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Abstract

Multicore machines have become pervasive and, as a result, parallel programming has received

renewed interest. Unfortunately, writing correct parallel programs is notoriously hard. One chal-

lenging problem is how to ship correct programs. Dynamic analysis tools are very useful to find

errors in parallel programs by automatically analyzing the runtime information. They often capture

errors from well-tested programs.

However, existing dynamic analysis tools suffer from two problems: high false positive rate

and high overhead. High false positive rate means lots of errors reported by the dynamic analysis

tool may be benign or non-existent. For example, lots of data races detected by a race detection

tool could be relatively benign data races. Also, many dynamic software analyses cause orders-of-

magnitude slowdowns, which users cannot tolerate at runtime.

This dissertation contains three parts. The first two parts propose two different schemes to

reduce the false positives and overhead of race detecting tools. These two schemes can detect

and tolerate two different types of harmful races with low overhead: asymmetric data races and

IF-condition data races.

An asymmetric data race occurs when at least one of the racing threads is inside a critical

section. Our proposal to detect and tolerate asymmetric data races is called Pacman. It exploits

cache coherence hardware to temporarily protect the variables that a thread accesses in a critical

section from other threads’s requests.

An IF-condition data race is one where a memory location accessed by a thread (T1) in the

control expression of an IF statement suffers a race while T1 is executing the THEN or ELSE

clauses. T1 may or may not access again the location in the THEN or ELSE clauses. Our second
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proposal presents two techniques to handle IF-condition races dynamically. They rely on simple

code transformations and, in one case, on additional hardware help.

The third part proposes a general hardware framework to provide fine-grained memory moni-

toring with low overhead. This mechanism can be used to reduce the overhead of many dynamic

software analyses.

Overall, this dissertation aims at designing novel schemes to reduce the false positive rate and

overhead of dynamic software analyses in order to make parallel programs more robust.
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Chapter 1

Introduction

Multi-processor systems, which at one point were limited to the domain of large data centers and

supercomputing centers, are now pervasive. With the advent of chip multi-processors (CMPs),

now they are everywhere from cell phones to embedded systems. This change has been as abrupt

as it is wide-spread and programmers are still struggling to adjust to the new reality of having to

learn parallel programming in order to take advantage of the increased performance. However,

unlike sequential programming, parallel programming has its own unique set of problems, also

known as concurrency bugs [27]. Concurrency bugs can cause a whole host of problems including

crashes, the generation of incorrect results, and security vulnerabilities. Hence, in recent years,

lots of specialized hardware schemes have been proposed to help programmers detect and avoid

concurrency bugs [33, 34, 44, 46, 78].

Dynamic analysis tools can be used to detect software errors by monitoring the runtime state

of a program and observing the situations that may only arise during actual execution [18].

1.1 Data Race Detection

Data race is one of the most common types among various types of concurrency bugs. A data race

happens when two threads access the same variable without any intervening synchronization and

at least one of the accesses is a write. Figure 1.1 shows an example of data race. Here, two threads

update the same shared variable count without any synchronization operations. And therefore, an

incorrect situation could happen: T2 first reads count to num, increments it by 1. But before T2

stores the result back to count, thread T1 reads the original value of count and updates count. As
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a result, the value of count is only increased by 1, not by 2. This is a Data Race which causes a

concurrency bug.
 

 

                               Thread 1                                           Thread 2 

                                                                                     num= count                      

                           num = count                                      num++ 

   num++ 

                           count = num  

                                                                                     count = num 

Figure 1.1: An example of a data race.

Data race debugging can be very hard and, therefore, the topic has received much attention(e.g.,

[9, 24, 31, 36, 38, 39, 41, 44, 45, 52, 55, 60, 68, 74, 78]). At the same time, industry also develops

several commercial software tools for race detection (e.g., [24, 60]). Thanks to this, the state of

the art in data race debugging has made giant strides in the last decade. However, most race tools

lack specificity for the important data races. According to previous works [36, 16], some data

races are more harmful than others. It is important to focus first on the most harmful data races —

those that can cause the program to crash or to generate incorrect results.

In order to better understand the characteristics of harmful races, we do a comprehensive study

of bugs that have been reported for well-known codes and fixed by developers. According to our

study, asymmetric data races and If-condition races are two of the main types of harmful data

races.

T1 T2
Lock
if (point != NULL){
     point−>x = X1;
     point−>y = X2;
}
Unlock

point = NULL;

Figure 1.2: Example of an asymmetric data race.

Figure 1.2 shows an example of an asymmetric data race. In this example, the programmer tries
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to use Lock and Unlock to make the critical section atomic. But unfortunately, the programmer

forgets to put T2’s access in the critical section. As a result, the program will crash due to the

NULL-point access in T1. As shown in the example, an asymmetric data race happens when at

least one of the racing threads is inside a critical section.

The high frequency of asymmetric data races is confirmed by Microsoft researchers in [?] ,

who claim that they frequently encounter them in software development. They provide two intu-

itive sources of asymmetric data races. One source is code developed by good software developers

that has to share memory state with less-tested code developed outside of the house e.g., various

device drivers. A second source is legacy. Specifically, a library may have been written assuming

a single-threaded environment, but later the requirements change to multithreading. This requires

that all the threads acquire a lock before accessing shared state. Unfortunately, some corner cases

are missed.

if (var1) {

to var1
access

(optional)

}

var1 =
if (var1){

var2=

}

var1 =

var2 =

(a) (b)

T1 T2 T1 T2

Figure 1.3: An example of IF-condition data race

An example of IF-condition data race is shown in Figure 1.3. An IF-condition data race is one

where a memory location accessed by a thread (T1) in the control expression of an IF statement

suffers a race while T1 is executing the THEN or ELSE clauses. T1 may or may not access again

the location in the THEN or ELSE clauses. It is easy to see that an IF-condition data race is not

intentionally inserted by the programmer, since the data race could break the assumption which

the programmer made.
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1.2 Other Dynamic Analysis

Besides race detection analysis, different dynamic analyses are designed for memory leak, buffer

overflow, etc. For example, dynamic dataflow analyses mark shadow values with the memory

addresses, propagate them with the execution of the program, and check their status. Lots of

widely used tools such as Valgrind’s Memcheck tool use dataflow analyses to do the memory

check and dynamic heap bounds check.

One common problem for these dynamic analyses especially for the software analyses is per-

formance overhead. For instance, Valgrind’s Memcheck tool has 20X overhead and the overhead

for taint analysis could be up to 150X.

The high overheads of these dynamic analyses make the tools hard to use by programmers in

practice. It would be useful to design a scheme to accelerate these dynamic software analyses.

1.3 Proposed Approaches

We propose two approaches to detect and prevent asymmetric data races and IF-condition data

races. Besides, we also propose a approach to design a hardware framework which can accelerate

multiple dynamic software analyses.

Pacman [46] is proposed to detect and prevent asymmetric data races with minor hardware

support. It exploits cache coherence hardware to temporarily protect the variables that a thread

accesses in a critical section from other threads’ requests. To reduce the hardware cost, it uses

hardware address signatures [8]. Unlike the previous, software-based schemes, Pacman induces

negligible slowdown, needs no compiler or (in the baseline design) OS support, and requires no

application source code changes.

Our second proposal, Falcon is a combination of two schemes: SW-IF and HW-IF. SW-IF is

a purely software approach to detect the IF-Condition races. HW-IF is trying to not only detect

but also prevent the IF-Condition races. It uses additional hardware to achieve low performance

overhead.
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The third proposal, TouchStone, is a new hardware framework to speed up multiple dynamic

software analyses. Unlike previous approaches, our scheme uses a novel hardware - pooled bloom

filters to provide fast fine-grained memory protection which is used by several dynamic analyses.

In general, our goals are to improve correctness and make parallel programming easier.
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Chapter 2

Tolerating Asymmetric Data Races with
Unintrusive Hardware

2.1 Introduction

Data races are arguably the most common type of concurrency bug. They occur when two threads

access the same variable without any intervening synchronization and at least one of the accesses

is a write. Debugging data races can be notoriously hard and, as a result, there is much research

in this area (e.g., [14, 35, 36, 55]). In practice, it is easy to get bogged down uncovering the large

majority of the races that are relatively harmless [15, 36] (so-called benign races) at the expense

of the harmful ones that cause program crashes, machine hangs, or incorrect program results.

One class of data race that is both common and likely harmful is the Asymmetric data race.

It occurs when at least one of the racing threads is inside a synchronization-protected critical

section [50]. In this case, while a thread (call it safe) is accessing shared variables inside a critical

section, a second thread (call it unsafe) races in, corrupting the state or reading inconsistent state.

For example, Figure 2.1 shows a case where thread T1 is the safe thread. These races are common

in bug reports, and can often appear in well-tested codes that interact with third-party or legacy

routines [50]. They are likely harmful because the data being corrupted is critical data already

protected by synchronization. Interestingly, these races have received little attention [49, 50].

T1 T2
Lock
if (point != NULL){
     point−>x = X1;
     point−>y = X2;
}
Unlock

point = NULL;

Figure 2.1: Example of an asymmetric data race.
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Application Source Description Outcome

Apache1.1 Beta Bug number 1507 AppenderAttachableImpl object should be Exception
protected by synchronization in AsyncAppender.getAllAppenders

MySQL6.0 Bug number 48930 lock state is updated by two different threads holding different mutexes System hangs
Mozilla-JS Bug number 622691 The write to cx→runtime→defaultCompartmentIsLocked Incorrect result

is not consistently protected by the lock
Mozilla-XPConnect Bug number 557586 One thread sets gLock to null before another thread drops the lock Segmentation fault
Mozilla-Video/Audio Bug number 639721 mInfo is written by nsBuiltinDecoderReader without Incorrect result

its lock while mInfo is read from HaveNextFrameData with a lock
Pbzip2-0.9.4 Paper [71, 76] main() frees fifo→mut without protection Segmentation fault
Windows Kernel Case study 2 in slides of [15] Two threads access the same structure with different mutexes Incorrect result
Windows Kernel Case study 3 in slides of [15] parentFdoExt→idleState is not protected by a lock Incorrect result
Windows Kernel Real data race example in [15] gReferenceCount is updated without protection Incorrect result
Trie benchmark An example in [49] The prefix match function reads the leaf field of the root object Incorrect result

without acquiring a lock on the trie

Table 2.1: Real examples of harmful asymmetric data races.

The conventional approach to cope with data races is to detect and remove them through ex-

tensive in-house testing. A complementary approach is to tolerate the remaining races during

production runs. This approach includes techniques that prevent the race from manifesting or that

modify the interleaving in a way that minimizes the chances of it (e.g., [47, 66, 73]). This approach

is attractive because, even after extensive in-house testing, races have been shown to remain in the

code after deployment. Moreover, even for harmful bugs, it takes a long time between the detection

of the bug in the field and the release of a fix by the manufacturer [71]. In the meantime, tolerating

the race would be beneficial.

Asymmetric data races are good candidates for race-tolerance. Indeed, the structure of the race

already suggests a way to minimize the potential harm of the race: prevent the unsafe thread from

corrupting the state or reading inconsistent state while the safe one is in the critical section. This

technique is attractive because, unlike many race-tolerance techniques, it requires no correct-run

training. Moreover, for those asymmetric races caused by third party or legacy code interfering

with well-tested code, race-tolerance may be the only option, as the unsafe thread code may be

unavailable.

There are only two proposals that specifically target asymmetric data races: ToleRace [50] and

ISOLATOR [49]. They both use race tolerance and are software-based. When the safe thread

enters a critical section, the software makes a copy of the data in the critical section and redirects

the safe thread’s accesses to the copy. In addition, it may also protect the accesses to the page

that contains the original data. Unfortunately, these approaches slow down execution and require
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significant compiler, operating system (OS), or application changes.

To address these issues, this chapter proposes the first scheme to tolerate asymmetric data

races in production runs with negligible execution overhead. The scheme, called Pacman, exploits

cache coherence hardware to temporarily protect the variables that a thread accesses in a critical

section from other threads’ requests. Unlike prior schemes for asymmetric races, Pacman induces

negligible slowdown, needs no support from the compiler or (in the baseline design) from the OS,

and requires no application source code changes — although small changes are needed in some

libraries. Pacman’s hardware is largely unintrusive, since it is concentrated in a module in the

global network, rather than in the cores. Finally, Pacman embodies a primitive that can be applied

to other software development and debugging uses.

We evaluate Pacman for the SPLASH-2, PARSEC, Sphinx3, and Apache codes. We show that

it has negligible execution overhead. Moreover, we uncover two unreported asymmetric races.

2.2 Asymmetric Races: Common & Harmful

The focus of this chapter is a common and likely harmful type of data race called Asymmetric.

This is a data race where at least one of the racing threads is inside a synchronization-protected

critical section [49, 50]. In addition, we are interested in efficiently tolerating them in production

runs.

Harmful asymmetric data races are common in the real world. To assess their frequency, we

examined over 50 harmful data race bugs from bug libraries of open source software and from

Microsoft reports. We define harmful as being a bug that the user wants fixed — as opposed to the

many data races explicitly created by the programmer for performance. Of the over 50 harmful

races, we found 10 that are asymmetric. They are shown and described in Table 2.1.

The high frequency of asymmetric data races is confirmed by Microsoft researchers in [49, 50],

who claim that they frequently encounter them in software development. They provide two intu-

itive sources of asymmetric data races. One source is code developed by good software developers
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that has to share memory state with less-tested code developed outside of the house — e.g., various

device drivers. A second source is legacy. Specifically, a library may have been written assuming

a single-threaded environment, but later the requirements change to multithreading. This requires

that all the threads acquire a lock before accessing shared state. Unfortunately, some corner cases

are missed.

Asymmetric data races are likely harmful. Indeed, all of the ones shown in Table 2.1 that

come from bug libraries have been confirmed as bugs in the libraries, and fixed in future releases

of the software. In addition, the fact that the programmer protected one thread’s accesses to the

racy variables in a critical section suggests that these are important variables. The atomicity of the

critical section accesses, as intended by the programmer, is broken through accesses from other

threads; this is likely to be harmful.

2.2.1 Our Goal

Our goal is to tolerate asymmetric data races in production runs without needing training tests.

This approach is complementary to conventional in-house data-race debugging. It is motivated by

four facts. First, even after extensive testing, date race bugs appear in released code. Second, it

often takes years between the time when a bug is detected in the field and when a fix is available

from the vendor [71]. Third, for the fraction of asymmetric races caused by third party or (per-

haps) legacy code, fixing the bug may not be a feasible option because the source code may be

unavailable. Finally, the structure of these races already suggests a way to minimize their potential

harm: prevent the unsafe thread from corrupting the state or reading inconsistent state while the

safe one is in the critical section.
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2.3 Pacman: Tolerating Asymmetric Races

2.3.1 Overview of the Idea

We want to prevent unsafe threads from corrupting the state or reading inconsistent state while the

safe thread is in the critical section. We must ensure that an access A from an unsafe thread that

conflicts with an access inside the critical section is ordered in the same way with respect to all of

the accesses in the critical section. As shown in Figure 2.2(a), the first write by T2 can proceed,

but the second one has to be prevented until after the unlock. Similarly, the first read by T2 in

Figure 2.2(b) can proceed, but the second one has to wait until after the unlock.

T1

Lock

Unlock 
(b)

a=

T2

    = a;

a=
    = a;

T1

Lock

    = a;

    = a;
Unlock 

a=

T2

a=

(a)

OK

NOT
 OK  OK

NOT
OK

Figure 2.2: General approach to handle asymmetric data races.

Network

Processor+CacheProcessor+Cache

Controller
Membership

Hash encode

Accumulate

PID

Lock_acquire?

Multicore

Signature=Hash(Lock_address);

if (No entry for thread){

NestingLevel=1;
}
else NestingLevel++;

ActionEvent

Successful lock
acquire

Load/store by
owner thread

Signature += Hash(address);

Load/store by
other thread

if (address       Signature)         ∈

NestingLevel−−;
Lock release if (NestingLevel == 0)

    Deallocate entry;

Allocate entry;
PID = processor ID;

    Nack address;

                 (a) (b)

Stall_index
NestingLevelSignature

SigTable

Figure 2.3: SigTable organization (a) and operation (b).

The idea behind Pacman is to leverage the hardware cache coherence protocol in a multiproces-
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sor to temporarily protect the variables that a thread is accessing in a critical section. The hardware

performs two concurrent actions. One is to record the addresses of (a subset of) the variables that

the safe thread is accessing while executing a critical section. In fact, to a large extent, we only

need those addresses that can be observed by the cache coherence protocol, as we will see. The

second action is to reject any requests from the unsafe threads that conflict with these variables,

until the safe thread leaves the critical section.

For efficiency, Pacman does not record the addresses in a table. Instead, it uses a Bloom

filter [5] to encode them into a hardware address signature. Moreover, to make the hardware as

unintrusive as possible, the signature is stored in a module called SigTable that is connected to the

on-chip network and sees all coherence transactions. Physically, the SigTable is associated with

the bus controller in a bus-based multiprocessor, or is distributed across the different directory

modules in a directory-based multiprocessor. Since multiple processors may be executing critical

sections concurrently, the SigTable stores as many signatures as critical sections are in progress.

The application code is unmodified. However, Pacman assumes that the critical section entry

and exit points of safe threads are marked in the code with synchronization macros or libraries.

Inside these macros or libraries, Pacman makes sure that there is a network access, implemented

as part of the synchronization operation as we will see. As a result, the SigTable always knows

when a processor enters and exits a monitored critical section.

In this section, we describe Pacman’s basic operation and the two key aspects that affect the

ability to tolerate data races: caches and stalls.

2.3.2 Pacman’s Basic Operation

The SigTable is a hardware table that stores the addresses accessed by each in-progress critical sec-

tion, and prevents accesses by other processors to these addresses. In this discussion, we describe a

centralized SigTable, as it would be used in a bus-based system; later, in Section 2.5.4, we outline

a distributed one to be used in a directory-based system. Figure 2.3(a) shows the SigTable, which

has one entry (a row) for each in-progress critical section. In each entry, the two main fields are
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PID and Signature. PID is the ID of the processor currently executing the critical section that owns

the entry. In Section 2.5, we virtualize the SigTable. The Signature field contains (in an encoded

form) the addresses of the lines accessed by the thread in the critical section so far and observed

by the SigTable. A controller at the SigTable input takes the addresses of protocol transactions,

hash-encodes them with a hardware Bloom filter [5], and may accumulate them into signatures

and/or check them for membership in signatures [8].

