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ABSTRACT 

This thesis is a comprehensive account of my experiences implementing the Lattice Boltzmann 

Method (LBM) for the purpose of simulating multiphase flows relevant to Air Conditioning and 

Refrigeration Center (ACRC) applications. Other methodologies have been used to simulate 

multiphase flow including finite volume based Navier-Stokes solvers. These methods have found 

reasonable success in simulating multiphase flows. LBM was chosen because of its ability to 

capture multi-fluid physics including phase-change and interfacial dynamics with relative ease. 

In addition, the LBM algorithm can be easily parallelized. This allows larger problems to be 

simulated quicker. Among the multiphase LBM algorithms, we have implemented the Shan-

Chen method, the He-Chen method, and an extension to the He-Chen method. We carefully 

document our methodology and discuss relevant kinetic theory and fluid dynamics. We present 

results for a number of fundamental flow problems including droplet impingement on solid and 

liquid surfaces as well as multiphase flow in complex micro-channels. In addition, we examine 

in great detail the problem of axial droplet migration and deformation in a square-duct at 

moderate Reynolds number.  Our results suggest that the LBM algorithm is capable of 

simulating a wide range of flows and can accurately capture flow physics provided the density 

ratio among fluid phases is not large. Because ACRC equipment often harbor high density ratio 

flows, the standard LBM procedures require modification to accommodate higher density ratio 

problems. We investigate one such modification to the He-Chen algorithm by introducing a 

pressure Poisson equation (PPE) to reduce density variation related to compressibility effects. 
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1. INTRODUCTION 

Multiphase flows are of great interest to scientists from a theoretical standpoint, who seek 

to understand their fundamental physics, as well as to engineers from a practical standpoint, who 

perform flow analysis which affects engineering design in a broad range of applications. The 

term “multiphase” flow can have different definitions depending on the application so the term 

should be defined to avoid ambiguity. By “multiphase” flow, we mean any flow where the 

system dynamics cannot be adequately described by the equations of motion corresponding to a 

single fluid. One example of such a flow is any particle-laden flow where fluid-particle 

interactions alter the trajectories of both particles and fluid elements. Other examples include 

atmospheric transport and clustering of rain droplets in clouds, any interaction at a free surface 

between two fluids such as that found between the ocean and the atmosphere, and the boiling of 

water on a stove-top. Hence, “multiphase” can refer to any system involving more than one 

component as long as one of the components is considered a fluid, be it Newtonian or non-

Newtonian, in some practical regime. Therefore, the term “phase” has been generalized from the 

thermodynamic sense. Discounting any interaction with a free surface, the boiling of water on a 

stove-top is an example where there exists two thermodynamic phases of the same fluid (water). 

The free-surface interaction between the ocean and atmosphere is a two-phase system comprised 

of two Newtonian fluids with no equation of state (EOS) linking the fluids. Particle-laden flows 

such as those concerning atmospheric interaction with sand dunes involve a Newtonian fluid 

(air) and a second non-fluid phase (sand particles). Under our definition, all of these are 

considered multiphase flows. 

 In multiphase flow problems, it is often helpful to demarcate fluids by their relative 

influence on global system dynamics. Consider flow in a pipe containing oil and small pockets of 
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trapped air. In this case, the oil is typically referred to as the “primary” or “carrier” phase, while 

the air is referred to as the “secondary” or “dispersed” phase. In systems involving more than 

two phases, additional phases may be referred to as “tertiary” or the system may be said to have 

two “secondary” phases. In some sense, the labeling of phases is arbitrary since there exists non-

trivial coupling between phases in most systems where the single-phase flow equations are not 

suitable. Nonetheless, we will try to adopt a consistent convention in referring to a fluid with the 

highest volume fraction as the “carrier” fluid and other phases that may be present as 

“secondary” phases. When the volume fraction of all phases is comparable, we may refer to the 

multiphase system as “binary,” or “ternary,” etc. where appropriate. In addition, to avoid 

confusion, we will refer to multiphase systems as having multiple “components” when we want 

to emphasize the two fluids are immiscible liquids, say, which do not share an EOS under normal 

conditions. In systems where phase-change is possible, say between water and water-vapor, we 

will be careful to emphasize this thermodynamic possibility by identifying the two fluids as 

“phases.” 

 Having identified the relevance of multiphase flow to many practical regimes as well as 

introduced some of the necessary vocabulary needed to describe these flows, we can now 

identify the purpose of this thesis. Our source of funding for this work is the Air Conditioning 

and Refrigeration Center (ACRC) at the University of Illinois Urbana-Champaign. ACRC is 

funded by the National Science Foundation (NSF) as well as a consortium of industry sponsors 

in ACRC-related fields. Our goal was to conduct scientific investigations of multiphase flows in 

regimes relevant to ACRC applications. These applications include multiphase flow in heat 

exchangers, distributor headers, and other complex geometries. These flows often involve heat 

transfer and phase-transition as well as the interaction of liquid droplets or gaseous bubbles with 
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a carrier fluid. Significant experimental work has been done in recent decades by Professors 

Pega Hrnjak and Anthony Jacobi and others at the University of Illinois on ACRC-related 

applications. To complement their empirical investigations, our group has sought to develop 

computational strategies to evince fundamental insight into multiphase problems relevant to 

ACRC. Therefore, the purpose of this thesis is to document the computational approaches we 

investigated. We will address the advantages and short-comings of these methods, present our 

findings, and discuss what work can be done in the future. The remainder of the paper is 

organized as follows: Chapter 2 provides an introduction to the chosen computational 

methodology, the Lattice Boltzmann Method (LBM). We discuss in detail two of the methods 

widely used in literature and discuss a modification to one of the former methods. In the 

remaining chapters, we present and discuss results obtained from the LBM methods we have 

implemented. In Chapter 3 we present results for two-dimensional dispersed flow in a channel 

with an emphasis on demonstrating the modified algorithm presented in Chapter 2. In Chapter 4, 

we present two-dimensional droplet impingement and collision results. In Chapter 5 we explore 

droplet flow in complex micro-channels. Chapter 6 is devoted to a systematic analysis of droplet 

deformation in a three-dimensional square duct. Concluding remarks are followed by 

supplementary material in the Appendix. For deeper insight into the LBM method, the curious 

reader is strongly encouraged to read Appendix A, which contains a short theoretical discussion, 

before reading further. 
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2. THE LATICE BOLTZMANN METHOD (LBM) 

2.1 Introduction 

 In this section, we present the details of the single-phase LBM algorithm. The reader is 

strongly encouraged to review to Appendix A for additional theory relevant to the derivation of 

the LBM equations before reading further. 

 Since its inception more than twenty years ago, LBM has proved to be a versatile 

computational fluid dynamics procedure, particularly in its use for simulating multiphase, 

multicomponent fluid systems. Among its application to such multiphase fluid systems, LBM 

has been used to simulate the Rayleigh-Taylor Instability [71, 28], droplet flow in T-junctions [4, 

3, 6], bubble-rise dynamics [35], and droplet impingement on surfaces of varying contact angle 

[69, 2, 5]. The multiphase LBM algorithm is a special case of the single-phase algorithm, where 

the distinction comes from additional treatment to model interaction between different fluids. 

 The first widely adopted LBM procedure for multiphase systems was introduced by 

Gustensen and Rothman [8] in 1991. Gustensen’s method, commonly referred to in literature as 

the “Color-Method,” represents distinct fluid components by color functions who each separately 

evolve via their own discretized Boltzmann equation, and which interact with each other via 

local color gradients.  In 1993, Shan and Chen [75] introduced the pseudo-potential method 

which gave a simple expression relating interaction forces between disparate fluid phases and 

each fluid’s equation of state. Swift et. al [38] developed an LBM algorithm capable of 

simulating multiple fluids and modeled interaction forces by a free-energy potential. Inamuro et 

al. [64] extended the work of Swift et al. by introducing an order parameter to demarcate fluids 

and also explored the effect of adding a Poisson equation into the LBM framework. An 

algorithm developed earlier by He and Chen [71] also used an order-like parameter, as well as an 
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interaction potential similar that used in Shan and Chen’s method. All LBM algorithms for 

multiphase flows, to the best of our knowledge are derivatives of the above formulations. 

Furthermore, the above methods are themselves essentially derivatives of each other. The main 

difference among multiphase LBM formulations is the treatment of the interface between fluid 

phases and the approach used to model interaction forces. What is consistent among all LBM 

procedures is the modeling of a fluid on a mesoscopic scale by a single particle distribution 

function which evolves according to a discretized Lattice Boltzmann equation [71]. Macroscopic 

characteristics of a fluid such as density and velocity are related to the moments of the 

distribution function. Such a model is suitable in situations in which the continuum hypothesis 

applies
1
. 

 We build up to the multiphase LBM algorithms by first discussing the relatively simple 

single-phase LBM algorithm. Before introducing the LBM equations, it is necessary to introduce 

the general method of discretization used in LBM algorithms. In LBM, the principal discretized 

quantity, the particle distribution function, is dependent on velocity, space, and time. Most LBM 

algorithms, including those discussed in this report are analogous to finite difference methods 

with respect to spatial and temporal discretization. That is, derivatives are approximated using 

truncated Taylor expansions. The notion of velocity discretization however is less obvious. 

Whereas the macroscopic fluid velocity is the dependent variable in the Navier-Stokes equations 

(the quantity that is solved for), velocity, specifically molecular velocity is an independent 

variable in the pdf formulation. Interestingly, the S-C evolution for the n
th

 pdf will contain no 

explicit instance of the molecular velocity. Recall as well that the continuous evolution equation 

for a single pdf given in (6) of Appendix A similarly did not contain an explicit derivative of 

molecular velocity. The most apparent reason to discretize velocity space then is to approximate 

                                                 
1
 See Appendix A.  
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the integral moments for density and momentum given in (A.3), (A.4) of Appendix A by means 

of quadrature.  

 Consider Figure 2.1 which represents a subset of a discretized two-dimensional domain. 

The horizontal grid spacing is    and the vertical grid spacing is   . For the moment, it is not 

necessary to assume uniform grid spacing. However, we will now introduce the concept of a 

lattice which will provide a coupling between spatial, temporal, and velocity discretization. 

 Consider the grid point centered at (     ) shown in Figure 2.1. To approximate an 

integral of the form given equations (A.3) and (A.4) of Appendix A we may write for example: 

    𝜉 ≈ ∑    
 

                                                             (   ) 

 

Figure 2.1: Discretized Simulation Domain. 



7 

 

 

Figure 2.2: D2Q9 Lattice. 

 

Equation (2.1) is a general expression for quadrature. That is, a definite integral of some function 

f over a continuous range of velocities can be approximated by a weighted sum of that function 

evaluated at a finite number of those velocities. The concept of a “lattice” addresses the issue of 

establishing which velocities should be used to evaluate the pdf for the purpose of quadrature. 

One example of such a lattice is the D2Q9 lattice shown in Figure 2.2. Here, 2 stands for the 

spatial dimension and 9 stands for the number of velocity directions. Suppose we focus on 

evaluating the integral at one location and one instance in time. Then, using the D2Q9 lattice, it 

suffices to know the value of the pdf for 9 values of molecular velocity to evaluate a moment 

integral. The reader will note the discrete velocities are labeled     , where    is the zero vector 

and       point to neighboring nodes. Locally, these velocities may be written in a Cartesian 

form viz.:  

 

      {[
 
 
]  [

 
 
]  [

  
 

]  [
 
 
]  [

 
  

]  [
 
 
]  [

  
 

]  [
  
  

]  [
 

  
]}                          (   ) 
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The choice of velocity vectors used to evaluate the quadrature is not unique in the sense that 

other lattices are possible as addressed in [62]. What is unique is the fact that each velocity 

vector chosen must extend the entire distance from its origin to a neighboring node
2
. This 

necessity is made clear by considering the following example. Suppose the pdf is known along 

each velocity vector in the lattice at one point in time. What will be the local value of the pdf at 

the next instance in time? Before answering this question, we recall the continuous Boltzmann 

equation where we have left off the forcing term for simplicity and incorporated the BGK-

approximation: 

  

  
 𝜉 ∙     

     

 
                                              (   ) 

We note again that the left hand side takes the form of a convective derivative, but is not a 

material derivative because the molecular velocity 𝜉 is not known at the macroscopic scale and is 

therefore not capable of transporting material. This distinction is subtle but important. Note that 

if the pdf is the equilibrium distribution, that is      , then (2.3) is an advection equation. 

Another interpretation of the previous statement is that while collisions between molecules will 

still exist at the molecular scale, the net effect of collisions does not change the particle 

distribution function.  

 Suppose we work with the analogy that the pdf is advected with some molecular velocity. 

The lattice then, is a rule for advecting the pdf. In constructing a lattice with 9 directions, we 

have restricted the pdf to be advected in one of 9 directions. Lattice Boltzmann is then 

understood as a procedure to advect the pdf along discrete vectors at each time step. The process  

                                                 
2
 In some diagrams, we use different arrow lengths. Our convention is that small arrows will be used when 

information is local, such as the   -component of a pdf in the i
th

-direction (  ) at one node will have a small arrow to 

emphasize its direction and that it is a local quantity. Large arrows will be used to emphasize transport of 

information (typically of    along direction    from one node to a neighboring node). 
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of advection is called “streaming.” The vectors therefore must extend the entire distance from the  

origin node to a neighbor since each portion of the pdf must be advected completely during a 

time step. In other words, streaming is the process where each portion of the pdf is advected to 

nearby neighbors. By considering a finite number of directions, 9 in this case, we assume that the 

portion of the pdf advected in the    direction contains many molecules all with the instantaneous 

characteristic velocity direction   . The process of streaming is depicted in Figure 2.3. Assuming 

the 9 components of the pdf are known at one time step, the process of streaming takes the    

component of the pdf and advects it the neighboring node in the    direction. Note that no arrow 

is drawn for component    since this portion of the pdf is streamed along the    direction. In 

other words, this portion of the pdf maps to the origin node at every time step. The process of  

 

 
Figure 2.3: Pictorial representation of the streaming process. 
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streaming is completed in parallel for lattices in the domain. Once streaming is completed, a new 

set of pdf components will be present at each lattice corresponding to those that arrived from the 

neighboring nodes
3
. If the pdf were in equilibrium, the process of streaming would be carried out 

indefinitely with no changes to the pdf at any spatial location for all time. In other words, every 

pdf component streamed away from a given lattice would be replaced by an identical component 

streamed to the same lattice. Suppose though that the pdf is not in equilibrium or there is a net 

body force present at a spatial location. Then the right hand side of equation (2.3) is non-zero. 

Then the pdf components cannot simply be advected at each time step, but must be changed at 

each time step by the local net body force and net result of collisions. The process of changing 

                                                 
3
 It is now apparent why the convective derivative cannot be called a material derivative. While the discrete 

molecular velocities    have transported portions of the pdf   , we have already assumed that the smallest piece of 

measurable material at a point is the entire pdf itself. Therefore, while    may ostensibly exist on a scale comparable 

to the pdf itself, they nonetheless must exist on a scale smaller than a point and therefore cannot be called material. 

 
 

Figure 2.4: Pictorial representation of the collision process. 
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pdf components as a net result of collisions or a net body force is collectively referred to as 

“collision.” The process of collision is shown in Figure 2.4. With respect to implementing an 

LBM algorithm, note that the process of collision is local with respect to each lattice and can 

therefore be executed in parallel. In other words, the process of collision alters pdf components 

at each lattice independent of the other lattices. This process changes component    at lattice j 

say, to component   
  at lattice j. Because the process of collision often involves calculation of 

body forces or other quantities that depend on macroscopic fluid properties like density and 

velocity, there is typically an intermediate step between streaming and collision where 

intermediate quantities are computed. Once the local equilibrium distribution and body forces are 

computed, the collision phase can be executed yielding a new set of pdf components at each 

lattice. The resulting pdf components can then be streamed to neighboring lattices. A general 

LBM algorithm can now be summarized in Figure 2.5. Distribution functions are initialized to 

their equilibrium value based on the initial macroscopic fluid properties (density and velocity) at 

each node. With the pdfs initialized, the algorithm commences with alternating collision and 

streaming routines with macroscopic quantities calculated at each time step for the purpose of 

determining the equilibrium distribution and forcing terms. We have implemented three 

multiphase LBM algorithms with their respective details found in sections 2.2.-2.4.  

Finally, we briefly discuss the method of implementing boundary conditions into the 

LBM algorithm. Because the incorporation of boundary conditions in LBM is dependent on the 

particular LBM algorithm, a boundary conditions routine has been purposely left off the 

flowchart shown in Figure 2.5. Flowcharts which include more details including how boundary 

conditions fit into the sequence of steps in our adopted LBM algorithms are found in section 2.6.  
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A discussion of several LBM boundary condition strategies is found in [17]. In our LBM 

algorithms, we have implemented both “ghost-fluid” [11] and “bounce-back” [50] boundary 

conditions. These implementations were chosen because of their relative ease of implementation 

without sacrificing order of accuracy.  

  

 

Beginning with the “ghost-fluid” method, we must define two types of points. Interior 

points are those points on the interior of a solution domain. Ghost-fluid points are those points 

exterior to the solution domain. The boundary of the domain then does not fall on any grid points 

but rather exists some distance between interior and ghost points as shown in Figure 2.6. The 

 
Figure 2.5: Flowchart of typical LBM Algorithm. 
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process of streaming and collision and is carried out exclusively on interior nodes. The ghost 

nodes are used to construct pdfs exterior to the domain that imply a specified boundary condition 

at the boundary of the domain. For example, suppose we seek to impose a Dirichlet or prescribed 

boundary condition on the velocity, as would be the case to satisfy a no-slip, no-penetration 

condition. Suppose in addition that the velocity at the interior node adjacent to the boundary is 

  . What should be the value of velocity at the ghost node   , to imply a boundary velocity of 

  ? Assuming the boundary falls half-way between the interior and ghost node, and that the 

velocity varies linearly from one grid point to the next, the boundary velocity is simply the 

arithmetic mean of the interior and ghost velocities viz.: 

   ≈
     

 
                                                          (   ) 

To apply a Neumann condition, we could use a central-difference formula and write for example: 

  

  
|
    

≈
     

   
                                                       (   ) 

 

Similar expressions can be written for pressure and density boundary conditions. Once the ghost 

value is computed, it only remains to calculate the pdf at each ghost point, the components of 

 
Figure 2.6: Diagram of Ghost-Fluid boundary condition. 
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which will be streamed to interior points by the same rule depicted in Figure 2.6. If the pdf at 

interior points were in equilibrium, then it would be reasonable to assume the correct pdf at the 

ghost nodes would be the equilibrium distribution given in equation (A.5) of Appendix A, with 

macroscopic velocity   . This would imply an equilibrium pdf at the boundary with associated 

macroscopic velocity of   . However, the pdf at the interior node is generally not in equilibrium. 

Even for non-turbulent multiphase flows, the spatial variation in fluid properties gives rise to 

unsteady velocity fields. In other words, the pdf at one spatial location may change with time 

even for low Reynolds number flows. Therefore, the pdf at the interior node adjacent to the 

boundary will, in general, will be made up of two components, an equilibrium portion and a non-

equilibrium portion.  

