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ABSTRACT 
 

Brassica oleracea vegetables are recognized as functional foods that contain various 

phytochemicals such as glucosinolates (GS) and flavonoids that have health-promoting 

bioactivity. Recent data suggest that methyl jasmonic acid (MeJA) can increase concentrations of 

GS and polyphenolics in Brassica plants. In Chapter 2 tissue/organ specific responses to MeJA 

treatments were investigated in five cultivars of broccoli and two cultivars of kale in field plots 

over two years, MeJA treatments significantly increased total phenolics and 2,2'-azino-bis (3-

ethylbenzothiazoline-6-sulphonic acid) (ABTS) antioxidant activity of kale leaf tissues, but had 

no effect on phenolics of broccoli florets. Correlation of growing degree days, precipitation per 

day and solar radiation with phenolic concentrations suggest that these weather related factors 

are associated with the enhancement of phenolics and tissue ABTS antioxidant activity. 

 

In order to evaluate if MeJA treatment can enhance induction of quinone reductase 

activity, an anticancer biomarker of broccoli floret extracts, MeJA treatments were applied to 

five broccoli cultivars in each of two years under field conditions (Chapter 3). Sulforaphane, 

phenethyl isothiocyanate, and hydrolysis products derived from neoglucobrassicin were 

significantly increased by MeJA treatment. Sulforaphane, N-methoxyindole-3-carbinol (NI3C), 

and neoascorbigen showed significant correlations with QR activity in hydrolysed broccoli 

extracts. Although sulforaphane is a known QR inducer, there is only one published report about 

QR activity of hydrolysis products of neoglucobrassicin (Haack et al., 2010). The concentration 

required for doubling specific QR activity (CD value) was calculated to be 35 and 38 µM for 

NI3C and neoascorbigen, respectively. The CD value of sulforaphane was previously estimated 

to be 0.2 µM. Given the QR inducing potency and increased amount of isothiocyanate hydrolysis 

product from glucoraphanin, sulforaphane is considered to be the major contributor to QR 

inductive activity of MeJA treated broccoli florets.  

 

Chapter 4 reports that MeJA spray treatments were applied to the kale varieties ‘Dwarf 

Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011, to 

investigate alteration of the GS composition in the harvested leaf tissue. The MeJA treatment 

significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin 

(150%) concentrations in the apical leaf tissue of these genotypes for both season. Induction of 
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quinone reductase (QR) activity was significantly increased by the extracts from the leaf tissue of 

these two cultivars. There were significant year and year by genotype interactions in the 

concentrations of GS and QR activity. To determine the relationship between GS hydrolysis 

products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf 

tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, 

NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR 

activity. Thus, increased QR activity may be due to several hydrolysis products in kale leaves 

rather than individual products alone.  

 

MeJA treatment can also increase ethylene production, which may be harmful for the 

maintenance of postharvest quality of broccoli. To increase health-promoting properties of 

broccoli while maintaining post-harvest storage quality, 1-methylcyclopropene (1-MCP, a 

competitive inhibitor of plant ethylene receptor proteins) was applied to control and MeJA 

treated broccoli (Chapter 5). The combination of 1-MCP with MeJA treatment maximized 

phytochemical content and QR activity while maintaining acceptable visual quality. In order to 

understand the mechanisms of response in broccoli to MeJA and 1-MCP treatments gene 

expression of GS biosynthetic, hydrolytic, chlorophyll catabolic, and pathogen related protein 

(PR) genes were measured by quantitative RT-PCR. MeJA treatment significantly increased 

transcript abundance of the indolyl GS biosynthesis genes BoCYP79B2, BoCYP83B1, as well as 

myrosinase, epithiospecifier protein modifier 1 (BoESM1), and epithiospecifier protein (BoESP) 

genes. Consequently, neoglucobrassicin and gluconasturtiin concentrations were significantly 

increased by MeJA treatment. In addition, increased sulforaphane, phenethyl isothicyanate, NI3C, 

and neoascorbigen were significantly correlated with QR inductive activity, indicating MeJA 

induced GS levels enhances potential cancer chemopreventive activity. MeJA treatment 

significantly increased ethylene production of broccoli floret at harvest date and reduced total 

chlorophyll content and visual quality during post-harvest storage. 1-MCP treatment 

significantly suppressed mRNA levels of the chlorophyll catabolism genes, BoPaO and BoPPH. 

As a result, the combined treatment of MeJA and 1-MCP provides enhanced QR inductive 

activity while maintaining post-harvest quality compared to MeJA treatment alone.  
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In Chapter 6, the effect of MeJA treatments were investigated in a cauliflower (B. 

oleracea L. var. botrytis) cultivar. Visual quality, ethylene production, GS compositional 

changes, and QR inductive activity of cauliflower curd extracts were examined during post-

harvest storage at 4 °C. There was no significant ethylene production or visual quality loss with 

the MeJA treatment. Unlike broccoli, MeJA significantly increased glucoraphanin, 

glucobrassicin, and neoglucobrassicin, implying that GS compositional changes associated with 

MeJA treatment maybe species-specific. Increased GS concentrations were significantly 

correlated with QR inductive activity. In conclusion, MeJA treatment to cauliflower significantly 

enhanced QR inductive activity without a loss in post-harvest quality.  

 

Several studies to determine application protocols that maximize accumulation of GS and 

other phytochemicals in broccoli florets were discussed in Chapter 7. We investigated the effect 

of solvents and varying MeJA application concentrations, application number, and application 

date in days prior to harvest of broccoli florets of the cultivar ‘Green Magic’. MeJA application 

four days prior to harvest generated broccoli florets with the highest concentrations of GS. 

Although a single application of 250 µM MeJA significantly increased GS concentrations in 

broccoli florets, two consecutive days of treatment (four and three days prior to harvest) of 250 

µM MeJA further increased total GS concentrations (primarily neoglucobrassicin) and QR 

activity four days prior to harvest. With increasing treatment concentrations of MeJA to broccoli 

florets gluconasturtiin, neoglucobrassicin, and glucoraphanin floret concentrations and QR 

inductive and nitric oxide production inhibitory activity were gradually increased. These 

application protocols were found to maximize GS concentrations and putatively enhance the 

health promoting properties of broccoli florets. 
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CHAPTER 1 

Literature Review 

1.1. Rationale 

Increased life span has made people pay more attention to the quality of their 

lifestyles. Diseases and health problems have become a major concern in our aging 

population. A nutritious diet can prevent cancer and other diseases (Abdulla and Gruber, 

2000). Hence, functional plant foods that promote health have received a great deal of 

attention from scientists and other consumers. Brassica oleracea vegetables including 

broccoli, cabbage, cauliflower, kohlrabi, Brussels sprouts, and kale are commonly 

consumed around the world. These vegetables are recognized as functional foods that 

contain various phytochemicals such as glucosinolates (GS), flavonoids, carotenoids, 

vitamins, and minerals that have health-promoting bioactivity. Research suggests that it is 

possible to improve beneficial phytochemicals in B. oleracea vegetables by both 

cultivation and genetic manipulation (Brown et al., 2002).  

 Although health-promoting compounds can be improved by breeding, these 

programs are costly and can require 8-12 years to develop improved cultivars. In contrast, 

developing new production practices that enhance vegetable health-promoting bioactivity 

can accelerate the potential delivery of nutritionally enhanced foods to consumers. Recent 

data suggest that the plant-signaling hormone, methyl jasmonic acid (MeJA), can 

increase concentrations of GS and polyphenolics in broccoli florets and sprouts, which 

are putative health-promoting compounds (Kim and Juvik, 2011; Pérez-Balibrea et al., 

2011). 
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 Although MeJA has previously been shown to enhance GS in broccoli florets and 

sprouts, these studies were conducted in greenhouse environments. It is important to 

evaluate the effect of MeJA treatments on broccoli under field conditions as a potential 

cultivation practice. Field environments experience heat, drought, and exposure to pests, 

factors which can attenuate or magnify MeJA mediated phytochemical enhancement. 

Since most commercial Brassica vegetable production is in the field, cultivation methods 

to enhance their health promotion must be tested in field environments. 

 Health-promoting compounds in Brassica oleracea can be degraded and lost 

during post-harvest storage because these vegetables are perishable commodities. MeJA 

treatment can increase endogenous ethylene production and respiration of vegetable 

products, which can be harmful to the maintenance of post-harvest quality and 

phytochemical content. However, the effect of pre-harvest treatment of MeJA on post-

harvest B. oleracea vegetable quality has yet to be examined. Inhibition of ethylene 

production or blocking the ethylene receptor is an effective way to improve shelf life and 

quality. It has been reported that application of 1-MCP (1-methylcyclopropene) increases 

shelf life of broccoli by competitive inhibition of ethylene receptor proteins. Thus, 

hypothetically, 1-MCP application to MeJA treated broccoli or cauliflower may optimize 

post-harvest maintenance of MeJA enhanced phytochemical content. 

 This research has been designed to evaluate how to optimize the putative health-

promoting bioactivity of B. oleracea vegetables by pre-harvest MeJA treatments and 

during post-harvest storage. 
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1.2. History of the Species Brassica oleracea  

 Brassica is a genus of plants in the mustard family (Brassicaceae), which 

contains important agricultural and horticultural crops. Certain parts of these crops have 

been developed for food, such as roots (e.g. rutabaga), stems (e.g. kohlrabi), leaves (e.g. 

cabbage, kale), immature flowers (e.g. cauliflower, broccoli), and seeds (e.g. mustard 

seed and oil-producing rapeseed).  

 B. oleracea vegetables are consumed around the world. Leafy kales and 

branching, thin-stemmed kales were the earliest cultivated Brassicas. These B. oleracea 

var. acephala types have given rise to the forage kales, fed mainly to livestock. B. 

oleracea var. capitata, the cabbage group evolved in Germany. Both red and white 

cabbages were known to be cultivated from about A.D. 1150 in Germany and in England 

by the fourteenth century. Cauliflower, in its present form, was unknown before the early 

Middle Ages. It was not mentioned by the earlier German herbalists and was only 

described in 1576 as Brassica florida botrytis and in 1583 as Brassica cauliflora. It was 

grown for seed in the area surrounding the Gulf of Naples in Italy. At the beginning of 

the seventeenth century, cauliflower reached Germany, France and England. Sprouting 

broccoli, B. oleracea var. italica, came from the Levant, Cyprus or Crete to Italy. It was 

not mentioned until 1660 and was referred to as ‘sprouting colli-flower’ or ‘Italian 

Asparagus’ in Miller’s Gardner’s Dictionary of 1724. Brussels sprouts, B. oleracea var. 

germmifera, in its present form, appeared about 1750 in Belgium as a ‘sport’, but by 1820 

was known as ‘Chou de Bruxelles’ (Simmonds, 1976). 
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1.2.1. Glucosinolates 

 GS are sulfur-containing secondary metabolites found primarily in the 

Brassicaceae, although other GS-containing plant families occur within the Capparaceae 

and Caricaceae (Fahey et al., 2001). In the past few decades, research on GS in crop 

plants has increased following the discovery of their putative role as cancer-prevention 

agents, crop-protection compounds, and bio-fumigants in crop production fields (Halkier 

and Gershenzon, 2006).  

 There are approximately 120 described GS sharing a chemical structure 

consisting of a β-D-glucopyranose residue linked via a sulfur atom to a (Z)-N-

hydroximinosulfate ester, plus a variable R group (Figure 1.1). GS are classified 

according to their amino acid precursor (Halkier and Gershenzon, 2006). GS derived 

from alanine, leucine, isoleucine, methionine, or valine are called aliphatic GS, those 

derived from phenylalanine or tyrosine are called aromatic GS, and those derived from 

tryptophan are called indolyl GS. 

  

1.2.1.1. Glucosinolates Biosynthesis 

GS biosynthesis genes have been intensively studying in Arabidopsis with 

biochemical assays. There is high homology of gene sequences in GS biosynthesis 

between Arabidopsis and Brassicaceae (Bak et al., 1998). GS biosynthesis consists of 

three independent steps: (i) chain elongation of selected precursor amino acids, (ii) 

formation of the core glucosinolate structure, and (iii) secondary modifications of the 

amino acid side chain. A side chain amino acid precursor proceeds through a series of 

chain elongations prior to entering the pathway. Two genes, methylthioalkylmalate 
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synthase 1 (MAM1) and MAM2, have been identified in Arabidopsis, where MAM1 

regulates the first two methionine elongation cycles, whereas MAM2 results in only one 

round of elongation (Kroymann et al., 2003; Textor et al., 2004) (Figure 1.2).  

The second step is the GS core structure formation from the precursor amino 

acids by reaction with various cytochrome P450 enzymes (CYP) (Sønderby et al., 2010), 

CYP79 genes catalyze the conversion of the amino acid to aldoximes. CYP79F1 and 

CYP79F2 genes are responsible for aldoxime production leading to aliphatic GS derived 

from chain-elongated methionine derivatives, whereas CYP79B2 and CYP79B3 have 

distinct functions for indolyl GS biosynthesis derived from tryptophan (Sønderby et al., 

2010). In the biosynthetic pathway of indolyl GS, CYP79B2 catalyzes the conversion of 

tryptophan to indole-3-acetaldoxime, with CYP83A1 and CYP83B1 metabolizing the 

phenylalanine- and tyrosine-derived aldoximes (Sønderby et al., 2010). It has been 

reported that indolyl GS biosynthesis is modulated by the methyl jasmonate (MeJA) and 

the salicylic acid (SA) signal transduction pathways (Mikkelsen et al., 2003).  

The biological activity of GS depends on diversity of structure of the side chain 

that is the last step of GS biosynthesis (Hopkins et al., 2009). For aliphatic GS, secondary 

modifications include oxygenations, hydroxylations, alkenylations and benzoylations. 

Indolic GS, in turn, can undergo hydroxylations and methoxylations (Sønderby et al., 

2010). Recently, methoxylation genes involved in glucobrassicin such as CYP81F2, 

CYP81F3, and CYP81F4 (Figure 1.3) were clearly identified by genetic engineering 

Arabidopsis indolyl GS biosynthesis into Nicotiana benthamiana (Pfalz et al., 2011). 4-

methoxyglucobrassicin hydrolysis products have been reported to be antibiotic to fungal 

pathogens and to green peach aphid (Myzus persicae), respectively (Bednarek et al., 
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2009; Kim et al., 2008) whereas neoglucobrassicin is reported as a compound that is 

synthesized in response to insect hervivore (Hopkins et al., 2009). 

 

1.2.1.2. Glucosinolate Hydrolysis 

 Intact GS do not display bioactivity but following hydrolysis by the endogenous 

enzyme myrosinase, generate isothiocynates (ITCs) and other products, which have been 

associated with insect resistance and anti-cancer activity. In plant tissues, myrosinase is 

present in idioblastic myrosin cells and physically separated from GS substrates. 

Compartmentalization of the GS-myrosinase system is characterized in Arabidopsis by 

the presence of sulfur-rich cells (S-cells) between the phloem and the endodermis of the 

flower stalk, which presumably contain high concentrations of GS (Koroleva et al., 2000), 

and by the localization of myrosinase in neighboring cells. When the plant tissue is 

disrupted, myrosinase and substrate (GS) come into contact, and consequently results in 

GS hydrolysis. Myrosinase cleaves the glucose unit from the GS to form an unstable 

intermediate, which can undergo rearrangement into several different biological active 

compounds such as ITCs, nitriles or thiocyanates. The chemical structure of these 

hydrolysis products depends on the structure of the GS side chain and reaction conditions 

such as pH, concentration of Fe2+ and presence of epithiospecifier protein (ESP) (Bones 

and Rossiter, 1996). In the absence of ESP, the addition of Fe2+ ions also promotes nitrile 

formation, nitriles are weak anticancer compounds compared to the isothiocyanates like 

SF, PEITC, and AITC (Matusheski et al., 2006). The epithiospecifier modifier 1 (ESM1) 

gene in Arabidopsis encodes a protein shown to inhibit function of ESP, leading to 

increased isothiocyanate production from GS hydrolysis (Zhang et al., 2006). 
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There are several types of hydrolysis products of indolyl GS (Figure 1.4). 

Although nitriles were dominant GS hydrolysis products from autolysis (pH 5-6) of 

aliphatic GS in cabbage, in the presence of ascorbic acid, ascorbigen (or neoascorbigen) 

and thiocyanate ion were the dominating products from glucobrassicin and 

neoglucobrassicin (Agerbirk et al., 1998). Depending on the pH, oligomerization patterns 

are different: dimerization to di(indol-3-yl)methane (DIM) happens even in neutral 

solutions, whereas formation of the linear and cyclic trimers requires a weakly acidic 

solution (Agerbirk et al., 1998).  

 

1.2.1.3. Health Promoting Hydrolysis Products of Glucosinolates  

 GS have been identified as potent cancer prevention agents because some 

hydrolysis products induce mammalian phase II detoxification enzymes, such as quinone 

reductase (QR), glutathione-S-transferase (GST), and glucuronosyl transferases. 

Sulforaphane, the ITC derivative of 4-methylsulfinylbutyl GS or glucoraphanin (Figure 

1.1), found in broccoli, has been identified as a QR inducer (Zhang et al., 1992). Previous 

research reported that sulforaphane putatively prevents tumor growth by blocking the cell 

cycle and promoting apoptosis (Gamet-Payrastre et al., 2000). It has been reported that 

sulforaphane also induces growth arrest and apoptosis against colon, prostate, leukemia, 

melanoma, and ovarian cancer cells (Chiao et al., 2002; Chuang et al., 2007; Gamet-

Payrastre et al., 2000; Misiewicz et al., 2003; Wang et al., 2004). Moreover, sulforaphane 

displays antibiotic activity against the bacteria Helicobacter pylori, which promotes 

gastritis and stomach cancer (Fahey et al., 2002).  
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 In addition to the sulforaphane, several indole and aromatic GS also have cancer 

chemopreventive activity. The best example is indole-3-carbinol (I3C), which is a 

hydrolysis product of glucobrassicin. I3C was reported to show dose-related decreases in 

tumor susceptibility as inferred by decreases in [3H] aflatoxin B1-DNA binding in trout 

(Dashwood et al., 1989). Kim et al. (2003) reported that I3C inhibited mouse colon 

carcinogenesis. According to Brew et al. (2006), treatment of the immortalized human 

mammary epithelial cell line MCF10A with I3C induced a G1 cell cycle arrest, elevated 

p53 tumor suppressor protein levels and stimulated expression of the downstream 

transcriptional target, p21. In both men and women, I3C significantly increased the 

urinary excretion of C-2 estrogens. The urinary concentrations of nearly all other 

estrogen metabolites, including levels of estradiol, estrone, estriol, and 16α-

hydroxyestrone, were lower after 6-7 mg/kg per day of I3C treatment (Michnovicz et al., 

1997). The mechanism by which I3C promotes 2-OH formation involves the selective 

induction of Phase I metabolizing cytochrome P450 enzymes, which facilitate the 2-

hydroxylation of estrogen. Through this metabolic role, I3C promotes an increased ratio 

of 2-OH to l6α -OH and may improve estrogen metabolism in women with poor diets or 

an impaired detoxification mechanism (Michnovicz et al., 1991). I3C may also reduce the 

activity of the enzyme required for the 4-hydroxylation of estrogen, thereby decreasing 

carcinogenic 4-OH formation. Ascorbigen (ASG) is formed from its precursor, 

glucobrassicin. After glucobrassicin is enzymatically hydrolyzed to I3C, it reacts with L-

ascorbic acid to form ASG (Wagner and Rimbach, 2009). ASG induces apoptosis, 

prevention of DNA damage, and the upregulation of xenobiotic metabolizing enzymes 

(Bonnesen et al., 2001). Moreover, 3,3'-Diindolylmethane (DIM), a major in vivo product 
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of acid-catalyzed oligomerization of I3C, is a promising anticancer agent present in 

vegetables of the Brassica genus. The effects of DIM on estrogen-regulated events in 

human breast cancer cells was investigated and it was observed that DIM is a promoter-

specific activator of estrogen receptor (ER) function in the absence of 17β -estradiol 

[E(2)] (Riby et al., 2000). Incubated microsomes from rats pretreated with I3C and ASG 

yielded high levels of 2-hydroxyestradiol that were comparable to levels induced by β-

naphthaflavone and were significantly above control group levels (P < 0.005) (Sepkovic 

et al., 1994). 

 Allyl isothiocyanate, derived from the aliphatic GS sinigrin, has tumor inhibition 

activity in vitro and in vivo (Kumar et al., 2009; Manesh and Kuttan, 2003) (Figure 1.1). 

Phenethyl isothiocyanate (PEITC), which is derived from the aromatic GS, 

gluconassturtiin, has a potential role in protection against colon cancer (Chung et al., 

2000) and is also well known as a QR and GST inducer (Manson et al., 1997; Rose et al., 

2000).  

 

1.2.2. Flavonoids  

 Flavonoids typically have a C6-C3-C6 structure (Figure 1.5). This class of 

compounds, ubiquitous in the plant kingdom, is estimated to contain over 10,000 

members (Dixon and Pasinetti, 2010). Flavonoids in plants have been found to be 

associated with a wide range of bioactive roles including beneficial microbial attractants, 

insect repellants, and to protect plants from Ultraviolet-B (UV-B) damage (Agati and 

Tattini, 2010; Dixon and Pasinetti, 2010; Tattini et al., 2005).  
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 Dietary flavonoid consumption can delay carcinogenesis through the induction of 

phase II enzymes or by blocking DNA damage in the initial stage of carcinogenesis 

(Moon et al., 2006) (Figure 1.6). Brusselmans et al. (2005) reported that 18 naturally 

occurring flavonoid compounds showed a potential to induce apoptosis in cancer cells 

which was strongly associated with the inhibition fatty acid synthase (FAS, a key 

lipogenic enzyme overexpressed in many human cancers). Traditionally, flavonoids were 

thought to prevent cancer by their hydrogen-donating antioxidant properties but recent 

data suggest that their bioactivity may be associated with the inhibition of protein kinase 

(Hou and Kumamoto, 2010). Members of the genus Brassica have abundant levels of the 

flavonols, kaempferol and quercetin (Chen and Kong, 2004). Previous research reported 

that flavonol contents in kale and broccoli were positively correlated with solar or UV-B 

radiation (Gliszczynska-Swiglo et al., 2007; Zhang et al., 2003). These flavonols and 

quercetin glycosides have also been reported as QR inducers (Williamson et al., 1996; 

Yannai et al., 1998). Somerset and Johannot (2008) reported that broccoli is a significant 

source of kaempferol and quercetin in Australian diets.  

 

1.2.3. Carotenoids  

 Carotenoids are tetraterpenoids whose structure is composed of a polyene 

hydrocarbon chain, which is sometimes terminated by rings, and may or may not have 

additional oxygen atoms attached. In photosynthetic organisms, carotenoids play a vital 

role in photosynthesis by protecting the reaction center from auto-oxidation and 

facilitating non-damaging energy transfer processes (Bowsher et al., 2008). For humans, 

some carotenoids are precursors of vitamin A, which prevents certain forms of cancers 
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and promotes eye health. Putative mechanisms of disease prevention by carotenoids 

involve reduced cell proliferation, mutagenesis and genotoxicity by their antioxidant 

properties, and enhanced apoptosis of cancerous cells (Krinsky et al., 2003; Palozza et al., 

2003). Brassica oleracea vegetables like kale, cabbage, and broccoli are recognized as 

excellent sources of dietary carotenoids (U.S. Department of Agriculture, 2011b). 

Broccoli has emerged as the most commonly consumed Brassica vegetable in the United 

States and supplies an important fraction of carotenoids to the U.S. diet. Most of the 

variation in carotenoid and chlorophyll content in broccoli cultivars is mainly determined 

by genotypic differences (Farnham and Kopsell, 2009). According to a recent study, total 

carotenoid content among 24 broccoli cultivars ranged from 55 to 154 mg/g dry weight 

(Ibrahim and Juvik, 2009). 

 

1.2.4. Vitamins, Minerals, and Other Nutrients 

 Brassica plants are a good source of vitamin C. Vitamin C or L-ascorbic acid is 

an essential nutrient for humans and certain other animal species. In living organisms 

ascorbate acts as an antioxidant by protecting the body against oxidative stress. Severe 

deficiency of vitamin C can result in scurvy. According to a recent study, commercial 

broccoli cultivars contain from 57 to 131 mg of vitamin C per 100 g fresh weight (Koh et 

al., 2009). Considering that dietry reference intake ranges from 13 mg to 100 mg, 

broccoli is excellent source of vitamin C. Kale contains 817 µg of vitamin K per 100 g 

fresh weights. Vitamin K is associated with blood coagulation and bone metabolism. It 

was reported that broccoli and cauliflower have high phytosterol content among 

vegetables (Piironen et al., 2003). Broccoli and cauliflower have 3408 and 4100 mg of 
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total phytosterols per kg of dry weight with β-sitosterol the predominant form (Gajewski 

et al., 2011; Piironen et al., 2003).  

 

1.3. Jasmonic Acid 

1.3.1. Synthesis, Induction and Responses to Jasmonic Acid (JA) 

 Jasmonates are defined as plant signal transduction compounds. JA is a defense 

related compound which was originally isolated from a pathogenic fungus, Lasiodiplodia 

theobromae (Aldridge et al., 1971). However, MeJA was firstly isolated from Jasminium 

grandiflorum L. flowers before JA was discovered (Demole et al., 1962). Jasmonates are 

synthesised via the octadecanoid pathway, beginning with linolenic acid. Synthesis is 

initiated with the conversion of linolenic acid to 12-oxo-phytodienoic acid (OPDA), 

which then undergoes a reduction and three rounds of oxidation to form (+)-7-iso-JA, 

jasmonic acid proper. Only the conversion of linolenic acid to OPDA occurs in the 

chloroplast; all subsequent reactions occur in the peroxisome (Katsir, 2008; Liechti et al., 

2006). JA conjugated with the amino acid isoleucine (Ile) results in JA-Ile, which is 

currently the only known JA derivative effective at JA signaling (Katsir, 2008; 

Tamogami et al., 2008).  

 Plant herbivore defense related signals that induce JA biosynthesis including 

mechanical damage, cell wall fragmentation and the release of peptides, fatty acid-amino 

acid conjugates (FAC), and green leafy volatiles (GLV). Also, other factors can induce 

JA production such as UV-light, salt stress, ozone, and developmental cues (Howe and 

Jander, 2008)(Figure 1.7). The host plant defense responses can be divided into two types; 

direct and indirect. As an example of indirect defense, plants produce volatile compounds 



 13 

that attract specific parasitoids against herbivore attack (Bruinsma et al., 2009; Paré and 

Tumlinson, 1999; Schnee et al., 2006). Examples of direct defense in plant include 

production of defensive compounds such as GS and monodesmosidic saponins (Osbourn, 

1996).  

 

1.3.2. MeJA as an Elicitor of Health Promoting Compounds 

 Previous studies have revealed that MeJA treatment enhances the health-

promoting bioactivity of several plant species. Extracts of MeJA treated blackberry 

showed enhanced inhibition of lung and leukemic cancer cell proliferation and induced 

apoptosis of leukemic cancer cells (Wang et al., 2008). MeJA increased ascorbic acid 

concentrations in Arabidopsis and tobacco suspension cells (Wolucka et al., 2005). In 

radish sprouts, MeJA increased phenolics, antioxidant activity, and phenylalanine 

ammonia lyase (PAL) (Kim et al., 2006). However, this treatment decreased the amount 

of 4-methylthio-3-butenylisothiocyanate, a major isothiocyanate in radish sprouts and the 

activity of myrosinase. Similarly, Pérez-Balibrea et al. (2011) reported that MeJA 

increased GS in broccoli sprouts but higher levels of MeJA decreased glucoraphanin. 

Fritz et al. (2010) reported that JA increased glucoiberin, progoitrin, snigrin, and 

gluconapin in cabbage. Kim and Juvik (2011) reported that MeJA treatment increased 

gluconasturtiin and neoglucobrassicin in broccoli florets of the ‘Green Magic’ cultivar 

and gluconasturtiin, glucobrassicin and neoglucobrassicin in broccoli florets of the 

genotype ‘VI-158’ (Kim and Juvik, 2011). Kim and Juvik (2011) observed a 4.3-fold 

increase of neoglucobrassicin in florets of the broccoli genotype ‘SU-003’. Pérez-

Balibrea et al. (2011) using broccoli sprouts showed that GS increases were less than two 
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fold with MeJA treatment. In buckwheat, MeJA treatment increases flavonoid content 

(Horbowicz et al., 2011). Kim et al. (2011) reported that chlorogenic acid, catechin, 

isoorientin, orientin, rutin, vitexin, and quercitrin were the increased by MeJA application 

to buckwheat. These data suggest that MeJA can be a useful elicitor for increasing 

biosynthesis of health promoting compounds in the tissues of crop plants. 

 

1.3.3. MeJA Effect on Post-harvest Vegetable Quality 

 MeJA applications have been reported to reduce chilling injury in mango, 

longquat, pineapple, and peach (Cao et al., 2009; González-Aguilar et al, 2001; 

González-Aguilar et al., 2000; Jin et al., 2009; Nilprapruck et al., 2008). These results 

suggest that antioxidant capacities and antioxidant enzyme activities enhanced by MeJA 

application increases chilling tolerance in fruits and vegetables. Also, MeJA was also 

observed to reduce microbial contamination and extended shelf life in celery and pepper 

(Buta and Moline, 1998). Another study reported that MeJA application suppressed green 

mold decay in grapefruit (Droby et al., 1999). It was suggested that MeJA reduced 

microbial contamination through the expression of pathogen related defense gene 

transcription and enzyme activity (González-Aguilar et al., 2006; Yao and Tian, 2005). 

However, MeJA treatment can also increase ethylene production, which initiates and 

stimulates senescence in broccoli (Watanabe et al., 2000). This research implies that 

MeJA application may reduce the shelf life and maintenance of post-harvest quality of 

some crops. 
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1.3.4. MeJA as an Elicitor of Plant Defense 

 Plants have lots of ways to defend themselves against herbivore or pathogen 

attack. Cosmetic damage by pests is a crucial concern for quality and yield of fruit and 

vegetable crops. Induced biochemical responses can be activated in plants by a variety of 

biotic and abiotic elicitors that can be induced in the absence of the pathogen or herbivore 

attack (Oostendorp et al., 2001). Numerous investigations have reported that induced 

responses by MeJA treatment affect phytophagous insect oviposition behavior and their 

feeding activity.  

 Several experiments have already shown that jasmonates can increase insect 

resistance in a direct or indirect manner. JA induced resistance changed oviposition 

preference of two specialist herbivores in cabbage (Bruinsma et al., 2007). JA induced 

resistance affected the development time of Pieris rapae and has been shown to attract 

parasitoids of P. rapae in Brussels sprouts (Bruinsma, et al., 2009). Oviposition or 

feeding preference of some insect pests of Brassica plants are influenced by GS 

concentrations. The intact GS, glucobrassicin and neoglucobrassicin, can serve as host 

recognition cues for Plutella xylostella although the breakdown product, indole-3-

carbinol (I3C) deters the oviposition by Plutella xylostella in Arabdopsis thaliana (Sun et 

al., 2009). I3C derived from indolyl GS deters oviposition by Pieris rapae in A. thaliana 

(De Vos et al., 2008). The breakdown product from indolyl GS also increased resistance 

against the green peach aphid in A. thaliana (Kim et al., 2008; Pfalz et al., 2008). Both 

indolyl and aliphatic GS significantly impacted the feeding behavior of four generalist 

insect herbivores but had no influence on two specialist insect species (Müller et al., 

2010).  
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 There have been a few field experiments to support the potential of insect pest 

control by JA application. Field JA application reduced numbers of leafminers in celery 

and thrips and midges in winter wheat (Black et al., 2003; El-Wakeil et al., 2010). MeJA 

treatments have been shown to reduce lepidopteran pest populations in broccoli, Brussels 

sprouts, Chinese cabbage, rutabaga, and canola (McEwen, 2011). McEwen also observed 

that MeJA application decreased marketable yield in several of Brassica crops. This 

implies that long term MeJA application may suppress plant growth due to the 

programmed plant allocation of resources to defense. This phenomenon has been termed 

the “fitness cost of induced resistance” (Heil and Baldwin, 2002).   

 

1.4. Broccoli, Cauliflower, and Maintenance of Post-harvest Quality 

 Brassica vegetables are perishable commodities compared to apples, nuts and 

many agronomic crops. There has been extensive research on the methods to maintain the 

post-harvest quality of these vegetables. Production of ethylene by harvested produce is 

associated with declining post-harvest quality. Inhibition of ethylene biosynthesis with 

the accompanying delay in product senescence to is a post-harvest protocol to maintain 

quality.  

  

1.4.1. Post-harvest Senescence Physiology of Broccoli  

 Broccoli is harvested when flowering heads are still immature and actively 

growing. The head of a broccoli plant is comprised of numerous of immature florets, each 

made up of male and female reproductive organs surrounded by immature petals and 

sepals. The first sign of broccoli senescence is where chlorophyll in the sepals is 
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degraded (Wang, 1977). As broccoli deteriorates, the head yellows and tissues become 

flaccid, with cell necrosis developing during advanced stages of senescence (King and 

Morris, 1994b). Broccoli branchlets go through major losses of sugars, organic acids, and 

proteins within the first six hours after harvest, followed by increases in the free amino 

acid pools (especially the amides glutamine and asparagine) and ammonia accumulation 

(King and Morris, 1994a). Loss of membrane fatty acids is also a feature of post-harvest 

broccoli senescence (Page et al., 2001). 

 Tian et al. (1994) suggested that the reproductive structures (stamens and pistil) 

may have a role in determining the rate of sepal yellowing, as removing them from florets 

reduced the rate of sepal degreening. The pistil and stamens also had 7-fold higher levels 

of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) activity and more than double 

the ethylene production of other tissues within the floret (Tian et al., 1994). The rapid 

increase in BoACO1 and BoACO2 transcript abundance after harvest contributes to 

increased ethylene production by florets (Pogson et al., 1995). Transgenic broccoli lines 

harboring the antisense BoACO2 gene construct displayed delayed senescence in both 

detached leaves and detached heads as measured by color change (Gapper et al., 2005). 

When harvesting broccoli, wounding to the stem increases ACO activity and its 

transcripts in florets (Kato et al., 2002).  

 

1.4.2. 1-methylcyclopropene (1-MCP) 

  Treatment of perishable fruits and vegetables with 1-MCP is a successful 

protocol for maintaining post-harvest quality that is effective and safe. 1-MCP was 

developed by Sisler and coworkers at the University of North Carolina (Paliyath, 2008). 
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Carnation flowers, tomato, and banana were first tested with 1-MCP (Sisler and Serek, 

1997; Sisler et al., 1996). The United States Environmental Protection Agency (EPA) 

approved the first commercial product, EthylBloc in 1999. This product was made 

available for ornamental crops. After further testing and registration of 1-MCP it was 

made available for application on edible crops by AgroFresh Inc., a subsidiary of Rohm 

and Haas (Springhouse, PA). With the approval by EPA in 2002, 1-MCP is marketed 

under the trade name of SmartFresh. The mechanism by which 1-MCP delays senescence 

is due to its ability to competitively bind to ethylene receptors in plant tissues. 1-MCP has 

100-fold higher affinity for the receptor proteins than ethylene. A commercial 1-MCP 

application protocol was developed using a stable formulation of 1-MCP in a powder in 

the form of a complex with cyclodextrin. This system allows 1-MCP to be released as a 

gas when the powder comes in contact with water (Paliyath, 2008). Primarily, 1-MCP is 

used an efficient and simple technology to preserve fruit and vegetable quality after 

harvest. Besides that, 1-MCP has become a powerful tool to understand the fundamental 

mechanisms involved in ripening and senescence. While a wide range of experiments has 

been conducted on some climacteric, or nonclimateric fruits, and on some vegetables, 

response of other crops to 1-MCP is in need of further investigation. 

