture processes. I describe
the experimental method in Section 4.2, provide the results in Sec-
tion 4.3 and, in Section 4.4, I examine some of the implications of the

research.

4.1 THE MODEL OF MELODIC AFFINITY

In the experiment, which is fully described in Section 4.2, participants
were asked to choose which of two timbres made the tones in a micro-

tonal melody have the greatest ‘affinity’ (which was explained to them
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Figure 4.1: The full model of empirical affinity (i.e., affinity as reported by
participants). Physical stimuli are in the top row, mental processes
in the middle row, and subjective mental states, and empirical re-
ports thereof, in the bottom row. Mental processes with an arrow
from ‘previous music events’ are nurture processes (i.e., horizontal
and vertical familiarities); those without, are nature processes (i.e.,
pitch similarity, roughness, and toneness). In the experiment de-
scribed later, the impact of horizontal familiarity on affinity, and
roughness on consonance, is minimized; for this reason, these pro-
cesses (and submodels thereof ) are not included in the final model
of the experimental data, which is why they are greyed out and
their causal paths are dashed.

as the degree to which successive tones ‘fit’, sound ‘in tune’, or ‘un-
surprising’). This process was repeated for a wide variety of differing
melodies and timbres.

My full model of melodic affinity is shown in Figure 4.1. I hypoth-
esize that participants’ reports of affinity are due to two main causes:
(a) the affinities of successive tones—Ilabelled ‘affinity’ on the bottom
row of Fig. 4.1; (b) the inherent consonance of each tone (i.e., the ex-
tent to which each tone’s partials are harmonic, do not beat, and are
familiar)—labeled ‘consonance’ on the bottom row of Fig. 4.1). That
is, even though participants are asked to report solely on the afﬁnity of
successive tones, we expect them, mistakenly, also to respond to the
inherent consonance of each individual tone (this is an example of an
untargeted mental state, as discussed in Section 2.3.2). This is plausible
because if a participant hears every individual tone as dissonant, the
overall stimulus is somewhat unpleasant and is, therefore, unlikely to
get a high rating for affinity (this was anticipated before the experiment

was conducted).
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As outlined in Section 2.2, I also hypothesize that affinity and con-
sonance are monotonic functions of both bottom-up processes (pitch
similarity for affinity, and roughness and toneness for consonance) and
top-down processes (horizontal familiarity for affinity, and vertical fa-
miliarity for consonance). These are shown in the middle row of Fig-
ure 4.1. As defined earlier, pitch similarity is the similarity of the spec-
tral or virtual pitches of any two successively played tones or chords;
roughness is the perceptual correlate of the beating produced by partials
close in frequency; toneness refers to the perceived extent to which a
tone produces a single unambiguous pitch; horizontal familiarity refers
to a listener’s familiarity with non-simultaneous pitch intervals (or se-
quences of such intervals); vertical familiarity refers to a listener’s famil-
iarity with simultaneously played pitch intervals and chords (horizontal
and vertical are used in the sense of musical notation—horizontal events
occur across time, while vertical events occur simultaneously). In Sec-
tions 4.1.1 and 4.1.2, I give full definitions of these processes and also
provide simple submodels of each of them. In Section 4.3.2, I show how
these submodels are combined into the full model of the experimental
data.

Asdescribed in Section 4.1.3, I have designed the experiment to min-
imize the impact of horizontal familiarity on affinity, and roughness
on consonance, so these processes (and submodels thereof ) are not in-
cluded in the final model, which is why they are greyed out in Fig-
ure 4.1. The purpose of minimizing horizontal familiarity is to allow
the bottom-up effect of pitch similarity to be more cleanly assessed (as
described in Section 2.3.4, an experimental intervention like this al-
lows the effect sizes of nature processes to be more fully disambiguated
from those of nurture processes). The purpose of minimizing the im-
pact of roughness is to simplify the final model required. Furthermore,
for the stimuli used in the experiment, my submodels of affinity and
consonance are not correlated. This ensures I can distinguish the causal
strength of pitch similarity from the combined causal strengths of tone-

ness and vertical familiarity. I cannot, however, distinguish the relative
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strengths of toneness and vertical familiarity; this is because they are

both modelled by harmonicity, as discussed in Section 4.1.2.

4.1.1  Affinity: Pitch Similarity and Horizontal Familiarity

I hypothesize that two harmonic complex tones will have: (a) higher
affinity if more of their higher-amplitude partials align (e.g., the third
partial of C4 has almost the same log-frequency as the second partial
of Gy; the sixth partial of C4 has almost the same log-frequency as
the fourth partial of G4; and so on); (b) lower affinity if fewer of their
higher-amplitude partials align (e.g., C4 and Db4, which have few high-
amplitude partials in alignment). Harmonic complex tones whose fun-
damentals have frequencies that are close to low-integer ratios (e.g.,
3/2) have a greater number of coinciding partials: more precisely, for an
interval with frequency ratio p/ g, the ratio of the number of coinciding
partials to all partials is given by 2/ (p 4 ¢) (Milne, 2009a; Juhész, 2012).
This gives a useful rule-of-thumb, but it cannot account for minor de-
viations from precise integer ratios (e.g., the 12-tone equal tempera-
ment fifth is 2 cents narrower than 3/2 and, in a typical performance,
pitches frequently deviate from any predefined norm), nor can it take
account of the amplitudes of the partials. For this reason, a more precise
psychoacoustically-derived model is desirable. This can be provided by
spectral pitch similarity, which is the cosine similarity (or other similarity
measure) between the spectral pitch vectors of the partials found in each
tone.

As described in Chapter 3, a spectral pitch vector comprises a high num-
ber (typically, thousands) of elements. The index value of each element
indicates a specific pitch, while the value of each element indicates the
expected number of partials heard at that pitch. The pitches are finely-
grained and the index number of each element is proportional to its
log-frequency—so the vector’s first element might correspond to a

MIDI note number of 60 (middle C), the second element to 60.01 (1
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cent above middle C), the third element to 60.02 (2 cents above middle
C), and so forth.

In the model used here, the values in the spectral pitch vector are
a function of two parameters: spectral roll-off p, and smoothing width o.
These parameters are defined in detail in Section 4.3.2.1, but I will
briefly describe them now. The former parameter models the relative
importance of lower and higher partials in a tone. It does this by giv-
ing a weight of 1/4” to each partial ¢, which means that as p increases
the weights of the higher partials decrease. The latter parameter mod-
els inaccuracies of pitch perception. As described in Chapter 3 and Ap-
pendix A, this is achieved by convolving, in the log-frequency domain,
the stimulus’ frequency components with a discrete and truncated ap-
proximation of a normal distribution with a standard deviation of ¢.5
The effect of the smoothing is illustrated in Figure 4.2.

As described in Section 3.5, I model the perceived affinity of any
two complex tones (or chords) by taking the cosine similarity of their
spectral pitch vectors (any alternative similarity measure could be sub-
stituted). The above procedures are mathematically defined in Ap-
pendix D—specifically (D.1-D.3) and (D.6). As I will explain in Sec-
tion 4.3.2.1, I used the spectral pitch similarities of the intervals and
timbres in my experimental stimuli to model the responses given by
participants.

I also hypothesize that another, related, bottom-up cause of affinity
is virtual pitch similarity, and this can be modelled by the cosine similarity
(or other similarity measure) of virtual pitch vectors. Virtual pitch vectors
represent the virtual pitches, and their weights, that may be heard in re-
sponse to a complex tone. The auditory system is thought to generate
multiple virtual pitches that correspond to the frequencies of possible
(candidate) fundamental frequencies (Terhardt et al., 1982; Parncutt,
1988). For instance, a harmonic complex tone (i.e., a tone whose par-

tials are all integer multiples of a fundamental frequency) is typically

For random variables X and Y, the probability distribution of their sum X +Y =
Z is given by the convolution of their respective probability mass functions; that
is, pz(z) = px(x) * py (y). This smoothing, therefore, represents the ‘true’ log-
frequency stimulus plus normally distributed random deviations.
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heard as having a principal pitch that corresponds to its fundamental
frequency (this occurs even when the fundamental is removed from
the stimulus), but virtual pitches may also be heard at subharmonics
below this fundamental. A chord containing many harmonic complex
tones may produce a variety of competing virtual pitches, with the root
of the chord typically being the strongest (Parncutt, 1988). Similarly,
in an inharmonic timbre like a bell, there may be several, very salient,
competing virtual pitches.

There are many possible ways to model the virtual pitches produced
by a spectrum. I have chosen a simple approach (related to that intro-
duced by Brown (1992)), which is to cross-correlate the spectral pitch
vectors of the timbre and a harmonic template.® The latter can be thought
of as a template harmonic complex tone that resides in long-term mem-
ory, and against which any steady-state timbre can be compared in
order to find candidate fundamentals. For example, if the tone has a
perfectly harmonic spectrum, this model will predict strong virtual
pitches at the fundamental and harmonics above and subharmonics be-
low the fundamental, and also at octaves of these (i.e., perfect fifths and
fourths above and below). Figure 4.3 illustrates the virtual pitches gen-
erated by a harmonic complex tone using this model. As with the spec-
tral pitches, I model the perceived affinity of any two complex tones
(or chords) by taking the cosine similarity of their virtual pitch vec-
tors. The processes described in this paragraph are mathematically de-
fined in Appendix D—specifically (D.4) and (D.8). As I will explain in
Section 4.3.2.2, I used the virtual pitch similarities of the intervals and
timbres in my experiment to predict participants’ responses.

For harmonic complex tones, the intervals between their virtual
pitches are the same as those found between their spectral pitches (they
just have different weights); this means that, for harmonic complex

tones, spectral pitch similarities and virtual pitch similarities over dif-

Cross-correlation is a sliding dot product between two vectors—the first element of
the cross-correlation vector is the dot product of the two input vectors, the second
element of the cross-correlation vector is the dot product where the second vector
has been shifted one step to the left, the third element of the cross-correlation is the
dot product where the second vector is shifted two steps to the left, and so on.
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(b) Smoothed spectrum.

Figure 4.2: The effect of smoothing (convolving) a spectrum with a discrete
approximation of a normal distribution with a standard deviation
of 10 cents.

ferent intervals can be almost perfectly correlated. I had expected that
the use of non-harmonic spectra would substantially reduce this cor-
relation, but this wasn’t the case. When separately optimized to the
data (as described in Sec. 4.3.2.4), the virtual pitch similarities and spec-
tral pitch similarities have a correlation of (110) = .95, which means
they are effectively identical for modelling purposes; either could serve
equally well as a model for pitch similarity, but both cannot be usefully
included in the same model because estimates of their relative impor-
tance will be highly unreliable due to multicollinearity. For much of
the following, I focus my attention on spectral pitch similarity because
its model is simpler (it does not require cross-correlation with a har-
monic template to generate pitches that are not in the stimulus); fur-
thermore, a model using spectral pitch similarity was found to be have
a marginally better fit to the data than a model using virtual pitch sim-
ilarity (see Section 4.3.2.4).

Horizontal familiarity can be modelled by the probability of intervals
in a corpus representing the musical system under consideration and the
listener’s experience. A model for horizontal familiarity is not required
in this experiment (as explained in Section 4.1.3), so an explanation of
the precise mechanics of calculating musical prominence is not given
here, but a good example of this methodology can be found in Pearce

and Wiggins (2006).
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Figure 4.3: Virtual pitch weights for a harmonic complex tone as modelled
by cross-correlating the spectral pitch vector in Figure 4.2b with
a harmonic template.

4.1.2 Consonance: Roughness, Toneness, and Vertical Familiarity

Roughness is a perceptual/cognitive attribute that quantifies the per-
ceived roughness or perceptual confusion of a tone (or chord) as a func-
tion of the interference (e.g., beating) caused by more than one partial
occupying the same auditory filter.? It can be modelled by combining
the sensory dissonances between all possible pairs of simultaneously oc-
curring partials in a spectrum. The sensory dissonance of a single pair
of partials can be calculated with a model of empirical data recording
dissonance as a function of the frequency distance of the two partials
and the size of the critical bandwidth at that frequency range—such as
the Plomp and Levelt (1965) data as parameterized by Sethares (1993).
These pairwise dissonances can be combined by a simple summation,
a more complex power law, or a vector norm (see, e.g., the methods
reviewed by Mashinter (2006)). This is a well-established type of model
for perceived roughness or sensory dissonance (e.g., Plomp and Levelt
(1965); Kameoka and Kuriyagawa (1969); Sethares (2005)).
Unsurprisingly, I hypothesize that consonance is a monotonically
decreasing function of roughness (i.e., as roughness goes up, conso-
nance goes down); I also hypothesize that this, in turn, will affect
judgements of affinity. In my experiment, however, I control for

roughness so I do not model this process in my final model.

The mammalian basilar membrane, within the cochlea, is typically modelled by large
number of band-pass filters—each with a different centre frequency—termed auditory

Silters.
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Toneness is a term defined by Huron (2001, p. 7) as the ‘clarity of pitch
perception’ and the extent to which ‘certain sets of pure tones may co-
alesce to form a single auditory image—as in the case of the perception
of a complex tone’. This is, in part, a function of the frequency of the
fundamental (e.g., tones between about § and 20 kHz are audible but do
not produce a strong pitch sensation) but, for complex tones, it is also
a function of the frequency relationships of their partials. As discussed
above, harmonic complex tones have a relatively strong and unambigu-
ous pitch, whereas tones with non-harmonic partials may have ambigu-
ous or multiple pitches (like bells), or no clearly discernible pitch (like
drums or cymbals). I hypothesize that toneness causally increases the
perceived consonance of a timbre and, hence, the affinity of different
tones using that timbre.

I model toneness by measuring the harmonicity of the timbre, which
is the degree of similarity between the tone’s spectrum and a harmonic
template. We cannot know, a priori, what the pitch—if any—of an
arbitrary inharmonic complex tone is, so harmonicity is modelled by
cross-correlating the spectral pitch vector of the tone’s spectrum and
the spectral pitch vector of a harmonic template (as described in Sec-
tion 4.1.1) and taking the maximum value of the resulting vector. This
gives the value of the greatest possible (un-normalized) correlation of
the tone’s spectrum to the template, and the pitch at which this occurs.
This process is mathematically described in Appendix D—specifically
(D.s). As I will explain in Section 4.3.2.3, I used the harmonicity of the
timbres in my experiment to model participants’ responses.

Vertical familiarity is the extent to which an arrangement of simultane-
ous tones or partials is familiar. This can apply to the familiarity of dif-
ferent chords, and to the familiarity of different steady-state timbres.
In the context of this experiment, only the latter is relevant because
only melodies, not chords, were used; furthermore, the only aspect of
the timbre that changed was the tuning of the partials. The familiar-
ity of any given spectral tuning can be modelled by its prevalence in

the musical system under consideration (see Section 2.3.2). However,
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rather than carry out a detailed statistical analysis of Western music, I
make the simple observation that most Western instruments, and the
human voice, produce tones with harmonic spectra (or approximately
harmonic spectra), and that such instruments have a privileged status in
Western music. Hence, I model vertical familiarity with harmonicity.®
I hypothesize, therefore, that harmonicity is monotonically related to
vertical familiarity, hence to consonance, and hence to afhinity.

This means that harmonicity is used to model both toneness and
vertical familiarity so, in this experiment, I cannot distinguish be-
tween these two mental processes. To distinguish between them
would ideally require participants who are familiar with non-harmonic
timbres—for example, listeners from a gamelan tradition—because
this would allow the models of toneness and vertical familiarity to de

different (i.e., their predictions would be uncorrelated).

4.1.3  Minimization and Control of Confounding Variables

The principal purpose of the experiment described in this chapter is
to examine whether participants’ judgements of affinity are influenced
by the nature process of pitch similarity; this is facilitated by minimiz-
ing the impact of the top-down process of horizontal familiarity. I am
also interested in exploring the extent to which the harmonicity of the
tones’ spectra influences the affinity between them; this is facilitated
if I minimize the impact of the bottom-up process of roughness. Fur-
thermore, in order to ensure we can reliably distinguish between the
impacts of pitch afhinity (due to spectral and/or virtual pitch similar-
ities) and consonance (due to harmonicity and vertical familiarity), I
must ensure they are not strongly correlated; if they were, it would
not be possible to reliably separate out their individual influences (due
to their multicollinearity). I also seek to minimize the influence of any

unforeseen confounding variables.

For participants familiar with a musical culture such as gamelan, where pitched in-
struments are typically inharmonic, a different model of vertical familiarity may be
appropriate.
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The experimental methods to achieve this are explained in the re-
mainder of this section, but it is necessary first to provide a very
brief introduction to the experimental procedure (the procedure is
fully described in Section 4.2.3). Participants were played 60 differ-
ent randomly generated melodies. Each melody was played in one of
eleven different equal temperaments: 3-TET, 4-TET, §-TET, 7-TET, IO-TET,
II-TET, I12-TET, 13-TET, I§-TET, I6-TET, and 17-TET. (An n-tone equal
temperament—or n-TET—has n equally sized steps per octave; a fa-
miliar example being 12-TET.) For each melody, the participant could
switch between two different timbres: one timbre was matched to the
underlying tuning; the other was unmatched (its partials were matched
to a different n-tet randomly chosen from the same list). The partic-
ipant was asked to pick the timbre where the different notes of the

melody had the greatest affinity.

4.1.3.1  Minimizing the influence of horizontal familiarity and roughness

Minimizing the influence of horizontal familiarity is achieved by ask-
ing participants to compare paired stimuli that have the same melody
(and hence equivalent horizontal familiarities), but whose tones have
differing timbres (and hence differing spectral pitch similarities).® In
one stimulus, the tones’ partials are tuned to match the underlying scale
tuning so as to maximize spectral similarity; in the comparison stim-
ulus, the tones’ partials are not tuned to match the underlying scale
tuning. This means that, for every pair of stimuli, one of the stimuli
typically contains intervals with greater spectral pitch similarity, the
other typically contains intervals with lower spectral pitch similarity;
but both melodies are, in all other respects, identical. In other words,
spectral pitch similarity varies between the two stimuli while horizon-
tal familiarity remains fixed.

I seek to minimize the impact of roughness on participants’ responses

by making the roughnesses of both stimuli in each pair (matched and

It is possible that changes in spectral tuning may change the perceived pitch of the
tones, but such changes should be uniform across differently pitched tones (so per-
ceived interval size should be consistent).
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unmatched timbres) as low as possible. This minimizes the differences
between their roughness levels, and it also minimizes the possibility
of the tones’ roughnesses (inherent dissonances) dominating, or dis-
tracting from, the perception of the affinities between successive tones
(which is the experimental target).

To achieve this, both matched and unmatched timbres are tuned to
n-tone equal temperaments with low values of n (in this experiment,
n < 17). Local minima of roughness (as calculated by Sethares’ (2005)
model) occur at such spectral tunings because no two partials can be
closer than 1200/n apart and most of them will be at intervals of sizes
1200 m/n, where m is an integer greater than 1. This tends to ensure
most partials are more distantly separated than the quarter of critical
bandwidth that is maximally dissonant (Plomp and Levelt, 1965).'° The
relationship between spectral tuning and roughness is suggested in Fig-
ure 4.4. Here, a continuum of generated spectral tunings is shown (par-
tials have been tuned to a linear combination of a period of 1200 cents
and a generator with a tuning ranging between 680 and 725 cents). Note
the deep and narrow minima at the labeled low-n n-teT tunings—these
spectral tunings precisely correspond to those I used for the matched
timbres at those tunings (shown in Table 4.2). The continuum of tun-
ings shown here does not show all possible dimensions of spectral tun-
ings (that would require an (m + 1)-dimensional visualization, where
m is the number of harmonics), but it does provide a glimpse of one
such continuum.

I assume this technique is sufficiently effective at reducing the influ-
ence of roughness on judgements of melodic affinity that the variable
of roughness (and its model) can be removed from my overall model of

participants’ responses.

4.1.3.2  Ensuring harmonicity and pitch similarity are not correlated

As described in Section 4.1.2, I model the toneness and vertical famil-

iarity of a tone by the harmonicity of its spectrum. The selection of n-

For tones around D4 (294 Hz), the maximally dissonant log-frequency difference is
approximately 80 cents, which is 1/15 of an octave.
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Figure 4.4: Inherent roughness—modelled with Sethares’ (2005) routine—
over a continuum of generated tunings (the generator is a fifth-like
interval ranging from 680 to 725 cents). This tuning continuum
includes a variety of n-TETs, only a few of which have a low value
of n (these are labelled). Note that there is a broad local minimum
of sensory dissonance when the partials are close to harmonic (ap-
prox. 696 cents), and narrow local minima at low-n n-TETS.

TETs used in the experiment produces a wide variety of timbres that are
mostly rather inharmonic in quality (their harmonicity is low), though
12-, 15-, and 17-TeT have somewhat greater harmonicity. Importantly,
under the models described above, the differences between the har-
monicities of the matched and unmatched timbres are not correlated
with the differences between their spectral pitch similarities, so it is
meaningful to regress measured affinity on both spectral pitch similar-
ity and harmonicity so as to gauge their relative importance. For ex-
ample, when the melody is in 12-TeT and the unmatched timbre is in s-
TET, the matched timbre has greater spectral similarity and greater har-
monicity; conversely, when the melody is in §-TeT and the unmatched
timbre is in 12-TET, the matched timbre has greater spectral similar-
ity but now it has lower harmonicity. The resulting model, therefore,

takes the form shown in Figure 4.5.

4.1.3.3  Controlling for unknown factors

There may be a variety of unanticipated factors that affect judgements
of affinity. In order to minimize their influence, the experiment was
randomized in many different respects (as described in more detail in
Section 4.2). Eleven different tunings were used and, for each pair of
stimuli that participants were asked to rank, the scale tuning and the
spectral tuning (of the unmatched timbre) were independently and ran-
domly selected for each participant. Furthermore, for each pair of stim-

uli, the tones played, their articulation, and the overall tempo, were
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Figure 4.5: The final model of the empirical data—affinity is modelled by ei-
ther spectral or virtual pitch similarity, consonance by harmonic-
ity. The empirical data (participants’ responses) is modelled as a
combination of affinity and consonance. Pitch similarity and tone-
ness are nature processes, vertical familiarity is a nurture pro-
cess (by definition, because one of its inputs is ‘previous music
events —see Sec. 2.3.2)

Modelled by spectral or
virtual pitch similarity

generated randomly (within a set of musically sensible constraints, see
Section 4.2.2). Participants had a wide range of musical abilities and

experience.

4.2 METHOD

4.2.1  Participants

Forty-four academic and non-academic university staff and graduate
students participated in the experiment (25 male, 19 female, mean age
37.4 years, standard deviation 11.1 years), and no reimbursement was
given. Eleven claimed to have had no musical training or ability; 12
to have had basic musical training or ability (Associated Board of the
Royal Schools of Music Grades 1—4, or similar qualification or experi-
ence); 14 to have had intermediate training or ability (Grades s—7, or
similar); 7 to have had advanced training (Grade 8 or higher, or similar).
The average level is, therefore, somewhere between basic and inter-
mediate, and the overall distribution is wide. None claimed to possess
absolute pitch (‘perfect pitch’).

Forty-four participants were chosen in order to ensure each stimulus

(as characterized by its matched and unmatched timbral tunings) was

11§
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Table 4.1: Generator sizes (cents) for the different tunings.

3-TET  4-TET  §-TET  7-TET 10-TET  II-TET  I2-TET  I13-TET  I§-TET  IG-TET  I17-TET

400 300 720 685.71 360 327.27 700 369.23 320 375 705.88

tested by a number of participants sufficiently large to detect small-
sized effects and to ensure a broad range of participants took part (as
characterized by musical experience, taste, age, etc.). Due to the exper-
imental design, each such stimulus was rated by an average of twenty-

four participants.

4.2.2  Stimuli and Apparatus

The tones were generated by The Viking (Milne and Prechtl,
2008), a freeware additive-subtractive synthesizer built within Out-
sim’s SynthMaker,”* which can be downloaded from http://www.
dynamictonality.com. The synthesizer allows for tones to be played in
a wide variety of tunings and, furthermore, for the tones’” partials to
be matched to those tunings; by adapting the code, I made it possi-
ble also to produce unmatched timbres (where the timbre is matched
to an n-TeT different to the underlying tuning). In a matched timbre,
the interval size (in a log-frequency measure like cents) between any
possible pair of partials corresponds to an interval found in the under-
lying tuning—in other words, the partials are themselves tuned to the
underlying n-ter. The Viking supports spectral matching to some, but
not all, n-teTs. The n-teTS with the eleven lowest values of n, currently
supported by The Viking, were those chosen for the experiment (i.e.,
3-TET, 4-TET, §-TET, 7-TET, 10-TET, II-TET, I12-TET, I3-TET, I$-TET, I6-
TET, and 17-TET).