The pdf at an interior lattice
4
, or a ghost for that matter, can therefore be written: 

     
   (     

  )    
     

                                                   (   ) 

Here,   
   

 is read as the non-equilibrium component of the pdf at a given lattice, in the    

direction. Taking the equilibrium distribution at the ghost as known using a discrete relationship 

analogous to (A.5) in Appendix A with associated macroscopic velocity   , the final task is to 

determine   
   

at each ghost node. We employ a Neumann condition on the non-equilibrium 

component of the pdf and write: 

(  
   )

     
 (     

  )
        

                                                  (   ) 

Which yields: 

 (  )        
  (  )  (  

   )
     

                                                 (   ) 

                                                 
4
 Here we are being imprecise by using the term grid point or node interchangeably with lattice. Note that distinction 

is often not relevant, but that in some contexts, the term lattice is preferred when considering for example, the pdf, 

since it any given point, the pdf will have several components corresponding to the lattice or discrete molecular 

velocity directions. Lattice is therefore typically used in place of node when we wish to emphasize the structure of 

the pdf. 
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The assumption here is that the pdf at the boundary is not in equilibrium. However, by linear 

interpolation, it will have the same non-equilibrium form as that at the adjacent interior and ghost 

nodes with associated macroscopic velocities of    and   , respectively. Hence, the boundary 

pdf, while not in equilibrium, will have an implied macroscopic velocity, associated with its pdf 

of   . Note that this method of extrapolating the non-equilibrium component of the pdf is valid 

whether a Dirichlet or Neumann condition is imposed on the velocity since in either case the 

implied velocity at the boundary will be   . The ghost-fluid technique ensures second-order 

accuracy of the boundary condition [11]. This procedure was presented in the context of a simple 

Cartesian boundary, although the extension to boundaries defined by complex shapes can also be 

treated by the ghost-fluid method via multi-linear interpolation [11]. 

 

Figure 2.7: Bounce-back boundary condition. 

 

We have also explored the implementation of a “bounce-back” boundary condition [50] 

to enforce no-slip, no-penetration conditions at solid boundaries. The bounce-back condition 

enforces Dirchlet conditions by tracking each component of the pdf that would be streamed out 

of the domain during a given time step. Consider Figure 2.7. After the collision step, all 
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components of the pdf at each interior node are known. The streaming phase is entered and new 

pdf components will be streamed to neighboring interior lattices. However, the pdf components 

denoted by the red arrows in Figure 2.7 will be unknown after streaming is completed since 

there are no interior nodes to replace these components. To mitigate this, we note which 

components of the pdf at interior lattices adjacent to the boundary actually leave the interior of 

the domain so that they can be replaced. After streaming on interior nodes is complete, we note 

three components originating at an interior lattice neighboring the domain boundary (the purple, 

blue, and orange) will leave the interior of the domain. We therefore apply the bounce-back 

condition and reflect these pdf components. If we take the purple component for example which 

is in the    direction, bounce-back takes the magnitude of this component, and replaces the    

component at the boundary node, with this value. The same procedure is done for each of the pdf 

components leaving the interior. Once bounce-back has been applied, a second streaming phase 

is entered, only for the boundary nodes, so that new pdf components calculated on the boundary 

nodes can be streamed to the interior. This post-streaming process replaces the previously 

unknown red pdf components in Figure 2.7. The bounce-back method is useful because it 

ensures mass conservation in the simulation. That is, each piece of mass streamed out of the 

domain is replaced once bounce-back has been applied. In comparison, the ghost-fluid method 

will have a small but finite amount of mass lost at each time step as we have observed. In 

addition, the bounce-back condition ensures no-slip, and no penetration is satisfied to 2
nd

-order 

of accuracy [50]. The disadvantage of bounce-back is in the application of non-wall boundary 

conditions, e.g. Neumann velocity boundary conditions and pressure boundary conditions at the 

entrance and exit of open domains for instance, however some authors [50] have extended 

bounce-back to these type of boundary conditions. For ease of implementation, the ghost-fluid 
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method was adopted for most simulations and yielded satisfactory enforcement of given 

boundary conditions. When presenting results in chapters 4, 5, and 6, we will note which 

boundary conditions were employed, as well as in the implementation of each LBM algorithm 

given in sections 2.6. 

With the requisite theory presented, we can now introduce the LBM algorithms we have 

implemented in the next sections. Note that the previous discussion was in the context of a single 

pdf (or single fluid system). Because the algorithms discussed next will be for multiphase flows, 

we will be careful to note the additional considerations necessary for modeling such systems. 
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2.2 Shan and Chen Method 

We have implemented the multiphase Lattice Boltzmann algorithm originally formulated 

by Shan and Chen [75, 74]. We follow a similar notation as that given by Wang et al. [68]. In the 

Shan and Chen (S-C) procedure, a set of n-discretized Boltzmann equations is solved, one for 

each of n-fluids present in the system being simulated.  

The discretized governing equation for the n
th

-pdf
5
 is given in (2.9): 

 

  
 (          )    

 (   )  
  

  
(  

 (   )    
   

(   ))                       (   ) 

 

where   
  is the single particle distribution function of the     fluid component

6
 in the     

direction. The collision term in the lattice Boltzmann equation is discretized using the BGK- 

approximation [47], with single relaxation time of each fluid component given by   . Assuming 

low Mach number, the equilibrium distribution function of the     fluid component,   
   

is 

given by the Maxwell-Boltzmann distribution [55]: 
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5
 It is natural to wonder what it means for multiple pdfs (or fluids for that matter) to be defined at the same point. 

Invoking the Continuum hypothesis, we recall that at any given spatial location (much smaller than the fluid-element 

scale), there will likely be no matter present, but rather in the neighborhood of that location. With this 

understanding, there is no special treatment needed to define additional pdfs at a point than the original assumptions 

incorporated in defining a single pdf. As far as which fluid is present at any given location, ambiguity will only be 

present in the neighborhood of the interface between two or more fluid components. At an interfacial location, the 

concept of a single fluid becomes less meaningful. The models employed however attempt to capture the measurable 

dynamics, that is, if two fluids are “present” at one point (fluid-element size), the majority fluid by mass should have 

the largest contribution to the dynamics at and in the neighborhood of that point. 
6
 The term component is used purposefully here to emphasize the modeled fluids are assumed distinct and 

immiscible, e.g. water and oil, or water and air. However, phase change within a component, viz. from water to 

water vapor say, will still be possible according to an assumed equation of state. This point will be addressed in 

more detail in the subsequent discussion. 
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Here, the lattice speed c, is taken to be unity, i.e.          . Velocity space has been 

discretized using the D2Q9 lattice where the    directions are given by: 
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The corresponding quadrature weights,    for the D2Q9 stencil are: 
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  (   ) is the local fluid density of the n
th

 fluid component at location x, at time t. The density of 

the n
th

 component at each point is calculated by the discrete analog to equation (A.3) in 

Appendix A: 

 

  (   )  ∑  
 

 

(   )                                                               (    ) 

The total density of the system at any point is then: 

 

 (   )  ∑  (   )

 

                                                                (    ) 
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Note that the lattice Boltzmann equation (2.9) given in the S-C procedure has no explicit forcing 

term. The forcing term rather, is introduced implicitly to the lattice Boltzmann equation via the 

definition of the equilibrium velocity of the n
th 

component: 

 

  
        

  

  
                                                             (    ) 

Where    is the net force on the n
th

 component and the mixture velocity,     
7 is defined as: 

 

     
∑         

∑       
                                                           (    ) 

 

The forcing term requires a more detailed discussion.    is the total contribution of forces acting 

on the n
th

 component at a spatial location and can be written as the sum of two terms: 

 

         
       

                                                         (    ) 

 

Here,       
  is the total body force which may include gravity and       

  is the net measurable 

force accounting for intermolecular effects (which occur solely on a sub-continuum scale) that 

act on spatial variations in the pdf. Wang and Liu [68], and Gupta and Kumar [2] further 

decompose       
  into two components: 

 

      
        

        
                                                      (    ) 

                                                 
7
 Several velocities are defined in this algorithm which do not have a clear physical analog. Physical arguments are 

made in [74] as to the origin of these definitions, although these rationales will not be presented here. As in many 

LBM algorithms, Shan and Chen will make the argument that the end justifies the means, that is the assumptions 

made in their algorithm provide a reasonable approximation to the flow equations. This discussion to follow. 
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Here,       
 is the net intermolecular force on the n

th
 fluid component at location x due to spatial 

variations in itself or due to the presence of another fluid component in the neighborhood of x.  

      
  is the net intermolecular force on the n

th
 fluid component due the presence of a solid 

boundary in the neighborhood of that component. Using kinetic theory arguments, Shan and 

Chen [75] originally proposed that the fluid intermolecular force could be written as the gradient 

of a scalar  , referred to as the interaction potential. Assuming that intermolecular forces at any 

point are weak except in the neighborhood of that point [24], it may be reasonable to only 

consider nearest neighbor interactions.
8
 Under this assumption, Shan and Chen [75] proposed a 

discretization of       
  of the form: 
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  ̅(    )                                      (    ) 

 

Here,    is read as the interaction potential of the n
th

 component,  ̅ refers to other components, 

   are the quadrature weightings corresponding to a given lattice, (2.12) for the D2Q9 lattice, 

and    ̅ represents the strength of interaction between like, and un-like fluid components. 

Taking for example, a multiphase system containing two fluid components,    ̅ can be written 

as: 

    ̅  {

   

   

   

   

                                                                      (    ) 

 

                                                 
8
 Other authors [73] have proposed higher order discretizations that take into account both nearest, and next-nearest 

neighbor interactions, for example. 
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Here, when the interaction strength G has a repeated subscript, a non-zero value of     for 

example will denote self-interaction where as a non-zero value of     say, will denote interaction 

between different components.     is read as the magnitude of the interaction between 

components 1 and 2, where the net force is on component 1, and the net force is due to the 

presence of component 2. Note, to ensure global momentum conservation,         or more 

generally,    ̅    ̅   [75]. Similarly, the fluid solid force is written as [68]: 

 

      
     ( )∑   

 

   (    )                                               (    ) 

 

Here,     is the magnitude of the interaction force on the n
th

 fluid component due to a solid 

boundary, and  (    ) is unity if      is not an interior point, and zero otherwise. Whether 

fluid-fluid or fluid-solid interaction is considered, negative values of G indicate an attractive 

force and positive values indicate a repelling force. Note that the definition of an interaction 

potential in this context means that other observable properties such as interfacial tension and 

contact angle, for instance, are each defined implicitly by the relative strengths of interaction, 

and by the definition of the interaction potential itself. Therefore, in principle, variation of 

interaction strengths allows arbitrary control
9
 over these properties, but not direct tuning. 

 Thus far, there has been no discussion of pressure. The treatment of pressure in LBM 

requires more attention than can be given in this section. However, the definition of an 

interaction potential provides a good segue. LBM is fundamentally a compressible scheme. That 

is, the local pressure is coupled to the density at any point via an equation of state (EOS). In the 

absence of intermolecular interaction, the fluid behaves as an ideal gas, that is, the equation of 

                                                 
9
 Subject to the scheme’s stability. Very large forces can destabilize the numerical scheme. 
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state is simply that pressure is directly proportional to density. Therefore, the introduction of 

interaction potentials implies a non-ideal component in the system’s EOS [75]. The implied EOS 

takes the form [68]: 

 

 (   )    
 ∑   (   )  

 

 
  

 ∑    ̅  (   )  ̅(   )  ̅              (    ) 

 

Where    is the sound speed and typically defined such that   
        . The definition of 

interaction potentials determine what form the non-ideal term in the EOS will take. Shan and 

Chen [75] originally proposed an interaction potential of the form: 
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)]                                 (    ) 

 

Here,     is a constant equal to the initial density of the n
th

 component, assumed to be spatially 

uniform wherever the n
th

 component is initially defined in the domain. Other equations of state 

have been proposed; for a thorough account, see [49].  

The EOS may serve two purposes. Taking a one-component system for example, say 

water, if an appropriate interaction potential was implemented that implied the equation of state 

of water (as could be determined experimentally), then in principle it would be possible to model 

the phase change between liquid water and water vapor. In a two component system then, say oil 

and water, there could be interaction between two fluid components one of which could change 

its thermodynamics phase. The second purpose is to model a fluid system in which there exists a 

large difference in the density of the two fluids.  Consider for example first, what would happen 

Ideal Non-Ideal 
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if we had the fluid system considered in Figure 2.8. We initialize the velocity to be zero 

everywhere and consider this system without the effect of gravity. What would happen? If we 

assume the two fluids to be non-interacting ideal gases, then over time we would see a diffusion 

of the blue fluid to the lower part of the box, and diffusion of the red fluid to the upper part of the 

box. This diffusion occurs not because of gradients in velocity (the fluid velocity everywhere is 

initially quiescent) but there is initially a concentration gradient for each of the fluids which 

tends to smooth out over time. After much time, there will be a uniform concentration of both  

 

Figure 2.8: System of two stratified fluids. 

 

blue and red fluids, everywhere in the domain. There is nothing wrong with this possibility from 

the LBM standpoint. However, suppose we wish for these two fluid components to remain 

immiscible. Then it is necessary to introduce forces that resist the mutual diffusion of these 

components. To limit the diffusion, we could define an interaction force between fluids 1 and 2 

such that the preference towards diffusion of one component is inhibited by the presence of 

another. This means for example that diffusion of fluid 1 to the bottom region is being inhibited 

because fluid 2 is occupying that space. Alternatively, we could limit the diffusion of fluid 1 via 
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a self-interaction force, that is a negative value of    .That is, there must exist a large enough 

positive value of    or a large enough negative value of     such that fluid 1 remains quiescent. 

The same can be said for fluid 2. In practice, the relative miscibility of the components is 

determined by tuning both cross-interaction G values (   ) and self-interaction G-values (   and 

   ). In principle, these parameters can be tuned arbitrarily to yield desired macroscopic 

properties (interfacial tension for instance). Cross interaction typically has a finite value (positive 

indicates repulsion of un-like components and negative indicates attraction of un-like 

components) which is problem dependent. This maximum corresponds to the calculation’s 

stability boundary, above which the calculation will be unstable.  

Now we may consider the meaning of the sign of the self-interaction term. Considering 

for example a one component fluid system where the fluid density is not spatially uniform. 

Assuming the volume of the system domain is fixed, will the system retain its spatial variation in 

density? Consider the general non-ideal gas EOS (2.22). For strictly positive values of G, the 

pressure will increase monotonically with density since the non-ideal term will be positive-

definite. In a system where there initially exists spatial non-uniformities in the density, the 

tendency will be towards an equilibrium non-varying spatially constant density which implies a 

constant pressure for the system. Therefore, a positive value of self-interaction will tend to 

eliminate spatial variation in the fluid density.  

 Suppose now the self-interaction magnitude is taken to be strictly less than zero. For 

some critical value of G, the pressure curve will have an inflection point. This value of G is 

analogous to the critical temperature of the fluid, so that the location of the inflection point in a 

state-diagram is termed the critical point. For negative values of G, greater in magnitude than Gc, 

the pressure will no longer vary monotonically with density but rather will exhibit a trend similar 
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to that depicted in Figure 2.9
10

. Here, V      is the specific volume. Note that for     , or 

analogously, temperature     , there will exist in general three possible values of density for a  

 
Figure 2.9: Hypothetical EOS for T < Tc, reproduced from [71]. 

 

a given pressure. These possible values of density correspond to states A, C, and E in Figure 2.9. 

However, position C corresponds to an unstable state where pressure increases (decreases) with 

volume (density). Physically, this state is not favored. Therefore, the system will tend toward 

states A and E which lie on stable branches of the fluid’s EOS [71, 75].   

 We may now observe what happens to a system in which the density is initially spatially 

non-uniform and G is below its critical value. Consider Figure 2.10. The initial density is 

prescribed a 1% perturbation about a value of 1.00 as shown in Figure 2.10a. As time progresses 

in Figure 2.10b-d, we observe that phases of like density attract each other and we also observe a  

                                                 
10

 The interaction potential must remain bounded above by  √  to ensure the pressure tends toward infinity as 

   ,    [75]. 
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Figure 2.10: Phase Separation of a 1 component fluid. Initial density field random with a 

prescribed 1% perturbation about a density value of 1.00. 

transition from a state of many densities to a state where there exists only two densities 

(corresponding to red and blue contours). As a consequence, given an EOS, we could simulate a 

high density ratio problem involving a liquid and a gas without the need to incorporate large 

interaction forces to segregate components, as would be necessary for a multiple component 

system not link by an EOS. That is, several calculations we have performed suggest the density 

ratio that can be achieved in a multiple component system is typically order 10 or less
11

, while 

                                                 
11

 Several authors, [79] for example claim much higher density ratios for multiple component systems. Some authors 

[65, 64, 28] have developed modified LBM procedures to achieve higher density ratios, although it is unclear 

whether the stability at high density ratio comes at the price of other essential physics. Nevertheless, the density 

ratio limitation puts sharp constraints on the applicability of LBM to simulate a range of practical systems. Our 

experience gives us the most confidence in low density ratio (< 5) multiple component liquid-liquid flows. 



28 

 

the density ratio we can achieve for a single component system of two phases may reach O(500) 

with the incorporation of an appropriate equation of state
12

. However, in the single component 

case, surface tension is a result of the particular EOS and cannot be tuned once the EOS is set, 

while in the multiple component case, surface tension may be tuned by varying both self-

interaction and cross-interaction magnitudes, and in principle by the definition of the interaction 

potential or the EOS itself. In either case, the surface tension in the S-C method is implied by 

Laplace’s Law [75], which for a symmetric bubble takes the form: 

 

 

 
                                                                (    ) 

 

Here,   is the surface or interfacial tension, R is the local radius of curvature, and     and      

refer to the pressure on the in and outside of the bubble, respectively. To imply an EOS of a 

given form, we note the interaction potential can be written as (2.25) [49]: 
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Here,  ( ) is the EOS of a single fluid component which may be obtained theoretically or 

experimentally.  

 It is natural to wonder whether the S-C LBM scheme is a suitable model for a fluid 

system, in other words, is the discrete solution to the LBM equations equivalent to a discrete 

solution to the Navier-Stokes and continuity equations? As noted in [75] and shown in [74, 56] 

                                                 
12

 The Carnahan-Starling EOS [41] proves to be a good choice for high density ratio single component calculations. 

More description regarding this EOS will be given in the next section. 
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using multiple-scale asymptotic expansions, the S-C scheme will in fact recover the Navier-

Stokes and Continuity equations, in their compressible form to second order in Mach number. 

The pressure is related to the density via an EOS implied by the choice of interaction potential. 

The effect of compressibility is often small for low Mach numbers, however as discussed in 

Sections 2.4 and chapter 3, the condition of small Mach number is not always sufficient to 

guarantee “small” compressibility. From the analysis in [56], the relaxation time of the n
th

 

component,    is related to the kinematic viscosity of the n
th

,    via (2.26): 
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Based on this definition,    
 

 
 corresponds to an inviscid fluid. In practice, the lowest value of 

relaxation time at which the numerical scheme remains stable is   ≈     . The relaxation time 

may exceed unity although we have observed that most authors use values of the relaxation time 

close to 1. It is worth noting that the definition in (2.26) may be counter-intuitive, that is, small 

relaxation times are associated with small viscous effects and large relaxation times are 

associated with highly viscous effects. One interpretation of the response time is with respect to 

(2.9). A large relaxation time for the n
th

-component indicates a small collision term on the right-

hand side of (2.9) for that component. That is, the net result of collision does not have a large 

effect on the shape of n
th

-component pdf. (2.9) is then approximately an advection equation 

where pieces of the pdf are streamed and interchanged at neighboring lattices with the net result 

being the new pdf at each lattice site is approximately unchanged. With this interpretation, the 

relaxation time may be understood as the characteristic time over which the pdf of the n
th

-

component changes, that is, the characteristic time in which local fluid properties such as 
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density, velocity, and pressure change. In this respect, it is consistent with our expectation that a 

highly viscous fluid would have a large relaxation time, and therefore “observably respond” to 

an external stimulus (body force) over a similarly large characteristic time. For very large 

relaxation times, the flow scenario is consistent with viscous stresses dominating inertial stresses. 

In this limit, the Navier-Stokes equations would yield the steady elliptic Stokes’ equation. The 

solution to this low Reynolds number equation would be time-invariant. Therefore, in the limit of 

infinite relaxation time, the solution to (2.9) would also be time-invariant.  