The SigTable operates as follows. When a lock acquire successfully grabs a lock, the SigTable

allocates a new entry for the critical section, sets PID to the requesting processor ID and, after

clearing Signature, it inserts the hashed physical address of the lock in it. After this, at every load

and store issued by the thread that is not intercepted by the cache, the SigTable hash-encodes the

address of the line accessed and accumulates it in Signature. During this time, network accesses

by other threads are hashed and checked for membership in Signature. If there is a match, the

request is Nacked (negative-acknowledged) to the requester, which will retry. Finally, when the

thread releases the lock, the SigTable deallocates the entry.

Pacman flattens nested critical sections, accumulating all the addresses accessed in the nest in

the Signature. To support this feature, SigTable entries have a NestingLevel field. On a successful

lock acquire, if the processor does not own a SigTable entry yet, the SigTable proceeds as above

and sets NestingLevel to 1; otherwise it increments NestingLevel. On a lock release, the SigTable

decrements NestingLevel and, if it is zero, deallocates the entry. Figure 2.3(b) lists the overall

SigTable operation.

With this approach, Pacman isolates the critical section from unsafe threads. Note that Pacman

needs no compiler support, no OS support, and no source code changes. Moreover, it has negligible

execution overhead for the safe thread.

Nacks are often used in cache coherence protocols, to avoid having to buffer messages that

cannot be processed immediately [20]. While they can cause traffic hot spots in pathological

cases, the probability of an asymmetric race is low enough that there is no need to provide any

contention management mechanism.

12



Finally, while Pacman has a transactional memory (TM) [21] flavor, it needs none of TM’s key

mechanisms such as speculation, rollback, timestamp support or contention management.

2.3.3 Cache Effects

Since the SigTable is placed in the network, it does not see the accesses intercepted by the caches.

To capture the required information to guarantee the atomicity of the critical sections, it relies only

on the transactions induced by the cache coherence protocol — plus some small extensions that

we will explain. We now show why this is the case. In the following discussion, we assume a basic

MESI cache coherence protocol. Other protocols may require slightly different considerations.

Figure 2.4 shows two simple patterns. In Figure 2.4(a), thread T1 writes to line x and misses

in the cache. SigTable records the address. Any subsequent read or write to x by T2 requires a

coherence transaction, which is observed and Nacked by the SigTable. In Figure 2.4(b), T1 reads

x and misses in the cache. SigTable records the address. If T2 reads x, there may or may not be a

coherence transaction. If there is, the access will be Nacked; otherwise, it will not. Either situation

is fine because two reads do not conflict. However, if T2 writes x, there is a coherence transaction

that will be Nacked by the SigTable.

wr x Miss
rd x Miss 

T1

    (a)

Acquire

Release

rd x / wr x

rd x / wr x

T2

Nack

Done

T1 T2

Acquire

    (b)

Release

rd x

wr x Nack

wr x Done

Figure 2.4: Examples to help understand Pacman’s operation.

The more involved cases involve three issues: cache state before entering the critical section,

cache displacements during the critical section, and synchronization operations. We consider each

in turn.
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Cache State Prior to Entering the Critical Section

Before the safe thread enters the critical section, some of the lines in its cache may be in a state

that enables the processor to access them silently during the critical section. There are two cases:

when x was Dirty (or Exclusive) in T1’s cache in Figures 2.4(a) and (b), and when x was Shared in

T1’s cache in Figure 2.4(b). In these cases, SigTable will not observe T1’s access to x.

None of the two cases prevents SigTable from ensuring the atomicity of the critical section.

Consider the case when x was Dirty (or Exclusive) in T1. When T2 attempts to access the line

and misses, the coherence protocol forces T1 to write back the line. When the SigTable sees that a

processor with a SigTable entry writes back a line, it assumes that the processor had accessed the

line. Consequently, while allowing the line to be written to memory, it inserts the line’s address

in the entry’s Signature and Nacks the requesting (unsafe) processor — hence ensuring critical

section atomicity. No functional change to the caches or coherence protocol is needed. If T1 had

not accessed the data in the critical section, Pacman acts conservatively but not incorrectly.

Consider now the case when x is Shared in T1. When T2 attempts to write the line, the hard-

ware issues a coherence transaction that invalidates T1’s copy. For this case, Pacman requires a

simple hardware extension. Specifically, it requires that T1’s cache informs, in its response to the

invalidation, that indeed, it has invalidated a line. When the SigTable sees that a processor with a

SigTable entry has invalidated a line, it assumes that the processor had accessed the line. Conse-

quently, it inserts the line’s address in the Signature for the entry and Nacks the requesting (unsafe)

processor. Again, if T1 had not read the line in the critical section, Pacman acts conservatively but

correctly.1

Supporting this change is simple. In a directory-based protocol, when a cache invalidates a

line, it must set a bit in the invalidation acknowledgment returned to the directory. In a snoopy-

based protocol, the cache must set a bit in the bus that is visible to the SigTable. This hardware

change and all the other processor/cache modifications required by Pacman will be summarized in

1In all of these cases, a Nacked write has already invalidated the line from all the caches. This can hurt performance
slightly if caches have to re-access the data. However, this occurs only once.
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Section 2.3.3.

Cache Displacements During the Critical Section

Consider the case when, as a processor executes a critical section, its cache displaces a line that

was in the cache before the processor entered the critical section. Such line is not in the Signature,

but must be conservatively put there as the processor may have accessed it silently during the

critical section.

There are two cases, namely that the displaced line is Dirty or not. If it is, the case is easy: as

the line is automatically written back to memory, the SigTable sees that the source processor owns

an existing SigTable entry and inserts the address in the Signature.

If the line is not Dirty, the coherence protocol would not trigger a line writeback. Therefore,

we propose to modify the cache controller to send a notification to the network when the cache

displaces a clean line inside a (monitored) critical section. The notification carries the address of

the line. When the SigTable sees such a notification from a processor that owns a SigTable entry,

it conservatively accumulates the address in the Signature. The extra traffic created is small, since

critical sections are typically short. Overall, this extension is like the Replacement Hint transaction

sometimes used in directory protocols [11], except that it only needs to occur while the processor

is inside a critical section.

This is the most significant hardware modification required by Pacman, as summarized in Sec-

tion 2.3.3. However, it can be implemented easily. Specifically, the controller for the last level of

private cache has a counter register called Mode. When Mode is not zero, the cache is in Notifi-

cation mode, and it sends a notification message at every displacement of a non-Dirty line. Every

successful lock acquire operation for a monitored critical section increments the Mode register,

while every release for it decrements it. This ensures that, in nested critical sections, the cache re-

mains in Notification mode throughout the outermost critical section. Increments and decrements

can be supported with a write to a register in the cache controller. Such writes can be performed

inside acquire and release macros or libraries, such as those of M4 [29] or OpenMP [12].
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Synchronization Operations

The SigTable must see all of the successful acquires and all of the releases. This is because they

may allocate/deallocate a SigTable entry and update the Signature and NestingLevel fields. The

coherence protocol ensures that the SigTable sees these synchronization operations except in the

cases when they hit a cache line in state Dirty or Exclusive. So, we must ensure that, in these cases,

a notification access is also issued to the network that the SigTable sees.

To accomplish it, we propose to augment the implementation of the acquire and release instruc-

tions. If a successful acquire or a release operation proceeds without needing a network access,

the hardware issues a notification message to the network. An alternative design would involve

not changing the acquire or release instructions and adding an explicit uncached write inside the

synchronization macros or libraries. While this design is simpler, it would add more overhead to

the synchronization operation. Still, overheads may be tolerable, especially if one is willing to

identify the potentially problematic critical sections and only monitor those.

Unsuccessful acquires do not need to be observed by the SigTable.

Pacman is compatible with modern processors that speculatively read past an acquire before

the acquire completes. The SigTable may be unallocated and, therefore, unable to capture the

loaded address. The effect is the same as if the load had hit in the cache (Section 2.3.3).

Summary of Cache Hierarchy Modifications

Table 2.2 summarizes the functional modifications that Pacman requires in the cache hierarchy and

coherence protocol. We believe that these modifications are modest. All of the other modifications

are unintrusive because they are part of the SigTable module.

When a cache invalidates a clean line, it sets a bit that is visible
to SigTable.
In Notification mode, the last-level private cache sends a notification
message when it displaces a clean line.
A successful acquire or a release that are fully intercepted by the cache
issue a notification message to the network.

Table 2.2: Pacman functional modifications in the cache hierarchy and coherence protocol.
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2.3.4 Multiple Stalls and Deadlock

Pacman temporarily stalls unsafe threads by Nacking their conflicting requests. We now consider

the case when multiple threads are Nacked and show how deadlock can occur and is handled.

Multiple Thread Stalls

It is possible that two (or more) threads send Nacks to each other and end up all stalling. This

situation can occur due to three reasons: some race bugs where all of the threads synchronize,

false sharing and false positives. Figure 2.5 shows two examples of the first case. In Figure 2.5(a),

two threads T0 and T1 acquire two different locks L0 and L1, respectively. Inside the critical

sections, both threads access the same two variables g0 and g1 in different order. The timing is

so unfortunate that each thread accesses one variable and then receives a Nack on attempting to

access the second variable. We have formed a cross-thread stall cycle and no thread can make

progress.

(a)

T0 T1

Acquire L0 Acquire L1

g0= g1=

g0=g1=

Nacked

Acquire L0 Acquire L1

T1T0

g0=

(b)

Acquire L1
g0=

Nacked

Figure 2.5: Examples of data race bugs where all the threads synchronize and lead to deadlock.

In Figure 2.5(b), the two threads T0 and T1 acquire two different locks L0 and L1, respectively,

and then access the same variable g0. T0 succeeds and T1 gets Nacked. Then, the thread that

succeeds (T0) attempts to acquire the lock of the other, stalled thread (T1). We have a cross-thread

stall cycle as before, except that one of the two dependences in the cycle is for a lock variable.

The second source of cross-thread cycles leading to deadlock is pathological cases of false

sharing of lines. For example, it occurs in a pattern similar to Figure 2.5(b) except that T1, rather

than accessing variable g0, accesses a variable that shares a line with g0. Recall that the SigTable
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is in the network and can only see line addresses.

The third source of cross-thread cycles leading to deadlock is pathological cases of false-

positive dependences between threads, due aliasing in the signatures or due to the cache state

prior to entering the critical section (Sections 2.3.3 and 2.3.3). However, since critical sections

tend to be small, false positives are typically not very significant.

Making Forward Progress in Pacman

Pacman uses hardware to detect a deadlock cycle as soon as the memory access that closes the cy-

cle occurs. This approach is much faster than the software-based timeout approach of ISOLATOR.

Moreover, at that point, Pacman’s hardware breaks the cycle by allowing one the stalled threads to

perform one memory access. Such access enables forward progress.

To support the algorithm, we add two fields to each row of the SigTable (Figure 2.3(a)). First,

Stall index tells if the thread that owns the entry is being Nacked. Specifically, Stall index stores

the index of the SigTable entry that sends Nacks to the owner thread. If the owner thread is not

being Nacked, this field is null. Second, when Stall index is not null, the Lock acquire? bit is set

if the owner thread is being Nacked while trying to acquire a lock. This bit will detect the case of

Thread T0 in Figure 2.5(b).

When an access by processor Pi is Nacked by entry j of the SigTable, the SigTable hardware

checks if Pi also has an entry in the SigTable. If so, it sets that entry’s Stall index to j and,

if appropriate, sets the Lock acquire? bit. Then, the SigTable hardware follows the Stall index

pointer by checking entry j in the SigTable and reading its own Stall index. If, by following the

Stall index pointers in this way, the hardware ends up in entry i, it has detected a cycle. At that

point, the hardware needs to decide which thread among those in the cycle is allowed to perform

one access without being Nacked. A simple approach is to pick one of the threads that holds

locks requested by other threads (such as T1 in Figure 2.5(b)). Such threads are detected from the

Lock acquire? bit of other entries, and they need to make progress to break the cycle. If there is

no such thread, the hardware picks one thread at random. The next time that the SigTable sees a
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request from the picked thread, it does not Nack it.

Breaking the Atomicity of Critical Sections

With the algorithm described, Pacman immediately finds and breaks any deadlock — unless it was

already present in the original application. However, by letting one stalled thread complete one

access, it can conceivably break the atomicity of a critical section. To understand the problem, we

consider each of the three sources of deadlock listed in Section 2.3.4.

In the first case (some race bugs where all of the threads synchronize), Pacman can potentially

break the atomicity of one of the critical sections. While Pacman could be designed to break

only the atomicity of unsafe threads, such an approach would not work for all the race bugs. An

example is when T1 in Figure 2.5(b) is the unsafe thread. Overall, given the very low probability

of breaking atomicity in this way, we do not attempt to avoid it.

In the third case (false positives), letting one thread proceed does not break the atomicity of

any critical section.

In the second case (false sharing), atomicity can potentially be broken unless special care is

taken. To see why, consider Figure 2.6, which is slightly modified over Figure 2.5(a). In this

example, variables g0 and g0’ share the same cache line, while g1 and g1’ share another line.

Because of false sharing, threads T0 and T1 deadlock. By breaking the deadlock through letting

T1 read g0’, Pacman is allowing the line to go to T1’s cache. Right after the critical section, T1

could attempt to silently access g0 from its cache, which could break T0’s atomicity.

T0 T1

Acquire L0 Acquire L1

g0=

g1=

g1’=

=g0’

Nacked Release L1

=g0

Figure 2.6: Atomicity could be broken due to false sharing.

To prevent this case from occurring, we could augment Pacman so that, when the SigTable lets
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one access break a deadlock, it marks it as non-cacheable. The requesting processor would be

allowed to use (read or write) the word, but its cache would not be allowed to keep the line. As

a result, accesses to other words would miss in the cache. This extension would avoid breaking

atomicity when false sharing occurs between words. However, a more elaborate solution would be

needed when false sharing occurs between bytes of the same word. Given the very low probability

of breaking atomicity due to false sharing, Pacman does not include this support.

2.4 Discussion

Pacman’s unique goal makes it very different from hardware-based race detectors [31, 34, 44, 45,

78]. In these schemes, the goal is to characterize and debug races. Moreover, false positives are

highly undesirable. Hence, these schemes tend to use more expensive hardware, such as per-word

access information, epoch IDs in coherence messages, and even rollback. Pacman’s goal is to

tolerate asymmetric races in production runs. Since we are not debugging, it is fine to have some

false positives (e.g., due to aliasing in signatures) if they are handled fast. A false positive in

Pacman simply slows down a thread a little bit. The result is cheaper, less intrusive hardware.

Still, Pacman could be used as a detection tool for asymmetric races. Indeed, the number of false

positives we found is very low (as we show in the evaluation) and the number of false negatives is

likely negligible.

Pacman provides a powerful primitive: dynamically and selectively prevent accesses to a set of

addresses by certain processors. It can be used in security and performance/correctness debugging.

For example, it can enforce atomic regions and detect atomicity violations, or provide watchpoint

capability.

Pacman is fastest when critical sections are small, which is the norm in many codes. However,

we believe that it is also very useful for beginner programmers, who tend to write long critical

sections. The long critical sections will be protected and the program will run safely, although

slower.
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It is possible that a malicious thread could attempt to use Pacman to deny access to other

threads, by remaining inside a critical section and filling up a signature. This problem can be

detected with a watchdog timer, or by counting the number of Nacks triggered by a critical section.

Pacman has a few limitations. One is that it needs to be able to identify (monitored) critical

section entry and exit points. To do so, we have assumed synchronization macros or libraries, but

certain types of code are not written in this way. Second, the fact that all of the successful acquires

and releases need to access the SigTable can slow down codes where the same thread repeatedly

executes the same, short critical section. We have not seen this case but it is possible.

A final limitation is that Pacman is not designed for some unusual types of critical sections.

They include million-instruction critical sections. They also include patterns where a thread spins

on a flag inside a critical section, waiting for a racy thread to set the flag (Figure 2.7). We feel that

this pattern is bad programming style. In any case, for these types of critical sections, the compiler

or programmer can disable Pacman or use plain synchronization. Alternatively, Pacman can have

a watchdog timer or a Nack-counting mechanism that detects the problem and allows the write(s).

T0

Acquire L0

Release L0

while (flag==0){}

T1

flag=1;

...

Figure 2.7: Unusual pattern that Pacman does not handle.

2.5 Implementation Issues

2.5.1 Pacman Module

The Pacman module is a hardware module connected to the on-chip network (Figure 2.8(a)). It

comprises the SigTable and its controller. The controller is composed of two simple hash blocks

(H-Blocks) and the Cycle Detection & Breakup module. The latter chases the Stall index links as
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described in Section 2.3.4 to detect and break deadlocks.
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PID_in PID≠
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Figure 2.8: Implementation of the Pacman module.

Figure 2.8(b) shows H-Block1 and the SigTable. H-Block1 takes the address of an incoming

request transaction and encodes it into a signature using a parallel Bloom filter [5] (Signaturein

in Figure 2.8(b)). The signature is then tested for membership in valid SigTable entries from

other processors (∈ in Figure 2.8(b)). This operation involves a bit-wise AND operation to get

the intersection and then a check for zero [8] (Figure 2.8(c)). If any membership test is positive,

the Nack1 signal is raised. Otherwise, if the requesting processor owns a SigTable entry (or a new

one needs to be allocated), the signature is bit-wise ORed with the correct SigTable entry (∪ in

Figure 2.8(b) and expanded in Figure 2.8(d)). Overall, H-Block1’s operations can be performed in

2-3 cycles and are hidden under the first half of the bus transaction.

In the second half of the bus transaction, when the caches have finished snooping, the bus
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may receive a write back or invalidation response (Section 2.3.3). H-Block2 (not shown in detail)

checks if the processor ID that writes back or is invalidated has a SigTable entry. If so, it bit-wise

ORs the hashed address with the correct signature and raises Nack2. H-Block2’s operation takes

1-2 cycles. If Nack1 or Nack2 is raised and the Cycle Detection and Breakup module does not

prevent it, a Nack signal is returned on the bus.