The method used to match the spectral tuning to the underlying
tuning is fully described in the Dynamic Tonality section of Sethares

et al. (2009).? But, in brief, every pitch is expressed as a different linear

http://synthmaker.co.uk
The matiaB code, which replicates this method for the model, is in the ‘Pre-
liminary (run once) calculations - prime mappings etc.” section of the file Affin-


http://www.dynamictonality.com
http://www.dynamictonality.com
http://synthmaker.co.uk

4.2 METHOD

combination of two intervals—a period and a generator. This means that,
given a period and generator of specific sizes, an entire family of pitches
is produced. For this experiment, the period was fixed to 1200 cents,
which is the standard octave, while the generator takes a different size
according to the tuning system required. For example, a generator of
700 cents produces 12-TET, while a generator of 360 cents produces 10-
TeT. The generator sizes for the eleven tunings used in this experiment
are shown in Table 4.1.

In the same way that every fundamental pitch is constructed from a
linear combination of the period and generator, so are its partials (in a
matched timbre). For example, in a timbre matched to a 10-TET tuning,
the second harmonic is equivalent to one period above the fundamen-
tal (1200 cents), the third harmonic is equivalent to three periods minus
five generators (3 x 1200 — 5 x 360 = 1800 cents), the fourth harmonic
is equivalent to two periods (2400 cents), the fifth harmonic is equiva-
lent to two periods plus one generator (2 x 1200 4 360 = 2760 cents).
The precise linear combinations that lead to these approximations of
each harmonic are produced by transformation (prime-mapping) ma-
trices that minimize the amount by which the tunings of the partials are
altered from pure harmonicity at specific generator sizes (Milne et al.,
2008; Sethares et al., 2009). The Viking uses three transformation ma-
trices: one for generators in the range 685.71—720 cents (the syntonic
mapping), which includes 7-teT, 12-TET, 17-TET and §-TET; another for
generators in the range 360—400 cents (the magic mapping), which in-
cludes 1o-TET, 13-TET, 16-TET, and 4-TET; another for generators in the
range 300—327.27 cents (the hanson mapping), which includes 4-TET,
15-TeT, and 11-TET. The tuning values for the first twelve partials, and
that of a harmonic complex tone are shown in Table 4.2 (The Viking’s
partials extend up to the 32nd (tempered) harmonic, but only the first
twelve are considered in the harmonicity and pitch similarity models—

see Section 4.3.2.3).

ity_data_analysis.m, which can be downloaded from http://www.dynamictonality.
com/melodic_affinity_files/.
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Table 4.2: The tunings (relative to the first partial and rounded to the near-
est cent) of the partials of a harmonic complex tone (uct) and the
timbres matched to the n-teTs used in the experiment.

Partial number

Spectrum 1 2 3 4 s 6 7 8 9 10 11 12

HCT o 1200 1902 2400 2786 3102 3369 3600 3804 3986 4151 4302
3-TET o 1200 2000 2400 2800 3200 3600 3600 4000 4000 4000 4400
4-TET o 1200 1800 2400 2700 3000 3300 3600 3600 3900 4200 4200
$-TET o 1200 1920 2400 2880 3120 3600 3600 3840 4080 3840 4320
7-TET o 1200 1886 2400 2743 3086 3257 3600 3771 3943 4286 4286
10-TET o 1200 1800 2400 2760 3000 3120 3600 3600 3960 4320 4200
II-TET o 1200 1964 2400 2836 3164 3382 3600 3927 4036 4145 4364
12-TET o 1200 1900 2400 2800 3100 3400 3600 3800 4000 4100 4300
13-TET o 1200 1846 2400 2769 3046 3231 3600 3602 3969 4246 4246
15-TET o 1200 2000 2400 2800 3200 3600 3600 4000 4000 4000 4400
16-TET o 1200 1875 2400 2775 3075 3300 3600 3750 3975 4200 4275
I7-TET o 1200 1906 2400 2824 3106 3459 3600 3812 4024 4024 4306

The synthesizer was controlled by Cycling 74’s Max/MSP."3 I cre-
ated a patch that generated random melodies, each containing 16
eighth-notes (i.e., two bars of 4/4). Stochastic (transition) matrices were
used to model some general features found in melodies: (a) in Western
and non-Western melodies, smaller intervals typically occur more of-
ten than large intervals (Vos and Troost, 1989, and references therein);
(b) the average notated pitch of both Western and non-Western music is
approximately Df4 (Parncutt, 1992) as cited by Huron (2001); (c) inter-
vals that span a small number of fifths (e.g., diatonic intervals) are more
common than those that span a large number of fifths (e.g., chromatic
intervals)—this can be generalized to microtonal tunings by favour-
ing intervals that span fewer generators (the 700 cent fifth being the
generator of 12-TeT); (d) modulations are infrequent (this is implicit in
the very notion of ‘scale’—if a scale modulates frequently, it loses its
privileged status; for instance, if a diatonic scale tuned to 12-TET is ran-
domly modulated every other note, the resulting scale is more sensibly
described as being 12-TET rather than diatonic). I model each of these
features with four probability mass functions. But, before describing

them, it is necessary to explain how the melodies were generated.

13 http://cycling74.com
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Every pitch was characterized by an octave coordinate j and a gen-
erator coordinate k. These are the numbers of octaves (periods) and
generators above the reference pitch D4 (Rﬁ 293.7 Hz—which is close to
the average notated pitch Dt4). As discussed above, each different n-teT
has a differently sized generator, as shown in Table 4.1. For example, in
12-TET the generator is a 700 cent fifth. This means the pitch D4 has the
(j, k) coordinates (0,0) because it is equivalent to the reference note
Dy4; the pitch As has coordinates (1, 1) because it is one octave and one
fifth above the reference D4; the pitch A3 has coordinates (—1,1) be-
cause it is down one octave and up one fifth from D4. For 10-TET, the
generator is 360 cents. This means that, in this tuning, the coordinates
(0,0) still refer to the reference note D4, but (1, 1) now refer to a pitch
one octave (1200 cents) plus one generator (360 cents) above D4 (i.e.,
1560 cents above D4); and so forth.

This method of generating pitches also means that every pitch can be
reached by more than one set of coordinates. For example, in 12-TET the
coordinates (7, —12), (0,0), and (—7,12) all point to D4. It also means
the cents pitch of any note with coordinates (j, k) can be calculated as
1200 + Bk, where §3 is the size in cents of the generator.

Let me define four variables: pitch height is the current pitch (at time
t) in cents above Dy (i.e., 1200, + Sky); pitch change is the pitch differ-
ence between the next pitch (which is at time ¢ + 1) and the current
pitch (i.e., 1200(ji+1 — ji) + B(ke1 — kt)); generator location is simply
the k-coordinate of the current pitch; generator change is the difference
between next pitch’s k¢4 coordinate and the current pitch’s k coordi-
nate (i.e., k41 — k¢). In the context of well-formed scale theory, pitch
classes with small absolute values of & can be thought of as more ‘dia-
tonic’, while those with large absolute values can be thought of as more
‘chromatic’. For example, putting the 12-TET pitch classes in order of
fifths (Eb—Bb—F—C—G—D—-A-E-B-F{—C{—Gt), it is clear the diatonic
pitches are closest to the central pitch class D (they have —3 < £k < 3),
while the chromatic pitches are the most distant (they have £ < —4 and

4 < k). Similarly, intervals with small absolute generator changes can
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be thought of as more ‘diatonic’ and those with large absolute genera-
tor changes can be thought of as more ‘chromatic’.
The following four probability mass functions were used to model

the four common melodic features discussed above:

(a) Smaller intervals were favoured over larger intervals by using a
symmetrical triangular probability mass function of interval size,
centred at zero with a full width at half maximum of 1000 cents.™#
This can be represented by a first-order Markov process, and
hence by a stochastic matrix Prepiten, € [0, 1]V %Y, where N is

the number of different pitches.

(b) Pitches in the middle of the musical pitch range were favoured
over lower or higher pitches by using a symmetrical triangular
probability mass function of pitch, centred at zero, with a full
width at half maximum of 1200 cents. This can be represented by
a zeroth-order Markov process, and hence by a stochastic matrix

[O, 1] NXxN

P Abspiteh € , all of whose rows are identical.

(c) ‘Diatonic’ intervals were favoured over ‘chromatic’ by using
a symmetrical triangular probability mass function of generator
change, centred at zero with a full width at half maximum of 6.5
generators. These probabilities are then assigned to the pitches
arranged in the same as order as the first two matrices. Because
more than one set of (j, k) coordinates may produce the same
pitch, their probabilities summed. This can be represented by
a first-order Markov process, and hence by a stochastic matrix

PRelGen S [07 1]N><N-

(d) A central generator location was favoured over outlying locations
by using a symmetrical triangular probability mass function of
the generator location, centred at zero with a full width at half max-
imum of 6 generators. As before, the probability assigned to each

pitch is given by the sum of the above probabilities for all (7, k)

14 For the discrete random variable X, a symmetrical triangular probability mass func-
tion, with central value ¢ and full width at half maximum w, is defined accordingly:
forc—w <z <ctw,px(z)=1—|z[/w)/ Y, 1—|z|/w.
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coordinates equivalent to that pitch. This can be represented by
a zeroth-order Markov process, and hence by a stochastic matrix

P Absgen € [0, 1]V* ] all of whose rows are identical.

The final stochastic matrix of pitch transitions Ppijt, is given by an
appropriately normalized entrywise product of the above four stochas-

tic matrices; that is,

Ppitch, = DM, where

M = PRelPitCh © PAbSPitch © PRelGen © PAbsGen s (4-1)

where o denotes the Hadamard (entrywise) product, and D € RV*¥

is a diagonal row-normalization matrix that ensures the elements in

every row of Ppjic, sum to 1; that is,

lmy |71 0 0 0
0 jmy|~? 0 0
1
D= 0 0 |mg| 0 , (4.2)
) .
0 0 0 0 |my|7!

where |m,,|7! is unity divided by the sum of the elements in the nth
row of M.

The values, given above, for the means and spreads of the triangu-
lar distributions used to create the four stochastic matrices PRreipitch,
P AbsPitchs PRelGen, and P apsgen, were initially chosen by informed
guesswork and then refined, by trial and error, to produce musically
pleasing melodies. Furthermore, for each different melody the inter-
onset-interval for eighth-notes was randomly chosen, with a uniform
distribution, over the range 163—476 ms (63—184 beats per minute),
whose mean of 319.5 ms (94 bpm) equates to a medium tempo; the ar-
ticulation (ratio of note-length to inter-onset-interval) was randomly
chosen from the range 0.72 to 0.99, whose mean of 0.86 equates to the
average articulation used by organists (Jerket, 2004).

The timbre used was moderately bright and had a quick, but non-

percussive sounding, attack and a full sustain level. With harmonic par-

I21
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tials, it sounded somewhat like a brass or bowed-string instrument. It
was created by using a spectrum with partial amplitudes of 1/i where
i is the number of the partial (if all partials had been in the same phase
and tuned to a harmonic series this would give a sawtooth waveform).
To slightly mellow the timbre, the tones were then passed through
The Viking’s low-pass filter set to give a small resonant peak. A small
amount of delayed-onset vibrato was added to give the sound life, and
a small amount of reverb/ambience to emulate the sound of a small
recital room. The stimuli were listened to with closed-back circum-
aural headphones in a quiet room. The adapted version of The Viking
used in the experiment, the Max/MSP patch that generated the random
melodies, and audio files for a sample of the stimuli can be downloaded

from http://www.dynamictonality.com/melodic_affinity_files/.

4.2.3  Procedure

Each participant listened to 60 different randomly generated melodies.
Each melody was played in an n-TeT randomly chosen from eleven pos-
sibilities: 3-TET, 4-TET, §-TET, 7-TET, 10-TET, 1I-TET, I2-TET, I3-TET, I5-
TET, 16-TET, and 17-TET. For each melody, the participant could use a
mouse or touchpad to switch (toggle) between two different timbres:
one timbre was matched (its partials matched the underlying tuning); the
other was unmatched (its partials were matched to a different n-teT ran-
domly chosen from the same list). Each melody could be repeated, by
the participant, as many times as wished; most trials were completed in
25—30 minutes. For each participant, no pair of underlying tuning and
unmatched spectral tuning occurred more than once. For each pair of
stimuli, the participant was asked to make a single choice of timbre for
which all or most of the following criteria were best met for the dif-

ferent notes of the melody:
* they have the greatest ‘affinity’

* they ‘fit together’ best


http://www.dynamictonality.com/melodic_affinity_files/
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* they sound most ‘in-tune’ with each other
* they sound the least ‘surprising’.

Without further experimental tests, it is impossible to say whether or

not these four features are measuring the same latent concept of “affin-

ity’ for all participants. However, for this work, these four descriptions
. . . . [3 . b

constitute my operationalization of ‘affinity’.

The following data were recorded for each melody:

* the tuning of the melody, and the tuning of the unmatched tim-

bre’s partials

* whether the matched timbre (coded with a 1) or unmatched tim-

bre (coded with a 0) was chosen
* the tempo and articulation values

For each participant, age, sex, musical taste, and musical experience or
training were also collected. General comments were also asked for.
When stimuli are characterized by their underlying tuning (or,
equivalently, the tuning of the matched timbre’s partials) and the tun-
ing of the unmatched timbre’s partials (which must be different, by
definition), there are 11 P 2 = 110 different possible stimuli. The 60
different stimuli listened to by each participant were sampled ran-
domly without replacement (uniform distribution) from the 110. This
means that, on average, each possible pair of underlying tuning and un-
matched tuning has been tested 44 x 60/110 = 24 times, each underly-
ing tuning (row of Fig. 4.6) 44 x 60/10 = 264 times, each unmatched
spectral tuning (column of Fig. 4.6) 44 x 60/10 = 264 times. In total

there were 44 x 60 = 2640 observations of 110 different stimuli.

4.3 RESULTS

The experimental data, aggregated over all participants, are summa-
rized in Figure 4.6. The squares represent the 110 different pairs of

stimuli the participants were presented with; the shade of each square
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Umatched timbre tuning (n-TET)

3 4 5 7 10 11 12 13 15 16 17 [Al

Melody and matched timbre tuning (n-TET)

Figure 4.6: Results aggregated over all participants: the squares represent the
110 different pairs of stimuli the participants were presented with;
the shading of each square indicates the ratio of occasions when
the matched, rather than unmatched, timbre was chosen (white
for all matched, black for all unmatched). The rows (labeled by n-
TET) represent the different underlying tunings (or, equivalently,
the matched timbres’ spectral tuning); the columns represent the
different unmatched timbres’ spectral tunings. The bottom row
and rightmost column show ratios aggregated over underlying
tunings and unmatched timbres, respectively. The bottom-right
square is the ratio aggregated over all tunings and unmatched tim-
bres. Black stars indicate significantly more than half of the choices
were for matched timbres, white stars indicate significantly more
were for unmatched timbres using a two-tailed exact binomial test
(* for p < .05, ** for p < .01, *** for p < .001). Bonferroni correc-
tion has been not been applied.

indicates the ratio of occasions when the matched timbre was chosen
over the unmatched. More precisely: the vertical axis shows the n-ter
used for the underlying tuning (which, by definition, is equivalent to
the tuning of the matched timbres’ partials); the horizontal axis shows
the n-teT used for the tuning of the unmatched timbres’ partials; the
grey-scale indicates the probability of the matched timbre being cho-
sen (black corresponds to a probability of zero, white to a probability
of one). For example, the square on the row marked 7 and the column
marked 11, shows the proportion of occasions that, for a 7-teT melody,
a matched timbre (partials tuned to 7-TeT) was chosen in preference to
an unmatched timbre with partials tuned to r1-TET.

The squares in the top-left to bottom-right diagonal (they have

thicker borders) correspond to situations where both stimuli are iden-
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(a) Over different unmatched timbres—the bottom row of
Fig. 4.6.
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(b) Over different matched timbres (underlying tunings)—
the rightmost column of Fig. 4.6.

Figure 4.7: Ratios of matched timbres chosen.

tical (they are both equally matched to the underlying tuning). Such
pairs were not tested because it is clear that—given the forced-choice
nature of the procedure—the probability of choosing either stimulus
would converge to .s. For this reason, the diagonal is shaded accord-
ingly, and this serves as a useful reference against which to compare the
other data points.

The bottom row shows the ratio of occasions a matched timbre was
chosen, aggregated over all possible tunings, for each of the eleven un-
matched timbres (this is also shown in Fig 4.7a). The rightmost column
shows the ratio of occasions a matched timbre was chosen, aggregated
over all possible unmatched timbres, for each of the eleven underlying
tunings (this is also shown in Fig. 4.7b). The bottom-right square shows
the ratio of occasions a matched timbre was chosen aggregated over all
underlying tunings and unmatched timbres.

A single star indicates a proportion that is significantly different from
.5 (using a two-tailed exact binomial test) at a level of .o, two stars in-
dicate significance at the .01 level, three stars at the .0o1 level. I have not
applied Bonferroni correction, because I am not inferring a preference
for matched partials on the basis of any single stimulus, and it is inter-
esting to see which of the stimuli are sufficiently different from chance

to merit individual significance (it is worth noting that with 110 sep-

12§
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(b) As expected under the null hypothesis.

Figure 4.8: Histograms of participants’ ratios of matched timbres chosen—
as observed in the experiment (a), and as expected under the null
hypothesis that pitch similarity has no association with affinity (b).
The values for (b) are the means of multiple histograms randomly
generated under the null hypothesis.

arate tests we would expect §.5 to be significant at the .05 level under
the null hypothesis of pure chance).

Figure 4.8a is a histogram showing the distribution of participants’
responses aggregated over all stimuli. Their responses are measured by
the ratio of matched timbres chosen, and placed into bins of width
0.05.'5 For comparison, Figure 4.8b shows the histogram that would
be expected under the null hypothesis that pitch similarity has no im-
pact on aflinity (i.e., the probability of choosing a matched timbre is .
for all stimuli and all participants).

Under the null hypothesis that matched and unmatched timbres are
chosen with equal probability, all squares in Figure 4.6 would have a
fairly uniform mid-grey appearance, all the bars in Figure 4.7 would
be close to .5, and the histogram of participants’ responses would be
centred at .5 (as in Figure 4.8b). The data appear to show two clear
aspects that differ from the null hypothesis. Firstly, as discussed in Sec-
tion 4.3.1, the overall ratio of matched timbre choices is significantly

greater than chance. In Figure 4.6, this is indicated by the bottom-right

This bin width was chosen because the centre values are easy to understand, it divides
the overall range of o to 1 into 20 bins, and because the number of bins (across the
range of the data) follows Sturges’ rule (1926) of [1 + log, n], where n is the number
of data points (for this experiment, Sturges rule suggests [1 + log, 44] = 7 such bins).
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square and the large number of stimuli where matched timbres were
chosen significantly more often than chance. In Figures 4.7 and 4.8a, it
is indicated by the bias above .5.

Secondly (as modelled in Sec. 4.3.2), there are some obvious vertical
and horizontal stripes in Figure 4.6. For example, the columns repre-
senting the unmatched timbres tuned to 12-teT and 15-TET (and possi-
bly 17-TeT) are darker (and their aggregated values are relatively low, as
shown in Fig. 4.7a). This suggests that the participants felt these tim-
bres tended to have relatively higher affinity regardless of the under-
lying tuning. This is interesting because these three timbres all have
partials that are relatively close to perfectly harmonic partials (our har-
monicity model—described in Sec. 4.3.2.3—confirms this). In other
words, it suggests a general preference for timbres with high harmonic-
ity. The horizontal stripes, which represent the underlying tuning and
its matched timbre, are complementary to the vertical stripes. For ex-
ample, if 12-TET timbres are preferred regardless of tuning then, when
the underlying tuning—and its matched timbre—is 12-TET, more of
the unmatched timbres are now less likely to be chosen. Hence, the
corresponding row is lighter. So the dark vertical stripes and corre-
sponding light horizontal stripes are complementary manifestations of
the same process.

The heavy left-hand tail in Figure 4.8a may indicate the presence of
a few participants for whom the impact of pitch distance was negligi-
ble. However, without more data, this is impossible to ascertain with

certainty.

4.3.1  Data Aggregated Over All Stimuli and Participants

The data, aggregated over all possible pairs of stimuli and all partici-
pants, are represented by the bottom right square of Figure 4.6. A total
of 2,638 different tests, of whether the matched or unmatched timbre
was chosen, were performed (44 participants each listening to 60 stim-

uli, with two tests lost due to the experiment ending prematurely).
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In total, matched timbres were chosen 1,615 times (61% of occasions).
Given the null hypothesis (that listeners do not think matched timbres
give better-fitting, more in-tune, melodies than unmatched), the ex-
pected number of matched timbres chosen would be .5 x 2638 = 1319
with a binomial distribution of Bin (2638, .5). Under this null hypoth-
esis, a two-tailed exact binomial test shows the probability of 1,615,
or greater, matched timbres being chosen is p < .001.%® This indicates
that affinity is increased with the use of matched timbres (whose par-
tials match the underlying equal tuning) in comparison to unmatched
timbres (whose partials match a different equal tuning) and, hence, sup-
ports the hypothesis that affinity is a monotonic function of spectral
pitch similarity.

Of the 44 participants, 38 (86%) chose matched timbres for more than
half of the 60 stimuli they listened to. Under the null hypothesis that
50% of participants would choose matched timbres more often than
unmatched, an exact binomial test (two-tailed) shows the probability
of this occurring by chance is p < .001, thus showing the preference for
matched timbres was not confined to a small number of ‘high perform-
ing’ participants, thereby providing further evidence in support of the
above hypothesis, and the generality of its conclusions.

In this section, I have restricted myself to analyses of the data aggre-
gated over all tunings and unmatched timbres. It is clear, however, that
there is a wealth of information contained in the remainder of the data
(such as the stripes discussed above). In the following subsection, I uti-
lize the model illustrated in Figure 4.5 to explore whether it is possible
to explain some of the finer patterns of the data illustrated above. I do
not, however, test any subject-effects models (i.e., models containing
explanatory variables such as participants’ musical taste and level of ex-
perience). The reason for this is because the resulting models would be
too computationally complex to make cross-validation feasible (due to

the nonlinear nature of my models, cross-validation is a useful method

Indeed, 1370 (52%) is the minimum number of matched timbre choices that would
have been significant at the .05 level.
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to see how well the models can generalize and to test their statistical

significance—as discussed in Sec. 4.3.2.4).

4.3.2  Data Aggregated Over Participants Only

In the following three sections (4.3.2.1—4.3.2.3), I describe three sub-
models: the first based upon spectral pitch similarity, the second on
virtual pitch similarity, the third on harmonicity. In Section 4.3.2.4, I
show how these submodels are combined, in different ways, to create
three candidate models of the experimental data. These three models
are used to predict the 110 data values illustrated in Figure 4.6 (every
tested pair of matched and unmatched spectral tuning).

As discussed in Section 4.1, I model participants’ affinity responses
with a combination of spectral pitch similarity (or virtual pitch simi-
larity) and harmonicity. Because I am modelling forced choices made
between two alternative stimuli, I am concerned with the differences
between the spectral (or virtual) pitch distances, and harmonicities, of
the two stimuli in each pair. For spectral and virtual pitch similarity,
it is also necessary to take into account that the stimuli are not single
intervals, but melodies containing a stream of intervals with varying
probabilities of occurring.

The following descriptions are principally verbal, interspersed with
necessary mathematical equations; a more formal mathematical de-
scription of the model is provided in Appendix D, the relevant equa-
tions of which are referenced below. The models and data can be
downloaded, as matLaB .m files, from http://www.dynamictonality.

com/melodic_affinity_files/.

4.3.2.1  Spectral pitch similarity comparison submodel

Given the stochastic parameters described in Section 4.2.2 that were
used to generate the random melodies (and which are constant across
all stimuli), each stimulus can be characterized by the tuple (m, n1,n2),

wherem = 1,2, ..., 11 indexes the underlying tuning, ny = 1,2,...,11
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indexes the spectral tuning of the matched timbre, and ng = 1,2,...,11
indexes the spectral tuning of the unmatched timbre (this implies that,
for this experiment, m = ny).

Given a melody randomly generated in tuning m, the spectral pitch
similarity submodel fs(m,ni,ng; p, o) is the expected spectral pitch simi-
larity of consecutive tones with matched timbre n; minus the expected
spectral pitch similarity of consecutive tones with unmatched timbre
ny. As explained below, it is parameterized by p and o.

The first twelve partials of a tone (as shown in Table 4.2) are repre-
sented by a spectral pitch vector (as defined in Section 4.1.1) with the
ith partial given a salience of i ~#, where p is a free parameter represent-
ing spectral roll-off (D.1-D.2).'7 When p = 0, all partials have a salience
of one; as p increases above 0, the saliences of the higher partials re-
duce. This parameter, therefore, provides a simple way to change the
influence of lower versus higher partials.

To model perceptual pitch inaccuracy (the extent to which partials
with similar frequencies are heard to have the same pitch), each partial
in the spectral pitch vector is smeared in the log-frequency domain by
convolving with a discrete and truncated approximation of a normal
probability distribution with a standard deviation of g, which is a free
parameter representing smoothing width (D.3).