 For completeness, we state the expression for the macroscopic fluid velocity which is 

consistent with the velocity definition in the Navier-Stokes equations [74]: 
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Here,  (   ) is the macroscopic fluid velocity at location x, at time t, and  (   ) and   (   ) 

are defined in equations (2.14) and (2.17) respectively. Note that for a two-component fluid 

system each with a single phase, the expression for the macroscopic fluid velocity (2.27) will be 

identical to that expressed in (2.16), except in the neighborhood of the interface between 

disparate components where interaction forces are likely to be present. The macroscopic velocity 

is defined by expressing the average of the momentum of each component before and after their 

respective collision phase. See [74] for more details. 

 This completes the necessary discussion of equations and theory relevant to the Shan and 

Chen algorithm. The He-Chen algorithm, and an extension to it, will be discussed in the next 

sections. Finally in section 2.6, we discuss the respective algorithms from the standpoint of 

implementation.  
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2.3 He and Chen Method 

We have also implemented an LBM algorithm originally formulated by He et al. [71, 70]. The 

He-Chen (H-C) method tracks a set of two generalized forms of the lattice Boltzmann equation. 

These equations are (2.28) and (2.29): 
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Here,    and    are generalized distribution functions.    is the distribution function related to a 

quantity known as the index function  , which is analogous to a level-set function [71]. The 

index may be defined such that a given value of the index corresponds to a particular fluid 

component: 
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It is possible to define   in such a way that it can be representative of more than two fluid 

components, however the He-Chen algorithm was formulated to model systems with strictly two 

fluid components.    is related to  , which in turn can be used to calculate the density at any 

location via linear interpolation. Those respective relationships are given in (2.31) and (2.32): 
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Similarly, the local kinematic viscosity can be written as (2.33): 
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The relaxation time is related to the kinematic viscosity via equation (2.34): 
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The equilibrium distribution function related to the index is given in (2.35) 
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The form of this equilibrium pdf is similar to that used in the S-C method, however the H-C 

method only uses one velocity u, namely the macroscopic fluid velocity at location x, at time t. 

Note, we have implicitly taken to the lattice speed c to be unity.   ( ) in (2.28) and (2.29) is 

shorthand for: 
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Unlike in the S-C procedure, the local velocity and pressure are related to a second distribution 

function    according to the relationships given in (2.37) and (2.38): 
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The equilibrium distribution function related to pdf    is (2.39):  
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These definitions ensure both second order and spatial and temporal accuracy of the H-C 

scheme, assuming the boundary conditions are handled properly [71]. We have implemented two 

and three-dimensional versions of the H-C algorithm. We used a D2Q9 lattice for the two-

dimensional code and a D3Q27 lattice for the three-dimensional code. The associated discrete 

molecular velocities and quadrature weightings for the D3Q27 lattice are: 
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Two terms in particular require further discussion, namely the forcing term   , and the 

interaction potential  . The forcing term takes the following form: 

 

                                                                         (    ) 

 

Here,    is the net body or gravitational force per unit volume and the second term represents the 

contribution of gradients in curvature of the index function to interfacial forces [72]. Other 

models for interfacial forces have been proposed, for example [29]. For comparison, we have 

incorporated the CSF [29] model into our calculations but found no discernible difference in the 

results of our calculations compared with results obtained with inclusion of surface tension force 

under the former definition given in (2.42). Zhang et al. [53] showed that   is related to the 

magnitude of the interfacial tension via a surface integral equation of the form: 
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The integral in (2.43) is taken along the entire interfacial surface between two components and z 

is taken as the direction everywhere normal to that surface. In general, this integral is problem 

dependent. However, as [53] notes, assuming a fixed choice for discretizing the interface 

between disparate components, the behavior of   in the interfacial region depends solely on the 

choice of the equation of state. This is one of the most notable features of the H-C method. That 

is, the H-C method is an algorithm used to simulate two fluid components where the EOS is 

chosen so as to govern the dynamics, and the shape of the density profile, in the neighborhood of 

the interface. In principle, this could be used to simulate problems with phase-change. However 

as has been used by He and Chen [71] and other authors [28], we use the H-C formulation 

strictly for the modeling of two immiscible components as was discussed for the multiple 

component S-C algorithm. However, as we shall now see, the H-C formulation now allows for 

explicit prescription of the interfacial or surface tension.  

Returning to the discussion of the surface integral in (2.43), assuming an appropriate 

EOS has been prescribed, that is the density profile has a fixed smooth shape in the interfacial 

region, where this profile is problem independent, the integral in (2.43) will have a constant 

value  ( ) [53]: 
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Here, we have allowed for the possibility that the EOS, which we have fixed, may depend on 

some parameter a. He and Chen [71] adopted a fairly general Carnahan-Starling (C-S) EOS [41], 

which the latter authors showed rather cleverly to be an excellent approximation to a general 

virial equation of state for non-ideal gases which can be derived using kinetic theory arguments 
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[55, 71]
13

. We have incorporated the C-S EOS for all of our simulations with the H-C method. 

The C-S EOS takes the form [71]: 
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Here, b is typically taken to be 4, and “a” is a repulsion parameter [55]. The critical temperature 

Tc below which two stable (and immiscible in this context) states will exist is given in [71]: 

 

                                                                            (    ) 

 

We follow the convention taken by several authors to fix the value of      
      and 

instead use “a” as our parameter used to implicitly define a critical temperature. All studies 

(unless noted) are performed with a = 4. Keep in mind this prescription of “a” will control the 

stable values of density and of the smoothness of the interface. To allow for arbitrary densities to 

be chosen,
14

 He and Chen [71] chose to write the C-S equation in terms of the index   instead of 

the density. The bounds on the index could then be mapped to the densities of each component 

via equation (2.32) which allows for the possibility of arbitrary prescription. The C-S EOS enters 

the H-C algorithm in a similar form as found in the S-C algorithm, i.e. as the gradient of a scalar 

potential. Whereas the surface tension and EOS are encapsulated in this potential form in the S-C 

algorithm, the EOS and surface tension are partially decoupled in the H-C algorithm in that their 

                                                 
13

 The perceptive reader will note that the first term in the C-S equation, to leading order is the ideal gas equation 

where higher order terms come from n-molecule interactions [55]. 
14

 Again, subject to the stability of the calculation. Increasing the density ratio decreases the stability of the 

calculation. 
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respective terms are distinct in the governing equations. The EOS enters in equations (2.28), 

(2.29), (2.38) and is written via the interaction potential: 
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for equations (2.29), (2.38) and 
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for (2.28). Here, the Carnahan-Starling pressure as calculated from equation (2.45) is identified 

as    ( ) for emphasis. The gradients of the interaction potentials are calculated by a compact 

scheme similar to that given in [65]. With the C-S EOS and its repulsion parameter, a, specified 

through the interaction potential, we can return to the prescription of surface tension. This 

prescription allows  ( ) in equations (2.43) and (2.44) to be calculated and the surface tension 

can therefore be calculated as in equation (2.43). For b = 4, Zhang et al. [53] calculated the 

critical value of a, corresponding to the critical temperature to be           . A correlation 

for  ( ) was developed over a values in the range   [      ], where      corresponds to 

    . For the reader’s reference,  ( )|   ≈       . With  ( ) known, the surface tension   

may now be explicitly chosen. 

This concludes the discussion of the relevant equations in the H-C algorithm. An 

extension to the H-C algorithm is discussed in the next section. 
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2.4 Pressure Poisson Modification 

Any LBM algorithm, be it the Shan and Chen, or the He and Chen method, is 

fundamentally a compressible flow algorithm. That is, no matter the equation of state specified, 

pressure will always be a function of density in LBM. In simulating compressible flows, this 

point does not present any issue. However the point is very important with respect to the 

simulation of incompressible flows (which is the purpose of our work). Authors [79, 56, 57] have 

argued that in the limit of low Mach number Ma, the effects of compressibility will be small so 

that an approximately incompressible system can be modeled with reasonable accuracy. Since, to 

leading order, the variation of state variables (pressure, density) carry a quadratic dependence on 

Mach number, flows where the Mach number is less than 0.3 are often considered 

incompressible since the characteristic variation of the state variable will typically be less than 

10%. As will be presented in later section, we have found that the condition of low Mach number 

is not sufficient to guarantee incompressibility in the Lattice Boltzmann scheme. Specifically, 

compressibility may affect the density of fluid material significantly, at low Mach numbers. 

Other parameters including surface tension also affect the compressibility and will be discussed 

in Chapter 3. Because of these compressibility errors, we considered implementing a correction 

that would yield a pressure field consistent with an incompressible flow. Inamuro [64] first 

considered implementing such a correction, namely a Pressure Poission equation (PPE) into the 

LBM formulation and found that the calculation was stable at much higher density ratios. 

Because our ultimate goal is to simulate vapor-liquid flows, this finding was particularly 

encouraging and gave another reason for reducing compressibility effects. 

Our task now is to seek a pressure that guarantees the flow remains incompressible. 

Before writing down the solution, it is important to be precise about what constraint 
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incompressibility puts on the velocity field in a multiphase flow. The constraint will not be 

consistent across all multiphase flows, so we define more precisely multiphase flows 

characterized by immiscible Newtonian fluids of possibly differing fluid properties. We may 

equivalently express such a system as a single fluid with spatially varying viscosity and density 

where surface tension exists in every neighborhood that there is density variation. Regions of 

density variation are called interfaces. Under this assumption, the normal continuity equation 

applies
15

: 
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This equation may be re-written as: 
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where D/Dt is a material derivative. The condition of a solenoidal velocity field (i.e. 
   

   
  ) is 

still appropriate. Such a condition yields the resulting advection equation for the density: 
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15

 This section relies heavily on index notation. Note here that subscripts in general denote components of a vector 

and do not correspond to    lattice directions. 
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Similarly, the viscosity obeys the same material equation. It is with this understanding that the 

density and viscosity may vary both spatially and temporally at every point in the flow. In the 

Lagrangian sense however, the density and viscosity of each fluid material element will not 

change since in a reference frame moving with each piece of fluid material, the material 

derivative of any fluid property is zero. 

 We may now derive the pressure equation consistent with the incompressibility 

condition. The pressure equation is derived under the assumption the LBM equations recover the 

incompressible Navier-Stokes equations in the limit of small Mach Number [56]. The Navier-

Stokes equations for incompressible, Newtonian fluids are written as: 
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(2.52) is applicable to variable density flows, however, the incorporation of surface tension and 

variable viscosity would introduce additional terms.
16

  Assume we solve equation (2.52) with a 

fractional-step scheme such that an intermediate velocity   
  satisfies the momentum equations, 

but is not necessarily divergence-free. Thus, this velocity satisfies: 

 

   
 

  
    

   

   
 

 

 

    

      
                                                    (    ) 

 

 

                                                 
16

 These additional terms will end up being irrelevant, at least with respect to the derivation of the pressure equation. 
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Subtracting (2.53) from (2.52), we have: 
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Finally, taking the divergence of (2.54) results in the elliptic pressure Poisson equation (PPE): 
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It is important to note that Equation (2.55) is non-separable. There are various schemes for 

solving such an equation e.g. [61]. We discretize the left-hand side of (2.55) using a finite-

volume scheme and the right-hand side is discretized using central differencing. The left-hand 

side can be written in two-dimensions as
17

: 
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This expression can be further discretized as: 
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 Regard the change in notation in the discussion of discretization, where a typical grid point is centered (i, j). 
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Where, for example,  
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Assuming the compressibility error from the previous time step is small, the source-term on the 

right-hand side of (2.55) is discretized as: 
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The entire PPE may then be written in the form: 
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Here,              ,              ,              ,              , and      is the source 

term. This resulting discretized equation is solved using a point-Jacobi scheme, so that: 
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While more efficient solvers could have been used, the algorithm’s implementation on a GPU 

made the simple Jacobi solver the most appropriate choice. Nevertheless, the pressure solver 

made a substantial difference on the overall system compressibility as will be discussed in 

Chapter 3. For completeness, the velocity is corrected by: 
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The discussion of algorithm implementation is given in section 2.6, including how the PPE is 

integrated into the LBM algorithms. 
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2.5 GPU Implementation 

 Each of the LBM algorithms discussed has been implemented on a Graphics Processing 

Unit (GPU). Unlike single core Central Processing Units (CPUs), which may only do single 

tasks in succession, GPUs are many core architectures capable of performing parallel multi-task 

calculations with great efficiency. Whereas CPUs are optimized for sequential tasks, where often 

a piece or pieces of data are processed according to whether some set of conditionals are satisfied 

in succession, GPUs are optimized for handling large data sets where identical or nearly identical 

instructions are applied to each piece of data [43]. For this reason, an optimized algorithm on a 

GPU may significantly outperform the most optimized CPU version of the same algorithm. This  

 
Figure 2.11: GPU vs. CPU theoretical peak performance, variation with time, reproduced from 

[43]. 
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 trend is evident in examining Figure 2.11. For example, in 2009, the peak theoretical 

performance of the NVIDIA GeForce GTX 480 was approximately 10 times greater than the 

leading Intel processor at the time. A typical GPU architecture is shown in Figure 2.12. A typical 

GPU is a hierarchy where the top level is Streaming multiprocessor (SM) which is further 

divided into smaller streaming processors (SPs) [15]. The SMs are responsible for dividing up 

the workload among each SP. Each SP itself may then launch many threads concurrently. What 

is also evident in Figure 2.12 is the existence of multiple discrete memory units, including 

Texture L1, Shared Memory, various Cache, and Global Memory (not pictured). A large part of 

developing a parallel algorithm is deciding how to process data most efficiently. That is, 

different types of memory have different finite sizes and access times. For example, global 

memory is relatively large and can hold lots of data, but the access time, that is, the time required 

for a thread to access the piece of data before any operations are performed on that data,   

 
Figure 2.12: G80 and GT200 GPU architectures, reproduced from [9]. 
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Figure 2.13: CUDA code, main source code containing kernel calls (top), kernel code (bottom). 

is relatively large for global memory. In contrast, shared memory can be accessed relatively 

quickly, but the amount of data that can be stored in shared memory is relatively small. Other 

memory access issues concern the scope of the data, that is, which threads can access which 

pieces of data. Data in global memory may be accessed by any thread. Another type of    
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memory called registers have the lowest access time and the smallest size. Typically, there will 

be a register that is assigned to and only accessible by its own thread [15]. Of course there are 

other issues that arise in implementing a parallel code on a GPU. However, this discussion gives 

the reader a brief introduction into considerations the developer takes when implementing a 

parallel algorithm.  

 Each LBM algorithm has been written in CUDA and programmed on a CUDA-

compatible NVIDIA GPU. CUDA is a programming language that extends C. A portion of our 

CUDA code is shown in Figure 2.13. Much of the CUDA algorithm is no different than a C 

code. The computational strategy is often called hybrid, that is, data I/O is done on the CPU side. 

Initial Conditions, domain specification, and memory allocation are handled by the CPU. Then, 

all data that will be processed by the GPU are copied from CPU memory into GPU global 

memory. Once all of the data have been copied, a special CUDA command called a kernel is 

 
Figure 2.14: Speedup between GPU and CPU code for different problem sizes. 
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launched. Referring to the top pane in Figure 2.13, a kernel looks like a typical function call in 

C, except it begins with the syntax <<<arg, arg>>>. A kernel is a direct command to the GPU 

telling it to execute the named function, collision_kernel and boundfg_kernel in this case, on the 

data passed within the parenthesis. The arguments in the brackets are used to manage the number 

of threads that will be launched on the GPU. Consider now the bottom pane in Figure 2.13. 

Besides a few specifiers needed to identify this code as a GPU function, everything in the 

boundfg_kernel routine is C code. The reader will note the variable tx, which is later passed to a 

variable called ij, represents a thread number. The thread number is a way of identifying each 

thread. In this way, it is possible to write one code which tells each thread to do a different task, 

(more precisely, the same task on different pieces of data). That is, each thread may execute the 

same code, but the piece of data each thread operates on is different. Consider in Figure 2.13 the 

line pointed to by the red arrow. Thread ij will perform this calculation and store the result in the 

ij
th

 location of the p_therm array. Because each thread has a unique ij, one line of code can be 

written to tell a large number of threads to perform the same task on different pieces of data. 

 To assess the performance of our GPU code, we also wrote a CPU code and performed a 

calculation on the model problem shown in Figure 2.10. The test was carried out using the Shan-

Chen algorithm. We did our best to implement this algorithm on both architectures incorporating 

little optimization to get an idea of the inherent parallelism within the LBM algorithm itself and 

also between the GPU and CPU architectures. Calculations were performed on an NVIDIA Tesla 

C1060 (1.30 GHz) GPU and an Intel Xeon 5160 (3.00 GHz). The results are shown in Figure 

2.14. Even though our implementations were relatively naïve, we were able to achieve 

approximately a 15x speedup on the GPU code vs. the CPU code. Therefore, we were able to 

demonstrate the inherently parallel nature of LBM and achieve significant speedup for the GPU 
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code compared with the CPU code without spending a lot of time on code development. For 

more information regarding the development of CUDA codes, the interested reader is referred to 

the CUDA C Programming Guide [43] and Kirk and Hwu’s Programming Massively Parallel 

Processors: A Hands-on Approach [15].  



50 

 

2.6 Algorithm Flowcharts 
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9. Calculate  𝜓, 
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Figure 2.15: LBM Algorithm Flowcharts: 

He-Chen Algorithm, Pressure Poisson Modification, Shan-Chen Algorithm 
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Flowcharts for the He-Chen and Shan-Chen algorithms are shown in Figure 2.15. The 

He-Chen flow chart also has an optional section where a pressure Poisson equation is solved to 

reduce any compressibility errors
18

. Both the H-C and S-C algorithms begin with an initialization 

phase where a domain and boundary conditions are specified. Macroscopic variables (density, 

velocity, pressure) are specified at interior points and pdfs are initialized to their equilibrium 

values. Then, the algorithms begin marching in time starting with a collision phase where the 

distributions are collided with their equilibrium values (subject to explicit or implicit forcing 

terms). In the H-C algorithm, we have prescribed ghost-fluid boundary conditions. These B.C.’s 

are applied before updated pdfs are streamed along discrete velocity vectors according to the 

lattice directions. In the S-C algorithm, we have implemented the Bounceback boundary 

condition. Therefore, in the S-C implementation, there are two rounds of streaming. The first 

streaming step is carried out exclusively for interior nodes. The bounceback boundary condition 

is then applied to determine what portion of the pdf were streamed out of the domain. Finally, a 

post-bounceback streaming step is carried out to stream discrete boundary pdfs to the 

neighboring interior nodes (as described in Figure 2.7). The remaining steps in each algorithm 

are used to calculate macroscopic variables. In the H-C method, the index function is calculated 

from the f-distribution function. Once the index function is known, the density at each node can 

be calculated by linear interpolation. The density in the S-C method however is calculated 

directly by summing the f-distributions for each component at a given node. In step 6 of each 

algorithm, material variables (kinematic viscosity, relaxation time) of each fluid component are 

                                                 
18

 Note, this optional section is NOT present in the Sean-Chen algorithm. We attempted to implement the PPE 

equation into the Sean-Chen algorithm. However, because multiple velocities are defined in the S-C method, it was 

unclear which velocity to correct to guarantee an incompressible flow and how to correct it. We were ultimately not 

successful in formulating a strategy that included solving a PPE and ultimately correcting a velocity to satisfy a 

divergence-free velocity condition for the S-C method. The PPE modification to the H-C method however was 

successful using the strategy discussed in the previous section; results with this modification are presented in the 

next section. 
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calculated. In step 7 of the H-C algorithm, discrete differential operators are applied to the index 

function. These expressions are used to evaluate the surface tension force which is applied as a 

body force in the collision phase at the beginning of the next time step. At this point in the S-C 

algorithm, the interaction potential (which is used to model observable macroscopic forces based 

on intermolecular interactions) is evaluated using an equation of state. After calculating a 

mixture velocity, the interaction potential is used to evaluate the net interaction force on each 

component which can then be used to calculate an equilibrium velocity for each component. This 

equilibrium velocity is used to evaluate the equilibrium distribution function used in collision at 

the beginning of the next time step. With the interaction forces and interaction potential known, 

macroscopic fluid velocity and pressure can be calculated in step 10 of the S-C algorithm. All 

information is now known and the S-C algorithm returns to the collision step. Returning to the 

H-C algorithm, the macroscopic velocity and pressure are calculated using the g-distribution 

function obtained during the collision phase. If no PPE is being solved, the time step is 

completed after an interaction potential, defined according to the C-S EOS, and its gradient are 

calculated.  