All of the operations of the Pacman module except for cycle detection are simple enough to be

overlapped with the bus transaction. In a directory protocol, they overlap with directory module

accesses. The cycle detection may take over 10 cycles, which is acceptable since it is done in the

background.

Figure 2.8(b) also shows the sizes of the SigTable’s fields. The size of PID and Stall index

depend on how many threads we may need to monitor at a time. For Signature, we found that,

with 1,024 bits, false positives are typically less than 1%. For NestingLevel, we allocate 5 bits,

which is enough for our programs.

Finally, the Pacman module is enabled and disabled by the Pacman on and Pacman off com-

mands, respectively. They can be implemented as writes to memory-mapped registers. These

commands can be used to exclude the program regions that are serial or otherwise uninteresting.

2.5.2 Virtualization: Thread Pre-emption and Migration during Critical

Section Execution

While executing a critical section, a thread can be pre-empted and even migrated to another pro-

cessor. In an advanced design that requires OS support, we would like that (i) while a thread is

pre-empted in a critical section, we keep protecting its critical section, and (ii) when it resumes

in a potentially different processor, we keep accumulating its accesses in the same signature. To

support this, when the OS pre-empts a thread from processor i, it checks the SigTable for an entry

with PID equal to i. If it finds one, it changes its PID field. Specifically, if the thread will not run

anywhere, it sets the PID field to a special code (e.g., OUT); if it will run on processor j, it sets the
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PID field to j.

With this algorithm, if a thread gets pre-empted and is not running, it still has its critical section

protected from asymmetric races. Indeed, its SigTable entry is still valid and coherence messages

are checked against its signature. The checks may result in sending Nacks. Then, when the thread

is scheduled on a different processor, its accesses are still accumulated into the same old signature.

This approach is efficient, since there is no copying or saving/restoring of SigTable entries.

Moreover, the hardware is kept simple, since it always does the same thing: accumulate accesses

from processor i into the SigTable entry tagged with PID i. Stall index does not get stale, since it

contains a table index.

If the program has more threads than processors, there may be several SigTable entries with a

PID equal to OUT. In addition, at a given time, the SigTable entries may belong to threads from

several different programs. Pacman works correctly because it uses physical addresses.

There is an issue with the cache state left behind by a thread that migrates while executing

a critical section. Recall from Section 2.3.3 that the thread may have entered the critical section

with cache state that it later accessed while in the critical section without notifying the SigTable.

We showed that Pacman (conservatively) captures this information at cache displacements or at

writebacks/invalidations triggered by other processors. However, if we now migrate the thread, we

cannot capture such events.

To keep the design simple, we accept this limitation. This means that Pacman misses the few

cases listed in Sections 2.3.3 and 2.3.3 for threads that migrate while in a critical section. A more

aggressive approach would be to write back to memory all the dirty cache lines at the time the

thread migrates while in a critical section. The addresses of these writebacks would be put in

the signature. A more drastic approach would be not to allow migration during critical section

execution. Overall, since critical sections are typically small, migration during their execution is

rare and does not justify additional actions. Like all data-race handling techniques, Pacman is a

best-effort approach.
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2.5.3 Extensions for Multithreaded Processors

Multithreaded processors have multiple hardware contexts and run multiple threads at a time. It

is possible that different threads executing on different contexts of the same processor concur-

rently execute different critical sections. In this environment, Pacman requires an extension where

the messages sent by processors to the SigTable include both the processor ID and the hardware

context ID within the processor. Similarly, SigTable entries have both a PID and a ContextID field.

The cache-state issues of Sections 2.3.3 and 2.3.3 are handled conservatively. If multiple con-

texts in a processor are concurrently executing critical sections, any writeback, invalidation, or

displacement that needs to insert an address in a signature, does insert it in all the SigTable entries

owned by that processor.

Since the SigTable is connected to the network, it can only observe data sharing across proces-

sors, not across contexts in a processor. Consequently, for Pacman to tolerate races as advertised,

a program can only use one context per processor — although multiple programs can use the mul-

tiple contexts of a processor. To allow a program to use multiple contexts in a processor, bigger

changes would be needed, such as stalling all the other threads in the processor when one thread is

executing a critical section.

2.5.4 Extensions for a Distributed SigTable

The discussion so far assumed a centralized SigTable, which is reasonable for a snoopy protocol.

To use Pacman in a system with a directory-based protocol, we need to distribute the SigTable

across the different directory modules. Since such a design is outside our scope, we only outline

it.

Like the directory, the SigTable naturally lends itself to a distributed environment, with parti-

tions based on address ranges. Consequently, each directory module has an associated SigTable

module, which is in charge of the range of physical addresses assigned to the local directory mod-

ule. When a thread enters a critical section, the hardware allocates an entry for the processor in
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all the SigTable modules; when it exits it, all the entries are deallocated. When a thread misses on

an address, the request naturally reaches the home directory of that address. There, the address is

checked against the entries in the local SigTable module using the usual algorithm. The SigTable

modules in the other directory modules are not checked.

2.6 Conclusions

This chapter proposed Pacman, the first scheme designed to tolerate asymmetric data races in pro-

duction runs with negligible execution overhead. Pacman leverages cache coherence hardware

to temporarily protect the variables that a thread accesses in a critical section. Unlike the previ-

ous, software-based schemes, Pacman induces negligible slowdown, needs no compiler or (in the

baseline design) OS support, and requires no application source code changes — although small

changes are needed in some libraries. Moreover, its hardware is unintrusive since it is concentrated

in a module in the network, rather than in the cores. We evaluated Pacman for SPLASH-2, PAR-

SEC, Sphinx3, and Apache and showed that it has negligible overhead. Moreover, we uncovered

two unreported asymmetric data races.

Pacman provides a hardware primitive for dynamically and selectively preventing accesses by

certain processors to a set of addresses. This primitive can have several uses in performance and

correctness debugging.
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Chapter 3

Falcon: Dynamically Detecting and
Tolerating IF-Condition Data Races

3.1 Introduction

Data races are one of the most common concurrency bugs. A data race occurs when two threads

access the same memory location without any intervening synchronization and at least one of the

accesses is a write. Data race debugging can be very hard and, therefore, the topic has received

much attention (e.g., [9, 14, 35, 36, 43, 52, 55, 75]). Thanks to this, the state of the art in data race

debugging has made giant strides in the last decade. Unfortunately, commercial race-detection

tools (e.g., [24, 60]) still suffer from several limitations. Two of the most vexing ones are the lack

of specificity and the high runtime overhead.

The first issue refers to the lack of focus on the key data races. If we run a commercial race-

detection tool on a large software system, we typically obtain a long list of data races. While it can

be argued that all data races are undesirable, for productivity reasons, it is imperative to focus the

program developer’s attention on those races that truly cause program malfunctioning — at least

first.

The high runtime overhead — often 100x or more — burdens the program developer, who

needs to run the race detector multiple times during development. The overhead results from the

tool’s desire to provide a complete analysis. Recently, there have been proposals for race detectors

that use program sampling (e.g., [6, 30]) or hardware support (e.g., [34, 78]). These are promising

approaches, although they come with shortcomings in race detection ability or hardware cost.

One approach that should guide the evolution of race detectors is examining the types of bugs

reported in the bug databases of popular software systems [27]. By studying what are the races
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reported, one can develop race debugging methods that are both specific (i.e., target the types of

reported races) and fast.

In this work, we have analyzed the data races reported in the bug databases of popular software

systems. We find that a type of data race that we call IF-condition race occurs fairly often. An

IF-condition data race is one where a memory location accessed by a thread (T1) in the control

expression of an IF statement suffers a race while T1 is executing the THEN or ELSE clauses. T1

may or may not access again the location in the THEN or ELSE clauses. Figure 3.1(a) shows an

example.

if (var1) {

to var1
access

(optional)

}

var1 =
if (var1){

var2=

}

var1 =

var2 =

(a) (b)

T1 T2 T1 T2

Figure 3.1: Structure of an IF-condition data race (a), where the arrow heads show the order of the
accesses. Chart (b) shows examples of IF-related data races, to be discussed later.

The insight behind focusing on IF-condition races is that statements in the THEN or ELSE

clauses are control dependent on the IF control expression. Hence, the program is likely to mal-

function if the value of the expression does not hold until the completion of the IF statement. In

other words, it is likely that the programmer implictly assumed that there is atomicity between the

accesses in the control expression and the accesses in the THEN or ELSE clauses. A data race on

locations accessed in the control expression breaks such atomicity.

If one considers the control expression to be the ”Check” and the THEN or ELSE clauses to

be the ”Action” of an IF statement, IF-condition races share a similar pattern with what are called

TOCTTOU (time of check to time of use) [64, 69] races. The difference is that while TOCTTOU

races apply to conditions in the file system between competing processes, IF-condition races apply

to multi-threaded programs.

IF-condition race detection allows for an extremely efficient and lightweight implementation.
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Since IF-condition races are associated with a particular program structure, they are easy to spot

and check with a fast and specific test. Importantly, there is no need for profiling or training runs

to be able to find the targets for the checks — simple compiler analysis of the code structure is

typically enough.

In this chapter, in addition to proposing IF-condition races as a cost-effective target for future

race detectors, we present two techniques to handle them. One technique is entirely software-

based and detects the races during the code testing phase (SW-IF). The other relies on additional

hardware and is able both to detect and to prevent the races during production runs (HW-IF). Both

techniques rely on simple code transformations by the compiler and need no profiling.

Our techniques use the compiler to identify IF statements with control expressions that contain

accesses to shared locations. Then, in SW-IF, the compiler inserts code to check that the value of

the expression has not been changed by a racing thread. The check is performed in the THEN and

ELSE clauses, either before the first write to one of these locations or, if there is no such write, at

the end of the clauses. In HW-IF, the compiler inserts code to “watch” the shared locations that

participate in an IF’s control expression. During the IF’s execution, the local processor can access

the watched locations, but any remote processor that attempts to do it gets a failed memory access

signal and has to retry. This simple mechanism effectively prevents other threads from breaking

the atomicity of the IF-condition with respect to the rest of the IF statement.

We evaluate SW-IF and HW-IF using a variety of applications. We show that these techniques

are effective at finding new data race bugs with a low false positive rate and run with low overhead.

Specifically, HW-IF finds 5 new (unreported) IF-condition race bugs in the Cherokee web server

and the Pbzip2 application; SW-IF finds 3 of them. In addition, 8-threaded executions of the

SPLASH-2 applications show that, on average, SW-IF adds 2% execution overhead, while HW-IF

adds less than 1%.

The contributions of this work include: (1) identifying a new type of common, important data

race type called IF-condition, (2) proposing two new techniques to detect and prevent these bugs,

and (3) showing that these techniques find several new bugs with a low false positive rate and very
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little execution overhead.

3.2 Background on Race Detection

There has been substantial research on the topic of data race detection (e.g., [24, 9, 13, 14, 31,

35, 36, 38, 43, 44, 45, 52, 55, 60, 68, 74, 78]), which includes the proposal for software tools for

race detection (e.g., [24, 52, 55, 60, 74]) and the proposal for special hardware structures in the

machine (e.g., [13, 31, 34, 44, 45, 78]).

In general, there are two approaches to find data races, namely lockset algorithms, such as

in Eraser [55], and happened-before algorithms, such as in Thread Checker [24]. The lockset

approach is based on the idea that all accesses to a given shared variable should be protected by

a common set of locks. This approach tracks the set of locks held while accessing each variable.

It reports a violation when the currently-held set of locks (lockset) at two different accesses to the

same variable have a null intersection.

The happened-before approach relies on identifying concurrent epochs. An epoch is a thread’s

execution between two consecutive synchronization operations. Each thread uses a vector clock to

order its epochs relative to the other threads’ epochs. In addition, each variable has a timestamp that

records at which epoch it was last accessed. When a thread accesses the variable, it compares the

variable’s timestamp to its own clock, to determine the relationship between the two corresponding

epochs: either one happened before the other, or the two overlap. In the latter case, we have a race.

In this work, rather than taking and extending these algorithms, we use an approach similar to

Lu et al.’s [27]. Specifically, we focus on understanding the data race patterns reported in the bug

databases of popular software systems. Then, we propose race-handling algorithms that are both

specific for important types of races and fast.
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Application # Reported Bug ID # IF-Related # IF-Condition Language
Data Races Data Races Data Races

Apache 26 25520,21287,45605, 49986-1, 49986-2, 49985, 21 20 C, C++, Java
47158, 48790, 1507,31018, 45608, 44178,
254653, 49972, 40681, 40167, 728, 41659,
37458, 36594, 37529, 40170, 46211, 44402,
46215, 50731

MySQL 13 644, 791, 2011, 3596, 12848, 52356, 19938, 12 8 C, C++
24721, 48930, 42101, 59464, 56324, 45058

Mozilla 11 622691, 341323, 13377, 225525, 342577, 52111, 9 8 C, C++
224911, 325521, 270689, 73761, 124923

Redhat (glibc) 2 2644,11449 0 0 C
Java SDK 1 6633229 1 1 Java
Pbzip2 1 Data race from [73] 1 1 C++

Total 54 —- 44 38 —

Table 3.1: Data races studied. They are obtained from the bug databases of popular software
systems.

44 
81% 

10 
19% 

IF-related

Not IF-related

（a） 

6 
14% 

38 
86% 

Other IF-related
races

IF-condition
races

（b） 

32 
84% 

6 
16% 

Single var

Multiple vars
(DCL)

（c） 

Figure 3.2: Classification of: reported data races (a), IF-related data races (b), and IF-condition data races
(c).

3.3 IF-Condition Races & Their Frequency

We mined the bug report databases of Apache, MySQL, Mozilla, the glibc library of Redhat, JAVA

SDK, and Pbzip2, and found 54 reported data race bugs. They are listed in Table 3.1. To obtain

these bugs, we went over the entire bug databases of the applications and collected those that

met the following conditions: 1) programmers used the words “race condition” in the description

of the bug and 2) it was relatively easy to pinpoint the race in the source code according to the

description. Based on an analysis of the data, we define two types of data races:

• IF-Related Data Race: Race where at least one of the accesses in the race happened inside an

IF statement — regardless of where the access happened inside the statement or when the race

happened. Figure 3.1(b) illustrates two such races.

• IF-Condition Data Race: Race where a memory location accessed by a thread (T1) in the control
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expression of an IF statement suffers a race while T1 is executing the THEN or the ELSE clauses.

T1 may or may not access again the location inside the THEN or ELSE clauses. Figure 3.1(a)

shows an example. IF-condition races are a subset of IF-related races.

As shown in Table 3.1, we find that, of all the reported data races, 44 (or 81%) are IF-related

data races. In addition, Table 3.1 also shows that, out of these 44 IF-related data races, 38 (or

86%) are IF-condition data races. Moreover, in an attempt to characterize these IF-condition data

races further, we examine whether they involve a single or multiple racing variables — of which at

least one is accessed in the IF’s control expression. We find that 32 out of these 38 bugs (or 84%)

have a single racing variable. There are 6 bugs that involve 2 racing variables. These bugs are all

double-checked lock (DCL) [56] races. Figures 3.2(a)-(c) show the overall data.

Overall, the data shows that IF-condition data race detection covers a wide range of data race

bugs — 70% of the race bugs in the selected applications. Our techniques, both SW-IF and HW-IF,

target all IF-condition data races, regardless of the number of variables involved. Consequently,

they can have a large impact when applied.

As a side note, the careful reader might notice that an IF-condition race can be signaled even

when shared locations in the IF-condition are not technically involved in a data race. This can

happen when the control expression of an IF is protected by a lock L which does not extend to

the end of the entire IF statement. The IF-condition race occurs when another thread modifies the

control expression (while acquiring L) when the THEN or ELSE clause of the IF statement is still

executing. While this is technically not a data race, this still compromises the atomicity of the

IF-condition with respect to the IF statement, and hence is classified as an IF-condition race and

is fully detectable by our scheme. However, we did not find any examples of this scenario during

analysis of the bug databases.
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3.4 SW-IF: Detecting IF-Condition Data Races

3.4.1 Main Idea

The idea is to use the compiler to identify IF control expressions that can potentially be a source of

data races, and check that their values do not change inside the IF statements due to writes by other

threads. This is done by inserting checks at the end of their respective THEN and ELSE clauses.

Sometimes, however, the compiler is forced to insert the check earlier, before the THEN or ELSE

ends, because local writes can modify the value of the control expression. We call the locations in

the program where the compiler inserts these checks Confirmation points.

More formally, for a given IF statement, call E the control expression, E(SL) the set of po-

tentially shared locations accessed in E, and E(L) the set of all locations accessed in E. The IF

statement containing E is considered for race detection only if E(SL) is not empty. If so, the

compiler sequentially searches each of the THEN and ELSE clauses for any statement that might

potentially perform a write to E(L). If it finds any, a Confirmation point is placed before the first

such write. If the compiler cannot find a candidate write, a Confirmation point is placed at the end

of the THEN or ELSE clause. There is at most one Confirmation point in each of the THEN and

ELSE clauses. This is so to reduce overhead.

At a Confirmation point, the compiler inserts code that recomputes E. If the result of recom-

puting E is different than the one attained when E was first executed in the IF’s control expression,

then a race bug is declared. Figure 3.3(a) shows the high-level idea.

Like DataCollider [15], this approach is a best-effort one. Even in the presence of a data race

bug, this scheme may miss it because of timing reasons (the external processor’s racing access

has not yet occurred when E is recomputed at the Confirmation point) or because although some

variables in E changed value, expression E returns the same value. In the following, we present

the algorithm, and then discuss the limitations.
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3.4.2 Algorithm

We use the Cetus source-to-source compiler [26] to analyze and transform the code. The struc-

ture of our transformation algorithm, called SW-IF, is shown in Figure 3.3(b). The algorithm is

performed in two steps: “Add Check” and “Add Delay”. “Add Check” identifies the Confirmation

points and inserts the checks. This is the only step used if we want to run SW-IF with minimal

overhead. “Add Delay” is a pass that is useful if we want to force different program interleavings

and we can tolerate more overhead. It considers the Confirmation points selected by “Add Check”

and decides if it introduces delays at those points to force different interleavings.

Adding Checks.