  

1.4.3. Post-harvest Studies of B. oleracea Vegetables 

An early survey observed that three cultivars of broccoli showed different patterns 

of ethylene production during storage at 20 °C (King and Morris, 1994b). Modified 

atmosphere packaging (MAP) treatments on visual quality and GS content were 

determined and compared with unwrapped florets. MAP treatments extended the shelf 
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life and reduced the post-harvest deterioration of broccoli florets stored at both 4 ° and 

20 °C. All three MAP treatments showed a reduced loss of aliphatic and indolyl GS in 

broccoli florets when compared to those in the control (Chen-Guo et al., 2009). Long-

term freezer storage did not affect total aliphatic or indole GS content in cauliflower 

(Volden et al., 2009). For enhanced phytochemical retention, broccoli florets should be 

packed in polypropylene (PP) micro-perforated film bags and stored under refrigerated 

conditions (Nath et al., 2011). In this experiment, samples packed in PP micro-perforated 

film showed significantly lower loss of moisture, ascorbic acid, chlorophyll, β-carotene 

and total antioxidant activity compared to controls (5.5%, 4.5%, 18.9%, 4.0% and 16.4%, 

respectively). Broccoli and cauliflower display distinct post-harvest physiology in a 

modified atmosphere packing experiment. Broccoli required 8% O2 + 14% CO2 while 

cauliflower required 1% O2 + 21% CO2 for the best retention of GS (Schreiner et al., 

2006).  

 Visual color is an critical factor in retailer and consumer evaluation of product 

quality and subsequent purchasing decisions (Dixon, 2007). Yellowing of the foliage or 

discoloration of the heads and curds of broccoli and cauliflower is associated with 

senescence and is not acceptable to retail consumers. Consequently, color is an important 

factor in retailer and consumer evaluation of product quality and subsequent purchasing 

decisions. Thus, early research on 1-MCP applied to broccoli focused on extension of 

product shelf life and visual color (Ku and Wills, 1999). 1-MCP was more effective at 

maintaining greening in Brassica flowering tissue than in leafy Brassica vegetables (Able 

et al., 2002). 1-MCP treatment reduced yellowing and rate of respiration when broccoli 

was exposed to ethylene (Fan and Mattheis, 2000; Gaofeng et al., 2010). The effect of 1-
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MCP and different packaging materials in combination treatments reduced loss of 

moisture, chlorophyll (Kasim et al., 2007), and chlorophyllase activity in broccoli (Gong 

and Mattheis, 2003). Gaofeng et al. (2010) reported that 1-MCP treatment noticeably 

extended broccoli shelf life, reduced post-harvest deterioration, retarded chlorophyll 

degradation and inhibited increases in malondialdehyde and the activities of polyphenol 

oxidase and lipoxygenase in florets. Previous study reported that pheophytinase (PPH) 

and pheophorbide a oxygenase (PaO) are key enzymes for chlorophyll breakdown in 

broccoli florets (Bücherta et al., 2011; Gomez-Lobato et al., 2012a). It was reported that 

expression of BoPPH and BoPaO were reduced by 1-MCP treatment (Gomez-Lobato et 

al., 2012b). Moreover, antioxidant enzymes such as superoxide dismutase, peroxidase, 

and catalase in florets treated with 1-MCP were higher than those in control florets. 1-

MCP treatment reduced the rate of decrease of total chlorophyll, total carotenoids, 

ascorbic acid and GS in florets when compared to those in the control. 1-MCP treatment 

on broccoli significantly decreased the expression of aminocyclopropane-1-carboxylic 

(ACC) synthase1 ACS1, ACS2, ACC oxidase1 ACO1, ethylene response sensor ERS, and 

the ethylene receptors ETR1 and ETR2 (Gang et al., 2009). 1-MCP treatment down-

regulated the expression of ascorbate peroxidase1 APX1 and APX2, and up-regulated that 

of dehydroascorbate reductase DHAR and L-galactono-1,4-lactone dehydrogenase GLDH 

in broccoli compared with the control (Ma et al., 2010). 1-MCP treatment can contribute 

to the suppression of ascorbate reduction by regulation of the expression of broccoli 

genes.  
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Figure 1.1. Chemical structure of GS (Halkier and Gershenzon, 2006)1. 

 

 

 

 

 

 

 

 

                                     
1Reproduction from Annual Review of Plant Biology, Halkier B.A., and Gershenzon, J., 
Biology and biochemistry of glucosinolates. 57, 303-333 Copyright (2006) with kind 
permission from Annual Reviews. 
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Figure 1.2. GS biosynthesis (Source: Sønderby et al., 2010)2 (a) Chain elongation 

machinery. (b) Biosynthesis of core glucosinolate structure. (c) Secondary modifications. 

 

 

                                     
2Reproduction from Trends in plant science, Sønderby, I.E., Geu-Flores, F., and Halkier, 
B.A., Biosynthesis of glucosinolates - gene discovery and beyond. 15, 283-290. 
Copyright (2010) with kind permission from Elsevier. 
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Figure 1.3. The Indolyl GS modification pathway in Arabidopsis (Source: Pfalz et al., 

2011)3. 

 

 

 
 

 

 

 

 

                                     
3Reproduction from The Plant Cell, Pfalz, M., Mikkelsen, M.D., Bednarek, P., Olsen, 
C.E., Halkier, B.A., and Kroymann, J., Metabolic engineering in Nicotiana benthamiana 
reveals key enzyme functions in Arabidopsis indole glucosinolate modification. 23, 716-
729. Copyright (2011) with kind permission from American Society of Plant Biologists. 
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Figure 1.4. Products of the myrosinase-catalyzed hydrolysis of glucobrassicin and 

neoglucobrassicin (Agerbirk et al., 1998)4. 

 

 

 

 

                                     
4Reproduction from Journal of Agricultural and Food Chemistry, Agerbirk, N., Olsen, 
C.E., and Sørensen, H., Initial and final products, nitriles, and ascorbigens produced in 
myrosinase-catalyzed hydrolysis of indole glucosinolates. 46, 1563-1571. Copyright 
(1998) with permission from American Chemical Society. 
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Figure 1.5. Dominant flavonoids found in the Brassica genus. 
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Figure 1.6. Anticarcinogenesis of flavonoids (Moon et al, 2006)5. 

 

 

 

 

 

 

 

 

                                     
5Reproduction from Toxicology in Vitro, Moon, Y.J., Wang, X., and Morris, M.E., 
Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. 20, 187-210. 
Copyright (2006) with kind permission from Elsevier. 
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Figure 1.7. JA induction and responses (Howe and Jander, 2008)6. 

                                     
6Reproduction from Annual Review of Plant Biology, Howe, G.A., and Jander, G., Plant 
immunity to insect herbivores. 59, 41-66 Copyright (2008) with kind permission from 
Annual Reviews. 
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CHAPTER 2 

Methyl Jasmonate-mediated Changes in Flavonoid Concentrations  

and Antioxidant Activity in Broccoli Florets and Kale Leaf Tissues7  

 

2.1. Abstract  

Aqueous solutions of 250 µM MeJA were sprayed on aerial plant surfaces four 

days prior to harvest at commercial maturity of five commercial broccoli (Brassica 

oleracea L. var. italica) hybrids, ’Pirate’, ‘Expo’, ‘Imperial’, ‘Gypsy’, and ‘Green 

Magic’, and two kale cultivars, ‘Red Winter' (Brassica napus ssp. pabularia) and ‘Dwarf 

Blue Curled Vates’ (Brassica oleracea L. var. acephala DC.) in replicated field trials 

over two years. While having no effect on broccoli florets, MeJA treatments significantly 

increased total phenolics by 27%, and extract antioxidant activity by 31% 2,2-diphenyl-

1-picrylhydrazyl (DPPH) assay in kale over two seasons. Partitioning experiment-wide 

trait variances indicated that the variability in broccoli floret concentrations of total 

phenolics (74%), quercetin (24%), kaempferol (34%) and 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (66%) and DPPH 

(62%) antioxidant activity were largely influenced by year-associated environmental 

factors. In broccoli the differential accumulation of solar radiation among cultivars due to 

the variation in days to maturity was significantly correlated with total phenolics, ABTS, 

and DPPH antioxidant activity. Broccoli floret and kale total phenolic, quercetin, and 

kaempferol concentrations significantly correlated with DPPH and ABTS antioxidant 

                                     
7Accepted in Hortscience on June 20 2013, “Environmental Stress and Methyl 
Jasmonate-mediated Changes in Flavonoid Concentrations and Antioxidant Activity in 
Broccoli Florets and Kale Leaf Tissues.” Ku K.M., and Juvik J.A.  
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activity. To summarize, phenolic and flavonoid concentrations and their associated 

antioxidant activity in broccoli florets were unaffected by MeJA but varied among 

cultivars and over growing seasons. Apical, compared to basal leaves in kale were more 

responsive to MeJA mediated increases in total phenolics and ABTS and DPPH 

antioxidant activity. 

 

2.2. Introduction  

Numerous physiological and biochemical processes in the human body may 

produce oxygen-centered free radicals and other reactive oxygen species as byproducts of 

metabolism (Cai et al., 2004). Overproduction of free radicals can cause oxidative 

damage to biomolecules (e.g. lipids, proteins, DNA), eventually leading to many chronic 

diseases, such as atherosclerosis, cancer, aging, and other degenerative diseases in 

humans (Cai et al., 2004; Valko et al., 2004). Dietary antioxidants including polyphenols 

and flavonoids protect against free radicals such as reactive oxygen species in the human 

body and have been associated with the prevention of cancer, type 2 diabetes, and 

cardiovascular diseases (Moon et al., 2006; Poulsen et al., 1998, van Dam et al, 2013). 

Fruit and vegetables are good sources of natural antioxidants such as vitamins, 

carotenoids, flavonoids and other phenolic compounds (Dimitrios, 2006).  

Broccoli (Brassica oleracea ssp. italica) and kale (Brassica napus ssp. pabularia 

and Brassica oleracea L. var. acephala) are frequently consumed vegetables in the 

United States and in other countries. They contain potential health promoting bioactive 

compounds including glucosinolates and dietary antioxidants such as carotenoids, 

tocopherols, and flavonoids (Eberhardt et al., 2005, Velasco et al., 2007). Both vegetables 
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are a good source of the dietary flavonoids, quercetin and kaempferol, which have been 

reported as potential anticancer agents (Koh et al., 2009; Moon et al., 2006). According 

to an epidemiological and animal model study, consumption of kaempferol and quercetin 

was inversely associated with cancer risk (Gates et al., 2007; Murakami et al., 2008; 

Neuhouser, 2004; Nothlings et al., 2007). Quercetin intake has also been associated with 

decreasing blood pressure (Larson et al., 2012). A recent study has indicated that 

quercetin up-regulates low density lipoprotein receptor gene expression, which can elicit 

hypolipidemic effects by improving the clearance of circulating LDL cholesterol levels 

from the blood (Moon et al., 2012). In addition to the flavonoids, both vegetables have a 

variety of additional polyphenol compounds such as hydroxycinnamic acid and 

hydroxybenzoic acid derivatives. Among them, ferulic acid and chlorogenic acid were 

reported to improve cardiovascular function and attenuate hypertension in hypertensive 

rats (Alam et al., 2013; Suzuki et al., 2006).  

Biotic and abiotic factors are associated with the biosynthesis and accumulation 

of phenolics and flavonoids in plant tissues. Environmental factors such as temperature, 

solar radiation, and rainfall can influence broccoli metabolism and resulting 

phytochemical composition (Björkman et al., 2011; Gliszczynska-Swiglo et al., 2007). 

Also, herbivore or pathogen activity also can influence broccoli phytochemical 

composition (Hopkins et al., 2009). Recently many studies have been conducted using 

exogenous treatments of elicitors including jasmonic acid and salicylic acid to mimic 

biotic stress and increase tissue total phenolics and flavonoid concentrations. According 

to previous reports, methyl jasmonate (MeJA) application can enhance total phenolic 

concentrations in radish sprouts (Kim et al., 2006a), buckwheat sprouts (Kim et al., 2011) 
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and sweet basil (Kim et al., 2006b). Several reports have attempted to enhance 

antioxidant, antiproliferative, and anti-adipogenic activity by MeJA-mediated increases in 

flavonoids or phenolics in sweet basil, buckwheat, and blackberry, respectively (Kim et 

al., 2006b; Lee et al., 2013; Wang et al., 2008). 

 The objective of this research was to compare how MeJA field application 

affects total phenolics, flavonoid concentrations, and antioxidant activity of broccoli 

floret and kale leaf tissues. To our knowledge, this is the first investigation of MeJA 

application to broccoli and kale under field conditions. To evaluate variation in 

phytochemical antioxidants and antioxidant activity associated with MeJA treatments, 

environment effects and genotypes, we evaluated five commercial broccoli hybrids and 

two distinct kale cultivars in replicated field plots over two years.  

 

2.3. Materials and Methods  

2.3.1. Broccoli and Kale Cultivation. The broccoli F1 hybrid cultivars used for this 

experiment were ‘Pirate’ (Asgrow Seed Co., Galena, MD), ‘Expo’, ‘Imperial’, ‘Gypsy’, 

and ‘Green Magic’ (Sakata Seed Co., Morgan Hill, CA). Kale cultivars used for this 

experiment were ‘Red Winter' (Brassica napus ssp. pabularia) and ‘Dwarf Blue Curled 

Vates’ (Brassica oleracea L. var. acephala DC.). Seeds of each broccoli and kale 

genotype were germinated in 32 cell plant plug trays filled with sunshine® LC1 (Sun Gro 

Horticulture, Vancouver, British Columbia, Canada) professional soil mix. Seedlings 

were grown in a greenhouse at the University of Illinois at Champaign-Urbana under a 

25 °C/15 °C and 14 h/10 h: day/night temperature regime with supplemental lighting. 

Thirty days after germination, seedling trays were placed in ground beds to harden off for 



 32 

a week prior to transplanting into field plots at the University of Illinois South Farm (40˚ 

04′ 38.89″ N, 88˚ 14′ 26.18″ W). Experimental design was a split plot in randomized 

complete block (RCB) with three replicates. The experiment plot was surrounded by one 

row of guard plants to avoid border effect. Ten broccoli or kale plants from each replicate 

block of each genotype were designated as control or MeJA treatment groups with each 

genotype. Transplanting of broccoli seedlings was conducted on June 24, 2009 and June 

11, 2010. Harvesting broccoli occurred from August 23 to September 18 in 2009 and 

from August 12 to September 12 in 2010. Transplanting of kale seedlings was conducted 

on June 11, 2010 and June 13, 2011. Harvesting kale occurred in July 25 in 2009 and July 

27 in 2010. There is considerable maturity variation among broccoli hybrids and the 

number of days from transplant to harvest date (DTH) was calculated for each genotype 

(Table 2.1). The different weather factors including growing degree days (GDD) [The 

formula = (min Temperature + max Temperature)/2-7.2 °C] (Dufault, 1997), solar 

radiation, and precipitation, which are also presented in Supplementary Table 2.S1. 

Weather conditions during the 2009 and 2010 growing seasons were generated from 

http://www.isws.illinois.edu/warm/data/cdfs/cmiday.txt and used to calculate above 

weather data. 

 

2.3.2. Treatment with MeJA and Sample Preparation. An aqueous solution of 250 

µM MeJA (Sigma-Aldrich, St. Louis, MO) including 0.1% Triton X-100 (Sigma-Aldrich, 

St. Louis, MO) or 0.1% Triton X-100 alone (control) were sprayed on all aerial plant 

tissues to the point of runoff (approximately 300 mL) four days prior to harvest at 

commercial maturity. This timing of harvest and treatment concentration was based on 
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previous studies, that generated an optimal response to MeJA application for broccoli 

(Ku and Juvik, 2012 and Chapter 7). Five broccoli heads and two kale leaf samples 

(apical: three leaves from below the meristematic growing point, at a minimum 8 cm in 

length; basal: three fully expanded leaves nearest the soil surface without discoloration or 

signs of senescence or damage) were harvested and bulked from five treated and control 

plants of each genotype for each replicate (five heads or leaves from five plants bulked 

for a replicate sample). Broccoli head tissue and kale leaf samples were frozen in liquid 

nitrogen, and stored at -20 °C prior to freeze-drying. Freeze-dried head and leaf tissues 

were ground into a fine powder using a coffee grinder and stored at -20 °C prior to 

chemical and bioactivity analyses. 

 

2.3.3. Sample Extraction. Two hundred mg of fine powder of each sample was extracted 

with 2 mL of 70% methanol at 95 °C for 10 min. After 5 min cooling on ice, the extract 

was centrifuged at 3,000 g for 10 min. After a second round of extraction as described 

above, the supernatants were pooled. Subsequently, 1.5 mL of the pooled supernatant was 

transferred to a 2 mL microcentrifuge tube (Fisher Scientific, Waltham, MA) and 

centrifuged at 10,000 g for 2 min. This extract was used for the 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-

picrylhydrazyl (DPPH) antioxidant activity assays, and to quantify tissue total phenolic 

and flavonoid concentrations. 

 

2.3.4. Determination of Total Phenolic Content (TPC). Analysis of TPC was 

conducted using a previously described protocol (Ku et al., 2010). The assay conditions 
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were as follows; a 10 µL sample was added to 0.2 N Folin-Ciocalteu’s phenol reagent 

(100 µL) in 96 well plates. After 3 min, 90 µL of a saturated sodium carbonate solution 

was added to the mixture and subsequently incubated at room temperature for 1 h. The 

resulting absorbance of the mixture was measured at 630 nm using a BioTek EL 808 

microplate reader (Biotek Instruments Inc., Power Wave XS, Winooski, VT). The total 

phenolic content was calculated on the basis of a standard curve using gallic acid 

(concentration range 31.25 to 500 µg·mL-1). Results are expressed in milligrams of gallic 

acid equivalents (GAE) per 100 g of dried broccoli. Three biologically replicated (block) 

samples were assayed with three analytical replications each. 

 

2.3.5. Determination of Sample Flavonoid Concentrations. The sample extracts from 

broccoli and kale were transferred  (1.2 mL) to a 2 mL microcentrifuge tube (Fisher 

Scientific, Waltham, MA) to which 0.24 mL of 6 M HCl was added. The tubes were then 

heated at 90 °C for 2 h to release the aglycone (Kurilich et al., 2002). The extract was 

cooled, filtered through a 0.45 µm PTFE Whatman (Clifton, NJ) membrane filter before 

injection onto the HPLC. Flavonoid concentrations were evaluated using an Agilent 1100 

HPLC system (Agilent, Santa Clara, CA), equipped with a G1311A bin pump, a G1322A 

vacuum degasser, a G1316A thermostatic column compartment, a G1315B diode array 

detector and an HP 1100 series G1313A autosampler. Extracts were separated on a 

Supercosil™ LC-18 column (250 × 4 mm, particle size 5 µm) (Supelco Inc., Bellefonte, 

PA) with a C18 all-guard™ cartridge pre-column (Alltech, Lexington, KY). Mobile 

phase A was water and B was methanol with 0.1% acetic acid. Mobile phase B was 0% at 

injection, increasing to 60% by 15 min, 80% at 20 min, and 100% at 25 min, then held 
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for 5 min with a 2 mL·min-1 flow rate, then decreased to 0% by 35 min. Flow rate was 

kept at 1 mL·min-1 except for the 5 min where mobile phase B was held at 100%. The 

detector wavelength was set at 360 nm. Quercetin and kaempferol (Sigma-Aldrich, St. 

Louis, MO) were used as standard for determination of aglycone flavonoid concentration. 

 

2.3.6. Determination of ABTS Radical Scavenging Activity. The ABTS assay was 

conducted as previously described protocol  (Ku et al., 2010). Briefly, 7 mM ABTS 

ammonium salt was dissolved in a potassium phosphate buffer (pH 7.4) and treated with 

2.45 mM potassium persulfate. The mixture was then allowed to stand at room 

temperature for 12-16 h for full color development (dark blue). The solution was then 

diluted with potassium phosphate buffer until absorbance reached 1.0 ± 0.02 at 630 nm 

using a BioTek EL 808 microplate reader (Biotek Instruments Inc., Power Wave XS, 

Winooski, VT). Subsequently, 190 µL of this solution was mixed with 10 µL of the 

sample. The absorbance was recorded at room temperature after 6 min. Results were 

expressed as a percentage of radical scavenging activity compared to controls. Three 

biologically replicated (block) samples were assayed in three analytical replications. 

 

2.3.7. Determination of the Antioxidant Activity by the DPPH Free-radical 

Scavenging Assay. The DPPH assay was conducted as described, by Ku et al. (2010) 

with minor modification. Reaction mixtures containing test samples (10 µL) and 190 µL 

of a 200 µM DPPH ethanol solution were incubated at room temperature for 30 min in 

96-well plates. The absorbance of the DPPH free radical was measured at 515 nm with a 

BioTek EL 808 microplate reader (Biotek Instruments Inc., Power Wave XS, Winooski, 
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VT). Results were expressed as percentage of scavenging activity compared to control. 

Three biologically replicated (block) samples were assayed in three analytical 

replications. 

 

2.3.8. Statistical Analysis. JMP 10 (SAS institute Inc., Cary, NC) was used for statistical 

analysis. Analysis of variance (ANOVA) and partitioning of variance components were 

conducted using the JMP 10. Treatments, genotype, yaer effects were considered as fixed 

factors. Block was considered as random factors. Analysis of variance was performed 

using the linear model: Yijklm = m + Gi + Yj + Tk + GYij + GTik + YTjk + GYTijk + Bl(j) + 

εijklm, where Yijklm is the lth block of the phenotypic value of the kth treatment, ith genotype 

in year j, m is the overall mean, G, Y, T, and B indicate the effects of genotype, year 

(environment), treatment and blocks nested in years, and εijklm is the experimental error 

associated with Yijklm, respectively. Correlation analysis and Student’s t-test was 

conducted using the JMP 10 software (SAS institute Inc., Cary, NC). All biological 

sample analyses were conducted in triplicate. The results are presented as means ± SD. 

 

2.4. Results and Discussion  

2.4.1. Effect of MeJA Treatment on Total Phenolic and Flavonoid Concentrations, 

ABTS and DPPH Antioxidant Activities of Broccoli Floret Extracts. Treatment with 

250 µM MeJA did not alter total phenolic, kaempferol, or quercetin concentrations, 

ABTS or DPPH antioxidant activities in broccoli florets (Table 2.2). Whereas previous 

research has reported that MeJA treatment increased total phenolic and flavonoid content 

in radish and broccoli sprouts (Kim et al., 2006a; Pérez-Balibrea et al., 2011), this was 
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not observed in this study with broccoli florets. The lack of response to MeJA treatment 

maybe due to the different tissues evaluated, plant developmental status or environmental 

factors. Phenolics and flavonoid biosynthesis in broccoli florets tissue is apparently not 

influenced by exogenous MeJA application under field conditions. 

In this study, year and genotype exerted a significant effect on phytochemical 

content and antioxidant activity (Table 2.2). Total phenolic, quercetin and kaempferol 

concentrations in 2010 were 1.9, 3.0, and 1.7 fold higher than that observed in 2009 

(Table 2.2). The ‘Gypsy’ cultivar showed the highest quercetin concentration fold change 

(7.5 fold) between 2009 and 2010. Different weather conditions in 2009 and 2010 are 

presumed to have significantly altered the ratio of quercetin/kaempferol in ‘Pirate’, 

‘Imperial’, and ‘Gypsy’. Antioxidant activity measured by the ABTS and DPPH assays, 

was 1.5 and 2.2 fold higher in 2010 than for broccoli harvested in 2009 (Table 2.2). It has 

been reported that solar radiation is positively correlated with flavonoid content in 

broccoli florets (Gliszczynska-Swiglo et al., 2007). Increased total phenolic and flavonoid 

content in 2010 compared to 2009 may be explained by year-associated weather factors 

such as solar radiation. The increased quercetin/kaempferol ratio also maybe a response 

to increased UV-B (Ultraviolet-B) in solar radiation (Kuhlmann and Müller, 2009). 

Temperature is also known to impact phytochemical content in broccoli florets (Schonhof 

et al., 2007). The interaction of these various environmental factors on the growth and 

development of broccoli cultivars very likely influenced phytochemical profiles in floret 

tissue.  
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2.4.2. Correlation between Weather Conditions and Phytochemical Change. From 

the correlation of extract phytochemical compound concentrations with antioxidant 

activity and with weather-related environmental growing conditions for each cultivar 

over two years, several meaningful relationships were observed (Table 2.3). Accumulated 

GDD, precipitation, and solar radiation to each genotype were closely related with DTH. 

There was a significantly positive correlation between GDD (r = 0.703, P < 0.001), and 

solar radiation (r = 0.796, P < 0.001) with total phenolics concentration. There were 

highly significant correlations between tissue ABTS antioxidant activity with total 

phenolics (r = 0.927, P < 0.001), quercetin (r = 0.728, P < 0.001) and kaempferol (r = 

0.785, P < 0.001) (Table 2.3). There were also highly significant correlations between 

tissue DPPH antioxidant activity with total phenolics (r = 0.934, P < 0.001), quercetin (r 

= 0.860, P < 0.001), and kaempferol (r = 0.830, P < 0.001). Total phenolic content was 

negatively correlated with precipitation/DTH, which is precipitation per day after 

transplanting (r = -0.620, P < 0.004). The water deprivation condition in 2010 may have 

lead to increased total phenolics, which is mainly associated with antioxidant activity in 

broccoli. Water deprivation at flowering and during pod fill in Brassica napus has been 

associated with increased phenolic content in rapeseed (Bouchereau et al., 1996). This 

suggests that total phenolic and flavonoid concentrations are primarily responsible for 

antioxidant activity. Unlike previous reports, there was only a weak correlation between 

solar radiation and flavonoid (quercetin r = 0.360, P = 0.120; kaempferol r = 0.420, P = 

0.065) concentrations (Gliszczynska-Swiglo et al., 2007). In addition, the ratio of 

quercetin to kaempferol tended to weakly correlate with solar radiation but was not 

significant (r = 0.403, P = 0.078). 
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2.4.3. Partitioning of Broccoli Phytochemical Concentrations and Antioxidant 

Activity Variances into MeJA Treatment, Year, and Genotype Sources of Variation. 

ANOVA partitioning of the variances for phytochemical concentrations indicated that 

differences among broccoli genotypes described 34% and 15% of the total variation for 

kaempferol and quercetin, respectively while there was no significant MeJA effect (Table 

2.4). Seasonal differences in environmental conditions between 2009 and 2010 were a 

major source of variation in total phenolic (74%), quercetin (24%), and kaempferol (34%) 

concentrations and in the ABTS (66%) and DPPH (62%) antioxidant activity of floret 

extracts (Table 2.4). There was also significant genotype by year interactions on total 

phenolics (12%, P < 0.001), flavonoids (quercetin, 37%, P = 0.001; kaempferol, 28%, P 

< 0.001), and antioxidant activity (ABTS, 10%, P = 0.001; DPPH, 12%, P < 0.001) 

(Table 2.4). Broccoli harvest maturity differed among hybrids with the days to harvest 

interacting with environmental factors which was associated with the accumulation of 

total phenolics among the different genotypes. The genotype described the largest 

component of variance (75%) for DTH. DTH played a major role in accumulation of 

phytochemicals through the interaction with environmental conditions in cultivars with 

longer growing seasons. A large portion of the year effects on variation in total phenolic, 

quercetin, and kaempferol concentrations and in the ABTS and DPPH activities are 

associated with genotype by environment interaction. These results suggest that 

appropriate cultivar selection or breeding for certain environment conditions can 

maximize phenolics and antioxidant bioactivity of broccoli florets. With appropriate 

parental material and selection schemes it may be feasible to achieve high flavonoid and 
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phenolic content in shorter maturing varieties as was previously reported for the 

development higher glucosinolate (glucoraphanin) content in early maturing broccoli 

germplasm (Farnham et al., 2004). 

 

2.4.4. MeJA Effect on Kale Leaf Sample Extracts. Unlike broccoli, MeJA treatment 

significantly increased total phenolics and antioxidant activity in both kale species, both 

of two years (Table 2.5). The increase in leaf phenolic content varied between genotypes, 

years, and apical or basal leaf samples. MeJA treatments were observed to interact with 

leaf age where apical leaf tissue was more responsive to treatments in terms of increases 

in total phenolics, quercetin, and ABTS antioxidant activity than basal leaf tissue. MeJA 

response also varied between years, which may be associated with the different weather 

conditions observed in 2010 and 2011. Since kale leaf harvests were conducted on the 

same date and each genotype experienced approximately the same number of growing 

degree days in both years the primary weather factor that differed between years was 

precipitation. Our kale plots in July, 2011 received only 44% of precipitation the plots 

received in July of 2010. Water deprivation at flowering and during pod fill in Brassica 

napus has been associated with increased phenolic content in rapeseed (Bouchereau et al., 

1996). Another study also reported that water stress increased phenolic compounds in 

lettuce (Oh et al., 2010). Endogenous jasmonic acid has been observed to accumulate in 

planta under drought conditions (Creelman et al., 1995). Thus, conditions in 2011 may 

have lead to the accumulation of endogenous JA which could have attenuated the effect 

of exogenous MeJA treatment.  
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Although the physiological relationship between antioxidant compounds and 

human health promoting activity has not been thoroughly established, consumers have 

indicated their willingness to pay a premium for produce with high nutritional value and 

antioxidant activity (i.e. melons with 25% more vitamin C) (Bond et al., 2008). Previous 

research reported that MeJA treatment increased the dietary impact of various crops on 

quinone reductase, antioxidant, antiproliferative, and anti-adipogenic activity as 

measured by the effect of extracts on cultured mammalian cells (Ku et al., 2013; Kim et 

al., 2006b; Lee et al., 2013; Wang et al., 2008). This study showed that MeJA could 

enhance levels of antioxidant phytochemicals and antioxidant activity in kale leaf tissue. 

It may be feasible to develop brassica vegetables with enhanced consumer health-

promoting properties but the magnitude of this effect may be attenuated by interaction 

with biotic and abiotic stress conditions in the growing environment (Mewis et al., 2012). 

 

2.4.5. Partitioning of Kale Phytochemical Concentrations and Antioxidant Activity 

Variances into MeJA Treatment, Year, and Genotype Sources of Variation. 

ANOVA partitioning of the variances for phytochemical concentrations indicated that 

differences among genotypes described 18%, 76%, 29%, and 41% of the total variation 

for total phenolic and quercetin concentration and ABTS and DPPH antioxidant activity 

in kale apical leaf tissue, respectively (Table 2.6). In addition, MeJA treatment described 

69%, 48%, and 36% of the variation in total phenolics, quercetin concentrations, and 

ABTS antioxidant activity in kale basal leaf tissue, respectively (Table 2.6), while no 

significant MeJA effect was observed on phytochemical content and antioxidant activity 

in broccoli floret tissue (Table 2.4). Seasonal differences in environmental conditions 
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between 2010 and 2011 explained a significant portion of the variance for total phenolics, 

quercetin, and ABTS antoxidant activity in kale apical tissue and basal tissue but the 

portion was smaller in basal leaf tissue.  

 MeJA treatment of broccoli inflorescence and kale leaf tissue appears to be a 

tissue-specific response. Kim and Juvik (2011) reported MeJA treatment significantly 

increased glucosinolate concentrations in broccoli florets but had no effect on phenolic 

and flavonoid concentrations. Under biotic or abiotic stress, plants tend to accumulate 

defense compounds in vulnerable tissues such as young leaves or florets (Zangerl and 

Bazzaz, 1992; van Dam et al., 1996). Accumulation of different defense compounds in 

plants are tissue specific and preferentially allocated to plant parts that promote plant 

fitness and survival that are at risk of attack from herbivores (Zangerl and Bazzaz, 1992). 

Since the photosynthetic capacity of leaves declines with age, young leaf tissue plays a 

critical role in survival and thus would show a more dramatic response to MeJA 

treatment. Previous studies have reported that the youngest leaves of the rosette plants of 

Cynoglossum officinale, contain 50-190 times higher concentrations of pyrrolizidine 

alkaloid than old leaves and that the compound acts as a defense against generalist 

herbivores (van Dam et al., 1996). In kale MeJA treatment increased not only flavonoids 

and phenolics but also certain glucosinolates including gluconasturtiin, glucobrassicin, 

and neoglucobrassicin (data not shown). Kale plant response to MeJA treatment may be 

utilized by producers to enhance potential human health promoting activity. 

 In conclusion, unlike previous studies on several plants, MeJA treatment did not 

significantly influence total phenolic and flavonoid concentrations or antioxidant 

bioactivity in broccoli floret extracts in five broccoli hybrids tested over two seasons 
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under field conditions. However, this treatment significantly increased those variables in 

kale leaves. MeJA treatments appear to interact with tissue type, age of leaves, and 

environment conditions. Selection of appropriate genotypes with manipulation of 

environmental conditions can increase total phenolic and flavonoid concentrations in 

broccoli florets resulting in elevated antioxidant activity and potential health promotion.  
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Table 2.1. Days to harvest, growing degree days, solar radiation, and precipitation 

accumulations for the five broccoli genotypes during the 2009 and 2010 growing seasons.  

Year Cultivar Treatment DTH GDD (˚C) Solar radiation 
(MJ·m-2) 

Precipitation 
(mm) 

2009 Expo Control 81 ± 3 1150 1705 296 
2009 Expo MeJA 82 ± 3 1163 1729 296 
2009 Green Magic Control 58 ± 7 859 1257 223 
2009 Green Magic MeJA 57 ± 7 846 1239 222 
2009 Gypsy Control 62 ± 5 906 1342 223 
2009 Gypsy MeJA 61 ± 2 893 1318 223 
2009 Imperial Control 60 ± 3 881 1293 223 
2009 Imperial MeJA 60 ± 2 881 1293 223 
2009 Pirate Control 77 ± 5 1094 1622 296 
2009 Pirate MeJA 78 ± 5 1109 1643 296 
2010 Expo Control 88 ± 2 1531 2758 314 
2010 Expo MeJA 93 ± 3 1595 2868 318 
2010 Green Magic Control 67 ± 6 1198 2165 245 
2010 Green Magic MeJA 67 ± 6 1198 2165 245 
2010 Gypsy Control 68 ± 3 1215 2193 245 
2010 Gypsy MeJA 69 ± 2 1231 2223 245 
2010 Imperial Control 65 ± 2 1107 2100 245 
2010 Imperial MeJA 66 ± 4 1182 2136 245 
2010 Pirate Control 92 ± 6 1581 2825 314 
2010 Pirate MeJA 91 ± 4 1570 2845 314 

 
The accumulated weather factors were calculated based on number of days from 

transplant to harvest (DTH). zNumber of days from transplant to harvest.  

yGrowing degree days [(Min Temperature + Max Temperature)/2 -7.2 °C]. The results 

are presented as means ± SD (n=3).  
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Table 2.2. Total phenolic and flavonoid concentrations and antioxidant activity of control 

and MeJA-treated broccoli florets over two seasons. 

 

The results are presented as means ± SD (n=3). Three analytical replications were 

conducted for each biological sample. Student T-tests were conducted to determine 

significant at P ≤ 0.05. MeJA treatment groups are not presented here because they were 

not significantly different from control groups. 

zTotal phenolic was measured by spectrophotometer using Folin-Ciocalteu reagent and 

expressed as mg of gallic acid equivalent concentration in 100 g of freeze-dried broccoli 

powder. yFlavonoids were measured by HPLC and expressed as mmol per 100 g of 

freeze-dried broccoli powder. xRatio of quercetin to kaempferol concentraions. 
wAntioxidant activity is presented as percentage of free radical scavenging ability 

compared to negative control (solvent). vValues presented for individual genotype are 

untreated controls. Asterisks indicate means that are significantly different based on the 

Student t-test between treatments or different years within same genotypes (P ≤ 0.05).