For all underlying tunings and timbres (matched or unmatched),
the spectral pitch similarities of all possible intervals are calculated by
taking the cosine similarity of their spectral pitch vectors (D.6). Each
melody is generated according to the probability distribution described
in Section 4.2.2. This enables us to calculate the expected spectral pitch sim-
ilarity for consecutive tones for any combination of underlying tuning
and timbre (values of m and n); this is achieved by multiplying the spec-
tral pitch similarity of each interval by its probability of occurring and
summing over all interval sizes (D.7). The reason for using probabil-
ities derived from the Markov matrices that generated the melodies,

rather than using the intervals that actually occurred in each and ev-

Only the first twelve partials are used because experiments have demonstrated that
higher partials are typically not resolvable by the auditory system (e.g., Bernstein and
Oxenham (2003)).
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ery melody, is to keep the modelling computationally tractable (as it
is, each model takes 10 hours to cross-validate—see Sec. 4.3.2.4).

The value of fg(m,ni,ne;p, o) is given by subtracting the expected
spectral pitch similarity of consecutive tones with timbre ny from
the expected spectral pitch similarity of consecutive tones with tim-
bre n; (D.10). It contains just two free parameters: spectral roll-off
p € (—00,00), and smoothing width o € [0,00). This submodel is
used—in part—to model the probability of choosing a matched tim-
bre over an unmatched timbre. For concision, this submodel may be
denoted by the abbreviated form fg, and the vector of its values over

the 110 tested stimuli is denoted fg.

4.3.2.2  Virtual pitch similarity comparison submodel

Given a melody randomly generated in tuning m (as described in Sec-
tion 4.2.2), the virtual pitch similarity submodel fy(m,n1,n2;p,0) is the
expected virtual pitch similarity of consecutive tones with matched
timbre n; minus the expected virtual pitch similarity of consecutive
tones with unmatched timbre ns.

The first twelve partials of the tone and a harmonic template are
embedded in spectral pitch vectors, both with smoothing widths of
o cents, and the salience of each ith partial given by i7” (D.1-D.3).
As described in Section 4.1.1, the spectral pitch vectors for the tim-
bre and the harmonic template are cross-correlated (non-circular cross-
correlation is used), to produce a virtual pitch vector that gives the un-
normalized correlation between the two vectors over differing offsets
between their lowest partials (D.4). This serves as a model for virtual
pitch weights at log-frequencies relative to the timbre’s lowest partial
(this is illustrated in Figure 4.3, which shows the virtual pitch vector
for a complex harmonic tone with ¢ = 10.3 and p = 0.42).

For all underlying tunings and timbres (matched or unmatched), the
virtual pitch similarities between all possible intervals are calculated

by taking the cosine similarities of their virtual pitch vectors and, as
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described above, their expected values for all pairs of matched and un-
matched timbres are calculated (D.8—D.9).

The value of fv(m,ni,no;p,0)is given by subtracting the expected
virtual pitch similarity of consecutive tones with timbre ny from the
expected virtual pitch similarity of consecutive tones with timbre
n1 (D.11). It contains just two free parameters: spectral roll-off p €
(—00, ), and smoothing width ¢ € [0, c0). This submodel is used—
in part—to model the probability of choosing a matched timbre over
an unmatched timbre. For concision, this submodel may be denoted by
the abbreviated form fy, and the vector of its values over the 110 tested

stimuli is denoted fy.

4.3.2.3  Harmonicity comparison submodel

The toneness and vertical familiarity of a timbre are both modelled by
its harmonicity. The harmonicity submodel fi1(n1,n2; p, o) calculates the
harmonicity of the matched timbre minus the harmonicity of the un-
matched timbre. It is not affected by the underlying tuning m.

Harmonicity is here calculated as the maximum value in the cross-
correlation of the timbre and a harmonic template; that is, it is the max-
imum value found in the virtual pitch vector (D.s). This means that the
more similar the pattern of the timbre’s spectral contents is to the har-
monic template, the greater its harmonicity.

The value of fi(n1,n2; p, o) is given by subtracting the harmonicity
of timbre ny from the harmonicity of timbre n; (D.12). As with the
other submodels, it contains just two free parameters: spectral roll-off
p € (—00,00), and smoothing width o € [0, 00). They are, however,
not necessarily expected to be identical to the related parameters in the
spectral pitch similarity model, because it is possible non-identical pro-
cesses are occurring. In the former, I am modelling a comparison be-
tween two events held in short-term memory; in the latter, one of the
items—the harmonic template—does not reside in short-term mem-
ory (it either resides in long-term memory or is embodied in some

innate cognitive process). We would, however, expect the parameters
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to be identical to those used in the virtual pitch similarity model, be-
cause they both involve comparison with a harmonic template. This
submodel is used—in part—to model the probability of choosing a
matched timbre over an unmatched timbre. For concision, this sub-
model may be denoted by the abbreviated form fy, and the vector of

its values over the 110 tested stimuli is denoted fy;.

4.3.2.4  Three candidate models of participants’ responses

The spectral and virtual pitch similarity submodels are for mental
processes triggered by successive tones (horizontal musical features);
the harmonicity model is for mental processes triggered by individ-
ual tones (vertical musical features). I test three different models that
combine one of the two horizontal submodels with the vertical sub-
model (two of the resulting models contain the same two submodels
but utilize a different parameterization). In addition to the smoothing
width and roll-off parameters required by each submodel, each candi-
date model requires two additional parameters (81 and f32) to set the
relative weights of its two submodels.

The first candidate model utilizes the two submodels spectral pitch
similarity fg(m,n1,n2;ps,05) and harmonicity fi(n1,n2; pu, on).
This model has a total of six parameters: the submodel weights 51 and
32, and the independent smoothing widths and roll-offs for both sub-
models (as shown after the semicolons).

The second candidate model utilizes the same two submodels, but
uses identical smoothing widths and roll-offs for both submodels: spec-
tral pitch similarity fg(m, n1,n2; p, o) and harmonicity fiy(n1, n2; p, o).
This model, therefore, has a total of four parameters: the submodel
weights 31 and 2, and the smoothing width and roll-oft parameters
used for both submodels. It is, therefore, a more parsimonious version
of the first model and reflects the possibility that spectral pitch and har-
monicity do indeed derive from closely related perceptual processes

(see the last paragraph in Section 4.3.2.3).
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The third candidate model utilizes the two submodels virtual pitch
similarity fy(m,ni,n2;p,0) and harmonicity fy(ni,ne;p,o). This
model, therefore, has a total of four parameters: the submodel weights
1 and f32, and the smoothing width and roll-off parameters used for
both submodels.

A model containing both fs(m,ni,ng;p,0) and fy(m,ni,ne;p,o0)
(i-e., spectral and virtual similarities) was not tested because these two
submodels are too highly correlated—fg as optimized in the first model
and fy as optimized in the third model have a correlation over the stim-

uli of r(108) = .95.

The method by which the two submodels are combined is deter-
mined by the data—the collected data are the numbers of matched
(rather than unmatched) timbres chosen, and the total number of trials
for each of the 110 different pairs of stimuli (observations). As such, the
data for each stimulus are presumed to be random observations from a
binomial distribution and are, therefore, most appropriately modelled
with a logistic regression upon the submodels (fs and fy in the first and
second models, fy and fy in the third model).’® The three candidate
models, indexed by i, of the probability of choosing the matched tim-
bre n; (coded 1), given a microtonal melody in tuning m, a matched

timbre n1, and an unmatched timbre no, take the form

modeli = P(Y =1 m,nl,ng;i)

1
:f,Where
1+e %

21 = Prfs(m,n1,n2; ps, 0g) + B fu(ni, n2; pu, on)
29 = P1fs(m,n1,n2; p,0) + B fu(ni, ng; p,o)

z3 = P1fv(m,ni,ng;p, o) + Pafu(ni, na; p, o), (4.3)

and (1 and [y are the logistic parameters (coeflicients). Note that a
constant term is not used in this logistic regression. This is because

fs = fv = fu = 0 when n1 = ng, which results in a predicted prob-

The use of a binomial distribution implies that participants all had the same probabil-
ity of choosing a matched timbre for each stimulus. Clearly, this is a simplification.
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Table 4.3: The log-likelihoods log(L) for the three models (higher is better).

Model 1 Model2 Model 3
log(L) -2§7.60 -257.76  -258.84

ability of .5 for the matched (or unmatched) stimulus being chosen. In
this circumstance, both timbres are identical (they are equally matched
to the underlying tuning, and both have the same harmonicity) so the
model should predict a .5 probability. A constant term would, there-
fore, be counterintuitive (to test this, model 2 with an additional con-
stant term was optimized and the term was, as expected, very close to
zero and not significant.)

Although the three models in (4.3) superficially appear to be gener-
alized linear (logistic) regression models, it is important to note that
they are actually fully nonlinear. This is because the predictors (fs, fv,
and fy) are nonlinear with respect to the parameters p and ¢, and these
parameters are optimized simultaneously with the logistic weights ;
and (2. This nonlinearity means there is no simple way to calculate
the degrees of freedom of the models (or their predictors), so the stan-
dard x? significance tests used for logistic regression models are not
appropriate. For this reason, the significance of each model (and each
of the individual submodels) was tested by five runs of a 10-fold cross-
validation.

The models” parameter values were iteratively optimized in MaTLAB
using the fmincon routine. The parameters were optimized to maxi-
mize the likelihood of the model given the data (under the presump-
tion that the numbers of matched timbres chosen are binomially dis-
tributed). (As a nonlinear optimization, the resulting parameter values
may produce a local, not the global, likelihood maximum). A plot of
the deviation residuals against predicted values confirmed the errors
were randomly distributed with no apparent pattern.

After optimization, the likelihoods of the three models were simi-
lar, as shown in Table 4.3. To assess how well the models are able to

generalize, and to test their statistical significance (as well as the sig-
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nificance of each predictor), they were subjected to five runs of 10-fold
cross-validation. In a 10-fold cross-validation, the empirical data is par-
titioned into 10 randomly chosen equally-sized folds. One of the par-
titions is removed and designated the validation set, while the remaining
nine tenths of the data are designated the training set. A model’s parame-
ters are optimized (by maximum likelihood) to best fit the training set,
and this model is tested (scored) against the validation set. After this, a
different partition is chosen for the validation set, and the process is re-
peated. This is done ten times (thereby ensuring all ten partitions have
been used as validation sets) and the scores resulting from each valida-
tion are combined to produce a complete set of scores. This comprises
a single 10-fold cross-validation.

The resulting scores are subject to an unknown variance, so it advis-
able to minimize the variance by repeating the 10-fold cross-validation
as many times as is practicable (each time with a different partitioning),
and taking the means of the scores across the different cross-validation
runs (e.g., Kim (2009)). Five runs of the 10-fold cross-validation took
approximately 10 hours for each model tested.

I scored each validation with the quadratic proper scoring rule,
which measures the accuracy of probabilistic predictions of discrete and
mutually exclusive outcomes. For binary data, as elicited in my exper-

iment, the score is calculated accordingly:

Q(r.i) =2ri —r7 — (1—1;)?, (4-4)

where r; is the probability assigned by the model to the response made
by the participant. This gives a score for an average of approximately
264 observations in each validation set (11 stimuli each rated by an av-
erage of 24 participants). The scores were averaged across participants,
resulting in a mean score for each stimulus; hence 11 mean scores per
validation set, and 110 mean scores across the 10-fold validation. The
10-fold cross-validation was performed five times, and the means of the

110 scores across the five runs were taken.
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Table 4.4: For the three candidate models and two of the submodels (the sub-
model denoted G( fg) is a logistic regression with just spectral pitch
distance, and G( fy) is a logistic regression with just harmonicity),
this table shows the medians of the means of the quadratic scores
obtained over five runs of a 10-fold cross-validation. See the main
text for a precise description of how these values are calculated.
Model 2 has the highest median score. All scores are significantly
higher than the null model (p < .001) under a Wilcoxon signed-
rank test.

Null Model2 G(fs) G(fu) Model1 Model
0.500  0.§53  0.525  0.522  0.552 0.552

In order to test the significance of each model, I calculated the dif-
ferences between its 110 mean scores and those produced by a null model
with no predictors (the null model gives a probability of .5 to the out-
come being either the ‘matched’ or ‘unmatched’ timbre—it represents,
therefore, ‘pure guesswork’). I tested the resulting 110 values with the
Wilcoxon signed-rank test to determine whether the medians of the
tested and null models’ mean scores were significantly different. This
information is summarized in Tables 4.4 and 4.5. The tests indicate that
model 2 generalizes better than model 1 (this suggests that the addi-
tional flexibility in model 1, which arises from its two additional pa-
rameters, seems to be fitting the noise in the data rather than the un-
derlying distribution). There is no significant difference in the scores
given to models 2 and 3. However, due to model 2 getting a higher
score in the cross-validation, a higher likelihood across all the data, and
being computationally simpler, I focus my attention on this model for
the remainder of this chapter. This should not, however, be taken as
strong evidence that the underlying mental process is down to spectral
rather than virtual pitches; furthermore, a different model of virtual
pitch similarity might have performed and generalized better.

Tables 4.4 and 4.5 also provide statistics for cross-validations applied
to alogistic regression with just spectral pitch distance (denoted G( fg)),
and a logistic regression with just harmonicity (denoted G(fi1)). The
values of p and o were free in both submodels, not fixed to the op-

timal values for model 2. In both cases, each of these submodels pro-
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Table 4.5: The z-scores and significance levels resulting from Wilcoxon
signed-rank tests on the differences between the score medians
(given in Table 4.4) of the model identified in the top header and
the model identified in the left column. The null model is one with
no predictors (not even a constant term) and represents assigning
a probability of .5 to the matched or matched timbre being cho-
sen. The label *** indicates significance at the .001 level. The first
column demonstrates that model 2 is significantly better than all
the other models except model 3 (it is better, but not significantly
s0). The first row shows that each of the two submodels (spectral
pitch distance and harmonicity) is significantly better than the null
model, while the first column shows that both submodels together
(i-e., model 2) is better than either submodel alone.

Model 2 G(fs) G(fu)

Null —9.10"F  —6.35F  —6.737
G(fu)  —8.75"
G(fs) —8.55"

Model 1 —4.01***
Model3 -—1.14

duces a significantly higher score than the null model, while model 2—
which uses both of them—has a significantly higher score than either
of the submodels alone. The effect sizes of the spectral pitch distance
and harmonicity models are similar, but their effects are different and
hence complementary. This is confirmed by the significantly higher
score achieved by model 2, which contains both spectral pitch similar-
ity and harmonicity.

For model 2, the optimized parameter values and their standard
errors, and statistical tests for the whole model are summarized in
Table 4.6. The standard errors were calculated from a numerically
estimated Hessian matrix of the optimized parameter values. The
Wilcoxon signed-rank test for the whole model, as detailed above, is
highly significant (= = —9.10, p < .001), and a Hosmer-Lemeshow test
indicates the model’s predictions are not significantly different to the
observed data (x2(8, N = 2638) = 4.60, p = .800). With the optimized
values for p and o, the two predictors fg and fiy have low correlation
over all stimuli (r(108) = —.09,p = .334), so there are no concerns

with multicollinearity. Figure 4.9 is a scatter plot, for all 110 stimuli, of
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Table 4.6: Statistical analysis and evaluations of the model and its parameters
(the logistic part of the model does not include a constant term).
Standard errors were derived from a numerical estimation of the
Hessian matrix, the z-score and p-value were calculated from a
signed-rank test on the cross-validation as described in the main

text.
Parameter Value SE 95% CI
o (smoothing) 1028 o0.70 8.92 1II.65
p (roll-off) 0.42 0.II  0.2I  0.63
1 (spectral similarity weight) 3.55 0.1  2.55  4.55
B2 (harmonicity weight) 44.00 16.34 11.97 76.04

Overall model
Wilcoxon signed-rank: = = —9.10, p < .001
Hosmer-Lemeshow: x%(8, N = 2638) = 4.60, p = .800
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Figure 4.9: For all 110 observations, this scatter plot compares the observed
numbers of matched timbres chosen by participants with those

predicted by model 2.

the observed numbers of matched timbre choices against the predicted
number of matched timbre choices.

For those more accustomed to linear regression statistics, I provide
correlation, standardized coefficient, and R? values from a linear re-
gression of the log-odds (logits) of choosing a matched timbre. The

values of p and o were fixed to the optimized values (0.42 and 10.28)
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obtained for model 2, and the following ‘linear’ model with a constant

term was optimized in the standard way with ordinary least squares:

o PY =1]|m,ni,ng2)
& 1—P(Y =1]|m,n1,n2)

= Bo+ Bifs(m, ny,no; 0.42,10.28) + o frr (n1, n2; 0.42,10.28) .
(4-5)

Because the values of p = 0.42and o = 10.28 were originally optimized
in model 2, and fg and fy are nonlinear with respect to them, it would
be misleading to provide standard F-statistics and F'-tests (the degrees
of freedom cannot be established), so these are not reported. The opti-
mized model has R? = .59—that is, $9% of the variance in the log-odds
of choosing a matched timbre is accounted for by this ‘linear’ version of
the model. The standardized coeflicient values are .38 for spectral sim-
ilarity fg and .70 for harmonicity fy (the unstandardized coefficients
are 3.54, 47.47, and .os for the intercept term—similar to those of the
logistic model). The correlation between the log-odds of choosing a
matched timbre and fg over all stimuli is 7(108) = .32,p < .001, the
correlation between the log-odds and fyy is (108) = .66, p < .001. Fol-
lowing Cohen’s familiar guidelines on categorizing effect sizes, spec-
tral similarities have a medium effect size, while harmonicity—and the
complete model—have large effect sizes.

The optimized parameter values for the smoothing width and spec-
tral roll-off (10.28 cents and 0.42, respectively) are reassuringly plau-
sible. Under experimental conditions, the frequency difference li-
men (just noticeable difference) corresponds to approximately 3 cents,
which would be modelled by a smoothing width of 3 cents (as ex-
plained in App. A). In an experiment like this, in which the stimuli are
more explicitly musical, we would expect the standard deviation to
be somewhat wider than this, and the value of approximately 10 cents
seems eminently reasonable.

The roll-off values are also highly plausible. The optimized roll-off

in saliences (0.42) approximately corresponds to the loudnesses of the
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partials in the stimuli’s timbres.™ This value emphasizes the impor-
tance of the lower partials, and suggests correspondences between the
tempered third partial of the timbre and the tempered perfect fifths
and fourths in the melody are important (when using matched timbres,
tempered perfect fifths and fourths have frequency ratios of tempered
3/2 and tempered 4/3, respectively).

The data generated by the second model are shown in Figure 4.10a,
and can be usefully compared with the observed data shown in Fig-
ure 4.6. The individual contributions of spectral pitch similarity and
harmonicity predictors are shown in Figures 4.10b and 4.10c (in both

cases the parameter values are identical to those used in the full model).

4.4 DISCUSSION

The experimental data strongly support the hypotheses that melodic
affinity is increased when the tunings of scale degrees and partials are
matched, and when the tones have close-to-harmonic partials. I have
also shown how a combination of spectral pitch similarity and har-
monicity can model, in a more precise way, the relationship between
spectral tuning, melodic tuning, and perceived affinity. Importantly,
the experimental procedure allows us to eliminate the confounding
top-down influence of horizontal familiarity (that part of afinity that
is a function of each interval’s prevalence). In the absence of this con-
found, we can see that spectral pitch similarity has a medium-sized ef-
fect on perceived aflinity. As explained in Section 4.1.2, the experi-
ment cannot determine whether the impact of harmonicity is because
it models our familiarity with harmonic complex tones, or whether it
is modelling an innate process—but, either way, its effect size is strong.

It is interesting to explore the implications of these results in two
different areas: the use of microtonally tempered spectra for micro-

tonal scales, and the relationship between scales and tunings that pro-

The timbres had partials with amplitudes of approximately i~1, where i is the partial
number. According to Steven’s power law, perceived loudness corresponds, approxi-

mately, to amplitude (pressure) to the power of 0.6, hence the loudness of each partial

—0.6

is approximately ¢ , which would be equivalent to a p value of 0.6.
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Umatched timbre tuning (n-TET)
3 4 5 7 10 11 12 13 15 16 17 [Al

Melody and matched timbre tuning (n-TET)

(2) Data simulated by model 2—logistic
regression on spectral pitch similarity
fs(m,n) and harmonicity fg(m,n).

Umatched timbre tuning (n-TET)
3 4 5 7 10 11 12 13 15 16 17 |Al

Melody and matched timbre tuning (n-TET)

All

(b) Data simulated by a logistic regression on
spectral pitch similarity fg(m,n).

Umatched timbre tuning (n-TET)
3 4 5 7 10 11 12 13 15 16 17 |All

Melody and matched timbre tuning (n-TET)

All

(c) Data simulated by a logistic regression on
harmonicity fg(m,n).

Figure 4.10: The modelled data.
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vide good-fitting melodies when using tones produced by conven-
tional wind and string instruments and the human voice (the majority

of which have close-to-harmonic partials).

4.4.1  Matching Timbre and Tuning

In the Dynamic Tonality section of Sethares et al. (2009), a procedure is
given to retune partials to match a wide variety of scale-tunings (scales
generated by two intervals—a period and a generator—both of which
can take any size). The procedure was aesthetically motivated on the
grounds that it can reduce the sensory dissonance of prevalent inter-
vals and chords in the underlying scale. The experimental data, pre-
sented here, suggest the matching of partials to (low-n) n-TeTs can also
make microtonal melodies more in-tune and fitting. Indeed, it was my
practical experience with Dynamic Tonality synthesizers—noticing,
for example, how much more in-tune s-Ter melodies sound when the
spectral tuning is matched—that motivated this experiment in the first
place.?° Having said that, it is also clear that timbres with partials close
in frequency to the familiar harmonic template were typically pre-
ferred by participants. This means that, in matching partials to a low
n n-TET, one is trading the increased consonance and affinity of inter-

vals for possibly dissonant timbres.

4.4.2  Scales for Tones with Harmonic Spectra

The majority of pitched Western instruments have timbres whose par-
tials are tuned to a harmonic series (e.g. bowed string, wind instru-
ments, and the voice), or close to such a spectrum (e.g., plucked and
hammered string instruments). Figure 4.11 shows the spectral pitch

similarity of pairs of tones with harmonic spectra separated by an inter-

There are, currently, three Dynamic Tonality synthesizers (which allow for a variety
of tunings and for the spectral tuning to be matched)—TransFormSynth (an analysis-
resynthesis synthesizer), The Viking (an additive-subtractive synthesizer), and 2032 (a
modal physical modelling synthesizer). They are freeware, and can be downloaded
from http://www.dynamictonality.com.


http://www.dynamictonality.com
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Figure 4.11: The spectral pitch similarity of harmonic complex tones with
differing interval sizes. This chart is calculated with the param-
eter values for spectral similarity as optimized in Section 4.3.2.4
(smoothing of 10.3 cents, and roll-off of 0.42). The graph bears a
clear resemblance to the sensory dissonance charts of, for exam-
ple, Plomp and Levelt (1965) and Sethares (2005), with maxima
of modelled affinity at simple frequency ratios like 2/1, 3/2, 4/3,
and so forth.

val whose size is shown on the horizontal axis. Each tick corresponds
to one I2-TET semitone, and a total range of just over one octave is cov-
ered.

Clearly, the intervals with the highest spectral pitch similarity (other
than the unison) are the octave and the perfect fifth and perfect fourth.
There is significant empirical evidence that the octave is universally
recognized as an interval with extremely high affinity (Woolhouse
(2009) cites numerous examples). The high spectral pitch similarity of
perfect fifths and perfect fourths tallies nicely with historical evidence.
For example, ancient Greek scales were typically based on conjunct and
disjunct tetrachords. The two outer tones of a tetrachord span a perfect
fourth (of frequency ratio 4/3) and, within this perfect fourth, lie two
additional tones that could take on a wide variety of different tunings.
The outer fourth was, however, always fixed. When a second tetra-
chord is placed a whole-tone above the top note of the first tetrachord
(i-e., a perfect fifth above the bottom note), the entire octave is spanned
to make a seven-tone scale. If the two tetrachords have identical inter-
nal structure, the resulting scale is rich in high spectral pitch similar-
ity perfect fourths and perfect fifths. This technique of scale construc-
tion might, therefore, be seen as a heuristic for creating high-affinity
scales. Indeed, the bounding fourths potentially provide perceptually
secure start and end points for a melody that traverses the more chal-

lenging tones in between. For an in-depth examination of the history,
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and mathematical, perceptual, and aesthetic properties of tetrachords,
see Chalmers (1990), and for a discussion of the affinity (CDC-1) of the
perfect fourth and fifth see Tenney (1988).