If a PPE is being solved, extra care must be taken. The pressure calculated in step 8 will 

be called the thermodynamic pressure, that is, it is the pressure consistent with the prescribed 

equation of state. This pressure is NOT used in the PPE. Rather, a new pressure is defined, 

whose sole purpose is to correct the velocity field
19

. When solving the PPE, it is necessary to 

first apply boundary conditions on the temporary velocity field and calculate the residual or 

source term in the PPE given in (2.61). In our implementation, we next perform an iterative 

                                                 
19

 Strictly speaking, it is not incorrect to work with the thermodynamic pressure in the PPE since we have already 

defined this as the macroscopic fluid pressure. However, we have completed trial runs such as fully developed 

single-phase flow in a channel and have found that it is necessary to work with a second pressure whose sole 

purpose is to correct the velocity to ensure a solenoidal field. It is this pressure, whose gradient can be compared 

with the analytical pressure drop needed for a given flow rate in a channel, for example. 
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Jacobi solver where the pressure at a given node is corrected successively based on the 

neighboring pressures and the local source term
20

. After each iteration, boundary conditions are 

applied on the pressure field. After the residual to the PPE have satisfactorily converged, the 

macroscopic velocity is corrected using the pressure field obtained from the PPE according to 

equation (2.62)
21

. The corrected velocity is then used to evaluate the equilibrium distribution 

function for the g-distribution in the collision phase at the beginning of the next time step.  

Having presented the various LBM methods and discussed the implementation of the 

respective algorithms, we can now present results obtained from each of the methods. These 

results are the respective subjects of the remaining chapters.  

                                                 
20

 More powerful solvers could have been implemented such as multigrid. The GPU architecture made a Jacobi 

solver much easier to implement than Gauss-Seidel Successive Over-Relaxation for example, although this type of 

solver is possible to implement using a Black-Red strategy for example [30]. However, our main goal with the PPE 

modification was to see if the PPE could make a difference as far as compressibility errors were concerned and we 

started with the simplest implementation of the PPE. Our results suggest that even a naïve PPE solver makes a 

substantial difference in a number of flow regimes.  
21

 It is important to note this pressure, which is consistent with an incompressible flow, is not used anywhere else in 

the algorithm. When not discussing the PPE modification to H-C algorithm, it should be assumed that any mention 

of pressure is the thermodynamic pressure related to the g-distribution function. 
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3. SIMULATION OF DISPERSED MULTIPHASE FLOW IN A CHANNEL 

 

3.1 Problem Description 

The use of LBM to simulate incompressible flow is of great interest. Several authors [71, 

64, 65] have used LBM to simulate incompressible multiphase flows. However, LBM is 

fundamentally a compressible flow procedure. Unlike the Navier-Stokes equations, pressure is 

not explicitly present in the Lattice Boltzmann equation. Pressure only enters the LBM procedure 

after interaction forces have been appropriately modeled. Depending on how the interaction 

forces are modeled, a different pressure will be implied. This pressure will in general be related 

to the density via a non-ideal gas EOS. This is counter to the notion of an incompressible fluid. 

However, as many authors [57, 74] have shown, it is possible to recover the Navier-Stokes 

equations from the Boltzmann equation and that any compressibility errors should remain small 

provided the Mach number is small compared to unity. The goal of this section is to show the 

assumption of small Mach number is not always sufficient to guarantee that the compressibility 

errors in an LBM simulation are small. Specifically, we explore the effect of the system density 

ratio, surface tension, Mach number, and Reynolds number on the magnitude of the 

compressibility. 

 A second task of this section addresses how to mitigate these errors. As with many 

multiphase flow schemes, LBM calculations become increasingly unstable as the density ratio 

increases. One hypothesis is that compressibility errors and/or spurious currents (generated by 

discretizing a steep or discontinuous interface) can decrease the stability of a calculation. This 

has limited LBM calculations to low density ratio flow problems (typically 10:1 or less for the 

H-C algorithm, and O(100) for the S-C algorithm depending on the EOS chosen). However in 
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2004, Inamuro [64] showed that the addition of a pressure Poisson equation (PPE) could 

dramatically increase the density ratio that could be simulated with an LBM algorithm. His LBM 

algorithm was based on the free-energy LBM procedure developed by Swift [38]. Inamuro 

extended this work by introducing a PPE into the LBM procedure and showed that the new 

procedure was capable of simulating density ratios of 1000:1.  

Therefore, the addition of a PPE into our own LBM algorithm seemed an appropriate 

strategy to explore. Ostensibly, the PPE could allow our LBM algorithm to handle higher density 

ratio problems. Because our goal is to simulate flows of interest to the industry sponsors of the 

Air Conditioning and Refrigeration Center (ACRC), it is necessary to develop an algorithm that 

is capable of handling high density ratios which are typical of industrial flows in the ACRC 

context. The other ostensible advantage was a PPE would reduce compressibility errors which 

yield a formulation more in line with an incompressible flow solver.  

In the next section, we solve a model problem and present a number of results to quantify 

compressibility errors that are inherent in the LBM algorithm. We then solve the same problem 

with the PPE modification to our LBM algorithm which will allow us to assess the advantages 

and disadvantages of such a modification.  
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3.2 Results22
 

 

The model problem we study is shown in Figure 3.1. The domain is a two-dimensional 

channel with an aspect ratio of 20:1. The carrier fluid enters the domain with a uniform velocity 

profile of magnitude    and density   . A secondary phase of density    and diameter d equal to 

half the channel height is prescribed at the center of the domain. For cases in which the 

secondary phase is lighter than the carrier phase, that is        , the secondary phase is 

referred to as a light droplet while in the opposite case, the secondary phase is called a heavy 

droplet. All fluid in the domain is initialized with the uniform inlet velocity. Unless otherwise  

 

 

 

 

 

 

 

 

 

noted, relaxation time of both fluids is the same and equal to 0.6. A summary of the cases 

considered is presented in Table 3.2-3.9. Specifically, we study the effect of density ratio, 

surface tension magnitude, Mach number, and Reynolds number on the system’s compressibility. 

In addition, we explore whether the system’s compressibility is changed if the secondary phase 

                                                 
22

 A portion of this results section was presented at APS DFD 2012. 

d 50 l.u. 

l 2000 l.u. 

H 100 l.u. 

Uo 0.00333 l.u./s 

      0.6 

Table 3.1: Geometric Parameters, channel flow simulations with and without PPE. 

 
 

l /2 

l 

H H/2 

Uo 𝜌  

d 

Figure 3.1: Simulation domain for PPE study. 

𝜌  
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Density Ratio Study 

Case Re Ma       k 

1. a, b 10.0 0.00577 1.0 0.0 

2. a, b 10.0 0.00577 2.0 0.0 

3. a, b 10.0 0.00577 5.0 0.0 

4. a, b 10.0 0.00577 10.0 0.0 

Table 3.2: Effect of PPE on calculation of developing channel flow varying the density ratio,  

a-No PPE, b-PPE. 

 

Case Re Ma       k 

5. a, b 10.0 0.00577 0.5 0.0 

6. a, b 10.0 0.00577 0.2 0.0 

7. a, b 10.0 0.00577 0.1 0.0 

Table 3.3: Effect of PPE on calculation of developing channel flow varying the density ratio,  

a-No PPE, b-PPE. 

 

Surface Tension Study 

Case Re Ma       k 

8. a, b 10.0 0.00577 2.0 0.01 

9. a, b 10.0 0.00577 2.0 0.1 

10. a, b 10.0 0.00577 2.0 1.0 

11. a, b 10.0 0.00577 2.0 2.0 

Table 3.4: Effect of PPE on calculation of developing channel flow varying the surface tension, 

a-No PPE, b-PPE. 

 

Case Re Ma       k 

12. a, b* 10.0 0.00577 0.5 0.01 

13. a, b* 10.0 0.00577 0.5 0.1 

14. a, b* 10.0 0.00577 0.5 1.0 

15. a, b* 10.0 0.00577 0.5 2.0 

Table 3.5: Effect of PPE on calculation of developing channel flow varying the surface tension, 

a-No PPE, b-PPE. 

 

is a heavy or light droplet for a given ratio of densities
23

. Specifically, we track the magnitude of 

the largest density variation for each phase in the system
24

. Surprisingly, this does not always 

occur at early times when spurious currents are highest but may occur at later times as the 

                                                 
23

 We define only one density ratio for this model problem, i.e.      . However, for the purpose of comparing a 

heavy droplet of one density ratio, 0.5 say, and a light droplet of another density ratio, say 2.0, these magnitudes will 

be regarded as being the most reasonable comparison when all other parameters (k, Ma, Re) are held constant since 

the ratio of fluid densities present in the system is a constant under these conditions. 
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Mach number Study 

Case Re Ma       k 

9/16. a, b* 10.0 0.00577 2.0 0.1 

17. a, b* 10.0 0.0115 2.0 0.1 

18. a, b* 10.0 0.0288 2.0 0.1 

19. a, b* 10.0 0.0577 2.0 0.1 

Table 3.6: Effect of PPE on calculation of developing channel flow varying the Mach number,  

a-No PPE, b-PPE. 

 

Case Re Ma       k 

13/20. a, b* 10.0 0.00577 0.5 0.1 

21. a, b* 10.0 0.0115 0.5 0.1 

22. a, b* 10.0 0.0288 0.5 0.1 

23. a, b* 10.0 0.0577 0.5 0.1 

Table 3.7: Effect of PPE on calculation of developing channel flow varying the Mach number,  

a-No PPE, b-PPE. 

 

Reynolds number study 

Case Re Ma       k 

17/24. a, b* 10.0 0.0115 2.0 0.1 

25. a, b* 20.0 0.0115 2.0 0.1 

26. a, b* 40.0 0.0115 2.0 0.1 

Table 3.8: Effect of PPE on calculation of developing channel flow varying the Reynolds 

number, a-No PPE, b-PPE. 

 

Case Re Ma       k 

21/27. a, b* 10.0 0.0115 0.5 0.1 

28. a, b* 20.0 0.0115 0.5 0.1 

29. a, b* 40.0 0.0115 0.5 0.1 

Table 3.9: Effect of PPE on calculation of developing channel flow varying the Reynolds 

number, a-No PPE, b-PPE. 

 

secondary phase moves downstream
25

. Cases marked in green have been completed and their 

                                                                                                                                                             
24

 Recall that the continuity equation for the multiphase system allows for the possibility of the density at a point to 

change with time. However, the density of a piece of fluid material moving in the reference frame of that material 

must be constant. Therefore, the density of each phase, where it exists should be constant to satisfy the 

incompressibility condition. 
25

 Spurious currents generated by discretizing sharp interfaces can generate local variations in density. During 

initialization, the density profile is literally a discontinuity. As the interface is diffused, eventually reaching the 

profile related to the prescribed EOS, the spurious currents are suppressed. We have explored initializing smoother 

interfaces such as hyperbolic tangent profiles. We found this may help in allowing a higher density ratio simulation 

to remain stable that would otherwise blow-up due to spurious currents generated at early times. 
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results are presented in the following subsections. Cases marked in red with an asterisk “*” were 

not completed due to time constraints.  

3.2.1 Density Ratio Study (Cases 1-7) 

 The effect of density ratio on system density variation was explored in Cases 1-7 and 

summarized in Tables 3.2 and 3.3. The results are presented in Figure 3.2 and 3.3. Black 

asterisks and blue diamonds are respectively the density variation for the secondary phase and 

carrier phase as a function of density ratio. In Figure 3.2, the density variation is seen to increase 

as the density ratio increases when the dispersed phase is a light droplet. The density variation 

appears to increase exponentially in the secondary phase with increasing density ratio, while the 

density variation in the carrier phase changes only nominally as the density ratio is increased. 

Consider now the red x’s and green circles which represent, respectively the density variation in 

the secondary and continuous phases when a PPE equation has been solved. Observe, especially 

for the secondary phase, the dramatic difference in density variation with and without the PPE. 

At a density ratio of 5, the density variation in the droplet is approximately 18% without the 

PPE, but only about 3% with the PPE. The PPE has a comparatively nominal effect on the 

density variation in the continuous phase. 

 Consider now the case of a heavy droplet moving in a carrier fluid of lower density. 

Those results are presented in Fig. 3.3. We observe the opposite trends for density variation and 

effect of PPE. That is, the secondary phase (the droplet) exhibits only a small density variation 

whether or not a PPE is solved, while the PPE makes a substantial difference on the density 

variation in the continuous phase. When the carrier phase is 10x lighter than the droplet, the 

maximum density variation is about 5% with the PPE, and approximately 17% without the PPE. 

At this density ratio, the PPE provides little benefit to the droplet phase with regard to density   
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Figure 3.3: Density Ratio Study, Ma = 0.00577, Re = 10,    = 0.0. 
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Figure 3.2: Density Ratio Study, Ma = 0.00577, Re = 10,    = 0.0. 
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variation. This suggests the density variation may tend to be highest in the lighter phase 

compared with the heavier phase, independent of whether the light phase is the dispersed or 

primary phase. These observations also suggest the PPE acts to reduce the density variation in 

the lighter phase and will have a comparably nominal effect on the heavier phase
26

. We conclude 

this section by noting that the case of a unity density ratio experiences no density variation
27

. 

3.2.2 Surface Tension Study (Cases 8-15) 

We have also examined the effect of surface tension on system density variation. In the He-Chen 

formulation, the magnitude of the surface tension force, scales with the k parameter, as shown in 

(2.43). We may expect that increasing the magnitude of the surface tension will increase the 

density variation owing to spurious currents generated by discretizing a sharp interface. The 

results are presented in Figures 3.4 and 3.5. When the secondary phase is a light droplet as 

shown in Figure 3.4, we see a similar trend as discussed earlier. That is, the largest density 

variation is exhibited in the lighter (secondary phase in this case). Interestingly, the density 

variation does not vary monotonically with increasing k. Rather, there appears to exist a local 

minimum in the density variation when plotted vs. k. That is, lower density variation is observed  

                                                 
26

 With regard to system stability, the reader will note that we had intended to explore a density ratio of 10 for the 

light droplet case, but this case was unstable. This suggests that heavy droplets may in general be more stable than 

light droplets for the same system density ratio. 
27

 We sometimes observe that the interface of the dispersed phase may contract over time for very long simulations. 

This effect is most pronounced for coarse simulations or small droplets such that the diameter of the droplet is not 

large compared with the interfacial width (typically ~ 3 lattice units). Typically droplets smaller than 25 l.u. 

experience discernible contraction if simulated for long times. Any contraction present for larger droplets is 

typically too small to observe. This may also happen as a result of a mismatch between surface tension magnitude 

and prescribed droplet size. The pressure in and outside the droplet theoretically balances the interfacial tension, but 

small retraction (or sometimes expansion) of the interface may nonetheless be observed under the conditions 

previously discussed. It should be noted that zero density variation will occur at unity density ratio only for the H-C 

method, where the EOS is only used to determine interfacial thickness. In the S-C method, pressure is calculated 

directly from density via the EOS. In unbounded flows, the density variation may be small, for example in the case 

of two colliding droplets. However, in internal flows, where a pressure gradient is needed to drive the flow, large 

density variation may be observed, even for unity density ratio, and low Mach number. See Fig. 6 in [79] or Figure 

5.3 in Chapter 5. 
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Figure 3.4: Surface Tension Study, Ma = 0.00577, Re = 10,        = 2.0. 

 

 
Figure 3.5: Surface Tension Study, Ma = 0.00577, Re = 10,        = 0.5. 
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for k = 0.l than for k = 0.01 or k = 1.0 for example. This suggests that the variation in density 

owing to the presence of a surface tension force is not solely related to discretization but that the 

surface tension itself is altering the compressibility of the system
28

. We may recognize as in the 

previous section that the PPE substantially reduces the density variation in the lighter phase, 

while the difference in density variation with and without the PPE for the heavier phase, is less 

pronounced. Observe now Figure 3.5 which shows the density variation vs. surface tension 

magnitude when the dispersed phase is a heavy droplet. While the trend of density variation also 

presents a local minimum in the droplet density variation curve, the magnitude of the density 

variation is significantly suppressed, both in the light and heavy phases. Interestingly, the 

maximum density variation, which occurs in the continuous (lighter) phase for k = 0.01, exhibits 

a density variation of only 1.6%. Further, the difference between the droplet and continuous 

phase density variations for each other surface tension magnitude is quite small and appears to 

decrease as the surface tension magnitude increases. What is evident from these figures, as will 

be corroborated in a later section, is that the surface tension has a much greater impact on system 

density variation, or arguably the system’s dynamics itself, when the dispersed phase is a light 

droplet, compared with a heavy droplet, for the same system density ratio. 

 

3.2.3 Mach Number Study (Cases 16-23) 

 We examine the effect of Mach number on system density variation. Those results are 

presented in Figs 3.6, 3.7. While in both cases, the lighter phase experiences greater density   

                                                 
28

 It is not readily apparent why the system’s compressibility would be dependent on the surface tension. It may be 

speculated that the surface tension will balance the pressure in and outside of interface so as to keep the interface in 

equilibrium. The tuning of the surface tension therefore, in maintaining a constant radius of curvature must also 

change the differential pressure, which, through an EOS effects the local density. Perhaps, for some intermediate 

values of k, this effect is stabilizing with respect to the system’s compressibility. As will be observed in the droplet 

contours later, the assumption of the pressure simply adjusting while the radius of curvature remains fixed will not 

be sufficient for all cases considered. 
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Figure 3.6: Mach number Study, Re = 10,        = 2.0, k = 0.1. 

 

 

 
Figure 3.7: Mach number Study, Re = 10,        = 0.5, k = 0.1. 
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variation compared with the heavier phase, the scaling with Mach number is unclear. The density 

variation appears to increase in general as the Mach number is increased, but the variation is not 

monotonic within the range of the cases investigated. What we may say is the Mach number 

plays a comparatively minor role in density variation, at least within this range of Mach 

numbers. We may for comparison ask the question of what would be the typical density variation 

in a single phase flow at the Mach numbers considered. Under steady and isentropic conditions, 

we may write thermodynamic state variables as a function of Mach number. The variation in 

density of a gas, compared with the static fluid density, as a result of compressibility effects may 

be written as [19]: 

  

 
 [  

   

 
   ]

 
   

                                               (   )  

 

Here,    is the density for a fluid at rest, while   is the local fluid density which has changed as a 

result of compressibility,   is the ratio of specific heats which is equal to 1.4 for air e.g. Now 

consider Figure 3.8 which shows the variation in local fluid density given in equation (3.1) as a 

function of the Mach number for an ideal gas. Observe that for a Mach number greater than 0.03 

in Figures 3.6 and 3.7, the density variation is approximately 1.5% for the respective lighter 

phases. Comparing this density variation, with that due to compressibility effects alone, we 

observe in Figure 3.8 that a 1.5% density variation would not occur until the Mach number is 

0.18. Therefore, the traditional notion of a Mach number in the LBM formulation may not be 

appropriate, since its magnitude significantly under predicts the compressibility variation that 

would be experienced at that Mach number. Rather, a more appropriate Mach number may be 

estimated empirically a posteriori as the effective Mach number (     ), as could be defined  
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through equation (3.1), that is the Mach number that would be required to generate the density 

variation observed. We have not performed a systematic study to quantify the density variation at 

higher Mach number. However, we can remark anecdotally based on observations from 

computations at higher Mach number that the density variation tends to grow as the Mach 

number increases. Alternatively, we may say that the traditional assumption of low Mach 

number as a sufficient criterion for incompressible flow is not necessarily valid since the 

effective Mach number may be substantially larger than the LBM Mach number. For 

completeness, it is important to note that the variation in density as a result of LBM Mach 

number cannot be explained by the difference in definition of LBM Mach number vs. effective 

Mach number.  