In the first step, the compiler needs to identify all the IF statements that will be augmented with

Confirmation points. We call this set the Monitor set. Such a set starts with all the IF statements

that have control expressions that potentially access shared locations. Cetus is able to tell when

accesses reference provably private locations. IF statements where E contains only accesses to

provably private locations are not part of the Monitor set.

SW-IF removes from the Monitor set those IF statements where E includes writes. SW-IF does

not support writes because, otherwise, when it recomputes E at a Confirmation point, it would

have side effects. The only exception to this rule is when E only contains the ++ or - - operator,

and Cetus can prove that there is no aliasing. In this case, the IF statement is kept in the Monitor

list, and E will be recomputed at the Confirmation point without the ++ or - - operation.

SW-IF also removes from the Monitor set those IF statements where E contains a function call.

SW-IF does this to avoid unwanted side effects at Confirmation points, or the need to perform

expensive interprocedural analysis to analyze function side effects. The exception are C standard

functions that do not write variables, such as string compare (strcmp and strncmp) and absolute

(abs). In general, neither writes nor procedure calls are common in control expressions.

For each IF statement in the Monitor set, SW-IF finds the Confirmation points of the THEN
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I: if (E) {S1} else {S2}

Yes

No

Exit

A
dd

 C
he

ck
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dd
 D

el
ay

Yes No

Yes
No

Yes No

   (b)

 (a)

Locate Confirmation point in S1 and in S2 

Add check E before Confirmation point in S1 and
add check !E before Confirmation point in S2

Is I inside a loop?

Is I inside a critical section?

Does I’s call stack contain a recursive call?

Add delay before the check

E(SL) == Null

for each I, get E(SL)

E(SL) != Null

if(var==0){

if(!(var==0))
printf("bug found\n");

}

Check expression
point
Confirmation

var =1; 

Does E contain func call or write

operation beyond the exceptions?

Figure 3.3: High-level structure of the SW-IF algorithm.

35



for(i=0; i<MAX; i++){

}
}

Do not add delay here.

if (var==0){

if (!(var==0)) ...

(a)

Lock (l)

if (var==0){

Do not add delay here.

if (!(var==0)) ...

Unlock (l)

(b)

foo (n){ bar(){

if (var==0){

Do not add delay here.
if (!(var==0)) ...

(c)

}
}

bar();

foo(n−1);

}
}

Figure 3.4: Three types of IF statements where SW-IF does not insert delays.

and ELSE clauses. Then, it inserts there the recomputation of E and !E, respectively. Finding the

Confirmation point boils down to finding the first potential write to E within the THEN or ELSE

clause and for this, we rely on the alias analysis provided by Cetus. We make an exception for

function call statements however. Limitations of Cetus in analyzing the side effects of function

calls causes the placement of Confirmation points to be too conservative if placed before every call

that might potentially modify E. Hence, we insert a Confirmation point before only the function

calls that have a high probability of modifying E, that is, functions with arguments that contain

addresses of or references to variables in E. Also, if the IF statement includes a loop and the loop

contains a potential write to E, SW-IF places the Confirmation point before the loop. If no potential

writes are found, the Confirmation is inserted at the end of the THEN or ELSE clause.

Adding Delays.

In a development scenario, we may want to precede each Confirmation point check with a small

sleeping delay, so that we can potentially force a different interleaving and uncover a bug. Con-

sequently, in the “Add Delay” step, SW-IF selects the IF statements within the Monitor set that

can additionally be instrumented with delays. We call the resulting set the Delay&Monitor set. To

obtain the Delay&Monitor set, SW-IF removes three types of IF statements from the Monitor set

(Figure 3.4). Adding delays in these IF statements could potentially add too much overhead.

The first two types of IF statements to remove are those inside loops or critical sections. We

use Cetus’ intermediate representation tree to check interprocedurally if there are loops or critical

sections enclosing the IF statement. The third type of IF statements to remove are those whose call

stack contains a recursive function. This case is identified using the strongly-connected component
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analysis in Cetus.

3.4.3 Limitations

SW-IF is attractive because, while being an entirely software-only solution, the impact on execu-

tion speed is almost negligible, allowing it to be used extensively with many input sets and test

cases. In fact, it can be left on during the entire testing phase with the programmer barely noticing

any slowdown in the debugging cycle. However, it may suffer from false negatives (i.e., miss a

data race) and, in some unusual cases, false positives (i.e., incorrectly declare a data race).

There are three scenarios where SW-IF can suffer false negatives. One is when races cause one

or more locations in E to change values but the overall value of E remains the same. SW-IF chooses

to check the value of the whole E rather than of each shared variable in E because it assumes that

the programmer only relies on E being invariant — although SW-IF may be missing a race. The

second scenario is when a potential modification of E forces SW-IF to place the Confirmation

point early, and the race happens after that point. The final scenario is when unsupported writes or

function calls in E prevent SW-IF from inserting a Confirmation point and a race happens. False

negatives caused SW-IF to miss some real data race bugs in the applications we tested.

The false positives occur when the thread executing the IF statement updates locations in E

before the place in the code where SW-IF put the Confirmation check. In this case, the check

will incorrectly declare a data race. As mentioned in Section 3.4.2, these cases can occur due to

function side effects on function calls that Cetus chose not to insert Confirmation points. Figure 3.5

shows such an example where F modifies *p as a side effect, and the check in the end subsequently

signals a data race. However, we found this scenario to be very rare. In fact, in our experiments

with real applications, SW-IF did not experience any false positives.

The top part of Table 3.2 summarizes the sources of false negatives and false positives for

SW-IF.

SW-IF is also limited in that it can only detect, not prevent, IF-condition data races. By the

time it detects the race at the Confirmation point, the race has already happened. At most, SW-IF
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If (*p ==q){

Confirmation Point

}

F(); // *p is written in F

Figure 3.5: Example of false positive in SW-IF.

Mode False Negatives False Positives
(Failure to Signal a Data Race) (Incorrectly Signal a Data Race)

SW-IF

Occasional:
• Races in E that do not change overall value of E
• Potential writes to E that force Confirmation point early and
race happens later
• Unsupported writes or functions in E that prevent insertion
of Confirmation point and race happens

Rare:
• Before the Confirmation point,
the local thread modifies the value
of E without the compiler being able
to analyze it.

HW-IF

Rare:
• Inability to watch the side effects of functions called in E and
race happens there
• Simplified support for monitoring nested IFs
• Race under special conditions: breaking a deadlock and pre-
empting a thread

Harmless:
• Due to simplified AWT hardware:
− “False sharing” data races
− Read-read conflicts

Table 3.2: False positives and false negatives in SW-IF and HW-IF.

can raise an exception or print an error message.

To address the limitations of SW-IF, we now propose HW-IF, which augments it with some

hardware support.

3.5 HW-IF: Detecting & Preventing IF-Condition Data Races

3.5.1 Main Idea

In HW-IF, the compiler searches for IF statements that can cause data races as before. But this time,

instead of Confirmation points, the compiler inserts, right before the IF statement, code to “watch”

all the shared locations that are accessed in the control expression. The hardware envisioned has

a functionality that goes beyond that of the current watchpoints provided by x86 processors [23].

Specifically, we envision that the local processor can still access the watched locations. However,

any remote processor that attempts to access them will get a failed memory access signal that
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will prompt the hardware to retry the access — transparently to the software. At the end of the

IF statement, the compiler inserts code to stop watching the memory locations. At that point,

the accesses from the other processors will succeed. Overall, HW-IF detects and prevents data

races inside the THEN and ELSE clauses on the shared locations that are accessed in the control

expression.

3.5.2 Operation of HW-IF

A simple design of HW-IF is shown in Figure 3.6(b). For simplicity, we consider a bus-based

multicore, although more scalable organizations can be designed. As part of the bus controller,

there is a hardware table called the Address Watch Table (AWT). Each AWT entry contains infor-

mation about one watched memory location. Specifically, it contains the address of the cache line

containing the watched location and the ID of the “owner” processor.

if...

(b)

watched
vars

access
racy

P1 P2

P1
Address

Table (AWT)

Nack

Watch

  stmt1

}
else {
  stmt2
}

Unwatch()

if (Exp){

(a)

Watch(shared loc2 in Exp)
Watch(shared loc1 in Exp)

Figure 3.6: Code augmented by the compiler for HW-IF (a) and hardware needed (b).

The compiler augments the code as in Figure 3.6(a). For each shared location read or written

in the control expression, the compiler emits a Watch instruction. If the expression has a function

call, the Watch instructions are for the addresses passed as arguments to the function. A Watch

instruction for an address allocates an entry in the AWT with the address. The resulting bus

access has the same effect as a bus write by the issuing processor in an invalidation-based protocol.

Specifically, any cache (other than the issuing one) with a copy of the corresponding cache line

has to write it back to memory (if its state was Dirty) and gets the line invalidated (irrespective of

the state it was in).
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In practice, this operation does not add much execution overhead. The reason is that the control

expressions in the majority of IF statements access few shared locations. For our applications, a

control expression accesses on average 1.6 shared locations.

From then on, during the execution of the IF statement, when a processor other than the owner

tries to reference a location being watched, it misses in its cache and issues a bus access. As shown

in Figure 3.6(b), the AWT observes the access. If the requested address matches an address in one

of AWT’s entries and the requester is not the owner of the entry, the AWT returns a failed-access

transaction (called negative-acknowledge or Nack). A Nack prompts the requesting processor’s

hardware to automatically retry the access, transparently to the software. This will continue until

the owner processor removes the address from the AWT. The owner processor can always access

the watched locations, either from its cache or from memory. Its bus access is not Nacked by the

AWT.

At the end of the IF statement, the owner processor issues an Unwatch instruction, which

clears all the AWT entries that it owns. A subsequent access from any processor to the previously-

watched locations now succeeds.

For simplicity, nested IF statements are flattened out, which means that the watched locations

of all the nesting levels have equal status, and the first Unwatch clears all the entries of the owner

processor. As a result, the remaining parts of the outer IF nest lose the ability to watch their

addresses.

Overall, the proposed HW-IF design emphasizes hardware simplicity. We can improve its

efficiency at the expense of more complicated hardware. For example, we can improve IF nesting

support by including hardware counters in the AWT that are incremented and decremented at

each monitored IF entry and exit. Similarly, we can eliminate the continuous Nack and retry

with hardware support. However, our evaluation shows that this HW-IF design is already highly

effective.
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3.5.3 Discussion

HW-IF is attractive because it has an overhead low enough to be used on-the-fly, and can both

detect and prevent data races. This means that HW-IF can prevent bugs from manifesting in a

production environment. In addition, HW-IF suffers very few false negatives (i.e., failures to signal

data races) and the false positives that it may have (i.e., incorrect signaling of data races) are usually

harmless.

HW-IF has very few false negatives because it has none of those present in SW-IF: (i) since it

constantly monitors all accesses to shared locations in E, it detects data races even if E does not

change value; (ii) it monitors IF statements from beginning to end, and so has no false negatives

due to premature Confirmations; and (iii) it monitors IF statements even when E includes write

operations and function calls, since E is not re-evaluated at any Confirmation point. The only

false negatives occur due to the inability to watch the side effects of functions called in E, and the

non-ideal behavior of nested-IF monitoring.

False positives can still happen, but they typically cause nothing but a slight delay in a cache

line access. There are two sources of false positives, which result from our choice of a simple

design for the AWT. The first source is the fact that the AWT deals with cache line addresses, and

false sharing can cause it to signal a data race even when there is none. This issue can be avoided

by designing an AWT that works at word or byte granularity. The second source of false positives

is read-read conflicts on addresses accessed in E, which induce Nacks from the AWT. This issue

can be avoided by building the AWT with two types of entries: one watching data that the owner

processor will write, and one for data it will only read. This AWT would not Nack reads by other

processors to the latter type. Overall, since false positives are inexpensive, we tolerate these cases.

The bottom part of Table 3.2 summarizes the sources of false negatives and false positives for

HW-IF.
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   }

bool do_command(...) {

T1 T2T1 T2

if (thd−>proc_info) {

    putc(’ ’, f);

fputs(thd−>proc_info, f);

}

void ...print_thd (..) {

thd−>proc_info = 0;

}

(a) MySQL #3596

if (apr_atomic_casptr(

new_recycle−>next)==
new_recycle−>next){

&(qi−>rp), new_recycle,

break;

new_recycle−>next = qi−>rp;

(b) Apache #44402

     }                                                       

query_cache_size = arg;

T1

(c) MySQL #12848

T2

write_block_data (...);

if (query_cache_size ==0) return; 

query_cache_size = init_cache();

Figure 3.7: Various examples of IF-related data races. The race in (c) is not an IF-condition race.

3.5.4 HW-IF Implementation Issues

Deadlock Effects.

Whenever there is a mechanism for one processor to stall a second one, as in the case of HW-IF,

one must watch for possible deadlocks. In HW-IF, a deadlock may occur in two cases, which

may lead to false positives and are easily handled. The first one appears when two processors

are executing IF statements, both allocate AWT entries, and the timing is such that each ends up

waiting for the other. Specifically, processor P1 references a variable that is being watched by P2

(it is in AWT’s P2 entry) and gets Nacked, while P2 references a variable watched by P1 and gets

Nacked. This may occur, for example, when the control expressions of the two IF statements have

common variables, or when the variables are different but share the same cache line (false sharing).

This case is solved by adding a Cycle Detection Vector (CDV) to the AWT controller. The

CDV has one entry per processor and each entry contains the ID(s) of the processor(s) that are

Nacking that particular processor, if there exists any. An ID is cleared when a Nacking processor

executes Unwatch and clears all its AWT entries. On each Nack, the CDV hardware attempts to

detect a cycle by following the IDs in the vector. If it ends up in the same processor after two or

more steps, a deadlock has been detected. If this happens, the AWT controller simply lets one of

the bus accesses proceed instead of Nacking it. In the worst case, we are allowing a data race; in

the most likely case, it was due to false sharing.

The second case is when a thread T1 executing an IF statement that is stalling a second one

(T2) ends up spinning on a synchronization variable owned by T2. This case is solved by a small

modification to the synchronization library. Specifically, after a processor has spun on a syn-
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chronization variable for a long time, the library simply clears the processor’s AWT entries by

executing Unwatch. If the spinning was due to the scenario described, HW-IF will break the dead-

lock by allowing a (potential) data race. Custom user synchronizations can be instrumented in a

similar fashion, after identifying them using methods proposed by Tian et al. [61]

Other Effects.

There are other issues related to the practical implementation of the HW-IF hardware. The first

one has to do with thread preemption and context switching. When a thread executing an IF

statement with an entry in the AWT is preempted from its processor, the OS clears the processor’s

AWT entries using Unwatch. This avoids the possibility of long spins by other threads. While

more advanced solutions are possible that rely on associating process IDs to AWT entries, they are

unlikely to be cost-effective.

The second issue is support for multithreaded processors. Multithreaded processors have mul-

tiple hardware contexts and run multiple threads at a time. It is possible that different threads

executing on different contexts of the same processor concurrently execute different IF statements.

For multithreaded environments, HW-IF can use an approach similar to the one described by Pac-

man [46]. The approach requires an extension where the messages sent by processors to the AWT

include both the processor ID and the hardware context ID within the processor. Similarly, AWT

entries would have both a PID and a ContextID field. However, since the AWT is connected to the

network, it can only observe data sharing across processors — not across contexts in a processor.

Consequently, for HW-IF to tolerate races, a parallel program can only use one context per proces-

sor — although multiple programs can use multiple contexts of a processor. To allow a program

to use multiple contexts from a processor, bigger changes would be needed, such as stalling all the

other threads in the processor when one thread is executing an IF statement.

A final issue has to do with the scalability of the AWT. We have assumed a centralized AWT,

which is reasonable for a snoopy protocol. However, in a directory-based protocol, we need to

distribute the AWT across different directory modules. Fortunately, like the directory, the AWT
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can be easily designed for a distributed environment, which is partitioned based on address ranges.

Hence, each directory module has an associated AWT module, which is in charge of the range of

physical addresses corresponding to that directory module.

3.6 Potential: Detect Existing IF-Condition Bugs

We take the 38 IF-condition data race bugs from Table 3.1 and characterize whether they can

potentially be detected with SW-IF and/or detected and prevented with HW-IF. Our approach is to

manually inspect the source code of these bugs and, from it, decide whether they can be handled

by our schemes. The result over all the applications is shown in Figure 3.8 as a pie chart.

SW-IF 
HW-IF 

47% 

Figure 3.8: Percentage of existing IF-condition data races that can potentially be detected by SW-IF and
HW-IF.

From Figure 3.8, we estimate that SW-IF could detect 47% of these reported data races given

the appropriate interleaving. On the other hand, HW-IF could detect and prevent all of them. From

this, we can see that HW-IF is potentially very effective, and about twice as effective as SW-IF.

To understand how we reached these conclusions, Figure 3.7 shows examples of three IF-

related data race bugs from Table 3.1. Figure 3.7(a) is a typical IF-condition data race that can be

detected by SW-IF. It is Bug #3596 from MySQL. In the bug, thread T1 tests thd->proc info and

then uses it. Meanwhile, T2 sets thd->proc info to 0.

Figure 3.7(b) shows an IF-condition data race that cannot be detected by SW-IF but can be

handled by HW-IF. It is Bug #44402 from Apache. There is an IF statement in T1 and a write

statement in T2. The control expression in the IF contains a call to apr atomic casptr, which is

internally an atomic compare-and-swap between &(qi->rp) and new recyle, pending comparison
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of &(qi->rp) with new recycle->next. If successful, apr atomic casptr returns the old value of

&(qi->rp). Between the return of apr atomic casptr and the comparison with new recycle->next,

T2 intervenes and pollutes new recycle->next, causing the bug. Detecting the bug in SW-IF is

problematic because recomputing the control expression before leaving the THEN clause can cause

side-effects due to the compare-and-swap. However, HW-IF can easily have the hardware watch

all the shared locations accessed in the control expression and prevent the bug.

Finally, Figure 3.7(c) shows an IF-related race that is not an IF-condition race. Hence, it

cannot be handled with either scheme. It is Bug #12848 from MySQL. It is an IF-related data race

because the race occurs on a variable (query cache size) that is accessed in the control expression

of an IF statement. The bug occurs when the two assignments in T1 are interleaved by a call

to write block data from T2 as in the figure. The write block data function tries to write to the

cache initialized by init cache(). By the time T2 checks the value of query cache size, T1 has

already initialized its value and therefore the return is not executed. However, the cache itself

has not yet been initialized when T2 tries to write to it with write block data. Neither preventing

query cache size from changing for the duration of the IF (as in HW-IF) nor checking that it has

not changed before exiting the IF (as in SW-IF) helps.