The diatonic and pentatonic scales, which are so ubiquitous to West-
ern music, are the richest in terms of perfect fifths and fourths. This
is because they are actually generated by a continuous chain of either
of these intervals: there is no five-tone scale with more perfect fifths
and fourths than the (anhemitonic) pentatonic, and no seven-tone scale
with more perfect fifths and fourths than the diatonic. Such scales,
therefore, maximize the number of the highest affinity (non-octave)
intervals. Hypotheses that account for the development of such scales
by the consonance of perfect fifths and fourths suffer from the uncom-
fortable historical fact that these scales were privileged well before har-
mony became commonplace in the West. Rephrasing this in terms of
melodic affinity, rather than harmonic consonance, avoids this prob-
lem. It is also worth noting that Huron’s (1994) analysis of the aggre-
gate dyadic consonance of all possible scales selected from 12-TET in-
dicates that the most familiar Western scales (the diatonic, ascending
melodic minor and harmonic minor) have the highest aggregate con-
sonance for 7-tone scales, the Japanese Ritsu and blues scale are highly
ranked for 6-tone scales, and the anhemitonic pentatonic is the highest
ranked s-tone scale. This is relevant because affinity is correlated with
consonance (see Figure 4.11), so similar results may hold if aggregated
dyadic spectral pitch similarity were used instead of aggregated dyadic
consonance. In this case, Huron’s conclusions could be comfortably ex-
tended to scales developed for melodic music.

It would seem, therefore, that both historical and contemporary mu-
sical practice support the notion that spectral pitch similarity is a uni-
versal component of melodic aflinity, and that this phenomenon has
contributed to the types of scales that are, and have been, privileged in

melodic music.
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4.§ CONCLUSION

The experimental data give strong support for the hypotheses that the
perceived affinity of successive tones is a monotonic function of both
their spectral pitch similarity and their inherent harmonicity. The ef-
fect size of spectral pitch similarity is medium, the effect size of har-
monicity is strong. The experimental intervention also suggests that
spectral pitch similarity is modelling a nature process—one that does
not require the learning of musical regularities.

In the next chapter, I build on this result and apply a related model
to the relationships between tones and chords, and between chords and
scales. In this way, I use spectral pitch similarity to model Krumhansl’s
probe tone data, and the stability and tonic-ness of chords in a vari-
ety of scales. I also present some hypotheses about how spectral pitch

similarity may explain some additional aspects of tonality.



A MODEL OF THE PROBE TONE DATA AND
SCALIC TONALITY

The Krumhansl and Kessler (1982) probe tone data are participants’ rat-
ings of the ‘fits’ of the twelve chromatic pitch classes to a previously
established tonal context. They are Widely considered to be one of the
most important sets of experimentally obtained data about tonal per-
ception. This is because, given a key, they can summarize the stability
or tonic-ness of pitch classes, and they have a high correlation with
the prevalences of pitch classes in Western tonal music. They have also
proved effective at modelling perceived inter-key distance, and predict-
ing the key of music as it plays. Furthermore, they are thought to be
robust because similar results have been obtained in numerous related
experiments.

Clearly, any proposed model of tonal perception should be able to
effectively model this data. In light of the previously demonstrated suc-
cess of the bottom-up spectral pitch similarity model at explaining the
perceived affinity of microtonal pitches, it makes sense to test a related
model for the probe tone data.

In this chapter, I test three spectral pitch similarity models of the
probe tone data (they differ only in their parameterizations). I also
compare my models against a number of previously suggested models,
some of which are bottom-up, some of which are top-down. My own
models have amongst the highest fit with the data and, being bottom-
up, have wide explanatory scope.

Furthermore, I extend the model beyond the probe tone data and use
it as a novel method to successfully predict the tonics of the diatonic
scale and a variety of chromatic alterations of the diatonic scale (e.g.,

the harmonic minor and harmonic major scales). The model is also gen-
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Figure 5.1: Krumhansl and Kessler’s major and minor tonal hierarchies.

eralizable to any possible tuning, and I demonstrate this by predicting
possible tonics for a selection of microtonal scales.

The probe tone data are commonly thought to represent tonal hier-
archies—learned templates that assign fit levels to pitch classes once a
specific major or minor key has been established (a deeper discussion is
provided later in this introduction and in Sec. 5.2). However, because
my model provides a bottom-up explanation for the probe tone data,
it does not require learned templates. Such templates may exist, but
my model is agnostic on this point. In reality, it is likely that a vari-
ety of long-term memory templates do play a supportive role and, in
Section .2, I discuss the interplay between long-term memory (top-

down) processes and bottom-up processes.

For the probe tone experiment, ten participants rated the degree of
fit on a seven-point scale with 1 designated ‘fits poorly’ and 7 designated
‘fits well’ (Krumhansl and Kessler, 1982). These well-known results are
illustrated in Figure s.1.

The major or minor tonal context was established by playing one of
four musical elements: just the tonic triad I; the cadence IV—V—I; the ca-
dence II-V—-I; the cadence VI-V-I. For example, to establish the key
of C major, the chord progressions Cmaj, Fmaj—Gmaj—Cmaj, Dmin—
Gmaj—Cmaj, and Amin—Gmaj—Cmaj were used; to establish the key
of C minor, the chord progressions Cmin, Fmin—Gmaj—Cmin, Ddim—
Gmaj—Cmin, and Abmaj—Gmaj—Cmin were used. A cadence is defined

by Krumhansl and Kessler (1982, p. 352) as ‘a strong key-defining se-
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quence of chords that most frequently contains the V and I chords of
the new key’; the above three cadences are amongst the most common
in Western music. Each element, and its twelve probes, was listened to
four times by each participant. For each context, the ratings of fit were
highly correlated over its four different elements (mean correlations
for the different elements were r(10) = .90 in major and r(10) = .91
in minor) so the ratings were averaged to produce the results shown in
Figure s.1. All listeners had a minimum of five years’ formal instruc-
tion on an instrument or voice, but did not have extensive training in
music theory.

All context elements and probes were played with octave complex tones
(also known as octs or Shepard tones). Such tones contain partials that
are separated only by octaves (i.e., they contain only 2"~!th harmon-
ics, where n € IN), and the centrally pitched partials have a greater
amplitude than the ‘outer’ partials; precise specifications are given in
Krumhansl and Kessler (1982). Octave complex tones have a clear pitch
chroma but an unclear pitch height; in other words, although they have
an obvious pitch, it is not clear in which octave this pitch lies. The
stated purpose of using octs was to ‘minimize the effect of pitch height
differences between the context and probe tones, which strongly af-
fected the responses of the least musically oriented listeners in [an] ear-
lier study’ (Krumhansl, 1990, p. 26).

However, ocTs are unnatural acoustical events—no conventional
musical instrument produces such spectra; they have to be artificially
synthesized. Musical instruments typically produce harmonic complex
tones (HCTs) in which most harmonics are present and such timbres con-
tain a greater multiplicity of interval sizes between the harmonics (e.g.,
frequency ratios such as 3/2, 4/3, 5/3, and 5/4, in addition to the 2/1 oc-
taves found in octs). Krumhansl and Kessler (1982, p. 341) describe the
ocrt timbre as ‘an organlike sound, without any clearly defined lowest
or highest component frequencies’.

The use of ocrs, rather than HeTs, may affect the resulting ratings of

fit; that is, if HCTs had been used instead, it is possible the results may
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have been—to some extent—different, even after taking account of
pitch height effects (e.g., Parncutt (2011, p. 339) points out that the ex-
perimental data obtained by Budrys and Ambrazevicius (2008) indicates
HCTs may reverse the fits of the minor third and perfect fiftth—pitch
classes 3 and 7—in the minor context). Despite this, the high correla-
tion between the obtained ratings and the prevalences of scale degrees
in samples of tonal music (e.g., (10) = .89 for major and r(10) = .86
for minor (Krumhansl, 1990)) suggests that any such distortions are rel-
atively small.

The probe tone data are thought to be important and robust. How-
ever, it should be borne in mind that only ten participants were in-
volved, and they were all musically trained. The extent to which such
results can generalize must, therefore, be open to some question. Parn-
cutt (2011) cites a number of examples of similar experiments that have
produced similar, but non-identical, results (Krumhansl and Shepard,
1979; Thompson, 1986; Steinke et al., 1993, 1998; Budrys and Am-
brazevicius, 2008). Considering the probe tone data may be biased due
to the small number of participants, and affected by the precise context-
setting elements used, it is important that any model is judged not only
on its goodness of fit, but also on the clarity and plausibility of its hy-
potheses, the extent to which it can explain the data, and its ability to
make predictions beyond this single experiment.

The data are important because they can be generalized to predict
aspects of music that were not explicitly tested in the experiment. No-
tably, the degree of fit can be used to model the stability or tonic-ness
of the pitches and chords found in major-minor tonality—as originally
suggested by Krumbhansl (1990, pp. 16 & 19) and reiterated by Parn-
cutt (2011, p. 333). Also, the data have been used to model perceived
inter-key distances (Krumhansl and Kessler, 1982), and to predict the
key—dynamically—of music as it plays (Krumhansl, 1990; Toiviainen
and Krumhansl, 2003). However, there is no obvious way to use this
data to account for certain important aspects of tonality: (a) Why is

the primary major scale the diatonic, while the primary minor scale is
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the non-diatonic harmonic minor scale?’ (b) Why does the seventh de-
gree (leading tone) of the major scale lose much of its activity when it
is the fifth of the iii (mediant) chord? (c) Why are certain root progres-
sions favoured over others (e.g., descending fifths are more common
than ascending—particularly the cadential V-I)?

Krumbhansl interprets the probe tone data as representing a tonal hi-
erarchy. This can be thought of as a template that, given a tonal centre,
induces degrees of perceived fit for all pitch classes (Krumbhansl, 1990,
pp- 16—21). For instance, when listening to music, pitch classes that are
held in short-term memory are compared with all possible transposi-
tions of the major and minor templates; the template whose profile is
closest to the short-term memory pitch class distribution then induces
appropriate levels of fit (stability, resolution versus tension, and rest
versus activity) on the pitch classes. However, this is a hypothesis—
the probe tone data may be, at least in part, a short-term response to
the context elements (as argued by Butler (1989), Leman (2000), Parn-
cutt (2011), and myself ). For this reason, I avoid using the term tonal
hierarchies to describe the data, preferring the neutral terms probe tone
data and fit profiles. For clarity, when I am referring to a fixed and ab-
stract tonal hierarchy, as envisaged by Krumbhansl, I often use the term
template.

In the Section 5.2, I challenge the conventional interpretation that
the probe tone data necessarily represents a long-term memory tem-
plate. In contrast, I suggest that—depending on the pitches held in
short-term memory (i.e., the musical scale that is currently being
used)—my bottom-up model can account dynamically for the fits and
stabilities of pitches and chords without reference to a pre-formed tem-
plate. As shown in a number of examples, when these pitches conform
to familiar structures like the diatonic major scale, or the harmonic mi-
nor scale, the modelled fits are in accord with musical intuition and
theory; when these pitches do not conform to these familiar structures

(e.g., microtonal scales), alternative fit profiles are generated.

I use the term diatonic to refer exclusively to the scale with two steps sizes—L for
large, and s for small—arranged in the pattern (L L s L L Lss), or some rotation (mode)
thereof (e.g., LsLLLsL,orsLLLsLL,etc.).

IST
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To provide the context for my model, in Section s.1 I survey a va-
riety of existing bottom-up and top-down models. In order to fairly
compare the predictive power of the models (mine are nonlinear), I use
cross-validation: my model comes in three variants and one of them
is, to date, the best predictor of the data. But I am not concerned
solely with their predictive power, I am particularly interested in their
explanatory power: only my model and Parncutt’s virtual pitch class
model are both bottom-up and able to fit the data with exactitude. I am
additionally interested in the generalizability of the model beyond the
precise experiment it is modelling: both Parncutt’s and mine are gen-
eralizable to any set of chromatically organized context and probes;
my model is, additionally, generalizable to non-standard tunings—as
I demonstrate in Section 5.3.2.

In Section §.3.1, I additionally suggest some mechanisms that may
help to answer the three previously-mentioned questions. These are
that resolutions are strengthened when a worst-fitting pitch class moves
to the root of a best-fitting triad, and that I also need to consider the
fit of each pitch class within the chord it is part of. At the moment,
however, these mechanisms are not instantiated in a formal mathemat-
ical model and, until they are, they should be thought of as preliminary
findings or suggestions. L hope to formally embody these principles and

test them against empirical data in future work (as discussed in Sec. 6.3).

§.I THE MODELS

In this section, I provide a brief summary of my own and others’
bottom-up and top-down models of the probe tone data. Most of these
are also usefully summarized in Parncutt (2011), so I will keep my ac-
count brief. But I will also highlight a few areas where I take a different
stance to Parncutt.

Before discussing each of the models in turn, Table 5.1 summarizes
their relevant statistical properties with respect to the probe tone data.

The correlations differ from those provided by Parncutt (2011) in two



5.1 THE MODELS

Table s.1: Correlations r, cross-validation correlations rcy (both with 22 de-
grees of freedom), and cross-validation root mean squared errors
of cross-validation rmsecv of the predictions made by a variety of
models compared with Krumhansl and Kessler’s (1982) probe tone
data. The cross-validation statistics are the means of these statis-
tics taken over twenty runs of 12-fold cross-validation (the cross-
validation statistics are explained in Appendix E). The null model
is an intercept-only model—i.e., all values are modelled by their
mean. The remaining models are described in the main text. The
models are ordered by their cross-validation statistics or, when
these are missing, by their correlation.

r(22) rcv(22) rmsecv  Type Parameterization
Milne 12¢ .97 .96 0.36  bottom-up nonlinear
Lerdahl 88 .96 .95 0.38  top-down linear
Parncutt 89 .96 .95 0.38  top-down linear
Parncutt 94 .96 — — bottom-up nonlinear
Parncutt 88/114 .94 .93 0.45  bottom-up linear
Milne 12b .95 .92 0.48  bottom-up nonlinear
Milne 124 .94 .91 0.1 bottom-up nonlinear
Parncutt 88/11h .92 .90 0.54  bottom-up linear
Smith g7 .89 .87 0.61  bottom-up linear
Butler 89 .88 .84 0.6s  top-down linear
Krumhansl gob .87 .83 0.68  top-down linear
Leman oo <.87 — — bottom-up nonlinear
Basic triad .86 .82 070 — linear
Krumbhansl goa .65 .57 .01 bottom-up linear
Null .00 —.68 1.27 — linear

ways. Firstly, rather than providing one correlation value for the ma-
jor context’s probe tone data and one for the minor context’s data, I
give a single correlation value for both. I feel this is a more correct ap-
proach, because the same underlying process should apply to the major
and minor contexts. Separately correlating them is equivalent to cal-
culating the r-values of two linear regressions with different intercept
and slope parameters. But there is no a priori reason to expect the two
sets of parameters to be different, so I apply a single set of parameter
values to both major and minor (in actuality, the correlations result-
ing from the two methods are almost identical—only one value differs
by .o1). Secondly, I additionally provide cross-validation statistics (rcv
and RMSECYV, for which higher values of the former and lower values
of the latter indicate a better model)—the reason for this is to allow my

nonlinear models to be fairly compared with the mostly linear mod-
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els that have been proposed so far. As described in Section 2.2, utiliz-
ing un-cross-validated statistics would not be appropriate, because the
additional flexibility of a model with additional nonlinear parameters
may allow it to fit the noise rather than the process underlying the data,
thereby giving it an unwarranted advantage. Cross-validation statistics
provide a way for models with differing levels of flexibility (complex-
ity) to be fairly compared, and ensure they are not overfitting the data.>
I give a more technical explanation of the cross-validation statistics in
Appendix E.

It is worth pointing out that the modelled data do not need to repli-
cate much of the experimental data’s fine structure in order to achieve
what appears to be a reasonably good correlation value. For example,
let us define a basic triad model as one that gives the tonic chords’ pitches
a value of 1, and all other pitch classes a value of 0; the resulting statis-
tics are surprisingly impressive looking: r(22) = .86, rcv(22) = .82,
and RMSECV = 0.70. I suggest that any model with similarly valued
statistics is probably struggling to describe much of the fine structure
of the data; I have placed this basic triad model into Table 5.1 to serve

as a benchmark.

5.1.1  Krumhansl 9ob: corpus prevalence model.

Krumbhansl (1990) suggested a predictively effective model for the
probe tone data (rcy(22) = .83). The hypothesis is that the data are
correlated with the distribution (prevalences) of scale degrees in exist-
ing music. This is a purely top-down model of music perception, in
that the perceived fits of the probe tones are hypothesized to be down
to nothing more than learning: if we frequently hear the fourth scale
degree, we will tend to feel that scale degree has a good fit; if we rarely
hear altered scale degree b2/41, we will tend to feel that scale degree has
a poor fit. (To reiterate from Section 2.3, a top-down model is one that

utilizes, as variables, the prevalences of musical patterns or the preva-

Analytic approaches such as AIC and BIC are not appropriate here because the de-
grees of freedom for my model cannot be estimated.
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lences of their associations with non-musical events; in other words,
top-down models require a statistical analysis of a musical corpus.)

This model provides a straightforward explanation for our percep-
tion of scale degree fit, but the scope of this explanation is limited.
It cannot explain why the probe tone data/scale degree prevalences
take the specific profile they do. Indeed, an implicit assumption of this
model is that this profile is down to nothing more than chance—for
some unknown reason, composers favoured certain scale degrees and
hence listeners came to feel these scale degrees fitted better. Composers
(who are also listeners) continued to write music that utilized these
learned patterns of fit (because such music made sense to them and their
listeners), and so listeners (some of whom are composers) continued to
have their learning of these patterns reinforced. And so forth, in a cir-
cular pattern of causal effects: music perception is the way it is because
music is the way it is, and music is the way it is because music per-
ception is the way it is, ad infinitum. Presumably, this theory predicts
that on a ‘parallel Earth’—identical in all respects to ours except for
random fluctuations—a completely different profile of pitch class fits
might have developed.

Of course, this may be true. But it is quite plausible that there are in-
nate perceptual or cognitive principles that might contribute to making
one, or a small number, of actual fit profiles possible or more likely.
Any theory that can provide a bottom-up explanation for why the
probe tone data have the specific forms we observe, has greater ex-
planatory power than a theory that is purely top-down. (To reiterate,
a bottom-up model is one that does not utilize, as variables, the preva-
lences of musical patterns or the prevalences of their associations with
non-musical events; in other words, bottom-up models do not require
a statistical analysis of a musical corpus.)

In the subsequent model descriptions, I shall point out whether they
are bottom-up or top-down: hence I can discuss their explanatory

power as well as their as their predictive power.

I5S
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s.1.2  Lerdahl 88: pitch space model.

Lerdahl’s basic pitch space is a model for tonal distances (Lerdahl, 1988).
It has five levels: (1) tonic, (2) tonic and fifth, (3) major tonic triad, (4)
diatonic major scale, (5) chromatic scale. He points out that the five
levels in this basic pitch space correlate well with the major context’s
probe tone data. He does not, however, suggest a formal model for
the minor context. To address this, it is necessary to create a conceptu-
ally related ‘minor pitch space’ for the minor context. Lerdahl’s model
(and its extension to the minor context) is predictively very effective
(rov(22) = .95). However, it is deficient in terms of explanatory power
because important aspects of the basic pitch space itself are derived from
(or require) top-down explanations.

Lerdahl provides a bottom-up explanation for the first three levels,
which is that the height of a level should correlate with ‘the degree
of sensory consonance of adjacent intervals’ within it (Lerdahl, 2001,
p- 272) (he defines sensory consonance psychoacoustically as a function
of both roughness and clarity of the root (2001, p. 321)). The perfect
fifth in the second level is the most consonant interval, and the major
triad on the third level is the most consonant triad (although the minor
triad is similarly consonant and seems a reasonable alternative). The
fourth level—which is critical for producing high correlations with the
data—is the diatonic major scale. Although Lerdahl gives a number
of bottom-up explanations for privileging the diatonic scale,? he gives
only a top-down explanation for choosing its Ionian (i.e., major) mode,
rather than the Mixolydian or Lydian—he privileges the former due
to its prevalence (2001, p. 41). The predictive power of the basic pitch
space, therefore, relies on a long-term memory explanation, so I class
this model as top-down.

To extend Lerdahl’s model to account for the minor context, Parn-
cutt created a ‘minor pitch space’. This builds up the levels in the same

way, but has a minor triad (rather than a major triad) on the third level,

Balzano’s principles of uniqueness, coherence, and simplicity, and Clough and Dou-
thett’s maximal evenness (Lerdahl, 2001, pp. s0—51 & p. 269).
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and has the harmonic minor scale (rather than the diatonic major scale)
on the fourth level. The resulting major (basic) and harmonic minor
pitch spaces are highly correlated with their respective probe tone data
(rov(22) = .94) (this version of Lerdahl’s model is not included in
Tab. 5.1).

However, in one respect, this harmonic minor pitch space is not in
keeping with Lerdahl’s conceptualization of the basic pitch space be-
cause it uses a non-diatonic scale (the harmonic minor), which does not
have the property of coherence, for the fourth level. It is arguably more
in keeping with Lerdahl’s theory to use the coherent Aeolian mode
(natural minor scale) for the fourth level. This Aeolian pitch space ac-
tually has a higher correlation with the minor context’s data than Parn-
cutt’s harmonic minor version, and it is this Aeolian version of Lerdahl’s
model that I include in Table §.1. This model is predictively extremely
effective (rcv(22) = .95). However, as an essentially top-down model,

it has limited explanatory power.

s.1.3  Butler 89: aggregate context pitch multiplicity model.

Butler (1989) presents his model as utilizing nothing more than short-
term memory, in which case, it is an explanatory bottom-up model.
However, as we shall see, it is actually more likely that this is a top-
down model of a possible long-term memory process.

He models the probe tone ratings simply by the number of times
their pitches occur in each context’s elements (i.e., the chord progres-
sions I, IV=V—I, II-V—I, and VI-V-I). These four elements were ag-
gregated into a chord collection containing IV, II, VI, three Vs, and
four Is. The model counts the number of occurrences of each scale de-
gree in this collection: there are six 1s (in the four Is, the IV, and the
VI); there are zero #1/b2s; there are four 2s (in the three Vs and the
IT); and so on. The resulting counts for the major and minor contexts’
elements fit the data well (rcy(22) = .84). As a short-term memory

model, it is bottom up and provides a meaningful explanation for why,
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given an immediate context element, certain pitches (probes) fit better
than others: currently heard pitches that are also salient in short-term
memory are perceived to fit better than pitches that are not also salient
in short-term memory—we are ‘comfortable’ with, or ‘less surprised’
by, repetition. It also implies that there is not necessarily a stable tonal
hierarchy that serves as a fixed template against which currently heard
pitches are compared.

However, it is questionable whether this model can be considered to
be a short-term memory model. As Krumhansl (1990, p.62) points out,
the different context elements were presented to listeners in separate
blocks, not intermixed within the same block and, for this reason, it
is implausible that short-term memory—which typically completely
decays within 20 seconds (Peterson and Peterson, 1959)—could be re-
sponsible for aggregating the four elements (this point is also amplified
by Woolhouse and Cross (2010)). If Butler’s model is applied to each
context element separately and then averaged over them, the fit with
the probe tone data is substantially poorer (averaged rcy (22) = .74 and
averaged RMSECV = 0.79). So, when corrected to more accurately
reflect short-term memory processes, the model becomes predictively
weak.# Furthermore, Krumhansl and Kessler (1982, p. 343) found the
ratings produced by the differing context elements to be ‘very similar’,
whereas the modelled data produced by the differing context elements
is not.

As pointed out by Parncutt (2011, p. 341), a mechanism that could ac-
count for the aggregation of the four context elements being correlated
with the data would be that the aggregated chord context is a good
summary of the prevalences of chords in Western music. However, this
transforms the model into a purely top-down model, where the fit of
probe tones is solely down to their prevalence. In other words, viewed

from this perspective, Butler’s model is the same as Krumhansl!’s preva-

The only practicable way to perform the cross-validations was to allow for the param-
eters, within each training fold, to vary across the different context elements. There
is, however, no a priori reason why they should be different over different context
elements. If they had have been kept the same, the resulting statistics would have been
even lower.
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lence model; the difference being that Krumbhansl statistically analyses
acorpus, while Butler statistically analyses a set of common cadences—
and both have similar scale degree prevalences. For this reason, I class

this model as top-down.

s.1.4  Parncutt 89: aggregated context pitch class salience model.

Parncutt (1989) adapted Butler’s model in two ways. Firstly, he used a
different aggregation of the contexts’ elements: IV, II, VI, three Vs,
and six Is. The difference is that the tonic triad element is counted six
rather than four times, this is because Parncutt counts the tonic triad
three times for the context element that comprises only the I chord.
Despite Krumhansl’s criticism (1990, p.62) that this does not reproduce
the stimuli used in the experiment, it is actually quite reasonable be-
cause the ratings produced by the four context elements were aver-
aged to produce the final sets of probe tone data (so, counting the I el-
ement three times, gives it equivalent weight to each of the other three
elements (Parncutt, 1989, p. 159)). Secondly, he included not just the
notated pitches in the context elements, but also their pitch class (or
chroma) salience profiles. The precise mechanism by which the pitch
class saliences are generated for a harmonic complex tone is detailed in
Parncutt (1989, Sec. 4.4.2). In summary, the salience of any given pitch
class is calculated from a combination of the weights of harmonics and
subharmonics with corresponding pitch classes—these subharmonics
and harmonics extending from each notated pitch. The subharmonics
are, overall, weighted significantly higher than the harmonic pitches,
so this is primarily a virtual (subharmonic) pitch model.