Source of 
variation 

Treatmen
t/Season 

Total 
phenolicz Quercetiny Kaempferol

y Q/K ratiox ABTSw DPPHw 

Treatment        
 Control 668 ± 244 112 ± 107 63 ± 26 1.55 ± 0.76 36.0 ± 9.8 30.1 ± 14.8 
 MeJA 671 ± 252 117 ± 92 67 ± 23 1.59 ± 0.79 32.7 ± 9.6 25.8 ± 13.3 
        

Year        
2009 Control 463 ± 108 57 ± 36 46 ± 14 1.17 ± 0.45 28.2 ± 5.5 18.9 ± 6.2 
2010 Control 873 ± 147* 167 ± 126* 80 ± 25* 1.93 ± 0.82* 43.7 ± 6.4* 41.3 ± 12.1* 

        
Genotype v        

2009 386 ± 45 51 ± 7 36 ± 3 1.44 ± 0.18 25.4 ± 3.2 18.2 ± 5.2 
Pirate 

2010 942 ± 3* 139 ± 27* 62 ± 10* 2.25 ± 0.22* 40.0 ± 3.3* 39.5 ± 1.4* 
2009 524 ± 28 37 ± 23 43 ± 10 0.83 ± 0.35 30.7 ± 1.4 21.1 ± 1.9 

Expo 
2010 800 ± 42* 81 ± 9* 61 ± 7 1.34 ± 0.16 45.0 ± 4.0* 37.4 ± 1.2* 
2009 631 ± 71 115 ± 34 69 ± 13 1.65 ± 0.19 34.9 ± 3.8 25.5 ± 5.5 Green 

Magic 2010 820 ± 42* 133 ± 5 87 ± 4 1.52 ± 0.02 38.0 ± 3.3 33.5 ± 2.5 
2009 391 ± 13 25 ± 12 40 ± 2 0.62 ± 0.30 23.3 ± 5.7 11.2 ± 6.3 

Imperial 
2010 701 ± 40* 78 ± 3* 66 ± 10* 1.20 ± 0.13* 42.9 ± 6.5* 32.2 ± 1.3* 
2009 385 ± 17 54 ± 10 41 ± 7 1.31 ± 0.16 26.9 ± 5.4 18.6 ± 3.4 Gypsy 
2010 1104 ± 55* 405 ± 8* 122 ± 2* 3.32 ± 0.12* 52.7 ± 3.1* 63.9 ± 2.6* 
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Table 2.3. Correlation between accumulated weather factors and phytochemical content and antioxidant activities. 

 DTHz GDDy 
Precipitation

/DTH 
Solar 

radiation TPCx ABTS DPPH Quercetin Kaempferol 

DTH 1.000         

GDD 0.893*** 1.000        

Precipitation/ 
DTH -0.701*** -0.800*** 1.000       

Solar radiation 0.773*** 0.974*** -0.774*** 1.000      

TPC 0.388 0.703*** -0.620** 0.796*** 1.000     

ABTS 0.344 0.644*** -0.518* 0.747*** 0.927*** 1.000    

DPPH 0.344 0.630*** -0.539* 0.719*** 0.934*** 0.953*** 1.000   

Quercetin -0.019 0.260 -0.261 0.360 0.769*** 0.728*** 0.860*** 1.000  

Kaempferol 0.002 0.304 -0.197 0.420 0.803*** 0.785*** 0.830*** 0.868***  

Q/K ratiow 0.067 0.322 -0.327 0.403 0.721*** 0.635*** 0.803*** 0.935*** 0.710*** 

Pearson correlation coefficients were calculated based on mean values of all pair variables. Means with *,**,  and *** indicate 

significance based on the two-tailed Pearson correlation test at P ≤ 0.05, P ≤ 0.01, and P ≤ 0.001. zDTH= number of days from 

tranplant to harvest, yGDD=growing degree days, xTPC=total phenol content. wRatio of quercetin to kaempferol concentraions.
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Table 2.4. Percentages of total variance described by main factors (Genotype, Treatment, 

Year) and factor interactions for broccoli floret phytochemical concentrations and 

bioactivities. 

 Total 
phenolicsz Quercetiny Kaempferoly ABTSx DPPHx 

Genotype 6.5*** 14.9*** 33.6*** 6.9*** 14.3*** 
Treatment 0.0 0.9 0.1 2.9 2.0 

Year 74.0*** 23.9*** 33.5*** 64.8*** 61.2*** 
G×T 0.4 4.8 0.3 0.6 1.2 
G×Y 12.2*** 36.5*** 28.4*** 9.5*** 11.9*** 
T×Y 0.0 0.9 0.0 0.0 0.0 

G×T×Y 2.5 4.3 1.1 4.0 2.0 
Block (Year) 0.4 0.5 0.2 1.1 0.5 

Residual 4.0 13.3 2.8 10.0 6.6 
R Squarew 0.96 0.97 0.86 0.90 0.93 

*** indicates factor that describes a significant proportion of the total variance using 

ANOVA at P ≤ 0.001 (two tailed-test). zTotal phenolics were measured by 

spectrophotometer using Folin-Ciocalteu reagent and expressed as mg of gallic acid 

equivalent concentration in 100 g of freeze-dried broccoli powder. yFlavonoids were 

measured by HPLC and expressed as mmol per 100 g of freeze-dried broccoli powder. 
xAntioxidant activities are presented as percentage of free radical scavenging ability 

compared to negative control (solvent). wFraction of total variance described by the 

regression. 
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Table 2.5. Total phenolic and flavonoid concentrations and antioxidant activity of 

untreated and MeJA-treated kale leaf tissue over two seasons. 

Source of 
variation 

Treatment/ 
Season 

Total 
phenolicsz Quercetiny Kaempferoly ABTSx DPPHx 

Apical tissue       
Treatment       

 Control 1545 ± 219 153 ± 91 154 ± 50  4932 ± 433 3811 ± 308 
 MeJA 1962 ± 282*** 237 ± 139 176 ± 36 5571 ± 299*** 4985 ± 299* 
       

Year       
2010 Control 1653 ± 225 120 ± 72 177 ± 24 5130 ± 406 3476 ± 1167 

 MeJA  2188 ± 132*** 241 ± 147 169 ± 29 5778 ± 155** 4229 ± 711 
2011 Control 1438 ± 165 186 ± 102 131 ± 61 4734 ± 393 4148 ± 1682 

 MeJA 1735 ± 185* 232 ± 145 182 ± 45 5365 ± 265** 5741 ± 1232 
       

Genotype       
 (2010)      

Control 1846 ± 113 184 ± 34 165 ± 25   5488 ± 68 4533 ± 214 Dwarf Blue 
Curled Vates MeJA 2298 ± 50** 373 ± 27** 152 ± 11 5911 ± 56** 4819 ± 359 

Control 1461 ± 48 58.2 ± 7.7 190 ± 17 4770 ± 144   2419 ± 77 Red Winter MeJA 2079 ± 73*** 109 ± 26* 186 ± 33  5645 ± 64***  3639 ±100*** 
 (2011)      

Control 1579 ± 76 278 ± 19 129 ± 13 5088 ± 84 5319 ± 561 Dwarf Blue 
Curled Vates MeJA 1825 ± 111* 363 ± 22** 143 ± 8 5545 ± 55** 5633 ± 592 

Control 1296 ± 42 93.8 ± 12 133 ± 95   4380 ± 48 2662 ± 315 Red Winter MeJA 1644 ± 121* 101 ± 10 222 ± 15 5184 ± 274** 4908 ± 634* 
Basal tissue       
Treatment       

 Control 1242 ± 133 97.8 ± 67.8 124 ± 33 4189 ± 308 2484 ± 308 
 MeJA 1342 ± 172 87.7 ± 49.1 132 ± 33 4599± 353** 2707 ± 353 
       

Year       
2010 Control 1245 ± 142 73.0 ± 36 112 ± 37 4031 ± 314 2117 ± 249 

 MeJA 1370 ± 229 106 ± 55 118 ± 38 4502 ± 413 2316 ± 422 
2011 Control 1240 ± 138 123 ± 86 138 ± 25 4346 ± 225 2850 ± 559 

 MeJA 1314 ± 102 69.0 ± 38 146 ± 20* 4696 ± 284* 3098 ± 404 
       

Genotype       
 (2010)      

Control 1366 ± 11 90.0 ± 46 124 ± 33 4310 ± 87 2286 ± 223 Dwarf Blue 
Curled Vates MeJA  1575 ± 52** 154 ± 19 145 ± 6.0 4836 ± 248* 2676 ± 203 

Control 1123 ± 75 56.0 ± 16 99.5 ± 43 3753 ± 85 1949 ± 142 Red Winter MeJA 1165 ± 54 59.0 ± 22 90.7 ± 37 4169 ± 175* 1956 ± 125 
 (2011)      

Control 1348 ± 110 198 ± 37* 160 ± 4.9* 4509 ± 199 3248 ± 423 Dwarf Blue 
Curled Vates MeJA 1399 ± 46 87.1 ± 51 133 ± 14.2 4826 ± 307 3067 ± 595 

Control 1133 ± 29 47.7 ± 8.5   116 ± 3.8   4183 ± 86 2452 ± 335 Red Winter MeJA 1231 ± 55 50.9 ± 7.4 159 ± 18.5* 4566 ± 237 3129 ± 227* 

 
The results are presented as means ± SD (n=3). Student T-tests were conducted to 

determine significant at P ≤ 0.05. zTotal phenolics were measured by spectrophotometer 

using Folin-Ciocalteu reagent and expressed as mg of gallic acid equivalent concentration 

in 100 g of freeze-dried broccoli powder. yFlavonoids were measured by HPLC and 

expressed as mmol per 100 g of freeze-dried broccoli powder. xAntioxidant activities are 

presented as percentage of free radical scavenging ability compared to negative control 

(solvent). 
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Table 2.6. Percentages of total variance described by main factors (Genotype, Treatment, 

Year) and factor interactions for kale leaves phytochemical concentrations and 

antioxidant activities.  

 Total 
phenolicsz Quercetiny Kaempferoly ABTSx DPPHx 

Apical tissue      
Genotype 27.5*** 1.4 3.7 17.8*** 9.7 
Treatment 17.5*** 76.2*** 16.8 28.7*** 41.0*** 

Year 42.5*** 12.1*** 6.2 44.6*** 11.7 
G×T 0.3 0.3 0.5 0.0 0.0 
G×Y 1.1 5.2*** 5.7 4.4*** 12.1 
T×Y 3.5 2.4*** 12.0 0.0 0.2 

G×T×Y 0.1 0.4 3.8 0.1 2.8 
Block (Year) 2.0 1.1 1.4 1.4 2.1 

Residual 5.5 1.0 50.0 3.0 20.3 
R Squarew 0.94 0.99 0.50 0.97 0.80 

Basal tissue      
Genotype 0.9 0.3 18.5 11.3 47.0*** 
Treatment 69.3*** 47.8*** 15.2 35.8*** 16.4 

Year 10.3*** 0.8 1.3 29.6*** 4.1 
G×T 4.7 1.6 5.7 4.5 0.5 
G×Y 0.9 1.4 2.6 0.0 1.2 
T×Y 0.7 14.7 0.0 0.6 0.0 

G×T×Y 3.0 14.7 15.8 0.3 7.9 
Block (Year) 0.7 0.8 2.0 0.8 0.9 

Residual 9.5 18.0 39.0 17.0 21.9 
R Squarew 0.90 0.82 0.61 0.83 0.78 

*** indicates factor that describes a significant proportion of the total variance using 

ANOVA at P ≤ 0.001 (two tailed-test). zTotal phenolics were measured by 

spectrophotometer using Folin-Ciocalteu reagent and expressed as mg of gallic acid 

equivalent concentration in 100 g of freeze-dried broccoli powder. yFlavonoids were 

measured by HPLC and expressed as mmol per 100 g of freeze-dried broccoli powder. 
xAntioxidant activities are presented as percentage of free radical scavenging ability 

compared to negative control (solvent). wFraction of total variance described by the 

regression. 
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Supplementary Table 2.S1. Weather information of 2009, 2010, and 2011 year in 

Champaign, Illinois. 

 Total solar radiation (MJ·m-2)  
Year Jun Jul Aug Sep Sum 
2009 681 667 617 542 2507 
2010 720 730 731 510 2690 
2011 667 790 726 462 2645 

% of (2010/2009) 106 109 118 94 107 
% of (2011/2010) 93 108 99 91 98 

 Precipitation (mm)  
Year Jun Jul Aug Sep Sum 
2009 108 156 137 55 401 
2010 199 91 40 16 329 
2011 107 40 45 71 262 

% of (2010/2009) 184 58 29 29 82 
% of (2011/2010) 54 44 113 444 80 

 Growing degree days (°C)  
Year Jun Jul Aug Sep Sum 
2009 360 336 342 304 1341 
2010 373 408 403 293 1477 
2011 362 430 381 285 1458 

% of (2010/2009) 104 122 118 96 110 
% of (2011/2010) 97 105 94 97 99 

  
Growing degree days [(Min Temperature + Max Temperature)/2 -7.2 °C]. 

Weather data during the growing seasons was provided by the Illinois State Water 

Service (http://www.isws.illinois.edu/warm/data/cdfs/cmiday.txt). 
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CHAPTER 3 

Methyl Jasmonate-mediated Induction of Glucosinolate Biosynthesis Enhances 

Quinone Reductase Inducing Activity of Broccoli Florets 

 

3.1. Abstract 

        Methyl jasmonate (MeJA) spray treatments were utilized to alter glucosinolate 

composition in the florets of the commercial broccoli hybrids ‘Pirate’, ‘Expo’, ‘Green 

Magic’, ‘Imperial’, and ‘Gypsy’ grown in replicated field plantings in 2009 and 2010. 

Aqueous solutions of 250 µM MeJA were sprayed to drip on aerial plant tissues four 

days prior to harvest at commercial maturity. The MeJA treatment significantly increased 

glucoraphanin (11%), gluconasturtiin (59%), and neoglucobrassicin (248%) 

concentrations and their hydrolysis products including sulforaphane (152%), phenylethyl 

isothiocyanate (PEITC, 318%), N-methoxyindole-3-carbinol (NI3C, 313%), and 

neoascorbigen (NeoASG, 232%) in hydrolysed florets of these genotypes over two 

seasons. Increased QR activity was significantly correlated with increased levels of 

sulforaphane, NI3C, and NeoASG. Although MeJA treatments mediated two-fold higher 

concentrations of the hydrolysis products (NeoASG and NI3C) derived from 

neoglucobrassicin compared to the hydrolysis product of glucoraphnin (sulforaphane), in 

pure compound hydrolysis product tests sulforaphane induced much greater QR activity 

than NeoASG or NI3C. MeJA treatment increased the ratio of bioactive sulforaphane 

compared to other products generated from the hydrolysis of glucoraphanin by 

endogenous myrosinase. Our results suggest that sulforaphane is the major QR inducer 

from floret extracts of MeJA-treated broccoli. Partitioning experiment-wide trait 
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variances indicated that the variability in concentrations of sulforaphane (29%), NeoASG 

(48%) and QR activity (72%) were influenced by year-associated weather variables, 

whereas variation in neoglucobrassicin (63%) and NI3C (46%) concentrations were 

primarily attributed to MeJA treatment. Due to the different harvest maturities of broccoli 

cultivars and variation in growing degree days, accumulation of solar radiation and 

precipitation after transplanting varied among cultivars. Accumulation of these weather 

related variables associated with broccoli maturity, which was controlled by genetic 

differences among cultivars, significantly correlated with sulforaphane, NI3C, and 

NeoASG concentrations and QR inducing activity. These results suggest that QR 

inducing activity can be enhanced by MeJA treatment but the treatment effect 

significantly interacts with genotype and specific environmental growing conditions. 

 

3.2. Introduction 

Broccoli (Brassica oleracea ssp. Italica) is one of the most frequently consumed 

vegetables in the United States and in other countries. Broccoli is well known for its 

health-promoting bioactivity, with previous research reporting that regular consumption 

of this vegetable is associated with the prevention of prostrate, colon, breast, lung, and 

skin cancer (Cho et al., 2005; Cornblatt et al., 2007; Dinkova-Kostova et al., 2006; 

Prochaska et al., 1992; Sapone et al., 2007; Zhang et al., 1992). Moreover, 

epidemiological studies have reported that dietary consumption of Brassica vegetables is 

inversely correlated with cancer risk, and this association is stronger than those between 

cancer and fruit and vegetable consumption in general (Michaud et al., 1999).  
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 Diet is one of the most important factors in carcinogenesis accounting for 47% of 

the variation in cancer risk among the non-smoking public (Doll and Peto, 1981). Certain 

phytochemicals have anti-carcinogenic activity and induce phase II detoxifying enzymes 

in mammals including glutathione S-transferase (GST) and quinone reductase (QR) that 

can enhance detoxification and elimination of carcinogens from the body (Prestera et al., 

1993). Up-regulation of QR activity has been used as a biomarker for cancer prevention 

because this enzyme is a catalyst for the conversion of quinones into stable and non-toxic 

hydroquinones, reducing oxidative cycling (Talalay et al., 1995). Moreover, QR activity 

elevation in in vitro and in vivo model systems has been shown to correlate with 

induction of other protective phase II enzymes such as GST and provides a reasonable 

biomarker for the potential chemo-protective effect of test agents against cancer initiation 

and proliferation (Cuendet et al., 2006).  

 Glucosinolates (GS) are secondary metabolites existing in almost all plants of the 

order Brassicales. Although intact GS do not have strong bioactivity, products of GS 

generated by hydrolysis from the endogenous enzyme myrosinase in broccoli have been 

shown to enhance QR and other health-promoting activities. Among the GS products, 

sulforaphane, an isothiocyanate generated from the hydrolysis of glucoraphanin, is a 

potent QR inducer and is considered to be an active agent in the prevention of certain 

cancers (Cho et al., 2005). Phenethyl isothiocyanate (PEITC), an isothiocyanate derived 

from the hydrolysis of the aromatic GS, gluconasturtiin, also induces synthesis of the QR 

enzyme (Manson et al., 1997) and has been shown to protect against colon cancer in rats 

(Chung et al., 2000). N-methoxyindole-3-carbinol (NI3C), the hydrolysis product of the 

indolyl GS, neoglucobrassicin has been reported to induce cell cycle arrest in human 
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colon cancer cell lines resulting in reduced initiation and tumor growth (Neave et al., 

2005).  

The GS are also associated with insect defense in Brassica species. Jasmonic acid 

(JA), an endogenous plant signal transduction compound whose biosynthesis is up-

regulated when Brassica plant species are attacked by herbivores, causes enhanced 

indolyl GS biosynthesis (Hopkins et al., 2009). It has been reported that the indolyl GS 

whose biosynthesis is up-regulated by MeJA treatment in broccoli is predominately 

neoglucobrassicin but it up-regulated gluconasturtiin as well (Kim and Juvik, 2011). 

PEITC derived from gluconasturtiin and NI3C derived from neoglucobrassicin have 

previously been reported as QR inducers or anticancer agents (Jump et al., 2008; Rose et 

al., 2000; Neave et al., 2005). In addition to NI3C, neoascorbigen (NeoASG) can be 

generated from neoglucobrassicin hydrolysis by condensation with ascorbic acid 

(Agerbirk et al., 1998). However, there is little information about the health effects of 

NeoASG and the variation of NeoASG concentrations associated with biotic and abiotic 

stresses. While there are many previous reports of MeJA mediated increases in GS 

concentrations nearly all of these studies do not investigate how these treatments 

influence abundance and activities of GS hydrolysis products which are directly 

associated with anti-cancer activity. 

The objective of this research was to investigate which of the GS and their 

hydrolysis products are primarily associated with the enhanced QR induction mediated 

by MeJA treatments. Variance in QR activity was partitioned by ANOVA into sources of 

variation associated with treatment, genotype, and environment (year) main factors and 

their interactions. Correlation analysis was conducted to test if QR inductive activity 
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shows meaningful correlations with GS hydrolysis products and weather-related 

environmental conditions over different production seasons. This information is useful 

for the identification of superior broccoli germplasm and for selection strategies in 

Brassica breeding programs designed to develop cultivars with enhanced health-

promoting properties. 

 

3.3. Materials and Methods 

3.3.1. Broccoli Cultivation. The five F1 hybrid broccoli cultivars used in this experiment 

were ‘Pirate’ (Asgrow Seed Co., Galena, MD), ‘Expo’, ‘Imperial’, ‘Gypsy’, and ‘Green 

Magic’ (Sakata Seed Co., Morgan Hill, CA). Seeds of each broccoli genotype were 

germinated in 32 cell plant plug trays filled with sunshine® LC1 (Sun Gro Horticulture, 

Vancouver, British Columbia, Canada) professional soil mix. Seedlings were grown in a 

greenhouse at the University of Illinois at Champaign-Urbana under a 25 °C/15 °C and 

14 h/10 h: day/night temperature regime with supplemental lighting. Thirty days after 

germination, seedling trays were placed in ground beds to harden off for a week prior to 

transplanting into field plots at the University of Illinois South Farm (40˚ 04′ 38.89″ N, 

88˚ 14′ 26.18″ W). Experimental design was a split-plot arrangement in a randomized 

complete block (RCB) design with three replicates. The experiment plot was surrounded 

by a guard row to avoid border effects. Transplanting of broccoli seedlings was 

conducted on June 24, 2009 and June 11, 2010. Irrigation was only applied during the 

first week of cultivation to establish transplanted seedlings. Broccoli heads were 

harvested from August 23 to September 18 in 2009 and from August 12 to September 12 

in 2010. Weather data during the 2009 and 2010 growing seasons was provided by the 
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Illinois State Water Service (http://www.isws.illinois.edu/warm/data/cdfs/cmiday.txt) and 

is presented in Supplementary Table 3.S1. Since accumulated solar radiation and 

precipitation [(PPT)/number of days from transplant to harvest (DTH)] varied between 

years and the number of growing degree-days (GDD)  [(minT+ maxT)/2-7.2˚C] 

(Dufault, 1997)] varied for each genotype, these values were calculated for each year and 

genotype separately (Table 3.1). 

 

3.3.2. Broccoli Treatment with MeJA and Sample Preparation. An aqueous solution 

of 250 µM MeJA (Sigma-Aldrich, St. Louis, MO) and 0.1% Triton X-100 (Sigma-

Aldrich, St. Louis, MO) in distilled water was sprayed on all aerial plant tissues to the 

point of runoff (approximately 300 mL) four days prior to harvest at commercial maturity. 

From previous studies this application timing, concentration and surfactant maximized 

MeJA mediated biosynthesis of glucosinolates (Ku and Juvik, 2012 and Chapter 7). Five 

broccoli heads were harvested from treatments and controls of each genotype for each 

replicate. Broccoli heads were frozen in liquid nitrogen, and stored at -20 °C prior to 

freeze-drying. Freeze-dried head tissues were ground into a fine powder using a coffee 

grinder and stored at -20 °C prior to chemical and bioactivity analyses. 

 

3.3.3. Isolation of Neoglucobrassicin and Generation of Hydrolysis Products. In order 

to measure concentrations of hydrolysis products of neoglucobrassicin from different 

cultivars with or without MeJA treatment and their QR inducing activity, 

neoglucobrassicin was isolated and purified from broccoli following the procedure 

described by Truscott et al. (1983) with minor modifications. Two g of MeJA-treated 
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‘Green Magic’ broccoli powder was extracted with 10 mL 70% methanol in a 50 mL 

conical centrifuge tube (BD Falcon, San Jose, CA) for 10 min. After cooling, the 

supernatant obtained following lead/barium acetate precipitation was loaded on to a 20 

cm x 2 cm ion exchange column containing Sephadex A-25 (Sigma-Aldrich, St. Louis), 

indolyl GS were eluted from the column with 0.02 M pyridine acetate (20 mL) and 0.25 

M pyridine acetate (20 mL). The eluent fractions from ion exchange chromatography 

containing neoglucobrassicin were dried using a SpeedVac® AES2010 concentrator 

(Thermo Savant, Waltham, MA) and quantified on a Agilent 1100 HPLC system (Agilent, 

Santa Clara, CA), equipped with a G1311A bin pump, a G1322A vacuum degasser, a 

G1316A thermostatic column compartment, a G1315B diode array detector and an HP 

1100 series G1313A autosampler. Extracts were separated on a Supercosil™ LC-18 

column (250 × 4 mm, particle size 5 µm) (Supelco Inc., Bellefonte, PA) with a C18 all-

guard ™ cartridge pre-column (Alltech, Lexington, KY). Mobile phase A was water and 

B methanol. Mobile phase B was 0% at injection and held 4 min, increasing to 15% by 

10 min, 35% at 20 min, and 80% at 21 min, then held 4 min, then decreased to 0% by 30 

min. Flow rates were kept at 1 mL/min. The detector wavelength was set at 227 nm. The 

concentration of NeoGS was determined using benzylglucosinolate as the 

desulphoglucosinolate standard. Purity was over 98%. 

Hydrolysis products of neoglucobrassicin including NI3C and NeoASG were 

generated by incubation of 20 g of freeze dried MeJA-treated ‘Green Magic’ broccoli in 

100 mL of pH 8 distilled water without ascorbic acid or pH 5.6 distilled water with 1 mM 

ascorbic acid, respectively. After 4 h incubation at room temperature, 100 mL of 

methylene chloride were added and shaken. The emulsion was transferred to 50 mL tube 
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and centrifuged at 5,000 g for 10 min. The supernatant was collected and traces of water 

removed using sodium sulfate. After filtration with Whatman No. 1 paper filter (GE 

Healthcare Life Sciences, Piscataway, NJ), the methylene chloride extract was dried with 

nitrogen gas. The dried samples from each hydrolysis pH treatment were dissolved in 1.5 

mL of 50% acetonitrile and filtered with polytetrafluoroethylene (Fisher Scientific, 

Waltham, MA). The solution was fractionated on the Agilent 1100 HPLC G1364C 

Analyst Fraction Collector (Agilent) using the same methods described above for the 

isolation of neoglucobrassicin. 

 

3.3.4. Identification of Purified Compounds. Identification of desulfated GS was 

achieved using a Q-TOF Ultima electrospray ionization (ESI) mass spectrometer (MS) 

and MS/MS (Waters, Milford, MA). The ESI MS was operated in positive ion mode with 

source conditions set at: capillary voltage 3 kV; cone voltage 35 V; source temperature 

120 °C; desolvation temperature 375 °C; and collision energy 12 eV. Identification of the 

hydrolysis products of neoglucobrassicin was achieved using electron impact (EI) direct 

inlet MS using a Micromass 70-VSE (Waters, Milford, MA) double-focusing magnetic 

sector mass spectrometer in positive ion mode at 70 eV and a source temperature of 

30 °C. The instrument was scanned between m/z 50 and 400. High-resolution mass 

spectrometry was performed on same instrument above.  

 

3.3.5. Determination of Sample GS Concentrations. Extraction and quantification of 

GS using high-performance liquid chromatography was performed using a protocol 

described by Brown et al. (2002). Freeze-dried broccoli powder (0.2 g) and 2 mL of 70% 
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methanol were added to 10 mL tubes (Nalgene, Rochester, NY) and heated on a heating 

block at 95 °C for 10 min. After cooling on ice, 0.5 mL benzylglucosinolate (1 mM) was 

added as internal standard (POS Pilot Plant Corp, Saskatoon, SK, Canada), mixed, and 

centrifuged at 3,000 × g for 15 min at 4 °C. The supernatant was saved and the pellet was 

re-extracted with 2 mL 70% methanol at 95 °C for 10 min and the two extracts combined. 

A subsample (1 mL) from each pooled extract was transferred into a 2-mL 

microcentrifuge tube (Fisher Scientific, Waltham, MA). Protein was precipitated with 

0.15 mL of a 1:1 mixture of 1 M lead acetate and 1 M barium acetate. After centrifuging 

at 12,000 × g for 1 min, each sample was then loaded onto a column containing DEAE 

Sephadex A-25 resin (GE Healthcare, Piscataway, NJ) for desulfation with arylsulfatase 

(Helix pomatia Type-1, Sigma-Aldrich, St. Louis, MO) for 18 h and the desulfo-GS 

eluted. One hundred µL of each sample were injected on to a HPLC system consisting of 

a DIONEX GP40 gradient pump (Dionex Corporation, Sunnyvale, CA), with a AD20 

variable UV detector set at 229 nm wavelength, auto-sampler, all-guard™ cartridge pre-

column (Alltech, Lexington, Kentucky), and a LiChospher® 100 RP-18 column (Merck, 

Darmstadt, Germany). Desulfo-GS were eluted from the column over 45 min with a 

linear gradient of 0% to 20% acetonitrile at a flow rate of 1 mL/min. Benzylglucosinolate 

was used as an internal standard and UV response factors for different types of GS were 

used as determined by Wathelet et al. (1995). The identification of desulfo-GS profiles 

were validated by LC-tandom MS using a Waters 32 QT of Ultima spectrometer coupled 

to a Waters 1525 HPLC system and full scan LC-MS using a Finnigan LCQ Deca XP, 

respectively. The molecular ion and fragmentation patterns of individual desulfo-GS 
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were matched with the literature for GS identification (Tian et al., 2005; Velasco et al., 

2011). 

 

3.3.6. Analysis of Glucosinolate Hydrolysis Products. The extraction and analysis of 

isothiocyanates and other hydrolysis products was carried out according to previously 

published methods, with some modifications (Wilson et al., 2011). In order to determine 

the appropriate time for maximum GS hydrolysis by endogenous sample myrosinase, 

concentrations of hydrolysis products were quantified in a preliminary experiment using 

extracts from ‘Green Magic’ at various time points. Based on the preliminary results 

using ‘Green Magic’ cultivar, hydrolysis product concentrations of all samples were 

quantified at 2, 4, 16, 24, and 28 h using aliquots by HPLC. 75 mg of broccoli powder 

was suspended in 1.5 mL of water in the absence of light for 4 h (time for the maximum 

concentration of indolyl GS hydrolysis products) at room temperature in a sealed 2 mL 

microcentrifuge tube (Fisher Scientific, Waltham, MA) to facilitate GSs hydrolysis by 

endogenous myrosinase. Slurries were then centrifuged at 12,000 × g for 5 min and 

supernatants was decanted into a 2 mL microcentrifuge tube. 20 µL of butyl 

isothiocyanate (0.5 mg/mL) and 4-methoxyindole (1 mg/mL) were added as the internal 

standards for isothiocyanates and hydrolysis products of indolyl GS to quantify Indole-3-

carbinol (I3C), NI3C, and neoascorbigen (NeoASG) with 0.5 mL of methylene chloride. 

Tubes were shaken vigorously before being centrifuged for 2 min at 9,600 g. The 

methylene chloride layer (200 µL) was transferred to 350 µL flat bottom insert (Fisher 

Scientific, Pittsburgh, PA) in a 2 mL HPLC autosampler vial (Agilent, Santa Clara, CA) 

for mixing with 100 µL of a reagent containing 20 mM triethylamine and 200 mM 
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mercaptoethanol in methylene chloride. For SF and PEITC, unlike other hydrolysis 

products of GS, 0.5 mL of fresh broccoli extracts were kept mixed with 0.5 mL of 

derivatization reagent using orbital shaker at 220 rpm for 24 h. The mixture was 

incubated at 30 °C for 60 min under constant stirring, and then dried under a stream of 

nitrogen. The residue containing isothiocyanate derivatives (isothiocyanate- 

mercaptoethanol derivatives) and other hydrolysis compounds was dissolved in 200 µL 

of acetonitrile /water (1:1) (v/v), and 10 µL of this solution injected onto a Agilent 1100 

HPLC system (Agilent, Santa Clara, CA), equipped with a G1311A bin pump, a G1322A 

vacuum degasser, a G1316A thermostatic column compartment, a G1315B diode array 

detector and an HP 1100 series G1313A autosampler. Extracts were separated on a 

Eclipse XDB-C18 column (150 × 4 mm, particle size 5 µm, Agilent, Santa Clara, CA) 

with a C18 all-guard™ cartridge pre-column (Alltech, Lexington, KY). Mobile phase A 

was water and B was methanol. Mobile phase B was 0% at injection, increasing to 10% 

by 10 min, 100% at 35 min, and held 5 min, then decreased to 0% by 50 min. Flow rates 

were kept at 0.8 mL/min. The detector was set at wavelength 227 and 271 nm. Response 

factors for monomeric indolyl derivatives were used from a previous report (Agerbirk et 

al., 1998). Due to a lack of standards for NI3C and NeoASG the standard curve of I3C 

was applied for quantification of both NI3C and NeoASG. The quantities were expressed 

as I3C equivalent concentrations.  

 

3.3.7. Quinone Reductase (QR) Activity. For the QR assay, broccoli extracts were 

collected using the same protocol for glucosinolate hydrolysis products described above 

with sampling at 30 min, 4 h, and 24 h of incubation. Hepa1c1c7 murine hepatoma cells 
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(ATCC, Manassas, VA) were grown in alpha-minimum essential medium (α-MEM), 

enriched with 10% heat and inactivated fetal bovine serum and maintained at 37 °C in 95% 

ambient air and 5% CO2. The cells were divided every three days with a split ratio of 7. 

Cells with 80-90% confluence were plated into 96-well plates (Costar 3595, Corning Inc, 

Corning, NY), 1 × 104 cells per well, and incubated for 24 h in antibiotic-enriched media 

(100 units/mL penicillin, 100 µg/mL streptomycin). The QR induction activities of 

different samples were determined by means of the protocol described by Prochaska and 

Santamaria (Prochaska and Santamaria, 1988). After 24 h cells were exposed to the 

different sample extracts [0.5% final concentration (250 µg of freeze-dried broccoli/mL) 

in 200 µL of media] in new media for a further 24 h. Growth media alone and 0.2 µM SF 

were used as negative and positive controls, respectively. Treated cells were rinsed with 

phosphate buffer at pH 7.4, lysed with 50 µL 0.8% digitonin in 2 mM EDTA, incubated 

and agitated for 10 min. A 200-µL aliquot of reaction mix [74 mL 25 mM Tris buffer; 50 

mg BSA; 0.5 mL 1.5% Tween-20 solution; 0.5 mL cofactor solution (92.7% 150 mM 

glucose-6-phosphate, 6.15% 4.5 mM NADP, 1.14% 0.75 mM FAD in Tris buffer)]; 150 

units of glucose-6-phosphate dehydrogenase; 22.5 mg MTT [3-(4,5-dimethylthiazo-2-yl)-

2,5-diphenyltetrazolium bromide]; and 75 µL 50 mM menadione in acetonitrile) was 

added to the lysed cells. Readings were made at five time points, 50 s apart, using a 

µQuant microplate reader (Bio-Tek Instruments, Winooski, VT) at 610 nm. Immediately 

after completion of the readings, 50 µL of 0.3 mM dicumarol in 25 mM Tris buffer was 

added into each well, and the plate was read again (five time points, 50 s apart) to 

determine non-specific MTT reduction. Total protein content was measured by the 

BioRad assay (Bio-Rad, Hurcules, CA, USA) using manufacture’s instructions. Activity 
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was expressed as QR specific activity (nmol MTT reduced/mg/min) ratio of treated to 

negative control cells. 

 

3.3.8. QR Activity Measurement of Hydrolysis Products of Neoglucobrassicin. QR 

activity of hydrolysis products of neoglucobrassicin were measured after hydrolysis with 

0.5 U/mL (final concentration) commercial myrosinase (Sinapis alba, Sigma) and 

neoglucobrassicin (700 µM) for 40 mins in pH 7.2 of phosphate buffered saline (PBS) 

without ascorbic acid or pH 5.6 of PBS with 1 mM ascorbic acid to produce different 

forms of hydrolysis products, respectively and observed until completion of the 

hydrolysis by HPLC as described above (method for the hydrolysis products analysis). 

The reaction products were left on ice until adding samples for QR assay. Different 

concentrations of hydrolysis products were added to the media contained hepa1c1c7 cells 

to measured concentration required to double QR induction activity (CD) values. QR 

activity was measured as described above. 

 

3.3.9. Statistical Analysis. Analysis of variance (ANOVA) and partitioning of variance 

components for phytochemicals and QR activity using total sums of squares were 

conducted using JMP 10 (SAS institute Inc., Cary, NC). Year, treatments, and genotype 

effects were considered as fixed factors. Year is usually considered as random effect but 

we considered year as fixed effect since we are interested in weather variation from year-

to-year. Block was considered as random. Analysis of variance was performed using the 

linear model: Yijklm = m + Gi + Yj + Tk + GYij + GTik + YTjk + GYTijk + Bl(j) + εijklm, 

where Yijklm is the lth block of the phenotypic value of the kth treatment, ith genotype in 
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year j, m is the overall mean, G, Y, T, and B indicate the effects of genotype, year 

(weather), treatment and blocks nested in years, εijklm is the experimental error associated 

with Yijklm, respectively. Correlation analysis and Student’s t-tests were also conducted 

using the JMP 10 software. All sample analyses were conducted in triplicate. The results 

are presented as means ± SD. 