Table 3.3 repeats the data in Figure 3.8 breaking them down on a per-application basis. We see

that HW-IF could detect and prevent all the IF-condition races. SW-IF could detect a fraction of

the races in Apache, MySQL and Mozilla.

# IF-condition # Detected # Detected
Application Data by SW-IF and Prevented

Races by HW-IF
Apache 20 7 20
MySQL 8 6 8
Mozilla 8 5 8
Redhat (glibc) 0 0 0
Java SDK 1 0 1
Pbzip2 1 0 1
Total 38 18 38

Table 3.3: Bugs potentially handled on a per-application basis.

One reason why it is important to support HW-IF is the prevalence of a class of data race bugs
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called double-checked locking (DCL) [56]. In Figure 3.2(c), we showed that 16% of all reported

IF-condition data race bugs were DCL bugs. Figure 3.9 shows a simplified form of the bug from

Apache (Bug #47158). In the example, Thread T1 updates x and (as part of Object()) x.m inside

its IF statement. Using HW-IF to place x inside the AWT prevents T2 from interleaving with T1

during the initialization process and, therefore, avoids this bug. SW-IF is unable to detect this bug.

}

if (x !=NULL) {

   y= x.m

T2T1 

if (x == NULL){
    synchronized (this) {
      if (x == NULL){
          x = new Object();

      }
  }

            // initializes x.l, x.m, etc

Figure 3.9: Example of a double-checked lock (DCL) bug.

3.7 Conclusions

This work analyzed data races reported in bug databases and found that many can be classified

as what we call IF-condition data races. Focusing on IF-condition data races is advantageous in

that they have a very low false positive rate due to the implicit atomicity implied by IF statements.

Also, their obvious structure allows the implementation of a very efficient data race detector. This

chapter introduced how such a detector could be built purely in software (SW-IF) or with the help

of some hardware (HW-IF). HW-IF can be used to not only detect races but also to prevent them

from happening at runtime.

We evaluated SW-IF and HW-IF using a variety of applications. We showed that these new

techniques are effective at finding new data race bugs and run with low overhead. Specifically,

HW-IF found 5 new (unreported) IF-condition data race bugs in the Cherokee web server and the

Pbzip2 application; SW-IF found 3 of them. In addition, 8-threaded executions of the SPLASH-2

applications showed that, on average, SW-IF added 2% execution overhead, while HW-IF added

less than 1%. These minuscule overheads point to the use of both SW-IF and HW-IF as lightweight
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race detectors. SW-IF can speed-up the process of code development and testing, while HW-IF can

be used to avoid races on production runs.
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Chapter 4

Touchstone: Architecture for Concurrent
Multi-level Program Analysis

4.1 Introduction

Multicore systems are now pervasive from cell phones to datacenters. To take advantage of their

potential, many programmers now have to program in parallel. In addition, with the increased plat-

form connectivity, programming has become more complex, with different software components

interacting in subtle and potentially unsecure manners.

Both of these trends call for better tools for program analysis. For example, we need effective

tools to identify concurrency bugs such as data races or atomicity violations, to trace security

threads through taint analysis, and to pinpoint performance bottlenecks caused by synchronization

or load-imbalance. Ideally, these tools should have an overhead low enough to allow them to be

used on the fly, without distorting the parallel program’s interleaving.

Light-weight microarchitectural support in the multicore is key to enable such set of analysis

tools. Current commercial processors provide only minimal hardware support, largely limited to

performance counters, watchpoints, and branch buffers [3, 25]. There are, however, a number of

proposals in the literature that illustrate what is possible [4, 19, 42, 57, 59, 67, 70, 77] — from

fine-grain memory protection, to flexible watchpoints, light-weight taint analysis, and record &

deterministic replay.

Many of these proposed microarchitectures for program analysis have low overhead and are

flexible. This helps their chance of being adopted in the near future. However, one limitation of

most of these schemes is that they have a single use. They have largely been engineered for one

usage.
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To maximize the chance of adoption, a key capability that we would like to provide is the

ability to perform multiple analyses on a running application concurrently. For example, for a

given dynamic parallel execution (and, therefore, a given multi-thread interleaving), we may want

to run a data race detector and a taint analyzer. As another example, we may want to run multiple

levels of taint analysis concurrently, to better assess the degree of security risk. In addition, unlike

a previous proposal that can provide a similar capability with watchpoints [19], we would like to

tightly integrate our microarchitecture into the coherence hardware of a multicore. This is key to

making the microarchitectural design both low overhead and implementation-realistic.

In this chapter, we propose such a microarchitecture, which we call Touchstone. Touchstone is

a light-weight architecture for monitoring memory accesses in multithreaded programs. Its main

characteristics are that (i) it can monitor accesses for several uses at the same time, and (ii) it

leverages the multicores hardware cache coherence to keep its metadata coherent across threads

with negligible overhead. We call the idea of performing multiple runtime analyses at the same

time concurrent multi-level analysis.

Touchstone provides multi-level support for starting to monitor a location, stopping to monitor

a location, and checking if a reference accesses a monitored location. Touchstone’s metadata

is kept on a per-processor Security Cache (SC) in the cache hierarchy that is kept coherent in

hardware. To store the monitored addresses compactly, Touchstone introduces the Pooled Bloom

Filter (PBF). The PBF is a bloom-filter-based hardware structure that dynamically adapts to the

number of elements inserted, expanding its size on the fly. This capability is needed for new types

of uses, where we do not know in advance the rough number of addresses to be inserted in the

filter.

To show Touchstone’s versatility, we evaluate it with three concurrent uses, namely taint anal-

ysis based on data flow, taint analysis based on data and control flow, and asymmetric data-race

detection. We run the SPLASH-2 codes with 8 threads on a simulated multicore. The results show

that Touchstone adds minimal overhead. The execution overhead is, on average, only 3.6%. The

storage overhead is at most 7KB in the per-processor SC plus a 17KB overflow area in main mem-
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ory. If, instead, we used conventional bloom filters, the corresponding storage overhead would be

12KB in the per-processor SC and a 24KB overflow memory.

4.2 Background

In this section, we describe two structures that have been used in the past in the context of microar-

chitectures for program analysis.

4.2.1 Bloom Filter

The Bloom Filter is a space-efficient probabilistic data structure that is used to store a set of ele-

ments and test membership of an element on demand [5]. A bloom filter is organized as an array

of bits with multiple hash functions that translate the value of an input to positions in the bit ar-

ray. Initially, all bits in the bloom filter are set to 0, indicating that the bloom filter is empty. The

insertion of an element consists of setting to 1 the positions pointed to by the results of the hash

functions. A membership test consists of checking whether the bits pointed to by the hashes of

an input are all set to 1, in which case a hit is declared. By construction, false negatives on mem-

bership tests never occur — that is, checks on already-inserted elements always result in a hit.

However, false positives can still occur due to the properties of hash functions. Key to the space

efficiency of bloom filters is the fact that this false positive rate can be kept at a manageable level

if the set of stored elements is not too large compared to the size of the bit array, regardless of the

range of values an element can take.

In recent years, several proposals have used bloom filters to design efficient hardware schemes

to store sets of memory locations accessed by a processor. This is done in order to check conflicts

with memory accesses in other processors for the purposes of implementing transactions [8, 32,

72], or to analyze memory aliasing behavior for the purposes of optimizations [65]. In all cases,

bloom filters can be used because one can make reasonable assumptions about the size of the set

of stored memory addresses. Such assumptions enable one to size the bloom filter at design time.
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4.2.2 Range Cache

The Range cache (RC) is another space-efficient hardware structure that can store large sets of

contiguous memory locations [62]. The RC has a list of ranges, where each range consists of a

start and an end address. Ranges are automatically merged or split as need arises. The RC has been

used to support watchpoints [19]. An RC is a nice complement to a bloom filter, since the latter

is good at storing non-contiguous discrete addresses efficiently, while the RC is good at storing

contiguous addresses.

4.3 Touchstone Architecture

4.3.1 Basic Idea

Touchstone is a light-weight architecture for monitoring memory accesses in multithreaded pro-

grams. Its main characteristics are that (i) it can monitor accesses for several uses at the same time

and that (ii) it leverages a multicore’s hardware cache coherence to keep the metadata for a given

use coherent across the multiple threads with negligible overhead.

Touchstone is ideal for performing multiple runtime analyses on a program at the same time.

We call this idea concurrent multi-level analysis. Such analyses can be related to concurrency

debugging (such as data race or atomicity violation detection), security (such as taint analysis)

or other areas. Thanks to some simple hardware support, Touchstone performs the analyses with

negligible performance overhead.

Touchstone provides support for starting to monitor a location, stopping to monitor a location,

and checking if a read or write accesses a monitored location. Monitoring and unmonitoring a

location is called Marking and Unmarking the location. Marking and unmarking can apply to a

location or to a range of locations while checking is done only on single locations whenever the

program performs a memory access.

Marking is performed using special instructions which store the marked address in an efficient
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and compact representation in hardware structures. On other hand, unmarking is performed en-

tirely in software without involving any special hardware. The details and rationale for this design

will become clear later.

Checking happens much more frequently compared to marking and unmarking since a check

has to happen on every program memory access. Hence, Touchstone automatically performs the

check on the location in the background for every load or store without the need to invoke addi-

tional check instructions. If the location is marked, then Touchstone automatically invokes a trap

handler, which will execute code provided by the user that is specific to a particular use. If the

location is not marked, then no special action is taken.

The metadata for Touchstone is kept on a per-processor table called Security Cache (SC) in the

cache hierarchy of each processor. Thanks to leveraging a multicore’s hardware cache coherence

protocol, Touchstone is very useful for analysis of multithreaded programs. For example, one

thread may mark an address and then, when a second thread accesses the location, the coherence

protocol will supply the information that the location is marked, and the second thread will trap.

In the rest of this section, we describe Touchstone’s ISA support, its hardware structures, its

detailed operation, and the limitations.

4.3.2 ISA Support

Table 4.1 shows the ISA extensions needed to enable Touchstone. The Touchstone hardware struc-

tures are labeled with two IDs: Program ID (PID) and Security Level (SL). PID is a per-application

ID, while SL is a particular use of Touchstone among the several uses that are being supported si-

multaneously for the given application. For example it can correspond to one of the taint analyses

in progress. As can be seen in Table 4.1, there are instructions for a thread to set the PID to a

value (set pid) or read it (get pid). There are instructions to add a new concurrent use (i.e., a new

SL) to Touchstone (add entry), to remove it (remove entry), and to check if such an SL exists

(is entry valid).

There are two instructions to mark addresses: mark range adds a range of addresses to the SC
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Instruction Description
set pid pid Sets the internal PID register to pid.
get pid Gets the value of the internal PID register.
add entry level Adds an entry in the SC for PID and the given security level.
remove entry level Removes the entry in the SC with PID and the given security level.

is entry valid level
Checks whether an entry with the given security level exists in the
SC. It is used by the OS to check for entry displacements on context
switches.

mark range begin, end, level
Adds the range of addresses specified by begin and end to the SC for
the given PID at the entry given by level.

mark addr addr, level Adds the address addr to the SC for the given PID at the entry
given by level.

set trap handler addr, level Sets the trap handler for PID and security level to addr.

add clearance level bitmap
Adds clearance for the security level given by level bitmap. All future
memory accesses need not perform checks against the entry with PID
and level bitmap.

remove clearance level bitmap
Removes clearance for the security level given by level bitmap. All
future memory accesses now need to perform checks against the entry
with PID and level bitmap.

Table 4.1: Extensions to the ISA to enable Touchstone.

for a given PID at the entry given by an SL; mark addr adds one address to the SC for a given

PID at the entry given by an SL. As mentioned previously, there are no instructions to perform

unmarking. This is because unmarking is done entirely in software, as we will see later.

There are no instructions to check whether a given address is in the SC. This is because the

checking happens automatically for all memory accesses, in the background, while the access is

being serviced. If the address is found in the SC, a trap is raised when the instruction attempts to

retire. The trap results in an invocation of a software handler. As shown in Table 4.1, the software

handler is set up by the set trap handler instruction.

The ISA provides a pair of instructions (add clearance and remove clearance) to quickly en-

able and disable checks against certain SLs. For example, if a program wishes to disable data

race detection for a certain phase of execution (maybe because the phase is single-threaded), all

it needs to do is execute add clearance for the SL assigned to data race detection. Security clear-

ances are recorded in the SC and are passed to add clearance and remove clearance in the form

of a bitmap with one bit per SL. To provide 32 security levels, a single 32-bit security clearance

register suffices.
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Figure 4.1: Overview of the Touchstone architecture.
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4.3.3 Touchstone Structures

Figure 4.1 gives an overview of the Touchstone architecture. The Touchstone hardware structures

are the per-processor Security Cache (SC) and the global Security Memory (SM). The SC is a

table associated with the cache hierarchy of the processor. It contains the addresses that have

been marked by all the active program analyses and have been recently accessed by this processor.

The SM is attached to the main memory (or to each memory module in a distributed memory

system). It contains the addresses that have been displaced from the SCs of the processors. The

sum of all the SCs and the SM contain all the addresses that have been marked by all the active

program analyses. Since the SC and SM are manipulated by the cache coherence protocol, they

store addresses at line level rather than at word level.

Touchstone also has a software table in main memory called the Unmarked Table (UT). We

will see that it is used to keep addresses that used to be marked and have since been unmarked.

Security Cache

Each entry of the SC has a PID and an SL, which are used to index the SC. In addition, each

entry has a growable Pooled Bloom Filter (PBF) and a Range Cache (RC). These two structures

contain the actual marked addresses for the PID and SL pair. Specifically, individual addresses

are stored in the PBF, while ranges go to the RC. The program analysis accesses the entry with

the PID of the program, and the SL assigned to the analysis, as it marks and checks memory

locations. Each processor contains the PID of the currently executing program in a register, so that

the corresponding entry can be accessed quickly without referring to the OS.

The SM is structured identically to the SC, except that it does not have the RC field. The

SM stores addresses displaced from the SCs, so that the monitoring of these addresses continues

uninterrupted. Displacements can happen either due to regular cache displacements (Section 4.3.4)

or SC entry displacements (Section 4.5.2).
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Pooled Bloom Filter

Bloom filters are good hardware structures to store addresses in a compact manner. However, as

indicated in Section 4.2.1, they only work well when one can make good guesses about the number

of addresses to be stored in the filter. Unfortunately, since we want to support a variety of program

analyses, we cannot make reasonable assumptions about the number of addresses we may need to

store.

For this reason, in this chapter, we propose the Pooled Bloom Filter (PBF). The PBF is a

novel bloom-filter-based hardware structure that can adapt dynamically to the number of elements

inserted, by expanding its size on-the-fly, given a pre-set maximum false positive rate. As a result,

we do not need to guess the number of addresses to be stored in advance.

The idea behind the PBF is to keep a pool of available bloom filters (BF) and dynamically

increase the number of BFs used if needed. Specifically, first, we use a single BF to collect marked

addresses. When the number of addresses inserted reaches a certain threshold, we allocate a second

BF to collect more addresses. Before an address can be inserted in the second BF, however, we

need to check that it is not already in the first one. This process is repeated with as many BFs

as needed. With this PBF, an insertion requires first checking all the earlier BFs. Note that this

checking is done in a pipelined manner. Finally, to minimize the amount of hardware, the pool of

available BF is shared by all the PBFs in the Security Cache.

Figure 4.2 shows a diagram of a PBF, together with the Pool of BFs shared by all the PBFs.

A PBF is composed of three components. First, Cur. BF Num. indicates how many BFs are

currently allocated to this PBF. Second, Cur. Element Num. indicates how many addresses have

been inserted into the last BF allocated to this PBF. Finally, a set of BFID i contain the IDs of BFs

from the Pool that have been allocated for this PBF. A single PBF can at most utilize all the BFs

in the Pool.

Given an address, a PBF supports two operations, namely checking if the address is present

(lookup), and inserting the address in the PBF (insertion). Deletion of addresses is not supported
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in hardware, but is supported in software using the UT (Section 4.3.3).

A lookup of an address is done by performing individual lookups on all allocated bloom filters

in the series. An individual lookup is performed by hashing the address and intersecting the result

with the given bloom filter. If the intersection results in the empty set, the lookup goes on to the

next bloom filter, until all bloom filters have been searched or a match has been found. Note that

the sequential nature of the lookup can lead to significant delays. This can be ameliorated by

adding more ports to the Pool and intersection units to parallelize the lookup. However, we found

in our evaluation that a sequential lookup did not impact performance for the configuration we

tested, since the latency is rarely in the critical path, and the lookup is performed in a pipelined

manner.

An insertion is done only after first performing a lookup of the address in the PBF, to avoid

inserting duplicate addresses in two different bloom filters in a single PBF. If the lookup does not

find a match, the actual insertion is performed on the last bloom filter in the series indicated by

Cur. BF Num. The insertion is done by unioning the hash of the address into the given bloom

filter and re-inserting it back to the pool. Also, Cur. Element Num. is incremented to reflect the

increase in the number of elements. If the number of elements exceeds a certain threshold, given

by the desired false positive rate, a new bloom filter is allocated from the pool and assigned to the

next entry in the series and Cur. BF Num. is incremented. If the PBF fails to allocate a new bloom

filter due to overflow in the pool, the PBF enters a new mode where it starts to insert addresses

in existing bloom filters in the series in round robin fashion (the new mode is indicated by a zero

value in Cur. Element Num.). This ensures a graceful degradation of the false positive rate when

the pool has run out of bloom filters.

In this way, the PBF can flexibly allocate and maintain as many bloom filters as are needed

to achieve the desired false positive rate, without knowing in advance how many addresses would

need to be stored.
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Range Cache

The RC portion of an entry is where marked addresses are stored when the program analysis

decides to mark a contiguous range of addresses. This is often done when a program reads I/O

data into a buffer during data flow analysis, for example. The RC contains a handful of ranges

that consists of start and end addresses. In our evaluation, we needed no more than 10 ranges per

RC. When two ranges overlap or are contiguous, the hardware automatically detects it and merges

them into a single range. As in the case of the PBF, only checking and marking of addresses need

be supported by the RC since unmarking is done through the Unmarked Table.