The model produces one of the best fits to the data (rcy (22) = .95),
but it suffers from the same problems as Butler’s: it cannot really be
interpreted as a model of short-term memory processes; rather, it is a
model of a possible long-term memory process, where the aggregated
cadences serve as proxies for prevalent chords in Western music. So

the model has limited explanatory scope—although it may explain the
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data given the prevalence of a small set of chords, it does not explain

why those chords, in particular, are prevalent.

5.1.5  Leman oo: short-term memory model.

Leman (2000) utilizes a short-term memory model whose inputs are de-
rived from a model of the auditory system. The latter comprises forty
bandpass filters, half-wave rectification and simulations of neural firings
induced by the filters, and periodicity detection (autocorrelation) ap-
plied to those firings. Autocorrelation automatically detects frequen-
cies that are subharmonics of the input frequencies. In this respect it
is, therefore, similar to the above Parncutt 89 model. The resulting sig-
nals, produced in response to the context element, are stored in a short-
term (echoic) memory model which decays over time and, at the time
at which the probe is presented, this represents the ‘global image’ of the
context element. The length of the decay (the half-life of the signal) is
a free parameter. This global image is correlated with a ‘local image’
produced by each of the 12 probe tones (for each of the four context
elements in both major and minor). The twelve correlation values (for
the twelve probes) are averaged over the four major and four minor
context elements (in the same way as Krumhansl’s data), and these are
used to model the probe tone data.

The model produces correlations towards the lower end of those dis-
cussed here (r(10) = .85 for major and r(10) = .83 for minor). How-
ever, Leman chooses a decay parameter of 1.5 seconds, when his Table 3
shows that the maximum decay value tested (s seconds) would have fit
the probe tone data better (he chooses the lower time value because fit-
ting the probe tone data is not his only criterion). With the § second
decay time, the correlations improve, but only slightly (r(10) = .87 for
major and r(10) = .84).

Because of the nonlinear decay time parameter, and without easy ac-
cess to the original model, I have not calculated its cross-validation cor-

relations, and root mean squared errors of cross-validation. However,
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since the r(22) statistics will be lower than .87 (which is the highest
r(10) statistic gained by the § second decay time model of the major
context’s data), it is safe to conclude that, in terms of prediction, this is
one of the worst performing models and probably no better than the

‘basic triad’ benchmark model.

5.1.6  Krumhansl goa: consonance model.

Krumbhansl’s (1990) other model is bottom-up and attempts to provide
a more substantive explanation than the prevalence model. It also pre-
dicts rather poorly (rcv(22) = .57). This model hypothesizes that the
probe tone fits are due to the consonance of the corresponding pitch
class and the tonic pitch class (the first scale degree). Clearly, this model
will struggle to obtain high correlations with the empirical data because
it producesidentical predictions for the major and minor contexts (they
both have the same tonic pitch class).

Krumbhansl uses consonance values that are the averages of a vari-
ety of bottom-up models of consonance (Malmberg (1918), Helmholtz
(1877), Hutchinson and Knopoff (1978), and Kameoka and Kuriyagawa
(1969)), and one set of empirically derived consonance ratings (Malm-
berg (1918)). This means the model, as a whole, is essentially bottom-
up and has wide explanatory scope—it provides an explanation for the
probe tone ratings based on innate perceptual processes. However, it is
also worth noting that—as Krumhansl points out (1990, p. 55)—there
is something of a mismatch between the model’s explanation and the
experimental procedure used to get the empirical data: the probe tones
were played after the context-setting chords, not simultaneously, so
harmonic consonance/dissonance does not play a direct role in the ex-
perimental stimuli. For this model to make sense, it must be addition-
ally assumed that the listeners were mentally simulating harmonic in-
tervals comprising the tonic and the probe, and then determining their

consonance/dissonance values either directly or from long-term mem-
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ory. This is plausible, given the musical experience of the participants,

but it is an indirect explanation.

5.1.7  Smith 97: cumulative consonance model.

Like Krumbhansl, Smith (1997) also uses consonance—but in a different
way—to explain the data from the bottom up. He takes a tonic pitch
and finds a second pitch with the greatest consonance. To these two
pitches, he then finds the third pitch that makes the most consonant
three-tone chord (in all cases, consonance is calculated as the aggregate
dyadic consonance, which is the sum of the consonances of all interval
classes in the chord (Huron, 1994)). To this three tone chord, he finds
the pitch of the fourth tone that creates the most consonant four-tone
chord. And so forth, until all 12 pitch classes are utilized.

If the first pitch is C, the second pitch is G, and the third pitch is
either E or Eb (the major and minor triads have equal aggregate con-
sonance because they contain the same three interval classes, 3, 4, and
5). Because there are two possible three-tone chords, the resulting cu-
mulatively constructed scales bifurcate at this juncture. For the major
triad C—E—G, the fourth tone is A; for the minor triad C—Eb—G, the
fourth pitch is Bb. Continuing this process, leads to the following two
sequences of pitch classes: C-G—E—A-D—F/B—Ab—Gb/Bb—Db/Eb, and
C—G—Eb—Bv—F-D/A»-B-D»/A—E/Gb (where X/Y denotes that X and
Y have the same ranking). When each pitch class is assigned a value ac-
cording to its ranking (e.g., in the first sequence, C =1, G =2, E = 3,
A=4,D=5,F =6.5 B = 6.5 Ab = 8, etc.), they provide a predic-
tively effective model of their respective major and minor probe tone
ratings (rcy (22) = .87).

This model has reasonable predictive power (though its predictive
performance is towards the lower end of the models discussed here)
and, like Krumhansl’s 9oa consonance model, has potential for good
explanatory power if the consonance values it uses are derived from

a psychoacoustic or other bottom-up model. Smith actually uses in-
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terval class consonance values derived by Huron (1994) from empir-
ical data collected by Kameoka and Kuriyagawa (1969), Hutchinson
and Knopoff (1978), and Malmberg (1918), not from modelled data.
Using empirical data means that the consonance values are likely to
be correct and do not have to rely upon possibly inaccurate mod-
els (Huron, 1994). However, this weakens the explanatory scope of
Smith’s model—ideally, a bottom-up consonance model would be sub-
stituted at some stage. Like Krumhansl’s consonance model, this model
also suffers from the indirect relationship between harmonic conso-
nance (the model’s variables) and melodic fit (what the experiment ac-

tually measures).

5.1.8  Parncutt 88/11 & 94: virtual pitch class models.

Parncutt provides the first predictively effective bottom-up model I
have described so far (rcv(22) = .93). It builds on Parncutt’s (1988)
model of virtual pitch classes, and the concept of ‘tonic as triad’, which
is explored in Parncutt (2011). (The model described here was first pre-
sented in 2011, though aspects of it date back to 1988.) This concept
treats the tonic as a triad—a major or minor chord built upon the tonic
pitch class—and it can be seen as a break from a more traditional con-
cept of ‘tonic as pitch class’.5 For example, the tonic of the key C major
is not the pitch class C, but the triad Cmaj; the tonic of the key Bb mi-
nor is not the pitch class B, but the triad Bbmin.

The tonic as triad concept implies that the context-setting
elements—whose purpose is to induce a strongly defined key and all
of which end in the tonic triad—can be effectively represented by the
tonic triad. For instance, the cadence Fmaj—Gmaj—Cmaj is used to es-
tablish the chord Cmaj as a strong and stable tonic chord, so it is unsur-
prising if our attention is more clearly focused on the Cmaj chord than
on the preceding chords. Indeed, even if the elements were, for ex-

ample, Fmaj—Gmaj, or only G7, even though the Cmaj is not actually

s An early description of the tonic as triad concept is given in Wilding-White (1961).
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played it is still easy to imagine it as the most expected (and best fitting)
continuation. The tonic triad, therefore, effectively summarizes our
response to the context-setting elements used in the experiment; im-
portantly, it also effectively summarizes our response to tonal context-
setting devices in general. Henceforward, this tonic triad is simply re-
ferred to as the tonic triad context.

The probe tone ratings are modelled from the weights of the virtual
pitches that are internally generated in response to the notated pitches
in the tonic triad context. (By internally generated, I mean that vir-
tual pitches are produced by some aspect of the auditory or cognitive
system—they are not physically present in the stimulus prior to enter-
ing the ear.) Virtual pitches are typically modelled to occur at subhar-
monics below the notated pitch (the first N subharmonics of a notated
pitch with frequency f occur at frequencies f, f/2,f/3,...,f/N).
There is well-established evidence that virtual pitches are generated
from physical pitches—for example, if the fundamental is physically
removed from a harmonic complex tone, its pitch still heard as cor-
responding to that missing fundamental, and combination tones pro-
duced by multiple sine waves are clearly audible phenomena. How-
ever, the extent to which Hcrs (or octs) produce salient virtual pitches
at pitch classes different to that of their fundamental is less obviously
demonstrable.

In Parncutt’s model, the pitch of each subharmonic is modelled in a
categorical fashion; that is, it is categorized by the pitch class it is closest
to. For example, the seventh subharmonic below C4 corresponds to a
pitch 31 cents above D1, but is modelled by the pitch class (category)
D. The model, therefore, hypothesizes that pitch discrepancies of the
order of a third of a semitone have no impact on whether that pitch is
mentally categorized as a specific chromatic pitch class.® For any given

notated pitch, its virtual pitch classes are weighted: the virtual pitch

Parncutt (1988, p. 70) argues such pitch differences can be ignored because the sev-
enth harmonic of an Het can be mistuned by approximately half a semitone before it
sticks out; conversely, I would suggest that when musicians’ pitches go off by more
than about 20 cents, the notes are generally perceived as out-of-tune, and do not
comfortably belong to their intended (or any other) chromatic pitch class category.
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class corresponding to the notated pitch class itself has weight 10; the
virtual pitch class seven semitones (a perfect fifth) below has weight s;
the virtual pitch class four semitones (a major third) below has weight
3; the virtual pitch class ten semitones (a minor seventh) below has
weight 2; the virtual pitch class two semitones (a major second) be-
low has weight 1. These weights are justified on the grounds that they
are numerically simple and are approximately proportional to the val-
ues achieved by taking a subharmonic series with amplitudes of i =955,
where i is the number of the subharmonic (a typical loudness spectrum
for the harmonics produced by musical instruments), and summing the
amplitudes for all subharmonics with the same pitch class (Parncutt,
1988, p. 74).

These virtual pitch classes, and their weights, are applied to the three
notated pitches in the major or minor tonic triad; when virtual pitch
classes from different notated pitches are the same, their weights are
summed to model the overall virtual pitch class weights produced by a
tonic triad. For example, in the chord Cmaj, the notated pitch C con-
tributes a virtual pitch class C of weight 10, the notated pitch G con-
tributes a virtual pitch class C of weight s, the notated pitch E con-
tributes a virtual pitch class C of weight 3; the three are combined to
give a virtual pitch class C with a total weight of 18. The two sets of
virtual pitch class weights for a major and minor triad closely fit their
respective probe tone data, and do so with a plausible bottom-up (psy-
choacoustic) model.

A natural explanation provided by this model would appear to be
that the greater the commonality of the pitches evoked by the tonic
triad (which represents the context) and those evoked by the probe, the
greater the perceived fit. However, in Parncutt’s model (which is des-
ignated Parncutt 88/11a in Table 5.1), the probe tone itself is modelled
with a single pitch, rather than as a collection of virtual pitch classes.
It is not clear why the tonic triad context should evoke virtual pitches,
but the probe does not; the probe’s missing virtual pitches seems like a

conceptual inconsistency in this model. If the probe tone is given vir-

165§



166

A MODEL OF THE PROBE TONE DATA AND SCALIC TONALITY

tual pitch classes—in the same way as the tonic triad context—the re-
sulting predictions are still good, but slightly less accurate (rcv(22) =
:90). This is shown as Parncutt 88/11b in Table s.1.

It is worth pointing out that in an earlier model, Parncutt (1994) uti-
lized a similar virtual pitch class model that included all of the chords
played in each context-setting element, but adjusted their weights to
account for short-term memory decay (similar to that described for Le-
man 00). The memory half-life was a nonlinear parameter optimized to
0.2§ seconds; this means the model incorporates the virtual pitch classes
of the final tonic, and—to a lesser degree—the virtual pitch classes of
the preceding chords. Interestingly, this model performs well for each
context-setting element (unlike Butler 89 and Parncutt 89) and, when
averaged across the elements, has a slightly better correlation than the
Parncutt 88/11¢ model—as shown in Table 5.1, where it is designated
Parncutt 94. I was unable to calculate the cross-validation statistics be-
cause I do not have access to the original model, but they are unlikely to
be significantly better than Parncutt 88/11a. These results suggest that
utilizing all the chords in a given context-setting element works well
for predicting the response specific to that element, but using just the
tonic triad is sufficient for capturing the effects of harmonic tonality
more generally; that is, averaged over a broader range of chord pro-
gressions.

The bottom-up explanation provided by these models (pitch class
commonality of the context and probe) can be generalized beyond the
experimental setup, in that we might imagine that, when listening to
a piece of music, we mentally test the virtual pitch class commonal-
ity of a variety of potential tonic pitches or tonic triads to the ele-
ments held in short-term memory. The best-fitting pitch functions as
the local melodic tonic, the best-fitting triad functions as the local tonic
triad. This concept was utilized in Parncutt and Prem (2008) and Parn-
cutt (2011) as a possible explanation for which diatonic modes were
favoured in medieval music; though, in these examples, the above-

mentioned inconsistency applies in that virtual pitch classes are given
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only to one half of the comparison—the (context) diatonic scale’s no-
tated pitch classes have virtual pitches, the (probe) candidate tonics’ no-
tated pitch classes do not. In Section s.3, I explore this notion in greater
depth and provide the modelled fits generated by a variety of scales us-
ing an approach that is consistent with respect to the context and the

probe.

5.1.9  Milne 12: spectral pitch class similarity models.

For my models, I use Parncutt’s central insight of the tonic as triad,
but I use a different measure of the similarity between the probe tones
and this tonic—I use spectral pitch class similarity rather than virtual pitch
class commonality. This is the same as the method used in Chapter 4,
except that I embed the spectral pitches as pitch classes. Pitch classes
are used rather than pitches because I am interested in modelling the
perceived distances of pitch classes. For example, I want to know the
distance between the notes C and F, regardless of whether the former
is above or below the latter.

Like the model in Chapter 4, this one is also parameterized by a roll-
off p that models the relative importance of higher partials (the am-
plitude of the ith harmonic is given by i), and a pitch difference li-
men of o cents that models the inaccuracy of pitch perception (for a
full mathematical definition of the model, see Appendix F; the maTLAB
routines can be downloaded from http://www.dynamictonality.com/
probe_tone_files/).

In each of my three models I allow for different weightings of the
tonic triads’ pitches. In model a, I give all their pitches the same
weights—that is, the saliences of the partials in its three pitch classes, as
previously determined by p, are multiplied by 1 and so left unchanged.
In model b, two weightings are available—the tonic triads’ roots have
unity weight, while the remaining pitch classes have a weight of w,
which takes a value between 0 and 1; for example, if the tonic triads are

Cmaj and Cmin, the saliences of the partials of the pitch class C are left
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unchanged, while the saliences of the partials of all the remaining pitch
classes are multiplied by w. In model ¢, there are still two weightings,
but this time the unity weight is applied to the roots of the major and
minor tonics and also the third of the minor tonic, while the weighting
of w is applied to the remaining pitch classes; for example, if the tonics
are Cmaj and Cmin, the weights of the partials of the pitch classes C
and Eb are unchanged, while the weights of the remaining pitch classes
are multiplied by w.

Model a is a pure tonic-as-triad model (all its three pitch classes are
equally weighted), but the separate weightings in b and ¢ allow these
models to be situated in continua between tonic-as-triad and tonic-as-
pitch models. This is useful because it is plausible that, of the tonic
triad’s pitches, the tonic pitch is the most salient and tonic-like. Model ¢
treats the third of the minor triad as an additional root and as a frequent
substitute tonic. This is in accord with musical practice, which often
treats the third of the minor chord as a stable root (minor chords in
first inversion are not treated as dissonances) and, in minor keys, mod-
ulations to the relative relative major are very common (the tonic of
the relative major is the third of the minor tonic’s triad).

Therefore, in addition to the intercept and slope parameters (which
are part of every model discussed so far due to the process of obtain-
ing correlation values),” model a has two additional nonlinear param-
eters (p and o), while models b and ¢ have three additional nonlinear
parameters (p, o, and w). This nonlinearity means the parameter values
cannot be optimized analytically, so I used MaTLAB’s fmincon routine to
optimize them iteratively. I optimized each model so as to minimize
the sum of squared errors between its predictions and the probe tone
data—this is the same for all the models discussed in this chapter, be-
cause obtaining correlation values automatically chooses intercept and

slope values that minimize the sum of squared errors.

The correlation coefficient between a model’s data and the empirical data is given by

VE-y) §-y)/(y-5) (y —¥), where is the transpose operator which turns
a column vector into a row vector, y is a column vector of the empirical data, y is a
column vector all of whose entries are the mean of the empirical data and, critically, y
is a column vector of the model’s predictions after having been fitted by simple linear
regression.
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Figure 5.2: The circles o show the probe tone data, the upwards pointing tri-
angles A show the data as modelled by model a, the rightwards
pointing triangles > show the data as modelled by model b, the
downwards pointing triangles V show the data as modelled by
model c.

The optimized parameter values all seem plausible: for model a,
p=0.52and ¢ = 5.71; for model b, p = 0.77, ¢ = 6.99, and & = 0.63;
for model ¢, p = 0.67, 6 = 5.95, and @ = 0.50.% The values of p are
all similar to the loudnesses of partials produced by stringed instru-
ments (a sawtooth wave, which is often used to synthesize string and
brass instruments, has a pressure roll-off equivalent to a p of 1 and, us-
ing Steven’s law, this approximates to a loudness roll-off equivalent to
p = 0.6). Under experimental conditions, the frequency difference li-
men (just noticeable difference) corresponds to approximately 3 cents,
which would be modelled by a smoothing width of 3 cents (as ex-
plained in App. A). In a musical experiment like the one being mod-
elled, we would expect the smoothing to be somewhat wider, and the
value of around 6 cents seems plausible. Both p and & are similar to
those obtained in Chapter 4 (which were 0.42 and 10.28, respectively).
Their similarity is demonstrated by the fact that utilizing them instead
has only a small negative impact on the resulting fit (reducing the cor-
relation values by approximately 0.003). This also indicates that the
model is robust over such changes to these parameters.

The optimized spectral pitch class similarity models are predictively

effective—for models a, b, and ¢, respectively, the cross-validation

With iterative optimization, there is always a danger that a local rather than global
minimum of sum of squared errors is found; I tried a number of different start val-
ues for the parameters, and the optimization routine always converged to the same
parameter values so I am confident they do represent the global optimum.
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statistics are rov(22) = .91, rav(22) = .92, and roy(22) = .96. The
predictions made by the three models are shown in Figure 5.2. They
also have great explanatory power—like Parncutt’s virtual pitch class
model, we are using psychoacoustic principles to explain the specific
shape taken by the probe tone data.

However, there is one aspect of these models that does not bear a di-
rect relationship with the experimental procedure. In the experiment,
the stimuli were all octs, not HcTs. In my models, I use et (if octs are
used as variables, the models perform very poorly). (This is also the case
in Krumhansl’s and Smith’s consonance models, because their conso-
nance values are all derived from Hcts.) There are at least four possible
explanations that can bridge the gap between the model’s use of HcTs
and the experiment’s use of ocrts. Firstly, nonlinearities in the auditory
system may add harmonics to the ocrs (e.g., a combination tone of any
two adjacent ocr partials with frequencies f and 2f, has a frequency
at 3 f—a third harmonic). Secondly, when listeners were making their
judgements of fit, the representations of the tonic triad context and
probe they retrieved from short-term memory may have been ‘contam-
inated’ by long-term representations of HcTs with the same pitch (ucts
being much more familiar). Thirdly, listeners may have recalled the lev-
els of fit, stored in long-term memory, of equivalently sized Hcr inter-
vals. Fourthly, listeners’ judgements of the fit of the probe and the tonic
triad context are due to musical prevalence, but these musical preva-
lences are themselves a function of the psychoacoustic process mod-
elled here: specifically, composers usually work with HCTs (not ocrs)
and build up a set of tonal prevalences based upon their desire to follow
their innate and universal perceptual processes (and ‘consumers’ sup-
port music that accords with their similar innate processes). Although
the last explanatory bridge includes a top-down component, it is still
fully explanatory because the bottom-up (spectral pitch class similar-

ity) component explains why the fit profiles take the specific form they
do.
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Krumbhansl interprets the probe tone profiles as representing learned
hierarchies—templates—of the differing fits of all twelve pitch classes
to a previously identified tonal centre; when listening to a piece of mu-
sic, we compare the prevalences of pitches held in short-term memory
with the profiles of all twelve transpositions of the major and minor
templates held in long-term memory (this is the process modelled by
Toiviainen and Krumhansl (2003) to predict the perceived key of a piece
of music—dynamically—as it progresses). The hierarchy whose pro-
file most closely matches the short-term pitch prevalences then induces
its levels of fit and stability on all twelve pitch classes. At any given
moment, therefore, our perceptions of pitch class fit and stability are
completely determined by one of these fixed templates.

However, if there is a bottom-up explanation for the probe tone data,
templates are no longer necessary to explain the origin of perceived fit
and stability. Instead, we can hypothesize that, given a collection of
pitches in short-term memory, we are able to mentally ‘calculate’ or
‘feel’ which triad is the best fitting, and that this triad is then perceived
as the most stable and tonic-like. This is a somewhat more dynamic
conception of tonal perception, in that the tonic and its relationship to
all twelve pitch classes is not assumed to be fixed: rather, the tonic-ness
of any chord is assessed constantly on the basis of the pitch classes that
have been recently played. Indeed, Butler (1989), Leman (2000), and
Parncutt (2011) have all argued that processes based purely upon short-
term memory play a role in our assessment of fit. For instance, Parn-
cutt (2011, pp. 338—339) points out that, although experimental obser-
vations of probe tone data are fairly consistent over differing context-
setting elements, they are not identical.

Having said that, it would be implausible to completely dismiss the
impact of long-term memory. It is likely that certain scales (e.g., the
diatonic and harmonic minor) are so commonly used that we learn

where the best fitting chords are without having to mentally assess it
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every time, and that composers’ usages of chords follow these innate
tendencies, which further amplifies their patterns of fit. It is also likely
that we become familiar with specific sequences (ordered sets) of pitch
classes and chords, which are able to most clearly exemplify the pat-
terns of fit implied by a scale. For example, as I discuss in the examples
below, movements from chords containing pitch classes with low fit
to those with high fit may provide particularly effective resolutions,
which strongly define a tonic. This means that any long-term memory
templates that induce stability, resolution, activity, and so forth, may
be quite diverse in form, consisting of a variety of pitch and chord-
based fragments rather than just two overarching hierarchies.

Even allowing for such long-term memory processes in bottom-
up theories, a key difference still remains: top-down (template) the-
ories cannot explain the origin of the templates themselves, whereas
bottom-up (template-independent) theories have a causal explanation
for why certain chords and pitches function the way they do, and for
the specific form taken by any templates that may arise through the
prevalence of certain scales, melodies, and chord progressions that ex-
ploit innate perceptual processes for aesthetic ends. In Figure 5.3, I
replicate Figure 2.4, but substitute the processes and variables relevant
to this experiment. This allows the causal flows implied by these dif-
ferent types of models to be clearly illustrated.

A bottom-up model that rejects the exclusivity of long-term mem-
ory templates has an important implication: we can predict tonics on
the basis of specific contexts such as scales, and it enables us to talk of a
scalic tonality whereby any unique collection of pitch classes has unique
tonal implications—even if not previously heard. I explore this in the

following section.

5.3 SCALIC TONALITY

In this section, I describe a method to predict the levels of fit and sta-

bility for pitches and chords in any given scale. The method can be
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(template-independent)
models. This type includes Parncutt
94, Leman oo, Parncutt 88/11,
Milne 12. Pitch similarity refers
to the perceived similarity of the
context and the probes. The different
models use different methods for
determining their pitch contents and
similarities. Tonal hierarchies (or
other templates) may be hypothesized

to play a causal role. If composers
provide a causal link from perception
to the repertoire, the templates are,
themselves, a function of bottom-up
processes.

Figure 5.3: The causal paths implied by different types of model. In both cases,
measurable variables are in the top row, latent mental processes
(which we may attempt to model) are in the middle row, and the
resulting perception (e.g., ‘degree of fit’, which may be reported
as empirical data) is in the bottom row. Note that top-down and
bottom-up do not refer to the direction taken by the arrows (causal
paths); they refer to whether or not previous music events is an input
variable to the perceptual process.

thought of as a reversal of that used to model the probe tone data. For
the probe tone data, Imodelled the fit of the probes by calculating their
spectral pitch class similarity to a weighted major or minor triad that
represents the tonal centre (and was also the final chord played in all of
the contexts). To reverse this, I start with a ‘context’ scale and model
the fit of a variety of ‘probe’ pitch classes and ‘probe’ major and minor
chords to this scale.