 

3.4. Results and Discussion 

3.4.1. Isolation Neoglucobrassicin and Generation of Hydrolysis Products. In order to 

quantify hydrolysis products, neoglucobrassicin was purified from MeJA treated ‘Green 

Magic’ floret tissue. The purified neoglucobrassicin was identified by using ESI MS on 

its desulfated form as previously used for GS identification. The molecular ion (399), and 

fragment patterns (m/z 237, 177, 160) were well matched with previous research 

(Griffiths et al., 2000) (Table 3.2). The identity of NI3C isolated from hydrolysis 

products of neoglucobrassicin, generated under hydrolysis at pH 8 without ascorbic acid 

was confirmed by EI direct inlet mass at high resolution. The positive mode provided 

firm evidence, showing m/z 177.07847 corresponded to the calculated molecular formula 

C10H11O2N (177.07898); additional evidence was obtained for the mass spectrum with 

m/z 160, 146, and 77, pointing to the presence of an hydroxyl group, methoxy group, and 

an aromatic ring. This result agrees with Jump et al. (2008) who reported m/z 177, 160 by 

FAB-MS for NI3C (Table 3.1). Molecular composition of the NeoASG was deduced 

from mass EI-MS spectra; the measured m/z 335.10053 which corresponds to the 

molecular composition C16H17O7N (calculated as 335.10050). The loss of 175 Th and 215 

Th from m/z 335 can be rationalized as the loss of ascorbic acid (C6O6H7, m/z 160) and as 
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the loss of ascorbic acid with methoxy group (OCH3, m/z 130) (Agerbirk et al., 1998). 

The molecular ion (336), and fragment patterns (m/z 305, 160, 130) from the positive 

mode of ESI-MS also matched previous research (Bennett et al., 2004)(Table 3.1).  

 

3.4.2. Time Course of GS Hydrolysis. Some GS hydrolysis products are relatively 

unstable in aqueous extracts including NI3 and I3C. To determine the optimal time for 

maximum neoglucobrassicin hydrolysis, hydrolysis product concentrations were sampled 

and quantified at a range of time points. The maximum concentrations of each hydrolysis 

product was found to be 4 h for NeoASG and I3C, 16 h for NI3C and PEITC, and, 24 h 

for sulforaphane (Figure 3.1). Compared to the amount of precursor GS, accumulated 

concentrations of PEITC, the hydrolysis product of gluconasturtiin (Figure 3.1C) and I3C, 

one of the hydrolysis products from GB (Figure 3.1E) were relatively low. It is reported 

that PEITC is relatively volatile and has very low solubility in water (0.051 mg/mL) 

compared to SF (8.0 mg/mL) (Wilson et al., 2012). Previous studies could not detect 

PEITC in hydrolyzed watercress extracts (Boyd et al., 2006; Rose et al., 2000). Thus, SF 

and PEITC in Table 3.3 were measured by shaking with isothiocyanate derivatization 

reagent for 24 h as described in the methods above.  

The different peak times for hydrolysis accumulation of sulforaphane and the 

hydrolysis products of indolyl GS may be due to variation in isoforms of myrosinase in 

broccoli. James and Rossiter (1991) reported that there were two isoforms of myrosinase 

in Brassica napus and their hydrolysis efficiency varied between aliphatic and indolyl GS. 

In their study both myrosinase I and II were less active in cleaving glucose from the 

indoyl GS glucobrassicin and neoglucobrassicin, although myrosinase I was 
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approximately twice as active as myrosinase II in the presence of ascorbic acid. An 

atypical myrosinase, PEN2 has been identified which cleaves indolyl GS in planta 

preferentially as a mechanism of phytochemical defense against fungal pathogens 

(Bednarek et al., 2009). The observed different accumulation rates of hydrolysis products 

in our study may be associated with the relative activity of different isoforms of 

myrosinase. QR activity was tested using all samples (five genotypes with or without 

MeJA over two years) with sample aliquots from different time points of hydrolysis at 30 

min, 4 h, and 24 h (Supplementary Figure 3.S1). Interestingly, after only 30 min of 

hydrolysis, aliquots of broccoli extracts showed 58% of the QR activity observed in 24 h 

hydrolysis aliquot extracts. The 4 h hydrolysis aliquots displayed 97% of QR activity 

observed after 24 h of hydrolysis. This indicates that there may have been in situ-

hydrolysis inside cell culture media but hydrolyzing extracts for 30 min before adding to 

cell culturing media did not fully induce QR activity due to the lack of time for 

hydrolysis and induction of the QR enzyme. NI3C and NeoASG were observed to rapidly 

degrade after 16 h. Considering the relatively higher concentrations of NeoASG and NI3 

compared to other hydrolysis products and their instability we suggest that QR inducing 

activity be assayed between 4-16 h after sample hydrolysis. 

 

3.4.3. Effect of MeJA Treatment on GS Concentrations in Broccoli Florets. Over 

both seasons 250 µM MeJA treatments were observed to significantly increase 

glucoraphanin (11%), gluconasturtiin (60%), and neoglucobrassicin (248%) floret tissue 

concentrations across cultivars (Table 3.3). Gluconapin (data not shown) was 

significantly decreased (53%) by MeJA treatment across two seasons in the five broccoli 
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cultivars. Since glucoraphanin is upstream in the aliphatic GS biosynthesis pathway, 

decreased gluconapin concentration may partly be due to the increase of glucoraphnin or 

from a shift toward increasing neoglucobrassicin biosynthesis. Individual cultivars 

responded differently to MeJA treatment, with ‘Pirate’ showing no significant increase in 

any GS in 2010 while the other four hybrids displayed significantly increased 

concentrations of either gluconasturtiin or neoglucobrassicin. Since the ‘Pirate’ cultivar 

has late maturtity, insect activity might have up-regulated GS biosynthesis. There was 

significant year-to-year variation in Total GS. Total GS in control broccoli lines grown in 

2010 was 43% higher than controls grown in 2009. Precipitation in August, 2010 (40 mm) 

was only 29% of that observed in August, 2009 (137 mm)(Supplementary Table 3.S1). 

This observation agrees with the finding that water stress can increase total GS, as has 

been previously reported for B. napus (Champolivier and Merrien, 1996). Average 

temperatures in August, 2010 were 17% higher than in August 2009 (Supplementary 

Table 3.S1). It has been suggested that increased temperatures can result in the 

accumulation of GS by up-regulating MYB transcription factors as was observed in 

turnips (Justen and Fritz, 2013).  

  

3.4.4. Effect of MeJA Treatment on GS Hydrolysis Product Concentrations and QR 

Induction Activity. NeoASG, a hydrolysis product of neoglucobrassicin was 

significantly increased by MeJA treatment in four cultivars over two seasons with the 

exception of  ‘Pirate’. NI3C and NeoASG concentrations in hydrolyzed ‘Pirate’ floret 

extracts were not increased in 2009 or 2010 by MeJA treatment (Table 3.3). NeoASG 

concentrations in 2009 controls were significantly higher than 2010. Endogenous MeJA 
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is responsive to many biotic and abiotic stresses, including drought stress (Creelman and 

Mullet, 1995). Exogenous MeJA treatments have been observed to increase ascorbic acid 

concentration in broccoli florets, Arabidopsis and tobacco BY-2 cell suspension cultures 

(Kim, 2011; Wolucka et al., 2005). Drought stress conditions in 2010 and higher 

temperatures near harvest may have led to production of more NeoASG since there was a 

greater abundance of both substrates. Biotic and abiotic stress conditions can increase 

endogenous MeJA levels, which can stimulate GS biosynthesis and ascorbic acid 

biosynthesis (Wolucka et al., 2005), which suggests that stressful field conditions may be 

favorable for broccoli to produce more NeoASG. Sulforaphane (from 31% to 36%) and 

PEITC (from 28% to 51%) conversion rates from their parent GS were also significantly 

increased by MeJA treatment in all cultivars over two seasons (Table 3.4). MeJA 

treatment significantly increased gene expression of broccoli myrosinase (Chapter 5). 

The unbound myrosinase from ESP by increased protein amount may favors to generate 

isothicyanate. In addition, ESP by ESM1 interaction may be associated with the 

isothiocyanate formation (Baskar et al., 2012). It was reported that hydrolysis product of 

gluconasturtiin, phenethyl isothiocyanate (PEITC), induces synthesis of the QR enzyme 

(Manson et al., 1997; Rose et al., 2000). The accumulation of PEITC was relatively small 

compared to gluconasturtiin concentrations when we measured broccoli extracts without 

shaking with isothiocyanate derivatization reagents (Figure 3.1), probably associated with 

the low solubility and high volatility (Wilson et al., 2012). However, when the PEITC 

concentration was determined by shaking with isothiocyanate derivatization reagents as 

described in the methods, substantial concentrations of PEITC were found (PEITC 

conversion rates from gluconasturtiin averaged 28% for controls and 51% for MeJA 
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treatments). Some cultivars showed significantly increased SF and PEITC concentrations 

following MeJA treatment, but the effect was not consistently observed in all cultivars 

over both years. Although glucobrassicin was not significantly increased both years by 

MeJA treatment, I3C concentration was significantly increased in both 2009 and 2010. 

As reported previously, I3C is a relatively weak QR inducer. Based on our results, the 

CD value for I3C is 230 µM (Chapter 5). Based on our time course experiment, aliquots 

were taken after four h of broccoli extract hydrolysis for measurement of QR inducing 

activities. Treatment with MeJA significantly increased QR inducing activity of extracts 

from florets of ‘Imperial’, and ‘Gypsy’ cultivars in both years. Average QR inducing 

activity across all of the five broccoli genotypes was significantly increased by MeJA 

treatment only in 2010, which suggests an interaction between MeJA treatment and year. 

Several factors including pH, Fe2+, and the mysosinase co-factors, ESP and ESM1 can 

influence glucoraphanin and gluconasturtiin hydrolysis and isothiocyanate formation 

(Baskar et al., 2012). Year-associated environment factors and MeJA treatment in 2010 

appeared to interactively influence hydrolysis of glucoraphanin. 

 

3.4.5. Correlation Analysis between Intact GS or Hydrolysis Products and QR 

activity. There was a moderate but significant correlation between gluconasturtiin with 

QR inducing activity where r = 0.654 (P = 0.002) (Table 3.5). Considering the precursor 

GS, there was only a weak and non-significant correlation between glucoraphanin (r = 

0.330; P = 0.155), neoglucobrassicin r = 0.312 (P = 0.181) and QR inducing activity 

(Table 3.5). PEITC (Manson et al., 1997) and sulforaphane (Zhang et al., 1992) are 

known QR inducers, derived from gluconasturtiin and glucoraphanin, respectively. The 
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moderate correlation coefficient between glucoraphanin and sulforaphane concentrations 

(r = 0.593, P = 0.006) among the five broccoli cultivars may be associated with variation 

in epithiospecifier protein activity and/or epithiospecifier modifier protein activity, a 

cofactor in the myrosinase hydrolysis of GS, since sulforaphane formation is negatively 

correlated with epithiospecifier protein levels (Matusheski et al., 2006).  

 Although there was a significant positive correlation between gluconasturtiin and 

QR, there was a non-significant correlation between PEITC and QR inducing activity (r = 

0.176, P = 0.4594). This lack of correlation is likely due to the high volatility and low 

solubility of PEITC and from variation in protein co-factors (Figure1, Table 3). However, 

conducting in situ-hydrolysis (Haack et al., 2010) with different concentrations of 

gluconasturtiin standards and 50 mU/mL of commercial myrosinase (Sinapis alba L.) we 

observed that to generate a two-fold increase of QR induction (CD value) required 5 µM 

gluconasturtiin (data not shown), comparable to what was previously reported for PEITC 

(Rose et al., 2000). The variation in QR inducing activity in in situ-hydrolysis may be 

associated with the accumulation of PEITC induced by enhanced myrosinase activity. 

Since QR induction activity is dose- and time-dependent (Hou et al., 2000), low 

concentrations of accumulated PEITC in broccoli extracts may reduce its contribution to 

enhancing QR activity. Even though the increased PEITC concentration was successively 

determined by using the 24 h derivitization method, it did not show a strong correlation 

with QR inducing activity in the in vitro system. The observed moderate correlation 

between gluconasturtiin and QR inducing activity is likely due to the correlation of 

gluconasturtiin with sulforaphane (r = 0.784, P < 0.001), NI3C (r = 0.876, P < 0.001), 

and NeoASG (r = 0.549, P = 0.012).  
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 There were significant correlations between QR activity and the hydrolysis 

products of neoglucobrassicin including NI3C (r = 0.502, P = 0.024) and NeoASG (r = 

0.771, P < 0.001). Recent research using an in vitro cancer cell line has found that NI3C 

can inhibit the nuclear erythroid related factor 2 (Nrf2)-dependent up-regulation of phase 

II detoxifying enzymes such as QR (Haack et al., 2010), interfering with its anti-cancer 

bioactivity. This suggests that MeJA-mediated up-regulation of neoglucobrassicin 

biosynthesis in broccoli florets would interfere with the QR induction associated with the 

isothiocyanate, SF generated from the hydrolysis of glucoraphanin. However, there was a 

significant positive correlation between SF and QR activity when NI3C was present at 

relatively high concentrations in the 4 h hydrolysis extracts, indicating it did not inhibit 

SF dependent increases in QR activity. In Haack et al.’s study, QR activity induced by 

the combination of 2.5 µM neoglucobrassicin and 5 µM glucoraphanin with myrosinase 

was not significantly different from the QR activity of 5 µM glucoraphanin with 

myrosinase alone. In addition, combination of 2.5 µM neoglucobrassicin and 10 µM 

glucoraphanin with myrosinase even slightly increased human Gpx2 promoter compared 

to 10 µM glucoraphanin with myrosinase alone, suggesting that concentrations of NI3C 

in MeJA treated broccoli is not at a critical level to interfere with sulforaphane mediated 

QR activity induction. Haack et al. used in situ hydrolysis for QR activity measurement, 

which favors the production of NI3C. This experiment did not consider the formation of 

other hydrolysis products that could be generated from neoglucobrassicin. In our study 

neoglucobrassicin was observed to generate both NI3C and NeoASG, which is 

condensation product of NI3C with ascorbic acid. NeoASG maybe the primary 

hydrolysis product from neoglucobrassicin in the human gut where low pH and high 
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vitamin C concentrations (Koh et al., 2009) from broccoli consumption could favor the 

production of NeoASG over NI3C.  

 

3.4.6. QR Inducers in MeJA Treated Broccoli. High correlation of QR activity with 

NI3C and NeoASG suggests that the hydrolysis products of neoglucobrassicin may 

contribute to the MeJA enhanced QR activity. CD values of each compound were were 

found to be 35 µM and 38 µM for NI3C and NeoASG, respectively (Figure 3.2). 

Previously it was reported that CD values of SF and PEITC were 0.2 µM and 5 µM, 

respectively (Kang and Pezzuto, 2004; Rose et al., 2000). Compared to previously 

reported QR inducers, NI3C and NeoASG are relatively weak QR inducing agents. 

Averaged CD values of hydrolysis products of neoglucobrassicin is approximately 36.5 

µM. Based on these CD values the relative QR inducing ability for sulforaphane, PEITC, 

and the hydrolysis products of neoglucobrassicin were 182.5, 7.3, and 1, respectively. 

While MeJA treated broccoli was found to contain approximately twice as much 

hydrolysis product derived from neoglucobrassicin than sulforaphane, sulforaphane may 

be a more important QR inducer, having 183-fold greater potency. If the QR induction is 

evaluated by the relative magnitude of estimated CD values and and MeJA increased 

amounts of hydrolysis products, sulforaphane should possess a 38-fold greater QR 

inducing capacity than the hydrolysis products of neoglucobrassicin. 

 

3.4.7. Effect of Weather Related Factors on Glucosinolates, their Hydrolysis 

Products, and QR Activity. Since QR activity was found to be indirectly associated 

with year-related weather factors, Pearson correlation coefficients were calculated 
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between QR activities, GS and hydrolysis product concentrations, and cultivar growing 

degree days (GDD), accumulated solar radiation and averaged daily precipitation 

(PPT/DTH). Differentially accumulated GDD among the cultivars and seasons was 

significantly correlated with gluconapin (r = 0.634, P = 0.020), NeoASG (r = 0.496, P = 

0.026), and QR inducing activity (r = 0.699, P < 0.001) (Table 4). Differentially 

accumulated solar radiation was significantly correlated with gluconapin (r = 0.634, P = 

0.003), NeoASG (r = 0.586, P = 0.007), and QR inducing activity (r = 0.796, P < 0.001). 

PPT/DTH was significant negatively correlated with SF (r = -0.447, P = 0.048), QR 

inducing activity (r = -0.660, P = 0.002), suggesting that drought conditions may enhance 

QR inducing activity by enhancing endogenous MeJA synthesis (Creelman and Mullet, 

1995). It has been reported that GS concentrations in broccoli sprouts is influenced by 

temperature (Pereira et al., 2002) and that UV-B induces glucoraphanin biosynthesis 

(Mewis et al., 2012). UV-B radiation may affect phytochemical composition and QR 

inducing activity. DTH was significantly different among genotypes (F4,19 = 18.32, P < 

0.001) (Table 3.1). The partitioning of total variance into variance components, indicated 

that the genotype accounts for 75% of DTH variation, which agres with previous research 

(Farnham et al., 2004). Since DTH is correlated with solar radiation and GDD, genetic 

variation in days to harvest plays a major role in broccoli floret phytochemical 

composition and QR inducing activity. QR activity is indirectly affected by weather, 

DTH, and GDD. 

 

3.4.8. Partitioning of GS Concentration and Bioactivity Variances into MeJA 

Treatment, Year, and Genotype Sources of Variation. ANOVA partitioning of the 
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variances for GS concentrations indicated that differences among genotypes described 

42%, 33%, 31%, and 48% of the total variation for glucoraphanin, glucobrassicin, 

gluconasturtiin and I3C, respectively (Table 3.6). In contrast, MeJA treatment accounted 

for 63%, 46%, 36%, 30% and 17%, of the total variation in floret neoglucobrassicin, 

NI3C, Total GS, PEITC, and sulforaphane concentrations, respectively (Table 3.6). 

Seasonal differences in environmental conditions between 2009 and 2010 were a major 

source of variation in sulforaphane (29%), NeoASG (48%), and QR inducing activity 

(72%). There was also a significant genotype by year interaction in concentrations of 

glucoraphanin (38%) and I3C (23%). MeJA treatment significantly increased QR 

inducing activity averaged over the two years study but this only described 5% of the 

variation in QR inducing activity while year associated weather effects accounted for 

72%, which also agrees with previous research (Farnham et al., 2004). Environment 

conditions significantly correlated with GS biosynthesis and hydrolysis products of GS. 

These results suggest that optimal environment conditions, appropriate cultivars, and 

MeJA treatments can maximize phytochemical profiles and anticancer bioactivity of 

broccoli florets. 
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Table 3.1. Days from transplant to harvest (DTH) and accumulated growing degree days 

(GDD), solar radiation, and precipitation experienced by each of the five broccoli 

genotypes in 2009 and 2010.  

Year Cultivar Treatment DTH GDD (˚C) Solar radiation 
(MJ·m-2) 

Precipitation 
(mm) 

2009 Expo Control 81 ± 3 1150 1705 296 
2009 Expo MeJA 82 ± 3 1163 1729 296 
2009 Green Magic Control 58 ± 7 859 1257 223 
2009 Green Magic MeJA 57 ± 7 846 1239 222 
2009 Gypsy Control 62 ± 5 906 1342 223 
2009 Gypsy MeJA 61 ± 2 893 1318 223 
2009 Imperial Control 60 ± 3 881 1293 223 
2009 Imperial MeJA 60 ± 2 881 1293 223 
2009 Pirate Control 77 ± 5 1094 1622 296 
2009 Pirate MeJA 78 ± 5 1109 1643 296 
2010 Expo Control 88 ± 2 1531 2758 314 
2010 Expo MeJA 93 ± 3 1595 2868 318 
2010 Green Magic Control 67 ± 6 1198 2165 245 
2010 Green Magic MeJA 67 ± 6 1198 2165 245 
2010 Gypsy Control 68 ± 3 1215 2193 245 
2010 Gypsy MeJA 69 ± 2 1231 2223 245 
2010 Imperial Control 65 ± 2 1107 2100 245 
2010 Imperial MeJA 66 ± 4 1182 2136 245 
2010 Pirate Control 92 ± 6 1581 2825 314 
2010 Pirate MeJA 91 ± 4 1570 2845 314 

 
Growing degree days [(Min Temperature + Max Temperature)/2 -7.2 °C] 
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Table 3.2. Identification of Purified Hydrolysis Products of Neoglucobrassicin.  

Compound Fragment ions Ref 
Desulfated  
neoglucobrassicin  

ESI (12 eV) m/z (%) 421 (100) [M++
Na], 399  (83) [M+] 

MS/MS fragments: 237  (100) [M+-Glu+
H], 206  (23) [M+-Glu-CH3O+2H], 177  

(13) [M+-C7H11NO5S], 160  (5) [M+-C7H
11NO5S-OH], 130  (30) [M+-CH3O-C7H13
NO6S+H] 

Griffiths et al., 2000 

N-Methoxyindole-
3-Carbinol 

EI MS (70 eV) m/z (%) 177 (27) [M+]
, 160 (11)[M+-OH], 146 (8) [M+-OCH3
], 129 (38) [M+-OH-OCH3], 117 (17) [
M+-OH-NOCH3+2H], 102 (18) [M+-C6H
5+2H], 77 (13) [M+-C4H6NO2], 58 (100
) [M+-C8H7O]  
Measured mass: 177.07847, calculated 
mass based on molecular formula C10H
11O2N (177.07898) 

Jump et al., 2008 

Neoascorbigen EI MS (70 eV) m/z (%) 335 (10) [M+]
, 160 (100) [M+-C6O6H7], 130 (42) [M
+-C6O6H7-OCH3] 
Measured mass: 335.10053, calculated 
mass based on molecular formula C16H
17O7N (335.10050) 
ESI MS (16eV) m/z (%) 374 (28) [M+

+K], 358 (100) [M++Na], 336 (45) [M+

+H], 305 (5) [M++OCH3] 160 (38) [M
+-C6O6H7+H], 130 (3) [M+-C6O6H7-OC
H3+H] 

Agerbirk et al., 1998 
 
 
 
 
 
Benett et al., 2004 
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Figure 3.1. Optimization time for maximum concentration for each hydrolysis product of 

GS. Samples from five broccoli cultivars with or without MeJA treatment over two years 

were used to determine the optimum time for maximum concentration of hydrolysis 

products of GS. Mean ± SEM (n=30). NI3C = N-mothoxyindole-3-carbinol, PEITC = 

Phenethyl isothiocyanate, NeoASG = Neoascorbigen, I3C = Indole-3-carbinol. 
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Figure 3.2. QR activity of major hydrolysis products of neoglucobrassicin. Different pH 

and presence of ascorbic acid produced different hydrolysis products from 

neoglucobrassicin. CD value = concentration required to double QR induction. 0.7 mM 

neoglucobrassicin was incubated at pH 5.6 with ascorbic acid (1 mM) and pH 7.2 without 

ascorbic acid to generate neoascorbigen and n-methoxyindole-3-carbinol, respectively. 

After confirming the completion of hydrolysis reactions by HPLC, the hydrolysis 

solution was transferred with ice and added into QR assay system with different dilutions 

to measure CD values. Mean ± SD (n=3). 



  79 
 

Table 3.3. Concentrations of glucosinolates (µmol per g DW), their hydrolysis products and QR induction activity (specific activity 

ratio of broccoli extract treated cells to non-treated cells) in untreated (control) and MeJA-treated broccoli.  

Source of   
variation Treatment GRA (SF) GST (PEITC) GB (I3C) NeoGB (NI3C) (NeoASG) (NI3C + 

NeoASG) Total GS QR 

Treatment              
 Control 4.00 ± 1.86 1.08 ± 0.31 1.68 ± 0.71 0.40 ± 0.22 2.67 ± 0.77 0.25 ± 0.12 2.88 ± 1.43 0.68 ± 0.34 0.95 ± 0.75 1.63 ± 0.95 13.6 ± 3.85 3.20 ± 0.64 
 MeJA 4.42 ± 2.01* 1.64 ± 0.60* 2.68 ± 1.12* 1.27 ± 0.55* 2.64 ± 1.01 0.32 ± 0.13* 10.0 ± 3.71* 2.13 ± 1.08* 2.21 ± 1.65* 4.34 ± 2.36* 21.5 ± 6.43* 3.53 ± 0.82* 
              

Year              
Control 3.67 ± 0.64 1.08 ± 0.28 1.37 ± 0.55 0.41 ± 0.23 2.90 ± 0.66 0.26 ± 0.14 1.98 ± 1.02 0.65 ± 0.31 0.31 ± 0.13 0.96 ± 0.41 11.2 ± 2.2 2.65 ± 0.40 

2009 
MeJA 4.01 ± 1.19 1.22 ± 0.47* 2.41 ± 1.25* 1.42 ± 0.57* 3.28 ± 1.00* 0.34 ± 0.17* 10.8 ± 3.98* 1.85 ± 1.21* 0.90 ± 0.48* 2.74 ± 0.99* 21.5 ± 6.7* 2.83 ± 0.45* 

Control 4.32 ± 2.59 1.15 ± 0.34 1.99 ± 0.73 0.38 ± 0.22 2.43 ± 0.83 0.24 ± 0.09 3.79 ± 1.21 0.71 ± 0.40 1.59 ± 0.53 2.29 ± 1.30 16.0 ± 3.7 3.75 ± 0.31 
2010 

MeJA 4.83 ± 2.57 1.88 ± 0.66* 2.96 ± 0.93* 1.11 ± 0.50* 1.99 ± 0.48 0.30 ± 0.08* 9.30 ± 3.38* 2.41 ± 0.87* 3.53 ± 1.30* 5.95 ± 1.90* 21.4 ± 6.4* 4.23 ± 0.25* 
              

2009 year              
Control 2.99 ± 0.32 0.62 ± 0.02 0.75 ± 0.11 0.23 ± 0.04 3.40 ± 0.22 0.14 ± 0.02 0.74 ± 0.09 0.22 ± 0.03 0.21 ± 0.03 0.43 ± 0.06 8.72 ± 0.84 2.10 ± 0.13 

Pirate 
MeJA 3.32 ± 0.22 0.66 ± 0.12 1.19 ± 0.11* 0.86 ± 0.12* 3.99 ± 0.29* 0.14 ± 0.02 4.82 ± 0.87* 0.22 ± 0.03 0.22 ± 0.03 0.44 ± 0.07 13.8 ± 1.28* 2.00 ± 0.11 

Control 3.44 ± 0.20 1.09 ± 0.05 2.22 ± 0.15 0.15 ± 0.01 2.81 ± 0.30 0.51 ± 0.08 1.50 ± 0.07 0.99 ± 0.15 0.52 ± 0.08 1.51 ± 0.23 11.5 ± 0.61 3.07 ± 0.21 
Expo 

MeJA 5.21 ± 0.26* 2.13 ± 0.30* 4.50 ± 0.47* 1.96 ± 0.88* 4.33 ± 0.28* 0.57 ± 0.09 14.7 ± 0.60* 3.67 ± 0.55* 1.03 ± 0.15* 4.70 ± 0.71* 30.6 ± 1.49* 3.31 ± 0.13 
Control 4.36 ± 0.16 1.07 ± 0.21 1.11 ± 0.02 0.54 ± 0.04 2.91 ± 0.53 0.21 ± 0.03 3.06 ± 0.62 0.76 ± 0.11 0.36 ± 0.05 1.11 ± 0.17 13.8 ± 1.61 2.81 ± 0.24 Green 

Magic MeJA 4.25 ± 1.28 1.40 ± 0.11 1.92 ± 0.11* 1.25 ± 0.18* 2.45 ± 0.17 0.26 ± 0.04 11.7 ± 0.55* 2.00 ± 0.30* 1.55 ± 0.23* 3.55 ± 0.53* 22.3 ± 1.24* 3.06 ± 0.09 
Control 3.64 ± 1.01 1.16 ± 0.13 1.60 ± 0.10 0.45 ± 0.21 3.44 ± 0.22 0.23 ± 0.03 2.02 ± 0.40 0.45 ± 0.07 0.21 ± 0.03 0.65 ± 0.10 11.5 ± 1.40 2.80 ± 0.01 

Imperial 
MeJA 2.67 ± 0.61 1.02 ± 0.14 2.22 ± 0.77 1.44 ± 052* 3.09 ± 1.16 0.46 ± 0.16 12.2 ± 4.56* 1.59 ± 0.56* 0.98 ± 0.34* 2.56 ± 0.90* 20.4 ± 7.09 2.95 ± 0.09* 

Control 3.94 ± 0.26 1.16 ± 0.18 1.18 ± 0.38 0.23 ± 0.20 1.96 ± 0.62 0.21 ± 0.03 2.56 ± 1.34 0.86 ± 0.13 0.23 ± 0.04 1.09 ± 0.16 10.3 ± 2.46 2.47 ± 0.06 
Gypsy 

MeJA 4.57 ± 1.30 1.25 ± 0.12 2.21 ± 0.93 0.86 ± 0.40* 2.51 ± 1.06 0.26 ± 0.04 10.7 ± 2.90* 1.75 ± 0.61* 0.69 ± 0.10* 2.44 ± 0.37* 20.6 ± 6.38 2.83 ± 0.08* 
2010 year              

Control 2.93 ± 1.03 1.36 ± 0.18 2.34 ± 0.94 0.50 ± 0.09 3.48 ± 1.09 0.27 ± 0.04 4.86 ± 1.83 0.81 ± 0.12 2.31 ± 0.12 3.13 ± 0.47 16.6 ± 5.76 3.86 ± 0.27 
Pirate 

MeJA 2.63 ± 0.59  1.77 ± 0.26 2.07 ± 1.15 0.80 ± 0.43 2.68 ± 0.38 0.39 ± 0.06* 5.12 ± 3.41 1.27 ± 0.19* 1.74 ± 0.19 3.01 ± 0.45 14.8 ± 5.92 4.21 ± 0.12 
Control 3.62 ± 0.68 1.59 ± 0.36 2.98 ± 0.14 0.65 ± 0.33 2.37 ± 0.39 0.39 ± 0.06 4.83 ± 0.72 1.36 ± 0.34 1.96 ± 0.34 3.32 ± 0.50 16.5 ± 0.91 4.08 ± 0.24 

Expo 
MeJA 3.73 ± 0.53 1.60 ± 0.15 3.31 ± 0.36 1.21 ± 0.20 1.74 ± 0.37 0.35 ± 0.05 7.14 ± 0.80* 1.94 ± 0.49 3.52 ± 0.49* 5.46 ± 0.82* 18.1 ± 1.84 4.41 ± 0.25 

Control 1.82 ± 0.35 0.50 ± 0.08 1.24 ± 0.01 0.30 ± 0.02 2.41 ± 0.28 0.23 ± 0.03 3.63 ± 0.09 0.55 ± 0.08 1.31 ± 0.08 1.86 ± 0.28 11.6 ± 0.97 3.32 ± 0.10 Green 
Magic MeJA 2.76 ± 0.42* 1.04 ± 0.09* 2.19 ± 0.18* 0.58 ± 0.08* 1.94 ± 0.37 0.27 ± 0.04 10.7 ± 2.12* 2.33 ± 0.35* 5.17 ± 0.35* 7.50 ± 1.13* 19.6 ± 2.11* 3.86 ± 0.24* 

Control 4.54 ± 1.08 1.63 ± 0.41 1.67 ± 0.19 0.23 ± 0.06 2.54 ± 0.17 0.16 ± 0.02 3.01 ± 0.23 0.42 ± 0.06 1.19 ± 0.06 1.60 ± 0.24 15.5 ± 1.03 3.75 ± 0.13 
Imperial 

MeJA 6.07 ± 0.88 2.47 ± 0.32* 3.69 ± 0.52* 1.42 ± 0.19* 1.90 ± 0.42 0.30 ± 0.05* 11.7 ± 2.86* 3.29 ± 0.49* 4.29 ± 0.49* 7.59 ± 1.14* 25.4 ± 4.46* 4.31 ± 0.09* 
Control 8.70 ± 1.03 0.66 ± 0.30 1.71 ± 0.21 0.23 ± 0.08 1.37 ± 0.19 0.17 ± 0.03 2.65 ± 0.15 0.40 ± 0.06 1.16 ± 0.06 1.56 ± 0.23 19.9 ± 1.93 3.74 ± 0.21 Gypsy 
MeJA 8.99 ± 0.85 3.08 ± 0.09* 3.55 ± 0.88* 1.54 ± 0.71* 1.71 ± 0.22 0.20 ± 0.03 11.6 ± 1.38* 3.23 ± 0.49* 2.93 ± 0.49* 6.16 ± 0.92* 29.4 ± 4.08* 4.36 ± 0.07* 

GRA=Glucoraphanin, SF=Sulforaphane, GST=Gluconasturtiin, PEITC= Phenethyl Isothiocyanate, GB=Glucobrassicin, I3C=Indole-3-carbinol, 

NeoGB=Neoglucobrassicin, NI3C=N-methoxyindole-3-carbinol, NeoASG=Neoascorbigen, Total GS=Total glucosinolate, including presented glucosinolates in 

table and glucoiberin, progoitrin, and gluconapin. Mean ± SD (n=3). 

 



 
  80 
 

Table 3.4. Isothiocyanate conversion rate (%) from hydrolysis of precursor GS for  

sulforaphane and phenethyl isothiocyanate (PEITC). Mean ± SD (n=3). 

Source of variation Treatment sulforaphane/ 
glucoraphanin (%) 

PEITC/ 
gluconasturtiin (%) 

Treatment    
 Control 30.7 ± 11.5 27.8 ± 19.9 
 MeJA 35.5 ± 12.4* 50.8 ± 19.2* 
    

Year    
Control 29.1 ± 6.5 36.2 ± 24.7 2009 MeJA 30.3 ± 10.1 64.6 ± 15.5* 
Control 32.2 ± 13.6 19.3 ± 7.4 2010 MeJA 40.7 ± 10.4* 36.9 ± 10.5* 

    
2009 year    

Control 20.6 ± 2.7 31.9 ± 8.9 Pirate MeJA 20.0 ± 5.1 72.1 ± 7.7* 
Control 31.7 ± 2.5 6.9 ± 0.6 Expo MeJA 40.1 ± 5.5* 44.7 ± 21.5* 
Control 32.0 ± 5.1 48.6 ± 4.3 Green Magic MeJA 25.1 ± 10.3 64.9 ± 7.6* 
Control 31.9 ± 11.6 28.3 ± 13.3 Imperial MeJA 38.0 ± 6.0 64.9 ± 4.4* 
Control 29.4 ± 4.0 65.5 ± 32.6 Gypsy MeJA 27.4 ± 11.5 76.4 ± 14.0 

2010 year    
Control 46.5 ± 8.8 22.7 ± 6.8 Pirate MeJA 67.2 ± 8.4* 41.0 ± 17.2 
Control 44.1 ± 12.7 21.8 ± 10.9 Expo MeJA 43.1 ± 6.1 36.6 ± 5.4 
Control 27.6 ± 5.7 24.3 ± 1.2 Green Magic MeJA 18.2 ± 10.6 26.3 ± 2.0 
Control 35.9 ± 6.0 14.0 ± 5.6 Imperial MeJA 40.8 ± 8.3 38.6 ± 1.9* 
Control  7.6 ± 3.4 13.7 ± 5.5 Gypsy MeJA 34.2 ± 3.7* 42.1 ± 14.3* 
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Table 3.5. Correlations among GS and hydrolysis product concentrations, QR induction activities and weather related variables. 

 GRA GNA GB GNS NeoGB SF PEITC I3C NI3C NeoASG NI3C+ 
NeoASG QR DTH GDD PPT/DT

H 
Solar 

radiation 

GRA 1.000                

GNA 0.513* 1.000               

GB -0.431 -0.428 1.000              

GNS 0.390 0.187 -0.077 1.000             

NeoGB 0.247 -0.169 -0.025 0.711*** 1.000            

SF 0.593** 0.021 -0.187 0.762*** 0.397* 1.000           

PEITC 0.287 -0.302 0.078 0.704*** 0.896*** 0.784*** 1.000          

I3C 0.563** 0.168 -0.224 0.489* 0.384 0.129 0.015 1.000         

NI3C 0.384 -0.039 -0.158 0.876*** 0.883*** 0.844*** 0.817*** 0.535* 1.000        

NeoASG 0.145 0.299 -0.515* 0.549* 0.492* 0.397 0.242 0.254 0.605** 1.000       

NI3C+Ne
oASG 0.275 0.172 -0.403 0.767*** 0.733*** 0.655** 0.544* 0.416* 0.862*** 0.925*** 1.000      

QR 0.330 0.673** -0.550* 0.654** 0.312 0.526* 0.176 0.385 0.502* 0.771*** 0.731*** 1.000     

DTH -0.206 0.228 0.181 0.358 -0.135 0.166 0.481* 0.031 0.034 0.211 0.151 0.390 1.000    

GDD -0.057 0.514* -0.160 0.399 -0.077 0.252 -0.097 0.128 0.101 0.496* 0.364 0.699*** 0.893*** 1.000   

PPT/DTH -0.050 -0.382 0.264 -0.482* -0.050 -0.447* -0.108 -0.234 -0.471* -0.471* -0.447* -0.660** -0.701*** -0.800*** 1.000  

Solar 
radiation 0.017 0.634** -0.307 0.382 -0.058 0.280 -0.127 0.151 0.111 0.586** 0.427 0.796*** 0.773*** 0.974*** 0.774*** 1.000 

Significance is indicated by asterisks: ***P < 0.001, **P < 0.01, *P < 0.05 based on the Pearson correlation analysis. 