 
Figure 3.8: Density variation compared with static conditions as a function of Mach number for 

an ideal gas. 
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The LBM Mach number is typically taken as: 

                                                                           (   ) 

Where the speed of sound,    √  , so that there is a factor of the square-root of gamma 

missing from the definition of the LBM Mach number compared with the effective Mach 

number. The notion of specific heat ratio is not typically found in the LBM context since it may 

be difficult to measure a specific heat ratio for an arbitrary non-ideal gas (or a liquid modeled as 

a non-ideal gas). If we assume the fluid behaves approximately like air, with      , it is not 

possible to explain the discrepancy between LBM and effective Mach numbers, where the 

variation, as estimated from the above results is a factor of approximately six. 

3.2.4 Reynolds Number Study (Cases 24-29) 

 We examine the effect of Reynolds number on system density variation while holding 

density ratio, Mach number, and surface tension magnitude constant. Consider Figures 3.9 and 

3.10. When the secondary phase is a light droplet, its density variation is observed to increase 

monotonically and approximately linearly as the Reynolds number is increased while the carrier 

fluid’s density variation appears to be independent of Reynolds number. When the secondary 

phase is a heavy droplet as in Figure 3.10, the density variation appears to increase linearly in 

both the droplet and carrier phase. As has been observed in previous cases, the lighter fluid 

experiences the greatest density variation. The dependence of density variation on Reynolds 

number is relatively modest compared with the dependence on density ratio or surface tension, at 

least within the range of investigation of the respective parameters.   
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Figure 3.9: Reynolds Number Study, Ma = 0.0115,        = 2.0, k = 0.1. 

 

 

 

 
Figure 3.10: Reynolds Number Study, Ma = 0.0115,        = 0.5, k = 0.1. 
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3.2.5 Density Contours for Surface Tension Study (Cases 8-15) 

 To conclude Chapter 3, we present a series of density contours to demonstrate the effect 

of surface tension on system dynamics. Figures 3.11-3.14 show the evolution of droplet density 

contours in time as the surface tension parameter is increased. Similar results are presented in 

Figures 3.15-3.18, except the secondary phase in these cases are heavier droplets. Observe in 

Figure 3.11 that at a small value of k (surface tension magnitude), the light droplet experiences 

significant deformation. As the surface tension is increased to k = 0.1 in Figure 3.12, we observe 

reduced deformation. Higher values of surface tension were also considered in Figures 3.13 and 

3.14. However, in these cases, the surface tension caused the system to become increasingly 

unstable. Regarding Figures 3.13 and 3.14, we note the light droplet increases in size with time. 

This is not a result of deformation but rather the density variation likely generated by spurious 

currents as discussed previously. However, as we observed earlier, the surface tension seems to 

have a much smaller effect on density variation in the heavy droplet compared with the light 

droplet. Over a wide range of k (surface tension) values, we observe both little density variation 

and volume change in the heavy droplet.
29

 

 Finally, we emphasize in Figure 3.19 that the addition of a PPE, while having a 

significant effect on the system’s density variation, also strongly affects the system’s dynamics. 

In Figure 3.19, we note that without the PPE, the light droplet, while significantly deformed, has 

not broken up. With the addition of the PPE, the light droplet does break up
30

.   

                                                 
29

 Of course, we would expect the greatest density variation to occur in the lighter carrier phase for the heavier 

droplet cases, but in this phase also, no density variation is apparent.  
30

 The reason for this is not clear and the following explanation is only speculation. It can be observed that the 

pressure correction has re-distributed “energy” from some form of system compressibility, and transformed that into 

shear work on the droplet interface. The increased effective shear (or Capillary number alternatively) deformed the 

droplet interface enough to cause break-up. For this reason, it is possible that an LBM simulation at non-unity 

density ratio may under-predict the system Capillary number, that is, the relative importance of viscous and 

interfacial stresses.  
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 Figure 3.11: Case 8a: Re = 10, Ma = 0.00577,        = 2.0, k = 0.01. 
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 Figure 3.12: Case 9a: Re = 10, Ma = 0.00577,        = 2.0, k = 0.1. 
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 Figure 3.13: Case 10a: Re = 10, Ma = 0.00577,        = 2.0, k = 1.0. 
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 Figure 3.14: Case 11a: Re = 10, Ma = 0.00577,        = 2.0, k = 2.0. 
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 Figure 3.15: Case 12a: Re = 10, Ma = 0.00577,        = 0.5, k = 0.01. 
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 Figure 3.16: Case 13a: Re = 10, Ma = 0.00577,        = 0.5, k = 0.1.  
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 Figure 3.17: Case 14a: Re = 10, Ma = 0.00577,        = 0.5, k = 1.0.  
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 Figure 3.18: Case 15a: Re = 10, Ma = 0.00577,        = 0.5, k = 2.0.  
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Figure 3.19: Case 8a: Re = 10, Ma = 0.00577,        = 2.0, k = 0.01, 

top: without PPE equation, bottom: with PPE equation. 

  



79 

 

4. SIMULATION OF DROPLET IMPINGEMENT AND COLLISION 

 

4.1 Problem Description 

 The problem of a droplet interacting with one or multiple droplets in an unbounded or 

semi-bounded domain is encountered in a number of applications ranging from fuel injection and 

atomization in an internal combustion engine to condensation on surfaces of varying material 

properties. In a heat exchanger, saturated water vapor may condense into liquid water droplets 

which may collect on the walls of the channels within the apparatus. Local accretion of liquid 

water may then alter the boundary conditions locally, since the boundary, as seen by the global 

flow, is some mixture of a solid which mandates a no-slip Dirichlet condition, and a liquid 

surface which imposes a constraint on the tangential velocity gradient (a Neumann condition). 

Since multiphase flows in these settings are inherently unsteady and often turbulent, local 

changes in boundary conditions may have dramatic consequences for the flow regime as a 

whole.   

 When two or more droplets interact in the absence of a boundary, the interaction is 

typically referred to as collision.
31

 When one or more droplets, travels a non-zero distance and 

strikes a surface, the interaction is described as impingement
32

. There exists a vast literature 

regarding these topics and our purpose here is not to present a comprehensive review. Rather, we 

mention a few papers relevant to these topics with the purpose of evincing some of the key 

physics present in these problems. 

                                                 
31

 Of course two droplets in an un-bounded domain may interact without colliding, where lubrication pressure keeps 

them apart, for instance, or in the presence of a charge gradient where Coulomb forces become important. In this 

investigation, we assume the conditions are appropriate for a collision to occur. 
32

 We investigate only smooth, solid, regular surfaces. By smooth, we mean no roughness. By solid, we mean non-

porous so the no-slip condition is assumed valid. By regular, we mean simple geometries, typically flat. Of course, it 

is possible to explore arbitrarily complex boundaries. We attempt to capture some of the salient physics even with 

the constraints on surfaces we investigate.  
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 We begin our brief review of droplet impingement work with a seminal study done by 

Chandra and Avedisian [54] in 1991. Chandra and Avedisian presented a thorough investigation 

of impingement of liquid n-heptane droplets onto flat stainless steel surfaces. Surfaces that were 

both dry and covered by a thin film of liquid were investigated. The key parameter varied was 

the surface temperature. Chandra and Avedisian also identify the Weber number (We), (i.e. the 

ratio of inertial to interfacial stresses) as an important parameter, although We was not varied in 

this study. Droplet spreading rate was independent of temperature for small times, but for larger 

times, droplets impacting on cool surfaces experienced greater spreading than droplets on 

warmer surfaces. Chandra and Avedisian capture the evolution of droplet impact, subsequent 

spreading, and in many cases break-up of the liquid droplets. Dynamic fluid-solid contact angle 

is evident in these photos, where the contact angle, which describes a droplet’s wetting 

properties, is defined in Figure 4.1. Zero contact angle corresponds to complete wetting of a 

liquid droplet, while contact angles greater than 180 degrees correspond to non-wetting droplets. 

Typically, droplets with contact angles less than 90 degrees are termed hydrophilic since they are 

relatively more wetting than the surrounding fluid. Droplets with contact angles greater than 90 

degrees are referred to as hydrophobic. That static contact angle may be described analytically 

by Young’s equation [69]: 

 

   ( )  
       

   
                                                             (   ) 

 
Figure 4.1: Definition of Contact Angle. 

𝜃 
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Here,    ,    , and    , are respectively the solid-gas, solid-liquid, and liquid-gas interfacial 

tensions. Gu, Gupta, and Kumar [69] and Gupta and Kumar [2, 5] performed lattice Boltzmann 

simulations of droplet impingement over a range Reynolds and Weber numbers. Droplet 

spreading was independent of both of these parameters for short times, but significant variation 

in spreading was observed at later times as these parameters were independently varied. Gu et al. 

[69] also found a spreading dependence on contact angle. For a fixed Weber and Reynolds 

number, Gupta and Kumar [5] showed an impinging droplet may or not break-up depending on 

the contact angle. At a Weber number of 114, and a Reynolds number of 152, a hydrophilic 

droplet did not break-up, but the neutrally wetting (     ) and hydrophobic droplets did 

break-up. Additional work was carried out by Lee and Lin [65] who used a modified LBM 

scheme to examine droplet impingement on a liquid film for a liquid to surrounding gas density 

ratio of 1000. 

 Gu et al. [69] also studied droplet collisions and identified the Weber number, the 

Reynolds number, and an impact parameter (representing relative droplet positions in the case of 

oblique collisions). Inamuro et al. [64] performed lattice Boltzmann simulations of droplet 

collisions and explored an Impact Parameter-Weber Number parameter space. Different types of 

collisions were classified and mapped into this space. Inamuro et al. [64] identified three 

collision regimes: coalescence, where no break-up occurred after collision, reflexive separation, 

where break-up occurs post coalescence during a relaxation stage, and stretching separation, 

where break-up occurs post coalescence and the majority of the total mass is moving away from 

the center of mass. In mapping these types of collisions into the parameter space, Inamuro et al. 

[64] found good agreement with theoretical boundaries of these different collision regimes. In a 

later study, Inamuro et al. [63] explore binary droplet collisions and examine the mixing rate 
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using tracer particles. Mixing rate (a percentage) is defined as the fraction of the each droplet’s 

mass that has been transferred to the other once droplets separate following collision and 

coalescence. For a Weber number of 80, no mixing is observed for zero or high impact parameter 

(level of collision obliqueness), but for intermediate impact factor, as much as 30% mixing was 

observed. Later, Sakakibara and Inamuro [14] showed that in the case of unequal size droplets, 

the mixing may occur even at zero impact factor, and that the rate of mixing carries a Weber 

number dependence. Remarkably, for Weber numbers of 40 and 50, the smaller droplet 

experienced zero mixing rate, that is, it received no mass from the larger droplet. However, at 

these values of Weber number, the larger droplet did receive mass from the smaller one. 
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4.2 Results 

 

4.2.1 Droplet Impingement Results 

 We explore several model problems to assess the ability of LBM in simulating droplet 

impingement. Because droplet contact angle is critical to impact dynamics, we have chosen the 

S-C algorithm to simulate the impingement problems since no forcing term has been proposed 

(to the best of our knowledge) that models the effect of relative wettability within the context of 

the H-C scheme.  

 The effect of contact angle can is discernible by examining Figure 4.2. A liquid droplet 

surrounded by a lighter liquid impinges on a smooth surface. The density ratio       and 

viscosity ratio         between the droplet and surrounding liquid are both 2. The domain is 

600x1000 l.u. The initial droplet height is two l.u. above the solid boundary an the initial droplet 

velocity is 0.10 l.u./s. Fluid-solid interaction forces (i.e.    ̅) were varied to yield different static 

contact angles. Both simulations depicted in Figure 4.2 are identical with the exception of the 

prescribed contact angle. The droplet-surface contact angle in the left panel is smaller than that in 

the right panel indicating the droplet in the former case is relatively more wetting than the 

droplet in the latter case. At each time step, the left droplet has experienced more spreading 

compared with the right droplet. This is indicative of each droplet’s own proclivity to spread 

based on its own wettability, as determined by the contact angle. The droplet-solid attraction is 

relatively high between the droplet and solid surface shown in the left panel which causes more 

droplet mass to stay in the neighborhood of the surface and less to be reflected into the 

outstretched fingers. In contrast, large bulbs form for the case in the right panel. The droplet in 

this case is relatively less attracted to the solid boundary; therefore, less mass will stay close to 

the solid surface. This mass is then available to accumulate in the fingers as shown in Fig. 4.2(l). 
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Figure 4.2: Droplet impingement on a smooth surface,       (left) and       (right). 
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(d) (c) 
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(j) (i) 
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 We have also explored the effect of introducing a textured surface into our simulations to 

study the effect of surface roughness of impingement and wetting dynamics. Rahman and Jacobi 

[34] showed that by introducing micro-grooves into a smooth aluminum surface, it was possible 

to significantly increase the contact angle for a liquid water droplet. Kim et al. [76] performed 

LBM simulations of droplets on textured surfaces and found a variation in contact angle as the 

texture spacing was varied. Above a critical distance between pillars, the droplet rest state 

transitioned from a Cassie-Baxter state [1], where in regions devoid of pillars the droplet mass 

does not rest within the void space, to the opposite case referred to as the Wenzel state [51], 

where part of the droplet mass fills the void space between subsequent pillars. 

 Now consider Figure 4.3, where a liquid droplet surrounded by a lighter liquid impinges 

onto a textured surface. The droplet to surrounding fluid density and viscosity ratios are both 2. 

The domain is 300x500 l.u. Fluid-solid interaction forces were varied such that each solid 

boundary, including the textured grooves were hydrophilic surfaces. The droplet moves 

downward with an initial velocity of 0.20 l.u./s corresponding to a Reynolds number of 180 for a 

distance of two l.u. before striking the textured surface. The impact of the droplet results in 

significant spreading and ultimately break-up of the droplet. Observe the dome regions Figure 

4.3c. This may be attributed to large lubrication pressure built up in these small gaps. Following 

break-up, the droplet continues to spread wet much of the textured and surrounding flat surfaces. 

The center daughter comes to rest in a Cassie-Baxter state. 
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Figure 4.3: Droplet impingement on a textured surface,            , 

Re = 180. 
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 In Figure 4.4, we compare the dynamics of between impingement on a smooth surface 

and a liquid film. The liquid to vapor density and viscosity ratios are the same in both cases and 

are equal to 60 and 120 respectively. Each droplet begins with a downward velocity of 0.05 

l.u./s. The simulation domain is 200x400 for the smooth surface case and 400x800 for liquid film  

case. Fluid-surface forces have not been considered for these cases so that the static contact angle 

will be 90 degrees. As the droplet makes contact with the smooth surface, vertical translating  

kinetic energy is transferred to lateral spreading. The amount of spreading is finite since the 

relatively high droplet viscosity resists its own deformation. Eventually, the droplet retracts back 

and oscillates towards an equilibrium hemispherical shape. The relaxation toward a 

hemispherical shape is attributed to surface tension, which was present in these simulations, but 

not directly calculated. Its value however may be estimated by the calculating the Laplace 

pressure difference in and outside a static droplet of the same material properties. We see a 

similar transfer of energy from the droplet to the liquid. In this case, the droplet Reynolds and 

Weber numbers are low enough such that splashing does not occur. As the wave resulting from 

impingement spreads, its amplitude decreases as a result of viscosity. After long times (greater 

than that depicted in Figure 4.4h) the liquid film slowly retracts towards a level height. 
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33

 Results obtained jointly with Purushotam Kumar. 

  
Figure 4.4: Droplet impingement on a solid surface (left), and liquid pool (right) 

      = 60,   = 100, droplet velocity = 0.05 l.u./s.
33
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 A similar study of droplet impingement on a smooth surface is shown in Figure 4.5. The 

liquid and gas have the same density ratio as the fluids in the cases presented in Figure 4.4. 

However, the viscosity ratio is 120 for the case shown in Figure 4.5. The domain is 

200x200x200 l.u. The droplet begins with a downward velocity of 0.05 l.u./s. The droplet 

undergoes moderate spreading following impingement, however no necking is observed near its 

center. Following damped spreading, the droplet relaxes toward an equilibrium shape due to 

interfacial tension. Because the material properties and initial conditions were identical between 

the smooth impingements in Figures 4.4 and 4.5, this suggests that impingements in two and 

three-dimensions are fundamentally different processes. The lack of necking may also be 

attributed to a higher viscosity ratio in the three-dimensional impingement case. 
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 Results obtained jointly with Purushotam Kumar. 
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Figure 4.5: Droplet impingement on a smooth surface, isometric (left) and top view (right),       = 60, 

  = 120, droplet velocity = 0.05 l.u./s. 34
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4.2.2 Droplet Collision Results 

 In Figure 4.6, we examine two binary droplet collisions, in the absence of gravity, where 

the viscosity ratio is varied between the two cases. Simulations are performed using the S-C 

method. The liquid to vapor viscosity ratio is 100 for the case shown in the left panel of Figure 

4.6, while the viscosity ratio is 120 for the case in the right panel. The liquid to vapor density 

ratio is 60 in both cases. The simulation domain is 400x800 in both cases. The initial relative 

approach velocity of the droplets is 0.05 l.u./s. In both cases, the vertical kinetic energy is 

transferred into lateral kinetic energy following the collision. A period of necking ensues in both 

cases. The necking period is finite and damped due to viscosity, and the budded masses 

eventually relax towards each other. Interestingly, in the lower viscosity ratio case, the buds 

briefly break up before colliding again. This type of break-up was referred to as reflexive 

separation by Inamuro et al. [64]. The resulting mass following the second collision oscillates 

with decreasing amplitude toward a steady spherical shape. In the higher viscosity case, there is 

also significant necking observed. However, the increased viscosity of the droplets relatively to 

the surrounding fluid apparently resists deformation just enough to avoid a secondary break-up 

and subsequent collision. In this case, necking and relaxation lead to a damped oscillation toward 

a steady spherical shape. 
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 Results obtained jointly with Purushotam Kumar. 

  
Figure 4.6: Two droplets approach with identical velocity, collide and coalesce. density ratio = 60, 

viscosity ratio = 100 (left) and 120 (right), droplet velocity = 0.05 l.u./s.
35
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 We also explore the case of oblique droplet collision in Figure 4.7. Each droplet begins 

with a vertical velocity magnitude of 0.20 l.u./s. The direction of each droplet’s initial velocity 

vector is oriented in a direction pointing toward the other droplet. The diameter of each droplet is 

80 l.u. The liquid to vapor density and viscosity ratios are both 70. The domain is 300x300x300 

l.u periodic cube. In the case presented in the left panel of Figure 4.7, the azimuthal angle is 0  

and the polar angle is 73.3 . Following collision, both droplets coalesce and begin rotating 

clockwise w.r.t. the x-axis. In the second case, the azimuthal angle is varied to 45 , while the 

polar angle is fixed. The resulting collision is comparatively glancing and results in temporary 

coalescence followed by a period of necking and break-up. While the resulting buds eventually 

impinge on the domain boundaries and interact with each other due to the periodic conditions, in 

an ideal unbounded domain, we expect these droplets to continue traveling away from each other 

and to have no interaction following the initial collision event.  