I hypothesize that scale pitches with low fit may be heard as more
musically tense or active (in need of resolution) than scale pitches with
high fit (which may serve as melodic tonics), and major and minor
chords with the highest fits may tend to function as that scale’s tonic

triad. Parncutt uses this technique to determine the pitch class tonics
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for the diatonic scale (Parncutt and Prem, 2008; Parncutt, 2011) in me-
dieval music, though his approach is inconsistent in the same way as
in the Parncutt 88/11a model (he measures the commonality of the
context scale pitches and the probes but, while the contextual scale
pitches include virtual pitch classes, the candidate tonic probes do not).
In the following examples, I additionally look for tonic triads as well
as pitch classes—I use the spectral pitch class similarity of contextual
scale pitches and probe pitches, or probe triads, to model their tonic-
ness. Furthermore, I model the context and probes consistently—their
pitches have identical harmonic spectra. This allows us to explore the
profiles of fit produced by a variety of scales. In every case, I used
p = 0.67 and 0 = 5.95, as optimized for model ¢ (I could have cho-
sen the values as optimized for any of the three models, but model ¢’s
values fall between those of models a and b, so seemed a sensible choice;
anyway, the results are robust over the three sets of values).

For this ‘reverse’ model to make sense requires that we consider the
scales as known entities (in either short-term or long-term memory).
For a scale to be known, it must be perceived as a distinct selection of
pitches or as a specific subset of a chromatic gamut of pitch classes. A
composer or performer aids this by ensuring all scale pitch classes are
played over a stretch of time short enough for them all to be main-
tained in short-term memory, and by utilizing scales that have rela-
tively simple and regular structures such as well-formed scales.® Long-
term memory is also likely to play an important role in that certain
scales are learned through repetitive exposure.

In this chapter, I have previously used uppercase Roman numeral
notation, so IV=V-I in a major key means all chords are major, while
IV-V-I in a minor key means the first and last chords are minor.’® In

the following sections I am dealing with specific scales, so I use upper

Well-formed scales are defined in Sec. 3.6.2. They comprise just two step sizes, evenly
distributed, and are exempliﬁed by the diatonic and pentatonic scales. They can also
be generalized to microtonal forms with a variety of structures (Erlich, 2006; Milne
et al., 2011a).

In a minor key, the V chord is taken to be major because this is much more common
than a minor V.
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case to denote major triads and lower case to denote minor. For exam-

ple, the above minor tonality cadence is now denoted iv—V—i.

5.3.1  Fit Profiles for 12-TET Scales

In this section, I consider a variety of scales that can be thought of as
subsets of the twelve pitch classes of twelve-tone equal temperament.
This may seem anachronistic given that many of the scales discussed
in this subsection probably had origins prior to the widespread usage
of 12-TeT. However, there is little evidence to suggest that relatively
small differences in tuning (e.g., between the meantone tunings preva-
lent at the birth of tonality and the strict twelve-tone equal tunings
of much contemporary auto-tuned popular music) has a strong influ-
ence on basic tonal effects; for example, the strong closure induced by a
IV—V'—I cadence seems invariant across these settings.’* Furthermore,
I demonstrate in Section 5.3.2 that my model produces similar results
for the diatonic scale tuned to 12-TeT and to quarter-comma meantone.
In this latter section, I also explore some interesting tonal effects pro-
duced when the tuning, and resulting scales, are radically different to

those obtained in 12-TET.

5.3.1.1  Major (Guidonian) hexachord.

This six-tone scale formed the basis of much medieval music theory
and pedagogy (Berger, 1987). It is equivalent to a diatonic scale with the
fourth or seventh scale degree missing. For instance the C hexachord
contains the pitches C, D, E, F, G, A. There is no B or Bb to fill the
gap between A and C. In modal music, the note used to fill the gap
was either a hard B (a Bl) or a soft B (a Bb).’* The choice of hard or soft
was not notated but was made by performers to avoid simultaneous or

melodic tritones—this practice is called musica ficta (Berger, 1987).

Although basic tonal effects may be invariant, equal temperaments do provide certain
advantages because they facilitate unlimited modulation, and enharmonic substitu-
tion and modulation. In that sense, they open up greater compositional resources.
The shape of the natural and flat symbols derive from two different ways of writing
the letter ‘b’
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Figure 5.4: Modelled pitch class and chord fit with the Guidonian hexachord.

In Figure 5.4, I will assume that pitch class o corresponds to C. Figure
s.4a shows that the pitch classes E and F (4 and 5), which are a semitone
apart, are the least well-fitting of the hexachord tones. In Gregorian
chant, the finalis (final pitch) was D, E, F, or G (corresponding to the
modes protus, deuterus, tritus, and tetrardus). Of these modes, Figure §.4a
shows that the pitch classes with the highest fit are at D and G (2 and
7), which suggests these two modes have the most stable final pitches.
This tallies with statistical surveys, referenced in Parncutt (2011), which
indicate these two modes are the most prevalent. (The relative fits of D
and G are even higher when the hexachord has a Pythagorean tuning
in which all its fifths have the frequency ratio 3/2—such tunings were
prevalent prior to the fifteenth century (Lindley, 2013).)

When we look at the modelled fit of each of the hexachord’s ma-
jor and minor triads with all the pitches in the hexachord, the results
are quite different (Figure 5.4b). Here, every major or minor chord has
identical fit with this scale. It is as if the Guidonian hexachord—when
used for major/minor triad harmony—has no identifiable best-fitting
tonic chord. As shown in the next example, all of this changes when
that missing seventh degree is specified, thereby producing a specific

diatonic scale.

5.3.1.2  Diatonic major scale.

The diatonic scale—regardless of its mode—has numerous properties

that make it perceptually and musically useful. A number of those
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Figure 5.5: Modelled pitch class and chord fit with the major scale..

properties follow from its well-formedness (Wilson, 1975; Carey and
Clampitt, 1989) such as Myhill’s property, maximal evenness, unique-
ness, coherence, and transpositional simplicity (space precludes ex-
plaining these properties here—they are summarized in Prechtl et al.
(2012)). Furthermore, it contains numerous consonant intervals (ap-
proximations of low integer frequency ratios), and supports a major
or minor triad on all but one of its scale degrees. For tonal-harmonic
music, the major scale (e.g., C, D, E, F, G, A, B) is the most impor-
tant and prevalent mode of the diatonic scale. The only other mode
that comes close is the Aeolian (e.g., A, B, C, D, E, F, G, or C, D, Eb,
F, G, Ab, Bb)—also known as the natural minor scale—which is one of
the three scale forms associated with the minor scale (the other two are
the harmonic minor, in which the Aeolian’s seventh degree is sharp-
ened, and the ascending melodic minor in which the sixth and seventh
degrees are sharpened).

The addition of a seventh tone to the hexachord—thereby making
a diatonic scale—makes the fits of its triads more heterogeneous. Fig-
ure 5.sb illustrates this with the diatonic major scale—note how the
Ionian and Aeolian tonics (roots on pitch classes o and 9, respectively)
are modelled as having greater fit than all the remaining triads. This,
correctly, suggests they are the most appropriate tonics of the diatonic
scale—the major scale’s tonic and the natural minor scale’s tonic, re-
spectively. This is also reflected in the common usage of the subme-
diant chord (vi) as a substitute for the tonic (I) in deceptive cadences

(Piston and Devoto 1987, p. 191; Macpherson 1920, p. 106), and the
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frequent modulation of minor keys to their relative major (Piston and
Devoto, 1987, p. 61). It is also interesting to observe that the fourth
and seventh degrees of the major scale have lower fit than the remain-
ing tones. This possibly explains why these two scale degrees function
as leading tones in tonal-harmonic music—scale degree 7 resolving to
1,and 4 resolving to 3—for example, both these motions occur in the
dominant seventh to tonic cadence (i.e., V'—I).

There are five aspects of major-minor tonality not obviously ex-
plained by the above fit profiles: (a) in the diatonic scale, the Ionian
tonic is privileged over the Aeolian tonic; (b) in the major scale, the
seventh scale degree is typically heard as more active—more in need
of resolution—than the fourth degree; (c) the importance of the V—
I cadence; (d) the activity of the seventh degree of the major scale is
significantly reduced when it is the fifth of the iii (mediant) chord in
comparison to when it is the third of the V (dominant) chord. I pro-
pose two additional hypotheses that may account for these features.

A hypothesis to explain the first two features is that the strongest
sense of harmonic resolution is induced when a bad-fitting tone moves
by semitone to the root of a best-fitting chord. In the white-note dia-
tonic scale, there are two best-fitting triads (Cmaj and Amin) and two
worst-fitting pitch classes (B and F). This means that only Cmaj has a
root (C) that can be approached by semitone from a worst-fitting pitch
class (B); for Amin, the root (A) cannot be approached, by semitone,
by either B or F. If we assume that this provides an in-built advantage
to the Ionian mode, this introduces an interesting feedback effect. Let
us now weight the pitch class C a little higher than the other tones to
reflect its status as the root of a best-fitting triad that is approached, by
semitone, by a worst-fitting pitch—the results of this are illustrated in
Figure 5.6 where the weight of C is twice that of the other tones (pos-
sibly an extreme value, but it demonstrates the effect). Although the
pitch class C is a member of both the C major and A minor tonics, Fig-
ure 5.6b shows that increasing its weight disproportionately enhances

the fit of the triad Cmaj over the triad Amin. It also decreases the fit of
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Figure 5.6: Modelled pitch class and chord fit with a major scale with a
double-weighted tonic pitch class.

B (Figure 5.6a). It seems likely, therefore, that this results in a positive
feedback loop: I hypothesize that the resolution of the poor-fitting B
to the root of Cmaj increases the perceived fit of C; I model this by giv-
ing the C a greater weight, and this disproportionately increases the fit
of Cmaj over Amin, and reduces the fit of B; this is likely to result in an
even stronger resolution from B to the root of Cmaj (B is worse fitting
than before, and Cmaj is better fitting) and this, in turn, will further
enhance the fit of pitch class C and thereby enhance the fit of Cmaj
over Amin, and so on in a positive feedback loop.

The third feature—the importance of the V-I cadence, which is typ-
ically described as the ‘strongest’ or ‘most powerful’ progression in
tonal music (Piston and Devoto 1987, p. 21; Pratt 1996, p. 9)—also fol-
lows, in part, from the same hypothesis that resolution is enhanced by
a low-fit pitch moving to the root of a high-fit triad. This favours the
resolutions VI or vii°—I (which contain the scale degrees 7—1—a res-
olution to the tonic’s root), over IV—TI or ii—I (which contain the scale
degrees 4—3—a resolution to the tonic’s third). It is also interesting to
note that V7—I and vii°—I, which provide the strongest tonal resolu-
tions, contain both 7—1 and 4-3.

However, this suggests that iii—I would also provide an effective ca-
dence because it too has the worst-fitting 7 resolving to the root of 1.
But such cadences are rare (Piston and Devoto, 1987, p. 21), and the ac-

tivity of the seventh degree is typically felt to be much reduced when it
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Figure 5.7: Modelled pitch class fits with unweighted major and minor triads.

is the fifth of the iii chord—a common use of the iii chord is to harmo-
nize the seventh degree when it it is descending to the sixth (Macpher-
son, 1920, p. 113). This may be explained by a second hypothesis, which
is that we need to consider the fit of pitches not just in relation to their
scalic context, but also in relation to their local harmonic (chordal)
context. Against the context of a major or minor chord, the third is
the worst-fitting pitch—see Figure 5.7 (all triad pitches are equally
weighted), which shows that both chords’ thirds (pitch class 4 for the
major triad, and 3 for the minor) have lower fit than the root and fifth
(pitch classes o and 7). This suggests that the higher fit of scale degree 7
in iii—due to it being the chord’s fifth—makes it less active; while the
lower fit of 7 in V—due to it being the chord’s third—makes it more
active. This hypothesis, therefore, explains the greater stability of the
seventh degree in iii compared to V, and completes the explanation for
the importance of the V-1, V'—1, and vii°~I cadences.

These additional hypotheses (the importance of semitone resolutions
from poor-fit tones to roots of good-fit triads, and the decreased fit of
pitches that are the thirds of chords) seem promising; in future work, I
hope to precisely specify these effects, and use them to model responses

to a variety of chord progressions and scalic contexts.

5.3.1.3  Harmonic minor scale.

An important aspect of the minor tonality is that the harmonic minor
scale is favoured over the diatonic natural minor scale—particularly in

common practice cadences where (the harmonic minor) V—i is nearly
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Figure 5.8: Modelled pitch class and chord fit with the harmonic minor scale.

always used in preference to (natural minor) v—i (Piston and Devoto,
1987, p. 39). The harmonic minor scale is equivalent to the Aeolian
mode with a sharpened seventh degree. This change has an important
effect on the balance of chordal fits—and goes some way to explaining
why this scale forms the basis of minor tonality in Western music.
Figure 5.8a shows that 7 is clearly the worst-fitting scale degree; the
next worst are b6 and 2. Figure 5.8b shows that the best—ﬁtting triad is
i; furthermore, every pitch in this tonic i chord can be approached by
the three most poorly-fitting scale degrees which, therefore, act as ef-
fective leading tones: 7—1, b6—5, and 2—h3—as exemplified by a chord
progression like Bdim7—Cmin, or G799—Cmin. These properties ap-
pear to make this scale a context that provides unambiguous support
of a minor triad tonic. Compare this to the diatonic mode, where there
is an equally well-fitting major triad; for example, Macpherson (1920,

p. 162) writes that

any chord containing the minor 7th usually requires to
be followed as soon as possible by a chord containing the
Leading-note ... otherwise the tonality easily becomes
vague and indeterminate, and the music may tend to hover
somewhat aimlessly between the minor key and its so-

called ‘relative’ major.
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Figure 5.9: Modelled pitch class and chord fit with the ascending melodic mi-
nor scale.

5.3.1.4  Ascending melodic minor scale.

It is well-recognized in music theory that the harmonic minor scale
provides effective harmonic support for a minor tonic, but that it is also
melodically awkward due to the augmented second between its sixth
and seventh degrees. When a melodic line is moving from the sixth to
the seventh degree, this awkward interval is typically circumvented by
sharpening the sixth degree—this produces the ascending melodic mi-
nor scale (the descending melodic minor scale is identical to the natural
minor scale (Aeolian mode)).

Figure 5.9b shows that, in terms of chord fits, this scale has returned
to a similar situation as the Guidonian hexachord: all chords have equal
fit, hence there is no obvious tonic. This suggests that using this scale,
for brief periods of time to improve the melodic line, will not disrupt a
minor tonality previously established with the parallel harmonic minor
scale. However, this scale cannot form the foundation of a minor tonal-
ity, because it has no specific tonal centre (when triads are used). Again,
this seems to be in accord with conventional tonal music theory, which
specifies that the primary function of this scale is to improve melodic
connections rather than to provide the basis for harmony (the use of the
raised sixth degree is usually subject to strict melodic conventions—
e.g., Schoenberg (1969, p. 18) advises that it should not move to the

natural sixth or natural seventh degrees).
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Figure 5.10: Modelled pitch class and chord fit with the harmonic major scale.

5.3.1.5  Harmonic major scale.

In the same way that sharpening the seventh degree of the Aeolian
mode can make its tonic unambiguously the best-fitting, it is interest-
ing to consider if there is a different alteration that can do the same for
the Ionian mode. The alteration that seems to provide a similar benefit
for the Ionian is to flatten its sixth degree, to make the harmonic major
scale.

In comparison to Figure 5.sb, Figure 5.10b shows how the I chord
is now the uniquely best-fitting chord. This appears to indicate that
flattening the sixth degree of the major scale strengthens the major
tonality. This accords with Harrison’s description of the chromatic iv
in major as the tonic-strengthening dual of the ‘chromatic’ V in minor
(1994, pp. 15—34). However, like the harmonic minor scale, this alter-
ation creates an awkward sounding melodic interval—the augmented
second between the sixth and seventh degrees—which maybe explains

why this scale has not become the default major tonality scale.

s.3.2  Fit Profiles for Microtonal Scales

Unlike all of the previously discussed models, mine is generalizable to
pitches with any tuning (e.g., microtonal chords and scales). It is in-
teresting to explore some of the predictions of pitch class and chord
fit made by the model given a variety of microtonal scales. All of the

microtonal scales I analyse here are well-formed. I do this under the hy-
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pothesis that the simple and regular structure of such scales may make
them easier to hold in short-term memory, or learn as part of long-

term memory."3

5.3.2.1  Quarter-comma meantone diatonic scale.

This tuning was first described by Pietro Aaron in 1523 (cited in Bar-
bour (1951)) who described a system of temperament where every per-
fect fifth is equally flattened slightly but all major thirds are perfectly
tuned. This is around the time that modal music began its gradual tran-
sition into harmonic tonality, and may have been a prevalent tuning at
that time. For that reason it is interesting to see what, if any, impact it
has on the fit of the diatonic pitches and chords. One aspect that differ-
entiates meantone tunings from 12-TET is that enharmonically equiv-
alent pitches (e.g., Cff and Db) do not have identical tunings. For this
reason, I use a gamut of 19 pitch classes (e.g., the chain-of-fifths from
Cb to Ef), which provides a sharp and a flat for every diatonic scale de-
gree (e.g., C, D, E, F, G, A, B) except for the fourth (e.g., F) which
has no flat, and the seventh (e.g., B) which has no sharp. Another dif-
ference is that its major and minor triads are, by any standard metric,
closer to the low integer ratios of just intonation (4:5:6 and 10:12:15,
respectively) than the 12-TET versions: the just intonation triads are, to
the nearest cent, (0,386, 702) and (0,316, 702); the 1/4-comma mean-
tone triads, to the nearest cent, are (0,386,697) and (0, 310,697); the
12-TET triads are (0,400, 700) and (0, 300, 700).

For the diatonic scale degrees and chords, the overall pattern of fits
is similar to that produced by 12-TET—as shown in Figure s.11. The
fourth and seventh scale degrees are still modelled as the worst fitting,
and the Ionian and Aeolian tonic triads are still modelled as the best

fitting. This suggests that this pattern and, hence, its tonal implications,

Equal step scales are structurally simpler and more regular than well-formed scales,
but they are actually too regular because their internal structure is completely
uniform—every pitch class or chord bears the same relationship to all other scale
pitches and chords. The structure of equal step scales cannot, therefore, support a
different musical function on different scale degrees—such a musical function may
be imposed by pitch repetition or a drone, but it is not inherent to the scale, merely
to its usage.
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Figure 5.11: Modelled pitch class and chord fit with the 1/4-comma meantone
diatonic major scale.

are robust over such changes in the underlying tuning of the diatonic

scale.

s.3.2.2  22-TET 1L, 6s porcupine scale.

In the following three examples, I look at different well-formed scales
that are subsets of 22-tone equal temperament. The names of these tem-
peraments (porcupine, srutal, and magic) are commonly used in the micro-
tonal community, and are explained in greater detail in Erlich (2006)
and the website http://xenharmonic.wikispaces.com/. In all of these
scales, the tunings—rounded to the nearest cent—of the major triads
are (0,382,709), and the tunings of the minor triads are (0, 327, 709).
These tunings are, by most standard metrics, closer to the just into-
nation major and minor triads than those in 12-teT. For each scale, the
spectral pitch class similarities suggest one or more triads that will func-
tion as tonics. I do not, at this stage, present any empirical data to sub-
stantiate or contradict these claims; but I suggest that collecting such
empirical data—tonal responses to microtonal scales—will be a useful
method for testing bottom-up models of tonality. Audio examples of
the scales, their chords, and some of the cadences described below, can
be downloaded from www.dynamictonality.com/probe_tone_files/.
The porcupine scale has seven tones and is well-formed—it contains
one large step of size 218 cents and six small steps of size 164 cents
(hence its signature 1L, 6s), and the scale pitch classes are indicated with

dark bars in Figure s.12a. Figure 5.12b shows that the major triad on 18
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Figure 5.12: Modelled pitch class and chord fit with the porcupine 1L, 65 scale.

and the minor triad on 9 are modelled as the best-fitting. This suggests
that, within the constraints of this scale, they may function as tonics.
The worst-fitting pitch classes are 6 and 12, which can both lead to the
root of the minor triad on 9. Neither of these potential leading tones
are thirds of any triads in this scale, which possibly reduces their ef-
fectiveness when using triadic harmony. However, the above suggests
the most effective cadences in this scale will be the minor chord on 12
leading to the minor chord on 9, the major chord on 15 (whose fifth is
pitch class 6) leading to the minor chord on 9, or a variety of seventh
chords containing both 6 and 12 like the dominant seventh built on 15
(whose third is 6 and seventh is 12) also leading to the minor chord on
9. Using Roman numerals, taken relative to the minor tonic on pitch

class 9, these are ii—i, I1I-i, and 1117, respectively.

5.3.2.3 22-TET 2L, 8s srutal scale.

This ten-tone microtonal scale—first suggested by Erlich (1998)—is
unusual in that it repeats at the half-octave (it is well-formed within this
half-octave interval). This repetition accounts for why the fit levels—
shown in Figure §5.13—also repeat at each half-octave. It contains two
large steps of size 164 cents, and eight small steps of size 109 cents. The
scale pitches are indicated with dark bars in Figure s.13a. The modelled
fits suggest there are two possible major triad tonics (on pitch classes 4
and 15) and two possible minor tonics (on pitch classes 2 and 13). The

roots of both the minor chords can be approached by a poorer-fitting



$§.3 SCALIC TONALITY

[
[

o
©
o
®

o
)
o
o

o
>
1
~

Spectral pitch similarity of
2L, 8s scale’s triads and pitches

o
N

Spectral pitch similarity of 22 pitch classes
and the 2L, 8s well-formed scale pitches
o
[N

0 01234567 89101112131415161718192021 0 01234567 8 9101112131415161718192021
Pitch classes (scale pitches are dark, non-scale pitches are light) Triad roots (major are dark, minor are light)
(a) Modelled fit of srutal 2L, 8s scale (b) Modelled fit of srutal 2L, 8s scale
pitches. chords.

Figure 5.13: Modelled pitch class and chord fit with the srutal 2L, 8s scale.

leading tone (pitch classes 0 and 11) than can the major (pitch classes 2,
6, 13, and 17). This suggests effective cadences can be formed with the
major chord on 15 (whose third is pitch class o) proceeding to the mi-
nor chord on 2 (or their analogous progressions a half-octave higher),
or variety of seventh chords such as the dominant seventh on 4 (whose
seventh is pitch class 0). Using Roman numerals relative to the minor
tonic on 2 (or 13), these are VII-i and 17—, respectively. These ca-
dences can be thought of as slightly different tunings of the familiar

12-TET progressions V—i and bII"—i.

s.3.2.4 22-TET 3L, 7s magic scale.

This microtonal scale also has ten tones, and is well-formed with re-
spect to the octave (so no repetition at the half-octave)—it has three
large steps of size 273 cents and seven small steps of size 55 cents. As
before, the dark bars in Figure 5.14a indicate the scale pitches. In this
scale, every degree that is a root of a major triad is also a root of a minor
triad (and vice versa). For this reason, in Figure 5.14b, only the better
fitting (major or minor) is shown on the chart; for the pitch class 9,
however, the major and minor triad have equal fit, so this should be
borne in mind.

The modelled fits, in Figure 5.14b, suggest two possible major tonics
(with roots on pitch classes 2 and 9) and two possible minor tonics (on
pitch classes 9 and 16). Figure 5.14a shows that, in terms of fit, pitch

class 17 looks like a promising leading tone to the root of the minor
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Figure 5.14: Modelled pitch class and chord fit with the magic 3L, 7s scale.

triad on 16. However, this pitch class is not the third of any triad in the
scale. The other leading tone contenders are on 1 and 8, and both of
these can be triad thirds. This implies the major chord on 2, and the
major or minor chord on 9, may function as tonics in this scale. This
suggests effective cadences can be formed with the major chord on 16
(whose third is pitch class 1) proceeding to the major triad on pitch
class 2, or the major chord on pitch class 1 (Whose third is pitch class
8) proceeding to the major or minor triad on pitch class 9. In Roman
numeral notation, relative to their respective tonics, these are VII-I,
VII-I, and VII. Interestingly, in all these examples the cadences are—
in terms of 12-TET—similar to a major chord, whose root is pitched in-
between V and bVI, proceeding to I or i (the distance between these

roots is 764 cents).

5.4 CONCLUSION

In this chapter, I have shown that there at least two types of plausible
bottom-up model—Parncutt’s virtual pitch class commonality models,
and my spectral pitch class similarity models—that can explain why the
probe tone data take the form they do. I argue that bottom-up expla-
nations, such as these, are able to account not just for the existence of
fit profiles (as provided by top-down models), but also for the specific
form they take. In light of both theories’ ability to explain and predict

the data, I suggest that there is now little reason to believe the probe
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tone data are a function purely of top-down processes. I cannot, on the
basis of the probe tone data, determine whether the primary mecha-
nism is spectral pitch class or virtual pitch class similarity. To distin-
guish between these effects would require novel experiments.