DTH= Number of days from transplant to harvest date; GDD= Growing degree days [(Min Temperature + Max Temperature)/2 -7]; 

PPT = Precipitation. 
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Table 3.6. Percentages of total variance described by main factors (Genotype, Treatment, and Year) and factor interactions for 

broccoli floret phytochemical concentrations and bioactivities.  

 GRA (SF) GST (PEITC) GB (I3C) NeoGB (NI3C) (NeoASG) (NI3C + 
NeoASG) Total GS QR 

Genotype 42.9* 10.2* 33.3* 8.1 30.9* 49.7* 8.2* 16.9* 6.3* 9.8* 11.4* 9.0* 

Treatment 1.2 16.6* 23.0* 52.5* 0.0 7.7* 62.5* 46.0* 20.1* 37.2* 36.3* 5.0* 

Year 3.7 29.0* 7.8 2.1 24.5* 1.1 0.0 2.1* 48.2* 26.0* 2.5 72.0* 

G × T 0.6 7.4* 5.6 7.1 5.4 6.3 8.1* 8.8* 11.3* 11.1* 4.2 0.7 

G × Y 37.5* 9.7* 6.2 2.3 4.3 24.4* 2.3 7.1* 0.8 1.7 14.8* 8.8* 

T × Y 0.1 8.5* 0.0 1.4 5.2 0.2 3.5 1.4 5.8* 4.4* 5.9 1.1 

G × T × Y 3.6 14.6* 7.9 5.8 5.4 2.5 5.0 11.3* 4.1* 5.3* 5.5 0.2 

Block 
(Year) 1.6 2.9 1.4 3.7 1.2 1.3 0.9 2.3* 2.7 3.1 1.2 0.9 

Residual 8.8 1.0 15.0 17.0 22.9 6.8 9.4 4.0 0.8 4.6 14.2 2.3 

R Squarea 0.91 0.96 0.85 0.83 0.77 0.87 0.91 0.94 0.97 0.95 0.84 0.95 
*Indicates factor that describes a significant proportion of the total variance using partitioning sum of squares in ANOVA at P <0.0001 

(two tailed-test). Bold indicates which factor describes the most variance for each variable. aFraction of total variance described by the 

regression. 
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Supplementary Table 3.S1. Weather information for 2009 and 2010 in Champaign, Illinois. 

 Total solar radiation (MJ·m-2)  
Year Jun Jul Aug Sep Sum 
2009 681 667 617 542 2507 
2010 720 730 731 510 2690 

% of (2010/2009) 106 109 118 94 107 
 Precipitation (mm)  

Year Jun Jul Aug Sep Sum 
2009 108 156 137 55 401 
2010 199 91 40 16 329 

% of (2010/2009) 184 58 29 29 82 
 Growing degree days (°C)  

Year Jun Jul Aug Sep Sum 
2009 360 336 342 304 1341 
2010 373 408 403 293 1477 

% of (2010/2009) 104 122 118 96 110 
  
Growing degree days [(Min Temperature + Max Temperature)/2 -7] 
 
Weather data during the growing seasons was provided by the Illinois State Water Service 

(http://www.isws.illinois.edu/warm/data/cdfs/cmiday.txt). 
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CHAPTER 4 

Methyl Jasmonate-mediated Induction of Glucosinolate Biosynthesis and Inducing of 

Quinone Reductase Activity in Kale Leaf Tissue 

 

4.1. Abstract 

 Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf 

Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to 

investigate alteration of GS composition in the harvested leaf tissue. Aqueous solutions of 250 

µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at 

commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), 

glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of 

these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for 

anti-carcinogenesis, was significantly increased by MeJA in the extracts from the leaf tissue of 

these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in GS, 

GS hydrolysis products and QR activity than extracts from basal leaf tissue samples. The 

hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue 

of the cultivar ‘Red Winter’ in both 2010 and 2011. There were significant year and year by 

genotype interactions in the concentrations of GS and QR activity. Drought conditions in 2011 

may have reduced the effect of MeJA spray treatment by increasing endogenous jasmonate 

concentrations in control plants.  

Correlation analysis revealed that I3C significantly correlated with QR activity (r = 0.642, 

P = 0.007). The concentrations required to double the specific QR inducing activity (CD values) 

of I3C was calculated at 230 µM, which is considerably weaker than other GS hydrolysis 
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products like sulforphane. To confirm relationships between GS hydrolysis products and QR 

inducing activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of 

both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, 

neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR inducing 

activity. Thus, increased QR activity may be due to combined increases of hydrolysis product 

concentrations rather than individual products alone.  

 

4.2. Introduction  

Epidemiological studies have reported that the intake of Brassica vegetables is inversely 

correlated with cancer risk, and this association is stronger than those between cancer and fruit 

and vegetable consumption in general (Michaud et al., 1999). Kale (Brassica oleracea L. 

acephala) is a frequently consumed leafy vegetable. Young tender leaves are harvested for 

human consumption and older plant tissues for animal feed (Velasco et al., 2007). Kale is a good 

source of vitamins (Vitamin A, C, E and K) and of health promoting phytochemicals including 

glucosinolates (GS), carotenoids, phenolics, and tocopherols. In certain regions like on the 

Iberian Peninsula, kale (Brassica oleracea acephala group) leaves and flower buds are grown 

and harvested throughout the year.  

There are several types of kale. Among them, it was previously reported that GS 

composition of Siberian kale (B. napus) was distinct from ‘Vates’ (B. oleracea) type kale 

(Carson et al., 1987). Red Russian and Siberian kales (Brassica napus ssp. pabularia) are 

typically more tender and have a milder flavor than the European "oleracea" kales whose young 

leaves are superior for use in salads. Napus kales have good cold tolerance so that they can be 

grown anywhere in the US over a broader range of growing seasons. Napus kales are also used 
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as animal forage. Forage and root vegetable cultivars of B. napus show high levels of progoitrin 

(Velasco et al., 2008), which can promote goitrogenic effects in mammals (Mithen et al., 2000). 

Although the species Brassica napus is thought to have originated from a chance hybridization 

between Brassica rapa and Brassica oleracea, the Red Russian type of kales were bred by 

artificial hybridization (http://seedambassadors.org/Mainpages/still/napuskale/napuskale.htm). 

The ‘Red Winter’ cultivar was derived from Red Russian kale types. 

B. oleracea kale is a rich source of flavonoids, possessing up to 47 mg of kaempferol and 

22 mg of quercetin per 100 g of fresh leaf tissue. Kale contains the highest flavonoid content 

among all of the Brassica oleracea vegetables (U.S. Department of Agriculture, 2011a). 

Phenolics have putative antioxidant, anticancer, and anti-cardiovascular disease activity (Dai and 

Mumper, 2010; Galati and O'Brien, 2004; Morton et al., 2000) . Previous research revealed that 

MeJA treatments enhance total polyphenolic compounds and flavonoids in kale leaf tissues 

(Chapter 2). The response to MeJA treatment was more dramatic in young tissue (apical leaves) 

compared to older leaf tissue (basal leaves) (Ku and Juvik, 2012 and Chapter 2). 

Besides phenolic compounds, kale is also a good source of GS. GS are a class of 

secondary metabolites found in cruciferous crops. The breakdown products have been shown to 

affect human health, insect herbivory, and and plant resistance to pathogens (Agerbirk et al., 

2009; Bednarek et al., 2009; Keum et al., 2005). Some GS breakdown products have a 

chemoprotective effect against certain cancers in humans (Nestle, 1998).  

Up-regulation of phase II detoxification enzyme activity has been suggested as a good 

strategy for cancer prevention (Clapper and Szarka, 1998; Cuendet et al., 2006). Phase II 

detoxifying enzymes including glutathione S-transferase (GST) and quinone reductase (QR) that 

can enhance detoxification and elimination of carcinogens from the body (Clapper and Szarka, 
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1998; Cuendet et al., 2006). Hydrolysis products of GS, isothiocyanates such sulforaphane and 

phenethyl isothiocyanate (PEITC) have been shown to enhance quinone reductase (QR) and 

other chemopreventive activities (Kang and Pezzuto, 2004; Zhang et al., 1992). Previous studies 

have reported that the hydrolysis products of the indolyl GS including glucobrassicin and 

neoglucobrassicin also have cancer chemopreventive activity. Hydrolysis products of 

glucobrassicin including indole-3-carbinol (I3C), diindolylmethane, and ascorbigen have shown 

to induce QR (Kang and Pezzuto, 2004; Zhu and Loft, 2003). N-methoxyindole-3-carbinol 

(NI3C), the hydrolysis product of neoglucobrassicin has been reported to induce cell cycle arrest 

in human colon cancer cell lines (Neave et al., 2005).  

The GS are also associated with insect defense in Brassica species. Jasmonic acid (JA), 

an endogenous plant signal transduction compound whose biosynthesis is up-regulated when 

Brassica plant species are attacked by herbivores, causes enhanced indolyl GSs biosynthesis 

(Hopkins et al., 2009). The increased GS by MeJA treatment was found to be a species-specific 

response (Chapter 6). MeJA treatment significantly increased gluconasturtiin and 

neoglucobrassicin in broccoli (Kim and Juvik, 2011) and the treatment significantly increased 

glucoraphanin, glucobrassicin, and neoglucobrassicin in cauliflower (Chapter 6). To date, GS 

compositional changes of kale leaf tissue by MeJA treatments have not been previously reported 

in the literature. 

Compared to other Brassica vegetables including broccoli, watercress, and Brussels 

sprouts, anti-cancer bioactivity information about kale is limited (Rose et al., 2000; Zhang et al., 

1992; Zhu and Loft, 2003). The objective of this research was to determine the QR inductive 

health promoting effect derived from elevated GS by MeJA. We also evaluated factors affecting 
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the GS variation of kale leaves including leaf tissue age and year associated environmental 

effects. 

 

4.3. Materials and Methods 

4.3.1. Kale Cultivation. The cultivars used for these experiments were ‘Red Winter’ (RW, 

Brassica napus ssp. pabularia) and ‘Dwarf Blue Curled Vates’ (DBCV, Brassica oleracea L. var. 

acephala) (Burpee Seed Co.). Seeds of each kale genotype were germinated in 32 cell plant plug 

trays filled with sunshine® LC1 (Sun Gro Horticulture, Vancouver, British Columbia, Canada) 

professional soil mix. Seedlings were grown in a greenhouse at the University of Illinois at 

Champaign-Urbana under a 25 °C/15 °C and 14 h/10 h: day/night temperature regime with 

supplemental lighting. Thirty days after germination, seedling trays were placed in ground beds 

to harden off for a week prior to transplanting into field plots at the University of Illinois South 

Farm (40˚ 04′ 38.89″ N, 88˚ 14′ 26.18″ W). Experimental design was a split-plot arrangement in 

a randomized complete block (RCB) design with three replicates. The experiment plot was 

surrounded by a guard row to avoid border effects. Transplanting of kale seedlings was 

conducted on June 11, 2010 and June 13, 2011. Harvesting kale occurred in July 25 in 2010 and 

July 27 in 2011. Irrigation was only applied first week of cultivation for establishing transplanted 

seedlings. Weather conditions during the 2010 and 2011 growing seasons collected from Illinois 

State Water Service (http://www.isws.illinois.edu/warm/data/cdfs/cmiday.txt) are presented in 

Supplementary Table 4.S1. 

 

4.3.2. Kale Treatment with MeJA and Sample Preparation. An aqueous solution of 250 µM 

MeJA (Sigma-Aldrich, St. Louis, MO) and 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO) 
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was sprayed on all aerial plant tissues to the point of runoff (approximately 300 mL) four days 

prior to harvest based on the result of experiments to determine when GS levels are optimized 

prior to harvest (Supplementary Figure 4.S1). Two different kale leaf samples (apical: three 

leaves from the below the meristematic growing point, at a minimum 8 cm in length; basal: three 

fully expanded leaves nearest the soil surface without discoloration or signs of senescence or 

damage) were harvested and bulked from five treated and control plants of each genotype for 

each replicate respectively (five heads or leaves bulked for a replicate sample). Images of apical 

and basal samples of each kale cultivar are shown in Figure 4.1A. In order to confirm the 

relationship between increased hydrolysis products of GS and QR activity, 0, 50, 250, and 500 

µM MeJA were sprayed on kale leaf tissue as described above in 2011. Kale leaf tissues were 

frozen in liquid nitrogen, and stored at -20 °C prior to freeze-drying. Freeze-dried tissues were 

ground into a fine powder using a coffee grinder and stored at -20 °C prior to chemical and 

bioactivity analyses. 

 

4.3.3. Determination of Sample GS Concentration. Extraction and quantification of GS using 

high-performance liquid chromatography was performed using a protocol described by Brown et 

al. (2002) (Brown et al., 2002). Freeze-dried broccoli powder (0.2 g) and 2 mL of 70% methanol 

were added to 10 mL tubes (Nalgene, Rochester, NY) and heated on a heating block at 95 °C for 

10 min. After cooling on ice, 0.5 mL benzylglucosinolate (1 mM) was added as internal standard 

(POS Pilot Plant Corp, Saskatoon, SK, Canada), mixed, and centrifuged at 3,000 × g for 15 min 

at 4 °C. The supernatant was saved and the pellet was re-extracted with 2 mL 70% methanol at 

95 °C for 10 min and the two extracts combined. A subsample (1 mL) from each pooled extract 

was transferred into a 2-mL microcentrifuge tube (Fisher Scientific, Waltham, MA). Protein was 
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precipitated with 0.15 mL of a 1:1 mixture of 1 M lead acetate and 1 M barium acetate. After 

centrifuging at 12,000 × g for 1 min, each sample was then loaded onto a column containing 

DEAE Sephadex A-25 resin (GE Healthcare, Piscataway, NJ) for desulfation with arylsulfatase 

(Helix pomatia Type-1, Sigma-Aldrich, St. Louis, MO) for 18 h and the desulfo-GS eluted. One 

hundred µL of each sample were injected on to a Agilent 1100 HPLC system (Agilent, Santa 

Clara, CA), equipped with a G1311A bin pump, a G1322A vacuum degasser, a G1316A 

thermostatic column compartment, a G1315B diode array detector and an HP 1100 series 

G1313A autosampler. UV detector set at 229 nm wavelength. All-guard™ cartridge pre-column 

(Alltech, Lexington, Kentucky), and a LiChospher® 100 RP-18 column (Merck, Darmstadt, 

Germany) were used for quantification. Desulfo-GS were eluted from the column over 45 min 

with a linear gradient of 0% to 20% acetonitrile at a flow rate of 1 mL/min. Benzylglucosinolate 

was used as an internal standard and UV response factors for different types of GS were used as 

determined by Wathelet et al (Wathelet et al., 1995). The identification of desulfo-GS profiles 

were validated by LC-tandom MS using a Waters 32 QT of Ultima spectrometer coupled to a 

Waters 1525 HPLC system and full scan LC-MS using a Finnigan LCQ Deca XP, respectively. 

The molecular ion and fragmentation patterns of individual desulfo-GS were matched with the 

literature for GS identification (Tian et al., 2005; Velasco et al., 2011). 

 

4.3.4. Analysis of Glucosinolate Hydrolysis Products. The extraction and analysis of 

isothiocyanates and other hydrolysis products was carried out according to previously published 

methods, with some modifications (Wilson et al., 2011). 75 mg of kale leaf powder was 

suspended in 1.5 mL of water in the absence of light for 4 h (time for the maximum 

concentration of indolyl GS hydrolysis products) and 24 h (time for the maximum concentration 
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of sulforaphane) at room temperature in a sealed 2 mL microcentrifuge tube (Fisher Scientific, 

Waltham, MA) to facilitate GSs hydrolysis by endogenous myrosinase. Slurries were then 

centrifuged at 12,000 × g for 5 min and supernatants was decanted into a 2 mL microcentrifuge 

tube. 20 µL of butyl isothiocyanate (0.5 mg/mL) and 4-methoxyindole (1 mg/mL) were added as 

the internal standards for sulforphane and the hydrolysis products of indolyl GS to quantify I3C, 

DIM, NI3C, and NeoASG, respectively, with 0.5 mL of methylene chloride. Tubes were shaken 

vigorously before being centrifuged for 2 min at 9,600 g. The methylene chloride layer (200 µL) 

was transferred to 350 µL flat bottom insert (Fisher Scientific, Pittsburgh, PA) in a 2 mL HPLC 

autosampler vial (Agilent, Santa Clara, CA) for mixing with 100 µL of a reagent containing 20 

mM triethylamine and 200 mM mercaptoethanol in methylene chloride. The mixture was 

incubated at 30 °C for 60 min under constant stirring, and then dried under a stream of nitrogen. 

The residue containing isothiocyanate derivatives (isothiocyanate-mercaptoethanol derivatives) 

and other hydrolysis compounds was dissolved in 200 µL of acetonitrile /water (1:1) (v/v), and 

10 µL of this solution injected onto a Agilent 1100 HPLC system (Agilent, Santa Clara, CA), 

equipped with a G1311A bin pump, a G1322A vacuum degasser, a G1316A thermostatic column 

compartment, a G1315B diode array detector and an HP 1100 series G1313A autosampler. 

Extracts were separated on a Eclipse XDB-C18 column (150 × 4 mm, particle size 5 µm, Agilent, 

Santa Clara, CA) with a C18 all-guard™ cartridge pre-column (Alltech, Lexington, KY). Mobile 

phase A was water and B methanol. Mobile phase B was 0% at injection, increasing to 10% by 

10 min, 100% at 35 min, and held 5 min, then decreased to 0% by 50 min. Flow rates were kept 

at 0.8 mL/min. The detector wavelength was set at 227 and 271 nm. Response factors for 

monomeric indolyl derivatives were used from a previous report (Agerbirk et al., 1998). Due to a 
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lack of standards for NI3C and NeoASG the standard curve of I3C was applied for quantification 

of both NI3C and NeoASG. The quantities were expressed as I3C equivalent concentrations.  

 

4.3.5. Quinone Reductase (QR) Activity. For the QR assay, kale extracts were collected using 

the same protocol for GS hydrolysis products described above with sampling at 4 h of incubation. 

QR inductive activities were measured for individual apical and basal leaf tissue extracts and a 

pooled equal volume sample from both apical and basal leaf tissue extracts. Hepa1c1c7 murine 

hepatoma cells (ATCC, Manassas, VA) were grown in alpha-minimum essential medium (α-

MEM), enriched with 10% heat and charcoal-inactivated fetal bovine serum and maintained at 

37 °C in 95% ambient air and 5% CO2. The cells were divided every three days with a split ratio 

of 7. Cells with 80-90% confluence were plated into 96-well plates (Costar 3595, Corning Inc, 

Corning, NY), 1 × 104 cells per well, and incubated for 24 h in antibiotic-enriched media (100 

units/mL penicillin, 100 µg/mL streptomycin). The QR induction activities of different samples 

were determined by means of the protocol described by Prochaska & Santamaria (Prochaska and 

Santamaria, 1988). After 24 h cells were exposed to the different sample extracts [0.25% final 

concentration (125 µg of freeze-dried broccoli/mL) in 200 µL of media] in new media for a 

further 24 h. Growth media alone and 0.2 µM SF were used as negative and positive controls, 

respectively. Treated cells were rinsed with phosphate buffer at pH 7.4, lysed with 50 µL 0.8% 

digitonin in 2 mM EDTA, incubated and agitated for 10 min. A 200-µL aliquot of reaction mix 

[74 mL 25 mM Tris buffer; 50 mg BSA; 0.5 mL 1.5% Tween-20 solution; 0.5 mL cofactor 

solution (92.7% 150 mM glucose-6-phosphate, 6.15% 4.5 mM NADP, 1.14% 0.75 mM FAD in 

Tris buffer)]; 150 units of glucose-6-phosphate dehydrogenase; 22.5 mg MTT [3-(4,5-

dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide]; and 75 µL 50 mM menadione in 
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acetonitrile) was added to the lysed cells. Readings were made at five time points, 50 s apart, 

using a µQuant microplate reader (Bio-Tek Instruments, Winooski, VT) at 610 nm. Immediately 

after completion of the readings, 50 µL of 0.3 mM dicumarol in 25 mM Tris buffer was added 

into each well, and the plate was read again (five time points, 50 s apart) to determine non-

specific MTT reduction. Total protein content was measured by the BioRad assay (Bio-Rad, 

Hurcules, CA, USA) using manufacture’s instructions. Activity was expressed as QR specific 

activity (nmol MTT reduced/mg/min) ratio of treated to negative control cells. 

 

4.3.6. QR Inducing Activity Measurement of I3C.  QR inducing activity of hydrolysis 

product, I3C was measured to determine the concentrations required to double the specific 

activity of QR (CD value), Commercially purchased I3C (Sigma Chemical Company, St. Louis, 

MO) was disosolved in DMSO. Then seven concentrations (250, 125, 62.5, 31.3, 15.6, 7.8, and 

3.9 µM) of I3C prepared by serial two fold dilutions were added to 96 well plates of cultured 

hepa1c1c7 cells. After a 24h incubation, QR activity was measured using the protocol described 

above. 

 

4.3.7. Statistical Analysis. Analysis of variance (ANOVA) was conducted using JMP 10 (SAS 

institute Inc., Cary, NC). Year, treatments, and genotype effects were considered as fixed factors. 

Block was considered as random. Analysis of variance was performed using the linear model: 

Yijklm = m + Gi + Yj + Tk + GYij + GTik + YTjk + GYTijk + Bl(j) + εijklm, where Yijklm is the lth block 

of the phenotypic value of the kth treatment, ith genotype in year j, m is the overall mean, G, Y, T, 

and B indicate the effects of genotype, year (weather), treatment and blocks nested in years, εijklm 

is the experimental error associated with Yijklm, respectively. Fisher’s Least Significant 
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Difference (LSD) test, correlation analysis and Student’s t-tests were also conducted using the 

JMP 10 software. All sample analyses were conducted in triplicate. The results are presented as 

means ± SD. 

 

4.4. Results and Discusssion 

4.4.1. Effect of MeJA Treatment on QR activity of Different Age of Kale Tissues. MeJA 

treatment significantly increased QR inducing activity in the combined apical plus basal leaf 

extracts of the two different kale species over two years except for the DBCV cultivar in 2011 

(Figure 4.1B). There was significant year-to-year variation in QR inducing activity with 2011 

samples significantly higher than those in 2010. In 2010 apical leaf tissue extracts of MeJA 

treated kale increased 17% and 27% of QR inducing activity for DBCV and RW, respectively, 

while in 2011, they increased only by 6% and 16%. QR activity of apical leaf tissue extracts 

were up to 2-fold greater than extracts from basal leaves (Figure 4.1C and 1D).  

 

Effect of MeJA Treatment on GS and GS Hydrolysis Products Concentrations. Over both 

seasons MeJA treatments significantly increased glucobrassicin and neoglucobrassicin 

concentrations in both apical and basal leaves. The treatment increased apical leaf concentrations 

of gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassin (150%) and basal leaf 

concentrations of gluconasturtiin (44%), glucobrassicin (166%) and neoglucobrassin (83%) 

averaged across cultivars and over years (Figure 4.2A). Total GS concentration in apical leaves 

tissues was up to seven fold greater than basal leaves tissue.  

From previous work, B. napus type kales (such as RW) have distinct GS composition 

compared with B. oleracea type kale (Carson et al., 1987). As Supplementary Figure 4.S1 
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illustrates, the major GS in both DBCV and RW are glucobrassicin and neoglucobrassicin. 

However, DBCV contains higher levels of glucoiberin and RW higher concentrations of 

progoitrin. Unlike DBCV, RW contains relatively high glucoraphanin concentrations.  

MeJA mediated enhancement of GS in DBCV was greater in 2010 than in 2011 where 

glucobrassicin and total GS concentrations in apical leaf tissues were both 2.7 fold higher in 

2010 compared to increases of 1.3 and 1.23 fold, repsectively in 2011 (Figure 4.2A). MeJA 

treatments may be interacting with varying weather conditions in each season of application. 

This variation may be related low levels of precipitation in 2011, which experienced only 51% of 

precipitation received in the 2010 growing season (Supplementary Table 4.S1). Endogenous 

jasmonic acid has been observed to accumulate in planta under drought conditions (Creelman et 

al., 1995). Conditions in 2011 may have lead to the accumulation of endogenous JA which could 

attenuate the effect of the exogenous MeJA treatment (Figure 4.1 and 4.2). 

Only sulforaphane was significantly increased in both apical and basal leaf tissue of the 

RW cultivar by MeJA treatment over two years but increases of other hydrolysis products were 

not consistently observed in all samples (Figure 4.3). Despite significant increases in 

glucobrassicin, I3C and DIM concentrations in kale extracts were relatively low. I3C has been 

reported to be highly unstable (Bradlow, 2008) and will react with other substrates generating 

by-products by condensation with ascorbic acid or through oligomerization (Agerbirk et al., 

2009). Following hydrolysis of the parent GS, relatively higher levels of NI3C were observed 

than I3C. According to previous research ascorbigen is less stable than neoascorbigen (Yudina et 

al., 2000). Thus, I3C may be less stable than NI3C. 
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Correlation Analysis between Intact GS or Hydrolysis Products and QR activity. In order to 

elucidate the most active QR induction hydrolysis product in MeJA treated kale leaf tissue, 

correlation analysis was conducted between QR inductive activity and GS and GS hydrolysis 

product concentrations (Table 4.1). QR inductive activity significantly correlated with 

glucobrassicin (r = 0.747, P = 0.001) and I3C (r = 0.707, P = 0.002). 

 

I3C in Kale Leaf Tissue as a QR Inducer. Using different concentrations of commercial I3C, 

the CD value for I3C was observed to be 230 µM, which is a relatively weak QR induction agent 

compared to sulforaphane (0.2 µM), 7–Methylsulfinylheptyl isothiocyanate (0.2 µM), PEITC (5 

µM), and brassinin (4 µM) (Kang and Pezzuto, 2004; Rose et al., 2000). In Chapter 3, we 

reported the that QR CD value of NI3C was 35 µM and for neoascorbigen was 38 µM, from 

broccoli extracts. Despite the significantly increased amount of NI3C and neoascorbigen, their 

contribution to enhanced QR inductive activity was relatively small. The high CD value of I3C 

suggests this compound does not explain the increased QR activity from kale leaf tissue extracts 

(Figure 4.1). 

 

MeJA Dose Dependent Induced GS and QR Activity in Kale Leaf Tissue. To further 

evaluate the association between induction of QR activity and GS concentrations in kale leaf 

tissues, a second experiment was conducted where different MeJA concentrations (0, 50, 250, 

and 500 µM) were applied to two kale cultivars as described above. The MeJA treatment 

increased GS concentrations (glucobrassicin and neoglucobrassicin) and QR activity in a linear 

dose dependent fashion in apical leaf tissue of both kale cultivars (Figure 4.5A). In addition, 

MeJA treatment significantly increased NI3C and NeoASG in apical leaf tissue (Figure 4.5C). 
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Although there was a dose dependent increase in I3C by MeJA treatment in apical leaf tissue of 

the RW cultivar, the DBCV kale showed the inverse response to MeJA treatment (Figure 4.5C). 

The MeJA treatment not only changed GS biosynthesis but also hydrolysis-related gene 

expression (Chapter 5). Although apical leaf, indolyl GS hydrolysis product concentrations were 

found higher in RW compared to DBCV (Figure 4.5C), QR induction activity by RW apical leaf 

tissue was relatively low (Figure 4.5A). The low concentration of I3C in kale leaf tissue may be 

related to low stability or I3C condensation/oligomerization (Agerbirk et al., 2009; Bradlow, 

2008). Other hydrolysis products of glucobrassicin such as di(indol-3-yl)methane (DIM), 

brassinin, or 2,3-bis(indol-3-ylmethyl)-indole (TIR) which can induce QR activity at lower CD 

values (Kang and Pezzuto, 2004; Zhu and Loft, 2003) may play a more important role in QR 

induction in kale than I3C..  

 

Correlation Analysis of GS, GS Hydrolysis Products and QR with Varying Concentrations 

of MeJA. Correlations of QR inducing activity of the two kale cultivars over the two seasons 

(Table 4.2) were significant for gluconasturtiin (r = 0.888, P < 0.0001), glucobrassicin (r =0.671, 

P = 0.0005), and neoglucobrassicin (r =0.980, P < 0.0001). The GS hydrolysis products I3C (r = 

0.856, <0.0001), DIM (r = 0.788, P = 0.0003), NI3C (r = 0.974, P < 0.0001), NeoASG (r = 

0.918, P < 0.0001) and sulforaphane (r = 0.770, P = 0.0005) also correlated with QR activity. 

These data suggest that the combination of NI3C, NeoASG, and sulforaphane induction 

contributed to enhanced QR activity of kale leaf tissue extracts. Since correlation analysis does 

not necessarily imply causation, further research is needed to address which compound or 

compounds are dominating QR inducing activity in kale leaf tissue.  
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Figure 4.1. QR inducing activity of apical and basal and combined kale leaf tissue from two kale 

cultivars. A: Images of apical and basal leaf samples. B: QR inducing activity of mixed extract of 

1:1 apical and basal leaf tissues. C: QR inducing activity of apical leaf tissue. D: QR activity of 

basal leaf tissue. Student T-tests were conducted to determine significance at P ≤ 0.05. NS and * 

indicate non-significance and significance at P ≤ 0.05, respectively. Mean ± SD (n=3). 
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Figure 4.2. GS composition of different kale leaf tissues with or without MeJA treatment from 

two kale cultivars over two years. Student T-tests were conducted to determine significant at P ≤ 

0.05. * Indicates significance at P ≤ 0.05. A: Apical leaf tissue from two kale cultivars. B: Basal 

leaf tissue from two kale cultivars. Mean ± SD (n=3). 
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Figure 4.3. Hydrolysis product composition of apical and basal leaf tissues with or without MeJA 

treatment from two kale cultivars over two years. Student T-tests were conducted to determine 

significant at P ≤ 0.05. * Indicates significance at P ≤ 0.05. Mean ± SD (n=3). 
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Table 4.1. Correlation analysis between intact GS, GS hydrolysis products and QR activity from kale leaf tissue extracts over two 

years.  

 Glucoraphanin Glucobrassicin Gluconasturtiin Neoglucobrassicin QR I3C DIM NI3C NeoASG 

Glucoraphanin          

Glucobrassicin 0.120         

Gluconasturtiin 0.726 0.561        

Neoglucobrassicin 0.500 0.731 0.914       

QR 0.305 0.747 0.415 0.431      

I3C 0.203 0.642 0.358 0.422 0.707     

DIM -0.374 0.308 -0.209 -0.067 0.042 0.227    

NI3C 0.810 0.330 0.880 0.767 0.176 0.209 -0.199   

NeoASG 0.584 0.590 0.802 0.754 0.381 0.548 0.075 0.788  

Sulforaphane 0.879 0.325 0.907 0.742 0.361 0.382 -0.342 0.853 0.682 

Pink coloring indicates significant correlation based on the Pearson’s correlation at P ≤ 0.05. 
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Figure 4.4. QR inductive activity of indole-3-carbinol (I3C). Seven different concentrations from 

3.9 to 250 µM were tested using QR assay to determine CD value of I3C. 
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Figure 4.5. QR activity and GS and GS hydrolysis product concentrations from kale leaf tissue 

samples sprayed with varying concentrations of MeJA (0, 50, 250, and 500 µM). Different letters 

indicate significant differences among treatments based on Fisher’s LSD test at P ≤ 0.05. A: QR 

activity, B: GS profiles, and C: hydrolysis product profiles.
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Table 4.2. Correlation analysis between intact GS, GS hydrolysis product and QR activity from kale leaf tissue across two kale 

cultivars over two seasons.  

 
 
 
 
 

 

 

 

 

 

 

 

Values with a pink background indicate significant correlations based on the Pearson’s correlation at P ≤ 0.05. 

 

 Glucoraphanin Glucobrassicin Gluconasturtiin Neoglucobrassicin QR I3C DIM NI3C NeoASG 

Glucoraphanin          

Glucobrassicin 0.081         

Gluconasturtiin 0.858 0.444        

Neoglucobrassicin 0.621 0.734 0.872       

QR 0.704 0.671 0.888 0.980      

I3C 0.768 0.504 0.920 0.841 0.856     

DIM 0.603 0.682 0.808 0.795 0.788 0.904    

NI3C 0.731 0.620 0.903 0.976 0.974 0.886 0.797   

NeoASG 0.581 0.742 0.845 0.914 0.918 0.890 0.867 0.897  

Sulforaphane 0.947 0.133 0.917 0.719 0.770 0.830 0.675 0.806 0.649 
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Supplementary Table 4.S1. Weather information of 2009, 2010, and 2011 year in Champaign, 

Illinois. 

 Total solar radiation (MJ·m-2) 
Year Jun Jul Sum 
2010 720 730 1450 
2011 667 790     1457 

% of (2011/2010) 93 108 100.5 
 Precipitation (mm) 

Year Jun Jul Sum 
2010 199 91      290 
2011 107 40 147 

% of (2011/2010) 54 44 50.7 
 Growing degree days (°C) 

Year Jun Jul Sum 
2010 373 408 781 
2011 362 430 792 

% of (2011/2010) 97 105 101.4 
 
Growing degree days [(Min Temperature + Max Temperature)/2 -7] 

Weather data during the growing seasons was provided by the Illinois State Water Service 

(http://www.isws.illinois.edu/warm/data/cdfs/cmiday.txt). 
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Supplementary Figure 4.S1. Optimum harvest date for MeJA treated kale leaf tissue based on the 

glucosinolate concentration. 

To determine optimum harvest date, solutions of 250 µM of MeJA (Sigma-Aldrich, St. Louis, 

MO) containing 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO) where sprayed on all aerial 

portions of kale plants to the point of runoff (approximately 300 mL) 1, 2, 4, 6, and 8 days prior 

to harvest of heads at commercial harvest maturity. Two different kale leaf samples (apical: three 

leaves from the top, excluding less than 8 cm length per plant; basal three leaves: three leaves 

from the bottom which is fully developed per plant) were harvested and bulked from five treated 

and control plants of each genotype for each replicate respectively (five heads or leaves bulked 

for a replicate sample). 
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CHAPTER 5  

Methyl Jasmonate and 1-methylcyclopropene Treatment Effects on Quinone Reductase 

Induction Activity and Post-harvest Quality of Broccoli  

  

5.1. Abstract  

Pre-harvest methyl jasmonate (MeJA) and post-harvest 1-methylcyclopropene (1-MCP) 

treatments on broccoli floret glucosinolate (GS) concentrations and quinone reductase (QR, an 

anti-cancer biomarker) inducing activity were evaluated two days prior to harvest, at harvest and 

at 10, 20, and 30 days of post-harvest storage at 4 °C. MeJA treatments four days prior to harvest 

of broccoli heads was observed to significantly increase floret ethylene biosynthesis resulting in 

chlorophyll catabolism during post-harvest storage and reduced product quality. Post-harvest 

treatment with 1-MCP, which competitively binds to protein ethylene receptors, maintained post-

harvest floret chlorophyll concentrations and product visual quality in both control and MeJA-

treated broccoli. Transcript abundance of BoPPH, a gene which is responsible for the synthesis 

of pheophytinase, the primary enzyme associated with chlorophyll catabolism in broccoli, 

showed a significant, negative correlation with floret chlorophyll concentrations. The GS, 

glucobrassicin, neoglucobrassicin, and gluconasturtiin were significantly increased by MeJA 

treatments. The hydrolysis products of these GS [indole-3-carbinol (I3C), N-methoxy indole-3-

carbinol (NI3C), and phenethyl isothiocyanate (PEITC)] were also quantified and found to be 

significantly correlated with QR. Sulforaphane, the isothiocyanate hydrolysis product of the GS 

glucoraphanin, was found to be the most potent QR induction agent. Increased sulforaphane 

formation was associated with up-regulated gene expression of myrosinase (BoMYO) and the 

myrosinase co-factor gene epithiospecifier modifier1 (BoESM1). This is the first report that 
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MeJA treatment can increase sulforaphane formation from the hydrolysis of the parent GS, 

glucoraphanin. During post-harvest storage, levels of the GS, 4-methoxyglucobrassicin in MeJA-

treated broccoli samples was significantly increased, whereas glucobrassicin concentrations were 

significantly decreased and negatively correlated (r = -0.578; P=0.019), implying GS conversion 

is actively occurring during post-harvest storage. This GS conversion is likely associated with 

modified pre- and post-harvest transcript abundance of the indolyl biosynthetic genes 

BoCYP79B2 and BoCYP83B1 and ethylene-induced 4-methoxylation enzyme activity. 