94 

 

 

 

 

Time step = 0 

  
 

 

 

500 

  
 

 

 

1500 

  
 

 

 

2500 

  
 

 

 

4000 

  

Figure 4.7: Oblique binary droplet collision,              (left),               (right).
36
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 Results obtained jointly with Purushotam Kumar. 
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5. SIMULATION OF FLOW IN MICRO-CHANNELS 

 

5.1 Problem Description 

 Multiphase flow in micro-channels has many applications to air conditioning and 

refrigeration including phase mixing or separation in T-junctions and distributor headers. The 

distribution of phases within the micro-channels of a shell and tube heat exchanger could have a 

substantial effect on the efficiency of heat transfer, that is, the effective heat transfer coefficient. 

In many of these applications, multiple fluids (water, oil, refrigerant, air), or phases of the same 

fluid (liquid water and water vapor) are present which may significantly increase the complexity 

of the flow regimes encountered. 

 In this chapter, we explore a variety of multiphase micro-channel problems including 

two-dimensional displacement flows as well as droplet formation in complex micro-channels. 

There is an extensive literature with regard to these problems which allows a careful assessment 

of LBM to be made with regard to simulating these types of flows. Upon evaluating LBM’s 

performance, it will be possible in the future to examine more complicated flows including three-

dimensional geometries, and phase change.
37

 

 Recently, following a similar study of buoyancy-induced mixing by Sahu and Vanka 

[31], Redapangu et al. [48] studied immiscible displacement flow in channels using the H-C 

method. More recently, Mishra et al. [37] simulated miscible displacement flow in a channel and 

examined the dependence of flow stability properties on double-diffusive effects. In [48], 

channel inclination was varied to examine the dependence of gravitational effects on the types of 

fingering behavior observed. The other key parameters investigated were the Capillary number 

and the viscosity ratio between the two fluids. As the angle of inclination was increased from 

                                                 
37

 LBM can be naturally extended to allow phase change by incorporating an energy equation coupled with an EOS. 
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zero (a horizontal channel) to nearly vertical, the interface between the displacing fluid finger 

and the displaced fluid became increasingly corrugated. The finger experienced very jagged 

edges at high capillary numbers and relatively smooth edges for low Capillary numbers. This 

was in agreement with the findings of Sahu and Vanka [31] that observed a decrease in 

interfacial mixing as the capillary number decreased. Returning to Redapangu et al.’s study [48], 

as the displaced fluid’s dynamic viscosity was increased relative to the displacing fluid, high 

frequency interfacial instabilities were suppressed, which revealed lower frequency corrugations 

independent of viscosity ratio. 

 The problem of droplet flow in micro-channels, specifically of droplet formation in T-

junctions has been studied by many authors. Several authors including [4, 3, 6, 68, 32] simulated 

droplet formation in a T-junction using LBM. The case of droplet formation in cross-junctions 

was considered by Yu et al. [79]. Recent seminal investigations include work by Garstecki et al. 

[44] and De Menech and Garstecki et al. [36]. Omebere-Iyari and Azzopardi [42] developed a 

flow regime map for two-phase flow in micro T-junctions and found that flow regimes could be 

demarcated when plotted as function of both the liquid and gas superficial velocities. This 

observation suggests an important non-dimensional parameter in studying droplet formation in 

T-junctions is the flow rate ratio, that is the ratio of flow rates of two single phase fluids entering 

two respective branches of a T-junction may be correlated with the two-phase flow regime that 

results in the third branch of the T-junction. Garstecki et al. [44] showed that the length of 

droplets formed in T-junctions scaled linearly with the flow rate ratio. This observation was in 

agreement with simulations performed by Gupta and Kumar [3]. Gupta and Kumar [4] also 

showed that the gas to liquid viscosity ratio as well as the ratio cross-sectional area between inlet 

and outlet branches may vary the flow regime in the outlet branch from jetting to slug formation 
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depending on the flow rate. For low viscosity ratios (      ), [3] observed slug formation 

independent of the flow rate ratio, while for a viscosity ratio 1/10, jetting was observed as the 

flow rate of the dispersed phase became comparable to the continuous phase flow rate. Gupta 

and Kumar [6] observed nominal variation in normalized droplet volume for capillary numbers 

greater 0.3 independent of the flow rate ratio, however, for capillary numbers less than or equal 

to 0.1, normalized droplet volume varied inversely with the capillary number independent of the 

flow rate ratio. In addition, the flow rate ratio has a more pronounced effect on droplet size for 

low capillary numbers, and a comparatively modest effect as the capillary number was increased. 

Qian et al. [16] found a moderate effect of liquid-surface contact angle on droplet length. In an 

alternating liquid-gas slug flow, when the liquid contact angle was greater than 120 degrees, 

liquid and gas slug lengths were nearly identical, while for smaller contact angles, gas slug 

lengths were longer than liquid slugs, with the difference in length increasing as the liquid 

contact angle was decreased.  
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5.2 Results 

 

5.2.1 Displacement Flow Results 

 We present results for displacement flow in a two-dimensional channel in Figures 5.1 

and 5.2. Simulations were performed using the H-C method (no PPE). We examine the effect of 

Atwood number (   
     

     
) on displacement flow dynamics in Figure 5.1. Only horizontal 

(gravity-less) channels are considered in the following cases. Following [48], we use a 

simulation domain of 4608x98 nodes. Lighter liquid enters from the left and pushes a heavier 

liquid already present in the channel. The Atwood number in the first case (left panel) is 0.5 

while the Atwood number in the second case is 0.85. The viscosity ratio of the heavier to lighter 

fluid is equal to 20 in both cases. The inlet is prescribed a fully developed velocity profile with 

an average velocity of 0.025 l.u./s. As the displacing fluid pushes the displaced fluid from the 

channel, corrugations are observed at the finger interface. However, the corrugations are more 

pronounced for the lower At number case (left panel) compared with the higher Atwood number 

case (right panel). However, despite small amount of displaced fluid entrained in the light 

viscous finger of the At = 0.5 case, the corrugations in both cases are relatively low frequency, 

which may be attributed to the high viscosity ratio as discussed in [48]. Interestingly however, 

there exist no discernible corrugations for the case shown in Figure 5.2 despite the relatively low 

Atwood number and viscosity ratio. However, these results are in good agreement with a similar 

case presented in Fig. 6a of [48]. Interestingly, Sahu and Vanka [48] show that for the case of At 

= 0, increasing the viscosity serves to introduce corrugations, albeit low frequency ones.  



99 

 

 

 

 

 
 

 

 

  

  

Figure 5.1: Displacement flow in a channel. Contours of index function. Case 1: At = 0.5 (left), 

Case 2: At = 0.85 (right).   = 20 for both cases. 
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Figure 5.2: Displacement flow in a channel. At = 0,      . Contours of index function. 
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(f) (e) 
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5.2.2 Results for flow in multi-branched channels 

 We next examine droplet formation in a T-junction in Figures 5.3-5.5 using the S-C 

method. The effects of gravity are neglected in all cases in this section. The case in Figure 5.3 

corresponds to two fluids of equal density and viscosity. The inlet velocity of the dispersed phase 

is 0.015 l.u./s and the inlet velocity of the continuous phase is 0.20 l.u./s. This corresponds to a 

flow rate ratio of 1/13.3. The predicted regime is a discrete droplet flow [29]. As the dispersed 

phase (red fluid) enters the main branch, the continuous phase fluid (blue) imparts a substantial 

shear to the dispersed stream. Nonetheless, dispersed fluid must continue to enter the main 

branch. The relatively low flow rate of the dispersed phase gives it little time to fill the main 

branch before it necks and ultimately shears off by the continuous phase. 

 In Figure 5.4, the effect of channel geometry is explored. In Figure 5.4a, the ratio of the 

dispersed phase channel height to the main branch width is unity, while the ratio is ½ in Figure 

5.4b. The material properties are the same in both cases. The density and viscosity ratio of the 

dispersed to continuous phase are both 5, and the flow rate ratio of the dispersed to the 

continuous phase is 8. In Figure 5.4a, we observe the formation of slugs that occupy the entire 

main branch channel width. In this case, break-up of the dispersed phase stream (slug formation) 

is governed by pressure build-up upstream of a forming slug and not as a result of the shear [44]. 

At this flow rate ratio, the continuous stream does not have sufficient time to exert a stress 

capable of breaking the dispersed stream. In the case of Figure 5.4b however, the shear imparted 

by the continuous stream on the dispersed stream, combined with the larger main-branch width 

are sufficient to keep the dispersed fluid away from the right-most wall. The shear stress 

however is not capable of breaking up the dispersed phase stream. The observed flow regime is a 

jet or stratified flow. In Figure 5.5, the effect of viscosity ratio is studied. Here, Figure 5.5a is 

the same case presented in Figure 5.4a and Figure 5.5b is the same case except the viscosity 
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ratio has been increased to 10. In Figure 5.5b, it is observed that liquid slugs do eventually form 

but there now exists a significant dispersed phase jet extending into the main-branch. Because 

the downstream regime is slug flow, we suspect that pressure is ultimately the dominant stress 

responsible for break-up for this case.  

 The remaining calculations were performed using the H-C method (without the PPE). A 

related study was performed by Yu et al. [79]. In Figure 5.6a and 5.6b, we examine displacement 

flow in a cross-junction and multi-branch distributor header respectively. Light fluid enters from 

the left and displaces the heavier fluid already present in the domain. The Atwood number is 0.3 

and the viscosity ratio is 0.9 for both cases. Viscous fingering is observed in both cases. The flow 

field in both cases may be thought of as geometrically perturbed version of the flows in Figures 

5.1 and 5.2. In the absence of a junction, each finger would be symmetric about a line of action 

parallel to the mean flow direction in each branch of the geometry. However, different sides of 

the displacing fluid encounter the junction at different times (the leading edge arrives first and 

begins translating down the side branch walls before the trialing edge of the displacing fluid, 

which encounters the junction later). This leads to non-symmetric fingers in the outlet branches. 

 In Figure 5.7, we examine an array of droplets in a T-junction which has applications to 

phase separation. Flow is from left to right. The density and viscosity ratio are both 2 and the 

inlet Reynolds number is 9. We observe deformation and rotation of the droplets which are 

advected by the continuous phase. The droplets eventually coalesce and simultaneously entrain 

the carrier fluid material. The droplet streams continue into the side branches and ultimately exit 

the domain. This flow is remarkably complex despite the modest Re.   
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Figure 5.3: Droplet formation in a T-junction, density ratio = 1, viscosity ratio = 1, channel 

width ratio = 1. 
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Figure 5.4: Liquid-vapor jetting and slug flow in a T-junction, geometric effect
38

, density ratio = 

5, viscosity ratio = 5, Q = 8, a) channel width ratio = 1, b) channel width ratio = ½.  

  

                                                 
38

 Results obtained jointly with Purushotam Kumar. 

(a) (b) 
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Figure 5.5: Liquid-vapor jetting and slug flow in a T-junction, effect of viscosity ratio,
39

 density 

ratio = 5, flow rate ratio = 8 and channel width ratio = 1,  

a) viscosity ratio = 5, b) viscosity ratio = 10. 

  

                                                 
39

 Results obtained jointly with Purushotam Kumar. 

(a) (b) 
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Figure 5.6: Displacement flow in complex geometries. Contours of index function. 

Case 1: Flow in a cross-junction (left), Case 2: Flow in a distributor header (right). At = 0.3, and 

viscosity ratio = 0.9 for both cases.  
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Figure 5.7: Array of droplets flowing in a T-junction
40

,       = 2,   = 2, Re = 9. 

 

                                                 
40

 Results presented at APS DFD 2012. 
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6. DEFORMATION OF A LIQUID DROPLET IN A SQUARE DUCT 

 

6.1 Problem Description 

 The flow of liquid droplets in confined geometries is a problem of fundamental 

importance. Confined droplet flows are ubiquitous in ACRC applications. The study of droplet 

deformation began with the work of Taylor [23] who derived a deformation parameter assuming 

that the deformed droplet shape deviated only slightly form a spherical shape. Taylor showed the 

droplet deformation scaled linearly with the capillary number [23]. Hestroni and Haber [22] used 

the method of reflections to calculate the shape of a deformed droplet for the case of Stokes’ 

flow in a pipe. Shapira and Haber [39] performed the same analysis for flow between parallel 

plates and later extended Taylor’s work [23], obtaining an expression for the deformation 

parameter for a deformed droplet taking into account the presence of walls [40]. The case of a 

neutrally-buoyant axially translating droplet subject to an external flow is of particular interest. 

Goldsmith and Mason [27] performed separate low-Reynolds number pipe flow experiments 

where the carrier fluid contained rigid solid particles in one case, and deformable liquid droplets 

in the second. Contrary to the predictions of Jeffrey [20] that neutrally-buoyant particles would 

migrate to a region in the flow where the energy dissipation was minimum, Goldsmith and 

Mason observed that the droplets but not the particles migrated toward the pipe axis where shear 

was minimum [27]. Ho and Leal [13] examined creeping droplet motion in a pipe and also 

observed droplet migration toward the center axis independent of the initial position. This 

observation is consistent with the work of Kataoka and Inamuro [77] who observed that if the 

Weber number is above a critical value, the equilibrium droplet position will be axial 

independent of the initial position or of the Reynolds number. Nourbakhsh et al. [10] performed 

a 3D simulation of droplets in Poiseuille flow at finite Reynolds number and find the droplet 
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concentration along the channel center-line increases with increasing capillary number for 

capillary numbers in the range 0.05-0.8. A computational study by Mortazavi and Tryggvason 

[59] found that droplet migration may be toward or away from the axis depending on the 

viscosity ratio. Droplets of low viscosity compared with the carrier fluid tend to migrate toward 

the axis while highly viscous droplets tend to migrate toward walls. Migration toward the axis is 

also observed for high capillary numbers while migration away from the axis is observed for 

lower capillary numbers [59]. The extreme cases of low viscosity ratio and high capillary or high 

viscosity ratio and low capillary represent relative extremes with respect to droplet deformation. 

The former case is characteristic of high shear by the carrier fluid on the droplet which leads to 

deformation. A high capillary number indicates that the interfacial tension, which acts to 

maintain an equilibrium spherical droplet shape, is small in comparison with the shear stresses 

exerted on the surface of the droplet. In this regime, qualitative droplet deformation is high. In 

the latter case where the viscosity of the carrier fluid is small in comparison with the viscosity of 

the droplet, shear stresses exerted on the droplet surface are relatively small. At low capillary 

numbers, interfacial tension resists large deformation in the droplet interface.  

 In this chapter, we examine axial droplet deformation in a three-dimensional square-duct 

at finite Reynolds number. Special attention is given to both steady and transient deformation. 

This problem was chosen to study the fundamental issues relevant to transient droplet 

deformation. In addition, several facets of this problem have received less attention in literature.  

Much of the literature on confined droplet dynamics is concerned with droplet deformation in the 

Stokes’ flow limit. A thorough review of droplet dynamics in the low-Reynolds number limit is 

given by Stone [25]. However, the role of inertia in droplet deformation may also be significant. 

In addition, the study of droplet deformation at finite-Reynolds number has received comparably 
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less attention. Singh and Sarkar [52] examine droplet deformation in a shear-flow between 

parallel plates for Reynolds numbers in the range 0.1-10. For low capillary numbers, droplet 

deformation appears to have little dependence on Reynolds number. However, at higher capillary 

numbers, a stronger dependence of deformation on Reynolds number is observed. Lan and 

Khismatullin [26] simulated droplet deformation in a micro-channel using the volume of fluid 

method for Reynolds numbers in the range 10-100. Equilibrium droplet deformation was 

observed to increase with increasing Reynolds number, although it’s not clear whether this was a 

result of simultaneous increase in capillary number. Kataoka and Inamuro [77] explored 

Reynolds numbers up to 500, but droplet deformation was not considered. 

 While many authors have examined droplets subject to either Poissuile or linear-shear 

flow between parallel plates see [39, 40, 66, 46, 45, 7, 58, 18, 59, 33, 10, 52], most of the studies 

examining fully-confined droplet flows are restricted to circular geometries see [27, 13, 67]. 

Wang and Dimitrakopoulos [78] used a spectral boundary element method to simulate droplet 

flow in a square duct. However, their study considered flow at low-Reynolds number. Coupier et 

al. [21] examined droplet equilibrium shape for low-Reynolds number flow in rectangular ducts 

of varying aspect ratio cross-sections. 

 Finally, transient droplet deformation has been less well studied compared with steady-

state deformation. Sibillo et al. [66] examines transient droplet elongation in a confined shear 

flow. Khan and Wang [33] performed simulations of transient droplet deformation in a 3D shear 

flow and calculated droplet elongation, spreading, and total deformation. Each of these scalars 

was found to increase monotonically as the capillary number was increased. Transient droplet 

deformation is also considered by [78, 12, 7, 58]. However, in each of these studies, the 

emphasis is placed on characteristics of droplet deformation in steady-state. The steady-state 



110 

 

droplet shape, elongation, spreading, and total deformation are strongly dependent on the 

Capillary number as will be shown in this section. The goal of this study is to elucidate aspects 

of both steady and transient droplet behavior which have more complicated capillary number 

dependence. We also examine the effect of Reynolds number and droplet to carrier fluid 

viscosity ratio. We show that inertial effects become less important as the Reynolds number is 

decreased, suggesting a convergence to the Stokes’ limit. The viscosity ratio appears to have 

modest effects when it is close to unity. Further increase in the viscosity ratio however results in 

significant variation in the droplet’s  transient deformation history.  
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6.2 Results 

 

6.2.1 Problem Statement 

 

 We simulate the case of an axially translating droplet in a square duct using the He and 

Chen method. The simulation domain is shown in Figure 6.1. In all cases, the droplet is neutrally 

buoyant (i.e. the droplet to carrier fluid density ratio is unity), so that the effects of gravity are 

neglected. No-slip, no-penetration conditions are prescribed at each wall using the Ghost-fluid 

method. The initial position (center of mass) of the droplet is one droplet diameter from the duct 

inlet. The initial condition everywhere is a fully developed unidirectional velocity profile. 

 
Figure 6.1: Simulation domain and droplet initial condition. 
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Assuming a steady laminar flow, the single-phase solution satisfies the Poisson equation, given 

in Cartesian form as: 
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For an infinite-length duct of square cross-section with sides of length 2r, the analytical solution 

is given by [19]: 
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And the cross-section averaged velocity: 
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It is the velocity profile defined in (6.2) that is prescribed as the initial velocity everywhere in the 

simulation domain. The inlet is also prescribed fully developed conditions while the outlet 

velocity is constrained to have zero-gradient. To maintain a fully developed mean flow, an axial 

pressure gradient independent of position and consistent with (6.2) is prescribed so that the LBM 

calculated pressure will be interpreted as the pressure perturbation on the local mean pressure as 
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a result of the droplet’s presence
41

. The mean velocity given in (6.3) allows us to define a 

Reynolds number: 

 

                                                                           (   ) 

 

Where H is the duct height and    is the kinematic viscosity of the carrier fluid.
42

 In many 

previous studies which examined droplet deformation in the Stokes’ limit, the Reynolds number 

was not considered a relevant dimensionless parameter. In the Stokes’ limit the relative role of 

inertia compared with viscosity is small so that any effect of deformation on an inertial 

parameter (Re) is assumed to be negligible. In fact, our results will suggest that deformation at 

low Reynolds number likely does not carry a strong Reynolds number dependence, but rather the 

dependence at high Reynolds numbers cannot be ignored.  