I have also used my model in the reverse direction—to predict can-
didate tonic triads for a number of scales that are subsets of the full
twelve chromatic pitch classes. The results accord well with music the-
ory. Furthermore, I have also suggested some additional mechanisms
that may account for strong cadences (a poor-fitting tone moving to
the root of a best-fitting triad) and how this, in turn, may cause the di-
atonic scale to become more oriented to its major (Ionian) tonic rather
than its minor (Aeolian) tonic. I also suggest a possible reason for why
the seventh degree loses much of its activity (need to resolve) when it
is the fifth of the mediant (iii) chord. And, in combination, these mech-
anisms support the use of V-I as a cadential chord progression. These
latter hypotheses are somewhat speculative because they have not been
included in a formal mathematical model, but I feel they are promising
ideas that warrant further investigation.

I have also claimed my model can challenge the notion that there
is a tonal hierarchy, which is an unchanging (or slowly evolving) tem-
plate against which recently heard pitches are compared. Rather, in my
template-independent theory, I suggest that any given musical con-
text automatically generates a corresponding profile of fits. For cer-
tain commonly-used scales, such profiles may become embedded as
tonal hierarchies (templates), as might the tonal implications of com-
mon melodic lines and harmonic progressions. But crucially, under my
theory, the templates are not the initial cause of tonal functionality;
rather, they are an effect of the more basic and universal psychoacous-
tic process of spectral (or virtual) pitch similarity. This implies that our
cognition of tonality, and the types of tonal musics we create are—to
some extent—constrained and shaped, in a nontrivial and predictable

way, by our perceptual and cognitive apparatus.
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Finally, I have pointed to the way in which microtonal scales can
also be analysed with this technique, and how this may become an im-
portant means to explore our general perception of tonality, and to test
models thereof. Ideally, any model that purports to explain—from the
bottom up—how Western tonality works, should also be able to make
useful predictions for the possibly different tonalities evoked by com-

pletely different scales and tunings.



CONCLUSION

In this dissertation, my aim has been to identify and model the in-
nate processes by which feelings of tension, resolution, stability, and
so forth, are induced by successions of pitches and chords, irrespective
of their harmonic consonance.

I have chosen to focus on innate mental processes—those aspects of
music perception that are not due to long-term familiarity with a spe-
cific corpus of music. This is because only such processes can explain
(specify the casual origins of ) associations between acoustical events and
mental phenomena.

In order to do this, I have postulated that—given a context of
pitches, such as a scale—those chords that are the most consonant, have
the greatest affinity, and are the most familiar will tend to be heard
as the most stable and tonic-like. Familiarity is, by definition, a top-
down process, but both consonance and afhinity have plausible bottom-
up psychoacoustic models. I have focused my attention on bottom-up
models of affinity, because it is clear that consonance can provide only a
partial answer (e.g., in the context of a C major scale, the root-position
triads Cmaj and Gmaj have identical consonance but differing levels of
stability).

When an instrument plays a single notated pitch, it actually produces
a multiplicity of spectral (and possibly virtual) pitches. Following Ter-
hardt and Parncutt, I have hypothesized that the affinity of any two
tones or chords is due, in part, to the similarity of their spectral or vir-
tual pitches. In order to effectively model such similarities, I have de-
veloped a novel family of representations of pitches called expectation
tensors.

In Chapter 3, I demonstrated how expectation tensors can model the

uncertainties of pitch perception by ‘smearing’ each pitch over a range
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of possible values, and the width of the smearing can be related to ex-
perimentally determined frequency difference limens. The tensors can
embed either absolute or relative pitches: in the latter case, embeddings
of pitch collections that differ only by transposition have zero distance;
a useful feature that relates similarity to structure. Furthermore, ten-
sors of any order (dimensionality) can be formed, allowing the embed-
dings to reflect the (absolute or relative) monad (pitch), dyad (interval),
triad, tetrad, and so forth, content of the pitch collection. The distance
between expectation tensors of the same order can be determined with
any standard metric or similarity measure (such as L, or cosine).

I also demonstrated how absolute monad expectation tensors can be
used to embed the spectral pitches (or pitch classes) of tones or chords,
and how the cosine similarity of such vectors can be used to model the
affinity of the tones or chords they embed. In Chapter 4, I described
an experiment that eliminates the confounding top-down influence of
horizontal familiarity (that part of afhinity that is a function of each
interval’s prevalence). In the absence of this confound, the data indi-
cate that spectral pitch similarity is an effective bottom-up model of
aﬁinity. In other words, there is a psychoacoustic component to listen-
ers’ perception of the extent to which tones with different pitches fit
together—the greater the similarity of their spectra, the greater their
affinity. The data also show that a spectral pitch based model of har-
monicity (toneness) is also correlated with perceived affinity but, in this
case, this may be modelling either an innate or a learned process.

I additionally showed how these results indicate that certain com-
mon scales—such as those based on tetrachords or generated by per-
fect fifths like the pentatonic and diatonic—maximize the affinity of
the harmonic complex tones produced by the human voice and most
pitched musical instruments. Such scales may, therefore, be a natural
consequence of our perceptual apparatus, irrespective of culture. I also
suggest that synthetic sounds with timbres matched to the underlying
tuning can be used not just to maximize consonance, but also to max-

imize melodic affinity for microtonal scales.
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In Chapter s, I showed that spectral pitch class similarity can also
model Krumhansl’s probe tone data with considerable accuracy. In
light of the ability of this model, and Parncutt’s virtual pitch model, to
both explain and predict the data, I suggest there is now little support
for the widely held belief that tonal perceptions are due only to top-
down processes. In other words, I have provided compelling evidence
that bottom-up processes play an important role in the perception of
tonal fits. This implies there is no requirement to interpret the probe
tone data as representing a long-term memory template (a tonal hier-
archy). I do not argue such templates do not exist—it seems highly
plausible that learned processes do play a meaningful role. But, im-
portantly, bottom-up explanations mean the initial causal impetus for
their forms comes from psychoacoustically based processes. In other
words, our cognition of tonality, and the types of tonal musics we cre-
ate are constrained and shaped, in a nontrivial and predictable way, by
our perceptual and cognitive apparatus.

I also used the spectral pitch class similarity model to predict, for a
variety of scales, which triads are likely to function as tonics, and which
pitches are likely to function as tense leading tones. The model’s predic—
tions concur with music theory. I additionally suggested three mecha-
nisms that may account for why: the diatonic scale is biased towards its
major (Ionian) mode rather than its natural minor (Aeolian) mode; the
seventh degree of the major scale loses much of its tension when it is the
fifth of the iii chord; the V—I progression is so important in cadences.
These mechanisms are that (a) given a scale, the strongest sense of har-
monic resolution is induced when a bad-fitting tone moves by a small
interval (e.g., a semitone) to the root of a best-fitting chord; (b) there is
a feedback mechanism whereby the increased salience of a tonic degree
affects the instability of its leading tone(s); (c) the tension of pitches is
a function of their affinity with their local harmonic context (chord
degree) in addition to their scalic context (scale degree).

At this stage, these latter hypotheses are somewhat speculative be-

cause they have not been included in a formal mathematical model.
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Finally, I have pointed to the way in which microtonal scales can also
be analysed with this same technique.

In summary, I have developed a novel set of techniques to model the
perceived similarity of pitch collections, and I have used them to build
bottom-up models for certain important aspects of tonal cognition—
affinity and tonal stability. Experimental tests of the models have
shown them to be effective at both predicting and explaining these as-

pects of tonality.

6.1 CONTRIBUTIONS

The first novel contribution provided in this dissertation is my four-
fold categorization of mental processes relevant to music cognition:
extrinsic nurture, intrinsic nurture, extrinsic nature, and intrinsic na-
ture. This categorization is related to that provided by Sloboda and
Juslin (2001), but differs in that they do not explicitly separate intrinsic
processes into nature and nurture. I additionally illustrate how these
categories are related to those used in semiotic theory and those sug-
gested by Juslin and Vistfjill (2008). The principal purpose of my cate-
gorization is to enable a clear and unambiguous distinction to be made
between top-down and bottom-up models: the former require, as an
input variable, a statistical analysis of a musical corpus; the latter do
not.

The second novel contribution is the development of expectation
tensors. Prior to expectation tensors, there had been no generalized
method to represent collections of pitches, intervals, triads, and so
forth within a principled probabilistic framework and incorporating
basic psychoacoustic processes of pitch perception. Furthermore, by
generalizing the resulting embeddings into multi-dimensional forms
(i.e., tensors) and allowing for pitches to be represented in either abso-
lute or relative form, I have constructed a family of pitch embeddings
that are generalizations of a number of familiar embeddings used in

musical set theory (i.e., interval vectors and other subset-class vectors).
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The third novel contribution has been the development of an expec-
tation tensor (spectral pitch vector) model of tonal affinity. This model
has a small number of parameters (spectral roll-off p and smoothing
width o). It has some similarities to Parncutt’s virtual pitch common-
ality model, but it differs in that: it uses spectral rather than virtual
pitches; it does not assume each pitch is categorized as a chromatic pitch
class regardless of its precise tuning; it inherits the principled psychoa-
coustic and probabilistic foundations of the expectation tensors.

The fourth novel contribution has been utilizing microtonal stim-
uli to experimentally disambiguate innate and learned processes (as de-
fined in this dissertation). The use of microtonal stimuli in experimen-
tal investigations of music perception is rare; I am aware of only a few
researchers who have used microtonal stimuli—Vos (1982, 1984, 1986,
1988); Vos and van Vianen (198sb,a), Bucht and Huovinen (2004), and
Ferrer (2007)—and in none of these cases are the microtonal stimuli
used to disentangle nature and nurture (as defined in this dissertation).

The fifth novel contribution has been to demonstrate that the per-
ceived fit of successive pitches (affinity) is a causal function of their
spectral pitch similarity—a model of an innate mental process.

The sixth novel contribution has been to show that affinity is also a
function of the harmonicity of the timbres used. It is not possible to say
whether this is due to participants’ familiarity with harmonic complex
tones, or whether it is modelling an innate preference for such timbres.

The seventh novel contribution has been to demonstrate un-
equivocally that a bottom-up psychoacoustic model can account for
Krumbhansl’s probe tone data. And that the same model also makes re-
alistic predictions about the musical functions of chords in a variety of
familiar scales.

The eighth novel contribution is that I have applied my model to
microtonal scales. As far as I know, this is the only model able to make

predictions about the perceived tonal effects (afhinities, stabilities, ten-
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sions) of successively played pitches and chords within such scales.” At

this time, I have no empirical evidence to support these predictions.

6.2 LIMITATIONS

None of the experiments conducted for this dissertation have enabled
me to determine the relative importance of spectral and virtual pitches
to tonal perception. However, it seems that models containing only
spectral pitches (or pitch classes) are highly effective. The only way
to distinguish the effect sizes of spectral and virtual pitches is to con-
duct experiments where their predictions are sufficiently uncorrelated.
Prior to conducting and building the full models, I had presumed the
microtonal melodies experiment (Ch. 4) would distinguish between
these two models. In fact, it turned out the data produced by spec-
tral and virtual pitch models were highly correlated (-(108) = .95, as
shown in Sec. 4.3.2.4). Different experimental stimuli are required to
ensure these two models’ predictions are less highly correlated.

In Chapter s, I made some additional hypotheses to account for ad-
ditional aspects of tonality, such as why the diatonic scale’s Ionian tonic
is stronger than its Aeolian (natural minor) tonic, and how the tensions
and stabilities of pitches may be affected by their chord degree as well
as their scale degree. However, I have not provided a formal mathe-
matical model for these hypotheses. In the next section, I briefly out-
line another hypothesis that may account for these features, and which
deals with successions of chords rather than the relationships between
a given scale and its chords. It is my intention to create a model that
embodies all of these proposed processes.

However, an additional problem is that there is a lack of experi-
mental data encapsulating many important tonal effects. The probe
tone data measure certain important aspects of tonal perception and,

as shown earlier, I have successfully modelled this data. But they do

Most bottom-up models of consonance/dissonance (e.g., Sethares (1993)) can make
predictions for microtonal intervals and chords, but they are not designed to model
the effects produced by successive pitches and chords.
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not capture aspects such as: (a) the effects of differing orderings of any
given set of chords; (b) the effects of a wide variety of different chord
progressions; (c) the effects of different types of voice-leading; (d) the
effects of chord choice, irrespective of their aggregate pitch class con-
tent (e.g., the chord progressions Fmaj—Gmaj—Cmaj and Dmin—Emin—
Cmaj have very different tonal effects, but both have the same aggre-
gate pitch content). Furthermore, the use of octave (rather than har-
monic) complex tones may have unintended consequences.

In the next section, I discuss ways in which some of these limitations

can be overcome in future work.

6.3 FUTURE WORK

In order to gain a deeper understand of tonality, there is a vital need to
obtain more experimental data; particularly data that provide more de-
tailed information about the effects mentioned above. In earlier work,
I conducted a small experiment designed to illuminate these proper-
ties (Milne, 2009b,a). Thirty-five participants were asked to rate—on a
seven-point scale—the degree of closure produced by the final chord
in a variety of three-chord progressions. In order to minimize the ef-
fects of consonance/dissonance, all chords were major or minor tri-
ads in root position. To maximize ecological validity, realistic sound-
ing timbres were used—the chords were played by a (sampled) string
quartet—and conventional rules of voice-leading were followed (i.e.,
minimizing the voice-leading distance, whilst avoiding parallel octaves
and fifths and, as much as possible, hidden octaves and fifths).? This
experiment provided very useful data, and the participants’ responses
were highly correlated with each other (mean inter-participant corre-
lation of r(33) = .49, Cronbach’s @ = .97) (Milne, 2009a). However,

the stimuli were limited in scope. Ignoring voice-leading, and trans-

It is Widely believed that paraﬂel and hidden fifths are avoided in common practice
music in order to preserve the perceived independence of the voices (Huron, 2001).
Hidden octaves and fifths occur when two voices move in similar motion to an octave
or fifth. They are generally considered less objectionable than parallel octaves and
fifths, particularly when one or both voices are the alto and tenor (inner) voices.
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position with respect to the final chord, there are 24 x 24 x 2 = 1152
different such chord progressions; I tested only 72 (6%) of these.

In order to gain more extensive data, I recently conducted a much
more comprehensive version of the experiment. I asked each partici-
pant (from a total of 120 participants) to rate a random selection of 128
chord progressions from a total of 642. This means each of the 642 pro-
gressions were rated, on average, by 120 x 128/642 ~ 24 participants.
The 642 progressions constitute more than half of all possible such
progressions; furthermore, the s10 excluded progressions were those
which traverse a large distance in the cycle-of-fifths and can, therefore,
be reasonably considered rare in Western music. I have not yet had a
chance to fully analyze or model this data. But it provides a hugely
powerful resource of information for future research and, notably, to
test models of tonality that are designed to capture the effects of chord
ordering, voice-leading, and chord degree.

In particular, I intend to use these data to test the hypotheses I made
in Chapter s (and reiterated above). Namely that (a) given a scale, the
strongest sense of harmonic resolution is induced when a bad-fitting
tone moves by a small interval (e.g., a semitone) to the root of a best-
fitting chord; (b) there is a feedback mechanism whereby the increased
salience of a tonic degree affects the instability of its leading tone(s); (c)
the tension of pitches is a function of their affinity with their local har-
monic context (chord degree) in addition to their scalic context (scale
degree). Of course, the first task is to formally embody these principles
in a mathematical model so they can be tested against these data.

However, there is an additional novel hypothesis I wish to mention.
This hypothesis may also account for the above tonal effects and others,
and these data are ideal to test it. It can be exemplified by returning
to the figure introduced in Chapter 3. I reproduce this figure, and its
minor version, in Figure 6.1.

The hypothesis has two components. Firstly, given two chords
played in sequence, we may hear one or both of these chords as pertur-

bations (alterations) of similar chords that have greater spectral pitch



6.3 FUTURE WORK

—/00 =600 500 =400 =300 =200 =100 0 100 200 300 400 500 600

(a) Major reference triad.

—700 -600 -500 400 —300 200 100 O 100 200 300 400 500 600
Roots and fiths

(b) Minor reference triad.

Figure 6.1: Spectral pitch similarities of a Cmaj or Cmin reference triad and
all possible 12-TET triads that contain a perfect fifth. Spectral pitch
similarity is calculated with the previously optimized smoothing
of 10.3 cents and roll-off of 0.42.

similarity. For instance (and as shown in Fig. 6.1a), the chord pair
Cmaj—Dmaj has lower spectral pitch similarity than the similar chord
pair Cmaj—Dmin. The hypothesis implies that when the (lower affinity)
Cmaj—Dmaj is played, it may be heard as a perturbation of the (higher
affinity) Cmaj—Dmin. More specifically, the played pitch F# may be
heard as an alteration of the pitch F.

Secondly, when a pitch is heard as perturbed in this way, it is heard to
resolve when it continues—in the same direction as its perturbation—
to the next available pitch with high affinity. For example, in the chord
progression Cmaj—Dmaj—Gmaj, the tone Ff is resolved by moving to

G (i-e., in the same direction as its (upwards) perturbation from F). In
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this way, the Ff acts as a low affinity passing tone between an F that is
implied (due to its higher affinity) and the played G, which follows.

This may account for the perceived instability or activity of the V in
the IV-V progression (of which Cmaj—Dmaj is an example), and for its
perceived need to resolve to I (the Gmaj chord). Numerous similar ex-
amples can be found; for example, the spectral pitch similarity of Cmaj
and Fimaj is lower than that of Cmaj and Ffmin, which suggests that,
when the former is played, the tone Af may be heard as an active alter-
ation of the higher affinity tone A and, hence, seeks resolution to B in
the cadence Cmaj—Ffmaj—Bmin (a bII-V—i cadence). Further examples
are provided in Milne et al. (2011b).

By combining all these additional hypotheses, it may be possible to
model—from the bottom up—the feelings of tension, activity, resolu-
tion, and so forth, that are amongst the most characteristic features of
harmonic tonality. A model to explore this bottom-up account of tonal
functionality is in progress, and I plan to report on its effectiveness in

future publications.

The work described in this dissertation can also be extended in other
ways. To date, I have not used any of the relative or higher-dimensional
tensors in formal models of music cognition. In Sections 3.6.2 and 3.6.3,
I showed how such expectation tensors provide effective methods for
calculating the similarity between any arbitrary tuning of a scale and
just intonation (or other privileged) referents, and how they can gen-
eralize many of the methods used in musical set theory. It will be inter-
esting to see how such tensors may become useful in models of tonal
perception. For instance, Kuusi (2001) collected ratings from $8 par-
ticipants for the perceived ‘closeness’ of chords; these data could be
modelled by a linear combination of the distances between a variety of
tensors of differing orders.

Another research opportunity deriving from the tensors is to de-
velop methods for creating salience rather than expectation tensors. In
Section 3.4, I showed how expectation tensors sum the elements [, j]

in the pitch response matrix X to give the expected numbers of tones
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(or ordered tone pairs, tone triples, etc.) heard at any given pitch (or
dyad, triad, etc.). An alternative strategy is to derive the probability of
hearing any given pitch, dyad, triad, and so forth (regardless of how
many tones, or tuples of tones, we may hear playing it). The resulting
tensors will have elements with values in the interval [0, 1]. It is quite
straightforward to naively calculate the elements of such a tensor. For
example, the elements of an absolute monad salience tensor are given
by zs[j] = 1 - ‘11:[1 1 — z[i, j] (compare this with the absolute monad
i—

expectation tensor, which is z.[j] = ZI: z[i, j]). However, the method
of inclusion-exclusion of tensor subsz];alces, which greatly reduces the
computational complexity of the higher-order tensors, cannot be di-
rectly replicated for the salience tensors. Despite this, it should be pos-
sible to find a related method of inclusion-exclusion that will provide
similar reductions in computational complexity.

A further research opportunity opened up by the expectation tensors
is to build in the option for an additional form of invariance—scale in-
variance. Currently, the tensors can embed pitches or pitch classes (only
the latter have invariance with respect to the octave), and these embed-
dings can be represented in an absolute or a relative form (only the latter
has invariance with respect to transposition). Scale invariance may also
have useful cognitive applications—under a relative dyad embedding
that is also scale invariant, the representations of, for example, pitch sets
{C4, D4, Ebg} and {C4, E4, Fi4} would be identical—the latter is es-
sentially a scaled (stretched) version of the former (whole tones become
major thirds, and semitones become whole tones). With a means to in-
dicate the temporal ordering of the embedded intervals, they would be-
come contour invariant—melodies with the same contour ‘shapes’ but
differing contour ‘depths’ would be invariant under such an embed-
dings. Melodies with similar contours would have similar embeddings

under a standard metric. I have some preliminary ideas about how such

embeddings may be constructed.

A further research question that could be tackled is to devise exper-

imental stimuli that can more clearly distinguish between the effects
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of virtual and spectral pitch similarity. One way to achieve this would
be to create synthetic timbres whose modelled virtual pitches are dis-
tinctly different to their spectral pitches. Participants would then judge
the affinities of differently sized intervals that match either the spectral

or the virtual pitches.

And, on the distant horizon is the grand aim of constructing a com-
plete model of tonality comprising submodels for each of the four cat-
egories of mental processes illustrated in Figure 2.1: intrinsic, extrinsic,

nature, and nurture.

6.4 IMPLICATIONS

Understanding the extent to which the cultural artefacts of humankind
are due to innate processes of human perception and cognition, and
how much they are down to learning is a key question. In this disserta-
tion, I have posited that innate processes play an important role in the
shaping of tonal music.

So, does this mean there is only one true form of music, one ideal
to which artists may aspire, and against which existing pieces must be
judged? No. Rather, it just suggests likely iconic significations for cer-
tain musical events. For example, we can argue there is a likely associa-
tion between the ‘discomfort’ induced by dissonance, or poor affinity,
and negatively valenced feelings. However, existing symbols and the
contexts within which they operate are often deliberately subverted by
the artist—who seeks to make the familiar, unfamiliar.3 The cultural
context is also important—the zeitgeist may consider the ‘discomfort’
of disaflinity or dissonance as a positive aesthetic, and a sophisticated
audience may feel that excessive consonance and afﬁnity is too simplis—
tic, too unlike ‘reality’, to communicate in an authentic or meaningful

manner.

This process is known as defamiliarization; Shklovsky (1965, p. 11—12) writes, ‘the tech-
nique of art is to make objects “unfamiliar,” to make forms difficult, to increase the
difficulty and length of perception because the process of perception is an aesthetic
end in itself and must be prolonged’, (as quoted in Thompson (1988)).



6.4 IMPLICATIONS 203

In the end, it is the artist—his or her aesthetic sensibilities—and the
culture within which he or she operates that dictates how the loose
emotional connotations of musical events may become transformed
and transfigured into the remarkable art form that is music: ‘All good
music resembles something. Good music stirs by its mysterious resem-

blance to the objects and feelings which motivated it’ Cocteau (1918,

p- SI).4

4 Toute bonne musique est ressemblante. La bonne musique émeut par cette ressem-
blance mystérieuse avec les objets et les sentiments qui I'ont motivée.
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SMOOTHING WIDTH AND THE DIFFERENCE
LIMEN

The frequency difference limen, also known as the just noticeable frequency
difference, is determined in a two-alternative forced-choice (2-arc) ex-
periment. In this type of experiment, participants are presented with
numerous pairs of successively played tones. The tones in each pair ei-
ther have the same or differing frequencies, and the participant is tasked
with categorizing them accordingly.

The frequency difference limen is normally defined as the frequency
difference at which the correct response rate indicates a d’ (also known
as d prime) of approximately one (there are alternative definitions). The
value of @’ is defined as the distance, in standard deviations, between the
mean of the responses to the signal-plus-noise stimuli and the mean of
the responses to the noise-alone stimuli (for the above test, a signal-
plus-noise stimulus corresponds to two different frequencies; a noise-
alone stimulus to two identical frequencies). This implies the internal
response to a tone of pitch j can be modelled by a Gaussian centred at
j, with a standard deviation o equivalent to the frequency bt at j.

Experimentally obtained data (e.g., Moore et al. (1984)) typically
give a frequency pr, for tones with harmonic partials, that is equiva-
lent (over a broad range of musically useful frequencies) to a pitch pr of
approximately 3 cents. Such results are obtained in laboratory condi-
tions with simple stimuli and minimal time gaps between tones (hence
comparisons are conducted from auditory sensory (echoic) memory,
or short-term memory): in real music, tones and chords are presented
as part of a complex and distracting stream of musical information, and
there may be long gaps between the presentations of the tone collec-
tions (in which time memory of the first pitch may have degraded, so

judgements are less precise). For these reasons, it may be appropriate to
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treat 3 cents as a minimum standard deviation; larger values may pro-
vide more effective results in some models. Indeed, o can be treated as

a free parameter.