 

5.2. Introduction  

Functional plant foods that promote health have received a great deal of attention from 

scientists and other consumers. Brassica oleracea L. vegetables including broccoli, cabbage, 

cauliflower, kohlrabi, Brussels sprouts, and kale are commonly consumed around the world. 

These vegetables are recognized as functional foods that contain various phytochemicals such as 

glucosinolates (GS), flavonoids, carotenoids, vitamins, and minerals that have putative cancer 

preventive effects as shown in epidemiological and animal carcinogenesis studies (van Poppel et 

al., 1999). The GS (glucoraphanin, gluconasturtiin, and sinigrin) found in the tissues of 

accessions of B. oleracea have been identified as potent cancer prevention agents because 

products of their hydrolysis by the endogenous enzyme myrosinase generate sulforaphane (SF), 

phenethyl isothiocyanate (PEITC), and allyl isothiocyanate (AITC). These isothiocyanate 

products have been shown to induce biosynthesis and thus bioactivity of mammalian phase II 

detoxification enzymes such as glutathione S-transferases (GSTs), quinone reductase (QR) and 

UDP-glucuronosyl transferase in in vitro or in vivo systems that can enhance detoxification and 

elimination of carcinogens from the body (Hwang and Jeffery, 2003; Wallig et al., 1998; Zhang 
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et al., 1992). QR activity elevation with in vitro and in vivo systems has been shown to correlate 

with induction of other protective phase II enzymes such as the GSTs and provides a reasonable 

biomarker for the potential chemoprotective effect of phytochemical against initiation of 

carcinogenesis (Cuendet et al., 2006). 

GS biosynthesis genes have been intensively studyied in Arabidopsis using biochemical 

assays. There is high homology of gene sequences in GS biosynthesis between Arabidopsis and 

Brassicaceae (Bak et al., 1998). GS biosynthesis consists of three independent steps: (i) chain 

elongation of selected precursor amino acids (Met and Phe), (ii) formation of the core 

glucosinolate structure, and (iii) secondary modifications of the amino acid side chain. A side 

chain amino acid precursor proceeds through a series of chain elongations prior to entering the 

pathway. Two genes, methylthioalkylmalate synthase 1 (MAM1) and MAM2, have been 

identified in Arabidopsis, where MAM1 regulates the first two methionine elongation cycles, 

whereas MAM2 supoorts in only one round of elongation (Kroymann et al., 2003; Textor et al., 

2004). The second step is the GS core structure formation from the precursor amino acids by 

reaction with various cytochrome P450 enzymes (CYP) (Sønderby et al., 2010), CYP79 

catalyzes the conversion of amino acid to aldoximes. CYP79F1 and CYP79F2 genes are 

responsible for aldoxime metabolism leading to aliphatic GS derived from chain-elongated 

methionine derivatives, whereas CYP79B2 and CYP79B3 have distinct functions in indolyl GS 

biosynthesis, which is derived from tryptophan (Sønderby et al., 2010). In the biosynthetic 

pathway of indolyl GS, CYP79B2 catalyzes the conversion of tryptophan to indole-3-

acetaldoxime, with CYP83A1 and CYP83B1 metabolizing the phenylalanine- and tyrosine-

derived aldoximes (Sønderby et al., 2010). It has been reported that indolyl GS biosynthesis is 

modulated by the methyl jasmonate (MeJA) and the salicylic acid (SA) signal transduction 
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pathways (Mikkelsen et al., 2003). The biological activity of GS depends on diversity of 

structure of the side chain that is the last step of GS biosynthesis (Hopkins et al., 2009). For 

aliphatic GS, secondary modifications include oxygenations, hydroxylations, alkenylations and 

benzoylations. Indolic GS, in turn, can undergo hydroxylations and methoxylations (Sønderby et 

al., 2010). Recently, methoxylation genes involved in glucobrassicin such as CYP81F2, 

CYP81F3, and CYP81F4 were clearly identified by genetic engineering Arabidopsis indolyl GS 

biosynthesis into Nicotiana benthamiana (Pfalz et al., 2011).  

Intact GS do not display bioactivity but following hydrolysis by the endogenous enzyme 

myrosinase, isothiocynates and other products are generated, which have been associated with 

insect resistance and anti-cancer activity. When the plant tissue is disrupted, myrosinase and 

substrates (GS) come into contact, resulting in GS hydrolysis. The chemical structure of 

hydrolysis products depends on the structure of the GS side chain and reaction conditions such as 

pH, concentration of Fe2+ and presence of epithiospecifier protein (ESP), a myrosinase co-factor 

that will favor formation of nitriles (Bones and Rossiter, 1996). In the absence of ESP, the 

addition of Fe2+ ions also promotes nitrile formation, which are essentially without anticancer 

activity compared to the isothiocyanates like sulforaphane, PEITC, and AITC (Matusheski et al., 

2006). The epithiospecifier modifier 1 (ESM1) gene in Arabidopsis encodes a protein shown to 

inhibit function of ESP, leading to increased isothiocyanate production from GS hydrolysis 

(Zhang et al., 2006). 

  Methyl jasmonate (MeJA), a plant signal transduction compound associated with 

herbivore defense, can act as an elicitor to enhance GS biosynthesis (Howe and Jander, 2008). 

Previous research has shown that MeJA treatments can significantly increase QR inducing 

activity mediated by enhancement of GS biosynthesis including glucoraphanin, glucobrassicin 
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and neoglucobrassicin in cauliflower (Ku et al., 2013). However, 1 mM MeJA treatment was 

also found to significantly promote ethylene production and increased 1-aminocyclopropane-1-

carboxylate acid (ACC) concentrations and ACC oxidase activity associated with senescence and 

loss of product quality in broccoli (Watanabe et al., 2000). Thus, while MeJA treated broccoli 

can display enhanced QR activity associated with increased GS concentrations, elevated ethylene 

production can accelerate post-harvest senescence, phytochemical degradation and quality loss.  

 Visual color is critical factor in retailer and consumer evaluation of product quality and 

subsequent purchasing decisions (Dixon, 2007). Yellowing of the foliage or discoloration of the 

heads and curds of broccoli and cauliflower is associated with senescence and is not acceptable 

to retail consumers. Consequently, color is an important factor in retailer and consumer 

evaluation of product quality and subsequent purchasing decisions. Evaluation of changes in 

color using colorimeters provides a rapid and non-destructive means of measuring post-harvest 

quality of the product (Dixon, 2007). It has been reported that color change determined by hue 

angle measurement corresponded to increased soluble and decreased insoluble pectin, indicating 

senescence and loss of crispness in red radish (Raphanus sativus) (Schreiner et al., 2003).  

Inhibition of ethylene production or blocking the ethylene receptor is an effective way to 

improve shelf life and quality of fruits and vegetables. 1-methylcyclopropene (1-MCP) is 100 

times more effective at binding to plant ethylene receptor proteins than ethylene itself (Paliyath, 

2008) and application of 1-MCP increases shelf life of broccoli (Ku and Wills, 1999). 1-MCP 

application has also been found to maintain the phytochemicals in broccoli such as chlorophylls, 

carotenoids, ascorbic acid and GS after harvest by binding to the ethylene receptors ETR1 and 

ETR2 (Gang et al., 2009; Gaofeng et al., 2010; Ma et al., 2010). As mentioned above, 

chlorophyll content is considered a good indicator of broccoli post-harvest quality. Previous 
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studies reported that pheophytinase (PPH) and pheophorbide a oxygenase (PaO) are key 

enzymes in post-harvest chlorophyll breakdown (Bücherta et al., 2011; Gomez-Lobato et al., 

2012a). It was reported that gene expression of BoPPH and BoPaO as reduced by 1-MCP 

treatment (Gomez-Lobato et al., 2012b).  

It was previously reported that most GS are degraded during post-harvest storage of 

broccoli at 0 ° and 4 °C except for gluconasturtiin, 4-methoxyglucobrassicin, and 

neoglucobrassicin (Rodrigues and Rosa, 1999). Chopping of harvested broccoli florets followed 

by storage at room temperature was observed to decrease concentrations of glucobrassicin and 

increase 4-methoxyglucobrassicin in broccoli (Verkerk et al., 2001). Despite detailed 

characterization of the pattern of indolyl GS induction and biosynthesis, relatively little is known 

about the mechanisms. With the high homology of gene sequences in GS biosynthesis between 

Arabidopsis and Brassica oleracea (Bak et al., 1998), GS biosynthesis genes from Arabidopsis 

have been transformed into Brassica oleracea crops such as Chinese cabbage with successfully 

expression and associated changes in GS profiles (Zang et al., 2009; Zang et al., 2008a; Zang et 

al., 2008b). 

4-methoxyglucobrassicin hydrolysis products have been reported to be antibiotic to 

fungal pathogens and to the green peach aphid (Myzus persicae) (Bednarek et al., 2009; Kim et 

al., 2008). Many physiological responses to stress are often mediated in the plant by ethylene 

perception. Since the discovery of 1-MCP as an ethylene antagonist, blocking ethylene 

perception is a powerful tool to study not only mechanisms of action, and its effect on post-

harvest quality of fruit and vegetables, but also ethylene function in plant biotic defense. Based 

on accumulated information on GS biosynthesis and induction from Arabidopsis it is the 
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objective of this research to investigate the interaction of MeJA and 1-MCP on anticancer 

inducing activity and post-harvest maintenance of quality in broccoli.  

 

5.3. Materials and Methods 

5.3.1. Plant Cultivation and Sample Preparation with Treatments. ‘Green Magic’ broccoli 

(Sakata Seed Co., Morgan Hill, CA) was used for this experiment. Broccoli seeds were 

germinated in 32 cell plant plug trays filled with sunshine® LC1 professional soil mix (Sun Gro 

Horticulture, Vancouver, British Columbia, Canada). Seedlings were grown in a greenhouse at 

the University of Illinois at Champaign-Urbana under a 25 °C/15 °C and 14 h/10 h: day/night 

temperature regime and with supplemental lighting. Forty days after seed germination, seedlings 

were first transferred into 1-liter pots and then after a month 150 broccoli seedlings were 

repotted into 3.75-L pots. These broccoli seedlings were evenly placed on three greenhouse 

benches and control and MeJA treatment assigned within each bench to minimize 

microenvironmental variation. 500 micromoles of MeJA (Sigma-Aldrich, St. Louis, MO) in 

solution containing 0.1% ethanol was sprayed on aerial tissues of each of the treated plants four 

days prior to harvest at commercial maturity. Timing of MeJA sprays and concentration of 

solution was previously determined to optimize up-regulation of indolyl GS (Ku and Juvik, 2012 

and Chapter 7). For the control group, only a 0.1% ethanol solution was applied. At commercial 

market maturity 50 broccoli heads were harvested from both the control and MeJA treated plants, 

transported to the laboratory, and divided into branchlets of broccoli florets. King and Morris 

(1994) reported that branchlets are useful model systems for investigating broccoli senescence. 

Branchlets of treatment group were randomly divided into two groups generating four treatment 

groups: (1) No MeJA or 1-MCP (Control); (2) No MeJA and 500 ppb treatment with 1-MCP for 
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24 h (1-MCP); (3) MeJA without 1-MCP (MeJA), and (4) MeJA and 500 ppb treatment with 1-

MCP for 24 hr (MeJA_1-MCP). Treatment (1) and (3) and treatment (2) and (4) were placed in 

airtight plastic containers at 20 °C. 1-MCP was generated in containers holding treatments (2) 

and (4) by adding an activator and a Smartfresh® tablet (AgroFresh, Inc. a division of Rohm and 

Hass, Philadelphia, PA) to the activation solution following the instructions provided by the 

company. After treatment, broccoli branchlets were stored in a walk-in cooler (4 °C). At each 

sampling date (0, 10, 20, and 30 days of post-harvest storage), three random subsamples 

(replications) for each treatment group were selected and assayed for ethylene and CO2 

production and visual quality. Pictures of broccoli florets and their relative visual quality from 

each assay date are presented in Figure 5.1. After measuring ethylene production and hue angle, 

a measurement of floret color change, each sample was freeze-dried. Freeze-dried broccoli floret 

tissue of each sample was finely ground with a commercial coffee grinder. The ground freeze-

dried broccoli samples were stored at -20 °C prior to GS quantification and quinone reductase 

bioactivity assay. After measuring ethylene production and hue angle, a measurement of broccoli 

floret color change, a subsample of tissue was collected, frozen in liquid nitrogen, and stored at –

80 °C until ground with a mortar and pestle in liquid nitrogen for RNA extraction.  

 

5.3.2. Determination of Floret Ethylene Production and Respiration Rate. Respiration was 

measured as tissue CO2 production. Three subsamples (300 g each) of broccoli branchlets from 

each treatment were placed into 3 L jars and enclosed with a silicon rubber cap for 1 h at 20 °C. 

Sample CO2 was estimated using 2% CO2 in nitrogen gas (v/v) standard for each experiment. 

The headspace gas in the jar was sampled with a 0.2 mL plastic hypodermic syringe and injected 

into a GC (model Perkin Elmer AutoSystem Gas Chromatograph) equipped with a Propak® 
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(Waters Co., Milford, Ma) column and thermal conductivity detector (TCD). Temperature of the 

injector, detector and column was 100, 150 and 30 °C, respectively. The results were expressed 

as mL of CO2/kg/h. Ethylene measurement was measured as previously reported (Ku et al., 2013) 

using pure ethylene gas as a standard for estimating sample concentrations. Headspace gas in the 

same jar that was used for CO2 evaluation, were sampled with a 1 mL plastic hypodermic 

syringe and injected into a GC (model Perkin Elmer AutoSystem Gas Chromatograph) equipped 

with a activated aluminum packed column and flame ionization detector (FID). The temperature 

of the injector, detector and column was 100, 200 and 80 °C, respectively. The flow rate of 

hydrogen was 40 mL/min. The rate of ethylene production was expressed as µL of ethylene/kg/h. 

 

5.3.3. Determination of Total Chlorophyll Content. Floret tissue samples (75 mg) were 

ground and extracted in 1.5 ml of 80% acetone in a 2 mL tube using vigorous vortexing for 1 h. 

Total chlorophyll content was determined by reading the absorbance at 645 and 663 nm with a 

µQuant microplate reader (Bio-Tek Instruments, Winooski, VT). Total chlorophyll content was 

calculated by summation of estimated chlorophyll a and chlorophyll b concentrations. The total 

chlorophyll was estimated as mg/g fresh weight using the equation listed below (Arnon, 1949).  

Total chlorophyll (µg/mg) = 20.2 (A645) + 8.02 (A663) 

Chlorophyll a (µg/mg) = 12.7 (A663) - 2.69 (A645) 

Chlorophyll b (µg/mg) = 22.9 (A645) - 4.68 (A663) 

 

5.3.4. Hue Angle Measurement. For purposes of data analysis and data interpretation, it is 

important to have a reliable measure of color change. Hue is one property of color. Hue is how 

we perceive an object’s color (red, orange, green, blue, etc.) 
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(http://personal.uncc.edu/lagaro/cwg/color/color_percept.html). Hue degree allows us to get 

digitalized data by using quadrant space for color (0° = red, 90° yellow, 180° = green, 270° = 

blue). Sample post-harvest visual quality was measured by using a LabScan XE colorimeter 

(Hunter Associates Laboratory, Reston, VA, USA) generating values for a* (redness and 

greenness), and b* (yellowness and blueness). The instrument was calibrated with a standard 

white and black tile. The average of four different broccoli branchlets were recorded in each 

replication. Hue degree (h°) was calculated as h° = tan-1 (b*/a*) when a*>0 and b*>0, or as h° = 

180° - tan-1 (b*/a*) when a<0 and b>0. 

 

5.3.5. Determination of Sample GS Concentrations. Freeze-dried broccoli powder (0.2 g) and 

2 mL of 70% methanol were added to 10 mL tubes (Nalgene, Rochester, NY) and heated on a 

heating block at 95 °C for 10 min. After cooling on ice, 0.5 mL benzylglucosinolate (1 mM) was 

added as an internal standard (POS Pilot Plant Corp, Saskatoon, SK, Canada), mixed, and 

centrifuged at 3,000 × g for 15 min at 4 °C. The supernatant was saved and the pellet was re-

extracted with 2 mL 70% methanol at 95 °C for 10 min and the two extracts combined. A 

subsample (1 mL) from each pooled extract was transferred into a 2-mL microcentrifuge tube. 

Protein was precipitated with 0.15 mL of a 1:1 mixture of 1 M lead acetate and 1 M barium 

acetate. After centrifuging at 12,000 × g for 1 min, each sample was then loaded onto a column 

containing DEAE Sephadex A-25 resin (Sigma-Aldrich, St. Louis, MO) for desulfation with 

arylsulfatase (Helix pomatia Type-1, Sigma-Aldrich, St. Louis, MO) for 18 h and the desulfo-GS 

eluted. One hundred µL of each sample were injected on to a HPLC. Quantification of GS using 

high-performance liquid chromatography was performed using a previously described protocol 

(Brown et al., 2002). 
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5.3.6. Quinone Reductase (QR) Inductive Activity. For the QR assay, 75 mg of broccoli floret 

powder from each sample were suspended in 1.5 mL of water in the absence of light for 4 h at 

room temperature in a sealed 2 mL microcentrifuge tube (Fisher Scientific, Waltham, MA) to 

facilitate GS hydrolysis by endogenous myrosinase. Slurries were then centrifuged at 12,000 × g 

for 10 min and supernatants were diluted to 0.25% final concentration in the QR activity assays. 

The QR induction activities of different samples were determined by means of the protocol 

described by Prochaska and Santamaria (Prochaska and Santamaria, 1988). Hepa1c1c7 murine 

hepatoma cells (ATCC, Manassas, VA) were grown in alpha-minimum essential medium 

(MEM), enriched with 10% heat and charcoal-inactivated fetal bovine serum and maintained at 

37 °C in 95% ambient air and 5% CO2. After 24 h cells were exposed to the different sample 

extracts (0.25% final concentration in 200 µL of media) in new media for a further 24 h. Treated 

cells were rinsed with phosphate buffer at pH 7.4, lysed with 50 µL 0.8% digitonin in 2 mM 

EDTA, incubated and agitated for 10 min. A 200-µL aliquot of reaction mix (Prochaska and 

Santamaria, 1988) was added to the lysed cells. Readings were made at five time points, 50 s 

apart, using a µQuant microplate reader (Bio-Tek Instruments, Winooski, VT) at 610 nm. 

Immediately after completion of the readings, 50 µL of 0.3 mM dicumarol in 25 mM Tris buffer 

was added into each well, and the plate was read again (five time points, 50 s apart) to determine 

non-specific MTT (methylthiazolyldiphenyl-tetrazolium bromide) reduction. Total protein 

content was measured by the BioRad assay (Bio-Rad, Hurcules, CA, USA) following 

manufacturer’s instructions. Activity was expressed as QR specific activity (nmol MTT 

reduced/mg/min) ratio of treated to control cells. 
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5.3.7. Analysis of Glucosinolate Hydrolysis Products. The extraction and analysis of 

isothiocyanates and other hydrolysis products was carried out according to previously published 

methods with some modifications (Wilson et al., 2011). Broccoli powder (75 mg) was suspended 

in 1.5 mL of water in the absence of light for 4 h (optimal time for hydrolysis products of indolyl 

GS) and 24 h (optimal time for sulforaphane and PEITC) at room temperature in a sealed 2 mL 

microcentrifuge tube (Fisher Scientific, Waltham, MA) to facilitate GS hydrolysis by 

endogenous myrosinase. Slurries were then centrifuged at 12,000 × g for 5 min and supernatants 

was decanted into a 2 mL microcentrifuge tube. 20 µL of butyl isothiocyanate (0.5 mg/mL) and 

4-methoxyindole (1 mg/mL) were added as the internal standards for isothiocyanates and 

hydrolysis products of indolyl GS to quantify indole-3-carbinol (I3C), NI3C, and neoascorbigen 

(NeoASG), respectively, with 0.5 mL of methylene chloride. Tubes were shaken vigorously 

before being centrifuged for 2 min at 9,600 g. The methylene chloride layer (200 µL) was 

transferred to 350 µL flat bottom insert (Fisher Scientific, Pittsburgh, PA) in a 2 mL HPLC 

autosampler vial (Agilent, Santa Clara, CA) for mixing with 100 µL of a reagent containing 20 

mM triethylamine and 200 mM mercaptoethanol (derivatization reagent) in methylene chloride. 

For SF and PEITC, unlike other hydrolysis products of GS measurement, 0.5 mL of fresh 

broccoli extracts were mixed with 0.5 mL of derivatization reagent using orbital shaker at 220 

rpm for 24 hours. Then, internal standards were added as described above. The mixture was 

incubated at 30 °C for 60 min under constant stirring, and then dried under a stream of nitrogen. 

The residue containing isothiocyanate derivatives (isothiocyanate-mercaptoethanol derivatives) 

and other hydrolysis compounds was dissolved in 200 µL of acetonitrile/water (1:1) (v/v), and 10 

µL of this solution injected onto a Agilent 1100 HPLC system (Agilent, Santa Clara, CA), 

equipped with a G1311A bin pump, a G1322A vacuum degasser, a G1316A thermostatic column 
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compartment, a G1315B diode array detector and an HP 1100 series G1313A autosampler. 

Extracts were separated on a Eclipse XDB-C18 column (150 × 4 mm, particle size 5 µm, Agilent, 

Santa Clara, CA) with a C18 all-guard™ cartridge pre-column (Alltech, Lexington, KY). Mobile 

phase A was water and B methanol. Mobile phase B was 0% at injection, increasing to 10% by 

10 min, 100% at 35 min, and held 5 min, then decreased to 0% by 50 min. Flow rates were kept 

at 0.8 mL/min. The detector wavelength was set at 227 and 271 nm. Response factors for 

monomeric indolyl derivatives were used from a previous report (Agerbirk et al., 1998). Due to a 

lack of standards for NI3C and NeoASG the standard curve of I3C was applied for quantification 

of both NI3C and NeoASG. The quantities were expressed as I3C equivalent concentrations.  

 

5.3.8. Cloning of broccoli epithiospecifier modifier 1 (BoESM1). Using known Arabidopsis 

(NM_112278.2), Brassica rapa (FJ830451.1) and Brassica napus (FJ830448.1) gene sequence 

information, PCR primers were designed with the Primer3 software 

(http://frodo.wi.mit.edu/primer3) to isolate the broccoli, cabbage, and cauliflower homologous 

ESM1 gene, known to be associated with GS hydrolysis. PCR amplification was performed using 

the GoTaq® PCR Core System (Promega, Madison, WI) following the protocol described by the 

manufacturer. The PCR product was separated on 1% TAE gels and purified by using a Qiagen 

gel extraction kit (QIAGEN, Valencia, CA) according to the manufacturer’s protocols. The 

amplified PCR products were cloned with pGEM®-T Easy Vector System (Promega), and the 

clones were sequenced in the W. Carver Biotechnology Center, University of Illinois at Urbana-

Champaign using the ABI 3730XL Capillary Sequencer (Applied Biosystems, Foster City, CA). 

The amino acid sequences deduced from the isolated cDNA sequences were subjected to 

phylogenetic tree analysis using Clustal W2 (http://www.ebi.ac.uk/Tools/clustalw2/). 
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(Supplementary Figure 5.S1). Quantitative RT-PCR (qRT-PCR) primers for BoESM1 were 

designed based on the consensus sequences of B. oleracea (broccoli, cauliflower, and cabbage), 

B. napus, and B. rapa cDNA (Supplementary Table 5.S1). 

 

5.3.9. RNA Extraction and Quantitative Real Time-PCR. Total RNA was isolated from 

control and MeJA treated floret tissue samples using the RNeasy Mini Kit (QIAGEN) according 

to the manufacturer’s instructions. The general quality of RNA was determined by agarose gel 

electrophoresis. The quantity of RNA was measured by the NanoDrop 3300 spectrophotometer 

(Thermo Scientific, Waltham, MA). 1 µg of the total RNA was reverse-transcribed with 

Superscript™ III First-Strand Synthesis SuperMix for qRT-PCR (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s instructions. The resulting cDNA samples were diluted to 1 

tenth their concentrations (v/v) for qRT-PCR. Previously reported primer sets of GS biosynthesis 

(BoCYP79B2, BoCYP83B1, BoCYP79F1, BoCYP83A1) genes, hydrolysis (BoMYO, BoESP, 

BoESM1) genes, a pathogenesis-related (PR) protein (BoPR) gene known to be responsive to 

MeJA, chlorophyll catabolism (BoPPH, BoPaO) genes, and the actin gene (BoAct1) as a 

normalization standard were used for qRT-PCR (Hasperué et al., 2013; Kim, 2011) 

(Supplementary Table S1). The primer sequence sets were synthesized by Integrated DNA 

Technologies (Coralville, IA). Real-time PCR was carried out with the real-time Power SYBR® 

Green PCR Master Mix (QIAGEN, Valencia, CA) using Taqman ABI 7900 (Applied 

Biosystems, Foster city, CA) according to the manufacturer’s instructions. Each reaction 

contained 0.375 µL of 10 µM of forward and reverse primers, respectively and 6.75 µL of 

template cDNA RT-PCR and 7.5 µL of Power SYBR® Green PCR Master Mix. The thermal 

cycling program was as follows: 50 °C for 2 min, then 95 °C for 10 min followed by 40 cycles of 
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95 °C for 15 s and 60 °C for 60 s. Quantitative RT-PCR was performed in two technical 

replicates for each biological sample. The relative expression ratio was determined with the 

equation 2-∆∆Ct by normalizing with BoAct1, using the Ct values generated by the Taqman ABI 

7900 Sequence Detection System Software 2.4 (Applied Biosystems).  

 

5.3.10. Measurement of Myrosinase Activity. Myrosinase activity was optimized according to 

previous studies (Li and Kushad, 2005; Pang et al., 2009; Penas et al., 2011). Crude extracts 

were prepared by adding 0.3 g of a finely ground freeze-dried sample in 4 mL of an extraction 

buffer consisting of 10 mM potassium phosphate, 1 mM EDTA, 3 mM DTT and 5% glycerol 

(pH 7.0) for 20 min in an ice bath (Pang et al., 2009). The crude extracts were centrifuged at 

15,000 g for 30 min at 4 °C. To remove endogenous GS and glucose, the crude extract was 

filtered through an Amicon ultrafiltration cell (Millipore, Billerica, MA) with a 10 KDa 

molecular weight cutoff (Penas et al., 2011) and washed several times at 4 °C using the same 

extraction buffer at pH 7.0 (Pang et al., 2009). 50 µL of purified extracts and 450 µL of 0.2 mM 

sinigrin in 33.3 M phosphate buffer, pH 6.5 were mixed and incubated for 40 min (Li and 

Kushad, 2005). To stop the enzyme reaction extracts were heated at 95 °C for 10 min. The 

release of glucose was determined by the glucose oxidase/peroxidase/ABTS method 

(Bergmeyer, 1974) using a microplate reader (Biotek Instruments, Winooski, VT). Glucose 

concentrations were calculated using a linear standard curve. By calculating the glucose amount 

in aliquots of purified extracts without sinigrin, endogenous glucose levels were subtracted in 

purified extracts for myrosinase activity measurement.  
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5.3.11. Statistical Analysis. Statistical analyses were conducted using the JMP 10 software 

(SAS institute Inc., Cary, NC). Student’s T-tests was used for comparing two treatment groups. 

Fisher’s Least Significant Difference (LSD) test was conducted for comparing treatment group 

means at P ≤ 0.05. Pearson correlation was conducted on all pairs of a GS, hydrolysis product 

and chlorophyll concentrations, gene expression, and QR inductive activity based on the mean 

values of each treatment across post-harvest storage dates. The results are presented as means ± 

SD. 

 

5.4. Results and Discusssion 

5.4.1. Ethylene Production and Respiration Rate for Broccoli Floret Subjected to MeJA 

Treatments. Treatment with 500 µM MeJA significantly increased ethylene production (1.9 fold) 

in broccoli floret tissues four days after treatment (Supplementary Figure 5.S2A). Ethylene 

production dropped significantly during post-harvest storage at 4 °C. Ethylene production 

between control and MeJA treated groups were not significantly different at 10 and 20 days of 

storage regardless of 1-MCP treatment. There was also no consistent difference in respiration 

rates among the different treatments at harvest or during post-harvest storage. Respiration rates 

in samples peaked at harvest and gradually decreased during post-harvest storage at 4 °C 

(Supplementary Figure 5.S2B). 

 

5.4.2. Product Color Measurement for Visual Quality Change and Chlorophyll 

Concentrations. Visual color is an important factor in retailer and consumer evaluation of 

broccoli product quality and subsequent purchasing decisions (Dixon, 2007). Loss of visual 

quality associated with degradation of floret chlorophyll concentrations enhanced by higher 
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ethylene production impacts on broccoli shelf life. Images of broccoli florets from the four 

different treatments from each assay date are presented in Figure 5.1. There were significant 

differences in visual quality between control and 1-MCP treatment groups over the period of 

post-harvest storage, regardless of MeJA treatment (Figure 5.1). In order to determine this 

objectively, tissue chlorophyll concentrations and floret hue angle were measured to quantify 

visual quality. There was a significant reduction in total chlorophyll content in broccoli florets 

two and four days after MeJA treatment compared to controls (Figure 5.2A). It was reported that 

MeJA treatment reduced total chlorophyll content previously in Arabidopsis thaliana (Jung, 

2004). Chlorophyll b concentrations are much higher than chlorophyll a in broccoli and showed 

more dramatic losses during post-harvest storage (data not shown). Hue angle measurements 

indicated that 1-MCP treatments were associated with superior visual quality throughout the 

period of post-harvest storage compared to controls and the MeJA treatment (Figure 5.2B).  

 

5.4.3. Chlorophyll Catabolism Gene Expression by Preharvest MeJA and Post-harvest 1-

MCP Treatments. To investigate the mechanism of chlorophyll and visual quality loss during 

the post-harvest period, relative transcript abundance of two genes associated with chlorophyll 

catabolism BoPaO and BoPPH were assayed by qRT-PCR. Transcript abundance of these genes 

was significantly greater than in the control or MeJA treated broccoli for BoPPH at 20 and 30 

days of post-harvest storage and for BoPaO at 30 days post-harvest storage (Figure 5.2C and 

5.D). There was a significant negative correlation between BoPPH gene expression (Figure 5.2C) 

and total chlorophyll concentrations (r = -0.642, P = 0.007) (Figure 5.2A). Hue angle 

measurements of visual quality were negatively correlated with both BoPPH (r = -0.868, P < 

0.001) and BoPaO gene expression (r = -0.641, P = 0.014). Down-regulation of expression of 
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these genes to maintain visual quality has been previously reported in broccoli (Bücherta et al., 

2011). 1-MCP mediated reduction of ethylene binding to receptor proteins was responsible for 

reduced expression of BoPaO and BoPPH, chlorophyll degradation and associated visual quality 

loss during post-harvest storage. A previous study has shown that chlorophyll degradation in 

broccoli florets during post-harvest senescence is positively associated with ethylene and 

negatively associated with cytokinin (Costa et al., 2005; King and Morris, 1994; Pogson et al., 

1995). These hormones also regulate the activity of catabolism-related enzymes. For example, 1-

MCP treatment delayed broccoli yellowing and decreased chlorophyll-degrading peroxidase and 

chlorophyllase activities, resulting in maintaining visual quality (Gong and Mattheis, 2003).  

 

5.4.4. Pre-harvest MeJA and Post-harvest 1-MCP Treatments Influence GS and GS 

Hydrolysis Product Concentrations. Treatment with MeJA significantly increased 

glucobrassicin, gluconasturtiin, 4-methoxyglucobrassicin and neoglucobrassicin concentrations 

in broccoli floret samples. At harvest, the relative increase of these GS was 1.58, 2.28, 4.75, and 

4.71 fold over controls, respectively (Figure 5.3). Neoglucobrassicin and 4-

methoxyglucobrassicin, which are products of the glucobrassicin biosynthesis pathway following 

hydrolxylation then methoxylation, respectively increased by similar fold values. Previous 

reports indicate MeJA treatments increased glucoraphanin, glucobrassicin, and neoglucobrassicin 

concentrations in cauliflower curds (Ku et al., 2013) and glucoiberin, progoitrin, sinigrin, and 

gluconapin concentrations in cabbage (Fritz et al., 2010). Both jasmonate (JA) and MeJA 

induced significant increases (up to 20-fold) in the concentration of specific indolyl GS in 

Brassica napus (primarily the GS, glucobrassicin) and B. rapa, (primarily the GS, 4-hydroxy 

glucobrassicin) and in mustard (B. juncea, where both where increased) (Bodnaryk, 1994). The 
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different responses to MeJA treatment observed in this study suggest that variation in GS 

response to MeJA is species specific.  

 The enhanced glucobrassicin concentrations of MeJA treated broccoli observed at 

harvest decreased over the duration of post-harvest storage whereas neoglucobrassicin 

concentrations remained relatively stable. MeJA treated broccoli showed significant degradation 

in glucobrassicin concentrations during the first 10 days of post-harvest storage (Figure 5.3B and 

5.D). MeJA treatments were found to significantly increase gluconasturtiin concentrations at 

harvest (Figure 5.3E). Concentrations of gluconasturtiin were observed to increase over the 

period of post-harvest storage in all the treatments except for the MeJA treated group. The 

concentration of 4-methoxyglucobrassicin was increased in all four treatment groups, with the 

MeJA treatment showing the largest increment. There was a significant correlation between the 

loss of glucobrassicin and increases of 4-methoxyglucobrassicin (r = -0.578, P = 0.019), 

implying active GS conversion. 

Interestingly, SF formation was significantly increased by MeJA treatment even though 

there were no significant increases in glucoraphanin concentrations (Figure 5.4 and Figure 5.6). 

This can be explained by the significantly increased levels in gene expression of myrosinase 

(BoMYO) and BoESM1 compared to the BoESP gene (Figure 5.5). Myrosinase activity was 

significantly (58%) increased by MeJA treatment at four days after treatment (Supplementary 

Figure 5.S3). MeJA treatment not only increased gluconasturtiin biosynthesis but also PEITC 

formation (Figure 5.4 and Figure 5.6). NeoASG concentrations were significantly increased by 

MeJA treatment and maintained elevated concentrations during post-harvest storage (Figure 5.4). 