Unmarked Table

The Unmarked Table constitutes the software component of Touchstone. It is essentially a soft-

ware hash set data structure that stores all the addresses that have been unmarked for a particular

process ID and security level. Being a purely software data structure, it resides in regular memory.

Addresses are inserted into the table by a software handler whenever a program analysis unmarks

a location. Likewise, a software handler searches the table whenever a check in the Security Cache

results in a “marked” reply to make sure that the address has not been unmarked previously.

Further discussions on why this particular component was implemented in software and the

resulting trade-offs can be found in Section 4.5.1.

4.3.4 Detailed Operation

All RCs pertaining to a particular entry are always kept coherent through broadcasts whenever

their is an update to one of the RCs. While broadcasts are typically expensive, we can afford to

do this because RC updates typically happen only a handful of times during the initial stages of a

program when buffers are allocated and I/O data is read.

On the other hand, PBF updates are much more common, for example due to data propagation

in data flow analysis. Hence, keeping PBFs synchronous through broadcasts is not feasible. Instead
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Figure 4.3: Flowcharts for actions taken by the Security Cache when (a) marking, (b) checking, and (c)
unmarking memory addresses and when (d) sharing and (e) writing back dirty cache lines.
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multiple PBFs in the system pertaining to an entry rely on the cache coherence protocol to keep

their contents coherent with respect to one another. The underlying principle is that while the

contents of all PBFs do not have to be always up-to-date, it must be up-to-date for all memory

locations that are in the processor’s local cache. This is so that all accesses to lines that are already

in the cache do not generate any extra coherence actions. When a new line is added to the local

cache due to a cache miss, the relevant information needed to update the PBF is piggybacked on

the cache coherence reply message and the PBF is updated lazily.

The actions and coherence actions required of the Security Cache for various scenarios is sum-

marized in Figure 4.3 in the form of flow charts. External events and coherence events are shown

in bold face.

Mark Algorithm

Refer to Figure 4.3(a). A program analysis can request marking of either a single address using

the mark addr instruction, or a range of addresses using the mark range instruction. The request

is forwarded to the appropriate SC entry with the given PID and Security Level.

If the request is due to a mark range instruction, the range is inserted into the RC of the given

entry. If the range is contiguous to or overlaps with an existing range, the requested range is

merged into the old range. Otherwise, a new range is allocated in the RC. If the RC is already full,

the smallest range in the RC is displaced and all the addresses included in the range is inserted

into the PBF of that entry. That way, no information is lost. After the local update of the RC is

performed, an RC update message is broadcast to all processors in the system so that they can

update their local RCs in the same manner.

If the request is due to a mark addr instruction, the SC checks whether that address hit in the

RC or the PBF. If it does, the address is already included in the SC and nothing more needs to be

done. If the result is a miss, the SC marks the cache line that contains the address dirty, if it is not

already so, which results in an invalidation of all cache lines in remote processors. This is done

to force a coherence request when other processors later attempt to access that cache line, which
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serves as a chance to lazily update the address in the SC of that processor. After the coherence

action, the SC is ready to add that address to its local PBF.

Before wrapping up, Touchstone invokes a software handler to search for the marked address

in the Unmarked Table and removes the entry if found.

Besides the mark addr and mark range instructions, there are two more ways an address can be

marked in the SC, through coherence events. One is through an RC update broadcast received from

a remote SC. The other is through a lazy PBF update message piggybacked when the processor

attempts to bring a new line into the local cache. These two cases are handled in an identical way

to an explicit mark request with the exception that no further coherence events are generated.

Check Algorithm

Refer to Figure 4.3(b). For every program load or store access, Touchstone performs implicit

checks against all relevant SC entries. To this end, all entries with the correct PID and enabled

Security Levels are located and lookups of the RCs and PBFs are performed. A hit on either the

RC or the PBF results in a trap, after which a software handler is invoked that performs a lookup

of the Unmarked Table. A hit in the UT means this address has been unmarked since marking

and inserting into the SC, and hence the trap is ignored. A miss in the UT causes Touchstone to

return a “marked” reply to the program analysis via a user defined fault handler. Depending on

the analysis, the handler may signal a data race, propagate a taint, or perform some other analysis

specific action.

Note that these checks are rarely on the critical path of program execution, unless a check

results in a trap. No instruction in a program has any data or control dependencies on the result of

a check. Hence, as long as the processor pipeline is able to perform the check before it is ready to

retire the memory access (and decide whether to raise a trap or not), the check does not slow down

execution. Moreover, the check can happen in parallel with the actual memory access and as soon

as the address of the access becomes available. This allows the check to happen completely off the

critical path in most cases.
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Unmark Algorithm

Refer to Figure 4.3(c). Unmarking of addresses happens entirely in software. When a program

analysis wants to unmark an address, Touchstone invokes a software handler to simply add that

address to the Unmarked Table.

Dirty Cache Line Request

Refer to Figure 4.3(d). The set of dirty cache lines in the local cache of a processor is the set of

lines that have potentially been marked by the SC due to an addition to an PBF. So when a dirty

cache line is requested by another processor, the cache line address must be looked up in all the

PBFs in the SC. This is because the address may not yet have been transferred to other SCs due to

Touchstone’s lazy approach to coherence. Hence, if the cache line address hits in the PBF of any

entry, the PID and the Security Level of that entry needs to be piggybacked onto the reply request.

Upon receiving the request, the remote SC adds the address to the PBF of the corresponding entry.

Nothing needs to be done for clean cache lines since marking an address in an PBF always entails

dirtying the cache line.

Dirty Cache Line Writeback

Refer to Figure 4.3(e). When a dirty cache line is written back from a processor’s local cache ei-

ther due to displacement or a downgrade, Touchstone has to be careful not to loose any monitoring

capability. That cache line address may not have been transferred to other SCs yet and when the

local cache loses ownership of the line, the SC loses the opportunity to synchronize its contents

through piggybacking on coherence requests in the future. Hence, if the cache line address hits

in the PBF of any entry in the SC, the PID and the Security Level of that entry needs to be pig-

gybacked onto the write-back request. Upon receiving the request, the Security Memory adds the

address to the PBF of the corresponding entry. Later when any other processor requests that cache

line, the Security Memory can then piggyback the relevant information on the reply.
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4.3.5 Limitations

Touchstone allows no false negatives, meaning that all accesses to addresses marked by a program

analysis are caught and handled. However, Touchstone can potentially experience false positives.

False positives come from two sources:

• The nature of bloom filters. Even as we try to minimize false positives by growing the

PBF, bloom filters are by design prone to false positives and hence we can never completely

remove them.

• False sharing. Since Touchstone leverages cache coherence to achieve its goals, it marks the

addresses in the PBF at cache line granularity. Hence, even if the program analysis marked

a different word in the cache line, the application might still experience an extraneous trap

due to false sharing.

The implication is that Touchstone can only be used in cases where false positives are ac-

ceptable. However, it is worth noting that Touchstone is not the only scheme that produces false

positives. Previous software and hardware proposals for address tainting suffer from the same

problem [17, 22, 58, 63]. Fortunately, many program analyses can tolerate false positives, albeit

with some overhead.

For example, false positives in taint analyses can be handled by means of a fast software fault

handler which can quickly verify whether a hit in the PBF is a false alarm, as described by Ho

et al. [22]. False positives in data race prevention analyses can result in the prevention of certain

interleavings but are otherwise harmless, as described by Qi et al. [46]. False positives in data race

detection analyses can be verified by applying an exact software analysis on the given address and

instruction.

In theory, the target false positive rate of the PBF for a given program analysis could be set

individually, putting into consideration the associated overheads. However, such a study is beyond

the scope of this work.
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4.4 Usage Model

This section discusses several potential uses for Touchstone. We mainly focus on two important

uses: taint analysis and concurrency bug detection. For taint analysis, we look at a version that

uses just data flow analysis and also a version that uses both data flow and control flow analysis.

For concurrency bug detection, we look at one important type of concurrency bug: asymmetric

data races.

4.4.1 Taint Analysis

Taint analysis attempts to enhance security by disallowing certain data to be used for potentially

dangerous purposes (as part of a database SQL query for example). To do this, taint analysis

“taints” untrusted data at its source and propagates the taint alongside the data as the program

executes. The taint has to be propagated whenever a value is transferred from one location to

another and hence software implementations suffer from high runtime overheads [10, 48, 40].

Much of the overhead comes from querying whether a memory location has been tainted or not,

and every memory access requires a query even if typically only a miniscule proportion of locations

are tainted. We can virtually remove this overhead by using Touchstone by using the SC to perform

a quick check in the background, without involving the processor.

Taint analysis comes in two flavors. One that relies only on data flow analysis and one that

relies on both control flow and data flow analyses. The former propagates a taint only on data

dependencies and the latter propagates a taint also on control dependencies. Naturally, the latter

provides stronger protection compared to the former but suffers from higher overhead.

int a, b, c; 

// only a is tainted at the beginning 

b = a+2; 

c = b*2;  

Figure 4.4: Example of Data flow analysis
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int a, x, y; 

// only a is tainted at the beginning 

If (a>10) { 

    x = 1; 

}  

else { 

    x = 2; 

} 

y = 10; 

Figure 4.5: Example of Control flow analysis

Figure 4.4 shows an example of propagation through a data dependence. Assume a is already

tainted. As the value in a gets copied to b and c, both locations also get tainted. Figure 4.5 shows

an example of propagation through a control dependence. Again, assume that a is initially tainted.

Although a’s value is not involved in the computation of x, the outcome of the branch would affect

the value of x. Therefore, the taint is also propagated to location x. On the other hand, y would not

be tainted because its value doesn’t depend on the value of a in any way.

Typically memory accesses rarely land on tainted locations but all sources of data transfers

need to be checked anyway. In Figure 4.4, even if a was clean to start with, checks have to be

performed on a and b because they are sources of data transfers. Using Touchstone, software only

needs to mark tainted locations and the checks are done automatically by the SC. If an access lands

on a tainted location, a trap will be raised and the software handler can take the appropriate action,

which may include propagating the taint. When a tainted location is overwritten using clean data,

the location is unmarked.

4.4.2 Asymmetric Data Races

Asymmetric data race is a type of harmful race which occurs when at least one of the racing

threads is inside a synchronization-protected critical section[46]. Figure4.6 shows an example of

asymmetric data race.

In the past, several schemes have been proposed to detect and prevent asymmetric data races[46,
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T1 T2
Lock
if (point != NULL){
     point−>x = X1;
     point−>y = X2;
}
Unlock

point = NULL;

Figure 4.6: Example of an asymmetric data race from[46].

50, 49], with and without specialized hardware support. We can use the Touchstone general pur-

pose hardware to detect asymmetric data races using a similar approach to [46]. When a processor

enters a critical section, Touchstone creates an SC entry for race detection and marks all the mem-

ory addresses inside the critical section. Another processor that attempts to access the marked

addresses will generate a trap and the trap handler can record the data race in a log that can be

later viewed by a programmer. The processor in the critical section can prevent traps being raised

on its own accesses by using the add clearance instruction to turn off detection. When the proces-

sor exits the critical section, Touchstone would remove the entry that it has created. Note that no

unmarking of addresses is performed for this usage.

4.4.3 Other Applications

Touchstone can be applied to any other situation where tracking memory locations is needed such

as for hybrid transactional memory and for speculative program optimization. The important thing

to note is that Touchstone provides multi-level data protection and hence can run multiple analyses

concurrently and on demand.

4.5 Implementation Issues

4.5.1 Unmarking Entries

One might ask why Touchstone uses a software Unmarked Table and not simply remove the ad-

dress from the PBF instead, which seems the most natural thing to do. The simple answer is that
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bloom filters, by design, only allows the insertion of elements and does not allow removal once

they are inserted. One might imagine using a counting bloom filter instead, which enables inser-

tion and removal by using an array of counters instead of an array of bits. However, elements can

only be safely removed from a counting bloom filter only when one can guarantee that the element

has been inserted in the past. Doing a membership test is not a safe guarantee of insertion since

membership tests can result in false positives. If an element that has not been inserted is removed,

this can result in false negatives which is unacceptable in most program analyses.

Moreover, it is often hard to tell whether an element has been inserted into the PBF or not.

In taint analysis for example, if a memory location has been overwritten with untainted data and

the address needs to be unmarked, there is no way of knowing for sure whether the location has

been tainted in the first place. One could query the SC, but again, membership tests in PBFs can

generate false positives.

Hence, using the Unmarked Table to maintain the exact set of unmarked addresses is the only

way of avoiding false negatives. While software hash sets can potentially be expensive, two facts

work to our advantage: 1) the number of addresses unmarked is typically very small for all the

program analyses we have studied which keeps the size of the hash set compact and 2) the pro-

portion of accesses to marked addresses is typically also small and hence the table is not accessed

very frequently.

For example, for taint analysis, a study by Qin et al. [48] found that only 1.32% of total memory

accesses were to marked addresses. As to asymmetric data race detection, there is no need for

unmarking addresses in the first place (See Section 4.4.2).

4.5.2 Virtualization / Context Switch

Since there is only a limited number of entries in the SC, the SC can potentially overflow with

enough processes and security levels. At such an event, the least recently used entry with a PID

that is different from the currently executing process is selected for displacement. We cannot

simply discard the displaced entry however, since the PBF of the entry may contain addresses
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that have not yet been transferred to other SCs. Hence, before we discard the entry, we check

each dirty cache line in the private cache to see if the line address hits in the PBF of the entry

and perform a write-back to memory in that case. This will automatically transfer the address to

Security Memory and thus prevent the loss of monitoring capability.

As to the RC of the entry, the contents are already replicated in other processors so monitoring

continues uninterrupted. Also, software maintains the list of ranges it marked in the RC separately

as part of the process descriptor so that no information is lost.

Touchstone attaches very little additional complexity to context switches. Since SC entries

are tagged with PIDs, they need not be swapped out on a context switch and can remain there.

Typically, the only thing the OS needs to do on a context switch is to do set pid to update the

PID that is internally stored in the SC. To handle the rare case where an entry for the switched in

process has been displaced, the OS issues is entry valid for each security level that is active. In the

case where an entry is found missing, the OS adds the entry to the SC again and re-populates its

RC with the list of ranges in the process descriptor. The PBF of the entry need not be re-populated

since all addresses have been already transferred to the Security Memory at displacement.

4.6 Related Work

4.6.1 Memory Protection Schemes

There are several approaches using hardware to provide memory protection [19, 70, 77, 67, 57, 4,

59]. The most relevant one is a recent work by Greathouse et al. [19]. It demonstrated a hardware

scheme to provide an unlimited number of fine-grain data watchpoints for protection. The key idea

was to use a range cache and a bitmap cache to protect certain memory addresses. It showed that

this approach could be used for several software analyses including data race detection and taint

analysis. However, this approach does not support multi-processor systems very well. It uses a

software handler to broadcast every update to the range cache and bitmap cache. In comparison,
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Touchstone relies on cache coherence to prevent most updates. Also, it requires complex software

to do the translation between the range cache and bitmap cache. Moreover, although this work

does provide general hardware for multiple software analyses, it is not clear how it can be used for

running multiple analysis at the same time. In comparison, Touchstone can use multiple PBFs to

run any number of program analyses concurrently.

Mondrian Memory Protection[70](MMP) is a hardware scheme which provides fine-grained

inter-process protection and is optimized for applications that do not perform frequent updates. The

memory protection information meta-data is stored in main memory and cached in a buffer called

PLB. In general, this design is not suitable for applications which need frequent updates. Also,

MMP is not design for multi-processor systems and neither can it support multiple concurrent

program analyses.

FlexiTaint [67] uses a separate cache(TPC) to separate taint information from the correspond-

ing data. However, on a TPC miss, an exception would be raised and a software handler has to deal

with the miss. In comparison, Touchstone uses a hierarchy of Security Caches and Security Mem-

ories coupled with cache coherence to avoid expensive exceptions and calls to software handlers

in similar situations. Moreover, FlexiTaint requires invasive changes to the processor pipeline to

do taint propagation and can only run a single analysis at one time.

Another common method of storing protection data is to put it alongside cache lines and mem-

ory [57, 4, 59, 77]. For these approaches, typically they use 2 bits for the security tag so that they

can not be used for running multiple analyses concurrently or providing multi-level data protec-

tion. And also, these approaches cannot provide no way of quickly marking a range of memory

locations.

4.6.2 Concurrency Bug Detection Schemes

In recent years, there have been many hardware schemes proposed for concurrency bug detection,

including data race detection and atomicity violation detection [44, 46, 34, 78, 33]. Unfortunately

most of them require special hardware to handle a specific concurrency bug. Touchstone provides a
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general hardware framework which is flexible enough to be used by software to detect concurrency

bugs of various types, even concurrently.

4.7 Conclusion

This chapter proposed Touchstone, the first microarchitectural memory-access monitoring scheme

that (i) can monitor accesses for several uses at the same time, and (ii) leverages the multicores

hardware cache coherence to keep its metadata coherent across threads with negligible overhead.

Touchstone provides multi-level support for starting to monitor a location, stopping to monitor

it, and checking if a reference accesses it. Touchstone’s metadata is kept on a per-processor Se-

curity Cache (SC) in the cache hierarchy that is kept coherent in hardware. To store the moni-

tored addresses compactly, Touchstone introduced the Pooled Bloom Filter (PBF). The PBF is a

bloom-filter-based hardware structure that dynamically adapts to the number of elements inserted,

expanding its size on the fly. This capability is needed for new types of uses, where we do not

know in advance the rough number of addresses to be inserted in the filter.

To show Touchstone’s flexibility, we evaluated it with three concurrent uses: data-flow based

taint analysis, data- and control-flow based taint analysis, and asymmetric data-race detection.

We ran the SPLASH-2 codes with 8 threads on a simulated multicore. The results showed that

Touchstone added minimal overhead. The execution overhead was, on average, only 3.6%. The

storage overhead was at most 7KB in the per-processor SC plus 17KB in main memory. The SC

could be powered-on gradually, as longer PBFs are needed. If, instead, we used conventional

bloom filters, the corresponding storage overhead would be 12KB in the per-processor SC (which

would all be powered-on for the whole run) plus 24KB in main memory.
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Chapter 5

Evaluation

In this chapter we evaluate our work. The chapter will start with the evaluation of Pacman, then

Falcon and finally it will end with Touchstone.