TENSORS, TENSOR OPERATIONS, AND
THEIR NOTATION

A tensor is a generalization of a vector or matrix into higher orders. An
order-0 tensor is a scalar, an order-1 tensor is a vector, an order-2 ten-
sor is a matrix, an order-3 tensor may be thought of as a 3-dimensional

array of numbers, and so forth. The size of a tensor of order-R denoted

R
X € RI*/%**M may be shown as T TNNITL which means the

first mode is of dimension I (it contains I entries); the second mode is of

dimension J, and so forth. It is often convenient to specify the order of
a tensor by its subscript so that X ;s represents an order-3 tensor in R”’
(which is R7*7*7). Alowercase italic letter such as z; ; 1 or z[i, 7, k] de-
notes a specific scalar element in a tensor, with the subscripts or brack-
ets specifying its location in the tensor. A specific permutation of a ten-
sor’s modes is indicated with a subscript in angle brackets, so if X is a
tensor of size I x J x K x L, the tensor X3 1 4 9y hassize J x L x I x K.
In other words, X, m,....m ) means that the rth mode of X is moved
to the m,th mode (this is equivalent to the notation used in Mathe-
matica’s Transpose function; it is not the same as that used in MATLAB’S

permute function).

The symbol o denotes the Hadamard (entrywise) product of two tensors.
IfC = AoB,thenc[i,j,...] = ali,j,...]b[i,j,...] (A and B must be

of the same size). For example,
1 3 . 5 7 _ 1-5 3.7 _ 5 21 . (B.1)
2 4 6 8 26 4.8 12 32

The outer (tensor) product ® of a tensor A of size I x J and a ten-

sor B of size L x M produces a tensor of size I x J x L x M con-
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taining all possible products of their elements. If C = A ® B, then

cliyj,... bym,. .. ] =ali, j,...]b[¢,m,...]. For example,

15 1.7 | 35 3.7
13 (5 T)_ |16 18 | 36 38
92 4 6 8 2.5 2.7 | 4.5 4.7
2.6 2.8 | 4.6 4.8
5 7 | 15 21
|6 8 |18 2 (8.2
10 14 | 20 28
12 16 | 24 32

The 2 x 2 partitions help to visualize the four modes of the resulting
tensor: stepping from a partition to the one below increments the in-
dex of the first mode; stepping from a partition to the one on its right
increments the index of the second mode; stepping down a row, within
the same partition, increments the index of the third mode; stepping
rightwards by a column, within the same partition, increments the in-
dex of the fourth mode. The symbol ®# denotes the Rth outer power

R
of a tensor; that is, A9 = .
ARA®R---QA

The Khatri-Rao product ® is the “matching columnwise” Kronecker
product of matrices. The Khatri-Rao product of a matrix of size I x N
and a matrix of size J x N is a matrix of size I.J x N (which may
be interpreted as a tensor of size [ x J x N). If C = A ® B, then
c[i,j,n] = ali,n]blj,n]. This can be naturally extended to succes-
sive Khatri-Rao products of matrices: if F = A®B ©®--- © D, then
flivj,-..,¢,n] = a[i,n]bj,n] --- d[¢,n] (the rows of the matrices, in-

dexed here by n, must have the same dimension).” For example,

1.5 16 5 6
1 3 5 7 37 3-8 21 24
@ —_— _— g _— s (B.3)
2 4 6 8 25 26 10 12
4-7 4.8 28 32
1 In Mathematica, this product can be written Outer[Times, a, b, ..., d, 1] where

the final ‘1 specifies the level at which the outer product is calculated.
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and

(D)ol )

1-59 3.7-11 1-6-9 3-811
o 1-5-10 3-7-12 1-6-10 3-8-12
2-5:9 4.7-11 2-6-9 4-8-11
2-5-10 4-7-12 2-6-10 4-8-12
45 231 54 264
50 252 60 288
= (B-4)
90 308 108 352
100 336 120 384

As before, the partitions indicate the resulting tensors’ modes. The

symbol OF denotes the Rth Khatri-Rao power.

The inner (dot) product o is like the tensor product but addition-
ally contracts (sums over the product of ) the last index of the first
tensor with the first index of the second tensor: if C = AeB,
thenc[...,i,5,0,m,...] = Y a[...,i,7,k] bk, €, m,...] (the inner two
modes of A and B, indexed ﬁere by k, must have the same dimension).
For an order-R tensor and an order-S tensor, this results in an order-

(R+ S — 2) tensor. For example,

|l 5 | =14+25+36=32, (B.s)
6

1) (0%)

and

1-543-6 1-743-8
2:54+4-6 2.7+4-8

(i i). (B.6)
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COMPUTATIONAL SIMPLIFICATION OF
EXPECTATION TENSORS

The general form of the expectation tensors is, as shown in Sec-

tion 3.4.4,
R
xe[j17j2""’jR] - Z Hx[irajr]v (C.I)
(i17~~-,iR)€IR: r=1
inFip

which can be written in tensor notation as

R
Xr= <(1JR ® EIR) OX(?RH,1,R+2,2,...,...,R+R,R)) Y1, (C2)

R . . . .
where 1, € R7" is a tensor with R modes, each of dimension .J, all
of whose elements are ones, the £ inner product with 1,z represents
R successive inner products with 17, and E jr is constructed with ele-

ments

0 ifin =i
e[il,ig,...,iR] = (C3)
1 otherwise.

To understand the construction in (C.2), observe that the outer prod-
uct 1,z ® E; g extends the tensor of nonrepeated indices into R ad-
ditional modes, each of dimension J. Since X is an [ x J matrix,
X@R ¢ RIXIXIXIXXIXT 5 of order 2R. The index permutation re-
shapes X®¥ into an element of R/ FxI™ The Hadamard product with
the permuted X®%, therefore, sets all entries occurring at locations
with repeated indices to zero. These are precisely the entries that are

excluded from the summation (C.1). The Rth inner product then sums
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over the R different /-dimensional modes to collapse to the desired
. R
tensor in R7".

The expression takes this form due to the constraints on which index
values are summed over. Both forms (C.1) and (C.2) are cumbersome
to calculate directly. Were there no constraint on which indices in (C.1)
are summed over, (C.2) would take the form

QR R
X<R+1,1,R+2,2,...,...,R+R,R> LR (C.4)
This requires (1J)® multiplications, but can be reduced to J# multi-

plications by rearranging it to
(17%) %" (C.s)

This suggests an alternative way of calculating (C.2), to sum all of the
terms and then subtract the terms that should be excluded.

For example, consider the R = 2 case. The unconstrained term
is (1/X)®? and the term corresponding to the repeated indices is
(X' ®X') o1y, which simplifies to X’X. Hence Equation (3.15) of the

main text can be written

X

= (17X) ® (17X) — (X'X) . (C.6)

The process for R = 3 is similar. The unconstrained term s (1,X)®?.
There are three terms corresponding to the i = j constraint, the j = &
constraint and the ¢ = k constraint, each is equal to one of the transpo-
sitions of (1,X) ® (X'X). These have now subtracted out thei = j = k

constraint three times, and so X’ ©3 « 1; must be added back in twice to
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compensate. Accordingly, Equation (12) of the main text can be rewrit-

ten

X = (14X) ® (14X) @ (1;X) — ((1’1X) ® (X'X))<1 2.3

_ ((1gx) ® (X’X)) _ ((1}x) ® (X’X))

+2(XoX' 0X') el;. (C.7)

(2,1,3) (3,1,2)

An analogous procedure can be followed for any value of R, though
this becomes increasingly difficult because the number of terms grows
as R!. Bach term represents a unique minimal set of different index con-
straints. For example, one term A might have the index constraints
i1 = i2 and i3 = i4. Another term B might have no constraint on i but
have i3 = i3 = i4. When the indices are ordered sequentially, the term

can be calculated by writing each constraint as a subterm of the form
X' a1y, (C.8)

where c is the number of indices in that constraint, and then taking
the outer product of the different subterms. For instance, with index

constraints A, (C.8) is
<(x’ OX) 1,) ® <(x' OX') o 11> ,
which simplifies to
(X'X) ® (X'X) .
With index constraints B, (C.8) is
(X'el))® ((X’@X’@X’) -h) ;
which simplifies to (1/,X) ® ((X’ OX' OX') . 11). The permutation

of the indices in the constraints of a term is given by the correspond-

ing permutation of that term’s tensor. For example, the term with
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constraints iy = i3 and iy = i4 (a permutation of A) is represented

by ((X’ X) ® (X! X))<1’3’2?4> while the term with constraints iz and

i1 = 143 = 14 (a permutation of B) is represented by ((I’IX) ®
(X oX' oX) .11))

(2,1,34)
For example, the R! = 24 terms for the R = 4 case can be written

X! = (17X) @ (17X) ® (17X) © (1/X)
(e axeEx)
(WX eEx)
(e e )

- (wxe xx)
- (xe xx)
- (<1sx>® ixje(xx)
+2<(1}X) <(X'®X' OX) o1 )1234
+2<(1{,X) <(X'®X'®X’ ))2’1’34
+2<(1}X) ® <(X’®X’®X’ .11)> "
+2<(1’1X) ® <(X’®X’®X’ -11>> s
+ ((X'x) ® (X/X)><1,2,3,4>
+<(XX) (X’X)><1737274>
+ ((X X) ® (x/x))(1 ",
—6(XoX oX oX) 1. (C.9)

While expressions like (C.7) and (C.9) are harder to visualize than the
more compact form (C.2), they can be calculated more efficiently: the

unsimplified form has O ((I J ) R> multiplications, the simplified form
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has O(I (J R))—a ratio of 1 : /771, Such simplifications are key in
being able to calculate the practical examples of Section 3.6, of the main
text, some of which use large values for I (102 in Ex. 3.6.2, and 19 in

Ex. 3.6.3).
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FORMAL SPECIFICATION OF THE MELODIC
AFFINITY MODEL

In this appendix, I provide a full mathematical definition of the
models and the form of the empirical data, that are presented
in Chapter 4. Each of the mathematical steps are described in a
more verbal manner in Sections 4.1.1, 4.1.2, and 4.3.2. The mar-
LAB function Affinity_model_final.m that implements these equations
can be downloaded from http://www.dynamictonality.com/melodic_

affinity_files/.

In the experiment, there were 44 participants, and each participant
listened to 60 different stochastically generated melodies. The melodies
were in one of eleven different microtonal tunings (the pitch intervals
were different to those found in standard Western music). Further-
more, there were eleven different timbres used—each timbre had dif-
ferently tuned partials (overtones or frequency components). The mi-
crotonal scales are indexed by m € {1,2,...,11}, and the timbres are
indexed by n € {1,2,...,11}.

Each observation involved the participant listening to a single
melody in tuning m played with two different timbres ny and ns.
The participant chose the timbre in which the melody’s notes had the
greater affinity (fitted the best). In all, 110 different stimuli (i.e., differ-
ent values of the tuple (m,n1,n2)) were tested, but each participant
listened to a randomly selected (uniform distribution without replace-
ment) subset of 60 of these. A choice of n; was coded 1, a choice of
ng was coded 0, and missing data was coded NaN: this results in a data
matrix Y € {0,1,NaN}110%4 "each column containing 50 randomly

located NaNs.
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For timbre n, let a(n) € Z! be a vector of the pitches (log-
frequencies) of the first twelve partials indexed by ¢. The units of pitch
are cents (1200th of an octave) above the first partial—the pitch of the
first partial a1 (n) is, therefore, always 0.

Let w € R'? be a vector of weights for the above 12 partials. The
weights are the same, irrespective of the timbre n. The elements of w
are also indexed by i, and their values are parameterized by a roll-off

value p € R, so that
wi(p) =i7° i=1,...,12. (D.1)

This means that when p = 0, all partials have a weight of 1; as p in-
creases, the weights of the higher partials are reduced.
The partials (their pitches and weights) are embedded in a cents do-

main indicator vector b(n; p) € R%% whose elements are indexed by j:

bi(n;p) = Zwi(p)é[j -1 —ai(n)} j=1,...,6000, (D.2)
1=1

where 0[] is the Kronecker delta function, which equals 1 when z = 0,
and equals 0 when z # 0. This equation means that the vector b(n; p)
is all zeros except for twelve elements: for i = 1 to 12, its (f;(n) + 1)th
element has a value of w;.

The twelve delta ‘spikes’ in b(n;p) are ‘smeared’ by non-circular
convolution with a discrete Gaussian kernel c¢(o) parameterized with

a standard deviation o € [0, 00) to give a spectral pitch vector d(n; p, o) €

R6900 which is indexed by k:

6000
di(n;p,0) = bj(n;p) cr—j+1(0) k=1,...,6000, (D.3)

j=1
where ¢, = 0if z < 1. For the sake of computational efliciency, the
method used here differs slightly from that described in Ch. 3 where
every partial is embedded into a separate vector and separately con-

volved before being summed into a final spectral pitch vector. The
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spectral pitch vectors resulting from the two methods differ (slightly)
only when the smeared pitches overlap in frequency. This would occur
only when two partials are close in frequency, which is not the case for
the timbres used in this experiment.

This vector is cross-correlated with the spectral pitch vector of a
harmonic template d(HCT; p, o) (one with partials whose frequencies are
integer multiples of the first partial) to produce a virtual pitch vector

g(n;p, o) € RM999 which is indexed by ¢ :

6000
ge(n; p,0) =Y d(8CT; p,0) drg—go00(nipo)  €=1,...,11999,

: (0.4

where d, = 0if 6000 < x < 1.
The harmonicity h(n; p, o) € R of the spectral pitch vector d(n; p, o)

is given by the maximum value of the above cross-correlation:

h(n;p,o) = m?x(g(n;p, 0’)) ) (D.s)

The spectral pitch similarity s(n,u) € (0,1) of two tones with timbre n

making an interval of size u cents is given by

% dk(na N CT) dk—u(na Ps U)

(k0.0

(D.6)

s(nyu; p,o) =

This equation gives the cosine of the angle between the vector
d(n; p, o) and a transformation of itself that is shifted u elements to the
right, and serves as a similarity measure between them.

The probability of an interval of size u cents occurring between two
successive tones, given microtonal tuning m, is denoted py(u | m).
As described in Section 4.2.2, this probability distribution has eight

independent parameters, which were constant across all stimuli. This
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implies that the expected spectral pitch similarity s(m, n; p, o) of successive

tones with timbre n, given a microtonal tuning of m, is

5(m,n; p,0) = Ey[s(n,u; p,0) | m]

= pu(u|m)s(n,up,0). (D.7)

u

Similarly, the virtual pitch similarity v(n,u) € (0,1) of two tones with

timbre n making an interval of size u cents is given by

> 9k (15 p,0) Gr—u (s p, 0)
v(n,u;p,0) = k 5 ; (D.8)
5 (gk(n: p,0))

k

and the expected virtual pitch similarity v(m,n; p, o) of successive tones

with timbre n, given a microtonal tuning of m, is

v(m,n;p,0) = Ey[v(n,u;p,0) | m]

= ZpU(u | m)v(n,u;p,0). (D.9)

u

From (D.s), (D.7), and (D.9), I construct three predictors for the

probability of choosing timbre n; given (m,n1,n2):

fs(m,ni,n2;0,p) =35(m,ny;p,0) —5(m,n2; p,0) (D.10)
fV(m7n17n2;0—7p) = E(TI/L?nl;pa J) _E(m7n2;p7 U) (D'II)
fu(ni,n2;0,p) = h(ni;p,0) — h(ng;p, o). (D.12)

Three models, indexed by 4, of the experimentally obtained data—

the probabilities of choosing timbre n; for 110 different values of
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(m, n1,ng)—were created from combinations of these predictors and

differing parameterizations:

modeli = P(Y =1|m, nl,ng;i)

1
= m , Where

z1 = Pifs(m,n1,ng; ps, 08) + B2 fu(ni, n2; pu, on)
2o = Pifs(m,n1,n2; p,0) + Bafu(ni, no; p, o)

z3 = Pifv(m,ni,na;p,0) + P2 fu(ni, na;p, o). (D.13)

The overall form is a logistic model because the data are probabilities.
A constant term is not used because (D.10-D.12) imply thatif n; = no,

then fs = fv = fu = 0.

239






CROSS-VALIDATION CORRELATION AND
ROOT MEAN SQUARED ERROR

For each of the models discussed in Chapter s, I performed twenty runs
of 12-fold cross-validation of the models. Each of the twenty runs uti-
lizes a different 12-fold partition of the probe tone data, each fold con-
taining 2 samples. Within each run, one fold is removed and denoted
the validation set; the remaining 11 folds are aggregated and denoted the
training set. The parameters of the model are optimized to minimize the
sum of squared errors between the model’s predictions and the 22 sam-
plesin the training set. Cross-validation statistics, which measure the fit
of the predictions to the validation set, are then calculated. This whole
process is done for all twelve folds and this constitutes a single run of
the 12-fold cross-validation. The same process is used for all twenty
runs of the 12-fold cross-validation—each run using a different 12-fold
partition of the data. The cross-validation statistics are averaged over
all twelve folds in all twenty runs.

More formally: Let the data set of I samples be partitioned into K
folds (the probe tone data comprise 24 values, so I = 24, and I use 12-
fold cross-validation, so K = 12). Let k[i] be the fold of the data con-
taining the ith sample. The cross-validation is repeated, each time with
a different K-fold partition, a total of J times. The cross-validation

correlation of the jth run of the cross-validation is given by

I
revly —1—¢Z A\]“] 2/Z:y—y (E.1)

=1

where 7 yl "l denotes the fitted value for the ith sample returned by the
model estimated with the £[i|th fold of the data removed, and 7 is the

mean of all the sample values y;. The final cross-validation correlation
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statistic is the mean over the J runs of the cross-validation (in our anal-

ysis, J = 20):
1 J
rov = j Z ch[j] . (EZ)
j=1

The root mean squared error of the jth run of the cross-validation is

given by

1d _\k[i
RMSECV|[j] = J jZ(yi _yi\k[])27 (E.3)
i=1

where g?i\k[i] denotes the fitted value for the ith sample returned by the
model estimated with the k[i]th fold of the data removed. The final root
mean squared error of the cross-validation statistic is the mean over the

J runs of the cross-validation:

J
RMSECV = % > RMSECV[j]. (E.4)
j=1



FORMAL SPECIFICATION OF THE PROBE
TONE DATA MODEL

In this appendix, I give a formal mathematical specification of the probe
tone model described in Chapter 5. The techniques used are based on
those introduced in Chapter 3. The marLas routines that embody these
routines can be downloaded from http://www.dynamictonality.com/
probe_tone_files/.

Let a chord comprising M tones, each of which contains V partials,
be represented by the matrix Xy € RM*¥. Each row of Xy represents
a tone in the chord, and each of element of the row is the frequency
of a partial of that tone. In our model, I use the first twelve partials (so
N = 12); this means that, if X is a three-tone chord, it will be a 3 x 12
matrix.

The first step is to convert the partials’ frequencies into pitch class

cents values:
Tpc[m, n] = 1200|logy (z¢[m, n]/ xref)] mod 1200, (E.1)

where |-] is the nearest integer function, and . is an arbitrary refer-
ence frequency (e.g., the frequency of middle C). These values are then
collected into a single pitch class vector denoted X, € Z'*M indexed by
i such that xpc[m, n| — Zpeli], wherei = (m — 1) N +n.

Let each of the partials have an associated weight xy[m, n], which
represents their salience, or probability of being heard. I test three mod-
els (a, b, and ¢). Given model ¢, where ¢ € {a,b, ¢} denotes the model,
the saliences of the tonic triad are parameterized by a roll-off value

p € R, and a chord-degree weighting value w € [0, 1], so that

w[m€R£]xW[m’n] = nip m = 1’. . .,M, andn = 1, cey 12, (FZ)
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where [m ¢ Ry] denotes an indicator function that equals o when tone
m is member of the set R, of tones classed as chord roots in model ¢,
and is otherwise 1. In model a, all tones are classed as roots, hence all
tones have a chord-degree weighting of 1; in model b, only the conven-
tional roots of the major and minor triads are classed as roots (i.e., pitch
class C in the chord Cmaj or Cmin), all other tones have a chord degree
weighting of w; in model ¢, the third of the minor triad is also classed
as a root (e.g., Eb in Cmin), the remaining tones have a chord degree
weighting of w. Ignoring the chord degree weighting value, Equation
(F.2) means that when p = 0, all partials of a tone m have a weight of 1;
as p increases, the weights of its higher partials are reduced. These val-
ues are collected into a single weighting vector Xy, € R'?M also indexed
by ¢ such that z[m, n] — Zy[i], where i = (m —1)N + n (the precise
method used to reshape the matrix into vector form is unimportant so
long as it matches that used for the pitch class vector).

The partials (their pitch classes and weights in X, and Xy,) are em-

bedded in a spectral pitch class salience matrix Xpes € R12V*1200 jndexed
by i and j:
xpcs[iaj] = %W[Z'] 6[] - Epc[i]}
i=1,...,12N,andj =0,...,1199 (E.3)

where 0[] is the Kronecker delta function, which equals 1 when z = 0,
and equals 0 when z # 0. This equation means that the matrix X,.s isall
zeros except for 12V elements, and each element indicates the salience
Tpes|i, j] of partial i at pitch j.

To model the uncertainty of pitch perception, these 12N delta
“spikes” are “smeared” by circular convolution with a discrete Gaus-
sian kernel g, which is also indexed by j, and is parameterized with a
smoothing standard deviation o € [0,00) to give a spectral pitch class re-

sponse matrix Xper € R12N %1200

, which is indexed by i and &:

Xper (1] = Xpes|i] * g, (F.4)



APPENDIX F

where Xpr[i] is the ith row of X,¢r, and * denotes circular convolution

over the period of 1200 cents; that is,

1199
Tperli k] =D wpesli, 5] g[(k — j) mod 1200]
7=0

i=1,...,12N,and k= 0,...,1199. (E.5)

In this implementation, I make use of the circular convolution theo-
rem, which allows (F.4) to be calculated efliciently with fast Fourier
transforms; thatis, f xg = F~! (]—" (f)oF (g)) , where x is circular con-
volution, F denotes the Fourier transform, o is the Hadamard (elemen-
twise) product, and f stands for xpcs[i].

Equation (F.4) can be interpreted as adding random noise (with a
Gaussian distribution) to the original pitch classes in X¢s, thereby sim-
ulating perceptual pitch uncertainty. The standard deviation of the
Gaussian distribution o models the pitch difference limen (just notice-
able difference) (App. A). In laboratory experiments with sine waves,
the pitch difference limen is approximately 3 cents in the central range
of frequency (Moore, 1973; Moore et al., 1984). We would expect the
pitch difference limen in the more distracting setting of listening to
music to be somewhat wider. Indeed, the value of o was optimized—
with respect to the probe tone data—at approximately 6 cents.

Each element ¢, [i, k] of this matrix models the probability of the
ith partial in x;, being heard at pitch class k. In order to summarize
the responses to all the pitches I take the column sum, which gives a
vector of the expected numbers of partials heard at pitch class £. This

1200-element row vector is denoted a spectral pitch class vector x:
X = 1/chr , (F.6)

where 1 is a column vector of 12N ones, and ' denotes matrix transpo-

sition, so 1’ is a row vector of 12N ones.
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The spectral pitch similarity of two such vectors x and y is given by

any standard similarity measure. I choose the cosine:

s(x,y) = X—y/ (E.7)
v (xx') (yy')
This similarity value falls between o and 1, where 1 implies the two
vectors are parallel, and o implies they are orthogonal.

I use this model to establish the similarities of a variety of probes
with respect to a context. Let the context be represented by the spec-
tral pitch class vector x, and let the P different probes y,, be collected
into a matrix of spectral pitch class vectors denoted Y € R*1200, The
column vector of P similarities between each of the probes and the con-
text is then denoted s(x,Y) € R”. For example, the context may be
a major triad built from Hcts and the probes may be single ucTs at the
twelve chromatic pitches. In this case, the thirty-six harmonics from
the context (12 partials for each of the three different chord tones) are
embedded into a single spectral pitch class vector x, as described in (F.1—
F.6). Each of the twelve differently pitched probe tones’ 12 harmonics
are embedded into twelve spectral pitch class vectors yp. The similari-
ties of the context and the twelve probes are calculated—as described
in (F.7)—to give the vector of their similarities s(x, Y).

Models a, b, and ¢ can now be summarized in mathematical form:
Let the vector of probe tone data for both contexts be denoted d €
R?%; let the vector of associated modelled similarities be denoted
s(x,Y;p,0,w,l) € R?Y, where p, o, w are the roll-off, smoothing, and
chord degree weighting parameters discussed above, and ¢ € {a,b,c}

denotes the model; let 1 be a column vector of 24 ones;
d=al+ps(x,Y;p,0,wl)+e, (E.8)

where « and f3 are the linear intercept and slope parameters, and € is
a vector of 24 unobserved errors that captures unmodelled effects or

random noise.



APPENDIX F

Each model’s parameter values were optimized, iteratively, to mini-
mize the sum of squared residuals between the model’s predictions and
the empirical data; that is, the optimized parameter values for model ¢

are given by

(@8,7,5,2)[1]

= arg min (d —al—pfs(p,o,w, E))l (d —al—pfs(p,o,w, E)) ,

a7/67p)0'7w

(F.9)

where argmin f(0) returns the value of 6 that minimizes the value of

£(8).
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