The major hydrolysis product of neoglucobrassicin was NeoASG (Figure 5.4C and D). I3C 

concentrations were only observed to be significantly increased in the MeJA treatment at harvest.  
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5.4.5. GS Biosynthetic, Hydrolytic, and Pathogenesis Related-Protein (PR) Gene 

Expression Changes Mediated by MeJA and/or 1-MCP treatments. The amino acid 

sequences deduced from the isolated B. oleracea ESM1 gene sequences corresponded to the B. 

napus (96%), B. rapa (95%) and Arabidopsis thaliana protein, ESM1 (79%), respectively, which 

suggests similar gene product function in broccoli by sharing homologous protein motifs 

(Supplementary Figure 5.S1). In order to evaluate the effects of MeJA and 1-MCP treatments at 

harvest and during post-harvest storage, gene expression of GS biosynthetic (BoCYP79B2, 

BoCYP83B1, and BoCYP83A1), hydrolytic (BoMYO, BoESP, and BoESM1), and pathogenesis 

related (BoPR) genes were measured by qRT-PCR. Gene expression of BoCYP79B2 (10.0 fold), 

BoCYP83B1 (2.7 fold), BoCYP83A1 (1.5 fold), BoMYO (3.0 fold), BoESP (1.3 fold), BoESM1 

(1.9 fold) and BoPR (1.5 fold) were significantly increased by MeJA treatment compared to 

control at two days after the treatment (Figure 5.5). Jun et al. (2011) also reported that MeJA 

treatment increased transcript level of broccoli sprouts. In contrast, gene expression of 

BoCYP79F1 (0.7 fold) was significantly decreased by MeJA treatment compared to control at 

two days after the treatment. The elevated transcript abundance observed at 2 days after MeJA 

treatment was dramatically reduced with post-harvest storage at 4 °C (Figure 5.5). While gene 

expression levels during post-harvest storage were low and not dramatically different among 

treatments for many of the genes, transcript abundance for BoCYP79B2, BoCYP83B1, and BoPR 

gradually increased over the duration of storage. The mRNA expression levels of these genes 

may explain the increase in indolyl GS during post-harvest storage. Decreased gene expression 

of BoCYP79B2 and BoCYP83B1 associated with 1-MCP treatments is in agreement with 

previous research in Arabidopsis showing that that these GS biosynthetic genes are stimulated by 
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elevated MeJA-mediated ethylene production (Chang and Shockey, 1999; Mikkelsen et al., 2003; 

Stotz et al., 2000).  

 

5.4.6. Correlation between Gene Expression and Glucosinolate Concentrations. There were 

significant correlations between glucobrassicin concentrations and BoCYP79B2 (r = 0.625, P = 

0.017) and BoCYP83B1 (r = 0.573, P = 0.032) expression, genes which are involved in up-

stream biosynthesis of indolyl and aromatic GS. BoCYP79B2 (r = 0.625, P = 0.017) and 

BoCYP83B1 (r = 0.573, P = 0.032) gene expression also correlated with ethylene production 

indicating that GS biosynthesis is ethylene-mediated response as described above (Chang and 

Shockey, 1999; Mikkelsen et al., 2003; Stotz et al., 2000) (Supplementary Table 5.S2). In 

addition, BoPR gene expression was significantly correlated with ethylene production in our 

samples (r = 0.694, P = 0.006). BoPR expression is responsive to the salicylic acid (SA), MeJA, 

and the ethylene signaling pathway (Mikkelsen et al., 2003).  

 The observed reduction in glucobrassicin with complimentary increases in 4-

methoxyglucobrassicin concentrations are a likely result of the 4-methoxylation of 

glucobrassicin. Recently the indolyl GS modification from glucobrassicin to 4-

methoxyglucobrassicin was characterized by the transformation of Nicotiana benthamiana with 

known GS biosynthetic genes from Arabidopsis (Pfalz et al., 2011). The Arabidopsis CYP81F2 

gene is involved in accumulation of 4-methoxyglucobrassicin in response to pathogen infection 

(Bednarek et al., 2009). The CYP81F subfamily of cytochrome P450s are responsible for 

hydroxylation of glucobrassicin. Hydroxy intermediates are then converted to neoglucobrassicin 

and 4-methoxyglucobrassicin, respectively, by either of two families of 2 O-methyltransferases, 

named indolyl glucosinolate methyltransferase 1 (IGMT1) and IGMT2. The loss of 
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glucobrassicin in MeJA treated broccoli during the post-harvest storage is possibly due to the 

higher levels of BoCYP81F subfamily transcripts compared to BoCYP79B2 and BoCYP83B1 

gene expression. Mikkelsen et al. (2003) also reported that enzyme activities responsible for the 

N-methoxylation of glucobrassicin are strongly induced by MeJA treatment and this induction is 

suppressed by ACC. Recently, it has been identified that CYP81F4 is involved in N-

hydroxylation of glucobrassicin to synthesize neoglucobrassicin (Pfalz et al., 2011). As 

Mikkelsen et al. (2003) observed, it has been reported that CYP81F4 was up-regulated by MeJA 

and down-regulated by ethylene in Arabidopsis (5.81 fold) (Hall et al., 2012; Kai et al., 2011). It 

was reported that 1-MCP treatments did not completely inhibit the accumulation of ACC in 

broccoli florets (Ma et al., 2009). In addition, 1 mM of MeJA post-harvest treatment also 

significantly increased ACC concentrations compared with control broccoli (Watanabe et al., 

2000). Thus, gene expression of CYP81F2 in broccoli may be relatively greater than CYP81F4 

because accumulation of ACC or ethylene during the post-harvest storage may down regulate 

gene expression of CYP81F4 (Hall et al., 2012). Consequently, ethylene accumulation favors the 

pathway of methoxylation from glucobrassicin to 4-methoxyglucobrassicin rather than formation 

of neoglucobrassicin during post-harvest storage. Favoring the methoxylation pathway by 

accumulation of ethylene or the ethylene precursor, ACC would facilitate to defense against 

post-harvest pathogens since 4-methoxyglucobrassicin has been shown to be antibiotic to fungi 

(Bednarek et al., 2009; Clay et al., 2009). PEITC, the hydrolysis product of gluconasturtiin has 

also been reported to possess antifungal activity (Drobnica et al., 1967). The increasing levels of 

gluconasturtiin may be associated with upregulation of BoCYP83B1, which is involved in both 

indolyl and aromatic GS biosynthesis. Enhanced levels of PEITC during the post-harvest storage 

could also be associated with antifungal defense. 
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5.4.7. Correlations between QR Induction Activity of Broccoli and Enhanced GS 

Hydrolysis Products. QR induction activity of broccoli floret extracts treated with MeJA was 

significantly increased compared to controls at 2 and 4 days after MeJA treatment and 

throughout the course of post-harvest storage (Figure 5.4F). The increased QR activity may be 

due to the increased concentrations of sulforaphane, PEITC, and/or hydrolysis products of 

neoglucobrassicin including NI3C and NeoASG. Significant positive correlations were observed 

between QR activity and the GS concentrations of gluconasturtiin (r = 0.673, P = 0.008), 4-

methoxyglucobrassicin (r = 0.716, P = 0.002), and neoglucobrassicin (r = 0.826, P < 0.001) in 

broccoli floret sample extracts during post-harvest storage at 4 °C (Supplementary Table 5.S2, 

Figure 5.7). Hydrolysis products of GS, sulforaphane (r = 0.865, P < 0.001), PEITC (r = 0.857, 

P < 0.001), NI3C (r = 0.899, P < 0.001), and NeoASG (r = 0.874, P < 0.001) were also 

correlated with QR activity (Supplementary Table 5.S2, Figure 5.7). Previously, 4-

methoxyindole 3-carbinol has been reported to provide antiproliferation activity in two different 

human colon cancer cells lines in vitro (Kronbak et al., 2010). Interestingly, there was significant 

correlation between total chlorophyll concentrations and glucoraphanin concentration, 

suggesting greenness may be good indicator of glucoraphanin concentration during post-harvest 

storage (r = 0.590, P = 0.016). Since only one cultivar was used for post-harvest experiment, 

more study is neededs.  

 Sulforaphane formation was significantly increased by MeJA treatment (Figure 5.6). In 

most previous studies typically only MeJA mediated GS concentration changes were reported 

without information about the hydrolysis products. This present study suggests that MeJA 

treatment not only increases concentrations of certain GS, but can also increase SF and PEITC 

conversion rates from precursor GS, which are the hydrolysis products with the highest activity 



 130 

for QR induction and putative anticancer activity. Concentrations required for a two-fold 

increase in QR activity (the CD value) of NI3C, NeoASG, PEITC and SF were 35, 38.5, 5.0 and 

0.2 µM, respectively (Zhang et al., 1992; Kang and Pezzuto, 2004; Chapter 3). Even though the 

increased SF concentrations observed in our study is smaller than that of NeoASG, the relative 

SF bioactivity suggest it is the major contributor toward enhanced QR induction activity in our 

extracts, although MeJA-mediated increases in other GS and their hydrolysis products are also 

likely contributors. 1-MCP treatment was observed to reduce post-harvest degradation of GS to 

improve the delivery of bioactive compounds to consumers. 
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Figure 5.1. Representative samples of broccoli branchlets with or without pre-harvest MeJA and 

1-MCP treatments for 0, 10, 20, and 30 days post-harvest storage at 4 °C. 
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Figure. 5.2. Changes in total chlorophyll content, hue angle, and gene expression of chlorophyll 

catabolism genes from pre-harvest MeJA and post-harvest 1-MCP treatments two days prior to 

harvest, at harvest and during post-harvest storage at 4 °C. C: broccoli pheophytinase (BoPPH) 

transcript abundance D: broccoli pheophorbide a oxygenase, (BoPaO) transcript abundance. 

Different letters indicate significant differences among treatments based on Fisher’s LSD test at 

P ≤ 0.05. Mean ± SD (n=3). 
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Figure 5.3. Effect of pre-harvest MeJA and post-harvest 1-MCP treatments on glucosinolates 

concentrations of florets at 2 days prior to harvest, at harvest (0 days) and during post-harvest 

storage at 4 °C. A: glucoraphanin B: glucobrassicin, C: 4-methoxyglucobrassicin, D: 

neoglucobrassicin E: gluconasturtiin, and F: total glucosinolates. Data are means ± SD (n=3). 

Different letters indicate significant differences among treatments based on Fisher’s LSD test at 

P ≤ 0.05.  
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Figure 5.4. Effect of pre-harvest MeJA and post-harvest 1-MCP treatments on GS hydrolysis 

product concentrations and QR activity of floret extracts at two days before harvest, at harvest 

and during post-harvest storage at 4 °C. A: sulforaphane; B: indole-3-carbinol; C: neoascorbigen; 

D: N-methoxyindole-3-carbinol; E: phenethyl isothiocyanate; and F: QR inductive activity. Data 

are means ± SD (n=3). Different letters indicate significant differences among treatments based 

on Fisher’s LSD test at P ≤ 0.05. ZI3C equivalent concentration (µmole/g DW).  
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Figure 5.5. Effect of pre-harvest MeJA and post-harvest 1-MCP treatment on gene expression of 

GS biosynthetic, hydrolytic, and PR genes in broccoli floret two days after MeJA treatment, at 

harvest and during post-harvest storage at 4 °C. Different letters indicate significant differences 

among treatments based on Fisher’s LSD test at P ≤ 0.05. Mean ± SD (n=3). 
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Figure 5.6. Sulforaphane and phenethyl isothiocyanate (PEITC) conversion from glucoraphanin 

and gluconasturtiin at two days before harvest, at harvest, and during post-harvest storage at 4 °C. 

Different letters indicate significant differences among treatments based on Fisher’s LSD test at 

P ≤ 0.05. Mean ± SD (n=3). 
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Figure 5.7. Proposed model of pre-harvest MeJA and post-harvest 1-MCP treatment effects on 

GS biosynthesis, hydrolysis, QR bioactivity, and visual quality of broccoli florets during post-

harvest storage at 4 °C. Pre-harvest MeJA increases indolyl and aromatic GS biosynthesis (de 

novo GS biosynthesis). Ethylene accumulation induces 4-methoxylation of glucobrassicin rather 

than N-methoxylation of glucobrassicin during post-harvest but 1-MCP maintains glucobrassicin 

concentrations and reduces indolyl GS biosynthesis during post-harvest by inhibiting ethylene 

mediated GS biosynthesis. MeJA enhances synthesis of myrosinase and the hydrolysis of GS to 

favor isothiocyanate formation in the case of glucoraphanin and gluconasturtiin. Blue arrows 

describe MeJA regulated gene expression; green arrows 1-MCP regulated gene expression; and 

red arrows ethylene regulated gene expression.  
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Supplementary Table 5.S1. List of primers used for qRT-PCR in broccoli. 

Target gene 
(Accession number) Description Forward Primer (5’-3’) Reverse Primer (5’-3’) Ref 

Glucosinolate biosynthesis   

BoCYP79B2 Brassica oleracea var. italica cytochrome P450 (CYP79B2) AGCCAAGTCCTTCTCAGTCG ACGAGATAAACCGGAGATCG (Kim, 2011) 
BoCYP83B1 Brassica oleracea var. italica cytochrome P450 (CYP83B1) ACGGAACCGAGATGAAGAGA CTCTCTTGAGACGCGCACTA (Kim, 2011) 

BoCYP79F1 Brassica oleracea var. italica cytochrome P450 (CYP79F1) TCCGATGGTTCTCATGTTGA AACCGGATATCGCATGTTTC (Kim, 2011) 
BoCYP83A1 Brassica oleracea var. italica cytochrome P450 (CYP83A1) TCAAGACGCAAGACGTCAAC CAAGTGGTTCATCCCCATCT (Kim, 2011) 
Glucosinolate hydrolysis   

BoMYO (EU004075) Brassica oleracea myrosinase (MYO) AACGCCTTTCGTTACCCTCT TCACCTTTCCACCAAATTCC (Kim, 2011) 
BoESP (DQ059298) Brassica oleracea var. italica epithiospecifier (ESP) protein CGAGAAGCTCACATGGCATA CTTGGACGGAGAGATTGACC (Kim, 2011) 
BoESM1 (FJ830448.1) Brassica oleracea epithiospecifier modifier 1 (ESM1) ATTCCAAACGGAATCCCGCC CCGGAGCCCCAAGAATAGAA  

Plant defense   

BoPR (EF423806) Brassica oleracea var. gemmifera pathogenesis-related (PR) 
protein CCACCATTGTTACACCTTGCT AACCTTTGGGTCAACGAGAA (Kim, 2011) 

Chlorophyll catabolism     

BoPPH (OL386R) Brassica oleracea pheophytinase AGAGGTTATCGGTGAGCCA 
 

GACGAGATGAGGATGGG 
 (Hasperué et al., 2013) 

BoPaO (AM388844.1) Brassica oleracea pheophorbide a oxygenase GCGAAATTCCCGTCCAGAGTCT
C TTATCTCCGCCGTGCTCTTCTTC (Hasperué et al., 2013) 

qRT-PCR controls   
BoACT1 (AF044573) Brassica oleracea actin (ACT1) TCTCGATGGAAGAGCTGGTT GATCCTTACCGAGGGAGGTT (Kim, 2011) 
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Supplementary Figure 5.S1. Phylogenetic tree of epithiospecifier modifier 1 (ESM1) putatively 

associated with glucosinolate hydrolysis process based on the amino acids sequences deduced 

from the isolated cDNA sequence. Brassica oleracea consensus (cabbage, broccoli, and 

cauliflower), Brassica rapa ssp. perkinesis (ACO57702.1), Brassica napus (ACO57703.1), and 

Arabidopsis thaliana ESM1 (XP_002882872.1) used to construct phylogenetic tree. The values 

in parenthesis are amino acid sequence similarity with B. oleracea consensus by using NCBI 

BLAST search. The tree was constructed using Clustal W2 

(http://www.ebi.ac.uk/Tools/clustalw2/).  
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Supplementary Figure 5.S2. Effects of pre-harvest MeJA and post-harvest 1-MCP treatments on 

ethylene production and respiration rate of broccoli florets at harvest and at 10, 20, and 30 days 

post-harvest storage at 4 °C. Different letters indicate significant differences among treatments 

based on Fisher’s LSD test at P ≤ 0.05. Mean ± SD (n=3). 
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Supplementary Figure 5.S3. Effect of MeJA treatment on broccoli floret myrosinase activity at 

harvest. Student’s T-test was conducted to determine significance. Mean ± SD (n=3).
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Supplementary Table 5.S2. Correlations among phytochemical, QR inducing activity and gene expression of broccoli florets during 

post-harvest storage at 4 °C. Pearson’s correlation coefficients and P-values were calculated based on the means of each treatment 

over the duration of post-harvest storage sampling (n=16, except for ethylene production and hue angle: n=14). Significant positive 

and negative correlations were filled with pink and light green in the cell of the table, respectively based on P ≤ 0.05. 

No Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1 Glucoraphanin                    
2 Glucobrassicin 0.678                   
3 Gluconasturtiin 0.115 0.392                  

4 4-methoxy 
glucobrassicin -0.836 -0.578 0.333                 

5 Neoglucobrassi
cin -0.048 0.494 0.879 0.349                

6 Sulforaphane -0.416 0.091 0.705 0.697 0.860               
7 PEITC -0.356 -0.051 0.768 0.636 0.760 0.827              
8 I3C 0.338 0.703 0.349 -0.211 0.604 0.391 0.091             
9 NeoASG -0.127 0.266 0.914 0.461 0.930 0.842 0.920 0.373            

10 NI3C -0.225 0.214 0.854 0.513 0.909 0.862 0.929 0.333 0.980           
11 QR -0.490 -0.009 0.710 0.716 0.804 0.865 0.857 0.208 0.874 0.899          
12 BoCYP79B2 0.254 0.512 0.029 -0.294 0.278 0.081 -0.192 0.676 0.008 -0.003 -0.091         
13 BoCYP83B1 0.234 0.622 -0.105 -0.366 0.204 0.042 -0.319 0.667 -0.121 -0.107 -0.197 0.882        
14 BoCYP83A1 0.255 0.427 -0.228 -0.404 0.067 -0.075 -0.275 0.687 -0.150 -0.120 -0.237 0.815 0.814       
15 BoCYP79F1 0.197 0.285 -0.365 -0.396 -0.089 -0.162 -0.293 0.558 -0.241 -0.186 -0.304 0.575 0.649 0.941      
16 Ethylene 0.440 0.714 0.248 -0.312 0.287 0.147 -0.168 0.609 0.038 -0.023 -0.140 0.843 0.732 0.856 0.760     
17 Hue Angle 0.602 0.752 0.119 -0.703 0.164 -0.178 -0.082 0.317 0.105 0.053 -0.073 0.176 0.275 0.427 0.488 0.296    
18 BoPAO -0.005 -0.250 -0.017 0.169 -0.242 -0.108 -0.215 -0.269 -0.268 -0.296 -0.363 -0.098 -0.061 -0.228 -0.240 0.218 -0.641   
19 BoPPH -0.269 -0.581 0.057 0.469 -0.180 0.057 0.045 -0.393 -0.090 -0.114 -0.099 -0.200 -0.325 -0.371 -0.382 -0.152 -0.868 0.867  

20 Total 
chlorophyll 0.590 0.396 -0.493 -0.811 -0.433 -0.602 -0.541 0.098 -0.497 -0.463 -0.603 0.161 0.317 0.460 0.557 0.150 0.719 -0.372 -0.642 
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CHAPTER 6 

Pre-harvest Methyl Jasmonate Treatment Enhances Cauliflower Chemoprotective 

Attributes without a Loss in Post-harvest Quality8 

 

6.1. Abstract  

Methyl jasmonate (MeJA) treatment can significantly increase glucosinolate (GS) 

concentrations in Brassica vegetables and potentially enhance anticancer bioactivity. 

Although MeJA treatment may promote ethylene biosynthesis, which can be detrimental 

to post-harvest quality, there are no previous reports of its effect on cauliflower post-

harvest quality. To address this, cauliflower curds in field plots were sprayed with either 

0.1% Triton X-100 (control) or 500 µM MeJA solutions four days prior to harvest, then 

stored at 4 °C. Tissue subsamples were collected after 0, 10, 20, and 30 days of post-

harvest storage and assayed for visual color change, ethylene production, GS 

concentrations, and extract quinone reductase inductive activity. MeJA treatment 

increased curd GS concentrations of glucoraphanin, glucobrassicin, and 

neoglucobrassicin by 1.5, 2.4, and 4.6 fold over controls, respectively. MeJA treated 

cauliflower showed significantly higher quinone reductase activity, a biomarker for 

anticancer bioactivity, without reducing visual color and post-harvest quality for 10 days 

at 4 °C storage. 

 

                                     
8 Reprinted from Plant Foods for Human Nutrition, Ku, K.M., Choi J.-H., Kushad, M.M., 
Jeffery, E.H, and Juvik J.A., Pre-harvest methyl jasmonate treatment enhances 
cauliflower chemoprotective attributes without a loss in post-harvest quality 68 (2), 113-
117. Copyright (2013) with kind permission from Springer Science and Business Media. 
The designated DOI is 10.1007/s11130-013-0356-y. 
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6.2. Introduction 

 Consumption of cruciferous vegetables, in particular subspecies of Brassica 

oleracea including broccoli, cauliflower, kale, and Brussels sprouts, provide putative 

cancer preventive effects as shown in epidemiological and animal carcinogenesis studies 

(van Poppel et al., 1999). The glucosinolates (GS) found in accessions of B. oleracea 

have been identified as potent cancer prevention agents because certain GS hydrolysis 

products induce biosynthesis and bioactivity of mammalian phase II detoxification 

enzymes such as glutathione S-transferases (GSTs), quinone reductase (QR) and UDP-

glucuronosyl transferase that can enhance detoxification and elimination of carcinogens 

from the body (Cuendet et al., 2006). Up-regulation of QR activity has been used as a 

biomarker for cancer prevention because this enzyme is a catalyst for the conversion of 

quinones into stable and non-toxic hydroquinones, reducing oxidative cycling  (Cuendet 

et al., 2006). Moreover, QR activity elevation with in vitro and in vivo systems has been 

shown to correlate with induction of other protective phase II enzymes such as the GSTs 

and provides a reasonable biomarker for the potential chemoprotective effect of 

phytochemical test agents active against cancer initiation (Cuendet et al., 2006). 

  Methyl jasmonate (MeJA), a plant signal transduction compound, can act as an 

elicitor to enhance GS biosynthesis. Previous research has shown that MeJA can 

significantly increase neoglucobrassicin and gluconasturtiin in broccoli (Kim and Juvik, 

2011) but the magnitude of this effect is cultivar dependent. This suggests that among 

subspecies of B. oleracea biosynthesis of specific GS may show a differential response to 

MeJA treatment. 
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 Cauliflower (Brassica oleracea L. var. botrytis) is known as a good source of 

glucobrassicin and minerals including iron, copper, and zinc (Singh et al., 2001). It is 

closely related to broccoli and is also a perishable horticultural crop. Consequently, visual 

color is an important factor in retailer and consumer evaluation of product quality and 

subsequent purchasing decisions (Dixon, 2007). Previous research reported that 1 mM 

MeJA post-harvest treatment significantly enhanced ethylene biosynthesis and promoted 

senescence in broccoli (Watababe et al., 2007), adversely affecting post-harvest product 

quality. There are no reports that evaluate pre-harvest MeJA treatment effects on 

cauliflower post-harvest quality and physiology. Thus, the objectives of this research are 

to evaluate the MeJA effect on glucosinolate composition and quinone reductase 

bioactivity of cauliflower curd extracts and post-harvest quality.  

   

6.3. Materials and Methods 

6.3.1. Plant Cultivation. ‘Candid Charm’ cauliflower (Territorial Seed Company, 

Cottage Grove, OR) seeds were germinated in 32 cell plant plug trays filled with 

sunshine® LC1 professional soil mix (Sun Gro Horticulture, Vancouver, British 

Columbia, Canada). Seedlings were grown in a greenhouse at the University of Illinois at 

Champaign-Urbana under a 25 °C/15 °C and 14 h/10 h: day/night temperature regime 

and with supplemental lighting. Three weeks after germination, seedlings were placed in 

ground beds to harden off for a week prior to transplanting into field plots at the 

University of Illinois South Farm (40˚ 04′ 38.89″ N, 88˚ 14′ 26.18″ E). Transplanting of 

cauliflower seedlings was done on 24 June 2011 and harvesting was conducted on 8 

October 2011.  
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6.3.2. MeJA Treatments and Sample Preparation. An aqueous solution of 500 µM 

MeJA (Sigma-Aldrich, St. Louis, MO) and 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, 

MO) was sprayed on plant leaf tissues to the point of runoff four days prior to harvest at 

commercial maturity. For the control group, an aqueous solution of 0.1% Triton X-100 

solution was applied to plants. Harvested cauliflower curds from both control and MeJA 

treatments were immediately transported to the laboratory, divided into branchlets and 

stored at 4 °C. Three random subsamples of cauliflower branchlets in each treatment 

were collected for each of the following assay dates: 0, 10, 20, and 30 days. Pictures of 

cauliflower curds showing visual quality from each assay date are presented in Figure 6.1. 

After measuring ethylene production and hue degree, a measure of visual color quality, 

each sample was freeze-dried. Freeze-dried cauliflower curd tissue of each sample was 

finely ground with a commercial coffee grinder. The ground freeze-dried cauliflower 

samples were stored at -20 °C prior to GS quantification and quinone reductase 

bioactivity assay. 

 

6.3.3. Hue Degree Measurement. Sample post-harvest visual quality was measured by 

using a LabScan XE colorimeter (Hunter Associates Laboratory, Reston, VA, USA) 

generating values for a* (redness and greenness), and b* (yellowness and blueness). The 

instrument was calibrated with a standard white and black tile. Average of four different 

cauliflower branchlets were recorded in each replication. Hue degree (h°) was calculated 

as h° = tan-1 (b*/a*) when a*>0 and b*>0, or as h° = 180° - tan-1 (b*/a*) when a<0 and 

b>0.   
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6.3.4. Determination of Ethylene Production and Respiration Rate. Three random 

subsamples (300 g each) of cauliflower curd branchlets from each treatment and post-

harvest storage date were placed into 3 L jars and sealed with a silicon rubber cap for 1 h 

at 20 °C. 1mL of headspace gas in the jar was injected into a GC (Perkin Elmer 

AutoSystem Gas Chromatograph, Waltham, MA, USA) equipped with an activated 

alumina column and flame ionization detector. The temperature of the injector, detector 

and column was 100 °C, 200 °C and 80 °C, respectively. The flow rate of carrier gas 

helium, hydrogen, and air were 70, 30, and 300 mL/min, respectively. Samples were 

calibrated a using 10 µL/L ethylene standard. The rate of ethylene production was 

expressed as µL of ethylene/kg of sample/h. 

 

6.3.5. Determination of Sample GS Concentrations. Freeze-dried broccoli powder (0.2 

g) and 2 mL of 70% methanol were added to 10 mL tubes (Nalgene, Rochester, NY) and 

heated on a heating block at 95 °C for 10 min. After cooling on ice, 0.5 mL 

benzylglucosinolate (1 mM) was added as internal standard (POS Pilot Plant Corp, 

Saskatoon, SK, Canada), mixed, and centrifuged at 3,000 × g for 15 min at 4 °C. The 

supernatant was saved and the pellet was re-extracted with 2 mL 70% methanol at 95 °C 

for 10 min and the two extracts combined. A subsample (1 mL) from each pooled extract 

was transferred into a 2-mL microcentrifuge tube. Protein was precipitated with 0.15 mL 

of a 1:1 mixture of 1 M lead acetate and 1 M barium acetate. After centrifuging at 12,000 

× g for 1 min, each sample was then loaded onto a column containing DEAE Sephadex 

A-25 resin (Sigma-Aldrich, St. Louis, MO) for desulfation with arylsulfatase (Helix 

pomatia Type-1, Sigma-Aldrich, St. Louis, MO) for 18 h and the desulfo-GS eluted. One 
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hundred µL of each sample were injected on to a HPLC. Quantification of GS using 

high-performance liquid chromatography was performed using a protocol described by 

Brown et al. (2002). 

 

6.3.6. Quinone Reductase (QR) Inductive Activity. For the QR assay, 50 mg of 

cauliflower curd powder from each sample were suspended in 1 mL of water in the 

absence of light for 24 h at room temperature in a sealed 2 mL microcentrifuge tube 

(Fisher Scientific, Waltham, MA) to facilitate GS hydrolysis by endogenous myrosinase. 

Slurries were then centrifuged at 12,000 × g for 10 min and supernatants filtered through 

a 0.45 µm nylon membrane and diluted to 1% final concentration in the QR activity 

assays. The QR induction activities of different samples were determined by means of the 

protocol described by Prochaska and Santamaria (1988).  Hepa1c1c7 murine hepatoma 

cells (ATCC, Manassas, VA) were grown in alpha-minimum essential medium (MEM), 

enriched with 10% heat and charcoal-inactivated fetal bovine serum and maintained at 

37 °C in 95% ambient air and 5% CO2. After 24 h cells were exposed to the different 

sample extracts (0.25% final concentration in 200 µL of media) in new media for a 

further 24 h. Treated cells were rinsed with phosphate buffer at pH 7.4, lysed with 50 µL 

0.8% digitonin in 2 mM EDTA, incubated and agitated for 10 min. A 200-µL aliquot of 

reaction mix [8] was added to the lysed cells. Readings were made at five time points, 50 

s apart, using a µQuant microplate reader (Bio-Tek Instruments, Winooski, VT) at 610 

nm. Immediately after completion of the readings, 50 µL of 0.3 mM dicumarol in 25 mM 

Tris buffer was added into each well, and the plate was read again (five time points, 50 s 

apart) to determine non-specific MTT (methylthiazolyldiphenyl-tetrazolium bromide) 
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reduction. Total protein content was measured by the BioRad assay (Bio-Rad, Hurcules, 

CA, USA) following the instruction. Activity was expressed as QR specific activity 

(nmol MTT reduced/mg/min) ratio of treated to control cells. 

 

6.3.7. Statistical Analysis. Statistical analyses were conducted using the JMP 9 software 

(SAS institute Inc., Cary, NC). Student’s T-tests was conducted for significance at P = 

0.05. Pearson correlation was conducted between QR inductive activity and GS 

concentrations based on the mean values of each treatment across post-harvest storage 

dates. All sample analyses were conducted in triplicate. The results are presented as 

Means ± SD. 

 

6.4. Results and Discusssion 

6.4.1. Change in Hue and Ethylene Production for Cauliflower Curds Subjected to 

MeJA Treatments. Treatment with 500 µM MeJA did not significantly affect either 

sample hue degree (90° = yellow and 0° = red) or ethylene production of cauliflower 

curds at 4 °C post-harvest storage temperature (Table 6.1). Visual color of cauliflower is 

an important factor in consumers’ purchasing decisions (Dixon, 2007). MeJA treatment 

did not alter sample hue degree, indicating that these treatments did not negatively impact 

cauliflower visual quality over the course of post-harvest storage (Figure 6.1). 

 

6.4.2. Response in GS Levels to MeJA Treatments. Treatment with MeJA significantly 

increased glucoraphanin, glucobrassicin, and neoglucobrassicin concentrations in 

cauliflower curd samples. At harvest, the relative increase of these GS was 1.53, 2.38, 
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and 4.61 fold over controls, respectively (Figure 6.2). The enhanced GS concentrations 

observed in the MeJA treatments compared to controls were maintained over the duration 

of post-harvest storage. Previous reports indicate jasmonate treatments increased 

gluconasturtiin and neoglucobrassicin concentrations in broccoli florets (Kim and Juvik, 

2011) and glucoiberin, progoitrin, sinigrin, and gluconapin concentrations in cabbage 

(Fritz et al., 2010). Both jasmonate (JA) and MeJA induced significant increases (up to 

20-fold) in the concentration of specific indolyl GS in cotyledons and leaves of oilseed 

rape, Brassica napus (the GS, glucobrassicin) and B. rapa, (the GS, 4-hydroxy 

glucobrassicin) and the mustard B. juncea (both) (Bodnaryk, 1994). The different 

responses to MeJA treatment observed in this study suggest that variation in GS response 

to MeJA is species specific. Treatment with MeJA increased glucoraphanin in our study, 

implying aliphatic GS can be increased by MeJA treatment, as was observed for cabbage 

(Fritz et al., 2010). 

 

6.4.3. QR Induction Activity of Cauliflower Treated with MeJA. QR induction 

activity of cauliflower curd extracts treated with MeJA was significantly increased 

compared to controls at 4 °C postharvest storage (Figure 6.3). The increased QR activity 

may be due to the higher concentrations of glucoraphanin and/or glucobrassicin for which 

hydrolysis products have been reported to induce QR (Zhang et al., 1992; Zhu and Loft, 

2003). The enhanced QR activity in the MeJA treated group was maintained through 

thirty days at 4 °C but only significantly higher than controls at 0 and 10 days postharvest 

storage (Figure 6.3). 
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6.4.4. Correlations between QR Induction Activity and Enhanced GS. Significant 

correlations were observed between extract induced QR activity and the GS 

concentrations of glucoraphanin (r = 0.831, P = 0.011), glucobrassicin (r = 0.893, P = 

0.003), and neoglucobrassicin (r = 0.807, P = 0.016) in cauliflower curd samples during 

postharvest storage at 4 °C (Figure 6.4). Hydrolysis products of glucoraphanin 

(sulforaphane) and glucobrassicin (indole-3-carbinol, I3C) are known as relatively strong 

and moderate QR inducers, respectively (Zhang et al., 1992; Zhu and Loft, 2003). This 

implies that GS concentrations in cauliflower increased by MeJA treatments may 

enhance the induction of QR activity in Hepa1c1c7 murine hepatoma cells.  

 N-methoxy-indole-3-carbinol (NI3C) derived from the hydrolysis of 

neoglucobrassicin has been shown to exert an antiproliferative effect on a human colon 

cancer cell line (Neave et al., 2005). It has been reported that a combination of I3C and 

NI3C in a 1:1 ratio has stronger antiproliferative activity on human colon cancer cells 

than either compound alone (Bitir et al., 2011). The MeJA treatment changed the ratio of 

I3C and NI3C from approximately 6:1 in control samples to 3:1 in MeJA treated samples, 

which being closer to the 1:1 ratio should favor increased inhibition of colon cancer cell 

proliferation. Recent research has also reported that NI3C may inhibit QR activity 

induced by sulforaphane in HepG2 cells (Haack et al., 2010). In contrast, in our study we 

observed that increased neoglucobrassicin concentrations did not block increases in QR 

and were positively associated with enhanced QR activity. This contrasting observation 

may be due to the different cell line used for our QR assays. It is also possible that the 

increased neoglucobrassicin observed in our experiments was at too low a concentration 
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to interfere with QR activity induced by sulforaphane. These contradictory results suggest 

a need for additional research on the role of NI3C in cancer prevention.   

 To our knowledge, this is the first study investigating the influence of pre-harvest 

MeJA treatments on the postharvest quality and anticancer bioactivity of cauliflower. 

Pre-harvest treatments of 500 µM MeJA were observed to enhance QR, likely due to 

increasing glucoraphanin, glucobrassicin, and/or neoglucobrassicin cauliflower curd 

concentrations, without a detrimental effect on the maintenance of postharvest visual 

quality. Therefore, MeJA treatment can be a useful elicitor to enhance the potential 

health-promoting properties of cauliflower, without, a loss of postharvest quality. 
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Table 6.1. Effect of pre-harvest MeJA treatment on visual color change (hue degree) and 

ethylene production of cauliflower curds during postharvest storage at 4 °C. 

Hue degree 

Storage days at 4 °C 0 10 20 30 

Control 91.9 ± 0.8 89.9 ± 0.8 89.6 ± 1.2 87.9 ± 0.8 

MeJA 91.0 ± 0.6 89.9 ± 0.1 89.9 ± 0.3 88.1 ± 0.8 

Ethylene production (µL Kg-1 hr-1) 

Storage days at 4 °C 0 10 20 30 

Control 0.42 ± 0.11 1.10 ± 0.10 0.74 ± 0.24 0.67 ± 0.10 

MeJA 0.32 ± 0.09 0.90 ± 0.10 0.44 ± 0.25 0.82 ± 0.43 
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Figure. 6.1. Representative samples of cauliflower curds with or without preharvest 

MeJA (500 µM) treatment during postharvest storage at 4 °C at each of the assay dates: 0, 

10, 20 and 30 days. 
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Figure 6.2. Effect of pre-harvest MeJA treatment on glucosinolates concentrations of 

cauliflower curds and glucosinolate concentration change during postharvest storage at 

4 °C. A: glucoraphanin B: glucobrassicin, and C: neoglucobrassicin. 

Data are means ± SD (n=3). Asterisks indicate significant differences between treatments 

at P ≤ 0.05. 
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Figure 6.3. Effect of pre-harvest MeJA (500 µM) treatment on QR activity of cauliflower 

curd extracts during postharvest storage at 4 °C. 

Data are means ± SD (n=3). Asterisks indicate significant differences between treatments 

at P ≤ 0.05. 
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Figure 6.4. Correlations between QR inductive activity and enhanced glucosinolates 

during postharvest storage at 4 °C.  