 Another key parameter we study is the Capillary number: 

 

                                                                          (   ) 

 

Where   is the interfacial tension and calculated using (2.43). The capillary number represents 

the relative importance of viscous shear stresses of the carrier fluid on the droplet, and the 

                                                 
41

 The pressure perturbation will be due to interfacial tension and non-unity viscosity ratio; no pressure perturbation 

is expected when the previous two conditions are not met since the result would be a single phase fully developed 

flow. 
42

 Note that each variable in (6.4) can be written in terms of lattice units (l.u.) and other dimensions. For example, 

the finest mesh we use is described by a height of 96 l.u. and the mean velocity in most simulations is 0.052083 

l.u./s. Variables expressed in l.u. have no physical meaning and thus cannot be a basis of comparison. In defining 

non-dimensional parameters, we have made the usual assumption that is not the constituent variables, the magnitude 

of the non-dimensional group itself that matters. This case is no exception in that Re = 100 can be formed by a 

triply-infinite number of combinations of mean velocity, duct height, and carrier kinematic viscosity. Whatever the 

combination, we expect Re = 100 to have the same meaning as in any experiment or other computational setting 

according to the notion of dynamic similarity. 



114 

 

interfacial tension between the droplet and carrier fluids. In the limit of zero interfacial tension 

(infinite capillary number) there exists no elastic resistance to deformation. The droplet’s own 

viscosity will resist deformation induced by the carrier fluid (and the droplet’s own advection in 

a non-uniform velocity field), but without surface tension, the droplet does not have the preferred 

spherical shape. It will continuously deform as laminar sheets, where each point in the wall-

normal direction at any axial location will define a different sheet. In other words the droplet 

deforms as each piece of droplet material is simply advected with the local fluid velocity, which 

remains steady and independent of stream-wise position. At the other extreme denoted by infinite 

interfacial viscosity or zero capillary number, the droplet remains perfectly spherical. The carrier 

fluid then flows around and pushes the droplet, as if it were a rigid body of finite Stokes 

number
43

, but the droplet experiences no deformation. While there is no definite agreement in 

literature, capillary numbers greater than 1 are usually considered high, while capillary numbers 

below 0.01 say are considered low. In this study, we examine capillary numbers in the moderate 

range     [                 ]. 

 The final non-dimensional parameter we consider is the droplet to carrier fluid viscosity 

ratio which is denoted by  . We expect modest deformation dependence on the viscosity ratio 

when   is close to unity, since, other things equal, a unity viscosity ratio would indicate a single-

phase flow. In this study, we examine large viscosity ratios. In an infinite viscosity ratio limit, we 

expect the droplet to behave similarly to the zero capillary number case, that is we expect no 

droplet deformation. 

 A summary of the cases run in the droplet deformation study are presented in Table 6.1. 

In the next section, we first present a grid study using three meshes. GPU memory capacity 

                                                 
43

 The Stokes number is a non-dimensional representation of a mass’s (typically a particle) response time relative to 

a characteristic fluid response time. Zero Stokes number means the mass is a fluid tracer while an infinite Stokes 

number indicates a mass that is unaffected by the surrounding fluid. 
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limited our finest calculation to a 10:1 square duct of dimensions 96x96x960. The droplet 

confinement, (i.e. the ratio of the initial droplet diameter to duct height) is 0.8125. This 

corresponds to droplets of 26 l.u., 52 l.u., and 78 l.u. for the 32x32x320, 64x64x640, and 

96x96x960 grids respectively. However we will show that sufficient grid convergence was 

achieved. We then perform a series of calculations to examine parametric dependence of droplet 

deformation on Capillary number, Reynolds number, and viscosity ratio. 

  

Case Re Ca   Grid 

Grid Study 

1a 100 0.25 1 32x32x960 

1b 100 0.25 1 64x64x960 

1c 100 0.25 1 96x96x960 

Ca Study 

1c/2a 100 0.25 1 96x96x960 

2b 100 0.10 1 96x96x960 

2c 100 0.15 1 96x96x960 

2d 100 0.2 1 96x96x960 

Re Study 

1c/3a 100 0.25 1 96x96x960 

3b 50 0.25 1 96x96x960 

3c 25 0.25 1 96x96x960 

3d 10 0.25 1 96x96x960 

  Study 

1c/4a 100 0.25 0.5 96x96x960 

4b 100 0.25 1 96x96x960 

4c 100 0.25 2 96x96x960 

4d 100 0.25 4 96x96x960 

4e 100 0.25 8 96x96x960 

4f 100 0.25 16 96x96x960 

4g 100 0.25 32 96x96x960 

Table 6.1: List of cases for droplet deformation in a square duct study. 
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6.2.2 Verification and Validation 

We first validate our multiphase LBM algorithm by simulating low Reynolds number droplet 

flow in square duct as investigated by Wang et al. [78] using a boundary integral formulation. 

The actual Reynolds number prescribed in [78] was not explicitly mentioned. In our formulation, 

Re = 2 was chosen to balance computation time and accuracy. However, as the shown in section 

6.4, substantial decrease in Reynolds number would likely not have affected the validation 

results. The flow is prescribed fully developed conditions and the magnitude of droplet 

deformation D, defined as the maximum stream-wise to wall-normal droplet lengths, is plotted 

vs. time for three different Capillary numbers in Figure 6.2. 

  

 

 

 
Figure 6.2: Algorithm validation with boundary element simulation of low Reynolds number 

droplet deformation in a square duct,       , confinement = 0.8, LBM results (dashes), results 

reproduced from [78] (solid and dotted lines). 
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The LBM predicted results are in good agreement with the results obtained by [78]. The steady-

state LBM-predicted deformation parameters are slightly less than those predicted by [78] for 

each of the capillary numbers. The trends however match well between the two algorithms for 

each capillary number. We therefore conclude LBM is capable of simulating the problem of 

droplet deformation in a square-duct with good accuracy. Further, we expect LBM to be more 

accurate in the moderate Reynolds number cases discussed later. The boundary element method 

used in [78] and by other authors [46, 45, 12] has been used extensively to study confined 

droplet deformation. However, its use as a computational methodology is only valid in the low 

Reynolds number limit where the flow equations become linear, allowing a fundamental solution 

to defined. Therefore, while the boundary element predictions are more accurate in the low 

Reynolds number case, we expect the LBM results to be more accurate in the moderate Reynolds 

cases, since the LBM algorithm makes no assumptions about the magnitude of the Reynolds 

number. 

 In the H-C method, two separate fluids are identified via an index function, which takes 

on a value of    in fluid 1 and    in fluid 2. In each of our simulations we take the definition of 

the interface to be the mean of    and   , or as defined in (6.6),      : 

 

          (   )                                                         (   ) 

 

 

Where      is the value of phi at the interface.       is consistent with the interfacial location 

chosen in the popular surface tension model derived in [29]. However, it is natural to wonder 

how sensitive the results are on the definition of the interface. That is, does the choice of 

interface location significantly influence droplet dimensions, or the deformation parameter for 
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instance? In Figure 6.3, we observe that the choice of interface location only has a small effect 

on the droplet deformation history. 

 

We believe this observation will remain true provided that the droplet is sufficiently resolved 

globally and locally. By global resolution, we mean that by changing the interface location in an 

 -neighborhood around the droplet, the droplet deformation history and all other deformation 

characteristics are changed nominally at most. This is true provided the initial number of grid 

points used to resolve the droplet is not small. Typical 25 l.u. or more are preferred. By locally 

resolved, any local deformation on the droplet should not be the same order as the interfacial 

 

Figure 6.3: Effect of interface definition on deformation results, 

Ca = 0.1, Confinement = 0.8, Re = 2. 
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thickness of ~3 l.u. Provided these conditions are met, the droplet will be considered sufficiently 

resolved. 

 We next perform a grid study to ensure the results we obtain are grid independent. In 

Figure 6.4, we illustrate droplet contours and define dimensions used to quantify droplet 

deformation. In all cases, droplet dimensions used to quantify deformation are taken in a 

horizontal slice through the droplet and co-planar with the duct center-plane oriented in the 

stream-wise direction. This corresponds to the plane of highest deformation. (The vertical center-

plane in the stream-wise direction would yield the same results by symmetry of the problem.) 

The droplet shape begins as a sphere. Referring to Figures 6.4c and d, the initial droplet length 

and width are equal in magnitude to the droplet diameter and are denoted by L and W 

respectively. In Figure 6.4d, we define three characteristic dimensions for the deformed droplet, 

LT, LA, and WT, which are respectively the deformed droplet’s maximum stream-wise length, the 

droplet’s length as measured axially from leading to trailing edges, and the maximum tip-to-tip 

droplet width in the wall-normal direction. Two length scales were required since the axial 

length may differ significantly with the maximum droplet length, however the maximum droplet 

width typically does not differ greatly from any other characteristic droplet width that could be 

defined. In Figures 6.4e and f, we show the finest grid overlaid with a highly deformed droplet 

contour. In examining Figures 6.4f, it is clear that the local region of high deformation is still 

resolved with many grid points so that the calculation for the highest deformation cases may be 

considered sufficiently resolved.  
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Figure 6.4: Droplet contours, geometric definitions, grid resolution (a) 3D droplet contour, 

isometric view, (b) side view, (c) 2D horizontal slice, initial droplet shape, (d) 2D horizontal 

slice, transient droplet shape, (e) 2D droplet contour overlaid with finest grid, (f) zoomed view of 

droplet contour overlaid with finest grid. Ca = 0.25, Re = 100,    . 
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 With LT, LA, and WT defined, we may introduce four non-dimensional groups used to 

characterize the droplet’s deformation: the maximum elongation ET, the axial elongation EA, the 

spread factor S, and the deformation parameter D. Their respective definitions are given in (6.7)-

(6.10): 

    (    )                                                               (   ) 

   (    )                                                               (   ) 

   (    )                                                            (   ) 

                                                                     (    ) 

Since (6.7)-(6.9) are strain-like parameters, a value of zero for these respective parameters is 

indicative of little or no-deformation while a deformation D of magnitude 1 indicates a spherical 

or approximately spherical droplet.
44

 With these non-dimensional groups defined, we may 

examine the grid study presented in Figure 6.5, where ET, EA, and S are plotted vs. time for three 

grid cross-sectional grids.
45

 The non-dimensional time-step in Figure 6.5, as in the subsequent 

results is defined according to (6.11): 

   
       

 
                                                              (    ) 

                                                 
44

 Deformation measurements are made in plane since this provides a reasonable basis for comparison in any 

physical experiment. However, it should be understood that out of plane deformation does exist. While the droplet 

deformation has a symmetry on account of the duct cross-sectional geometry, this should not be confused with axi-

symmetry. As can be observed Figure 6.4a and b, the droplet trailing edge has “corner” symmetry. 
45

The dependence of droplet deformation history on grid was not investigated specifically since it is derivative from 

the previous non-dimensional groups. However, the deformation parameter has been explored ubiquitously in 

literature and remains as an important basis for describing droplet deformation and for comparing to other works. 
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Moderate variation in deformation histories are observed between the 32x32 and 64x64 grids, 

however little variation is observed between the 64x64 and 96x96 grids for    and    

parameters. Small variation in the spreading history is observed between the 64x64 and 96x96 

grids. Overall, it is clear the solution is converging as the grid is refined. The 96x96x960 grid 

was chosen as the basis for our subsequent calculations. This was in part limited by the memory 

resources or the GPU. However, the grid convergence is adequate so the droplet interface is 

sufficiently resolved. We therefore assert that the subsequent results are sufficiently grid-

independent. The accuracy of the calculations will be sufficient for fundamental physics to be 

evinced from these simulations, where the precise magnitude of deformation could be 

investigated in the future with a more refined grid.  
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Figure 6.5: Grid study, legends correspond to duct cross-section. Ca = 0.25, Re = 100,    . 
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6.2.3 Effect of Capillary Number 

 We first examine the effect of capillary number on droplet deformation. Droplet contours 

for four capillary numbers at different characteristic times are shown in Figure 6.6. 

Characteristic deformation parameter histories are shown in Figure 6.7 and 6.8 for different 

capillary numbers. We observe that total and axial droplet elongations increase with capillary 

number. The magnitude of spreading also increases with capillary number. Regarding the 

elongation history in Figure 6.7a, we may identify four distinct regimes which exist independent 

of capillary number. In regime (1), there exists an extended period of elongation as droplet  
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Figure 6.6: Droplet contour history for different capillary numbers, Re  = 100,      
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Figure 6.7: Capillary number study, elongation (a) maximum, (b) axial, (c) difference,  

Re  = 100,      
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material away from the axis is held up by the no-slip condition at the wall. Droplet material near 

the duct axis is relatively un-constrained allowing the droplet leading edge to extend forward. 

The droplet’s axial trailing edge moves slightly slower than the leading edge but the primary 

elongation is due to the difference in axial and near-wall stream-wise velocity. This can be 

observed in Figure 6.9a. The second regime is shown in Figure 6.9b,c. At the droplet axial 

trailing edge, a local region of high pressure and low stream-wise velocity develops. Whereas in 

 

 

Figure 6.8: Capillary number study, (a) spreading, (b) deformation, Re  = 100,    . 
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the first regime, viscous stresses may have been overcoming interfacial tension, it is perhaps in 

this regime where interfacial stresses begin to dominate as the interfacial curvature reaches a 

maximum. In examining 6.10b,c showing wall-normal velocity contours, we observe a flux of 

droplet material towards the axis. The “ears” that had formed in regime (1) begin to dissipate as 

lateral mass is converted to axial mass. This observation is also evident in the steepness of the 

spreading history for Ca = 0.25, around      in Figure 6.8a. In regime (2), the total elongation 

of the droplet changes little. In regime (3), the mass flux from the wall towards the axis is 

converted from an lateral inward spread to a stream-wise elongation. This is represented in 

Figure 6.9d. This second burst of elongation is analogous to squeezing a puddy-like substance 

where squeezing in one direction serves to elongate another direction. In the 3
rd

 regime and 

beyond, the elongation is almost purely axial as is evident in Figure 6.7c. In the final regime, a 

period of relaxation occurs where droplet shape and therefore deformation parameters relax 

toward a steady state. There appear small oscillations during late times for the larger capillary 

number cases indicating the capillary number may be acting like a representative damping factor. 

The higher capillary number droplets may be thought of as under-damped. 

 Observing Figure 6.7-6.8, we observe apparent self-similarity in the droplet deformation 

histories, that is, the elongation history for one capillary number is a scaled version of an 

elongation history for a different capillary number. That is, it may be possible to relate the 

amplitude of elongation of one capillary number at one time, to the amplitude of elongation of 

another capillary number at an earlier time. This trend is most evident in Figure 6.7c, which 

shows the difference in total and axial elongation for different capillary numbers. At early times, 

the difference exists because the elongation curves are concave down while the axial elongation 

curves are concave up. This indicates that early deformation is not a result of the difference in  
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Figure 6.9: Duct center-plane stream-wise velocity contours overlaid with two-

dimensional droplet shape, Ca = 0.25,    , Re = 100, (a)     , (b)     , (c) 

    , (d)     , (e)     , (f)        . 
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Figure 6.10: Duct center-plane wall-normal velocity contours overlaid with two-

dimensional droplet shape, Ca = 0.25,    , Re = 100, (a)     , (b)     , (c) 

    , (d)     , (e)     , (f)        . 
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velocity at the axial leading and trailing edges, but as a result of the large difference in velocities 

for droplet material near the axis and droplet material near the wall.  

 To capture part of the self-similar behavior, we have plotted in Figure 6.11 the successive 

characteristic times at which the difference in total and axial elongation occurs, for different 

capillary numbers. Such a correlation gives us a mapping between time-scales and stress 

parameters. In Figure 6.11 we observe an approximately linear variation. That is the time at 

which the maximum difference occurs increases linearly with capillary number, within the range 

of capillary numbers investigated. The choice of relating the time-scale to the capillary number 

for this feature of deformation is arbitrary. However, we still may expect any other characteristic 

feature of deformation that is present at each of the capillary numbers (e.g. time at which 

minimum spreading occurs, period of oscillation in relaxation regime), to also scale linearly with 

the capillary number. The former observation assumes that all other parameters (Re,  ) remain 

constant, since variation of these parameters may result in new time scales, as we will see. 

 

 
Figure 6.11: Characteristic time when E-EA is a maximum for different capillary numbers,  

Re  = 100,      
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6.2.4 Effect of Reynolds Number 

 We now examine the effect of inertia on droplet deformation. Three-dimensional droplet 

contours are shown at different characteristic times in Figure 6.12 for four duct-inlet Reynolds 

numbers. Characteristic deformation parameter histories are shown in Figures 6.13, 6.14. We 

observe that as the Reynolds number is decreased from a moderate value of 100 to a modest 

value of 10, its influence on deformation also decreases. We observe in Figure 6.13a and Figure 

6.14a that the magnitudes of total elongation and spreading decrease as the Reynolds number 

decreases. Further, the change in the steady-state values of these deformation parameters  
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Figure 6.12: Droplet contour history for different Reynolds numbers, Ca  = 0.25,      
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Figure 6.13:  Reynolds number study, elongation (a) maximum, (b) axial, (c) difference,  

Ca  = 0.25,      
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Figure 6.14: Reynolds number study, (a) spreading, (b) deformation, Ca  = 0.25,      
 

decreases even as the Reynolds number is decreased by a factor of 2 or greater between cases. 

Regarding the three-dimensional droplet contours in Figure 6.12, we observe little difference 

between the Re = 10, and Re = 25 cases. These observations suggest a convergence to the 

Stokes’ limit, where droplet deformation becomes independent of Reynolds number. Certainly 

Re = 10 would not be considered the Stokes’ limit in most practical regimes. However, as has 

been observed from the deformation parameter history, the decreasing influence of Reynolds 
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number as its own magnitude is decreased on both the steady and transient droplet deformation 

suggests a practical Stokes’ limit may exist with regard to the inertial effect on deformation even 

for Re not much less than unity. In other words, Re = O(1) or less may be sufficient to regard the 

droplet deformation as sufficiently Reynolds number independent.  

 Outside of the small Reynolds number limit however, it is clear the inertial parameter has 

a substantial effect on droplet deformation, both in the steady state magnitude and transient 

behavior. At early times for the Re = 50 and Re = 100 cases, a hollow cavity forms at the trailing 

edge of the droplet as near-wall droplet material is held-up and droplet material near the axis is 

relatively un-restrained. Regarding the deformation parameter in Figure 6.14b we observe that 

while the steady-state deformation varies approximately geometrically with the Reynolds 

number, the transient deformation may be increased by a greater amount as the Reynolds number 

is increased. For the Re = 10 and 25 cases, the deformation may be described as over-damped so 

that the steady-state deformation value is the maximum value. For Re = 50, the maximum over-

shoot in deformation is a magnitude of about 1.7 compared with the steady-state value of about 

1.6. For Re = 100, the maximum transient deformation is almost 2.4 while the steady-state 

magnitude is approximately 1.9. This suggests that for moderate Reynolds numbers, the steady-

state deformation magnitude may not be a fair representation of a droplet’s deformation; an 

increasing Reynolds number underscores the importance of examining transient deformation 

behavior. 

 Finally, we seek a characteristic time that scales with the Reynolds number. In Figure 

6.15, we plot the time at which the maximum difference in total vs. axial elongation occurs as a 

function of Reynolds number. The characteristic time’s dependence on Reynolds number is 

clearer than in the case of varying capillary number. While the relationship may be described as 
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approximately linear, with an R
2
 value greater than 0.9, we may also observe that little change in 

the characteristic time was observed between the Re = 10, and Re = 25 cases. Above these 

Reynolds numbers however, there was a significant increase in the time at which the maximum 

elongation difference occurred. This may suggest that there exists a critical Reynolds number 

below which the characteristic time is independent of Reynolds number (which may be 

indicative of a Stokes’-like limit) and a regime above the critical Reynolds number where the 

characteristic time is strongly influenced by Reynolds number. Recall a similar convergence was 

observed in the droplet deformation histories as the Reynolds number was decreased. A similar 

observation trend is observed in the next section. 