5.1 Pacman

Architecture CMP with 4 or 8 processors
Coherence protocol Snoopy basic-MESI on 64byte bus
Processor type 2-issue, in-order, 1GHz
SigTable parameters From Figure 2.8. Max: 8 rows
Private L1 cache 32Kbytes, 4-way asso., 64byte lines
Signature size 1,024 bits
Private L2 cache 512Kbytes, 8-way assoc., 64byte lines
Signature structure 8 128-bit Bloom filters with H3
L1 hit latency 2 cycles round trip
Cycle detection latency 4-14 cycles
L2 hit latency 8 cycles round trip
H-Block1 latency 2 cycles
L2 miss latency 30 cycles round trip to other L2s
H-Block2 latency 2 cycles
L2 miss latency 250 cycles round trip to memory

Table 5.1: Default architectural parameters.

To evaluate Pacman, we instrument parallel application binaries with Intel’s Pin framework

connected to a cycle-by-cycle execution-driven architecture simulator based on SESC [51]. The

simulator models a chip multiprocessor (CMP) with 4 or 8 processors. The default parameters

of the architecture are shown in Table 5.1. The processors are two-issue, in-order, and overlap

memory accesses with instruction execution. Each processor has a private cache hierarchy kept

coherent by a basic MESI coherence protocol on an on-chip bus. The bus is connected to the
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SigTable and to off-chip main memory. Unless otherwise indicated, the sizes of the fields in

a SigTable entry are those shown in Figure 2.8. To generate a signature, Pacman uses 8 128-bit

Bloom filters in parallel using the H3 hash function from [53], for a total of 1,024 bits per signature.

CS Max #Clean #Sig Max # Max CS
# Dynamic Insts #Insts #Insts #Rd #Wr disps addrs sig addrs nesting

Category Application CS (%) per CS in CS per CS per CS per CS per CS in CS level

SPLASH-2 cholesky 6,957 0.0 30.3 161 10.7 4.7 0.0 6.4 11 1
Kernels fft 32 0.3 33.9 47 11.9 10.5 0.1 5.8 7 1

lu/contiguous 272 0.0 36.1 47 12.6 10.7 0.0 6.0 7 1
lu/non cont. 80 0.0 35.2 47 12.4 10.5 0.1 5.8 8 1
radix 78 0.0 26.1 47 9.4 8.4 0.0 5.9 7 1

SPLASH-2 barnes 68,938 0.4 118.1 1,898 40.1 29.3 0.0 11.9 56 1
Apps fmm 44,622 0.2 142.1 252 54.7 27.9 0.0 13.4 21 1

ocean/cont. 4,432 0.0 31.5 45 11.8 9.6 0.0 6.8 9 1
ocean/non cont. 4,312 0.0 30.9 45 11.8 9.5 0.0 5.9 7 1
radiosity 273,087 0.9 18.2 1,226 8.7 5.9 0.0 5.6 89 5
raytrace 95,475 0.3 29.3 6,661 7.5 5.8 0.0 6.0 343 1
volrend 72,524 0.0 12.1 50 5.0 3.0 0.0 4.9 8 1
water-nsquared 6,292 0.0 50.3 51 34.4 12.4 0.0 17.0 18 1
water-spatial 157 0.0 23.8 47 9.6 7.0 0.0 6.0 9 1

PARSEC canneal 4 0.0 7.0 10 2.5 3.5 0.0 3.3 4 1
Kernels dedup 17,932 0.1 315.9 802 121.2 67.9 0.1 14.4 33 1

streamcluster 52,128 0.0 21.0 32 7.1 4.8 0.0 3.2 5 1

PARSEC blackscholes 0 – – – – – – – – –
Apps bodytrack 8,273 0.0 37.0 1,228 15.6 11.1 0.0 6.9 34 1

facesim 7,921 0.0 37.0 154 18.0 9.9 0.0 5.4 11 2
ferret 733 0.0 19.2 44 5.4 7.2 0.0 5.0 9 2
fluidanimate 2,113,870 0.7 15.9 32 10.2 4.1 0.0 8.0 10 1
raytrace 73 0.0 7.8 31 2.6 2.3 0.0 2.2 6 1
swaptions 0 – – – – – – – – –
vips 14,056 0.0 49.0 6,723 18.6 11.8 0.0 8.0 106 23
x264 4,071 0.0 10.6 39 5.9 1.7 0.0 4.0 6 1

Other Apache 8,301 0.4 24.4 40 9.7 5.3 0.0 5.6 8 1
Apps Sphinx3 94,382 3.5 208.5 2,946 86.7 29.1 0.1 6.0 243 2

Table 5.2: Characteristics of the critical sections (CS) in the applications.

For sensitivity analysis, we consider two cache hierarchy models, namely one where each

processor only has an L1 cache, and one where it has both a private L1 and a private L2. The first

model puts more pressure on Pacman.

We evaluate Pacman with all the 14 SPLASH-2 applications, the 12 PARSEC applications that

support pthreads, the Sphinx3 speech recognition software [54], and Apache-2.2.3. The SPLASH-

2 codes use their default inputs, while the PARSEC ones use the simmedium inputs. For Sphinx3,

we use the test input provided, which executes over 500 million instructions, while for Apache, we

set up clients that keep sending requests to the server, so that the server executes around 40 million
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instructions.

In our evaluation, we slightly modify the Canneal and Ferret applications. At the beginning of

Canneal, a thread uses a critical section to initialize a large memory space — even though there

is no other active thread at that time. Consequently, we turn off Pacman during that time. In

Ferret, each thread initializes a random number generator within a critical section. Since only the

seed is a shared variable, we move the local-variable accesses in the random number generator

initialization routine outside of the critical section. If we did not do these changes, the statistics on

critical section sizes (Section 5.1.1) would be biased. In addition, for Ferret, if we inserted all the

local-variable addresses into the signature, we could potentially induce, through address aliasing

in the signatures, false positive conflicts with other threads, and unnecessarily stall them.

In the rest of this section, we characterize the critical sections, evaluate the overheads of Pac-

man, and examine the asymmetric data races discovered by Pacman.

5.1.1 Characterization of the Critical Sections

Table 5.2 characterizes the critical sections in all 28 applications on the 4-processor CMP. Column

3 lists the number of dynamic critical sections in each program. Column 4 shows the percentage

of the dynamic instructions in the programs that are inside the critical sections. We see that all

programs but Sphinx3 execute less than 1% of their instructions in critical sections. The percentage

in Sphinx3 is 3.5%. Columns 5 and 6 show the average and maximum number, respectively,

of instructions executed per critical section. We see that the applications tend to have modest-

sized critical sections. Most applications execute less than 100 instructions per critical section on

average. The maximum number of instructions in a critical section reaches nearly 7,000 in Vips.

Columns 7-8 list the average number of reads and writes per critical section.

Columns 9-11 correspond to the architecture with only the L1 caches. They show, per critical

section, the average number of clean line displacements, and the average and maximum number of

line addresses included in the signature. We can see that the average number of clean displacements

per critical section is close to zero. This means that this effect is minor. The average number of
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line addresses included in a signature per critical section is typically less than 10 and, except for a

few cases, the maximum number is not much higher. These numbers suggest that the probability

of false positives in the signatures is low. Note that for the machine with both L1 and L2 caches,

these numbers will be smaller. This is because caches keep more state.

The last column shows the maximum nesting level of critical sections. A value more than one

means that the application has nested locks. We can see that most applications have a value of one.

Only Radiosity and Vips, which have a recursive structure, have significantly deeper levels.

Overall, given the typical sizes and properties of the critical sections observed, we believe that a

simple solution for asymmetric race detection is enough. Pacman provides such a simple solution.

5.1.2 Overheads of Pacman

There are two sources of execution overhead in Pacman. The first one is that some processors

receive Nacks and have to retry. The second one is additional network traffic created by three

event types: a notification message in a clean displacement inside a critical section, a retry after a

Nack, and the extra message in a successful lock acquire or release that hits on a cache line that is

in Dirty or Exclusive state.

Table 5.3 quantifies these effects for each application. Columns 3-8 show the total number of

Nacks observed during the execution of the application. For each application, we performed 3-5

runs, and show the maximum number of Nacks seen in any individual run. The data corresponds

to the architecture with L1 caches only, which is the worst case. Columns 3-5 correspond to 4-

processor runs, while Columns 6-8 correspond to 8-processor runs. For Apache, since the server

automatically sets the number of threads to a number larger than 8, we put the data under the 8-

thread columns. In each group of three columns, the first one shows the Nacks observed due to

true conflicts (i.e., two threads access the same variable), the second one the Nacks due to true

conflicts or false sharing, and the last one the Nacks due to true conflicts, false sharing, or false

positives.

The number of Nacks is very small. Only FMM and Bodytrack exhibit Nacks due to true
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Number of Nacks Number of Nacks Increase in Increase in Sync hits
(L1 only, 4 threads) (L1 only, 8 threads) traffic with traffic with per dyn

Category Application True True+ True+ True True+ True+ L1 only (%) L1+L2 (%) inst (%)
FS FS+FP FS FS+FP

SPLASH-2 cholesky 0 0 0 0 0 0 0.0 0.0 0.00
Kernels fft 0 0 0 0 0 0 0.0 0.0 0.00

lu/contiguous 0 0 0 0 0 0 0.0 0.0 0.00
lu/non cont. 0 0 0 0 0 0 0.0 0.0 0.00
radix 0 0 0 0 0 0 0.0 0.0 0.00

SPLASH-2 barnes 0 2 4 0 2 4 0.0 0.3 0.01
Apps fmm 1 1 1 1 1 1 0.0 0.1 0.00

ocean/contiguous 0 0 0 0 0 0 0.0 0.0 0.00
ocean/non cont. 0 0 0 0 0 0 0.0 0.0 0.00
radiosity 0 13 15 0 28 32 1.0 1.4 0.04
raytrace 0 0 4 0 0 6 0.0 0.1 0.01
volrend 0 0 0 0 0 0 0.0 0.1 0.00
water-nsquared 0 0 0 0 0 0 0.0 0.1 0.00
water-spatial 0 0 0 0 0 0 0.0 0.0 0.00

PARSEC canneal 0 0 0 0 0 0 0.0 0.0 0.00
Kernels dedup 0 0 0 0 2 2 0.1 0.2 0.00

streamcluster 0 0 0 0 0 0 0.0 0.0 0.00

PARSEC blackscholes 0 0 0 0 0 0 0.0 0.0 -
Apps bodytrack 1 1 2 1 1 2 0.0 0.0 0.00

facesim 0 0 0 0 0 0 0.0 0.0 0.00
ferret 0 0 0 0 0 0 0.0 0.0 0.00
fluidanimate 0 0 0 0 0 0 1.5 2.4 0.05
raytrace 0 0 0 0 0 0 0.0 0.0 0.00
swaptions 0 0 0 0 0 0 0.0 0.0 -
vips 0 0 2 0 0 3 0.0 0.0 0.00
x264 0 0 0 0 0 0 0.0 0.0 0.00

Other Apache - - - 0 3 8 0.3 0.5 0.02
Apps Sphinx3 0 4 6 0 10 14 0.8 1.1 0.02

Table 5.3: Quantifying the sources of overhead in Pacman.

conflicts. Each of them has one Nack. False sharing and false positives increase the number of

Nacks. The highest number is 32 for Radiosity. This is negligible compared to the 454M dynamic

instructions executed by Radiosity. Overall, the impact of any processor stall due to Nacks is

negligible.

Columns 9-10 show the percentage increase in the network traffic due to the three effects listed

above. Column 9 applies to the architecture with L1 caches only, while Column 10 applies to

the one with L1 and L2. The data shows that the increase in traffic is very small. In the worst

application, the increase is 1.5% for the case of L1 caches and 2.4% for the case of L1 and L2

caches. These low numbers result from the fact that critical sections have a modest size and account

for a small fraction of the execution time. Overall, the impact of this extra traffic is negligible.

Column 11 shows the number of successful lock acquires and releases that hit on a cache line
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that is in Dirty or Exclusive state and, therefore, introduce an additional bus access. The data

corresponds to the architecture with both L1 and L2 caches. The column gives the number of

such events as a percentage of dynamic instructions. We can see that, typically, such number is

negligible. In the worst application, we have 0.05 such events per 100 instructions. Therefore, the

impact of such events is negligible.

Finally, Figure 5.1 shows the increase in the execution time of the applications due to all of the

Pacman overheads combined. The data is shown as a percentage of the original execution time of

the applications and is plotted for 1, 4 and 8 threads. There is a data point for each program, and a

line for the average of them all. The figure shows that, even for 8 threads, the maximum overhead

in any application is only 0.4%, while the average is only 0.07%. The figure also shows that, for

most applications, the overhead increases slowly with the number of threads. The overhead for 1

thread is due to the extra bus accesses in synchronizations. Overall, the execution time overhead

of Pacman is negligible.

Figure 5.1: Execution time overhead of Pacman.

Unlock

void ComputeSubTreeCosts(...) {

T1

...

...

Lock

pb=b−>parent;

pb−>interaction_synch +=1;

T2

...

void ComputeSubTreeCosts(...) {

...

...

...

b−>interaction_synch = 0;

pb−>subtree_cost+=b−>subtree_cost;

b−>subtree_cost += b−>cost;
}

Figure 5.2: Race discovered in FMM.

5.1.3 Unreported Asymmetric Data Race Bugs

Although the SPLASH-2 and PARSEC codes are widely used, Column 3 of Table 5.3 shows that

Pacman discovered two true asymmetric data races: one in FMM and one in Bodytrack.

The asymmetric race in FMM is shown in Figure 5.2. It happens in subroutine ComputeSub-

TreeCosts, where multiple threads are accessing a tree structure. When two threads T1 and T2
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are concurrently executing the subroutine, it may be that the two point to the same node from two

different places (pb in T1 is the same as b in T2), and an asymmetric data race can happen.

The asymmetric race in Bodytrack happens between subroutine Condition::Wait, where vari-

able nWakeupTickets is read and written inside a critical section, and subroutine Condition::

NotifyOne, where it is written outside any critical section.

5.2 Falcon

In this section, we evaluate Falcon including SW-IF and HW-IF. We start by describing our ex-

perimental setup (Section 5.3.1). Then, we characterize the IF statements in the applications

(Section 5.2.2), and evaluate the execution overhead of our algorithms (Section 5.2.3), their ef-

fectiveness at detecting new data race bugs (Section 5.2.4), and the sensitivity of SW-IF to the

delay inserted at Confirmation points (Section 5.2.5).

5.2.1 Experimental Setup

We use the Cetus source-to-source compiler [26] to analyze and transform applications for SW-IF

and HW-IF. Cetus uses its intermediate representation tree and call graph to find the IF state-

ments that access shared locations. It then instruments them with either Confirmation points or

Watch/Unwatch instructions.

For SW-IF, we run the applications with 8 threads on a desktop with 4 2-context Intel Xeon

cores running at 2.33 GHz. For HW-IF, since there is no hardware that implements the AWT

watchpoint table described in Section 3.5.2, we instrument the application code with PIN and call

an execution-driven, cycle-level architectural simulator. The simulator models a chip multiproces-

sor (CMP) with 4 or 8 processors and a memory subsystem. The simulator intercepts the Watch

and Unwatch instructions and emulates the AWT.

Each AWT entry is 62-bit long, and contains the line address, processor-ID, and Valid bit.

Although a watched IF statement only accesses 1.6 locations on average, we conservatively have
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100 entries in the AWT. In our experiments, the AWT never gets full. If it did, we would simply

discard entries, hence losing some checking ability. The default architectural parameters are shown

in Table 5.4.

Architecture CMP with 4 or 8 processors
Coherence protocol Snoopy-based MESI on a 64byte bus
Processor type 2-issue, in-order, 1GHz
Private L1 cache 32Kbytes, 4-way asso., 64byte lines
Private L2 cache 512Kbytes, 8-way assoc., 64byte lines
L1 and L2 hit latency Min. 2 and 8 cycles round trip, respect.
L2 miss latency Min. 30 cycles round trip to other L2s and

250 cycles round trip to main memory
Watch/Unwatch instr. Min. 500 cycles (includes main mem. access)
AWT size 100 entries; each entry is 62 bits

Table 5.4: Default architectural parameters.

For the evaluation, we use the following applications. To characterize the IF statements in

programs and to quantify the performance overhead of our algorithms, we use the SPLASH-2

applications. The reason is that these codes have a well-defined standard input set, which is useful

for measuring performance. As a reference point, we also compare the performance overhead of

SW-IF and HW-IF to that of running Valgrind-3.6.1 [37], which is a popular debugging tool. For

Valgrid, we only turn-on its race detection part (Helgrind).

SW-IF and HW-IF do not find any IF-condition data races in the SPLASH-2 codes. Therefore,

we also run our algorithms on Cherokee-0.9.2 [1] and Pbzip2-0.9.4 [2]. Cherokee is a web server

written in C, and Pbzip is a parallel data compression application that can be compiled by Cetus

after disabling a few macros. Since Cetus can only analyze C programs, we cannot run any of the

other applications from Table 3.1 that are written in C++ or Java. The glibc library is written in C.

However, testing glibc in a stand-alone manner is not representative. For this reason, we do not do

it. We also use Cherokee and Pbzip to explore the sensitivity of the race detection capabilities of

SW-IF to the length of delay at Confirmation points.
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5.2.2 IF Statement Characterization

We first try to understand the structure of the IF statements. For this experiment, we use SW-IF

with delay insertion. Table 5.5 lists the total number of IF statements in the codes and the number

of checked (i.e., monitored) IF statements — both the static number seen in the source code and the

dynamic number observed at runtime. We see that about a third of all the dynamic IF statements

are checked on average.

Apps # IF Statements # Checked IF Statements
Static Dynamic Static Dynamic

Radiosity 357 12246807 216 3225037
Water nsquared 63 13210272 39 13134311
Water spatial 111 8995819 48 4955930
Ocean con 518 141680 313 16794
Ocean non 302 141676 235 8170
Cholesky 283 834469 200 715804
FFT 60 804 55 35
LU cont 92 13620 79 12387
LU non 64 449 58 285
Radix 51 121 31 45
Barnes 90 1686857 62 777343
FMM 308 33421676 238 1432271
Raytrace 354 8530683 159 3128360
Average 204 6094225 133 2108213

Table 5.5: Static and dynamic number of IF statements.