Pearson’s correlation coefficients and p-values were calculated based on the means of 

each treatment over the duration of postharvest storage sampling (n=8).  
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CHAPTER 7 

Optimization of MeJA Application to Broccoli Florets for Enhancing Potential 

Human Health Promoting Compounds 

 

7.1. Abstract 

Isothiocynates derived from glucosinolates (GS) in brassica vegetables have been 

reported to induce quinone reductase activity, an important cancer chemopreventative 

biomarker. Methyl jasmonate (MeJA) has been shown to increase GS and reduce insect 

damage in broccoli. For these reasons we have conducted several studies to determine 

application protocols that maximize accumulation of GS and other phytochemicals in 

broccoli florets. We investigated the effect of Triton X-100 surfactant and varying MeJA 

application concentrations (0, 62.5, 125, 250, and 500 µM), number, and application date 

in days prior to harvest of broccoli florets of the cultivar ‘Green Magic’.  

MeJA application four days prior to harvest generated broccoli florets with the 

highest concentrations of GS. Although a single application of 250 µM MeJA 

significantly increased GS concentrations in broccoli florets, two consecutive days of 

treatment (four and three days prior to harvest) of 250 µM MeJA further increased total 

GS concentrations (primarily neoglucobrassicin) and QR activity four days prior to 

harvest. In addition to GS levels the flavonoids, quercetin and kaempherol, were 

observed to show minor but significant increases when 62.5 µM MeJA was applied four 

days prior to harvest, with higher treatment concentrations decreasing flavonoids and 

total phenolics. With increasing treatment concentrations of MeJA to broccoli florets 

gluconasturtiin, neoglucobrassicin, and sulforaphane floret concentrations were gradually 
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increased. Concentration of these compounds also showed positive correlations with QR 

inductive and nitric oxide production inhibitory activity. These application protocols 

were found to maximize GS concentrations and putatively enhance the health promoting 

properties of broccoli florets. 

 

7.2. Introduction 

Jasmonic acid (JA) and its derivatives are signal transduction compounds, 

associated with the regulation of plant defense against herbivores. JA was originally 

isolated from a pathogenic fungus, Lasiodiplodia theobromae (Aldridge et al., 1971). 

However, methyl jasmonic acid (MeJA) was firstly isolated from Jasminium 

grandiflorum L. flower before JA was discovered (Demole et al., 1962). MeJA is used as 

a fragrance in many products (Scognamiglio et al., 2012). The LD50 of MeJA was found 

to be greater than 5 g/kg administered by to Sherman Wistar rats (Scognamiglio et al., 

2012) making it safer to consume than table salt (LD50 = 3 g/kg). 

Research has shown the potential of JA application to Brassica vegetables for 

insect management (Brader et al., 2006; Bruinsma et al., 2007; McEwen, 2011) and 

health promotion. According to McEwen (2011), MeJA application deterred feeding by 

flea beetles (Phyllotreta spp.) and lepidopteran species (Pieris rapae and Trichoplusia 

ni). MeJA application can enhance total phenolic concentrations in radish (Kim et al., 

2006a) and buckwheat sprouts (Kim et al., 2011) and sweet basil (Kim et al., 2006b).  

Several studies have shown that MeJA mediated increases in flavonoids or phenolics can 

enhance antioxidant, antiproliferative, and anti-adipogenic activity of sweet basil, 

buckwheat, and blackberry (Kim et al., 2006b; Lee et al., 2013; Wang et al., 2008). 
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Pérez-Balibrea et al. (2011) reported that MeJA increased glucosinolate concentrations 

(GS) in broccoli sprouts. Fritz et al. (2010) also reported that JA increased glucoiberin, 

progoitrin, sinigrin, and gluconapin in cabbage. For these reasons, JAs could be used in 

vegetable production fields. 

GS are secondary metabolites mainly found in almost all plants of the order 

Brassicales. The myrosinase-derived hydrolysis products of GS in broccoli have been 

shown to enhance phase II detoxifying enzymes and other health-promoting activities 

such as anti-inflammation (Bonnesen et al., 2001; Lin et al., 2008; Zhang et al., 1994). 

Among various hydrolysis products of GS, isothiocyanates including sulforaphane, allyl 

isothiocyanate, and phenethyl isothiocyanate have anti-carcinogenic activity and induce 

phase II detoxifying enzymes including glutathione S-transferase (GST) and quinone 

reductase (QR) (Kang and Pezzuto, 2004; Rose et al., 2000; Zhang et al., 1994). Up-

regulation of QR activity has been used as a biomarker for cancer prevention because this 

enzyme is a catalyst for the conversion of quinones into stable and non-toxic 

hydroquinones, reducing oxidative cycling (Talalay et al., 1995).  

Nitric oxide (NO) is an essential mammalian signaling molecule that mediates 

many physiological processes, including vasodilatation, host-defense, platelet 

aggregation, and iron metabolism. However, the body of evidence suggests that elevated 

levels of NO produced during chronic inflammation can attribute to a variety of 

pathological disorders, including cancer (Cheng et al., 2010; Hofseth et al., 2003). NO 

and NO-derived reactive nitrogen species induce oxidative and nitrosative stress which 

results in DNA damage and inhibition of DNA repair enzymes (Hofseth et al., 2003; 

Muntane and la Mata, 2010). NO is synthesized by three differentially gene-encoded NO 
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synthase genes (NOS) in mammals: neuronal NOS (nNOS or NOS-1), inducible NOS 

(iNOS or NOS-2) and endothelial NOS (eNOS or NOS-3). The expression of NOS-2 and 

NOS-3 has been found to be increased in a variety of human cancers (Muntane and la 

Mata, 2010). Thus, inhibition of excessive NO production can be a good strategy for anti-

inflammation and its association with carcinogenesis.  

 Previous research in our lab observed a broccoli genotype by MeJA treatment 

interaction in greenhouse studies (Kim and Juvik, 2011). However, there exists no 

standardized protocol for MeJA application on Brassica species that optimize beneficial 

phytochemical concentrations. The objectives of this study were to (1) examine 

application concentration and harvest time of broccoli in order to optimize efficacy, (2) 

compare the effect of different plant target tissues for application and (3) examine the 

effect of multiple applications of MeJA and the interaction with different surfactants. 

 

7.3. Materials and Methods 

7.3.1. Broccoli Cultivation. The cultivar used for these experiments was the F1 hybrid 

broccoli cultivar ‘Green Magic’ (Sakata Seed Co., Morgan Hill, CA). Seeds were 

germinated in small pots filled with sunshine® LC1 professional soil mix. Seedlings 

were grown in a greenhouse at the University of Illinois at Champaign-Urbana under a 

25 °C/15 °C and 14 h/10 h : day/night temperature regime and with supplemental lighting. 

Thirty days after germination, seedling trays were placed in ground beds to harden off for 

a week prior to transplanting into field plots at the University of Illinois South Farm (40˚ 

04′ 38.89″ N, 88˚ 14′ 26.18″ E). Experimental design was a randomized complete block 

with three replicates. The experiment plot was surrounded by a guard row to avoid border 
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effects. Transplanting of broccoli seedlings was conducted on June 11, 2010 and June 13, 

2011. Harvesting broccoli occurred in mid August to early September in both 2010 and 

2011.  

 

7.3.2. MeJA Spray Treatments.  

7.3.2.1. Experiment 1. Determination of the appropriate Harvest Date after MeJA 

Treatment. To determine optimum harvest date, solutions of 250 µM of MeJA (Sigma-

Aldrich, St. Louis, MO) containing 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO) 

where sprayed on all aerial portions of ‘Green Magic’ broccoli plants 1, 2, 4, 6, and 8 

days prior to harvest of heads at commercial harvest maturity. Each plant received 

approximately 300 ml of solution over all aerial portions until leaves and heads were 

completely saturated. Using these broccoli samples, GS concentration was measured as 

described below. 

 

7.3.2.2. Experiment 2. Multiple MeJA Spray Treatments, GS concentrations, and 

QR Activity. The effect of multiple spray treatments were tested where treatments 

included, spraying once (4 days before harvest) or twice (4 and 3 days before harvest) or 

three times (4, 3, and 2 days before harvest) over all aerial portions of broccoli before 

harvesting heads at commercial maturity. This experiment was done in 2010 and 2011. 

Using these broccoli samples, GS concentration and QR activity were measured as 

described below. 
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7.3.2.3. Experiment 3. Optimal Concentrations of MeJA in applications. To determine 

optimum concentrations for single application, 62.5, 125, 250, and 500 µM of MeJA 

solutions containing 0.1% Triton X-100 were sprayed on broccoli aerial plant tissues four 

days prior to harvest at commercial maturity. Using these broccoli samples, GS, 

flavonoid, total phenolics, and sulforaphane concentration as well as QR activity and NO 

production inhibitory activities were measured as described below.  

 

7.3.2.4. Experiment 4. MeJA Applications to Different Plant Tissues. In order to 

determine the effect of MeJA on specific plant tissues, 250 µM MeJA containing 0.1% 

Triton X-100 was applied exclusively to leaf tissue only, to both leaf and head tissues, 

and poured onto the soil surrounding the crown of the tap root using same volume of 

MeJA (300 mL) four days prior to harvest at commercial maturity. 0.1% Triton X-100 

applied to both leaf and head tissues was used as a control. Each of these treatments were 

applied to five different plants in each of three replicates. 

 

7.3.2.5. Experiment 5. Influence of Triton X-100 on Broccoli Head Color. In order to 

determine if the surfactant or solvent effect had any effect in the control treatments, 

solutions of 0.1% of Triton X-100 were tested on ‘Green Magic’ broccoli multiple times 

as described above in experiment 2. 0.1% of ethanol with MeJA also was applied to 

‘Green Magic’ as a control. After harvest product color of broccoli florets was measured 

by colorimeter as described below. 

 At the commercial maturity, five broccoli heads were harvested for each replicate 

in each of the above experiments, in a randomized complete block design. Broccoli heads 
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were frozen in liquid nitrogen, and stored at -20 °C prior to freeze-drying. After 

lyophilization, samples were ground into fine powder and stored at -20°C until chemical 

analysis and bioactivity measurement. 

 

7.3.3. Determination of GS Content. GS in lyophilized tissues were extracted and 

analyzed by high-performance liquid chromatography using a reverse phase C18 column 

as described by Kim and Juvik (2011). GS were desulfated with sulfatase solution 

(Sigma-Aldrich, St. Louis, MO) in columns containing DEAE Sephadex A-25 resin 

(Sigma-Aldrich, St. Louis, MO), and eluted desulfo-GS were separated on a HPLC 

system consisting of a DIONEX GP40 gradient pump, with a AD20 variable UV detector 

set at λ229 nm wavelength, auto-sampler, all-guard ™ cartridge precolumn (Alltech, 

Lexington, Kentucky), and a LiChosphere® 100 RP-18 column (Merck, Darmstadt, 

Germany). The type and amount of GS in each sample were calculated in comparison to 

certified GS levels in a standard rapeseed reference material (BCR 367, Commission of 

the European Community Bureau of References, Brussels, Belgium). GS were quantified 

with benzylglucosinolate (POS Pilot Plant Corp, Saskatoon, SK, Canada) as an internal 

standard using UV response factors for different types of GS determined by Wathelet et 

al. (1995). The identification of intact and desulfo-GS profiles were validated by LC-

tandom MS using a Waters 32 QT of Ultima spectrometer coupled to a Waters 1525 

HPLC system and full scan LC-MS using a Finnigan LCQ Deca XP, respectively. The 

molecular ion and fragmentation patterns of individual intact and desulfo GS were 

matched with the literature for GSs identification (Tian et al., 2005; Velasco et al., 2011). 
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7.3.4. Quinone Reductase (QR) Activity. Hepa1c1c7 murine hepatoma cells were 

grown in alpha-minimum essential medium (MEM), enriched with 10% heat and 

charcoal-inactivated fetal bovine serum and maintained at 37 °C in 95% ambient air and 

5% CO2. The cells were split every 4 days with a split ratio of 7. Cells with 80-90% 

confluence were plated into 96-well plates (Costar 3595, Corning Inc, Corning, NY), 1 × 

104 cells per well, and incubated for 24 h in antibiotic-enriched media (100 units/mL 

penicillin, 100 µg/mL streptomycin). The QR induction activities of different samples 

were determined by means of QR assay (Prochaska & Santamaria, 1988). The cells were 

grown in 96-well plates (Costar 3595, Corning Inc, Corning, NY) for 24 h and then 

exposed to the different samples for 24 hr. Growth media and 1 µM b-naphthoflavone 

were used as negative and positive controls, respectively. Treated cells were rinsed with 

phosphate buffer at pH 7.4, lysed with 50 µL 0.8% digitonin in 2 mM EDTA, incubated 

and agitated for 10 min. A 200-µL aliquot of mixed solution [74 mL of 25 mM Tris 

buffer; 50 mg of BSA; 0.5 mL of 1.5% Tween-20 solution; 0.5 mL of thawed cofactor 

solution (92.7%, 150 mM glucose-6-phosphate; 6.15%, 4.5 mM NADP; 1.14%, 0.75 mM 

FAD in Tris buffer]; 150 units of glucose-6-phosphate dehydrogenase; 22.5 mg of MTT 

(3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide); and 75 µL of 50 mM 

menadione in acetonitrile) was added into lysed cells. Readings were made at five time 

points, 50 s apart, using a µQuant microplate reader (Bio-Tek Instruments, Winooski, VT) 

at 610 nm. Immediately after completion of the readings, 50 µL of 0.3 mM dicumarol in 

25 mM Tris buffer was added into each well, and the plate was read again (five time 

points, 50 s apart). Total protein content was measured by BioRad assay (Bradford, 1976). 
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QR induction activity was expressed as the specific activity (nmol MTT 

reduced/mg/mins) ratio of treated to control cells. 

 

7.3.5. Analysis of Sulforphane Production. The extraction and analysis of sulforphane, 

the bioactive hydrolysis product of glucoraphanin was carried out according to previously 

published methods, with some modifications (Wilson et al., 2011). 75 mg of broccoli 

powder was suspended in 1.5 mL of water in the absence of light for 24 h at room 

temperature in a sealed 2 mL microcentrifuge tube (Fisher Scientific, Waltham, MA) to 

facilitate GS hydrolysis by endogenous myrosinase. Slurries were then centrifuged at 

12,000 × g for 5 min and supernatants was decanted into a 2 mL microcentrifuge tube. 20 

µL of benzyl isothiocyanate (0.5 mg/mL) was added as the internal standard to quantify 

SF with 0.5 mL of methylene chloride. Tubes were shaken vigorously before being 

centrifuged for 2 min at 9,600 g. The methylene chloride layer (200 µL) was transferred 

to 350 µL flat bottom insert (Fisher Scientific, Pittsburgh, PA) in a 2 mL HPLC 

autosampler vial (Agilent, Santa Clara, CA) for mixing with 100 µL of a reagent 

containing 20 mM triethylamine and 200 mM mercaptoethanol in methylene chloride. 

The mixture was incubated at 30 °C for 60 min under constant stirring, and then dried 

under a stream of nitrogen. The residue containing the sulforphane derivative 

(sulforphane-mercaptoethanol derivative) was dissolved in 200 µL of acetonitrile /water 

(1:1) (v/v), and 10 µL of this solution injected onto a Agilent 1100 HPLC system 

(Agilent, Santa Clara, CA), equipped with a G1311A bin pump, a G1322A vacuum 

degasser, a G1316A thermostatic column compartment, a G1315B diode array detector 

and an HP 1100 series G1313A autosampler. Extracts were separated on a Eclipse XDB-
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C18 column (150 × 4 mm, particle size 5 µm, Agilent, Santa Clara, CA) with a C18 all-

guard™ cartridge pre-column (Alltech, Lexington, KY). Mobile phase A was water and 

B methanol. Mobile phase B was 0% at injection, increasing to 10% by 10 min, 100% at 

35 min, and held 5 min, then decreased to 0% by 50 min. Flow rates were kept at 

0.8 mL/min. The detector wavelength was set at 227 and 271 nm. 

 

7.3.6. Determination of Flavonoid Concentrations. 200 mg samples of broccoli powder 

were weighed and added with 4 mL of 60% methanol to a 15 mL conical centrifuge tube 

(BD Falcon, San Jose, CA). After a 20 min extraction at 90 °C, the tubes were 

centrifuged and 1.2 mL of extract supernatant transferred to 2 mL microcentrifuge tube 

(Fisher Scientific, Waltham, MA) to which 0.24 mL of 6N HCl was added. The tubes 

were then heated at 90°C for 2 hr. The extract was cooled, filtered through a 0.45 µm 

Whatman (Clifton, NJ) membrane filter before injection into the HPLC (Kurilich et al. 

2002). Hydrolyzed flavonoid concentrations were evaluated using an Agilent 1100 HPLC 

system (Agilent, Santa Clara, CA), equipped with a G1311A bin pump, a G1322A 

vacuum degasser, a G1316A thermostated column compartment, a G1315B diode array 

detector and an HP 1100 series G1313A autosampler.  Samples were analyzed on a 

Supercosil™ LC-18 (250 × 4 mm, particle size 5 µm) (Supelco Inc., Bellefonte, PA) with 

a C18 all-guard ™ cartridge precolumn (Alltech, Lexington, KY). The mobile phase A 

was water and mobile phase B was methanol with 0.1% acetic acid. The mobile phase B 

started at 0% in the initial stage, increasing to 60% by 15 mins, 80% at 20 mins, and 100% 

at 25 mins, and held 5 mins with 2 mL/min of flow rate, then decreased to 0% at 35 mins. 

Prior flow rates were kept at 1 mL/min. The detector wavelength set at was λ360 nm. 
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7.3.7. Determination of Total Polyphenol Content (TPC). 200 mg samples of fine 

powder were extracted with 4 mL of 70% methanol solvent at 95 °C for 10 min. After 5 

min cooling on ice, the extract was centrifuged at 1500 g for 10 min. Subsequently, 1 mL 

of the supernatant was transferred to a 2 mL microcentrifuge tube (Fisher Scientific, 

Waltham, MA). After centrifuging, the supernatant was used to quantify TPC. TPC was 

analyzed using the method of Ku et al. (2010). The assay conditions were as follows: a 10 

µL sample was added to 0.2 N Folin-Ciocalteu’s phenol reagent (100 µL) in 96 well 

plates. After 3 min, 90 µL of a saturated sodium carbonate solution was added to the 

mixture and subsequently incubated at room temperature for 1 hr. The resulting 

absorbance of the mixture was measured at 630 nm using a BioTek EL 808 microplate 

reader (Biotek Instruments Inc., Power Wave XS, Winooski, VT). The total polyphenol 

content was calculated on the basis of a standard curve with gallic acid. The standard 

solution concentrations ranged from 31.25 to 500 µg/mL. Results were expressed in 

milligrams of gallic acid equivalent (GAE) per 100 g of dried broccoli. Samples were 

assayed in triplicate. 

 

7.3.8. Inhibitory Effect on Nitric Oxide (NO) Production Activated by 

Lipopolysaccharide (LPS). The mouse macrophage cell line, Raw 264.7, was grown in 

high-glucose Dulbecco’s Modified Eagle’s Medium (DMEM, Hyclone Laboratories, 

Logan, UT) supplemented with 10% fetal bovine serum (Hyclone), 4 mM glutamine and 

penicillin (100 U/ml) / streptomycin (100 µg/ml) (Gibco BRL, Grand Island, NY). Cell 

suspensions of 2 × 104 cells/well were cultured in a flat-bottom 96-well plate for 2 days. 

Thereafter, 200 µL of medium was replaced with fresh high-glucose, phenol red free 
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DMEM (Gibco) containing either LPS (1 µg/ml, E. coli, serotype 0.55:B5) alone or LPS 

with various concentrations of broccoli MeJA treated samples. Cultured cells with or 

without LPS served as a positive or negative control, respectively. The production of NO 

was determined by measuring nitrite in the culture medium using the Griess reaction. 

Briefly, 100 µL aliquots of medium were incubated with an equal volume of modified 

Griess reagent (50 µL of 1% sulfanilamide in 5% H3PO4 and 50 µL of 0.1% N-(1-

naphthyl) ethylenediamine dihydrochloride in water). After 10 min, the absorbance was 

measured at 570 nm using a microplate reader.  

 

7.3.9. Browning Discoloration Measurements by Hunter Colorimeter. For purposes 

of data analysis and data interpretation, it is important to have a reliable measure of color 

change. Hue is one property of color. Hue is how we perceive an object’s color (red, 

orange, green, blue, etc.) (http://personal.uncc.edu/lagaro/cwg/color/color_percept.html). 

Hue degree allows us to get digitalized data by using quadrant space for color (0° = red, 

90° yellow, 180° = green, 270° = blue). Superficial color was measured by using a 

LabScan XE colorimeter (Hunter Associates Laboratory, Reston, VA, USA) generating 

values for a* (redness and greenness). The instrument was calibrated with a standard 

white and black tile. An average from four different broccoli (branchlets) florets were 

recorded in each replication. 

 

7.3.10. Statistical Analysis. Statistical analyses were conducted using the JMP 10 

software (SAS institute Inc., Cary, NC). Data was subjected to analysis of variance 

(ANOVA model one-way). A source of variation was MeJA treatment. The means were 
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compared by the least significant differences (LSD) test at a significance level of P = 

0.05. Pearson correlation was conducted between bioactivities and phytochemicals.  

 

7.4. Results and Discussion  

7.4.1. Experiment 1. Determination of the appropriate Harvest Date after MeJA 

Treatment.  In order to determine the harvest date after MeJA treatment where GS 

levels were maximized in broccoli floret tissues, broccoli heads were harvested at 

different days after MeJA treatment. While neoglucobrassicin concentrations in broccoli 

florets were significantly greater from plants harvested one or two days after MeJA 

treatment significant concentrations peaked in heads harvested four days after treatment 

(Figure 7.1), consistent with a previous report (Kim and Juvik, 2011). Kim and Juvik 

reported that MeJA treatment four days prior to harvest significantly increased 

gluconasturtiin and neoglucobrassicin. In Arabidopsis thaliana MeJA treatment 

significantly increased transcript abundance of the indolyl GS biosynthesis gene 

AtCYP79B3 as early as two hr after treatment but significant increases in glucobrassicin 

concentrations were not observed until two days after treatment (Brader et al., 2001). Our 

results indicate that the elevated GS concentrations of neoglucobrassicin were maintained 

for at least 8 days after MeJA treatment.  

 

7.4.2. Experiment 2. Multiple MeJA Spray Treatments, GS Concentrations, and QR 

Activity. 250 µM MeJA treatments at both four and three days prior to harvest increased 

floret total GS and neoglucobrassin concentrations above those observed in a single 

treatment at four days prior to harvest but not significantly higher (Figure 7.2A). Multiple 
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MeJA treatments showed consistent increases in neoglucobrassicin in both 2010 and 

2011 (data not shown). Averaged QR inductive activity was gradually increased as 

additional MeJA spray treatments were applied (Figure 7.2B). Extracts of broccoli florets 

showed a similar pattern of QR inductive activity with increasing numbers of applications 

in both 2010 and 2011 (data not shown).  

 

7.4.3. Experiment 3. Optimal Concentrations of MeJA in Applications. Various MeJA 

concentration treatments were applied to broccoli plants to determine which 

concentration will maximize induction of GS biosynthesis with a single application. 

There were significant positive correlations between MeJA application concentrations 

and enhanced levels of glucoraphanin, gluconasturtiin and neoglucobrassicin (Table 7.1). 

Increased glucoraphanin, neoglucobrassicin, gluconasturtiin, and sulforaphane 

concentrations correlated with both QR inductive activity and NO inhibitory activity. 

Sulforaphane has been reported to suppress LPS-induced inflammation (Lin et al., 2008) 

and also identified as a potent QR inducer in broccoli (Zhang et al., 1992). In addition, 

phenethyl isothiocyanate (PEITC), which is hydrolysis product of gluconasturtiin was 

also reported to suppress nitric oxide production induced by LPS (Okubo et al., 2010). 

The increased QR inductive and NO inhibitory activity observed in the floret extracts 

may be associated with these isothiocyanate hydrolysis products. Haack et al., (2010) 

reported that N-methoxyindole-3-carbinol the hydrolysis product of neoglucobrassicin 

suppresses sulforaphane induced QR enzyme activity. Although we observed significant 

increases in neoglucobrassicin concentrations, we did not observe suppression of QR 

inductive activity. In contrast to previous studies, MeJA treatments were only observed to 
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increase total phenolic and flavonoid concentrations at 62.5 µM (Table 7.1). Application 

of higher concentrations of MeJA treatment had no effect on these compounds compared 

to controls except at 500 µM where total phenolics were significantly reduced. 

Considering the saturation trends associated with application of different concentrations 

of MeJA to increase QR inductive and NO production inhibitory activity the cost 

effective concentration should be 250 µM to enhance health promotion of broccoli in a 

commercial production system.  

 

7.4.4. Experiment 4. MeJA applications to Different Plant Tissues. Application of 300 

ml of 250 µM MeJA to the soil surrounding the root crown of broccoli plants had no 

effect on floret GS concentration four days after application (data not shown). Root 

applications of MeJA increased aliphatic GS concentrations in the shoot of B. oleracea 

(Van Dam et al., 2004). MeJA sprays on broccoli leaf tissue increased GS concentrations 

in floret tissues comparable to spray applied to both broccoli head and leaf tissues (Figure 

7.3). 

 

7.4.5. Experiment 5. Influence of Triton X-100 on Broccoli Head Color. It was 

observed on some occasions that MeJA treatments using the surfactant Triton X-100 

resulted in some browning discoloration of broccoli florets. This discoloration was more 

dramatic with additional spray applications. In Brassica vegetables, visual color is an 

important factor in retailer and consumer evaluation of product quality and subsequent 

purchasing decisions (Dixon, 2007). To quantify the observed browning we also 

measured floret color of broccoli samples using a Hunter colorimeter. Although MeJA 
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dissolved in 0.1% ethanol did not affect broccoli color, a single spray of 0.1% Triton X-

100 significantly increased the hunter’s a value (Figure 7.4A and 7.4B). MeJA solution 

with 0.1% Triton X-100 as a surfactant further increased hunter’s a value. There was a 

significant linear relationship between broccoli discoloration and number of Triton X-

100 applications with or without MeJA. It was previously reported that Triton X-100 is 

responsible for phytotoxicity on leaves of plants using three different plant species (Falk 

et al., 1994). MeJA dissolved in 0.1% ethanol increased GS concentration levels 

comparable to those observed in MeJA treatments with 0.1% Triton X-100 (data not 

shown). After this observation we eliminated the use of Triton X-100 in our applications. 

In conclusion, various factors for practical field application of MeJA in field 

production environments were tested in this present study. The results suggest that MeJA 

application is recommened to spray on leaf tissue of broccoli using 0.1% ethanol 

containing 250 µM MeJA four days prior to harvest. This information should be helpful 

for commercial production of vegetables with enhanced health promoting activity.  
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Figure 7.1. Experiment 1. Days before harvest of broccoli treated with 250 µM MeJA and 

comparative floret GS concentrations. Data are means ± SD (n=3). 
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Figure 7.2. Experiment 2. Multiple MeJA treatment significantly increased 

neoglucobrassicin and QR inducing activity in averaged values of both 2010 and 2011 

year. Multiple MeJA treatments were applied with 0 (control), MeJA 1X (once, 4 days 

prior to harvest), MeJA 2X (twice, at four and three days prior to harvest), and MeJA 3 X 

(three times at four, three, and two days prior to harvest). A: averaged glucosinolate 

composition for multiple MeJA applications over two years; B: averaged QR inductive 

activity for multiple MeJA applications over two years. Data are means ± SD (n=3). 
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Figure 7.3. Experiment 4. Glucosinolate composition of control florets, florets where 

MeJA sprays was applied to leaf tissue, and florets where MeJA sprays were applied to 

both leaf and head tissue. *4-MGB = 4-methoxyglucobrassicin. Data are means ± SD 

(n=3). 
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Figure 7.4. Experiment 5. Effect of multiple MeJA applications with Triton X-100 on 

browning discoloration of broccoli heads that negatively influence product visual quality. 

A: hunter’s a value as a browning indicator. B: representative sample image of each 

treatment. Data are means ± SD (n=3).
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Table 7.1. Experiment 3. Phytochemicals and inducing QR activity following application of varying concentrations of MeJA on 

‘Green Magic’ broccoli florets.  

Treatment 
MeJA (µM) Glucoraphanina Neoglucobrassicinz Gluconasturtiinz Sulforaphanez Quercetiny Kaempferoly Total phenolicsx QRw NO production 

inhibitory assayv 

0 2.05 ± 0.23 b 4.53 ± 1.03 d 1.28 ± 0.26 d 0.75 ± 0.03 b 139 ± 17 bc 79 ± 8 bc 645 ± 20 ab 2.21 ± 0.06 b 6.08 ± 0.58 b 

62.5 2.23 ± 0.14ab 10.85 ± 0.97 c 2.48 ± 0.14 c 1.12 ± 0.19 a 175 ± 18 a 101 ± 9 a 715 ± 88 a 2.45 ± 0.37 ab 5.14 ± 0.43 ab 

125 2.26 ± 0.07 a 14.25 ± 1.78 b 2.94 ± 0.18 b 1.20 ± 0.22 a 155 ± 24 ab 96 ± 13 ab 670 ± 88 ab 2.59 ± 0.37 ab 3.99 ± 0.77 a 

250 2.41 ± 0.04 a 14.77 ± 2.08 b 2.97 ± 0.19 b 1.27 ± 0.25 a 121 ± 12 c 72 ± 7 c 625 ± 62 ab 2.73 ± 0.62 a 3.91 ± 0.45 a 

500 2.42 ± 0.03a 20.18 ± 0.20 a 3.43 ± 0.12 a 1.36 ± 0.31 a 117 ± 18 c 75 ± 10 c 580 ± 18 b 2.81 ± 0.30 a 3.89 ± 1.25 a 

Correlation with 
QR (r) 

0.985 

(P=0.002) 
0.979 

(P=0.004) 
0.976 

(P=0.005) 
0.922 

(P=0.026) 
-0.523 

(P=0.367) 
-0.325 

(P=0.593) 
-0.554 

(P=0.332) - -0.955 
(P=0.012) 

Correlation with 
MeJA 

concentrations (r) 

0.854 
(P=0.065) 

0.908 

(P=0.033) 
0.808 

(P=0.098) 
0.782  

(P=0.118) 
-0.707 

(P=0.026) 
-0.533 

(P=0.026) 
-0.801 

(P=0.026) 
0.880 

(P=0.049) 
-0.740 

(P=0.260) 

Correlation with 
NO (r) 

-0.916 
(P=0.029) 

-0.922 
(P=0.026) 

-0.955 
(P=0.011) 

-0.945 
(P=0.015) 

0.398 
(P=0.506) 

0.178 
(P=0.775) 

0.419 
(P=0.483) 

-0.955 
(P=0.012) - 

Negative control - - - - - - - - 0.00 ± 0.18 a 

LPS induced cell - - - - - - - - 10.92 ± 0.89 a 

Values are means ± SD (n=3). Different letters are significantly different within column based on the Fisher's LSD multiple 

comparison test (P < 0.05). zµmole per g dry weight. ymmole/100 g of DW. xmg of gallic acid equivalents in 100 g of DW. wspecific 

activity ratio of broccoli extract treated cells to untreated cells. vNitrite concentration (µmole/mL). NO assay was conducted using five 

analytical replicates for each biological replicate sample. Data are means ± SD (n=3).
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SUMMARY AND FUTURE PERSPECTIVES 

 Specific phytochemicals (glucosinolates, flavonoids, tocophenols, carotenoids and 

vitamins) from brassica vegetables have been shown to reduce incidence of cardiovascular 

disease and various cancers. Brassica vegetables are more effective in reducing cancer risk than 

other vegetables. Increasing the concentration of health-promoting compounds in brassica 

vegetables could effectively to contribute public health. Previous research suggests MeJA 

treatment increase GS and phenolic compounds. Hydrolysis products of GS have been reported 

to enhance activity of the cancer chemopreventive biomarker, QR. The objectives of this 

research was to exam whether MeJA treatment enhances human health promoting bioactivity 

(QR induction, antioxidation, and nitric oxide production inhibitory activity) by increasing GS 

and phenolic compound concentrations. 

The objective of study 1 (Chapter 2) was to test MeJA treatment could increase total 

phenolic content in different edible tissue of brassica plants including broccoli florets and kale 

leaf tissues. The MeJA treatment significantly increased phenolic content and ABTS antioxidant 

activity in apical leaf tissue of kale but it did not significantly increased in broccoli florets. This 

indicates that MeJA treatment application only can increase total phenolic content in specific 

edible tissue. 

The objective of study 2 (Chapter 3) was to test MeJA treatment could enhance QR 

inducing activity by increasing GS concentration. The MeJA treatment significantly increased 

not only gluconasturtiin and neoglucobrassicin concentration but also isothicyanate formation of 

GS including sulforaphane and PEITC over two seasons. To date, there were many experiments 

using MeJA to change GS concentration but hydrolysis products were not intensively measured. 

To our knowledge, this is the first report that MeJA treatment increases isothiocyanate formation, 
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which is meaningful for human health promoting. With increased sulforaphane and hydrolysis 

products of neoglucbrassicin, QR inducing activity of MeJA-treated broccoli was significantly 

increased. Since there was interaction between MeJA treatment and growing environment 

conditions, more studies on growing environment condition for MeJA treatment are needed to 

maximize the human health promoing activity. In addition, MeJA treatment may interact with 

weather conditions of the spraying time. The sunlight, humidity and wind of the spraying day 

may interact with MeJA treatment. The more research is needed on this. 

The objective of study 3 (Chapter 4) was to test MeJA treatment could enhance QR 

inducing activity by increasing indolyl GS concentration in kale leaf tissues. In order to test this, 

we choose two different kale species [Dwarf Blue Curled Vates (B. oleracea) and Red Winter (B. 

napus)]. Increased hyrolysis proeducts of glucobrassicin and neoglucobrassicin including I3C, 

DIM, NI3C, and NeoASG were significantly correlated with QR inducing activity. Even though 

Dwarf Blue Curled Vates cultivar does not have high concentration of sulforaphane, QR 

inducing activity were significantly increased. This indicates that the MeJA treatment 

significantly enhanced QR inducing activity by increasing glucobrassicin and/or 

neoglucosinolate in kale leaf tissues.  

The objective of study 4 (Chapter 5) was to test enhanced QR inducing activity and 

reduced postharvest quality of broccoli by MeJA treatment could be compensated by 1-MCP 

treatment. The combination treatment of MeJA and 1-MCP showed highest GS concentration 

and significantly higher QR inducing activity than control broccoli. In addition, GS biosynthesis 

and GS conversion during postharvest storage were observed. Ethylene accumulation during the 

postharvest storage may be the factor inducing conversion from glucobrassicin to 4-

methoxyglucobrassicin. There were limited reports about bioactivity of 4-methoxyglucobrassicin. 
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In addition to 4-methoxyglucobrassicin, gluconasturtiin concentration was also gradually 

increased during the postharvest storage. To date, maintaining product quality and 

phytochemical concentration were the main research focus of numerous studies. However, my 

results suggest that modifying conditions during postharvest storage (1-MCP treatment) can 

enhance phytochemical and bioactivity. 

The objective of study 5 (Chapter 6) was to exam whether MeJA treatment increases QR 

activity in cauliflower without a loss of postharvest quality. In this experiment we only sprayed 

MeJA solutions on cauliflower leaf tissue. MeJA treatment did not significantly increase 

ethylene production of cauliflower (Chapter 6) and broccoli (data not shown) when MeJA was 

applied only to leaf tissues. 

In Chapter 7 (study 6), we conducted several experiments to establish optimizing MeJA 

application method for future MeJA application for vegetable production.  

Overally, my dissertation research revealed that MeJA treatment can enhance QR 

inducing activity by increasing isothicyanate formation and GS biosynthesis mainly in the form 

of indolyl GS and enhanced biosynthesis of myrosinase. However, increased isothicyanate 

cannot be fully explained with gene expression of BoMYO, BoESP, and BoESM1. Further 

elucidation of this hydrolysis machanism for isothicyanate formation may facilitate our 

understanding plant herbivore defense and to improve the nutritional quality of brassica 

vegetables. This experiment results also suggest that application of MeJA or other elicitors for 

improving health promoting compounds of vegetables may require for an additional treatments 

for maintenance of quality during postharverst storage. To elucidate unknown or unwanted side 

effects from elicitor treatments, an omics based-approach may be useful including RNA-seq 

(transcriptome), iTRAQ (proteome), and untargeted metabolomics.  
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