  

 

Figure 6.15: Characteristic time when E-EA is a maximum for different Reynolds numbers,  

Ca  = 0.25,      
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6.2.5 Effect of Viscosity Ratio  

 Three-dimensional droplet contours for different viscosity ratios of order unity are shown 

in Figure 6.16. As is evident in these contours as well as the deformation histories in Figures 

6.17 and 6.18, little difference in droplet shape is observed for small and intermediate times. The 

steady-state droplet elongation appears to have a moderate dependence on viscosity ratio while 

the spreading has a comparably modest dependence. The transient droplet elongation has a  

  /               
 

 

 

2 

 

  

 

 

 

4 

  
 

 

 

 

8 

  
 

 

 

 

10.7 

  
 

Figure 6.16: Droplet contour history for different viscosity ratios, Ca  = 0.25,         
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Figure 6.17: Viscosity Ratio study, elongation (a) maximum, (b) axial, (c) difference,  

Ca  = 0.25,          
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maximum that appears to be approximately independent of the viscosity ratio. However, the 

transient spreading magnitude appears to decrease as the viscosity ratio is increased. By 

conservation of mass (droplet volume), we expect there must exist an increasingly non-uniform 

droplet shape if the steady-state spreading decreases with viscosity ratio while the steady-state 

                                                 
46

 We were not able to observe the final data point in the       case within the 10:1 duct length. When the droplet 

viscosity is less than the carrier fluid’s, the droplet material represents a region of locally lower impedance to flow 

than the surrounding fluid. In this case, the mean droplet velocity is higher than that of the carrier fluid and therefore 

exits the domain in less time than more viscous droplets. 

 

 

Figure 6.18:  Viscosity ratio study, (a) spreading, (b) deformation, Ca  = 0.25,        46
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elongation increases with viscosity ratio. That is, the maximum wall-normal tip-to-tip droplet 

length is remaining close to its initial value even as the maximum stream-wise tip-to-tip distance 

is increasing. The only way this may occur is to have local region of high negative spread or 

wall-normal droplet squeezing. We may observe as the viscosity ratio is increased, the droplet’s 

interface-to-wall distance becomes increasingly non-uniform over the length of the droplet. 

Regarding Figure 6.16 at        , the       droplet has a roughly uniform thickness over its 

entire length except near its leading edge, while the       steady-state shape is non-uniform, 

with a bulbous trailing edge, and a skinnier paraboloid-shaped leading edge that extends over a 

large length of the droplet. The trailing edge wall-normal tip-to-tip distance is approximately 

equal in each of these cases indicating that the wall-normal tip-to-tip distance is increasingly 

narrower, moving in the positive stream-wise direction, as the viscosity ratio is increased. 

Regarding Figure 6.18b, it is interesting to note that the maximum transient droplet deformation 

decreases with increase in the viscosity ratio. Evidently, the trade-off of increased elongation is a 

comparatively substantial reduction in negative spreading. However, the steady-state droplet 

deformation does increase as the viscosity ratio is increased. The preceding observations were 

relevant for viscosity ratios near unity, however in the next section we observe different 

deformation dynamics as the droplet viscosity is increased relative to the carrier fluid’s. 

 We observe qualitatively different behavior for viscosity ratios increasingly greater than 

unity. Regarding Figure 6.19, as the viscosity ratio increases, the cavity region at the droplet 

trailing edge begins to disappear. For      and 32, little or no cavity region is discernible in 

the droplet contour plots. A small cavity may only be inferred by inspection of 6.20c which 

suggests there is a difference in axial tip-to-tip and maximum stream-wise tip-to-tip distances,  
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which implies the presence of a droplet trailing edge cavity. Clearly however the depth of the 

cavity, as quantified by the difference in total and axial elongations is much larger in the lower 

viscosity ratio cases.  
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Figure 6.19: Droplet contour history for different viscosity ratios (continued),  

Ca  = 0.25,         
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Figure 6.20: Viscosity ratio study (continued), elongation (a) maximum, (b) axial, 

(c) difference, Ca  = 0.25,         
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 The droplet deformation histories are remarkably different for the     cases compared 

with the smaller viscosity ratio cases. For viscosity ratios greater than 4, no inflection point is 

present in the total elongation history. Even for this case, the elongation magnitude increases 

monotonically with time while the cases where     described earlier in this section have both 

 

 

Figure 6.21:  Viscosity ratio study (continued), (a) spreading, (b) deformation,  

Ca  = 0.25,         
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inflection points and significant overshoots that develop as droplet material near the trailing edge 

is ejected backward relative to the droplet’s center of mass. In cases where    , no such 

violent ejection is observable from the deformation histories.  

 The disappearance of inflection points in the elongation histories where the viscosity 

ratios are greater than or equal to 8 suggests a regime change where the viscosity ratio magnitude 

has strong influence on transient droplet deformation. Further evidence of this regime change is 

evinced in correlating a characteristic time scale with the viscosity ratio as shown in Figure 6.22. 

For viscosity ratios of order unity and even up to 8, little change is observed in the time at which 

the maximum elongation difference occurs. However, for viscosity ratios larger than 8, the 

characteristic time at which the maximum difference occurs increases significantly. While the 

duct length limited our observation window, it is speculated that the increase in viscosity ratio 

changed the characteristic system damping from a state of under-damping to a state of over-

damping. We speculate the cases where the viscosity ratio is 8 and greater will experience 

monotonic elongation histories that asymptote to their steady-state magnitude. We expect the 

 
Figure 6.22:  Characteristic time when E-EA is a maximum for different viscosity ratios,  

Ca  = 0.25,         
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spreading and total deformation histories to behave similarly after long times. Put another way, 

the viscosity ratio functions as an inverse inertial scale. For a high viscosity droplet, the flow in 

the droplet is of locally lower Reynolds number than the surrounding carrier fluid and 

consequently inertia plays a relatively minor role in its deformation. Inertia however plays a 

comparatively large role in the deformation of low viscosity ratio droplets, which allows the 

possibility of more complicated transient behavior such as overshoots and damped oscillations 

towards steady-state.  

 Finally, we may regard Figure 6.23 to observe how the viscosity ratio affects the flow in 

the vicinity of the droplet. We observe that the flow is fully developed except in the 

neighborhood of the droplet for both the     and      cases. The mean stream-wise 

velocity is greater for the unity viscosity ratio case compared with the more viscous droplet. The 

droplet viscosity acts to resist droplet deformation which is a form of energy transfer from carrier 

to dispersed phase. Because the energy (and momentum) transfer is relatively inefficient for 

the      case, the axial velocity of the highly viscous droplet lags the carrier-fluid’s axial 

velocity resulting in a net imbalance between carrier fluid mass entering the duct near the axis 

and axially translating droplet mass. To conserve mass, carrier fluid is accelerated through 

narrow gaps between the droplet and duct walls resulting in greater wall shear-stress than would 

be present in a single-phase fully developed flow at the same Reynolds number. Further increase 

in the droplet viscosity relative to the carrier fluid viscosity would result in less deformation at 

any given time which would increase the velocity of the carrier-fluid in the near-wall region in 

the neighborhood of the droplet. In the limit of infinite viscosity ratio, we expect the carrier fluid 

to push the droplet as if it were a rigid-body. At a Reynolds number of 100, recirculation regions 

would certainly exist on the down-stream side of the droplet. This “wake” region may be 
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unsteady as a result of the squeezing flow regime between duct-wall and wall-normal droplet-

carrier fluid interfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23: Velocity contours overlaid with 2D droplet interface for two viscosity ratios, (a) and 

(b) stream-wise velocity normalized  by mean stream-wise velocity, (c) and (d) wall-normal 

velocity normalized by mean stream-wise velocity,     for (a) and (c),      for (b) and (d), 

Re = 100, Ca = 0.25, t*=4 for both cases. 

 

  

     

     



146 

 

7. CONCLUSIONS 

 

 In this thesis, we presented the Lattice Boltzmann method (LBM) as a procedure for 

simulating multiphase flows. We introduced two widely used multiphase LBM algorithms, the 

Shan and Chen and He and Chen method and proposed a modification to the He and Chen 

algorithm incorporating a pressure Poisson equation, similar to that introduced by Inamuro [64]. 

By studying a two-dimensional droplet in a channel flow, we showed the modified H-C 

algorithm could significantly reduce density variation as a result of surface tension and density 

ratio. We also quantified some of density variation intrinsic to the H-C method for confined 

flows at modest Mach numbers and moderate Reynolds numbers. We explored a number of 

problems related to multiphase flow with applications to air conditioning and refrigeration 

including droplet impingement on smooth, liquid, and textured surfaces, head-on and oblique 

droplet collisions, and displacement flow in straight and complex micro-channels. This gave us 

insight into the breadth of problems that LBM is capable of simulating. In each of these cases, 

the limiting parameter is typically the density ratio. In the H-C method, density ratios higher than 

five were typically unstable. In the S-C method, vary high density ratios could be simulated by 

allowing two fluids to be modeled as two phases of the same fluid. Alternatively, multiple fluid 

components that did not share an EOS could be prescribed in the S-C formulation. In general, the 

S-C method was capable of simulating much higher density ratios. The tradeoff between the S-C 

and H-C methods was in the prescription of surface tension magnitude. In H-C, once the EOS 

was chosen, the surface tension magnitude could be chosen arbitrarily. In the S-C method, 

interaction forces were prescribed which in theory could be used to correlate or imply surface 

tension via a Laplace pressure difference. However, the surface tension magnitude could only be 

known a posteriori following a simulation. The arbitrary prescription of surface tension made the 
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H-C method more robust in simulating a range of problems that could be compared to results 

obtained in literature. The H-C method was used to simulate droplet deformation in a square-

duct at moderate Reynolds number. Droplet deformation magnitude had a strong dependence on 

capillary number. For moderate Reynolds numbers, the deformation increased as the Reynolds 

number increased. As the Reynolds number approached the Stokes limit, the Reynolds number 

became a relatively unimportant parameter in the description of droplet deformation. Droplet to 

carrier viscosity ratio also played a prominent role in droplet deformation, especially as the 

viscosity ratio was increased to a magnitude much greater than unity. The droplet study gives us 

confidence in LBM, specifically H-C as a viable method in the simulation of multiphase flows 

provided the density ratio is close to unity. Because air conditioning and refrigeration 

applications often involve vary high density ratio flows, we conclude that the original H-C and 

S-C algorithms are not currently capable of accurately simulating these flows. The addition of 

the PPE in the modified H-C method gave some promise for LBM in simulating high density 

ratio flows. In addition, if the S-C method could be extended, such that interfacial tension could 

be prescribed a priori, this would significantly increase its robustness as a multiphase 

computational strategy. We hope this work gives readers some level of detail regarding the 

advantages and disadvantages of LBM as well as insight into the method’s derivation, 

implementation, accuracy, and robustness. We have shown LBM to be a versatile method with 

regard to the problems it is capable of simulating. The square-duct, droplet deformation work 

represents a careful study demonstrating LBM as an accurate method, that can be validated with 

other computational methodologies, and perhaps most importantly, capable of uncovering novel 

multiphase flow physics. 
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APPENDIX 

A. Brief Review of Kinetic Theory 

 

It is substantive to briefly discuss the relevant theory used in the derivation of the LBM  

equations. Shown in Figure A.1 is a collection of fluid molecules
47

 in an arbitrary control 

volume. Arrows denote hypothetical instantaneous velocity vectors for each of these molecules. 

In principle, it is possible to determine how such a closed system evolves by writing a force 

balance for each molecule, and a conservation relationship ensuring the total number of particles 

is conserved. Such a formulation is deemed “Lagrangian.” From a physical standpoint, it would 

be nice to capture every piece of physics in such a system, that is the position and momentum of 

each molecule could be tracked for an arbitrary amount of time. However, from a practical 

                                                 
47

 The term fluid “molecules” should not be confused with the term fluid “element” which will follow and be 

defined in the context of the continuum hypothesis. 

 
Figure A.1: Instantaneous snapshot of molecules and their respective velocity vectors in an 

arbitrary control volume. 
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standpoint, it would become prohibitively expensive (from a computational standpoint say) to 

track every molecule for any practical system size. For example, a 6 ounce glass of water 

contains approximately 9.85 moles, or about           water molecules. To circumvent this 

impasse, we seek an alternative description. The traditional alternative is the “Eulerian” 

formulation. In the Eulerian formulation, the notion of individual fluid molecules loses all 

meaning. In this formulation, a fluid comprised of many molecules is described in terms of its 

macroscopic properties, that is, measureable quantities such as density, viscosity, pressure, 

temperature, and velocity. As discussed in Batchelor [24], it becomes necessary to introduce the 

concept of a continuum via the continuum hypothesis. In essence, the hypothesis says that in the 

system being examined, there must exist a large separation of length scales, such that at any 

point
48

, an average or macroscopic quantity can be defined. At the smallest extreme, the relevant 

flow scale is the mean free-path, the characteristic separation distance between molecules. At 

such a scale, a continuum description is not appropriate. That is, any measurable quantity—

temperature for instance—would change so rapidly over small separation distances that no such 

average temperature description would be appropriate. At the other extreme, there exists a 

characteristic length scale where macroscopic variation in properties is easily measured. Such a 

length scale could be the size of a room
49

, say, since it is easy to imagine a room that is cold on 

one side in exposure to a draft, and warm on the other in proximity to a lit fireplace. Therefore, 

the continuum hypothesis says there must exist an intermediate length scale between these 

extremes. Such a length scale has finite size and contains many fluid molecules. This length 

scale is called a “point” and the collection of molecules in a control volume of this size is 

deemed a fluid “element.” When we speak of the Eulerian description, macroscopic properties 

                                                 
48

 To be defined. 
49

 The distance over which changes in macroscopic properties is discernible is certainly much smaller than a room, 

but the former is used as a simple illustrative example. 
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are defined under the preceding notions. Therefore, in this new description, the notion of 

individual molecules has lost all meaning. However, in many practical engineering problems, it 

is the macroscopic properties (flow-rate, pressure drop, etc.) that are of interest, and the 

dynamics of each molecule are immaterial.  

 Interestingly, the Lattice Boltzmann Method is an Eulerian formulation built-up from a 

Lagrangian perspective. Referring to Figures A.1 and A.2, we could imagine at one instance in 

time, counting the total number of molecules (N) inside this control volume that each have an 

instantaneous velocity 𝝃, and construct a number distribution containing an N for every 

magnitude of 𝝃 encountered. If the size of the control volume is taken to be a point, defined in   

 
Figure A.2: Transition from discrete to continuous particle distribution as the number of 

molecules sampled becomes large. 

 

the context of the continuum hypothesis, then the number distribution is no longer recognizable 

as discrete points, but rather a continuous distribution over realizable molecular velocities. 

Alternatively, this number distribution may be referred to as a number density since the total 

number of molecules in the control volume can be calculated by integrating the distribution over 

all possible molecular velocities: 

           𝑚          ∫  𝜉                                               (A  ) 
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A related concept is the particle distribution function (pdf) which is defined in (A.2): 

 

 (𝜉    )  
 (𝜉)    

     𝑣   𝑚  
                                                            (   ) 

 

where MM is the molecular mass of the single particle species in the control volume. The 

fundamental volume unit is m^3 in SI. The arguments of f are shown to emphasize its 

dependence on the velocities 𝜉 of the molecular species in the control volume. Further, if instead 

of one control volume, we consider a finite macroscopic domain where each point in the domain 

has a measurable macroscopic particle distribution function, then the pdf may be said to vary 

spatially at each location x, in the domain. The final argument allows the possibility for the shape 

of the pdf to change with time. Under these conditions, we may define familiar quantities: 

 

   
      𝑚   

     𝑣   𝑚 
  ∫  𝜉                                                       (   ) 

 

     ∫ 𝜉  𝜉                                                                       (   ) 

 

 

Where   and u are the fluid density and velocity at any point in the domain, respectively. A 

special case to consider is when the pdf does not vary spatially or temporally. Then the 

expressions for density and momentum are invariant since the integrands on the right hand of 

side of (A.3) and (A.4) respectively do not change. Using Boltzmann’s H-Theorem, Maxwell 

showed that the pdf corresponding to a uniform steady state of molecules has the form given in 

(A.5) [55, 71]: 
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Where T is the macroscopic temperature and R is the specific gas constant. It is interesting to 

note that Maxwell’s distribution is described by both small scale features, viz. the molecular 

velocity 𝜉, and large scale features, viz. measurable quantities such as temperature, velocity, and 

density. 

 To allow for more complicated system dynamics, we must allow for the possibility that 

the pdf changes in time. The most general expression for the evolution of the pdf is given by the 

Boltzmann equation in (A.6) [55]: 

 

  

  
 𝜉 ∙      ∙

  

  
 (

  

  
)
    

                                              (   )  

 

The left hand side of (A.6) possesses a form similar to that of a material derivative, however the 

current form is expressed in terms of molecular velocities 𝜉, so that the traditional label of a 

material derivative is not appropriate. The right hand side of (A.6) contains two terms, the first 

represents the effect of body forces on the evolution of the pdf while the second term represents 

the effect of molecular collisions on variation in the pdf. Note that the Boltzmann equation, in 

the same vein as the Maxwell distribution, contains explicit macroscopic and microscopic 

effects. In acknowledgement of the range of scales present in the governing equation, this 

continuum model is often referred to as “mesoscopic.”  
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We have already assumed the pdf itself to be a measurable or macroscopic quantity. F, the 

forcing term will turn out to also be expressible in terms of macroscopic quantities but will 

similarly contain an understanding that this macroscopic form is built up from microscopic 

interactions. Therefore, the latter and the former terms are quantities measurable at a point, as 

previously defined. With the notion of measurability, the collision term so too must be 

understood as the net effect of collisions to change the shape of the pdf, as can be measured at a 

point. That is, the time and length scales of each collision make it impossible to observe them in 

the Lagrangian sense so we must surrender to the net measurable result. The form of the forcing 

term requires more discussion which will be addressed in sections 2.2 and 2.3. The final note 

regards the collision term. 

 To the best of the author’s knowledge no simple close-form analytical expression exists 

for the collision term. Chapman and Cowling [55] present an integral expression assuming the 

collection of molecules is of low enough density such that only binary collisions need to be 

considered. Such an expression may be suitable for gases. However if such a model is capable of 

handling liquid fluids, this expression will not be appropriate. Further, the integral expression 

itself introduces unclosed terms to equation (A.6) which themselves would require modeling. 

The simplest and most common expression given for the collision term was expressed by 

Bhatnagar, Gross, and Krook in 1954 [47] and is typically referred to as the BGK-approximation 

(A.7): 

 

(
  

  
)
    

≈  
     

 
                                                             (   )  

 

 

Where     was given in (A.5) and   is called the relaxation time. The BGK-approximation is 

written with the assumption that the net effect of collisions is to “relax” the pdf toward 
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equilibrium at a constant rate with characteristic relaxation time given by   and can be derived 

using Taylor series arguments [57]. The physical rationale for a uniform relaxation rate is the 

same as the argument suggesting that momentum transfer by diffusion is characterized by a 

single viscosity for Newtonian fluids. As it turns out, the two quantities will be related. That is, 

the time scale over which relaxation occurs will turn out to be proportional to the efficiency in 

the propagation of information, be it spatial gradients in the distribution function or in 

momentum. While some authors [60] for example have used collision models incorporating 

multiple relaxation times (MRT), the BGK-approximation is the most widely used due to its 

simplicity and physical connection to momentum diffusivity (kinematic viscosity). For 

redundancy we write the complete Boltzmann equation with BGK-approximation, which forms 

the foundation of most widely used LBM algorithms: 

 

 
  

  
 𝜉 ∙      ∙

  

  
 

     

 
                                                 (   )  

 

Before presenting the LBM algorithms implemented in this investigation, we emphasize 

the Boltzmann equation is the evolution equation for a single pdf, that is, for the distribution 

function of molecules of a single type, where the notion of a fluid is defined in the context of the 

continuum hypothesis.  The application of the continuous model to multiphase flows will not be 

considered here. Rather, multiphase LBM algorithms are presented in the methods section of 

Chapter 2 where careful attention is given to distinguish the differences between the single and 

multiphase algorithms. 