Figure 5.3 characterizes the dynamic IF statements further. It breaks the number of dynamic

IF statements into Checked, SharedNoCheck, and PrivateOnly. Checked are those that are instru-

mented with data race checks; SharedNoCheck are those that have a shared location access in the

condition expression but are not instrumented due to compiler limitations; PrivateOnly are those

that only have accesses to private locations in the condition expression and thus do not need checks.

The figure shows that SW-IF checks almost all of the IF statements that have shared accesses. It

misses only 3% of the cases.

Figure 5.4 shows the fraction of checked dynamic IF statements that have delays inserted in

them to expose data races. The figure breaks the number of checked dynamic IF statements into

those that receive delays (Delayed) and those that do not, to minimize overhead. The Loop, Recur-

sive, and Lock categories show the cases where the IF statement did not receive a delay because it

was (i) in a loop, (ii) in a recursive call but not in a loop, and (iii) in a critical section but not in any
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Figure 5.3: Fraction of dynamic IF statements that are checked.

of the prior categories. The figure shows that SW-IF inserts delays in about 20% of the dynamic

checks on average. The main reason why this number is not higher is due to IF statements inside

loops.
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Figure 5.4: Checked dynamic IF statements that receive delays.

Further study shows that up to 45% of all the static checks in the source code are instrumented

with delays. This indicates that our delay insertion algorithm does a good job of instrumenting

many IF statements in the source code. Techniques such as sampling loop iterations for delay

insertion can be used to further increase coverage while controlling the overhead.
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5.2.3 Performance Overhead

We now evaluate the performance overhead of SW-IF and HW-IF. To evaluate SW-IF, we run

the instrumented applications natively using 8 threads. We consider two scenarios: SW-IF is the

binary instrumented with Confirmation points but without any delays; SW-IFdelay is the binary in-

strumented with Confirmation points and 15 microsecond delays for the appropriate Confirmation

points as described in Section 3.4. This scenario is for when we want to expose new interleavings.

We compare the execution time to running the original uninstrumented binary (Original). As a

reference, we also show the execution time of the applications running on Helgrind, which is the

race detection part of Valgrind. While it is clear that Helgrind is a much more general data race

detector than SW-IF, it gives a reference data point. The results are shown in Figure 5.5 where, for

each application, the bars are normalized to Original.
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Figure 5.5: Execution time of the applications under SW-IF.

From the figure, we see that the average performance overhead of SW-IF is 2%. This is a very

low overhead, which shows that SW-IF could even be used in an on-the-fly production environ-

ment. SW-IFdelay has an average performance overhead of 6%, which is small enough to keep the

turnaround time for debugging and testing very low.

We also see that Helgrind has a much higher performance overhead. This is because it runs

sequentially and uses a general algorithm that can find many classes of races.

To evaluate HW-IF, we run 4- and 8-threaded applications on the architecture simulator de-
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scribed in Section 5.3.1. The results are shown in Figure 5.6. The bars show the execution time

overhead of running the application on a machine with HW-IF hardware over one without HW-IF

hardware.

We see that, on average, the execution overhead is less than 1% for both 4 and 8 threads. This

makes HW-IF perfectly suitable for on-the-fly production environments.
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Figure 5.6: Execution time overhead of the programs under HW-IF. The figure shows data for 4- and
8-threaded runs.

The execution time overhead shown in Figure 5.6 is broken down into two components: Stalls

due to Nacks and Instruction overhead. The Stall overhead is due to delays incurred by processors

when they are issuing bus requests that are Nacked by the AWT. The instruction overhead refers

to slowdowns incurred by processors when they are executing Watch and Unwatch instructions,

or when they suffer additional cache misses due to them. We can see from the results that the

stalls due to Nacks cause negligible overhead; the overhead primarily comes from the Watch and

Unwatch instructions.

There is no standard input set for Cherokee and Pbzip2. However, if we use the same input set

as in Yu et al. [73], the measured execution time overhead for Cherokee and Pbzip2 is 3.2% and

1.4%, respectively, for SW-IFdelay; 1.1% and 0.6%, respectively, for SW-IF; and 0.8% and 0.4%,

respectively, for HW-IF. These are small overheads.
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5.2.4 Detecting New IF-condition Data Race Bugs

SW-IF and HW-IF do not find any IF-condition data races in the SPLASH-2 codes. However, they

find several in Cherokee and Pbzip, and some of them are new, unreported bugs.

Table 5.6 shows the IF-condition data races that our algorithms found in the two applications.

The table assigns an ID to each bug, shows whether it is a new bug, lists the source code locations

of the race, and shows whether SW-IF or HW-IF can find it.

Bug ID New Locations of the Race Found?
Bug? SW-IF HW-IF

Cherokee-1 Yes thread.c:327 – server.c:1676 No Yes
Cherokee-2 Yes thread.c:57 – bogotime.c:114 Yes Yes
Cherokee-3 Yes thread.c:1890 – server.c:1132 No Yes
Cherokee-4 Yes thread.c:1945 – server.c:275 Yes Yes
Cherokee-5 No bogotime.c:114 – bogotime.c:109 No Yes
Cherokee-6 No buffer.c:92 – buffer.c:187 No Yes
Pbzip2-1 Yes pbzip2.cpp:704 – pbzip2.cpp:966 Yes Yes
Pbzip2-2 No pbzip2.cpp:1044 – pbzip2.cpp:889 No Yes

Table 5.6: IF-condition data races found. They are classified according to whether they are new bugs and
whether SW-IF or HW-IF can find them.

As shown in the table, our algorithms find 6 IF-condition data races in Cherokee and 2 in

Pbzip2, of which 5 are new, unreported bugs. We have reported these bugs to the software devel-

opers. SW-IF was able to detect 3 of them while HW-IF could detect and prevent all of them.

To understand the new bugs in detail, Figure 5.7 displays the source code and the buggy inter-

leaving for each bug.

In Cherokee-1, T2 updates shared variable conns num, which could be aliased to the variable

that T1 reads and writes. HW-IF can detect and protect against this bug. However, SW-IF cannot

because T2 makes conns num bigger and, therefore, if we test the thread->conns num>0 condi-

tion later, it will still be true.

In Cherokee-2, T2 may change cherokee bogonow now before T1 executes the return in the

THEN clause of the IF statement. If so, the rest of the function that contains this IF statement may

be incorrectly skipped. This bug can be detected by both SW-IF and HW-IF.

In Cherokee-3, T2 can change srv->wanna exit after T1 has used it in an IF control expression.
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if(thd−>bogo_now

== cherokee_bogonow_now)

.bufsize<1 ||...){

       return;

thread−>conns_num−−;

if (thread−>conns_num >0)

T1 T2
Source Code

BugID

if(unlikely(srv−>wanna_exit))

     thd−>exit = true;

if ((thd−>exit==false)&& ...)){

}

if(OutputBuffer[currBlock]

        usleep(50000);

}

Cherokee−2

Cherokee−1

Cherokee−3

Cherokee−4

Pbzip2−1

step_MULTI_THREAD_block
(thd, ...);

conns_num += THREAD(thread)

−>conns_num;

cherokee_bogonow_now = newtime;

srv−>wanna_exit= true;

THREAD(i)−>exit = true;

OutputBuffer[blockNum]

.bufSize=outSize;

Figure 5.7: Description of the new IF-condition data races found by SW-IF and HW-IF.

Since the latter contains the function call unlikely with potential side-effects, SW-IF cannot be

used. Hence, only the HW-IF scheme can detect this bug.

Cherokee-4 and Pbzip2-1 are similar to Cherokee-2 in that T2 can change the value of the IF

control expression while T1 is executing the THEN clause. For Cherokee-4, the result would be

an unnecessary block, whereas for Pbzip2-1, the result would be an unnecessary sleep. Both bugs

can be detected with SW-IF and HW-IF.

It is important to note that while SW-IF missed some IF-condition data races (false negatives)

due to the limitations described in Table 3.2, it did not suffer from any false positives: all races

reported by SW-IF were actual races. On the other hand, HW-IF was able to detect and prevent all

the IF-condition races that were reported by Helgrind. While HW-IF did suffer from the occasional

false positive due to false sharing and read-read conflicts in the AWT (as described in Table 3.2),

false positives only result in Nacks. These Nacks had negligible impact on performance as we saw

in Section 5.2.3.

Finally, Helgrind is also able to find the data races in Table 5.6. However, when we ran Hel-

grind, we obtained messages for hundreds of data races — many of which have low importance.

It took us several days to analyze the log.
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5.2.5 Sensitivity of SW-IF to Delays

Previous work [15] showed that adding delays at strategic points is beneficial when trying to expose

data races. Hence, we do the same experiments as in the previous section with SW-IF but insert

delays at Confirmation points of the Delay&Monitor set. We add 15us of sleep time at every

instance. Our goal is to extend the time that SW-IF is able to detect the races.

We find that SW-IFdelay finds exactly the same number of data races as the baseline SW-IF,

namely those of Table 5.6. It seems, therefore, that delays are not important for exposing IF-

condition data races for the particular applications we use.

5.3 Touchstone

In this section, we evaluate Touchstone.

5.3.1 Evaluation Setup

To evaluate Touchstone, we instrument parallel application binaries with Intel’s PIN framework

[28] connected to a cycle-by-cycle execution-driven architecture simulator based on SESC [51].

The simulator models a chip multiprocessor (CMP) with 8 processors and a memory subsystem.

The default architectural parameters are shown in Table 5.7. The processors are two-issue, in-

order, and overlap memory accesses with instruction execution. Each processor has a private cache

hierarchy kept coherent by a basic MESI coherence protocol on an on-chip bus. The Security

Cache is near the L1 which can be accessed in parallel with the L1.

For the Security Caches, we use a pool of 7 1-Kbyte bloom filters. Each security cache entry

contains 10 ranges in the Range Cache and 7 BFIDs in the Pooled Bloom Filter. We target a

theoretical 1% false positive rate in the PBF, which translates to a maximum of 850 elements per

bloom filter if we assume a random distribution. The latency to access the Security Cache is 2

cycles plus 1 cycle per additional bloom filter in the PBF, due to the sequential nature of lookups.
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The RC can be accessed in parallel with the PBF and hence does not add to the latency. As

described previously, each PBF initially starts with a single bloom filter and is expanded if needed

as more addresses are added.

For the Security Memory, we use a pool of 17 1-Kbyte bloom filters. We reserve more bloom

filters in the SM since it typically requires more bloom filters than individual SCs. This is because

displaced lines from all SCs in the system need to be stored in the SM. Accordingly, each PBF

in the SM has 17 BFIDs. Also, a 500 cycle access latency is added due to the round trip to the

memory module where the SM resides in. Otherwise, all other parameters are identical to that for

the Security Cache.

Architecture CMP with 8 processors
Coherence protocol Snoopy-based MESI on a 64byte bus
Processor type 2-issue, in-order, 1GHz
Private L1 cache 32Kbytes, 4-way asso., 64byte lines

L1 Cache hit latency 2 cycles round trip
Private Security Cache

Bloom Filter Pool size 7 1-Kbyte bloom filters
Access latency 2 cycles + 1 cycle per additional bloom filter

Private L2 cache 512Kbytes, 8-way assoc., 64byte lines
L2 hit latency 8 cycles round trip
Remote L2 hit latency 30 cycles round trip

Main Memory latency 500 cycles round trip
Security Memory Size
Security Memory Size

Bloom Filter Pool size 17 1-Kbyte bloom filters
Access latency 500 cycles + 1 cycle per additional bloom filter

Table 5.7: Default architectural parameters.

We evaluate three usages for Touchstone, taint analysis based on data flow (DF), taint analysis

based on data flow and control flow (DFCF) and asymmetric data race detection (AR). For taint

analysis, we implemented a system similar to DYTAN [10] optimized using Touchstone. We ran

all three program analyses simultaneously for all experiments to test the versatility of Touchstone.

We used the entire suite of SPLASH-2 applications with reference inputs to evaluate the three

usage models. For DF and DFCF, we considered all input data to be tainted.
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Figure 5.8: Overhead of Touchstone

5.3.2 Experimental Results

Figure 5.8 shows the performance overhead of Touchstone when running DF, DFCF and AR at the

same time. The baseline is running these analyses with an ideal scheme which performs checks on

memory locations with zero overhead. With 8 processors, the maximum overhead in SPLASH-2

is 7.3%, while the average is only 3.6%. The overhead mainly came from software accesses to

the Unmarked Table. All accesses that hit in the Security Cache needs to be checked against the

Unmarked Table.

We further analyze the overhead in Table 5.8 and Figure 5.9.

Table 5.8 shows the increase in the number of accesses to the L1 and L2 caches. The additional

accesses mostly comes from accesses to the Unmarked Table. In the worst case, the number of L1

accesses increases by 8.57%. However, these additional clean table accesses have good locality,

and most of them hit the L1 cache. Hence, the increase in L2 accesses is typically lower than the

increase in L1 accesses.

Figure 5.9 shows the increase in network traffic on the on-chip bus. Again, most of this traffic

came from accesses to the Unmarked Table. Another potential source of traffic is the coherence

87



actions taken when marking addresses in the PBF. But it turns out that, for taint analysis, almost all

locations are written immediately before being marked so the lines cache lines are already dirty by

the time Touchstone tries to mark them. Hence this effect was minimal. We measured the traffic

in terms of the total number of transactions on the bus. The maximum increase in traffic was 7.6%

with the average increase being 4%.

L1 access increase (%) L2 access increase (%)
fft 2.25 0.25
barnes 3.10 1.21
cholesk 6.35 4.37
fmm 3.53 1.56
lucontiguous 2.98 0.97
lunon cont 2.87 0.84
oceancontiguous 7.76 3.45
oceannon cont 8.57 3.53
radiosity 2.75 0.83
radix 7.58 2.2
raytrace 4.17 2.15
volend 6.41 4.43
water-nsquared 1.08 0.93
water-spatial 1.16 0.87

Table 5.8: Cache access increase percentage.
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Figure 5.9: Network traffic increase due to Touchstone
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5.3.3 False Positives

Touchstone doesn’t allow false negative. However, false positives can still occur due to encoding

in the bloom filter and cache line false sharing. filter, it will cause false positive. The false positive

rate is shown in Figure 5.10.
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Figure 5.10: False positive of Touchstone

Even though we target a theoretical maximal false positive rate of 1%, sometimes we get a

rate that is larger than 1% due to the effects of false sharing. If we did not have false sharing, the

false positive rate would always be lower than 1%. In any case, on average we achieve a low false

positive rate of 1.3% for DF and 1.4% for DFCF. The false positive number includes accesses to

tainted locations that are propagated from a location that has been tainted due to a false positive.

The false positive rate for AS was negligible since the number of addresses that needed to be

marked in a critical section was very small.

5.3.4 Size of Security Cache and Security Memory

Touchstone is the first hardware scheme which uses a growable bloom filter. As more elements

are inserted to the Scalable Bloom Filter, more space is allocated to maintain the 1% false positive

rate.
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Figure 5.11: Space requirement for Security Cache
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Figure 5.12: Space requirement for Security Cache

Figure 5.11 shows the space requirements for Security Cache to achieve the target 1% false

positive rate when DF, DFCF and AR are run separately and when they are run together simulta-

neously (DF+DFCF+AR). This shows how many bloom filters in the pool were allocated for each

scenario, in terms of kilobytes. Since critical sections typically involve a handful of addresses, the

space requirement for AR is very small and 1 KB PBFs are always sufficient. The space require-

ments of DF and DFCF are more significant but the maximum requirement reaches only 4 KB in

the worst case and 2.5 KB in the average case.

Due to the flexibility of the pooled structure of the PBFs, Touchstone is able to handle the most

stressful case (DF+DFCF+AR) with just 7 bloom filters (or 7 KBs) in the pool. In contrast, had

we used regular bloom filters, we would have needed 4 KB * 3 = 12 KB of space to achieve a

similar false positive rate (since the maximum space needed per analysis was 4 KB). The savings
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Figure 5.13: Space requirement for Security Memory

in space can increase dramatically as more analyses with differing space requirements are added

to the scenario.

Also, note that in the cases where not all 7 bloom filters are used in the pool, the unused

bloom filters can be powered down to save energy. This is another dimension in flexibility that is

not achievable using regular bloom filters. Even when a bloom filter is populated very sparsely,

there is no way to partially power down a single bloom filter. Although we do not evaluate the

power requirements directly, one can see that the number of bits that need to be turned on has high

variance across applications and scenarios. On average, only 5.3 KB would need to be powered on

out of the 7 KB.

Figure 5.13 shows the space requirements for Security Memory using identical scenarios. Us-

ing the same reasoning as in the Security Cache, we would have needed 8 KB * 3 = 24 KB of space

using regular bloom filters. Using PBFs, Touchstone was able to achieve a similar false positive

rate using just 17 KB of space. Also, on average, only 10.1 KB would need to be powered on out

of the 17 KB, resulting in significant energy savings.

Lastly, we evaluate the impact of Range Caches by calculating the space requirements for Secu-

rity Cache with and without Range Caches in Figure 5.12. We use the most stressful DF+DFCF+AR

scenario for the evaluation. Using only PBFs, Security Cache would require much more space. The

pool would have to provisioned for a maximum usage of 80 KB, and on average 53 KB of it would

have to be turned on. The main reason is that, in SPLASH-2, the input data we mark as tainted
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usually comes in large contiguous data structures such arrays and matrices. These memory loca-

tions are conducive to marking using ranges which is much more space efficient compared to PBFs

in these cases. This shows that Range Caches are a necessary part of our design.
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Chapter 6

Conclusion

Parallel programing is hard. Lots of dynamic analyses are designed to ensure programming cor-

rectness. This thesis proposes to add some extra hardware that can reduce the false positive and the

performance overhead of the dynamic software analyses. First, it proposes to detect asymmetric

data races, which is a type of harmful data race. Then it goes on to detect another type of harmful

data race - IF-Condition data race. Finally, it proposes a novel hardware framework which can

reduce the performance overhead for a set of dynamic analyses.
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